1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfo.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/InlineAsm.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetFrameLowering.h" 56 #include "llvm/Target/TargetInstrInfo.h" 57 #include "llvm/Target/TargetIntrinsicInfo.h" 58 #include "llvm/Target/TargetLibraryInfo.h" 59 #include "llvm/Target/TargetLowering.h" 60 #include "llvm/Target/TargetOptions.h" 61 #include "llvm/Target/TargetSelectionDAGInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 /// LimitFloatPrecision - Generate low-precision inline sequences for 66 /// some float libcalls (6, 8 or 12 bits). 67 static unsigned LimitFloatPrecision; 68 69 static cl::opt<unsigned, true> 70 LimitFPPrecision("limit-float-precision", 71 cl::desc("Generate low-precision inline sequences " 72 "for some float libcalls"), 73 cl::location(LimitFloatPrecision), 74 cl::init(0)); 75 76 // Limit the width of DAG chains. This is important in general to prevent 77 // prevent DAG-based analysis from blowing up. For example, alias analysis and 78 // load clustering may not complete in reasonable time. It is difficult to 79 // recognize and avoid this situation within each individual analysis, and 80 // future analyses are likely to have the same behavior. Limiting DAG width is 81 // the safe approach, and will be especially important with global DAGs. 82 // 83 // MaxParallelChains default is arbitrarily high to avoid affecting 84 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 85 // sequence over this should have been converted to llvm.memcpy by the 86 // frontend. It easy to induce this behavior with .ll code such as: 87 // %buffer = alloca [4096 x i8] 88 // %data = load [4096 x i8]* %argPtr 89 // store [4096 x i8] %data, [4096 x i8]* %buffer 90 static const unsigned MaxParallelChains = 64; 91 92 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 93 const SDValue *Parts, unsigned NumParts, 94 MVT PartVT, EVT ValueVT, const Value *V); 95 96 /// getCopyFromParts - Create a value that contains the specified legal parts 97 /// combined into the value they represent. If the parts combine to a type 98 /// larger then ValueVT then AssertOp can be used to specify whether the extra 99 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 100 /// (ISD::AssertSext). 101 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, 103 unsigned NumParts, MVT PartVT, EVT ValueVT, 104 const Value *V, 105 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 106 if (ValueVT.isVector()) 107 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 108 PartVT, ValueVT, V); 109 110 assert(NumParts > 0 && "No parts to assemble!"); 111 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 112 SDValue Val = Parts[0]; 113 114 if (NumParts > 1) { 115 // Assemble the value from multiple parts. 116 if (ValueVT.isInteger()) { 117 unsigned PartBits = PartVT.getSizeInBits(); 118 unsigned ValueBits = ValueVT.getSizeInBits(); 119 120 // Assemble the power of 2 part. 121 unsigned RoundParts = NumParts & (NumParts - 1) ? 122 1 << Log2_32(NumParts) : NumParts; 123 unsigned RoundBits = PartBits * RoundParts; 124 EVT RoundVT = RoundBits == ValueBits ? 125 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 126 SDValue Lo, Hi; 127 128 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 129 130 if (RoundParts > 2) { 131 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 132 PartVT, HalfVT, V); 133 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 134 RoundParts / 2, PartVT, HalfVT, V); 135 } else { 136 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 137 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 138 } 139 140 if (TLI.isBigEndian()) 141 std::swap(Lo, Hi); 142 143 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 144 145 if (RoundParts < NumParts) { 146 // Assemble the trailing non-power-of-2 part. 147 unsigned OddParts = NumParts - RoundParts; 148 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 149 Hi = getCopyFromParts(DAG, DL, 150 Parts + RoundParts, OddParts, PartVT, OddVT, V); 151 152 // Combine the round and odd parts. 153 Lo = Val; 154 if (TLI.isBigEndian()) 155 std::swap(Lo, Hi); 156 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 157 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 158 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 159 DAG.getConstant(Lo.getValueType().getSizeInBits(), 160 TLI.getPointerTy())); 161 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 162 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 163 } 164 } else if (PartVT.isFloatingPoint()) { 165 // FP split into multiple FP parts (for ppcf128) 166 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 167 "Unexpected split"); 168 SDValue Lo, Hi; 169 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 170 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 171 if (TLI.isBigEndian()) 172 std::swap(Lo, Hi); 173 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 174 } else { 175 // FP split into integer parts (soft fp) 176 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 177 !PartVT.isVector() && "Unexpected split"); 178 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 179 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 180 } 181 } 182 183 // There is now one part, held in Val. Correct it to match ValueVT. 184 EVT PartEVT = Val.getValueType(); 185 186 if (PartEVT == ValueVT) 187 return Val; 188 189 if (PartEVT.isInteger() && ValueVT.isInteger()) { 190 if (ValueVT.bitsLT(PartEVT)) { 191 // For a truncate, see if we have any information to 192 // indicate whether the truncated bits will always be 193 // zero or sign-extension. 194 if (AssertOp != ISD::DELETED_NODE) 195 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 196 DAG.getValueType(ValueVT)); 197 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 198 } 199 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 200 } 201 202 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 203 // FP_ROUND's are always exact here. 204 if (ValueVT.bitsLT(Val.getValueType())) 205 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 206 DAG.getTargetConstant(1, TLI.getPointerTy())); 207 208 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 209 } 210 211 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 212 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 213 214 llvm_unreachable("Unknown mismatch!"); 215 } 216 217 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 218 const Twine &ErrMsg) { 219 const Instruction *I = dyn_cast_or_null<Instruction>(V); 220 if (!V) 221 return Ctx.emitError(ErrMsg); 222 223 const char *AsmError = ", possible invalid constraint for vector type"; 224 if (const CallInst *CI = dyn_cast<CallInst>(I)) 225 if (isa<InlineAsm>(CI->getCalledValue())) 226 return Ctx.emitError(I, ErrMsg + AsmError); 227 228 return Ctx.emitError(I, ErrMsg); 229 } 230 231 /// getCopyFromPartsVector - Create a value that contains the specified legal 232 /// parts combined into the value they represent. If the parts combine to a 233 /// type larger then ValueVT then AssertOp can be used to specify whether the 234 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 235 /// ValueVT (ISD::AssertSext). 236 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 237 const SDValue *Parts, unsigned NumParts, 238 MVT PartVT, EVT ValueVT, const Value *V) { 239 assert(ValueVT.isVector() && "Not a vector value"); 240 assert(NumParts > 0 && "No parts to assemble!"); 241 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 242 SDValue Val = Parts[0]; 243 244 // Handle a multi-element vector. 245 if (NumParts > 1) { 246 EVT IntermediateVT; 247 MVT RegisterVT; 248 unsigned NumIntermediates; 249 unsigned NumRegs = 250 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 251 NumIntermediates, RegisterVT); 252 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 253 NumParts = NumRegs; // Silence a compiler warning. 254 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 255 assert(RegisterVT == Parts[0].getSimpleValueType() && 256 "Part type doesn't match part!"); 257 258 // Assemble the parts into intermediate operands. 259 SmallVector<SDValue, 8> Ops(NumIntermediates); 260 if (NumIntermediates == NumParts) { 261 // If the register was not expanded, truncate or copy the value, 262 // as appropriate. 263 for (unsigned i = 0; i != NumParts; ++i) 264 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 265 PartVT, IntermediateVT, V); 266 } else if (NumParts > 0) { 267 // If the intermediate type was expanded, build the intermediate 268 // operands from the parts. 269 assert(NumParts % NumIntermediates == 0 && 270 "Must expand into a divisible number of parts!"); 271 unsigned Factor = NumParts / NumIntermediates; 272 for (unsigned i = 0; i != NumIntermediates; ++i) 273 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 274 PartVT, IntermediateVT, V); 275 } 276 277 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 278 // intermediate operands. 279 Val = DAG.getNode(IntermediateVT.isVector() ? 280 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 281 ValueVT, &Ops[0], NumIntermediates); 282 } 283 284 // There is now one part, held in Val. Correct it to match ValueVT. 285 EVT PartEVT = Val.getValueType(); 286 287 if (PartEVT == ValueVT) 288 return Val; 289 290 if (PartEVT.isVector()) { 291 // If the element type of the source/dest vectors are the same, but the 292 // parts vector has more elements than the value vector, then we have a 293 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 294 // elements we want. 295 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 296 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 297 "Cannot narrow, it would be a lossy transformation"); 298 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 299 DAG.getConstant(0, TLI.getVectorIdxTy())); 300 } 301 302 // Vector/Vector bitcast. 303 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 304 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 305 306 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 307 "Cannot handle this kind of promotion"); 308 // Promoted vector extract 309 bool Smaller = ValueVT.bitsLE(PartEVT); 310 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 311 DL, ValueVT, Val); 312 313 } 314 315 // Trivial bitcast if the types are the same size and the destination 316 // vector type is legal. 317 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 318 TLI.isTypeLegal(ValueVT)) 319 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 320 321 // Handle cases such as i8 -> <1 x i1> 322 if (ValueVT.getVectorNumElements() != 1) { 323 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 324 "non-trivial scalar-to-vector conversion"); 325 return DAG.getUNDEF(ValueVT); 326 } 327 328 if (ValueVT.getVectorNumElements() == 1 && 329 ValueVT.getVectorElementType() != PartEVT) { 330 bool Smaller = ValueVT.bitsLE(PartEVT); 331 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 332 DL, ValueVT.getScalarType(), Val); 333 } 334 335 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 336 } 337 338 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 339 SDValue Val, SDValue *Parts, unsigned NumParts, 340 MVT PartVT, const Value *V); 341 342 /// getCopyToParts - Create a series of nodes that contain the specified value 343 /// split into legal parts. If the parts contain more bits than Val, then, for 344 /// integers, ExtendKind can be used to specify how to generate the extra bits. 345 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 346 SDValue Val, SDValue *Parts, unsigned NumParts, 347 MVT PartVT, const Value *V, 348 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 349 EVT ValueVT = Val.getValueType(); 350 351 // Handle the vector case separately. 352 if (ValueVT.isVector()) 353 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 354 355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 356 unsigned PartBits = PartVT.getSizeInBits(); 357 unsigned OrigNumParts = NumParts; 358 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 359 360 if (NumParts == 0) 361 return; 362 363 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 364 EVT PartEVT = PartVT; 365 if (PartEVT == ValueVT) { 366 assert(NumParts == 1 && "No-op copy with multiple parts!"); 367 Parts[0] = Val; 368 return; 369 } 370 371 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 372 // If the parts cover more bits than the value has, promote the value. 373 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 374 assert(NumParts == 1 && "Do not know what to promote to!"); 375 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 376 } else { 377 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 378 ValueVT.isInteger() && 379 "Unknown mismatch!"); 380 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 381 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 382 if (PartVT == MVT::x86mmx) 383 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 384 } 385 } else if (PartBits == ValueVT.getSizeInBits()) { 386 // Different types of the same size. 387 assert(NumParts == 1 && PartEVT != ValueVT); 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 390 // If the parts cover less bits than value has, truncate the value. 391 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 392 ValueVT.isInteger() && 393 "Unknown mismatch!"); 394 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 395 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 396 if (PartVT == MVT::x86mmx) 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } 399 400 // The value may have changed - recompute ValueVT. 401 ValueVT = Val.getValueType(); 402 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 403 "Failed to tile the value with PartVT!"); 404 405 if (NumParts == 1) { 406 if (PartEVT != ValueVT) 407 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 408 "scalar-to-vector conversion failed"); 409 410 Parts[0] = Val; 411 return; 412 } 413 414 // Expand the value into multiple parts. 415 if (NumParts & (NumParts - 1)) { 416 // The number of parts is not a power of 2. Split off and copy the tail. 417 assert(PartVT.isInteger() && ValueVT.isInteger() && 418 "Do not know what to expand to!"); 419 unsigned RoundParts = 1 << Log2_32(NumParts); 420 unsigned RoundBits = RoundParts * PartBits; 421 unsigned OddParts = NumParts - RoundParts; 422 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 423 DAG.getIntPtrConstant(RoundBits)); 424 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 425 426 if (TLI.isBigEndian()) 427 // The odd parts were reversed by getCopyToParts - unreverse them. 428 std::reverse(Parts + RoundParts, Parts + NumParts); 429 430 NumParts = RoundParts; 431 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 432 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 433 } 434 435 // The number of parts is a power of 2. Repeatedly bisect the value using 436 // EXTRACT_ELEMENT. 437 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 438 EVT::getIntegerVT(*DAG.getContext(), 439 ValueVT.getSizeInBits()), 440 Val); 441 442 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 443 for (unsigned i = 0; i < NumParts; i += StepSize) { 444 unsigned ThisBits = StepSize * PartBits / 2; 445 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 446 SDValue &Part0 = Parts[i]; 447 SDValue &Part1 = Parts[i+StepSize/2]; 448 449 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 450 ThisVT, Part0, DAG.getIntPtrConstant(1)); 451 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(0)); 453 454 if (ThisBits == PartBits && ThisVT != PartVT) { 455 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 456 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 457 } 458 } 459 } 460 461 if (TLI.isBigEndian()) 462 std::reverse(Parts, Parts + OrigNumParts); 463 } 464 465 466 /// getCopyToPartsVector - Create a series of nodes that contain the specified 467 /// value split into legal parts. 468 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 469 SDValue Val, SDValue *Parts, unsigned NumParts, 470 MVT PartVT, const Value *V) { 471 EVT ValueVT = Val.getValueType(); 472 assert(ValueVT.isVector() && "Not a vector"); 473 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 474 475 if (NumParts == 1) { 476 EVT PartEVT = PartVT; 477 if (PartEVT == ValueVT) { 478 // Nothing to do. 479 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 480 // Bitconvert vector->vector case. 481 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 482 } else if (PartVT.isVector() && 483 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 484 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 485 EVT ElementVT = PartVT.getVectorElementType(); 486 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 487 // undef elements. 488 SmallVector<SDValue, 16> Ops; 489 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 490 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 491 ElementVT, Val, DAG.getConstant(i, 492 TLI.getVectorIdxTy()))); 493 494 for (unsigned i = ValueVT.getVectorNumElements(), 495 e = PartVT.getVectorNumElements(); i != e; ++i) 496 Ops.push_back(DAG.getUNDEF(ElementVT)); 497 498 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 499 500 // FIXME: Use CONCAT for 2x -> 4x. 501 502 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 503 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 504 } else if (PartVT.isVector() && 505 PartEVT.getVectorElementType().bitsGE( 506 ValueVT.getVectorElementType()) && 507 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 508 509 // Promoted vector extract 510 bool Smaller = PartEVT.bitsLE(ValueVT); 511 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 512 DL, PartVT, Val); 513 } else{ 514 // Vector -> scalar conversion. 515 assert(ValueVT.getVectorNumElements() == 1 && 516 "Only trivial vector-to-scalar conversions should get here!"); 517 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 518 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 519 520 bool Smaller = ValueVT.bitsLE(PartVT); 521 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 522 DL, PartVT, Val); 523 } 524 525 Parts[0] = Val; 526 return; 527 } 528 529 // Handle a multi-element vector. 530 EVT IntermediateVT; 531 MVT RegisterVT; 532 unsigned NumIntermediates; 533 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 534 IntermediateVT, 535 NumIntermediates, RegisterVT); 536 unsigned NumElements = ValueVT.getVectorNumElements(); 537 538 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 539 NumParts = NumRegs; // Silence a compiler warning. 540 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 541 542 // Split the vector into intermediate operands. 543 SmallVector<SDValue, 8> Ops(NumIntermediates); 544 for (unsigned i = 0; i != NumIntermediates; ++i) { 545 if (IntermediateVT.isVector()) 546 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 547 IntermediateVT, Val, 548 DAG.getConstant(i * (NumElements / NumIntermediates), 549 TLI.getVectorIdxTy())); 550 else 551 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 552 IntermediateVT, Val, 553 DAG.getConstant(i, TLI.getVectorIdxTy())); 554 } 555 556 // Split the intermediate operands into legal parts. 557 if (NumParts == NumIntermediates) { 558 // If the register was not expanded, promote or copy the value, 559 // as appropriate. 560 for (unsigned i = 0; i != NumParts; ++i) 561 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 562 } else if (NumParts > 0) { 563 // If the intermediate type was expanded, split each the value into 564 // legal parts. 565 assert(NumParts % NumIntermediates == 0 && 566 "Must expand into a divisible number of parts!"); 567 unsigned Factor = NumParts / NumIntermediates; 568 for (unsigned i = 0; i != NumIntermediates; ++i) 569 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 570 } 571 } 572 573 namespace { 574 /// RegsForValue - This struct represents the registers (physical or virtual) 575 /// that a particular set of values is assigned, and the type information 576 /// about the value. The most common situation is to represent one value at a 577 /// time, but struct or array values are handled element-wise as multiple 578 /// values. The splitting of aggregates is performed recursively, so that we 579 /// never have aggregate-typed registers. The values at this point do not 580 /// necessarily have legal types, so each value may require one or more 581 /// registers of some legal type. 582 /// 583 struct RegsForValue { 584 /// ValueVTs - The value types of the values, which may not be legal, and 585 /// may need be promoted or synthesized from one or more registers. 586 /// 587 SmallVector<EVT, 4> ValueVTs; 588 589 /// RegVTs - The value types of the registers. This is the same size as 590 /// ValueVTs and it records, for each value, what the type of the assigned 591 /// register or registers are. (Individual values are never synthesized 592 /// from more than one type of register.) 593 /// 594 /// With virtual registers, the contents of RegVTs is redundant with TLI's 595 /// getRegisterType member function, however when with physical registers 596 /// it is necessary to have a separate record of the types. 597 /// 598 SmallVector<MVT, 4> RegVTs; 599 600 /// Regs - This list holds the registers assigned to the values. 601 /// Each legal or promoted value requires one register, and each 602 /// expanded value requires multiple registers. 603 /// 604 SmallVector<unsigned, 4> Regs; 605 606 RegsForValue() {} 607 608 RegsForValue(const SmallVector<unsigned, 4> ®s, 609 MVT regvt, EVT valuevt) 610 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 611 612 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 613 unsigned Reg, Type *Ty) { 614 ComputeValueVTs(tli, Ty, ValueVTs); 615 616 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 617 EVT ValueVT = ValueVTs[Value]; 618 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 619 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 620 for (unsigned i = 0; i != NumRegs; ++i) 621 Regs.push_back(Reg + i); 622 RegVTs.push_back(RegisterVT); 623 Reg += NumRegs; 624 } 625 } 626 627 /// append - Add the specified values to this one. 628 void append(const RegsForValue &RHS) { 629 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 630 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 631 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 632 } 633 634 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 635 /// this value and returns the result as a ValueVTs value. This uses 636 /// Chain/Flag as the input and updates them for the output Chain/Flag. 637 /// If the Flag pointer is NULL, no flag is used. 638 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 639 SDLoc dl, 640 SDValue &Chain, SDValue *Flag, 641 const Value *V = nullptr) const; 642 643 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 644 /// specified value into the registers specified by this object. This uses 645 /// Chain/Flag as the input and updates them for the output Chain/Flag. 646 /// If the Flag pointer is NULL, no flag is used. 647 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 648 SDValue &Chain, SDValue *Flag, const Value *V) const; 649 650 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 651 /// operand list. This adds the code marker, matching input operand index 652 /// (if applicable), and includes the number of values added into it. 653 void AddInlineAsmOperands(unsigned Kind, 654 bool HasMatching, unsigned MatchingIdx, 655 SelectionDAG &DAG, 656 std::vector<SDValue> &Ops) const; 657 }; 658 } 659 660 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 661 /// this value and returns the result as a ValueVT value. This uses 662 /// Chain/Flag as the input and updates them for the output Chain/Flag. 663 /// If the Flag pointer is NULL, no flag is used. 664 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 665 FunctionLoweringInfo &FuncInfo, 666 SDLoc dl, 667 SDValue &Chain, SDValue *Flag, 668 const Value *V) const { 669 // A Value with type {} or [0 x %t] needs no registers. 670 if (ValueVTs.empty()) 671 return SDValue(); 672 673 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 674 675 // Assemble the legal parts into the final values. 676 SmallVector<SDValue, 4> Values(ValueVTs.size()); 677 SmallVector<SDValue, 8> Parts; 678 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 679 // Copy the legal parts from the registers. 680 EVT ValueVT = ValueVTs[Value]; 681 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 682 MVT RegisterVT = RegVTs[Value]; 683 684 Parts.resize(NumRegs); 685 for (unsigned i = 0; i != NumRegs; ++i) { 686 SDValue P; 687 if (!Flag) { 688 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 689 } else { 690 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 691 *Flag = P.getValue(2); 692 } 693 694 Chain = P.getValue(1); 695 Parts[i] = P; 696 697 // If the source register was virtual and if we know something about it, 698 // add an assert node. 699 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 700 !RegisterVT.isInteger() || RegisterVT.isVector()) 701 continue; 702 703 const FunctionLoweringInfo::LiveOutInfo *LOI = 704 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 705 if (!LOI) 706 continue; 707 708 unsigned RegSize = RegisterVT.getSizeInBits(); 709 unsigned NumSignBits = LOI->NumSignBits; 710 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 711 712 if (NumZeroBits == RegSize) { 713 // The current value is a zero. 714 // Explicitly express that as it would be easier for 715 // optimizations to kick in. 716 Parts[i] = DAG.getConstant(0, RegisterVT); 717 continue; 718 } 719 720 // FIXME: We capture more information than the dag can represent. For 721 // now, just use the tightest assertzext/assertsext possible. 722 bool isSExt = true; 723 EVT FromVT(MVT::Other); 724 if (NumSignBits == RegSize) 725 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 726 else if (NumZeroBits >= RegSize-1) 727 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 728 else if (NumSignBits > RegSize-8) 729 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 730 else if (NumZeroBits >= RegSize-8) 731 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 732 else if (NumSignBits > RegSize-16) 733 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 734 else if (NumZeroBits >= RegSize-16) 735 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 736 else if (NumSignBits > RegSize-32) 737 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 738 else if (NumZeroBits >= RegSize-32) 739 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 740 else 741 continue; 742 743 // Add an assertion node. 744 assert(FromVT != MVT::Other); 745 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 746 RegisterVT, P, DAG.getValueType(FromVT)); 747 } 748 749 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 750 NumRegs, RegisterVT, ValueVT, V); 751 Part += NumRegs; 752 Parts.clear(); 753 } 754 755 return DAG.getNode(ISD::MERGE_VALUES, dl, 756 DAG.getVTList(ValueVTs), 757 &Values[0], ValueVTs.size()); 758 } 759 760 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 761 /// specified value into the registers specified by this object. This uses 762 /// Chain/Flag as the input and updates them for the output Chain/Flag. 763 /// If the Flag pointer is NULL, no flag is used. 764 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 765 SDValue &Chain, SDValue *Flag, 766 const Value *V) const { 767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 768 769 // Get the list of the values's legal parts. 770 unsigned NumRegs = Regs.size(); 771 SmallVector<SDValue, 8> Parts(NumRegs); 772 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 773 EVT ValueVT = ValueVTs[Value]; 774 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 775 MVT RegisterVT = RegVTs[Value]; 776 ISD::NodeType ExtendKind = 777 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 778 779 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 780 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 781 Part += NumParts; 782 } 783 784 // Copy the parts into the registers. 785 SmallVector<SDValue, 8> Chains(NumRegs); 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 SDValue Part; 788 if (!Flag) { 789 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 790 } else { 791 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 792 *Flag = Part.getValue(1); 793 } 794 795 Chains[i] = Part.getValue(0); 796 } 797 798 if (NumRegs == 1 || Flag) 799 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 800 // flagged to it. That is the CopyToReg nodes and the user are considered 801 // a single scheduling unit. If we create a TokenFactor and return it as 802 // chain, then the TokenFactor is both a predecessor (operand) of the 803 // user as well as a successor (the TF operands are flagged to the user). 804 // c1, f1 = CopyToReg 805 // c2, f2 = CopyToReg 806 // c3 = TokenFactor c1, c2 807 // ... 808 // = op c3, ..., f2 809 Chain = Chains[NumRegs-1]; 810 else 811 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 812 } 813 814 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 815 /// operand list. This adds the code marker and includes the number of 816 /// values added into it. 817 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 818 unsigned MatchingIdx, 819 SelectionDAG &DAG, 820 std::vector<SDValue> &Ops) const { 821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 822 823 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 824 if (HasMatching) 825 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 826 else if (!Regs.empty() && 827 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 828 // Put the register class of the virtual registers in the flag word. That 829 // way, later passes can recompute register class constraints for inline 830 // assembly as well as normal instructions. 831 // Don't do this for tied operands that can use the regclass information 832 // from the def. 833 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 834 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 835 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 836 } 837 838 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 839 Ops.push_back(Res); 840 841 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 842 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 843 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 844 MVT RegisterVT = RegVTs[Value]; 845 for (unsigned i = 0; i != NumRegs; ++i) { 846 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 847 unsigned TheReg = Regs[Reg++]; 848 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 849 850 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 851 // If we clobbered the stack pointer, MFI should know about it. 852 assert(DAG.getMachineFunction().getFrameInfo()-> 853 hasInlineAsmWithSPAdjust()); 854 } 855 } 856 } 857 } 858 859 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 860 const TargetLibraryInfo *li) { 861 AA = &aa; 862 GFI = gfi; 863 LibInfo = li; 864 DL = DAG.getTarget().getDataLayout(); 865 Context = DAG.getContext(); 866 LPadToCallSiteMap.clear(); 867 } 868 869 /// clear - Clear out the current SelectionDAG and the associated 870 /// state and prepare this SelectionDAGBuilder object to be used 871 /// for a new block. This doesn't clear out information about 872 /// additional blocks that are needed to complete switch lowering 873 /// or PHI node updating; that information is cleared out as it is 874 /// consumed. 875 void SelectionDAGBuilder::clear() { 876 NodeMap.clear(); 877 UnusedArgNodeMap.clear(); 878 PendingLoads.clear(); 879 PendingExports.clear(); 880 CurInst = nullptr; 881 HasTailCall = false; 882 SDNodeOrder = LowestSDNodeOrder; 883 } 884 885 /// clearDanglingDebugInfo - Clear the dangling debug information 886 /// map. This function is separated from the clear so that debug 887 /// information that is dangling in a basic block can be properly 888 /// resolved in a different basic block. This allows the 889 /// SelectionDAG to resolve dangling debug information attached 890 /// to PHI nodes. 891 void SelectionDAGBuilder::clearDanglingDebugInfo() { 892 DanglingDebugInfoMap.clear(); 893 } 894 895 /// getRoot - Return the current virtual root of the Selection DAG, 896 /// flushing any PendingLoad items. This must be done before emitting 897 /// a store or any other node that may need to be ordered after any 898 /// prior load instructions. 899 /// 900 SDValue SelectionDAGBuilder::getRoot() { 901 if (PendingLoads.empty()) 902 return DAG.getRoot(); 903 904 if (PendingLoads.size() == 1) { 905 SDValue Root = PendingLoads[0]; 906 DAG.setRoot(Root); 907 PendingLoads.clear(); 908 return Root; 909 } 910 911 // Otherwise, we have to make a token factor node. 912 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 913 &PendingLoads[0], PendingLoads.size()); 914 PendingLoads.clear(); 915 DAG.setRoot(Root); 916 return Root; 917 } 918 919 /// getControlRoot - Similar to getRoot, but instead of flushing all the 920 /// PendingLoad items, flush all the PendingExports items. It is necessary 921 /// to do this before emitting a terminator instruction. 922 /// 923 SDValue SelectionDAGBuilder::getControlRoot() { 924 SDValue Root = DAG.getRoot(); 925 926 if (PendingExports.empty()) 927 return Root; 928 929 // Turn all of the CopyToReg chains into one factored node. 930 if (Root.getOpcode() != ISD::EntryToken) { 931 unsigned i = 0, e = PendingExports.size(); 932 for (; i != e; ++i) { 933 assert(PendingExports[i].getNode()->getNumOperands() > 1); 934 if (PendingExports[i].getNode()->getOperand(0) == Root) 935 break; // Don't add the root if we already indirectly depend on it. 936 } 937 938 if (i == e) 939 PendingExports.push_back(Root); 940 } 941 942 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 943 &PendingExports[0], 944 PendingExports.size()); 945 PendingExports.clear(); 946 DAG.setRoot(Root); 947 return Root; 948 } 949 950 void SelectionDAGBuilder::visit(const Instruction &I) { 951 // Set up outgoing PHI node register values before emitting the terminator. 952 if (isa<TerminatorInst>(&I)) 953 HandlePHINodesInSuccessorBlocks(I.getParent()); 954 955 ++SDNodeOrder; 956 957 CurInst = &I; 958 959 visit(I.getOpcode(), I); 960 961 if (!isa<TerminatorInst>(&I) && !HasTailCall) 962 CopyToExportRegsIfNeeded(&I); 963 964 CurInst = nullptr; 965 } 966 967 void SelectionDAGBuilder::visitPHI(const PHINode &) { 968 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 969 } 970 971 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 972 // Note: this doesn't use InstVisitor, because it has to work with 973 // ConstantExpr's in addition to instructions. 974 switch (Opcode) { 975 default: llvm_unreachable("Unknown instruction type encountered!"); 976 // Build the switch statement using the Instruction.def file. 977 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 978 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 979 #include "llvm/IR/Instruction.def" 980 } 981 } 982 983 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 984 // generate the debug data structures now that we've seen its definition. 985 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 986 SDValue Val) { 987 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 988 if (DDI.getDI()) { 989 const DbgValueInst *DI = DDI.getDI(); 990 DebugLoc dl = DDI.getdl(); 991 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 992 MDNode *Variable = DI->getVariable(); 993 uint64_t Offset = DI->getOffset(); 994 SDDbgValue *SDV; 995 if (Val.getNode()) { 996 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 997 SDV = DAG.getDbgValue(Variable, Val.getNode(), 998 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 999 DAG.AddDbgValue(SDV, Val.getNode(), false); 1000 } 1001 } else 1002 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1003 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1004 } 1005 } 1006 1007 /// getValue - Return an SDValue for the given Value. 1008 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1009 // If we already have an SDValue for this value, use it. It's important 1010 // to do this first, so that we don't create a CopyFromReg if we already 1011 // have a regular SDValue. 1012 SDValue &N = NodeMap[V]; 1013 if (N.getNode()) return N; 1014 1015 // If there's a virtual register allocated and initialized for this 1016 // value, use it. 1017 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1018 if (It != FuncInfo.ValueMap.end()) { 1019 unsigned InReg = It->second; 1020 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1021 InReg, V->getType()); 1022 SDValue Chain = DAG.getEntryNode(); 1023 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1024 resolveDanglingDebugInfo(V, N); 1025 return N; 1026 } 1027 1028 // Otherwise create a new SDValue and remember it. 1029 SDValue Val = getValueImpl(V); 1030 NodeMap[V] = Val; 1031 resolveDanglingDebugInfo(V, Val); 1032 return Val; 1033 } 1034 1035 /// getNonRegisterValue - Return an SDValue for the given Value, but 1036 /// don't look in FuncInfo.ValueMap for a virtual register. 1037 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1038 // If we already have an SDValue for this value, use it. 1039 SDValue &N = NodeMap[V]; 1040 if (N.getNode()) return N; 1041 1042 // Otherwise create a new SDValue and remember it. 1043 SDValue Val = getValueImpl(V); 1044 NodeMap[V] = Val; 1045 resolveDanglingDebugInfo(V, Val); 1046 return Val; 1047 } 1048 1049 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1050 /// Create an SDValue for the given value. 1051 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1052 const TargetLowering *TLI = TM.getTargetLowering(); 1053 1054 if (const Constant *C = dyn_cast<Constant>(V)) { 1055 EVT VT = TLI->getValueType(V->getType(), true); 1056 1057 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1058 return DAG.getConstant(*CI, VT); 1059 1060 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1061 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1062 1063 if (isa<ConstantPointerNull>(C)) { 1064 unsigned AS = V->getType()->getPointerAddressSpace(); 1065 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1066 } 1067 1068 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1069 return DAG.getConstantFP(*CFP, VT); 1070 1071 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1072 return DAG.getUNDEF(VT); 1073 1074 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1075 visit(CE->getOpcode(), *CE); 1076 SDValue N1 = NodeMap[V]; 1077 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1078 return N1; 1079 } 1080 1081 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1082 SmallVector<SDValue, 4> Constants; 1083 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1084 OI != OE; ++OI) { 1085 SDNode *Val = getValue(*OI).getNode(); 1086 // If the operand is an empty aggregate, there are no values. 1087 if (!Val) continue; 1088 // Add each leaf value from the operand to the Constants list 1089 // to form a flattened list of all the values. 1090 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1091 Constants.push_back(SDValue(Val, i)); 1092 } 1093 1094 return DAG.getMergeValues(&Constants[0], Constants.size(), 1095 getCurSDLoc()); 1096 } 1097 1098 if (const ConstantDataSequential *CDS = 1099 dyn_cast<ConstantDataSequential>(C)) { 1100 SmallVector<SDValue, 4> Ops; 1101 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1102 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1103 // Add each leaf value from the operand to the Constants list 1104 // to form a flattened list of all the values. 1105 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1106 Ops.push_back(SDValue(Val, i)); 1107 } 1108 1109 if (isa<ArrayType>(CDS->getType())) 1110 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); 1111 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1112 VT, &Ops[0], Ops.size()); 1113 } 1114 1115 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1116 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1117 "Unknown struct or array constant!"); 1118 1119 SmallVector<EVT, 4> ValueVTs; 1120 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1121 unsigned NumElts = ValueVTs.size(); 1122 if (NumElts == 0) 1123 return SDValue(); // empty struct 1124 SmallVector<SDValue, 4> Constants(NumElts); 1125 for (unsigned i = 0; i != NumElts; ++i) { 1126 EVT EltVT = ValueVTs[i]; 1127 if (isa<UndefValue>(C)) 1128 Constants[i] = DAG.getUNDEF(EltVT); 1129 else if (EltVT.isFloatingPoint()) 1130 Constants[i] = DAG.getConstantFP(0, EltVT); 1131 else 1132 Constants[i] = DAG.getConstant(0, EltVT); 1133 } 1134 1135 return DAG.getMergeValues(&Constants[0], NumElts, 1136 getCurSDLoc()); 1137 } 1138 1139 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1140 return DAG.getBlockAddress(BA, VT); 1141 1142 VectorType *VecTy = cast<VectorType>(V->getType()); 1143 unsigned NumElements = VecTy->getNumElements(); 1144 1145 // Now that we know the number and type of the elements, get that number of 1146 // elements into the Ops array based on what kind of constant it is. 1147 SmallVector<SDValue, 16> Ops; 1148 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1149 for (unsigned i = 0; i != NumElements; ++i) 1150 Ops.push_back(getValue(CV->getOperand(i))); 1151 } else { 1152 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1153 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1154 1155 SDValue Op; 1156 if (EltVT.isFloatingPoint()) 1157 Op = DAG.getConstantFP(0, EltVT); 1158 else 1159 Op = DAG.getConstant(0, EltVT); 1160 Ops.assign(NumElements, Op); 1161 } 1162 1163 // Create a BUILD_VECTOR node. 1164 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1165 VT, &Ops[0], Ops.size()); 1166 } 1167 1168 // If this is a static alloca, generate it as the frameindex instead of 1169 // computation. 1170 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1171 DenseMap<const AllocaInst*, int>::iterator SI = 1172 FuncInfo.StaticAllocaMap.find(AI); 1173 if (SI != FuncInfo.StaticAllocaMap.end()) 1174 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1175 } 1176 1177 // If this is an instruction which fast-isel has deferred, select it now. 1178 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1179 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1180 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1181 SDValue Chain = DAG.getEntryNode(); 1182 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1183 } 1184 1185 llvm_unreachable("Can't get register for value!"); 1186 } 1187 1188 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1189 const TargetLowering *TLI = TM.getTargetLowering(); 1190 SDValue Chain = getControlRoot(); 1191 SmallVector<ISD::OutputArg, 8> Outs; 1192 SmallVector<SDValue, 8> OutVals; 1193 1194 if (!FuncInfo.CanLowerReturn) { 1195 unsigned DemoteReg = FuncInfo.DemoteRegister; 1196 const Function *F = I.getParent()->getParent(); 1197 1198 // Emit a store of the return value through the virtual register. 1199 // Leave Outs empty so that LowerReturn won't try to load return 1200 // registers the usual way. 1201 SmallVector<EVT, 1> PtrValueVTs; 1202 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1203 PtrValueVTs); 1204 1205 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1206 SDValue RetOp = getValue(I.getOperand(0)); 1207 1208 SmallVector<EVT, 4> ValueVTs; 1209 SmallVector<uint64_t, 4> Offsets; 1210 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1211 unsigned NumValues = ValueVTs.size(); 1212 1213 SmallVector<SDValue, 4> Chains(NumValues); 1214 for (unsigned i = 0; i != NumValues; ++i) { 1215 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1216 RetPtr.getValueType(), RetPtr, 1217 DAG.getIntPtrConstant(Offsets[i])); 1218 Chains[i] = 1219 DAG.getStore(Chain, getCurSDLoc(), 1220 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1221 // FIXME: better loc info would be nice. 1222 Add, MachinePointerInfo(), false, false, 0); 1223 } 1224 1225 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1226 MVT::Other, &Chains[0], NumValues); 1227 } else if (I.getNumOperands() != 0) { 1228 SmallVector<EVT, 4> ValueVTs; 1229 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1230 unsigned NumValues = ValueVTs.size(); 1231 if (NumValues) { 1232 SDValue RetOp = getValue(I.getOperand(0)); 1233 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1234 EVT VT = ValueVTs[j]; 1235 1236 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1237 1238 const Function *F = I.getParent()->getParent(); 1239 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1240 Attribute::SExt)) 1241 ExtendKind = ISD::SIGN_EXTEND; 1242 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1243 Attribute::ZExt)) 1244 ExtendKind = ISD::ZERO_EXTEND; 1245 1246 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1247 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1248 1249 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1250 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1251 SmallVector<SDValue, 4> Parts(NumParts); 1252 getCopyToParts(DAG, getCurSDLoc(), 1253 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1254 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1255 1256 // 'inreg' on function refers to return value 1257 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1258 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1259 Attribute::InReg)) 1260 Flags.setInReg(); 1261 1262 // Propagate extension type if any 1263 if (ExtendKind == ISD::SIGN_EXTEND) 1264 Flags.setSExt(); 1265 else if (ExtendKind == ISD::ZERO_EXTEND) 1266 Flags.setZExt(); 1267 1268 for (unsigned i = 0; i < NumParts; ++i) { 1269 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1270 VT, /*isfixed=*/true, 0, 0)); 1271 OutVals.push_back(Parts[i]); 1272 } 1273 } 1274 } 1275 } 1276 1277 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1278 CallingConv::ID CallConv = 1279 DAG.getMachineFunction().getFunction()->getCallingConv(); 1280 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1281 Outs, OutVals, getCurSDLoc(), 1282 DAG); 1283 1284 // Verify that the target's LowerReturn behaved as expected. 1285 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1286 "LowerReturn didn't return a valid chain!"); 1287 1288 // Update the DAG with the new chain value resulting from return lowering. 1289 DAG.setRoot(Chain); 1290 } 1291 1292 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1293 /// created for it, emit nodes to copy the value into the virtual 1294 /// registers. 1295 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1296 // Skip empty types 1297 if (V->getType()->isEmptyTy()) 1298 return; 1299 1300 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1301 if (VMI != FuncInfo.ValueMap.end()) { 1302 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1303 CopyValueToVirtualRegister(V, VMI->second); 1304 } 1305 } 1306 1307 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1308 /// the current basic block, add it to ValueMap now so that we'll get a 1309 /// CopyTo/FromReg. 1310 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1311 // No need to export constants. 1312 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1313 1314 // Already exported? 1315 if (FuncInfo.isExportedInst(V)) return; 1316 1317 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1318 CopyValueToVirtualRegister(V, Reg); 1319 } 1320 1321 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1322 const BasicBlock *FromBB) { 1323 // The operands of the setcc have to be in this block. We don't know 1324 // how to export them from some other block. 1325 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1326 // Can export from current BB. 1327 if (VI->getParent() == FromBB) 1328 return true; 1329 1330 // Is already exported, noop. 1331 return FuncInfo.isExportedInst(V); 1332 } 1333 1334 // If this is an argument, we can export it if the BB is the entry block or 1335 // if it is already exported. 1336 if (isa<Argument>(V)) { 1337 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1338 return true; 1339 1340 // Otherwise, can only export this if it is already exported. 1341 return FuncInfo.isExportedInst(V); 1342 } 1343 1344 // Otherwise, constants can always be exported. 1345 return true; 1346 } 1347 1348 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1349 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1350 const MachineBasicBlock *Dst) const { 1351 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1352 if (!BPI) 1353 return 0; 1354 const BasicBlock *SrcBB = Src->getBasicBlock(); 1355 const BasicBlock *DstBB = Dst->getBasicBlock(); 1356 return BPI->getEdgeWeight(SrcBB, DstBB); 1357 } 1358 1359 void SelectionDAGBuilder:: 1360 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1361 uint32_t Weight /* = 0 */) { 1362 if (!Weight) 1363 Weight = getEdgeWeight(Src, Dst); 1364 Src->addSuccessor(Dst, Weight); 1365 } 1366 1367 1368 static bool InBlock(const Value *V, const BasicBlock *BB) { 1369 if (const Instruction *I = dyn_cast<Instruction>(V)) 1370 return I->getParent() == BB; 1371 return true; 1372 } 1373 1374 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1375 /// This function emits a branch and is used at the leaves of an OR or an 1376 /// AND operator tree. 1377 /// 1378 void 1379 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1380 MachineBasicBlock *TBB, 1381 MachineBasicBlock *FBB, 1382 MachineBasicBlock *CurBB, 1383 MachineBasicBlock *SwitchBB, 1384 uint32_t TWeight, 1385 uint32_t FWeight) { 1386 const BasicBlock *BB = CurBB->getBasicBlock(); 1387 1388 // If the leaf of the tree is a comparison, merge the condition into 1389 // the caseblock. 1390 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1391 // The operands of the cmp have to be in this block. We don't know 1392 // how to export them from some other block. If this is the first block 1393 // of the sequence, no exporting is needed. 1394 if (CurBB == SwitchBB || 1395 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1396 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1397 ISD::CondCode Condition; 1398 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1399 Condition = getICmpCondCode(IC->getPredicate()); 1400 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1401 Condition = getFCmpCondCode(FC->getPredicate()); 1402 if (TM.Options.NoNaNsFPMath) 1403 Condition = getFCmpCodeWithoutNaN(Condition); 1404 } else { 1405 Condition = ISD::SETEQ; // silence warning. 1406 llvm_unreachable("Unknown compare instruction"); 1407 } 1408 1409 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1410 TBB, FBB, CurBB, TWeight, FWeight); 1411 SwitchCases.push_back(CB); 1412 return; 1413 } 1414 } 1415 1416 // Create a CaseBlock record representing this branch. 1417 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1418 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1419 SwitchCases.push_back(CB); 1420 } 1421 1422 /// Scale down both weights to fit into uint32_t. 1423 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1424 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1425 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1426 NewTrue = NewTrue / Scale; 1427 NewFalse = NewFalse / Scale; 1428 } 1429 1430 /// FindMergedConditions - If Cond is an expression like 1431 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1432 MachineBasicBlock *TBB, 1433 MachineBasicBlock *FBB, 1434 MachineBasicBlock *CurBB, 1435 MachineBasicBlock *SwitchBB, 1436 unsigned Opc, uint32_t TWeight, 1437 uint32_t FWeight) { 1438 // If this node is not part of the or/and tree, emit it as a branch. 1439 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1440 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1441 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1442 BOp->getParent() != CurBB->getBasicBlock() || 1443 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1444 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1445 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1446 TWeight, FWeight); 1447 return; 1448 } 1449 1450 // Create TmpBB after CurBB. 1451 MachineFunction::iterator BBI = CurBB; 1452 MachineFunction &MF = DAG.getMachineFunction(); 1453 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1454 CurBB->getParent()->insert(++BBI, TmpBB); 1455 1456 if (Opc == Instruction::Or) { 1457 // Codegen X | Y as: 1458 // BB1: 1459 // jmp_if_X TBB 1460 // jmp TmpBB 1461 // TmpBB: 1462 // jmp_if_Y TBB 1463 // jmp FBB 1464 // 1465 1466 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1467 // The requirement is that 1468 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1469 // = TrueProb for orignal BB. 1470 // Assuming the orignal weights are A and B, one choice is to set BB1's 1471 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1472 // assumes that 1473 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1474 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1475 // TmpBB, but the math is more complicated. 1476 1477 uint64_t NewTrueWeight = TWeight; 1478 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1479 ScaleWeights(NewTrueWeight, NewFalseWeight); 1480 // Emit the LHS condition. 1481 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1482 NewTrueWeight, NewFalseWeight); 1483 1484 NewTrueWeight = TWeight; 1485 NewFalseWeight = 2 * (uint64_t)FWeight; 1486 ScaleWeights(NewTrueWeight, NewFalseWeight); 1487 // Emit the RHS condition into TmpBB. 1488 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1489 NewTrueWeight, NewFalseWeight); 1490 } else { 1491 assert(Opc == Instruction::And && "Unknown merge op!"); 1492 // Codegen X & Y as: 1493 // BB1: 1494 // jmp_if_X TmpBB 1495 // jmp FBB 1496 // TmpBB: 1497 // jmp_if_Y TBB 1498 // jmp FBB 1499 // 1500 // This requires creation of TmpBB after CurBB. 1501 1502 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1503 // The requirement is that 1504 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1505 // = FalseProb for orignal BB. 1506 // Assuming the orignal weights are A and B, one choice is to set BB1's 1507 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1508 // assumes that 1509 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1510 1511 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1512 uint64_t NewFalseWeight = FWeight; 1513 ScaleWeights(NewTrueWeight, NewFalseWeight); 1514 // Emit the LHS condition. 1515 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1516 NewTrueWeight, NewFalseWeight); 1517 1518 NewTrueWeight = 2 * (uint64_t)TWeight; 1519 NewFalseWeight = FWeight; 1520 ScaleWeights(NewTrueWeight, NewFalseWeight); 1521 // Emit the RHS condition into TmpBB. 1522 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1523 NewTrueWeight, NewFalseWeight); 1524 } 1525 } 1526 1527 /// If the set of cases should be emitted as a series of branches, return true. 1528 /// If we should emit this as a bunch of and/or'd together conditions, return 1529 /// false. 1530 bool 1531 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1532 if (Cases.size() != 2) return true; 1533 1534 // If this is two comparisons of the same values or'd or and'd together, they 1535 // will get folded into a single comparison, so don't emit two blocks. 1536 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1537 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1538 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1539 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1540 return false; 1541 } 1542 1543 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1544 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1545 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1546 Cases[0].CC == Cases[1].CC && 1547 isa<Constant>(Cases[0].CmpRHS) && 1548 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1549 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1550 return false; 1551 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1552 return false; 1553 } 1554 1555 return true; 1556 } 1557 1558 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1559 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1560 1561 // Update machine-CFG edges. 1562 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1563 1564 // Figure out which block is immediately after the current one. 1565 MachineBasicBlock *NextBlock = nullptr; 1566 MachineFunction::iterator BBI = BrMBB; 1567 if (++BBI != FuncInfo.MF->end()) 1568 NextBlock = BBI; 1569 1570 if (I.isUnconditional()) { 1571 // Update machine-CFG edges. 1572 BrMBB->addSuccessor(Succ0MBB); 1573 1574 // If this is not a fall-through branch or optimizations are switched off, 1575 // emit the branch. 1576 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1577 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1578 MVT::Other, getControlRoot(), 1579 DAG.getBasicBlock(Succ0MBB))); 1580 1581 return; 1582 } 1583 1584 // If this condition is one of the special cases we handle, do special stuff 1585 // now. 1586 const Value *CondVal = I.getCondition(); 1587 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1588 1589 // If this is a series of conditions that are or'd or and'd together, emit 1590 // this as a sequence of branches instead of setcc's with and/or operations. 1591 // As long as jumps are not expensive, this should improve performance. 1592 // For example, instead of something like: 1593 // cmp A, B 1594 // C = seteq 1595 // cmp D, E 1596 // F = setle 1597 // or C, F 1598 // jnz foo 1599 // Emit: 1600 // cmp A, B 1601 // je foo 1602 // cmp D, E 1603 // jle foo 1604 // 1605 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1606 if (!TM.getTargetLowering()->isJumpExpensive() && 1607 BOp->hasOneUse() && 1608 (BOp->getOpcode() == Instruction::And || 1609 BOp->getOpcode() == Instruction::Or)) { 1610 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1611 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1612 getEdgeWeight(BrMBB, Succ1MBB)); 1613 // If the compares in later blocks need to use values not currently 1614 // exported from this block, export them now. This block should always 1615 // be the first entry. 1616 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1617 1618 // Allow some cases to be rejected. 1619 if (ShouldEmitAsBranches(SwitchCases)) { 1620 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1621 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1622 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1623 } 1624 1625 // Emit the branch for this block. 1626 visitSwitchCase(SwitchCases[0], BrMBB); 1627 SwitchCases.erase(SwitchCases.begin()); 1628 return; 1629 } 1630 1631 // Okay, we decided not to do this, remove any inserted MBB's and clear 1632 // SwitchCases. 1633 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1634 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1635 1636 SwitchCases.clear(); 1637 } 1638 } 1639 1640 // Create a CaseBlock record representing this branch. 1641 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1642 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1643 1644 // Use visitSwitchCase to actually insert the fast branch sequence for this 1645 // cond branch. 1646 visitSwitchCase(CB, BrMBB); 1647 } 1648 1649 /// visitSwitchCase - Emits the necessary code to represent a single node in 1650 /// the binary search tree resulting from lowering a switch instruction. 1651 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1652 MachineBasicBlock *SwitchBB) { 1653 SDValue Cond; 1654 SDValue CondLHS = getValue(CB.CmpLHS); 1655 SDLoc dl = getCurSDLoc(); 1656 1657 // Build the setcc now. 1658 if (!CB.CmpMHS) { 1659 // Fold "(X == true)" to X and "(X == false)" to !X to 1660 // handle common cases produced by branch lowering. 1661 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1662 CB.CC == ISD::SETEQ) 1663 Cond = CondLHS; 1664 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1665 CB.CC == ISD::SETEQ) { 1666 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1667 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1668 } else 1669 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1670 } else { 1671 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1672 1673 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1674 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1675 1676 SDValue CmpOp = getValue(CB.CmpMHS); 1677 EVT VT = CmpOp.getValueType(); 1678 1679 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1680 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1681 ISD::SETLE); 1682 } else { 1683 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1684 VT, CmpOp, DAG.getConstant(Low, VT)); 1685 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1686 DAG.getConstant(High-Low, VT), ISD::SETULE); 1687 } 1688 } 1689 1690 // Update successor info 1691 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1692 // TrueBB and FalseBB are always different unless the incoming IR is 1693 // degenerate. This only happens when running llc on weird IR. 1694 if (CB.TrueBB != CB.FalseBB) 1695 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1696 1697 // Set NextBlock to be the MBB immediately after the current one, if any. 1698 // This is used to avoid emitting unnecessary branches to the next block. 1699 MachineBasicBlock *NextBlock = nullptr; 1700 MachineFunction::iterator BBI = SwitchBB; 1701 if (++BBI != FuncInfo.MF->end()) 1702 NextBlock = BBI; 1703 1704 // If the lhs block is the next block, invert the condition so that we can 1705 // fall through to the lhs instead of the rhs block. 1706 if (CB.TrueBB == NextBlock) { 1707 std::swap(CB.TrueBB, CB.FalseBB); 1708 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1709 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1710 } 1711 1712 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1713 MVT::Other, getControlRoot(), Cond, 1714 DAG.getBasicBlock(CB.TrueBB)); 1715 1716 // Insert the false branch. Do this even if it's a fall through branch, 1717 // this makes it easier to do DAG optimizations which require inverting 1718 // the branch condition. 1719 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1720 DAG.getBasicBlock(CB.FalseBB)); 1721 1722 DAG.setRoot(BrCond); 1723 } 1724 1725 /// visitJumpTable - Emit JumpTable node in the current MBB 1726 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1727 // Emit the code for the jump table 1728 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1729 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1730 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1731 JT.Reg, PTy); 1732 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1733 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1734 MVT::Other, Index.getValue(1), 1735 Table, Index); 1736 DAG.setRoot(BrJumpTable); 1737 } 1738 1739 /// visitJumpTableHeader - This function emits necessary code to produce index 1740 /// in the JumpTable from switch case. 1741 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1742 JumpTableHeader &JTH, 1743 MachineBasicBlock *SwitchBB) { 1744 // Subtract the lowest switch case value from the value being switched on and 1745 // conditional branch to default mbb if the result is greater than the 1746 // difference between smallest and largest cases. 1747 SDValue SwitchOp = getValue(JTH.SValue); 1748 EVT VT = SwitchOp.getValueType(); 1749 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1750 DAG.getConstant(JTH.First, VT)); 1751 1752 // The SDNode we just created, which holds the value being switched on minus 1753 // the smallest case value, needs to be copied to a virtual register so it 1754 // can be used as an index into the jump table in a subsequent basic block. 1755 // This value may be smaller or larger than the target's pointer type, and 1756 // therefore require extension or truncating. 1757 const TargetLowering *TLI = TM.getTargetLowering(); 1758 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1759 1760 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1761 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1762 JumpTableReg, SwitchOp); 1763 JT.Reg = JumpTableReg; 1764 1765 // Emit the range check for the jump table, and branch to the default block 1766 // for the switch statement if the value being switched on exceeds the largest 1767 // case in the switch. 1768 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1769 TLI->getSetCCResultType(*DAG.getContext(), 1770 Sub.getValueType()), 1771 Sub, 1772 DAG.getConstant(JTH.Last - JTH.First,VT), 1773 ISD::SETUGT); 1774 1775 // Set NextBlock to be the MBB immediately after the current one, if any. 1776 // This is used to avoid emitting unnecessary branches to the next block. 1777 MachineBasicBlock *NextBlock = nullptr; 1778 MachineFunction::iterator BBI = SwitchBB; 1779 1780 if (++BBI != FuncInfo.MF->end()) 1781 NextBlock = BBI; 1782 1783 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1784 MVT::Other, CopyTo, CMP, 1785 DAG.getBasicBlock(JT.Default)); 1786 1787 if (JT.MBB != NextBlock) 1788 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1789 DAG.getBasicBlock(JT.MBB)); 1790 1791 DAG.setRoot(BrCond); 1792 } 1793 1794 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1795 /// tail spliced into a stack protector check success bb. 1796 /// 1797 /// For a high level explanation of how this fits into the stack protector 1798 /// generation see the comment on the declaration of class 1799 /// StackProtectorDescriptor. 1800 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1801 MachineBasicBlock *ParentBB) { 1802 1803 // First create the loads to the guard/stack slot for the comparison. 1804 const TargetLowering *TLI = TM.getTargetLowering(); 1805 EVT PtrTy = TLI->getPointerTy(); 1806 1807 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1808 int FI = MFI->getStackProtectorIndex(); 1809 1810 const Value *IRGuard = SPD.getGuard(); 1811 SDValue GuardPtr = getValue(IRGuard); 1812 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1813 1814 unsigned Align = 1815 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1816 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1817 GuardPtr, MachinePointerInfo(IRGuard, 0), 1818 true, false, false, Align); 1819 1820 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1821 StackSlotPtr, 1822 MachinePointerInfo::getFixedStack(FI), 1823 true, false, false, Align); 1824 1825 // Perform the comparison via a subtract/getsetcc. 1826 EVT VT = Guard.getValueType(); 1827 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1828 1829 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1830 TLI->getSetCCResultType(*DAG.getContext(), 1831 Sub.getValueType()), 1832 Sub, DAG.getConstant(0, VT), 1833 ISD::SETNE); 1834 1835 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1836 // branch to failure MBB. 1837 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1838 MVT::Other, StackSlot.getOperand(0), 1839 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1840 // Otherwise branch to success MBB. 1841 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1842 MVT::Other, BrCond, 1843 DAG.getBasicBlock(SPD.getSuccessMBB())); 1844 1845 DAG.setRoot(Br); 1846 } 1847 1848 /// Codegen the failure basic block for a stack protector check. 1849 /// 1850 /// A failure stack protector machine basic block consists simply of a call to 1851 /// __stack_chk_fail(). 1852 /// 1853 /// For a high level explanation of how this fits into the stack protector 1854 /// generation see the comment on the declaration of class 1855 /// StackProtectorDescriptor. 1856 void 1857 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1858 const TargetLowering *TLI = TM.getTargetLowering(); 1859 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1860 MVT::isVoid, nullptr, 0, false, 1861 getCurSDLoc(), false, false).second; 1862 DAG.setRoot(Chain); 1863 } 1864 1865 /// visitBitTestHeader - This function emits necessary code to produce value 1866 /// suitable for "bit tests" 1867 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1868 MachineBasicBlock *SwitchBB) { 1869 // Subtract the minimum value 1870 SDValue SwitchOp = getValue(B.SValue); 1871 EVT VT = SwitchOp.getValueType(); 1872 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1873 DAG.getConstant(B.First, VT)); 1874 1875 // Check range 1876 const TargetLowering *TLI = TM.getTargetLowering(); 1877 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1878 TLI->getSetCCResultType(*DAG.getContext(), 1879 Sub.getValueType()), 1880 Sub, DAG.getConstant(B.Range, VT), 1881 ISD::SETUGT); 1882 1883 // Determine the type of the test operands. 1884 bool UsePtrType = false; 1885 if (!TLI->isTypeLegal(VT)) 1886 UsePtrType = true; 1887 else { 1888 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1889 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1890 // Switch table case range are encoded into series of masks. 1891 // Just use pointer type, it's guaranteed to fit. 1892 UsePtrType = true; 1893 break; 1894 } 1895 } 1896 if (UsePtrType) { 1897 VT = TLI->getPointerTy(); 1898 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1899 } 1900 1901 B.RegVT = VT.getSimpleVT(); 1902 B.Reg = FuncInfo.CreateReg(B.RegVT); 1903 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1904 B.Reg, Sub); 1905 1906 // Set NextBlock to be the MBB immediately after the current one, if any. 1907 // This is used to avoid emitting unnecessary branches to the next block. 1908 MachineBasicBlock *NextBlock = nullptr; 1909 MachineFunction::iterator BBI = SwitchBB; 1910 if (++BBI != FuncInfo.MF->end()) 1911 NextBlock = BBI; 1912 1913 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1914 1915 addSuccessorWithWeight(SwitchBB, B.Default); 1916 addSuccessorWithWeight(SwitchBB, MBB); 1917 1918 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1919 MVT::Other, CopyTo, RangeCmp, 1920 DAG.getBasicBlock(B.Default)); 1921 1922 if (MBB != NextBlock) 1923 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1924 DAG.getBasicBlock(MBB)); 1925 1926 DAG.setRoot(BrRange); 1927 } 1928 1929 /// visitBitTestCase - this function produces one "bit test" 1930 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1931 MachineBasicBlock* NextMBB, 1932 uint32_t BranchWeightToNext, 1933 unsigned Reg, 1934 BitTestCase &B, 1935 MachineBasicBlock *SwitchBB) { 1936 MVT VT = BB.RegVT; 1937 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1938 Reg, VT); 1939 SDValue Cmp; 1940 unsigned PopCount = CountPopulation_64(B.Mask); 1941 const TargetLowering *TLI = TM.getTargetLowering(); 1942 if (PopCount == 1) { 1943 // Testing for a single bit; just compare the shift count with what it 1944 // would need to be to shift a 1 bit in that position. 1945 Cmp = DAG.getSetCC(getCurSDLoc(), 1946 TLI->getSetCCResultType(*DAG.getContext(), VT), 1947 ShiftOp, 1948 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1949 ISD::SETEQ); 1950 } else if (PopCount == BB.Range) { 1951 // There is only one zero bit in the range, test for it directly. 1952 Cmp = DAG.getSetCC(getCurSDLoc(), 1953 TLI->getSetCCResultType(*DAG.getContext(), VT), 1954 ShiftOp, 1955 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1956 ISD::SETNE); 1957 } else { 1958 // Make desired shift 1959 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1960 DAG.getConstant(1, VT), ShiftOp); 1961 1962 // Emit bit tests and jumps 1963 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1964 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1965 Cmp = DAG.getSetCC(getCurSDLoc(), 1966 TLI->getSetCCResultType(*DAG.getContext(), VT), 1967 AndOp, DAG.getConstant(0, VT), 1968 ISD::SETNE); 1969 } 1970 1971 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1972 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1973 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1974 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1975 1976 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1977 MVT::Other, getControlRoot(), 1978 Cmp, DAG.getBasicBlock(B.TargetBB)); 1979 1980 // Set NextBlock to be the MBB immediately after the current one, if any. 1981 // This is used to avoid emitting unnecessary branches to the next block. 1982 MachineBasicBlock *NextBlock = nullptr; 1983 MachineFunction::iterator BBI = SwitchBB; 1984 if (++BBI != FuncInfo.MF->end()) 1985 NextBlock = BBI; 1986 1987 if (NextMBB != NextBlock) 1988 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1989 DAG.getBasicBlock(NextMBB)); 1990 1991 DAG.setRoot(BrAnd); 1992 } 1993 1994 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1995 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1996 1997 // Retrieve successors. 1998 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1999 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2000 2001 const Value *Callee(I.getCalledValue()); 2002 const Function *Fn = dyn_cast<Function>(Callee); 2003 if (isa<InlineAsm>(Callee)) 2004 visitInlineAsm(&I); 2005 else if (Fn && Fn->isIntrinsic()) { 2006 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2007 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2008 } else 2009 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2010 2011 // If the value of the invoke is used outside of its defining block, make it 2012 // available as a virtual register. 2013 CopyToExportRegsIfNeeded(&I); 2014 2015 // Update successor info 2016 addSuccessorWithWeight(InvokeMBB, Return); 2017 addSuccessorWithWeight(InvokeMBB, LandingPad); 2018 2019 // Drop into normal successor. 2020 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2021 MVT::Other, getControlRoot(), 2022 DAG.getBasicBlock(Return))); 2023 } 2024 2025 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2026 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2027 } 2028 2029 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2030 assert(FuncInfo.MBB->isLandingPad() && 2031 "Call to landingpad not in landing pad!"); 2032 2033 MachineBasicBlock *MBB = FuncInfo.MBB; 2034 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2035 AddLandingPadInfo(LP, MMI, MBB); 2036 2037 // If there aren't registers to copy the values into (e.g., during SjLj 2038 // exceptions), then don't bother to create these DAG nodes. 2039 const TargetLowering *TLI = TM.getTargetLowering(); 2040 if (TLI->getExceptionPointerRegister() == 0 && 2041 TLI->getExceptionSelectorRegister() == 0) 2042 return; 2043 2044 SmallVector<EVT, 2> ValueVTs; 2045 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2046 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2047 2048 // Get the two live-in registers as SDValues. The physregs have already been 2049 // copied into virtual registers. 2050 SDValue Ops[2]; 2051 Ops[0] = DAG.getZExtOrTrunc( 2052 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2053 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2054 getCurSDLoc(), ValueVTs[0]); 2055 Ops[1] = DAG.getZExtOrTrunc( 2056 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2057 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2058 getCurSDLoc(), ValueVTs[1]); 2059 2060 // Merge into one. 2061 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2062 DAG.getVTList(ValueVTs), 2063 &Ops[0], 2); 2064 setValue(&LP, Res); 2065 } 2066 2067 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2068 /// small case ranges). 2069 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2070 CaseRecVector& WorkList, 2071 const Value* SV, 2072 MachineBasicBlock *Default, 2073 MachineBasicBlock *SwitchBB) { 2074 // Size is the number of Cases represented by this range. 2075 size_t Size = CR.Range.second - CR.Range.first; 2076 if (Size > 3) 2077 return false; 2078 2079 // Get the MachineFunction which holds the current MBB. This is used when 2080 // inserting any additional MBBs necessary to represent the switch. 2081 MachineFunction *CurMF = FuncInfo.MF; 2082 2083 // Figure out which block is immediately after the current one. 2084 MachineBasicBlock *NextBlock = nullptr; 2085 MachineFunction::iterator BBI = CR.CaseBB; 2086 2087 if (++BBI != FuncInfo.MF->end()) 2088 NextBlock = BBI; 2089 2090 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2091 // If any two of the cases has the same destination, and if one value 2092 // is the same as the other, but has one bit unset that the other has set, 2093 // use bit manipulation to do two compares at once. For example: 2094 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2095 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2096 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2097 if (Size == 2 && CR.CaseBB == SwitchBB) { 2098 Case &Small = *CR.Range.first; 2099 Case &Big = *(CR.Range.second-1); 2100 2101 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2102 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2103 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2104 2105 // Check that there is only one bit different. 2106 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2107 (SmallValue | BigValue) == BigValue) { 2108 // Isolate the common bit. 2109 APInt CommonBit = BigValue & ~SmallValue; 2110 assert((SmallValue | CommonBit) == BigValue && 2111 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2112 2113 SDValue CondLHS = getValue(SV); 2114 EVT VT = CondLHS.getValueType(); 2115 SDLoc DL = getCurSDLoc(); 2116 2117 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2118 DAG.getConstant(CommonBit, VT)); 2119 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2120 Or, DAG.getConstant(BigValue, VT), 2121 ISD::SETEQ); 2122 2123 // Update successor info. 2124 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2125 addSuccessorWithWeight(SwitchBB, Small.BB, 2126 Small.ExtraWeight + Big.ExtraWeight); 2127 addSuccessorWithWeight(SwitchBB, Default, 2128 // The default destination is the first successor in IR. 2129 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2130 2131 // Insert the true branch. 2132 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2133 getControlRoot(), Cond, 2134 DAG.getBasicBlock(Small.BB)); 2135 2136 // Insert the false branch. 2137 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2138 DAG.getBasicBlock(Default)); 2139 2140 DAG.setRoot(BrCond); 2141 return true; 2142 } 2143 } 2144 } 2145 2146 // Order cases by weight so the most likely case will be checked first. 2147 uint32_t UnhandledWeights = 0; 2148 if (BPI) { 2149 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2150 uint32_t IWeight = I->ExtraWeight; 2151 UnhandledWeights += IWeight; 2152 for (CaseItr J = CR.Range.first; J < I; ++J) { 2153 uint32_t JWeight = J->ExtraWeight; 2154 if (IWeight > JWeight) 2155 std::swap(*I, *J); 2156 } 2157 } 2158 } 2159 // Rearrange the case blocks so that the last one falls through if possible. 2160 Case &BackCase = *(CR.Range.second-1); 2161 if (Size > 1 && 2162 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2163 // The last case block won't fall through into 'NextBlock' if we emit the 2164 // branches in this order. See if rearranging a case value would help. 2165 // We start at the bottom as it's the case with the least weight. 2166 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2167 if (I->BB == NextBlock) { 2168 std::swap(*I, BackCase); 2169 break; 2170 } 2171 } 2172 2173 // Create a CaseBlock record representing a conditional branch to 2174 // the Case's target mbb if the value being switched on SV is equal 2175 // to C. 2176 MachineBasicBlock *CurBlock = CR.CaseBB; 2177 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2178 MachineBasicBlock *FallThrough; 2179 if (I != E-1) { 2180 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2181 CurMF->insert(BBI, FallThrough); 2182 2183 // Put SV in a virtual register to make it available from the new blocks. 2184 ExportFromCurrentBlock(SV); 2185 } else { 2186 // If the last case doesn't match, go to the default block. 2187 FallThrough = Default; 2188 } 2189 2190 const Value *RHS, *LHS, *MHS; 2191 ISD::CondCode CC; 2192 if (I->High == I->Low) { 2193 // This is just small small case range :) containing exactly 1 case 2194 CC = ISD::SETEQ; 2195 LHS = SV; RHS = I->High; MHS = nullptr; 2196 } else { 2197 CC = ISD::SETLE; 2198 LHS = I->Low; MHS = SV; RHS = I->High; 2199 } 2200 2201 // The false weight should be sum of all un-handled cases. 2202 UnhandledWeights -= I->ExtraWeight; 2203 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2204 /* me */ CurBlock, 2205 /* trueweight */ I->ExtraWeight, 2206 /* falseweight */ UnhandledWeights); 2207 2208 // If emitting the first comparison, just call visitSwitchCase to emit the 2209 // code into the current block. Otherwise, push the CaseBlock onto the 2210 // vector to be later processed by SDISel, and insert the node's MBB 2211 // before the next MBB. 2212 if (CurBlock == SwitchBB) 2213 visitSwitchCase(CB, SwitchBB); 2214 else 2215 SwitchCases.push_back(CB); 2216 2217 CurBlock = FallThrough; 2218 } 2219 2220 return true; 2221 } 2222 2223 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2224 return TLI.supportJumpTables() && 2225 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2226 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2227 } 2228 2229 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2230 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2231 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2232 return (LastExt - FirstExt + 1ULL); 2233 } 2234 2235 /// handleJTSwitchCase - Emit jumptable for current switch case range 2236 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2237 CaseRecVector &WorkList, 2238 const Value *SV, 2239 MachineBasicBlock *Default, 2240 MachineBasicBlock *SwitchBB) { 2241 Case& FrontCase = *CR.Range.first; 2242 Case& BackCase = *(CR.Range.second-1); 2243 2244 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2245 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2246 2247 APInt TSize(First.getBitWidth(), 0); 2248 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2249 TSize += I->size(); 2250 2251 const TargetLowering *TLI = TM.getTargetLowering(); 2252 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2253 return false; 2254 2255 APInt Range = ComputeRange(First, Last); 2256 // The density is TSize / Range. Require at least 40%. 2257 // It should not be possible for IntTSize to saturate for sane code, but make 2258 // sure we handle Range saturation correctly. 2259 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2260 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2261 if (IntTSize * 10 < IntRange * 4) 2262 return false; 2263 2264 DEBUG(dbgs() << "Lowering jump table\n" 2265 << "First entry: " << First << ". Last entry: " << Last << '\n' 2266 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2267 2268 // Get the MachineFunction which holds the current MBB. This is used when 2269 // inserting any additional MBBs necessary to represent the switch. 2270 MachineFunction *CurMF = FuncInfo.MF; 2271 2272 // Figure out which block is immediately after the current one. 2273 MachineFunction::iterator BBI = CR.CaseBB; 2274 ++BBI; 2275 2276 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2277 2278 // Create a new basic block to hold the code for loading the address 2279 // of the jump table, and jumping to it. Update successor information; 2280 // we will either branch to the default case for the switch, or the jump 2281 // table. 2282 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2283 CurMF->insert(BBI, JumpTableBB); 2284 2285 addSuccessorWithWeight(CR.CaseBB, Default); 2286 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2287 2288 // Build a vector of destination BBs, corresponding to each target 2289 // of the jump table. If the value of the jump table slot corresponds to 2290 // a case statement, push the case's BB onto the vector, otherwise, push 2291 // the default BB. 2292 std::vector<MachineBasicBlock*> DestBBs; 2293 APInt TEI = First; 2294 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2295 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2296 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2297 2298 if (Low.sle(TEI) && TEI.sle(High)) { 2299 DestBBs.push_back(I->BB); 2300 if (TEI==High) 2301 ++I; 2302 } else { 2303 DestBBs.push_back(Default); 2304 } 2305 } 2306 2307 // Calculate weight for each unique destination in CR. 2308 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2309 if (FuncInfo.BPI) 2310 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2311 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2312 DestWeights.find(I->BB); 2313 if (Itr != DestWeights.end()) 2314 Itr->second += I->ExtraWeight; 2315 else 2316 DestWeights[I->BB] = I->ExtraWeight; 2317 } 2318 2319 // Update successor info. Add one edge to each unique successor. 2320 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2321 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2322 E = DestBBs.end(); I != E; ++I) { 2323 if (!SuccsHandled[(*I)->getNumber()]) { 2324 SuccsHandled[(*I)->getNumber()] = true; 2325 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2326 DestWeights.find(*I); 2327 addSuccessorWithWeight(JumpTableBB, *I, 2328 Itr != DestWeights.end() ? Itr->second : 0); 2329 } 2330 } 2331 2332 // Create a jump table index for this jump table. 2333 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2334 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2335 ->createJumpTableIndex(DestBBs); 2336 2337 // Set the jump table information so that we can codegen it as a second 2338 // MachineBasicBlock 2339 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2340 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2341 if (CR.CaseBB == SwitchBB) 2342 visitJumpTableHeader(JT, JTH, SwitchBB); 2343 2344 JTCases.push_back(JumpTableBlock(JTH, JT)); 2345 return true; 2346 } 2347 2348 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2349 /// 2 subtrees. 2350 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2351 CaseRecVector& WorkList, 2352 const Value* SV, 2353 MachineBasicBlock* Default, 2354 MachineBasicBlock* SwitchBB) { 2355 // Get the MachineFunction which holds the current MBB. This is used when 2356 // inserting any additional MBBs necessary to represent the switch. 2357 MachineFunction *CurMF = FuncInfo.MF; 2358 2359 // Figure out which block is immediately after the current one. 2360 MachineFunction::iterator BBI = CR.CaseBB; 2361 ++BBI; 2362 2363 Case& FrontCase = *CR.Range.first; 2364 Case& BackCase = *(CR.Range.second-1); 2365 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2366 2367 // Size is the number of Cases represented by this range. 2368 unsigned Size = CR.Range.second - CR.Range.first; 2369 2370 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2371 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2372 double FMetric = 0; 2373 CaseItr Pivot = CR.Range.first + Size/2; 2374 2375 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2376 // (heuristically) allow us to emit JumpTable's later. 2377 APInt TSize(First.getBitWidth(), 0); 2378 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2379 I!=E; ++I) 2380 TSize += I->size(); 2381 2382 APInt LSize = FrontCase.size(); 2383 APInt RSize = TSize-LSize; 2384 DEBUG(dbgs() << "Selecting best pivot: \n" 2385 << "First: " << First << ", Last: " << Last <<'\n' 2386 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2387 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2388 J!=E; ++I, ++J) { 2389 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2390 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2391 APInt Range = ComputeRange(LEnd, RBegin); 2392 assert((Range - 2ULL).isNonNegative() && 2393 "Invalid case distance"); 2394 // Use volatile double here to avoid excess precision issues on some hosts, 2395 // e.g. that use 80-bit X87 registers. 2396 volatile double LDensity = 2397 (double)LSize.roundToDouble() / 2398 (LEnd - First + 1ULL).roundToDouble(); 2399 volatile double RDensity = 2400 (double)RSize.roundToDouble() / 2401 (Last - RBegin + 1ULL).roundToDouble(); 2402 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2403 // Should always split in some non-trivial place 2404 DEBUG(dbgs() <<"=>Step\n" 2405 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2406 << "LDensity: " << LDensity 2407 << ", RDensity: " << RDensity << '\n' 2408 << "Metric: " << Metric << '\n'); 2409 if (FMetric < Metric) { 2410 Pivot = J; 2411 FMetric = Metric; 2412 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2413 } 2414 2415 LSize += J->size(); 2416 RSize -= J->size(); 2417 } 2418 2419 const TargetLowering *TLI = TM.getTargetLowering(); 2420 if (areJTsAllowed(*TLI)) { 2421 // If our case is dense we *really* should handle it earlier! 2422 assert((FMetric > 0) && "Should handle dense range earlier!"); 2423 } else { 2424 Pivot = CR.Range.first + Size/2; 2425 } 2426 2427 CaseRange LHSR(CR.Range.first, Pivot); 2428 CaseRange RHSR(Pivot, CR.Range.second); 2429 const Constant *C = Pivot->Low; 2430 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2431 2432 // We know that we branch to the LHS if the Value being switched on is 2433 // less than the Pivot value, C. We use this to optimize our binary 2434 // tree a bit, by recognizing that if SV is greater than or equal to the 2435 // LHS's Case Value, and that Case Value is exactly one less than the 2436 // Pivot's Value, then we can branch directly to the LHS's Target, 2437 // rather than creating a leaf node for it. 2438 if ((LHSR.second - LHSR.first) == 1 && 2439 LHSR.first->High == CR.GE && 2440 cast<ConstantInt>(C)->getValue() == 2441 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2442 TrueBB = LHSR.first->BB; 2443 } else { 2444 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2445 CurMF->insert(BBI, TrueBB); 2446 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2447 2448 // Put SV in a virtual register to make it available from the new blocks. 2449 ExportFromCurrentBlock(SV); 2450 } 2451 2452 // Similar to the optimization above, if the Value being switched on is 2453 // known to be less than the Constant CR.LT, and the current Case Value 2454 // is CR.LT - 1, then we can branch directly to the target block for 2455 // the current Case Value, rather than emitting a RHS leaf node for it. 2456 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2457 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2458 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2459 FalseBB = RHSR.first->BB; 2460 } else { 2461 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2462 CurMF->insert(BBI, FalseBB); 2463 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2464 2465 // Put SV in a virtual register to make it available from the new blocks. 2466 ExportFromCurrentBlock(SV); 2467 } 2468 2469 // Create a CaseBlock record representing a conditional branch to 2470 // the LHS node if the value being switched on SV is less than C. 2471 // Otherwise, branch to LHS. 2472 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2473 2474 if (CR.CaseBB == SwitchBB) 2475 visitSwitchCase(CB, SwitchBB); 2476 else 2477 SwitchCases.push_back(CB); 2478 2479 return true; 2480 } 2481 2482 /// handleBitTestsSwitchCase - if current case range has few destination and 2483 /// range span less, than machine word bitwidth, encode case range into series 2484 /// of masks and emit bit tests with these masks. 2485 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2486 CaseRecVector& WorkList, 2487 const Value* SV, 2488 MachineBasicBlock* Default, 2489 MachineBasicBlock* SwitchBB) { 2490 const TargetLowering *TLI = TM.getTargetLowering(); 2491 EVT PTy = TLI->getPointerTy(); 2492 unsigned IntPtrBits = PTy.getSizeInBits(); 2493 2494 Case& FrontCase = *CR.Range.first; 2495 Case& BackCase = *(CR.Range.second-1); 2496 2497 // Get the MachineFunction which holds the current MBB. This is used when 2498 // inserting any additional MBBs necessary to represent the switch. 2499 MachineFunction *CurMF = FuncInfo.MF; 2500 2501 // If target does not have legal shift left, do not emit bit tests at all. 2502 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2503 return false; 2504 2505 size_t numCmps = 0; 2506 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2507 I!=E; ++I) { 2508 // Single case counts one, case range - two. 2509 numCmps += (I->Low == I->High ? 1 : 2); 2510 } 2511 2512 // Count unique destinations 2513 SmallSet<MachineBasicBlock*, 4> Dests; 2514 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2515 Dests.insert(I->BB); 2516 if (Dests.size() > 3) 2517 // Don't bother the code below, if there are too much unique destinations 2518 return false; 2519 } 2520 DEBUG(dbgs() << "Total number of unique destinations: " 2521 << Dests.size() << '\n' 2522 << "Total number of comparisons: " << numCmps << '\n'); 2523 2524 // Compute span of values. 2525 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2526 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2527 APInt cmpRange = maxValue - minValue; 2528 2529 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2530 << "Low bound: " << minValue << '\n' 2531 << "High bound: " << maxValue << '\n'); 2532 2533 if (cmpRange.uge(IntPtrBits) || 2534 (!(Dests.size() == 1 && numCmps >= 3) && 2535 !(Dests.size() == 2 && numCmps >= 5) && 2536 !(Dests.size() >= 3 && numCmps >= 6))) 2537 return false; 2538 2539 DEBUG(dbgs() << "Emitting bit tests\n"); 2540 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2541 2542 // Optimize the case where all the case values fit in a 2543 // word without having to subtract minValue. In this case, 2544 // we can optimize away the subtraction. 2545 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2546 cmpRange = maxValue; 2547 } else { 2548 lowBound = minValue; 2549 } 2550 2551 CaseBitsVector CasesBits; 2552 unsigned i, count = 0; 2553 2554 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2555 MachineBasicBlock* Dest = I->BB; 2556 for (i = 0; i < count; ++i) 2557 if (Dest == CasesBits[i].BB) 2558 break; 2559 2560 if (i == count) { 2561 assert((count < 3) && "Too much destinations to test!"); 2562 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2563 count++; 2564 } 2565 2566 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2567 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2568 2569 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2570 uint64_t hi = (highValue - lowBound).getZExtValue(); 2571 CasesBits[i].ExtraWeight += I->ExtraWeight; 2572 2573 for (uint64_t j = lo; j <= hi; j++) { 2574 CasesBits[i].Mask |= 1ULL << j; 2575 CasesBits[i].Bits++; 2576 } 2577 2578 } 2579 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2580 2581 BitTestInfo BTC; 2582 2583 // Figure out which block is immediately after the current one. 2584 MachineFunction::iterator BBI = CR.CaseBB; 2585 ++BBI; 2586 2587 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2588 2589 DEBUG(dbgs() << "Cases:\n"); 2590 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2591 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2592 << ", Bits: " << CasesBits[i].Bits 2593 << ", BB: " << CasesBits[i].BB << '\n'); 2594 2595 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2596 CurMF->insert(BBI, CaseBB); 2597 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2598 CaseBB, 2599 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2600 2601 // Put SV in a virtual register to make it available from the new blocks. 2602 ExportFromCurrentBlock(SV); 2603 } 2604 2605 BitTestBlock BTB(lowBound, cmpRange, SV, 2606 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2607 CR.CaseBB, Default, BTC); 2608 2609 if (CR.CaseBB == SwitchBB) 2610 visitBitTestHeader(BTB, SwitchBB); 2611 2612 BitTestCases.push_back(BTB); 2613 2614 return true; 2615 } 2616 2617 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2618 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2619 const SwitchInst& SI) { 2620 size_t numCmps = 0; 2621 2622 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2623 // Start with "simple" cases 2624 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2625 i != e; ++i) { 2626 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2627 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2628 2629 uint32_t ExtraWeight = 2630 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2631 2632 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2633 SMBB, ExtraWeight)); 2634 } 2635 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2636 2637 // Merge case into clusters 2638 if (Cases.size() >= 2) 2639 // Must recompute end() each iteration because it may be 2640 // invalidated by erase if we hold on to it 2641 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2642 J != Cases.end(); ) { 2643 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2644 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2645 MachineBasicBlock* nextBB = J->BB; 2646 MachineBasicBlock* currentBB = I->BB; 2647 2648 // If the two neighboring cases go to the same destination, merge them 2649 // into a single case. 2650 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2651 I->High = J->High; 2652 I->ExtraWeight += J->ExtraWeight; 2653 J = Cases.erase(J); 2654 } else { 2655 I = J++; 2656 } 2657 } 2658 2659 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2660 if (I->Low != I->High) 2661 // A range counts double, since it requires two compares. 2662 ++numCmps; 2663 } 2664 2665 return numCmps; 2666 } 2667 2668 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2669 MachineBasicBlock *Last) { 2670 // Update JTCases. 2671 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2672 if (JTCases[i].first.HeaderBB == First) 2673 JTCases[i].first.HeaderBB = Last; 2674 2675 // Update BitTestCases. 2676 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2677 if (BitTestCases[i].Parent == First) 2678 BitTestCases[i].Parent = Last; 2679 } 2680 2681 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2682 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2683 2684 // Figure out which block is immediately after the current one. 2685 MachineBasicBlock *NextBlock = nullptr; 2686 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2687 2688 // If there is only the default destination, branch to it if it is not the 2689 // next basic block. Otherwise, just fall through. 2690 if (!SI.getNumCases()) { 2691 // Update machine-CFG edges. 2692 2693 // If this is not a fall-through branch, emit the branch. 2694 SwitchMBB->addSuccessor(Default); 2695 if (Default != NextBlock) 2696 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2697 MVT::Other, getControlRoot(), 2698 DAG.getBasicBlock(Default))); 2699 2700 return; 2701 } 2702 2703 // If there are any non-default case statements, create a vector of Cases 2704 // representing each one, and sort the vector so that we can efficiently 2705 // create a binary search tree from them. 2706 CaseVector Cases; 2707 size_t numCmps = Clusterify(Cases, SI); 2708 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2709 << ". Total compares: " << numCmps << '\n'); 2710 (void)numCmps; 2711 2712 // Get the Value to be switched on and default basic blocks, which will be 2713 // inserted into CaseBlock records, representing basic blocks in the binary 2714 // search tree. 2715 const Value *SV = SI.getCondition(); 2716 2717 // Push the initial CaseRec onto the worklist 2718 CaseRecVector WorkList; 2719 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2720 CaseRange(Cases.begin(),Cases.end()))); 2721 2722 while (!WorkList.empty()) { 2723 // Grab a record representing a case range to process off the worklist 2724 CaseRec CR = WorkList.back(); 2725 WorkList.pop_back(); 2726 2727 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2728 continue; 2729 2730 // If the range has few cases (two or less) emit a series of specific 2731 // tests. 2732 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2733 continue; 2734 2735 // If the switch has more than N blocks, and is at least 40% dense, and the 2736 // target supports indirect branches, then emit a jump table rather than 2737 // lowering the switch to a binary tree of conditional branches. 2738 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2739 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2740 continue; 2741 2742 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2743 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2744 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2745 } 2746 } 2747 2748 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2749 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2750 2751 // Update machine-CFG edges with unique successors. 2752 SmallSet<BasicBlock*, 32> Done; 2753 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2754 BasicBlock *BB = I.getSuccessor(i); 2755 bool Inserted = Done.insert(BB); 2756 if (!Inserted) 2757 continue; 2758 2759 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2760 addSuccessorWithWeight(IndirectBrMBB, Succ); 2761 } 2762 2763 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2764 MVT::Other, getControlRoot(), 2765 getValue(I.getAddress()))); 2766 } 2767 2768 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2769 if (DAG.getTarget().Options.TrapUnreachable) 2770 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2771 } 2772 2773 void SelectionDAGBuilder::visitFSub(const User &I) { 2774 // -0.0 - X --> fneg 2775 Type *Ty = I.getType(); 2776 if (isa<Constant>(I.getOperand(0)) && 2777 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2778 SDValue Op2 = getValue(I.getOperand(1)); 2779 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2780 Op2.getValueType(), Op2)); 2781 return; 2782 } 2783 2784 visitBinary(I, ISD::FSUB); 2785 } 2786 2787 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2788 SDValue Op1 = getValue(I.getOperand(0)); 2789 SDValue Op2 = getValue(I.getOperand(1)); 2790 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), 2791 Op1.getValueType(), Op1, Op2)); 2792 } 2793 2794 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2795 SDValue Op1 = getValue(I.getOperand(0)); 2796 SDValue Op2 = getValue(I.getOperand(1)); 2797 2798 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2799 2800 // Coerce the shift amount to the right type if we can. 2801 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2802 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2803 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2804 SDLoc DL = getCurSDLoc(); 2805 2806 // If the operand is smaller than the shift count type, promote it. 2807 if (ShiftSize > Op2Size) 2808 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2809 2810 // If the operand is larger than the shift count type but the shift 2811 // count type has enough bits to represent any shift value, truncate 2812 // it now. This is a common case and it exposes the truncate to 2813 // optimization early. 2814 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2815 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2816 // Otherwise we'll need to temporarily settle for some other convenient 2817 // type. Type legalization will make adjustments once the shiftee is split. 2818 else 2819 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2820 } 2821 2822 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), 2823 Op1.getValueType(), Op1, Op2)); 2824 } 2825 2826 void SelectionDAGBuilder::visitSDiv(const User &I) { 2827 SDValue Op1 = getValue(I.getOperand(0)); 2828 SDValue Op2 = getValue(I.getOperand(1)); 2829 2830 // Turn exact SDivs into multiplications. 2831 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2832 // exact bit. 2833 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2834 !isa<ConstantSDNode>(Op1) && 2835 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2836 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2837 getCurSDLoc(), DAG)); 2838 else 2839 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2840 Op1, Op2)); 2841 } 2842 2843 void SelectionDAGBuilder::visitICmp(const User &I) { 2844 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2845 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2846 predicate = IC->getPredicate(); 2847 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2848 predicate = ICmpInst::Predicate(IC->getPredicate()); 2849 SDValue Op1 = getValue(I.getOperand(0)); 2850 SDValue Op2 = getValue(I.getOperand(1)); 2851 ISD::CondCode Opcode = getICmpCondCode(predicate); 2852 2853 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2854 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2855 } 2856 2857 void SelectionDAGBuilder::visitFCmp(const User &I) { 2858 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2859 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2860 predicate = FC->getPredicate(); 2861 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2862 predicate = FCmpInst::Predicate(FC->getPredicate()); 2863 SDValue Op1 = getValue(I.getOperand(0)); 2864 SDValue Op2 = getValue(I.getOperand(1)); 2865 ISD::CondCode Condition = getFCmpCondCode(predicate); 2866 if (TM.Options.NoNaNsFPMath) 2867 Condition = getFCmpCodeWithoutNaN(Condition); 2868 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2869 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2870 } 2871 2872 void SelectionDAGBuilder::visitSelect(const User &I) { 2873 SmallVector<EVT, 4> ValueVTs; 2874 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2875 unsigned NumValues = ValueVTs.size(); 2876 if (NumValues == 0) return; 2877 2878 SmallVector<SDValue, 4> Values(NumValues); 2879 SDValue Cond = getValue(I.getOperand(0)); 2880 SDValue TrueVal = getValue(I.getOperand(1)); 2881 SDValue FalseVal = getValue(I.getOperand(2)); 2882 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2883 ISD::VSELECT : ISD::SELECT; 2884 2885 for (unsigned i = 0; i != NumValues; ++i) 2886 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2887 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2888 Cond, 2889 SDValue(TrueVal.getNode(), 2890 TrueVal.getResNo() + i), 2891 SDValue(FalseVal.getNode(), 2892 FalseVal.getResNo() + i)); 2893 2894 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2895 DAG.getVTList(ValueVTs), 2896 &Values[0], NumValues)); 2897 } 2898 2899 void SelectionDAGBuilder::visitTrunc(const User &I) { 2900 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2901 SDValue N = getValue(I.getOperand(0)); 2902 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2903 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2904 } 2905 2906 void SelectionDAGBuilder::visitZExt(const User &I) { 2907 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2908 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2909 SDValue N = getValue(I.getOperand(0)); 2910 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2911 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2912 } 2913 2914 void SelectionDAGBuilder::visitSExt(const User &I) { 2915 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2916 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2917 SDValue N = getValue(I.getOperand(0)); 2918 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2919 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2920 } 2921 2922 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2923 // FPTrunc is never a no-op cast, no need to check 2924 SDValue N = getValue(I.getOperand(0)); 2925 const TargetLowering *TLI = TM.getTargetLowering(); 2926 EVT DestVT = TLI->getValueType(I.getType()); 2927 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2928 DestVT, N, 2929 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2930 } 2931 2932 void SelectionDAGBuilder::visitFPExt(const User &I) { 2933 // FPExt is never a no-op cast, no need to check 2934 SDValue N = getValue(I.getOperand(0)); 2935 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2936 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2937 } 2938 2939 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2940 // FPToUI is never a no-op cast, no need to check 2941 SDValue N = getValue(I.getOperand(0)); 2942 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2943 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2944 } 2945 2946 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2947 // FPToSI is never a no-op cast, no need to check 2948 SDValue N = getValue(I.getOperand(0)); 2949 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2950 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2951 } 2952 2953 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2954 // UIToFP is never a no-op cast, no need to check 2955 SDValue N = getValue(I.getOperand(0)); 2956 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2957 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2958 } 2959 2960 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2961 // SIToFP is never a no-op cast, no need to check 2962 SDValue N = getValue(I.getOperand(0)); 2963 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2964 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2965 } 2966 2967 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2968 // What to do depends on the size of the integer and the size of the pointer. 2969 // We can either truncate, zero extend, or no-op, accordingly. 2970 SDValue N = getValue(I.getOperand(0)); 2971 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2972 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2973 } 2974 2975 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2976 // What to do depends on the size of the integer and the size of the pointer. 2977 // We can either truncate, zero extend, or no-op, accordingly. 2978 SDValue N = getValue(I.getOperand(0)); 2979 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2980 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2981 } 2982 2983 void SelectionDAGBuilder::visitBitCast(const User &I) { 2984 SDValue N = getValue(I.getOperand(0)); 2985 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2986 2987 // BitCast assures us that source and destination are the same size so this is 2988 // either a BITCAST or a no-op. 2989 if (DestVT != N.getValueType()) 2990 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2991 DestVT, N)); // convert types. 2992 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2993 // might fold any kind of constant expression to an integer constant and that 2994 // is not what we are looking for. Only regcognize a bitcast of a genuine 2995 // constant integer as an opaque constant. 2996 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2997 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 2998 /*isOpaque*/true)); 2999 else 3000 setValue(&I, N); // noop cast. 3001 } 3002 3003 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3005 const Value *SV = I.getOperand(0); 3006 SDValue N = getValue(SV); 3007 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3008 3009 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3010 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3011 3012 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3013 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3014 3015 setValue(&I, N); 3016 } 3017 3018 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3019 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3020 SDValue InVec = getValue(I.getOperand(0)); 3021 SDValue InVal = getValue(I.getOperand(1)); 3022 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3023 getCurSDLoc(), TLI.getVectorIdxTy()); 3024 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3025 TM.getTargetLowering()->getValueType(I.getType()), 3026 InVec, InVal, InIdx)); 3027 } 3028 3029 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3030 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3031 SDValue InVec = getValue(I.getOperand(0)); 3032 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3033 getCurSDLoc(), TLI.getVectorIdxTy()); 3034 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3035 TM.getTargetLowering()->getValueType(I.getType()), 3036 InVec, InIdx)); 3037 } 3038 3039 // Utility for visitShuffleVector - Return true if every element in Mask, 3040 // beginning from position Pos and ending in Pos+Size, falls within the 3041 // specified sequential range [L, L+Pos). or is undef. 3042 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3043 unsigned Pos, unsigned Size, int Low) { 3044 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3045 if (Mask[i] >= 0 && Mask[i] != Low) 3046 return false; 3047 return true; 3048 } 3049 3050 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3051 SDValue Src1 = getValue(I.getOperand(0)); 3052 SDValue Src2 = getValue(I.getOperand(1)); 3053 3054 SmallVector<int, 8> Mask; 3055 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3056 unsigned MaskNumElts = Mask.size(); 3057 3058 const TargetLowering *TLI = TM.getTargetLowering(); 3059 EVT VT = TLI->getValueType(I.getType()); 3060 EVT SrcVT = Src1.getValueType(); 3061 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3062 3063 if (SrcNumElts == MaskNumElts) { 3064 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3065 &Mask[0])); 3066 return; 3067 } 3068 3069 // Normalize the shuffle vector since mask and vector length don't match. 3070 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3071 // Mask is longer than the source vectors and is a multiple of the source 3072 // vectors. We can use concatenate vector to make the mask and vectors 3073 // lengths match. 3074 if (SrcNumElts*2 == MaskNumElts) { 3075 // First check for Src1 in low and Src2 in high 3076 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3077 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3078 // The shuffle is concatenating two vectors together. 3079 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3080 VT, Src1, Src2)); 3081 return; 3082 } 3083 // Then check for Src2 in low and Src1 in high 3084 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3085 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3086 // The shuffle is concatenating two vectors together. 3087 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3088 VT, Src2, Src1)); 3089 return; 3090 } 3091 } 3092 3093 // Pad both vectors with undefs to make them the same length as the mask. 3094 unsigned NumConcat = MaskNumElts / SrcNumElts; 3095 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3096 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3097 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3098 3099 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3100 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3101 MOps1[0] = Src1; 3102 MOps2[0] = Src2; 3103 3104 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3105 getCurSDLoc(), VT, 3106 &MOps1[0], NumConcat); 3107 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3108 getCurSDLoc(), VT, 3109 &MOps2[0], NumConcat); 3110 3111 // Readjust mask for new input vector length. 3112 SmallVector<int, 8> MappedOps; 3113 for (unsigned i = 0; i != MaskNumElts; ++i) { 3114 int Idx = Mask[i]; 3115 if (Idx >= (int)SrcNumElts) 3116 Idx -= SrcNumElts - MaskNumElts; 3117 MappedOps.push_back(Idx); 3118 } 3119 3120 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3121 &MappedOps[0])); 3122 return; 3123 } 3124 3125 if (SrcNumElts > MaskNumElts) { 3126 // Analyze the access pattern of the vector to see if we can extract 3127 // two subvectors and do the shuffle. The analysis is done by calculating 3128 // the range of elements the mask access on both vectors. 3129 int MinRange[2] = { static_cast<int>(SrcNumElts), 3130 static_cast<int>(SrcNumElts)}; 3131 int MaxRange[2] = {-1, -1}; 3132 3133 for (unsigned i = 0; i != MaskNumElts; ++i) { 3134 int Idx = Mask[i]; 3135 unsigned Input = 0; 3136 if (Idx < 0) 3137 continue; 3138 3139 if (Idx >= (int)SrcNumElts) { 3140 Input = 1; 3141 Idx -= SrcNumElts; 3142 } 3143 if (Idx > MaxRange[Input]) 3144 MaxRange[Input] = Idx; 3145 if (Idx < MinRange[Input]) 3146 MinRange[Input] = Idx; 3147 } 3148 3149 // Check if the access is smaller than the vector size and can we find 3150 // a reasonable extract index. 3151 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3152 // Extract. 3153 int StartIdx[2]; // StartIdx to extract from 3154 for (unsigned Input = 0; Input < 2; ++Input) { 3155 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3156 RangeUse[Input] = 0; // Unused 3157 StartIdx[Input] = 0; 3158 continue; 3159 } 3160 3161 // Find a good start index that is a multiple of the mask length. Then 3162 // see if the rest of the elements are in range. 3163 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3164 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3165 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3166 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3167 } 3168 3169 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3170 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3171 return; 3172 } 3173 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3174 // Extract appropriate subvector and generate a vector shuffle 3175 for (unsigned Input = 0; Input < 2; ++Input) { 3176 SDValue &Src = Input == 0 ? Src1 : Src2; 3177 if (RangeUse[Input] == 0) 3178 Src = DAG.getUNDEF(VT); 3179 else 3180 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3181 Src, DAG.getConstant(StartIdx[Input], 3182 TLI->getVectorIdxTy())); 3183 } 3184 3185 // Calculate new mask. 3186 SmallVector<int, 8> MappedOps; 3187 for (unsigned i = 0; i != MaskNumElts; ++i) { 3188 int Idx = Mask[i]; 3189 if (Idx >= 0) { 3190 if (Idx < (int)SrcNumElts) 3191 Idx -= StartIdx[0]; 3192 else 3193 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3194 } 3195 MappedOps.push_back(Idx); 3196 } 3197 3198 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3199 &MappedOps[0])); 3200 return; 3201 } 3202 } 3203 3204 // We can't use either concat vectors or extract subvectors so fall back to 3205 // replacing the shuffle with extract and build vector. 3206 // to insert and build vector. 3207 EVT EltVT = VT.getVectorElementType(); 3208 EVT IdxVT = TLI->getVectorIdxTy(); 3209 SmallVector<SDValue,8> Ops; 3210 for (unsigned i = 0; i != MaskNumElts; ++i) { 3211 int Idx = Mask[i]; 3212 SDValue Res; 3213 3214 if (Idx < 0) { 3215 Res = DAG.getUNDEF(EltVT); 3216 } else { 3217 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3218 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3219 3220 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3221 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3222 } 3223 3224 Ops.push_back(Res); 3225 } 3226 3227 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 3228 VT, &Ops[0], Ops.size())); 3229 } 3230 3231 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3232 const Value *Op0 = I.getOperand(0); 3233 const Value *Op1 = I.getOperand(1); 3234 Type *AggTy = I.getType(); 3235 Type *ValTy = Op1->getType(); 3236 bool IntoUndef = isa<UndefValue>(Op0); 3237 bool FromUndef = isa<UndefValue>(Op1); 3238 3239 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3240 3241 const TargetLowering *TLI = TM.getTargetLowering(); 3242 SmallVector<EVT, 4> AggValueVTs; 3243 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3244 SmallVector<EVT, 4> ValValueVTs; 3245 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3246 3247 unsigned NumAggValues = AggValueVTs.size(); 3248 unsigned NumValValues = ValValueVTs.size(); 3249 SmallVector<SDValue, 4> Values(NumAggValues); 3250 3251 SDValue Agg = getValue(Op0); 3252 unsigned i = 0; 3253 // Copy the beginning value(s) from the original aggregate. 3254 for (; i != LinearIndex; ++i) 3255 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3256 SDValue(Agg.getNode(), Agg.getResNo() + i); 3257 // Copy values from the inserted value(s). 3258 if (NumValValues) { 3259 SDValue Val = getValue(Op1); 3260 for (; i != LinearIndex + NumValValues; ++i) 3261 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3262 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3263 } 3264 // Copy remaining value(s) from the original aggregate. 3265 for (; i != NumAggValues; ++i) 3266 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3267 SDValue(Agg.getNode(), Agg.getResNo() + i); 3268 3269 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3270 DAG.getVTList(AggValueVTs), 3271 &Values[0], NumAggValues)); 3272 } 3273 3274 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3275 const Value *Op0 = I.getOperand(0); 3276 Type *AggTy = Op0->getType(); 3277 Type *ValTy = I.getType(); 3278 bool OutOfUndef = isa<UndefValue>(Op0); 3279 3280 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3281 3282 const TargetLowering *TLI = TM.getTargetLowering(); 3283 SmallVector<EVT, 4> ValValueVTs; 3284 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3285 3286 unsigned NumValValues = ValValueVTs.size(); 3287 3288 // Ignore a extractvalue that produces an empty object 3289 if (!NumValValues) { 3290 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3291 return; 3292 } 3293 3294 SmallVector<SDValue, 4> Values(NumValValues); 3295 3296 SDValue Agg = getValue(Op0); 3297 // Copy out the selected value(s). 3298 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3299 Values[i - LinearIndex] = 3300 OutOfUndef ? 3301 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3302 SDValue(Agg.getNode(), Agg.getResNo() + i); 3303 3304 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3305 DAG.getVTList(ValValueVTs), 3306 &Values[0], NumValValues)); 3307 } 3308 3309 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3310 Value *Op0 = I.getOperand(0); 3311 // Note that the pointer operand may be a vector of pointers. Take the scalar 3312 // element which holds a pointer. 3313 Type *Ty = Op0->getType()->getScalarType(); 3314 unsigned AS = Ty->getPointerAddressSpace(); 3315 SDValue N = getValue(Op0); 3316 3317 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3318 OI != E; ++OI) { 3319 const Value *Idx = *OI; 3320 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3321 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3322 if (Field) { 3323 // N = N + Offset 3324 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3325 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3326 DAG.getConstant(Offset, N.getValueType())); 3327 } 3328 3329 Ty = StTy->getElementType(Field); 3330 } else { 3331 Ty = cast<SequentialType>(Ty)->getElementType(); 3332 3333 // If this is a constant subscript, handle it quickly. 3334 const TargetLowering *TLI = TM.getTargetLowering(); 3335 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3336 if (CI->isZero()) continue; 3337 uint64_t Offs = 3338 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3339 SDValue OffsVal; 3340 EVT PTy = TLI->getPointerTy(AS); 3341 unsigned PtrBits = PTy.getSizeInBits(); 3342 if (PtrBits < 64) 3343 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3344 DAG.getConstant(Offs, MVT::i64)); 3345 else 3346 OffsVal = DAG.getConstant(Offs, PTy); 3347 3348 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3349 OffsVal); 3350 continue; 3351 } 3352 3353 // N = N + Idx * ElementSize; 3354 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3355 DL->getTypeAllocSize(Ty)); 3356 SDValue IdxN = getValue(Idx); 3357 3358 // If the index is smaller or larger than intptr_t, truncate or extend 3359 // it. 3360 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3361 3362 // If this is a multiply by a power of two, turn it into a shl 3363 // immediately. This is a very common case. 3364 if (ElementSize != 1) { 3365 if (ElementSize.isPowerOf2()) { 3366 unsigned Amt = ElementSize.logBase2(); 3367 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3368 N.getValueType(), IdxN, 3369 DAG.getConstant(Amt, IdxN.getValueType())); 3370 } else { 3371 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3372 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3373 N.getValueType(), IdxN, Scale); 3374 } 3375 } 3376 3377 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3378 N.getValueType(), N, IdxN); 3379 } 3380 } 3381 3382 setValue(&I, N); 3383 } 3384 3385 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3386 // If this is a fixed sized alloca in the entry block of the function, 3387 // allocate it statically on the stack. 3388 if (FuncInfo.StaticAllocaMap.count(&I)) 3389 return; // getValue will auto-populate this. 3390 3391 Type *Ty = I.getAllocatedType(); 3392 const TargetLowering *TLI = TM.getTargetLowering(); 3393 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3394 unsigned Align = 3395 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3396 I.getAlignment()); 3397 3398 SDValue AllocSize = getValue(I.getArraySize()); 3399 3400 EVT IntPtr = TLI->getPointerTy(); 3401 if (AllocSize.getValueType() != IntPtr) 3402 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3403 3404 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3405 AllocSize, 3406 DAG.getConstant(TySize, IntPtr)); 3407 3408 // Handle alignment. If the requested alignment is less than or equal to 3409 // the stack alignment, ignore it. If the size is greater than or equal to 3410 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3411 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3412 if (Align <= StackAlign) 3413 Align = 0; 3414 3415 // Round the size of the allocation up to the stack alignment size 3416 // by add SA-1 to the size. 3417 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3418 AllocSize.getValueType(), AllocSize, 3419 DAG.getIntPtrConstant(StackAlign-1)); 3420 3421 // Mask out the low bits for alignment purposes. 3422 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3423 AllocSize.getValueType(), AllocSize, 3424 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3425 3426 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3427 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3428 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), 3429 VTs, Ops, 3); 3430 setValue(&I, DSA); 3431 DAG.setRoot(DSA.getValue(1)); 3432 3433 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3434 } 3435 3436 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3437 if (I.isAtomic()) 3438 return visitAtomicLoad(I); 3439 3440 const Value *SV = I.getOperand(0); 3441 SDValue Ptr = getValue(SV); 3442 3443 Type *Ty = I.getType(); 3444 3445 bool isVolatile = I.isVolatile(); 3446 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3447 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3448 unsigned Alignment = I.getAlignment(); 3449 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3450 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3451 3452 SmallVector<EVT, 4> ValueVTs; 3453 SmallVector<uint64_t, 4> Offsets; 3454 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3455 unsigned NumValues = ValueVTs.size(); 3456 if (NumValues == 0) 3457 return; 3458 3459 SDValue Root; 3460 bool ConstantMemory = false; 3461 if (isVolatile || NumValues > MaxParallelChains) 3462 // Serialize volatile loads with other side effects. 3463 Root = getRoot(); 3464 else if (AA->pointsToConstantMemory( 3465 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3466 // Do not serialize (non-volatile) loads of constant memory with anything. 3467 Root = DAG.getEntryNode(); 3468 ConstantMemory = true; 3469 } else { 3470 // Do not serialize non-volatile loads against each other. 3471 Root = DAG.getRoot(); 3472 } 3473 3474 const TargetLowering *TLI = TM.getTargetLowering(); 3475 if (isVolatile) 3476 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3477 3478 SmallVector<SDValue, 4> Values(NumValues); 3479 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3480 NumValues)); 3481 EVT PtrVT = Ptr.getValueType(); 3482 unsigned ChainI = 0; 3483 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3484 // Serializing loads here may result in excessive register pressure, and 3485 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3486 // could recover a bit by hoisting nodes upward in the chain by recognizing 3487 // they are side-effect free or do not alias. The optimizer should really 3488 // avoid this case by converting large object/array copies to llvm.memcpy 3489 // (MaxParallelChains should always remain as failsafe). 3490 if (ChainI == MaxParallelChains) { 3491 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3492 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3493 MVT::Other, &Chains[0], ChainI); 3494 Root = Chain; 3495 ChainI = 0; 3496 } 3497 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3498 PtrVT, Ptr, 3499 DAG.getConstant(Offsets[i], PtrVT)); 3500 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3501 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3502 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3503 Ranges); 3504 3505 Values[i] = L; 3506 Chains[ChainI] = L.getValue(1); 3507 } 3508 3509 if (!ConstantMemory) { 3510 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3511 MVT::Other, &Chains[0], ChainI); 3512 if (isVolatile) 3513 DAG.setRoot(Chain); 3514 else 3515 PendingLoads.push_back(Chain); 3516 } 3517 3518 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3519 DAG.getVTList(ValueVTs), 3520 &Values[0], NumValues)); 3521 } 3522 3523 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3524 if (I.isAtomic()) 3525 return visitAtomicStore(I); 3526 3527 const Value *SrcV = I.getOperand(0); 3528 const Value *PtrV = I.getOperand(1); 3529 3530 SmallVector<EVT, 4> ValueVTs; 3531 SmallVector<uint64_t, 4> Offsets; 3532 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3533 unsigned NumValues = ValueVTs.size(); 3534 if (NumValues == 0) 3535 return; 3536 3537 // Get the lowered operands. Note that we do this after 3538 // checking if NumResults is zero, because with zero results 3539 // the operands won't have values in the map. 3540 SDValue Src = getValue(SrcV); 3541 SDValue Ptr = getValue(PtrV); 3542 3543 SDValue Root = getRoot(); 3544 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3545 NumValues)); 3546 EVT PtrVT = Ptr.getValueType(); 3547 bool isVolatile = I.isVolatile(); 3548 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3549 unsigned Alignment = I.getAlignment(); 3550 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3551 3552 unsigned ChainI = 0; 3553 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3554 // See visitLoad comments. 3555 if (ChainI == MaxParallelChains) { 3556 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3557 MVT::Other, &Chains[0], ChainI); 3558 Root = Chain; 3559 ChainI = 0; 3560 } 3561 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3562 DAG.getConstant(Offsets[i], PtrVT)); 3563 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3564 SDValue(Src.getNode(), Src.getResNo() + i), 3565 Add, MachinePointerInfo(PtrV, Offsets[i]), 3566 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3567 Chains[ChainI] = St; 3568 } 3569 3570 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3571 MVT::Other, &Chains[0], ChainI); 3572 DAG.setRoot(StoreNode); 3573 } 3574 3575 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3576 SynchronizationScope Scope, 3577 bool Before, SDLoc dl, 3578 SelectionDAG &DAG, 3579 const TargetLowering &TLI) { 3580 // Fence, if necessary 3581 if (Before) { 3582 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3583 Order = Release; 3584 else if (Order == Acquire || Order == Monotonic) 3585 return Chain; 3586 } else { 3587 if (Order == AcquireRelease) 3588 Order = Acquire; 3589 else if (Order == Release || Order == Monotonic) 3590 return Chain; 3591 } 3592 SDValue Ops[3]; 3593 Ops[0] = Chain; 3594 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3595 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3596 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3597 } 3598 3599 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3600 SDLoc dl = getCurSDLoc(); 3601 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3602 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3603 SynchronizationScope Scope = I.getSynchScope(); 3604 3605 SDValue InChain = getRoot(); 3606 3607 const TargetLowering *TLI = TM.getTargetLowering(); 3608 if (TLI->getInsertFencesForAtomic()) 3609 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3610 DAG, *TLI); 3611 3612 SDValue L = 3613 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3614 getValue(I.getCompareOperand()).getSimpleValueType(), 3615 InChain, 3616 getValue(I.getPointerOperand()), 3617 getValue(I.getCompareOperand()), 3618 getValue(I.getNewValOperand()), 3619 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3620 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3621 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, 3622 Scope); 3623 3624 SDValue OutChain = L.getValue(1); 3625 3626 if (TLI->getInsertFencesForAtomic()) 3627 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3628 DAG, *TLI); 3629 3630 setValue(&I, L); 3631 DAG.setRoot(OutChain); 3632 } 3633 3634 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3635 SDLoc dl = getCurSDLoc(); 3636 ISD::NodeType NT; 3637 switch (I.getOperation()) { 3638 default: llvm_unreachable("Unknown atomicrmw operation"); 3639 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3640 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3641 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3642 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3643 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3644 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3645 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3646 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3647 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3648 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3649 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3650 } 3651 AtomicOrdering Order = I.getOrdering(); 3652 SynchronizationScope Scope = I.getSynchScope(); 3653 3654 SDValue InChain = getRoot(); 3655 3656 const TargetLowering *TLI = TM.getTargetLowering(); 3657 if (TLI->getInsertFencesForAtomic()) 3658 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3659 DAG, *TLI); 3660 3661 SDValue L = 3662 DAG.getAtomic(NT, dl, 3663 getValue(I.getValOperand()).getSimpleValueType(), 3664 InChain, 3665 getValue(I.getPointerOperand()), 3666 getValue(I.getValOperand()), 3667 I.getPointerOperand(), 0 /* Alignment */, 3668 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3669 Scope); 3670 3671 SDValue OutChain = L.getValue(1); 3672 3673 if (TLI->getInsertFencesForAtomic()) 3674 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3675 DAG, *TLI); 3676 3677 setValue(&I, L); 3678 DAG.setRoot(OutChain); 3679 } 3680 3681 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3682 SDLoc dl = getCurSDLoc(); 3683 const TargetLowering *TLI = TM.getTargetLowering(); 3684 SDValue Ops[3]; 3685 Ops[0] = getRoot(); 3686 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3687 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3688 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3689 } 3690 3691 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3692 SDLoc dl = getCurSDLoc(); 3693 AtomicOrdering Order = I.getOrdering(); 3694 SynchronizationScope Scope = I.getSynchScope(); 3695 3696 SDValue InChain = getRoot(); 3697 3698 const TargetLowering *TLI = TM.getTargetLowering(); 3699 EVT VT = TLI->getValueType(I.getType()); 3700 3701 if (I.getAlignment() < VT.getSizeInBits() / 8) 3702 report_fatal_error("Cannot generate unaligned atomic load"); 3703 3704 MachineMemOperand *MMO = 3705 DAG.getMachineFunction(). 3706 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3707 MachineMemOperand::MOVolatile | 3708 MachineMemOperand::MOLoad, 3709 VT.getStoreSize(), 3710 I.getAlignment() ? I.getAlignment() : 3711 DAG.getEVTAlignment(VT)); 3712 3713 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3714 SDValue L = 3715 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3716 getValue(I.getPointerOperand()), MMO, 3717 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3718 Scope); 3719 3720 SDValue OutChain = L.getValue(1); 3721 3722 if (TLI->getInsertFencesForAtomic()) 3723 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3724 DAG, *TLI); 3725 3726 setValue(&I, L); 3727 DAG.setRoot(OutChain); 3728 } 3729 3730 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3731 SDLoc dl = getCurSDLoc(); 3732 3733 AtomicOrdering Order = I.getOrdering(); 3734 SynchronizationScope Scope = I.getSynchScope(); 3735 3736 SDValue InChain = getRoot(); 3737 3738 const TargetLowering *TLI = TM.getTargetLowering(); 3739 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3740 3741 if (I.getAlignment() < VT.getSizeInBits() / 8) 3742 report_fatal_error("Cannot generate unaligned atomic store"); 3743 3744 if (TLI->getInsertFencesForAtomic()) 3745 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3746 DAG, *TLI); 3747 3748 SDValue OutChain = 3749 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3750 InChain, 3751 getValue(I.getPointerOperand()), 3752 getValue(I.getValueOperand()), 3753 I.getPointerOperand(), I.getAlignment(), 3754 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3755 Scope); 3756 3757 if (TLI->getInsertFencesForAtomic()) 3758 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3759 DAG, *TLI); 3760 3761 DAG.setRoot(OutChain); 3762 } 3763 3764 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3765 /// node. 3766 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3767 unsigned Intrinsic) { 3768 bool HasChain = !I.doesNotAccessMemory(); 3769 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3770 3771 // Build the operand list. 3772 SmallVector<SDValue, 8> Ops; 3773 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3774 if (OnlyLoad) { 3775 // We don't need to serialize loads against other loads. 3776 Ops.push_back(DAG.getRoot()); 3777 } else { 3778 Ops.push_back(getRoot()); 3779 } 3780 } 3781 3782 // Info is set by getTgtMemInstrinsic 3783 TargetLowering::IntrinsicInfo Info; 3784 const TargetLowering *TLI = TM.getTargetLowering(); 3785 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3786 3787 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3788 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3789 Info.opc == ISD::INTRINSIC_W_CHAIN) 3790 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3791 3792 // Add all operands of the call to the operand list. 3793 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3794 SDValue Op = getValue(I.getArgOperand(i)); 3795 Ops.push_back(Op); 3796 } 3797 3798 SmallVector<EVT, 4> ValueVTs; 3799 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3800 3801 if (HasChain) 3802 ValueVTs.push_back(MVT::Other); 3803 3804 SDVTList VTs = DAG.getVTList(ValueVTs); 3805 3806 // Create the node. 3807 SDValue Result; 3808 if (IsTgtIntrinsic) { 3809 // This is target intrinsic that touches memory 3810 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3811 VTs, &Ops[0], Ops.size(), 3812 Info.memVT, 3813 MachinePointerInfo(Info.ptrVal, Info.offset), 3814 Info.align, Info.vol, 3815 Info.readMem, Info.writeMem); 3816 } else if (!HasChain) { 3817 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), 3818 VTs, &Ops[0], Ops.size()); 3819 } else if (!I.getType()->isVoidTy()) { 3820 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), 3821 VTs, &Ops[0], Ops.size()); 3822 } else { 3823 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), 3824 VTs, &Ops[0], Ops.size()); 3825 } 3826 3827 if (HasChain) { 3828 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3829 if (OnlyLoad) 3830 PendingLoads.push_back(Chain); 3831 else 3832 DAG.setRoot(Chain); 3833 } 3834 3835 if (!I.getType()->isVoidTy()) { 3836 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3837 EVT VT = TLI->getValueType(PTy); 3838 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3839 } 3840 3841 setValue(&I, Result); 3842 } 3843 } 3844 3845 /// GetSignificand - Get the significand and build it into a floating-point 3846 /// number with exponent of 1: 3847 /// 3848 /// Op = (Op & 0x007fffff) | 0x3f800000; 3849 /// 3850 /// where Op is the hexadecimal representation of floating point value. 3851 static SDValue 3852 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3853 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3854 DAG.getConstant(0x007fffff, MVT::i32)); 3855 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3856 DAG.getConstant(0x3f800000, MVT::i32)); 3857 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3858 } 3859 3860 /// GetExponent - Get the exponent: 3861 /// 3862 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3863 /// 3864 /// where Op is the hexadecimal representation of floating point value. 3865 static SDValue 3866 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3867 SDLoc dl) { 3868 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3869 DAG.getConstant(0x7f800000, MVT::i32)); 3870 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3871 DAG.getConstant(23, TLI.getPointerTy())); 3872 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3873 DAG.getConstant(127, MVT::i32)); 3874 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3875 } 3876 3877 /// getF32Constant - Get 32-bit floating point constant. 3878 static SDValue 3879 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3880 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3881 MVT::f32); 3882 } 3883 3884 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3885 /// limited-precision mode. 3886 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3887 const TargetLowering &TLI) { 3888 if (Op.getValueType() == MVT::f32 && 3889 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3890 3891 // Put the exponent in the right bit position for later addition to the 3892 // final result: 3893 // 3894 // #define LOG2OFe 1.4426950f 3895 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3896 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3897 getF32Constant(DAG, 0x3fb8aa3b)); 3898 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3899 3900 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3901 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3902 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3903 3904 // IntegerPartOfX <<= 23; 3905 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3906 DAG.getConstant(23, TLI.getPointerTy())); 3907 3908 SDValue TwoToFracPartOfX; 3909 if (LimitFloatPrecision <= 6) { 3910 // For floating-point precision of 6: 3911 // 3912 // TwoToFractionalPartOfX = 3913 // 0.997535578f + 3914 // (0.735607626f + 0.252464424f * x) * x; 3915 // 3916 // error 0.0144103317, which is 6 bits 3917 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3918 getF32Constant(DAG, 0x3e814304)); 3919 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3920 getF32Constant(DAG, 0x3f3c50c8)); 3921 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3922 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3923 getF32Constant(DAG, 0x3f7f5e7e)); 3924 } else if (LimitFloatPrecision <= 12) { 3925 // For floating-point precision of 12: 3926 // 3927 // TwoToFractionalPartOfX = 3928 // 0.999892986f + 3929 // (0.696457318f + 3930 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3931 // 3932 // 0.000107046256 error, which is 13 to 14 bits 3933 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3934 getF32Constant(DAG, 0x3da235e3)); 3935 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3936 getF32Constant(DAG, 0x3e65b8f3)); 3937 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3938 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3939 getF32Constant(DAG, 0x3f324b07)); 3940 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3941 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3942 getF32Constant(DAG, 0x3f7ff8fd)); 3943 } else { // LimitFloatPrecision <= 18 3944 // For floating-point precision of 18: 3945 // 3946 // TwoToFractionalPartOfX = 3947 // 0.999999982f + 3948 // (0.693148872f + 3949 // (0.240227044f + 3950 // (0.554906021e-1f + 3951 // (0.961591928e-2f + 3952 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3953 // 3954 // error 2.47208000*10^(-7), which is better than 18 bits 3955 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3956 getF32Constant(DAG, 0x3924b03e)); 3957 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3958 getF32Constant(DAG, 0x3ab24b87)); 3959 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3960 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3961 getF32Constant(DAG, 0x3c1d8c17)); 3962 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3963 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3964 getF32Constant(DAG, 0x3d634a1d)); 3965 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3966 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3967 getF32Constant(DAG, 0x3e75fe14)); 3968 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3969 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3970 getF32Constant(DAG, 0x3f317234)); 3971 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3972 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3973 getF32Constant(DAG, 0x3f800000)); 3974 } 3975 3976 // Add the exponent into the result in integer domain. 3977 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3978 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3979 DAG.getNode(ISD::ADD, dl, MVT::i32, 3980 t13, IntegerPartOfX)); 3981 } 3982 3983 // No special expansion. 3984 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3985 } 3986 3987 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3988 /// limited-precision mode. 3989 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3990 const TargetLowering &TLI) { 3991 if (Op.getValueType() == MVT::f32 && 3992 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3993 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3994 3995 // Scale the exponent by log(2) [0.69314718f]. 3996 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3997 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3998 getF32Constant(DAG, 0x3f317218)); 3999 4000 // Get the significand and build it into a floating-point number with 4001 // exponent of 1. 4002 SDValue X = GetSignificand(DAG, Op1, dl); 4003 4004 SDValue LogOfMantissa; 4005 if (LimitFloatPrecision <= 6) { 4006 // For floating-point precision of 6: 4007 // 4008 // LogofMantissa = 4009 // -1.1609546f + 4010 // (1.4034025f - 0.23903021f * x) * x; 4011 // 4012 // error 0.0034276066, which is better than 8 bits 4013 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4014 getF32Constant(DAG, 0xbe74c456)); 4015 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4016 getF32Constant(DAG, 0x3fb3a2b1)); 4017 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4018 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4019 getF32Constant(DAG, 0x3f949a29)); 4020 } else if (LimitFloatPrecision <= 12) { 4021 // For floating-point precision of 12: 4022 // 4023 // LogOfMantissa = 4024 // -1.7417939f + 4025 // (2.8212026f + 4026 // (-1.4699568f + 4027 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4028 // 4029 // error 0.000061011436, which is 14 bits 4030 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4031 getF32Constant(DAG, 0xbd67b6d6)); 4032 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4033 getF32Constant(DAG, 0x3ee4f4b8)); 4034 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4035 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4036 getF32Constant(DAG, 0x3fbc278b)); 4037 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4038 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4039 getF32Constant(DAG, 0x40348e95)); 4040 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4041 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4042 getF32Constant(DAG, 0x3fdef31a)); 4043 } else { // LimitFloatPrecision <= 18 4044 // For floating-point precision of 18: 4045 // 4046 // LogOfMantissa = 4047 // -2.1072184f + 4048 // (4.2372794f + 4049 // (-3.7029485f + 4050 // (2.2781945f + 4051 // (-0.87823314f + 4052 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4053 // 4054 // error 0.0000023660568, which is better than 18 bits 4055 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4056 getF32Constant(DAG, 0xbc91e5ac)); 4057 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4058 getF32Constant(DAG, 0x3e4350aa)); 4059 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4060 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4061 getF32Constant(DAG, 0x3f60d3e3)); 4062 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4063 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4064 getF32Constant(DAG, 0x4011cdf0)); 4065 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4066 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4067 getF32Constant(DAG, 0x406cfd1c)); 4068 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4069 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4070 getF32Constant(DAG, 0x408797cb)); 4071 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4072 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4073 getF32Constant(DAG, 0x4006dcab)); 4074 } 4075 4076 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4077 } 4078 4079 // No special expansion. 4080 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4081 } 4082 4083 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4084 /// limited-precision mode. 4085 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4086 const TargetLowering &TLI) { 4087 if (Op.getValueType() == MVT::f32 && 4088 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4089 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4090 4091 // Get the exponent. 4092 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4093 4094 // Get the significand and build it into a floating-point number with 4095 // exponent of 1. 4096 SDValue X = GetSignificand(DAG, Op1, dl); 4097 4098 // Different possible minimax approximations of significand in 4099 // floating-point for various degrees of accuracy over [1,2]. 4100 SDValue Log2ofMantissa; 4101 if (LimitFloatPrecision <= 6) { 4102 // For floating-point precision of 6: 4103 // 4104 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4105 // 4106 // error 0.0049451742, which is more than 7 bits 4107 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4108 getF32Constant(DAG, 0xbeb08fe0)); 4109 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4110 getF32Constant(DAG, 0x40019463)); 4111 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4112 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4113 getF32Constant(DAG, 0x3fd6633d)); 4114 } else if (LimitFloatPrecision <= 12) { 4115 // For floating-point precision of 12: 4116 // 4117 // Log2ofMantissa = 4118 // -2.51285454f + 4119 // (4.07009056f + 4120 // (-2.12067489f + 4121 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4122 // 4123 // error 0.0000876136000, which is better than 13 bits 4124 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4125 getF32Constant(DAG, 0xbda7262e)); 4126 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4127 getF32Constant(DAG, 0x3f25280b)); 4128 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4129 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4130 getF32Constant(DAG, 0x4007b923)); 4131 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4132 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4133 getF32Constant(DAG, 0x40823e2f)); 4134 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4135 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4136 getF32Constant(DAG, 0x4020d29c)); 4137 } else { // LimitFloatPrecision <= 18 4138 // For floating-point precision of 18: 4139 // 4140 // Log2ofMantissa = 4141 // -3.0400495f + 4142 // (6.1129976f + 4143 // (-5.3420409f + 4144 // (3.2865683f + 4145 // (-1.2669343f + 4146 // (0.27515199f - 4147 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4148 // 4149 // error 0.0000018516, which is better than 18 bits 4150 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4151 getF32Constant(DAG, 0xbcd2769e)); 4152 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4153 getF32Constant(DAG, 0x3e8ce0b9)); 4154 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4155 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4156 getF32Constant(DAG, 0x3fa22ae7)); 4157 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4158 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4159 getF32Constant(DAG, 0x40525723)); 4160 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4161 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4162 getF32Constant(DAG, 0x40aaf200)); 4163 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4164 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4165 getF32Constant(DAG, 0x40c39dad)); 4166 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4167 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4168 getF32Constant(DAG, 0x4042902c)); 4169 } 4170 4171 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4172 } 4173 4174 // No special expansion. 4175 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4176 } 4177 4178 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4179 /// limited-precision mode. 4180 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4181 const TargetLowering &TLI) { 4182 if (Op.getValueType() == MVT::f32 && 4183 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4184 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4185 4186 // Scale the exponent by log10(2) [0.30102999f]. 4187 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4188 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4189 getF32Constant(DAG, 0x3e9a209a)); 4190 4191 // Get the significand and build it into a floating-point number with 4192 // exponent of 1. 4193 SDValue X = GetSignificand(DAG, Op1, dl); 4194 4195 SDValue Log10ofMantissa; 4196 if (LimitFloatPrecision <= 6) { 4197 // For floating-point precision of 6: 4198 // 4199 // Log10ofMantissa = 4200 // -0.50419619f + 4201 // (0.60948995f - 0.10380950f * x) * x; 4202 // 4203 // error 0.0014886165, which is 6 bits 4204 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4205 getF32Constant(DAG, 0xbdd49a13)); 4206 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4207 getF32Constant(DAG, 0x3f1c0789)); 4208 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4209 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4210 getF32Constant(DAG, 0x3f011300)); 4211 } else if (LimitFloatPrecision <= 12) { 4212 // For floating-point precision of 12: 4213 // 4214 // Log10ofMantissa = 4215 // -0.64831180f + 4216 // (0.91751397f + 4217 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4218 // 4219 // error 0.00019228036, which is better than 12 bits 4220 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4221 getF32Constant(DAG, 0x3d431f31)); 4222 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4223 getF32Constant(DAG, 0x3ea21fb2)); 4224 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4225 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4226 getF32Constant(DAG, 0x3f6ae232)); 4227 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4228 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4229 getF32Constant(DAG, 0x3f25f7c3)); 4230 } else { // LimitFloatPrecision <= 18 4231 // For floating-point precision of 18: 4232 // 4233 // Log10ofMantissa = 4234 // -0.84299375f + 4235 // (1.5327582f + 4236 // (-1.0688956f + 4237 // (0.49102474f + 4238 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4239 // 4240 // error 0.0000037995730, which is better than 18 bits 4241 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4242 getF32Constant(DAG, 0x3c5d51ce)); 4243 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4244 getF32Constant(DAG, 0x3e00685a)); 4245 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4246 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4247 getF32Constant(DAG, 0x3efb6798)); 4248 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4249 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4250 getF32Constant(DAG, 0x3f88d192)); 4251 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4252 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4253 getF32Constant(DAG, 0x3fc4316c)); 4254 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4255 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4256 getF32Constant(DAG, 0x3f57ce70)); 4257 } 4258 4259 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4260 } 4261 4262 // No special expansion. 4263 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4264 } 4265 4266 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4267 /// limited-precision mode. 4268 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4269 const TargetLowering &TLI) { 4270 if (Op.getValueType() == MVT::f32 && 4271 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4272 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4273 4274 // FractionalPartOfX = x - (float)IntegerPartOfX; 4275 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4276 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4277 4278 // IntegerPartOfX <<= 23; 4279 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4280 DAG.getConstant(23, TLI.getPointerTy())); 4281 4282 SDValue TwoToFractionalPartOfX; 4283 if (LimitFloatPrecision <= 6) { 4284 // For floating-point precision of 6: 4285 // 4286 // TwoToFractionalPartOfX = 4287 // 0.997535578f + 4288 // (0.735607626f + 0.252464424f * x) * x; 4289 // 4290 // error 0.0144103317, which is 6 bits 4291 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4292 getF32Constant(DAG, 0x3e814304)); 4293 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4294 getF32Constant(DAG, 0x3f3c50c8)); 4295 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4296 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4297 getF32Constant(DAG, 0x3f7f5e7e)); 4298 } else if (LimitFloatPrecision <= 12) { 4299 // For floating-point precision of 12: 4300 // 4301 // TwoToFractionalPartOfX = 4302 // 0.999892986f + 4303 // (0.696457318f + 4304 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4305 // 4306 // error 0.000107046256, which is 13 to 14 bits 4307 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4308 getF32Constant(DAG, 0x3da235e3)); 4309 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4310 getF32Constant(DAG, 0x3e65b8f3)); 4311 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4312 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4313 getF32Constant(DAG, 0x3f324b07)); 4314 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4315 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4316 getF32Constant(DAG, 0x3f7ff8fd)); 4317 } else { // LimitFloatPrecision <= 18 4318 // For floating-point precision of 18: 4319 // 4320 // TwoToFractionalPartOfX = 4321 // 0.999999982f + 4322 // (0.693148872f + 4323 // (0.240227044f + 4324 // (0.554906021e-1f + 4325 // (0.961591928e-2f + 4326 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4327 // error 2.47208000*10^(-7), which is better than 18 bits 4328 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4329 getF32Constant(DAG, 0x3924b03e)); 4330 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4331 getF32Constant(DAG, 0x3ab24b87)); 4332 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4333 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4334 getF32Constant(DAG, 0x3c1d8c17)); 4335 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4336 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4337 getF32Constant(DAG, 0x3d634a1d)); 4338 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4339 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4340 getF32Constant(DAG, 0x3e75fe14)); 4341 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4342 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4343 getF32Constant(DAG, 0x3f317234)); 4344 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4345 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4346 getF32Constant(DAG, 0x3f800000)); 4347 } 4348 4349 // Add the exponent into the result in integer domain. 4350 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4351 TwoToFractionalPartOfX); 4352 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4353 DAG.getNode(ISD::ADD, dl, MVT::i32, 4354 t13, IntegerPartOfX)); 4355 } 4356 4357 // No special expansion. 4358 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4359 } 4360 4361 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4362 /// limited-precision mode with x == 10.0f. 4363 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4364 SelectionDAG &DAG, const TargetLowering &TLI) { 4365 bool IsExp10 = false; 4366 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4367 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4368 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4369 APFloat Ten(10.0f); 4370 IsExp10 = LHSC->isExactlyValue(Ten); 4371 } 4372 } 4373 4374 if (IsExp10) { 4375 // Put the exponent in the right bit position for later addition to the 4376 // final result: 4377 // 4378 // #define LOG2OF10 3.3219281f 4379 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4380 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4381 getF32Constant(DAG, 0x40549a78)); 4382 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4383 4384 // FractionalPartOfX = x - (float)IntegerPartOfX; 4385 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4386 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4387 4388 // IntegerPartOfX <<= 23; 4389 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4390 DAG.getConstant(23, TLI.getPointerTy())); 4391 4392 SDValue TwoToFractionalPartOfX; 4393 if (LimitFloatPrecision <= 6) { 4394 // For floating-point precision of 6: 4395 // 4396 // twoToFractionalPartOfX = 4397 // 0.997535578f + 4398 // (0.735607626f + 0.252464424f * x) * x; 4399 // 4400 // error 0.0144103317, which is 6 bits 4401 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4402 getF32Constant(DAG, 0x3e814304)); 4403 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4404 getF32Constant(DAG, 0x3f3c50c8)); 4405 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4406 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4407 getF32Constant(DAG, 0x3f7f5e7e)); 4408 } else if (LimitFloatPrecision <= 12) { 4409 // For floating-point precision of 12: 4410 // 4411 // TwoToFractionalPartOfX = 4412 // 0.999892986f + 4413 // (0.696457318f + 4414 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4415 // 4416 // error 0.000107046256, which is 13 to 14 bits 4417 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4418 getF32Constant(DAG, 0x3da235e3)); 4419 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4420 getF32Constant(DAG, 0x3e65b8f3)); 4421 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4422 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4423 getF32Constant(DAG, 0x3f324b07)); 4424 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4425 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4426 getF32Constant(DAG, 0x3f7ff8fd)); 4427 } else { // LimitFloatPrecision <= 18 4428 // For floating-point precision of 18: 4429 // 4430 // TwoToFractionalPartOfX = 4431 // 0.999999982f + 4432 // (0.693148872f + 4433 // (0.240227044f + 4434 // (0.554906021e-1f + 4435 // (0.961591928e-2f + 4436 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4437 // error 2.47208000*10^(-7), which is better than 18 bits 4438 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4439 getF32Constant(DAG, 0x3924b03e)); 4440 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4441 getF32Constant(DAG, 0x3ab24b87)); 4442 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4443 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4444 getF32Constant(DAG, 0x3c1d8c17)); 4445 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4446 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4447 getF32Constant(DAG, 0x3d634a1d)); 4448 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4449 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4450 getF32Constant(DAG, 0x3e75fe14)); 4451 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4452 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4453 getF32Constant(DAG, 0x3f317234)); 4454 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4455 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4456 getF32Constant(DAG, 0x3f800000)); 4457 } 4458 4459 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4460 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4461 DAG.getNode(ISD::ADD, dl, MVT::i32, 4462 t13, IntegerPartOfX)); 4463 } 4464 4465 // No special expansion. 4466 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4467 } 4468 4469 4470 /// ExpandPowI - Expand a llvm.powi intrinsic. 4471 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4472 SelectionDAG &DAG) { 4473 // If RHS is a constant, we can expand this out to a multiplication tree, 4474 // otherwise we end up lowering to a call to __powidf2 (for example). When 4475 // optimizing for size, we only want to do this if the expansion would produce 4476 // a small number of multiplies, otherwise we do the full expansion. 4477 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4478 // Get the exponent as a positive value. 4479 unsigned Val = RHSC->getSExtValue(); 4480 if ((int)Val < 0) Val = -Val; 4481 4482 // powi(x, 0) -> 1.0 4483 if (Val == 0) 4484 return DAG.getConstantFP(1.0, LHS.getValueType()); 4485 4486 const Function *F = DAG.getMachineFunction().getFunction(); 4487 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4488 Attribute::OptimizeForSize) || 4489 // If optimizing for size, don't insert too many multiplies. This 4490 // inserts up to 5 multiplies. 4491 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4492 // We use the simple binary decomposition method to generate the multiply 4493 // sequence. There are more optimal ways to do this (for example, 4494 // powi(x,15) generates one more multiply than it should), but this has 4495 // the benefit of being both really simple and much better than a libcall. 4496 SDValue Res; // Logically starts equal to 1.0 4497 SDValue CurSquare = LHS; 4498 while (Val) { 4499 if (Val & 1) { 4500 if (Res.getNode()) 4501 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4502 else 4503 Res = CurSquare; // 1.0*CurSquare. 4504 } 4505 4506 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4507 CurSquare, CurSquare); 4508 Val >>= 1; 4509 } 4510 4511 // If the original was negative, invert the result, producing 1/(x*x*x). 4512 if (RHSC->getSExtValue() < 0) 4513 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4514 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4515 return Res; 4516 } 4517 } 4518 4519 // Otherwise, expand to a libcall. 4520 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4521 } 4522 4523 // getTruncatedArgReg - Find underlying register used for an truncated 4524 // argument. 4525 static unsigned getTruncatedArgReg(const SDValue &N) { 4526 if (N.getOpcode() != ISD::TRUNCATE) 4527 return 0; 4528 4529 const SDValue &Ext = N.getOperand(0); 4530 if (Ext.getOpcode() == ISD::AssertZext || 4531 Ext.getOpcode() == ISD::AssertSext) { 4532 const SDValue &CFR = Ext.getOperand(0); 4533 if (CFR.getOpcode() == ISD::CopyFromReg) 4534 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4535 if (CFR.getOpcode() == ISD::TRUNCATE) 4536 return getTruncatedArgReg(CFR); 4537 } 4538 return 0; 4539 } 4540 4541 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4542 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4543 /// At the end of instruction selection, they will be inserted to the entry BB. 4544 bool 4545 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4546 int64_t Offset, 4547 const SDValue &N) { 4548 const Argument *Arg = dyn_cast<Argument>(V); 4549 if (!Arg) 4550 return false; 4551 4552 MachineFunction &MF = DAG.getMachineFunction(); 4553 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4554 4555 // Ignore inlined function arguments here. 4556 DIVariable DV(Variable); 4557 if (DV.isInlinedFnArgument(MF.getFunction())) 4558 return false; 4559 4560 Optional<MachineOperand> Op; 4561 // Some arguments' frame index is recorded during argument lowering. 4562 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4563 Op = MachineOperand::CreateFI(FI); 4564 4565 if (!Op && N.getNode()) { 4566 unsigned Reg; 4567 if (N.getOpcode() == ISD::CopyFromReg) 4568 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4569 else 4570 Reg = getTruncatedArgReg(N); 4571 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4572 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4573 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4574 if (PR) 4575 Reg = PR; 4576 } 4577 if (Reg) 4578 Op = MachineOperand::CreateReg(Reg, false); 4579 } 4580 4581 if (!Op) { 4582 // Check if ValueMap has reg number. 4583 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4584 if (VMI != FuncInfo.ValueMap.end()) 4585 Op = MachineOperand::CreateReg(VMI->second, false); 4586 } 4587 4588 if (!Op && N.getNode()) 4589 // Check if frame index is available. 4590 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4591 if (FrameIndexSDNode *FINode = 4592 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4593 Op = MachineOperand::CreateFI(FINode->getIndex()); 4594 4595 if (!Op) 4596 return false; 4597 4598 // FIXME: This does not handle register-indirect values at offset 0. 4599 bool IsIndirect = Offset != 0; 4600 if (Op->isReg()) 4601 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4602 TII->get(TargetOpcode::DBG_VALUE), 4603 IsIndirect, 4604 Op->getReg(), Offset, Variable)); 4605 else 4606 FuncInfo.ArgDbgValues.push_back( 4607 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4608 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4609 4610 return true; 4611 } 4612 4613 // VisualStudio defines setjmp as _setjmp 4614 #if defined(_MSC_VER) && defined(setjmp) && \ 4615 !defined(setjmp_undefined_for_msvc) 4616 # pragma push_macro("setjmp") 4617 # undef setjmp 4618 # define setjmp_undefined_for_msvc 4619 #endif 4620 4621 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4622 /// we want to emit this as a call to a named external function, return the name 4623 /// otherwise lower it and return null. 4624 const char * 4625 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4626 const TargetLowering *TLI = TM.getTargetLowering(); 4627 SDLoc sdl = getCurSDLoc(); 4628 DebugLoc dl = getCurDebugLoc(); 4629 SDValue Res; 4630 4631 switch (Intrinsic) { 4632 default: 4633 // By default, turn this into a target intrinsic node. 4634 visitTargetIntrinsic(I, Intrinsic); 4635 return nullptr; 4636 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4637 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4638 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4639 case Intrinsic::returnaddress: 4640 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4641 getValue(I.getArgOperand(0)))); 4642 return nullptr; 4643 case Intrinsic::frameaddress: 4644 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4645 getValue(I.getArgOperand(0)))); 4646 return nullptr; 4647 case Intrinsic::setjmp: 4648 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4649 case Intrinsic::longjmp: 4650 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4651 case Intrinsic::memcpy: { 4652 // Assert for address < 256 since we support only user defined address 4653 // spaces. 4654 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4655 < 256 && 4656 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4657 < 256 && 4658 "Unknown address space"); 4659 SDValue Op1 = getValue(I.getArgOperand(0)); 4660 SDValue Op2 = getValue(I.getArgOperand(1)); 4661 SDValue Op3 = getValue(I.getArgOperand(2)); 4662 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4663 if (!Align) 4664 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4665 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4666 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4667 MachinePointerInfo(I.getArgOperand(0)), 4668 MachinePointerInfo(I.getArgOperand(1)))); 4669 return nullptr; 4670 } 4671 case Intrinsic::memset: { 4672 // Assert for address < 256 since we support only user defined address 4673 // spaces. 4674 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4675 < 256 && 4676 "Unknown address space"); 4677 SDValue Op1 = getValue(I.getArgOperand(0)); 4678 SDValue Op2 = getValue(I.getArgOperand(1)); 4679 SDValue Op3 = getValue(I.getArgOperand(2)); 4680 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4681 if (!Align) 4682 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4683 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4684 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4685 MachinePointerInfo(I.getArgOperand(0)))); 4686 return nullptr; 4687 } 4688 case Intrinsic::memmove: { 4689 // Assert for address < 256 since we support only user defined address 4690 // spaces. 4691 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4692 < 256 && 4693 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4694 < 256 && 4695 "Unknown address space"); 4696 SDValue Op1 = getValue(I.getArgOperand(0)); 4697 SDValue Op2 = getValue(I.getArgOperand(1)); 4698 SDValue Op3 = getValue(I.getArgOperand(2)); 4699 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4700 if (!Align) 4701 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4702 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4703 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4704 MachinePointerInfo(I.getArgOperand(0)), 4705 MachinePointerInfo(I.getArgOperand(1)))); 4706 return nullptr; 4707 } 4708 case Intrinsic::dbg_declare: { 4709 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4710 MDNode *Variable = DI.getVariable(); 4711 const Value *Address = DI.getAddress(); 4712 DIVariable DIVar(Variable); 4713 assert((!DIVar || DIVar.isVariable()) && 4714 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4715 if (!Address || !DIVar) { 4716 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4717 return nullptr; 4718 } 4719 4720 // Check if address has undef value. 4721 if (isa<UndefValue>(Address) || 4722 (Address->use_empty() && !isa<Argument>(Address))) { 4723 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4724 return nullptr; 4725 } 4726 4727 SDValue &N = NodeMap[Address]; 4728 if (!N.getNode() && isa<Argument>(Address)) 4729 // Check unused arguments map. 4730 N = UnusedArgNodeMap[Address]; 4731 SDDbgValue *SDV; 4732 if (N.getNode()) { 4733 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4734 Address = BCI->getOperand(0); 4735 // Parameters are handled specially. 4736 bool isParameter = 4737 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4738 isa<Argument>(Address)); 4739 4740 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4741 4742 if (isParameter && !AI) { 4743 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4744 if (FINode) 4745 // Byval parameter. We have a frame index at this point. 4746 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4747 0, dl, SDNodeOrder); 4748 else { 4749 // Address is an argument, so try to emit its dbg value using 4750 // virtual register info from the FuncInfo.ValueMap. 4751 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4752 return nullptr; 4753 } 4754 } else if (AI) 4755 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4756 0, dl, SDNodeOrder); 4757 else { 4758 // Can't do anything with other non-AI cases yet. 4759 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4760 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4761 DEBUG(Address->dump()); 4762 return nullptr; 4763 } 4764 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4765 } else { 4766 // If Address is an argument then try to emit its dbg value using 4767 // virtual register info from the FuncInfo.ValueMap. 4768 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4769 // If variable is pinned by a alloca in dominating bb then 4770 // use StaticAllocaMap. 4771 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4772 if (AI->getParent() != DI.getParent()) { 4773 DenseMap<const AllocaInst*, int>::iterator SI = 4774 FuncInfo.StaticAllocaMap.find(AI); 4775 if (SI != FuncInfo.StaticAllocaMap.end()) { 4776 SDV = DAG.getDbgValue(Variable, SI->second, 4777 0, dl, SDNodeOrder); 4778 DAG.AddDbgValue(SDV, nullptr, false); 4779 return nullptr; 4780 } 4781 } 4782 } 4783 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4784 } 4785 } 4786 return nullptr; 4787 } 4788 case Intrinsic::dbg_value: { 4789 const DbgValueInst &DI = cast<DbgValueInst>(I); 4790 DIVariable DIVar(DI.getVariable()); 4791 assert((!DIVar || DIVar.isVariable()) && 4792 "Variable in DbgValueInst should be either null or a DIVariable."); 4793 if (!DIVar) 4794 return nullptr; 4795 4796 MDNode *Variable = DI.getVariable(); 4797 uint64_t Offset = DI.getOffset(); 4798 const Value *V = DI.getValue(); 4799 if (!V) 4800 return nullptr; 4801 4802 SDDbgValue *SDV; 4803 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4804 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4805 DAG.AddDbgValue(SDV, nullptr, false); 4806 } else { 4807 // Do not use getValue() in here; we don't want to generate code at 4808 // this point if it hasn't been done yet. 4809 SDValue N = NodeMap[V]; 4810 if (!N.getNode() && isa<Argument>(V)) 4811 // Check unused arguments map. 4812 N = UnusedArgNodeMap[V]; 4813 if (N.getNode()) { 4814 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4815 SDV = DAG.getDbgValue(Variable, N.getNode(), 4816 N.getResNo(), Offset, dl, SDNodeOrder); 4817 DAG.AddDbgValue(SDV, N.getNode(), false); 4818 } 4819 } else if (!V->use_empty() ) { 4820 // Do not call getValue(V) yet, as we don't want to generate code. 4821 // Remember it for later. 4822 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4823 DanglingDebugInfoMap[V] = DDI; 4824 } else { 4825 // We may expand this to cover more cases. One case where we have no 4826 // data available is an unreferenced parameter. 4827 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4828 } 4829 } 4830 4831 // Build a debug info table entry. 4832 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4833 V = BCI->getOperand(0); 4834 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4835 // Don't handle byval struct arguments or VLAs, for example. 4836 if (!AI) { 4837 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4838 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4839 return nullptr; 4840 } 4841 DenseMap<const AllocaInst*, int>::iterator SI = 4842 FuncInfo.StaticAllocaMap.find(AI); 4843 if (SI == FuncInfo.StaticAllocaMap.end()) 4844 return nullptr; // VLAs. 4845 int FI = SI->second; 4846 4847 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4848 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4849 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4850 return nullptr; 4851 } 4852 4853 case Intrinsic::eh_typeid_for: { 4854 // Find the type id for the given typeinfo. 4855 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4856 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4857 Res = DAG.getConstant(TypeID, MVT::i32); 4858 setValue(&I, Res); 4859 return nullptr; 4860 } 4861 4862 case Intrinsic::eh_return_i32: 4863 case Intrinsic::eh_return_i64: 4864 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4865 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4866 MVT::Other, 4867 getControlRoot(), 4868 getValue(I.getArgOperand(0)), 4869 getValue(I.getArgOperand(1)))); 4870 return nullptr; 4871 case Intrinsic::eh_unwind_init: 4872 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4873 return nullptr; 4874 case Intrinsic::eh_dwarf_cfa: { 4875 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4876 TLI->getPointerTy()); 4877 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4878 CfaArg.getValueType(), 4879 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4880 CfaArg.getValueType()), 4881 CfaArg); 4882 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4883 TLI->getPointerTy(), 4884 DAG.getConstant(0, TLI->getPointerTy())); 4885 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4886 FA, Offset)); 4887 return nullptr; 4888 } 4889 case Intrinsic::eh_sjlj_callsite: { 4890 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4891 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4892 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4893 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4894 4895 MMI.setCurrentCallSite(CI->getZExtValue()); 4896 return nullptr; 4897 } 4898 case Intrinsic::eh_sjlj_functioncontext: { 4899 // Get and store the index of the function context. 4900 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4901 AllocaInst *FnCtx = 4902 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4903 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4904 MFI->setFunctionContextIndex(FI); 4905 return nullptr; 4906 } 4907 case Intrinsic::eh_sjlj_setjmp: { 4908 SDValue Ops[2]; 4909 Ops[0] = getRoot(); 4910 Ops[1] = getValue(I.getArgOperand(0)); 4911 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4912 DAG.getVTList(MVT::i32, MVT::Other), 4913 Ops, 2); 4914 setValue(&I, Op.getValue(0)); 4915 DAG.setRoot(Op.getValue(1)); 4916 return nullptr; 4917 } 4918 case Intrinsic::eh_sjlj_longjmp: { 4919 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4920 getRoot(), getValue(I.getArgOperand(0)))); 4921 return nullptr; 4922 } 4923 4924 case Intrinsic::x86_mmx_pslli_w: 4925 case Intrinsic::x86_mmx_pslli_d: 4926 case Intrinsic::x86_mmx_pslli_q: 4927 case Intrinsic::x86_mmx_psrli_w: 4928 case Intrinsic::x86_mmx_psrli_d: 4929 case Intrinsic::x86_mmx_psrli_q: 4930 case Intrinsic::x86_mmx_psrai_w: 4931 case Intrinsic::x86_mmx_psrai_d: { 4932 SDValue ShAmt = getValue(I.getArgOperand(1)); 4933 if (isa<ConstantSDNode>(ShAmt)) { 4934 visitTargetIntrinsic(I, Intrinsic); 4935 return nullptr; 4936 } 4937 unsigned NewIntrinsic = 0; 4938 EVT ShAmtVT = MVT::v2i32; 4939 switch (Intrinsic) { 4940 case Intrinsic::x86_mmx_pslli_w: 4941 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4942 break; 4943 case Intrinsic::x86_mmx_pslli_d: 4944 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4945 break; 4946 case Intrinsic::x86_mmx_pslli_q: 4947 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4948 break; 4949 case Intrinsic::x86_mmx_psrli_w: 4950 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4951 break; 4952 case Intrinsic::x86_mmx_psrli_d: 4953 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4954 break; 4955 case Intrinsic::x86_mmx_psrli_q: 4956 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4957 break; 4958 case Intrinsic::x86_mmx_psrai_w: 4959 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4960 break; 4961 case Intrinsic::x86_mmx_psrai_d: 4962 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4963 break; 4964 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4965 } 4966 4967 // The vector shift intrinsics with scalars uses 32b shift amounts but 4968 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4969 // to be zero. 4970 // We must do this early because v2i32 is not a legal type. 4971 SDValue ShOps[2]; 4972 ShOps[0] = ShAmt; 4973 ShOps[1] = DAG.getConstant(0, MVT::i32); 4974 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2); 4975 EVT DestVT = TLI->getValueType(I.getType()); 4976 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4977 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4978 DAG.getConstant(NewIntrinsic, MVT::i32), 4979 getValue(I.getArgOperand(0)), ShAmt); 4980 setValue(&I, Res); 4981 return nullptr; 4982 } 4983 case Intrinsic::x86_avx_vinsertf128_pd_256: 4984 case Intrinsic::x86_avx_vinsertf128_ps_256: 4985 case Intrinsic::x86_avx_vinsertf128_si_256: 4986 case Intrinsic::x86_avx2_vinserti128: { 4987 EVT DestVT = TLI->getValueType(I.getType()); 4988 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 4989 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4990 ElVT.getVectorNumElements(); 4991 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4992 getValue(I.getArgOperand(0)), 4993 getValue(I.getArgOperand(1)), 4994 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4995 setValue(&I, Res); 4996 return nullptr; 4997 } 4998 case Intrinsic::x86_avx_vextractf128_pd_256: 4999 case Intrinsic::x86_avx_vextractf128_ps_256: 5000 case Intrinsic::x86_avx_vextractf128_si_256: 5001 case Intrinsic::x86_avx2_vextracti128: { 5002 EVT DestVT = TLI->getValueType(I.getType()); 5003 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5004 DestVT.getVectorNumElements(); 5005 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5006 getValue(I.getArgOperand(0)), 5007 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5008 setValue(&I, Res); 5009 return nullptr; 5010 } 5011 case Intrinsic::convertff: 5012 case Intrinsic::convertfsi: 5013 case Intrinsic::convertfui: 5014 case Intrinsic::convertsif: 5015 case Intrinsic::convertuif: 5016 case Intrinsic::convertss: 5017 case Intrinsic::convertsu: 5018 case Intrinsic::convertus: 5019 case Intrinsic::convertuu: { 5020 ISD::CvtCode Code = ISD::CVT_INVALID; 5021 switch (Intrinsic) { 5022 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5023 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5024 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5025 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5026 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5027 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5028 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5029 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5030 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5031 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5032 } 5033 EVT DestVT = TLI->getValueType(I.getType()); 5034 const Value *Op1 = I.getArgOperand(0); 5035 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5036 DAG.getValueType(DestVT), 5037 DAG.getValueType(getValue(Op1).getValueType()), 5038 getValue(I.getArgOperand(1)), 5039 getValue(I.getArgOperand(2)), 5040 Code); 5041 setValue(&I, Res); 5042 return nullptr; 5043 } 5044 case Intrinsic::powi: 5045 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5046 getValue(I.getArgOperand(1)), DAG)); 5047 return nullptr; 5048 case Intrinsic::log: 5049 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5050 return nullptr; 5051 case Intrinsic::log2: 5052 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5053 return nullptr; 5054 case Intrinsic::log10: 5055 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5056 return nullptr; 5057 case Intrinsic::exp: 5058 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5059 return nullptr; 5060 case Intrinsic::exp2: 5061 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5062 return nullptr; 5063 case Intrinsic::pow: 5064 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5065 getValue(I.getArgOperand(1)), DAG, *TLI)); 5066 return nullptr; 5067 case Intrinsic::sqrt: 5068 case Intrinsic::fabs: 5069 case Intrinsic::sin: 5070 case Intrinsic::cos: 5071 case Intrinsic::floor: 5072 case Intrinsic::ceil: 5073 case Intrinsic::trunc: 5074 case Intrinsic::rint: 5075 case Intrinsic::nearbyint: 5076 case Intrinsic::round: { 5077 unsigned Opcode; 5078 switch (Intrinsic) { 5079 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5080 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5081 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5082 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5083 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5084 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5085 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5086 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5087 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5088 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5089 case Intrinsic::round: Opcode = ISD::FROUND; break; 5090 } 5091 5092 setValue(&I, DAG.getNode(Opcode, sdl, 5093 getValue(I.getArgOperand(0)).getValueType(), 5094 getValue(I.getArgOperand(0)))); 5095 return nullptr; 5096 } 5097 case Intrinsic::copysign: 5098 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5099 getValue(I.getArgOperand(0)).getValueType(), 5100 getValue(I.getArgOperand(0)), 5101 getValue(I.getArgOperand(1)))); 5102 return nullptr; 5103 case Intrinsic::fma: 5104 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5105 getValue(I.getArgOperand(0)).getValueType(), 5106 getValue(I.getArgOperand(0)), 5107 getValue(I.getArgOperand(1)), 5108 getValue(I.getArgOperand(2)))); 5109 return nullptr; 5110 case Intrinsic::fmuladd: { 5111 EVT VT = TLI->getValueType(I.getType()); 5112 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5113 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5114 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5115 getValue(I.getArgOperand(0)).getValueType(), 5116 getValue(I.getArgOperand(0)), 5117 getValue(I.getArgOperand(1)), 5118 getValue(I.getArgOperand(2)))); 5119 } else { 5120 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5121 getValue(I.getArgOperand(0)).getValueType(), 5122 getValue(I.getArgOperand(0)), 5123 getValue(I.getArgOperand(1))); 5124 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5125 getValue(I.getArgOperand(0)).getValueType(), 5126 Mul, 5127 getValue(I.getArgOperand(2))); 5128 setValue(&I, Add); 5129 } 5130 return nullptr; 5131 } 5132 case Intrinsic::convert_to_fp16: 5133 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, 5134 MVT::i16, getValue(I.getArgOperand(0)))); 5135 return nullptr; 5136 case Intrinsic::convert_from_fp16: 5137 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, 5138 MVT::f32, getValue(I.getArgOperand(0)))); 5139 return nullptr; 5140 case Intrinsic::pcmarker: { 5141 SDValue Tmp = getValue(I.getArgOperand(0)); 5142 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5143 return nullptr; 5144 } 5145 case Intrinsic::readcyclecounter: { 5146 SDValue Op = getRoot(); 5147 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5148 DAG.getVTList(MVT::i64, MVT::Other), 5149 &Op, 1); 5150 setValue(&I, Res); 5151 DAG.setRoot(Res.getValue(1)); 5152 return nullptr; 5153 } 5154 case Intrinsic::bswap: 5155 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5156 getValue(I.getArgOperand(0)).getValueType(), 5157 getValue(I.getArgOperand(0)))); 5158 return nullptr; 5159 case Intrinsic::cttz: { 5160 SDValue Arg = getValue(I.getArgOperand(0)); 5161 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5162 EVT Ty = Arg.getValueType(); 5163 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5164 sdl, Ty, Arg)); 5165 return nullptr; 5166 } 5167 case Intrinsic::ctlz: { 5168 SDValue Arg = getValue(I.getArgOperand(0)); 5169 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5170 EVT Ty = Arg.getValueType(); 5171 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5172 sdl, Ty, Arg)); 5173 return nullptr; 5174 } 5175 case Intrinsic::ctpop: { 5176 SDValue Arg = getValue(I.getArgOperand(0)); 5177 EVT Ty = Arg.getValueType(); 5178 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5179 return nullptr; 5180 } 5181 case Intrinsic::stacksave: { 5182 SDValue Op = getRoot(); 5183 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5184 DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1); 5185 setValue(&I, Res); 5186 DAG.setRoot(Res.getValue(1)); 5187 return nullptr; 5188 } 5189 case Intrinsic::stackrestore: { 5190 Res = getValue(I.getArgOperand(0)); 5191 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5192 return nullptr; 5193 } 5194 case Intrinsic::stackprotector: { 5195 // Emit code into the DAG to store the stack guard onto the stack. 5196 MachineFunction &MF = DAG.getMachineFunction(); 5197 MachineFrameInfo *MFI = MF.getFrameInfo(); 5198 EVT PtrTy = TLI->getPointerTy(); 5199 5200 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5201 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5202 5203 int FI = FuncInfo.StaticAllocaMap[Slot]; 5204 MFI->setStackProtectorIndex(FI); 5205 5206 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5207 5208 // Store the stack protector onto the stack. 5209 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5210 MachinePointerInfo::getFixedStack(FI), 5211 true, false, 0); 5212 setValue(&I, Res); 5213 DAG.setRoot(Res); 5214 return nullptr; 5215 } 5216 case Intrinsic::objectsize: { 5217 // If we don't know by now, we're never going to know. 5218 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5219 5220 assert(CI && "Non-constant type in __builtin_object_size?"); 5221 5222 SDValue Arg = getValue(I.getCalledValue()); 5223 EVT Ty = Arg.getValueType(); 5224 5225 if (CI->isZero()) 5226 Res = DAG.getConstant(-1ULL, Ty); 5227 else 5228 Res = DAG.getConstant(0, Ty); 5229 5230 setValue(&I, Res); 5231 return nullptr; 5232 } 5233 case Intrinsic::annotation: 5234 case Intrinsic::ptr_annotation: 5235 // Drop the intrinsic, but forward the value 5236 setValue(&I, getValue(I.getOperand(0))); 5237 return nullptr; 5238 case Intrinsic::var_annotation: 5239 // Discard annotate attributes 5240 return nullptr; 5241 5242 case Intrinsic::init_trampoline: { 5243 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5244 5245 SDValue Ops[6]; 5246 Ops[0] = getRoot(); 5247 Ops[1] = getValue(I.getArgOperand(0)); 5248 Ops[2] = getValue(I.getArgOperand(1)); 5249 Ops[3] = getValue(I.getArgOperand(2)); 5250 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5251 Ops[5] = DAG.getSrcValue(F); 5252 5253 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6); 5254 5255 DAG.setRoot(Res); 5256 return nullptr; 5257 } 5258 case Intrinsic::adjust_trampoline: { 5259 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5260 TLI->getPointerTy(), 5261 getValue(I.getArgOperand(0)))); 5262 return nullptr; 5263 } 5264 case Intrinsic::gcroot: 5265 if (GFI) { 5266 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5267 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5268 5269 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5270 GFI->addStackRoot(FI->getIndex(), TypeMap); 5271 } 5272 return nullptr; 5273 case Intrinsic::gcread: 5274 case Intrinsic::gcwrite: 5275 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5276 case Intrinsic::flt_rounds: 5277 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5278 return nullptr; 5279 5280 case Intrinsic::expect: { 5281 // Just replace __builtin_expect(exp, c) with EXP. 5282 setValue(&I, getValue(I.getArgOperand(0))); 5283 return nullptr; 5284 } 5285 5286 case Intrinsic::debugtrap: 5287 case Intrinsic::trap: { 5288 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5289 if (TrapFuncName.empty()) { 5290 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5291 ISD::TRAP : ISD::DEBUGTRAP; 5292 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5293 return nullptr; 5294 } 5295 TargetLowering::ArgListTy Args; 5296 TargetLowering:: 5297 CallLoweringInfo CLI(getRoot(), I.getType(), 5298 false, false, false, false, 0, CallingConv::C, 5299 /*isTailCall=*/false, 5300 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5301 DAG.getExternalSymbol(TrapFuncName.data(), 5302 TLI->getPointerTy()), 5303 Args, DAG, sdl); 5304 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5305 DAG.setRoot(Result.second); 5306 return nullptr; 5307 } 5308 5309 case Intrinsic::uadd_with_overflow: 5310 case Intrinsic::sadd_with_overflow: 5311 case Intrinsic::usub_with_overflow: 5312 case Intrinsic::ssub_with_overflow: 5313 case Intrinsic::umul_with_overflow: 5314 case Intrinsic::smul_with_overflow: { 5315 ISD::NodeType Op; 5316 switch (Intrinsic) { 5317 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5318 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5319 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5320 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5321 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5322 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5323 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5324 } 5325 SDValue Op1 = getValue(I.getArgOperand(0)); 5326 SDValue Op2 = getValue(I.getArgOperand(1)); 5327 5328 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5329 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5330 return nullptr; 5331 } 5332 case Intrinsic::prefetch: { 5333 SDValue Ops[5]; 5334 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5335 Ops[0] = getRoot(); 5336 Ops[1] = getValue(I.getArgOperand(0)); 5337 Ops[2] = getValue(I.getArgOperand(1)); 5338 Ops[3] = getValue(I.getArgOperand(2)); 5339 Ops[4] = getValue(I.getArgOperand(3)); 5340 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5341 DAG.getVTList(MVT::Other), 5342 &Ops[0], 5, 5343 EVT::getIntegerVT(*Context, 8), 5344 MachinePointerInfo(I.getArgOperand(0)), 5345 0, /* align */ 5346 false, /* volatile */ 5347 rw==0, /* read */ 5348 rw==1)); /* write */ 5349 return nullptr; 5350 } 5351 case Intrinsic::lifetime_start: 5352 case Intrinsic::lifetime_end: { 5353 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5354 // Stack coloring is not enabled in O0, discard region information. 5355 if (TM.getOptLevel() == CodeGenOpt::None) 5356 return nullptr; 5357 5358 SmallVector<Value *, 4> Allocas; 5359 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5360 5361 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5362 E = Allocas.end(); Object != E; ++Object) { 5363 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5364 5365 // Could not find an Alloca. 5366 if (!LifetimeObject) 5367 continue; 5368 5369 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5370 5371 SDValue Ops[2]; 5372 Ops[0] = getRoot(); 5373 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5374 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5375 5376 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2); 5377 DAG.setRoot(Res); 5378 } 5379 return nullptr; 5380 } 5381 case Intrinsic::invariant_start: 5382 // Discard region information. 5383 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5384 return nullptr; 5385 case Intrinsic::invariant_end: 5386 // Discard region information. 5387 return nullptr; 5388 case Intrinsic::stackprotectorcheck: { 5389 // Do not actually emit anything for this basic block. Instead we initialize 5390 // the stack protector descriptor and export the guard variable so we can 5391 // access it in FinishBasicBlock. 5392 const BasicBlock *BB = I.getParent(); 5393 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5394 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5395 5396 // Flush our exports since we are going to process a terminator. 5397 (void)getControlRoot(); 5398 return nullptr; 5399 } 5400 case Intrinsic::clear_cache: 5401 return TLI->getClearCacheBuiltinName(); 5402 case Intrinsic::donothing: 5403 // ignore 5404 return nullptr; 5405 case Intrinsic::experimental_stackmap: { 5406 visitStackmap(I); 5407 return nullptr; 5408 } 5409 case Intrinsic::experimental_patchpoint_void: 5410 case Intrinsic::experimental_patchpoint_i64: { 5411 visitPatchpoint(I); 5412 return nullptr; 5413 } 5414 } 5415 } 5416 5417 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5418 bool isTailCall, 5419 MachineBasicBlock *LandingPad) { 5420 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5421 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5422 Type *RetTy = FTy->getReturnType(); 5423 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5424 MCSymbol *BeginLabel = nullptr; 5425 5426 TargetLowering::ArgListTy Args; 5427 TargetLowering::ArgListEntry Entry; 5428 Args.reserve(CS.arg_size()); 5429 5430 // Check whether the function can return without sret-demotion. 5431 SmallVector<ISD::OutputArg, 4> Outs; 5432 const TargetLowering *TLI = TM.getTargetLowering(); 5433 GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); 5434 5435 bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), 5436 DAG.getMachineFunction(), 5437 FTy->isVarArg(), Outs, 5438 FTy->getContext()); 5439 5440 SDValue DemoteStackSlot; 5441 int DemoteStackIdx = -100; 5442 5443 if (!CanLowerReturn) { 5444 assert(!CS.hasInAllocaArgument() && 5445 "sret demotion is incompatible with inalloca"); 5446 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( 5447 FTy->getReturnType()); 5448 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( 5449 FTy->getReturnType()); 5450 MachineFunction &MF = DAG.getMachineFunction(); 5451 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5452 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5453 5454 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); 5455 Entry.Node = DemoteStackSlot; 5456 Entry.Ty = StackSlotPtrType; 5457 Entry.isSExt = false; 5458 Entry.isZExt = false; 5459 Entry.isInReg = false; 5460 Entry.isSRet = true; 5461 Entry.isNest = false; 5462 Entry.isByVal = false; 5463 Entry.isReturned = false; 5464 Entry.Alignment = Align; 5465 Args.push_back(Entry); 5466 RetTy = Type::getVoidTy(FTy->getContext()); 5467 } 5468 5469 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5470 i != e; ++i) { 5471 const Value *V = *i; 5472 5473 // Skip empty types 5474 if (V->getType()->isEmptyTy()) 5475 continue; 5476 5477 SDValue ArgNode = getValue(V); 5478 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5479 5480 // Skip the first return-type Attribute to get to params. 5481 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5482 Args.push_back(Entry); 5483 } 5484 5485 if (LandingPad) { 5486 // Insert a label before the invoke call to mark the try range. This can be 5487 // used to detect deletion of the invoke via the MachineModuleInfo. 5488 BeginLabel = MMI.getContext().CreateTempSymbol(); 5489 5490 // For SjLj, keep track of which landing pads go with which invokes 5491 // so as to maintain the ordering of pads in the LSDA. 5492 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5493 if (CallSiteIndex) { 5494 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5495 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5496 5497 // Now that the call site is handled, stop tracking it. 5498 MMI.setCurrentCallSite(0); 5499 } 5500 5501 // Both PendingLoads and PendingExports must be flushed here; 5502 // this call might not return. 5503 (void)getRoot(); 5504 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5505 } 5506 5507 // Check if target-independent constraints permit a tail call here. 5508 // Target-dependent constraints are checked within TLI->LowerCallTo. 5509 if (isTailCall && !isInTailCallPosition(CS, *TLI)) 5510 isTailCall = false; 5511 5512 TargetLowering:: 5513 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5514 getCurSDLoc(), CS); 5515 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5516 assert((isTailCall || Result.second.getNode()) && 5517 "Non-null chain expected with non-tail call!"); 5518 assert((Result.second.getNode() || !Result.first.getNode()) && 5519 "Null value expected with tail call!"); 5520 if (Result.first.getNode()) { 5521 setValue(CS.getInstruction(), Result.first); 5522 } else if (!CanLowerReturn && Result.second.getNode()) { 5523 // The instruction result is the result of loading from the 5524 // hidden sret parameter. 5525 SmallVector<EVT, 1> PVTs; 5526 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5527 5528 ComputeValueVTs(*TLI, PtrRetTy, PVTs); 5529 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5530 EVT PtrVT = PVTs[0]; 5531 5532 SmallVector<EVT, 4> RetTys; 5533 SmallVector<uint64_t, 4> Offsets; 5534 RetTy = FTy->getReturnType(); 5535 ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); 5536 5537 unsigned NumValues = RetTys.size(); 5538 SmallVector<SDValue, 4> Values(NumValues); 5539 SmallVector<SDValue, 4> Chains(NumValues); 5540 5541 for (unsigned i = 0; i < NumValues; ++i) { 5542 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, 5543 DemoteStackSlot, 5544 DAG.getConstant(Offsets[i], PtrVT)); 5545 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, 5546 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5547 false, false, false, 1); 5548 Values[i] = L; 5549 Chains[i] = L.getValue(1); 5550 } 5551 5552 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 5553 MVT::Other, &Chains[0], NumValues); 5554 PendingLoads.push_back(Chain); 5555 5556 setValue(CS.getInstruction(), 5557 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 5558 DAG.getVTList(RetTys), 5559 &Values[0], Values.size())); 5560 } 5561 5562 if (!Result.second.getNode()) { 5563 // As a special case, a null chain means that a tail call has been emitted 5564 // and the DAG root is already updated. 5565 HasTailCall = true; 5566 5567 // Since there's no actual continuation from this block, nothing can be 5568 // relying on us setting vregs for them. 5569 PendingExports.clear(); 5570 } else { 5571 DAG.setRoot(Result.second); 5572 } 5573 5574 if (LandingPad) { 5575 // Insert a label at the end of the invoke call to mark the try range. This 5576 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5577 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5578 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5579 5580 // Inform MachineModuleInfo of range. 5581 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5582 } 5583 } 5584 5585 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5586 /// value is equal or not-equal to zero. 5587 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5588 for (const User *U : V->users()) { 5589 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5590 if (IC->isEquality()) 5591 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5592 if (C->isNullValue()) 5593 continue; 5594 // Unknown instruction. 5595 return false; 5596 } 5597 return true; 5598 } 5599 5600 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5601 Type *LoadTy, 5602 SelectionDAGBuilder &Builder) { 5603 5604 // Check to see if this load can be trivially constant folded, e.g. if the 5605 // input is from a string literal. 5606 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5607 // Cast pointer to the type we really want to load. 5608 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5609 PointerType::getUnqual(LoadTy)); 5610 5611 if (const Constant *LoadCst = 5612 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5613 Builder.DL)) 5614 return Builder.getValue(LoadCst); 5615 } 5616 5617 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5618 // still constant memory, the input chain can be the entry node. 5619 SDValue Root; 5620 bool ConstantMemory = false; 5621 5622 // Do not serialize (non-volatile) loads of constant memory with anything. 5623 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5624 Root = Builder.DAG.getEntryNode(); 5625 ConstantMemory = true; 5626 } else { 5627 // Do not serialize non-volatile loads against each other. 5628 Root = Builder.DAG.getRoot(); 5629 } 5630 5631 SDValue Ptr = Builder.getValue(PtrVal); 5632 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5633 Ptr, MachinePointerInfo(PtrVal), 5634 false /*volatile*/, 5635 false /*nontemporal*/, 5636 false /*isinvariant*/, 1 /* align=1 */); 5637 5638 if (!ConstantMemory) 5639 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5640 return LoadVal; 5641 } 5642 5643 /// processIntegerCallValue - Record the value for an instruction that 5644 /// produces an integer result, converting the type where necessary. 5645 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5646 SDValue Value, 5647 bool IsSigned) { 5648 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); 5649 if (IsSigned) 5650 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5651 else 5652 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5653 setValue(&I, Value); 5654 } 5655 5656 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5657 /// If so, return true and lower it, otherwise return false and it will be 5658 /// lowered like a normal call. 5659 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5660 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5661 if (I.getNumArgOperands() != 3) 5662 return false; 5663 5664 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5665 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5666 !I.getArgOperand(2)->getType()->isIntegerTy() || 5667 !I.getType()->isIntegerTy()) 5668 return false; 5669 5670 const Value *Size = I.getArgOperand(2); 5671 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5672 if (CSize && CSize->getZExtValue() == 0) { 5673 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); 5674 setValue(&I, DAG.getConstant(0, CallVT)); 5675 return true; 5676 } 5677 5678 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5679 std::pair<SDValue, SDValue> Res = 5680 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5681 getValue(LHS), getValue(RHS), getValue(Size), 5682 MachinePointerInfo(LHS), 5683 MachinePointerInfo(RHS)); 5684 if (Res.first.getNode()) { 5685 processIntegerCallValue(I, Res.first, true); 5686 PendingLoads.push_back(Res.second); 5687 return true; 5688 } 5689 5690 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5691 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5692 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5693 bool ActuallyDoIt = true; 5694 MVT LoadVT; 5695 Type *LoadTy; 5696 switch (CSize->getZExtValue()) { 5697 default: 5698 LoadVT = MVT::Other; 5699 LoadTy = nullptr; 5700 ActuallyDoIt = false; 5701 break; 5702 case 2: 5703 LoadVT = MVT::i16; 5704 LoadTy = Type::getInt16Ty(CSize->getContext()); 5705 break; 5706 case 4: 5707 LoadVT = MVT::i32; 5708 LoadTy = Type::getInt32Ty(CSize->getContext()); 5709 break; 5710 case 8: 5711 LoadVT = MVT::i64; 5712 LoadTy = Type::getInt64Ty(CSize->getContext()); 5713 break; 5714 /* 5715 case 16: 5716 LoadVT = MVT::v4i32; 5717 LoadTy = Type::getInt32Ty(CSize->getContext()); 5718 LoadTy = VectorType::get(LoadTy, 4); 5719 break; 5720 */ 5721 } 5722 5723 // This turns into unaligned loads. We only do this if the target natively 5724 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5725 // we'll only produce a small number of byte loads. 5726 5727 // Require that we can find a legal MVT, and only do this if the target 5728 // supports unaligned loads of that type. Expanding into byte loads would 5729 // bloat the code. 5730 const TargetLowering *TLI = TM.getTargetLowering(); 5731 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5732 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5733 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5734 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5735 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5736 if (!TLI->isTypeLegal(LoadVT) || 5737 !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) || 5738 !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS)) 5739 ActuallyDoIt = false; 5740 } 5741 5742 if (ActuallyDoIt) { 5743 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5744 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5745 5746 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5747 ISD::SETNE); 5748 processIntegerCallValue(I, Res, false); 5749 return true; 5750 } 5751 } 5752 5753 5754 return false; 5755 } 5756 5757 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5758 /// form. If so, return true and lower it, otherwise return false and it 5759 /// will be lowered like a normal call. 5760 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5761 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5762 if (I.getNumArgOperands() != 3) 5763 return false; 5764 5765 const Value *Src = I.getArgOperand(0); 5766 const Value *Char = I.getArgOperand(1); 5767 const Value *Length = I.getArgOperand(2); 5768 if (!Src->getType()->isPointerTy() || 5769 !Char->getType()->isIntegerTy() || 5770 !Length->getType()->isIntegerTy() || 5771 !I.getType()->isPointerTy()) 5772 return false; 5773 5774 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5775 std::pair<SDValue, SDValue> Res = 5776 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5777 getValue(Src), getValue(Char), getValue(Length), 5778 MachinePointerInfo(Src)); 5779 if (Res.first.getNode()) { 5780 setValue(&I, Res.first); 5781 PendingLoads.push_back(Res.second); 5782 return true; 5783 } 5784 5785 return false; 5786 } 5787 5788 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5789 /// optimized form. If so, return true and lower it, otherwise return false 5790 /// and it will be lowered like a normal call. 5791 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5792 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5793 if (I.getNumArgOperands() != 2) 5794 return false; 5795 5796 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5797 if (!Arg0->getType()->isPointerTy() || 5798 !Arg1->getType()->isPointerTy() || 5799 !I.getType()->isPointerTy()) 5800 return false; 5801 5802 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5803 std::pair<SDValue, SDValue> Res = 5804 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5805 getValue(Arg0), getValue(Arg1), 5806 MachinePointerInfo(Arg0), 5807 MachinePointerInfo(Arg1), isStpcpy); 5808 if (Res.first.getNode()) { 5809 setValue(&I, Res.first); 5810 DAG.setRoot(Res.second); 5811 return true; 5812 } 5813 5814 return false; 5815 } 5816 5817 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5818 /// If so, return true and lower it, otherwise return false and it will be 5819 /// lowered like a normal call. 5820 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5821 // Verify that the prototype makes sense. int strcmp(void*,void*) 5822 if (I.getNumArgOperands() != 2) 5823 return false; 5824 5825 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5826 if (!Arg0->getType()->isPointerTy() || 5827 !Arg1->getType()->isPointerTy() || 5828 !I.getType()->isIntegerTy()) 5829 return false; 5830 5831 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5832 std::pair<SDValue, SDValue> Res = 5833 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5834 getValue(Arg0), getValue(Arg1), 5835 MachinePointerInfo(Arg0), 5836 MachinePointerInfo(Arg1)); 5837 if (Res.first.getNode()) { 5838 processIntegerCallValue(I, Res.first, true); 5839 PendingLoads.push_back(Res.second); 5840 return true; 5841 } 5842 5843 return false; 5844 } 5845 5846 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5847 /// form. If so, return true and lower it, otherwise return false and it 5848 /// will be lowered like a normal call. 5849 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5850 // Verify that the prototype makes sense. size_t strlen(char *) 5851 if (I.getNumArgOperands() != 1) 5852 return false; 5853 5854 const Value *Arg0 = I.getArgOperand(0); 5855 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5856 return false; 5857 5858 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5859 std::pair<SDValue, SDValue> Res = 5860 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5861 getValue(Arg0), MachinePointerInfo(Arg0)); 5862 if (Res.first.getNode()) { 5863 processIntegerCallValue(I, Res.first, false); 5864 PendingLoads.push_back(Res.second); 5865 return true; 5866 } 5867 5868 return false; 5869 } 5870 5871 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5872 /// form. If so, return true and lower it, otherwise return false and it 5873 /// will be lowered like a normal call. 5874 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5875 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5876 if (I.getNumArgOperands() != 2) 5877 return false; 5878 5879 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5880 if (!Arg0->getType()->isPointerTy() || 5881 !Arg1->getType()->isIntegerTy() || 5882 !I.getType()->isIntegerTy()) 5883 return false; 5884 5885 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5886 std::pair<SDValue, SDValue> Res = 5887 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5888 getValue(Arg0), getValue(Arg1), 5889 MachinePointerInfo(Arg0)); 5890 if (Res.first.getNode()) { 5891 processIntegerCallValue(I, Res.first, false); 5892 PendingLoads.push_back(Res.second); 5893 return true; 5894 } 5895 5896 return false; 5897 } 5898 5899 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5900 /// operation (as expected), translate it to an SDNode with the specified opcode 5901 /// and return true. 5902 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5903 unsigned Opcode) { 5904 // Sanity check that it really is a unary floating-point call. 5905 if (I.getNumArgOperands() != 1 || 5906 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5907 I.getType() != I.getArgOperand(0)->getType() || 5908 !I.onlyReadsMemory()) 5909 return false; 5910 5911 SDValue Tmp = getValue(I.getArgOperand(0)); 5912 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5913 return true; 5914 } 5915 5916 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5917 // Handle inline assembly differently. 5918 if (isa<InlineAsm>(I.getCalledValue())) { 5919 visitInlineAsm(&I); 5920 return; 5921 } 5922 5923 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5924 ComputeUsesVAFloatArgument(I, &MMI); 5925 5926 const char *RenameFn = nullptr; 5927 if (Function *F = I.getCalledFunction()) { 5928 if (F->isDeclaration()) { 5929 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5930 if (unsigned IID = II->getIntrinsicID(F)) { 5931 RenameFn = visitIntrinsicCall(I, IID); 5932 if (!RenameFn) 5933 return; 5934 } 5935 } 5936 if (unsigned IID = F->getIntrinsicID()) { 5937 RenameFn = visitIntrinsicCall(I, IID); 5938 if (!RenameFn) 5939 return; 5940 } 5941 } 5942 5943 // Check for well-known libc/libm calls. If the function is internal, it 5944 // can't be a library call. 5945 LibFunc::Func Func; 5946 if (!F->hasLocalLinkage() && F->hasName() && 5947 LibInfo->getLibFunc(F->getName(), Func) && 5948 LibInfo->hasOptimizedCodeGen(Func)) { 5949 switch (Func) { 5950 default: break; 5951 case LibFunc::copysign: 5952 case LibFunc::copysignf: 5953 case LibFunc::copysignl: 5954 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5955 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5956 I.getType() == I.getArgOperand(0)->getType() && 5957 I.getType() == I.getArgOperand(1)->getType() && 5958 I.onlyReadsMemory()) { 5959 SDValue LHS = getValue(I.getArgOperand(0)); 5960 SDValue RHS = getValue(I.getArgOperand(1)); 5961 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5962 LHS.getValueType(), LHS, RHS)); 5963 return; 5964 } 5965 break; 5966 case LibFunc::fabs: 5967 case LibFunc::fabsf: 5968 case LibFunc::fabsl: 5969 if (visitUnaryFloatCall(I, ISD::FABS)) 5970 return; 5971 break; 5972 case LibFunc::sin: 5973 case LibFunc::sinf: 5974 case LibFunc::sinl: 5975 if (visitUnaryFloatCall(I, ISD::FSIN)) 5976 return; 5977 break; 5978 case LibFunc::cos: 5979 case LibFunc::cosf: 5980 case LibFunc::cosl: 5981 if (visitUnaryFloatCall(I, ISD::FCOS)) 5982 return; 5983 break; 5984 case LibFunc::sqrt: 5985 case LibFunc::sqrtf: 5986 case LibFunc::sqrtl: 5987 case LibFunc::sqrt_finite: 5988 case LibFunc::sqrtf_finite: 5989 case LibFunc::sqrtl_finite: 5990 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5991 return; 5992 break; 5993 case LibFunc::floor: 5994 case LibFunc::floorf: 5995 case LibFunc::floorl: 5996 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5997 return; 5998 break; 5999 case LibFunc::nearbyint: 6000 case LibFunc::nearbyintf: 6001 case LibFunc::nearbyintl: 6002 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6003 return; 6004 break; 6005 case LibFunc::ceil: 6006 case LibFunc::ceilf: 6007 case LibFunc::ceill: 6008 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6009 return; 6010 break; 6011 case LibFunc::rint: 6012 case LibFunc::rintf: 6013 case LibFunc::rintl: 6014 if (visitUnaryFloatCall(I, ISD::FRINT)) 6015 return; 6016 break; 6017 case LibFunc::round: 6018 case LibFunc::roundf: 6019 case LibFunc::roundl: 6020 if (visitUnaryFloatCall(I, ISD::FROUND)) 6021 return; 6022 break; 6023 case LibFunc::trunc: 6024 case LibFunc::truncf: 6025 case LibFunc::truncl: 6026 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6027 return; 6028 break; 6029 case LibFunc::log2: 6030 case LibFunc::log2f: 6031 case LibFunc::log2l: 6032 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6033 return; 6034 break; 6035 case LibFunc::exp2: 6036 case LibFunc::exp2f: 6037 case LibFunc::exp2l: 6038 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6039 return; 6040 break; 6041 case LibFunc::memcmp: 6042 if (visitMemCmpCall(I)) 6043 return; 6044 break; 6045 case LibFunc::memchr: 6046 if (visitMemChrCall(I)) 6047 return; 6048 break; 6049 case LibFunc::strcpy: 6050 if (visitStrCpyCall(I, false)) 6051 return; 6052 break; 6053 case LibFunc::stpcpy: 6054 if (visitStrCpyCall(I, true)) 6055 return; 6056 break; 6057 case LibFunc::strcmp: 6058 if (visitStrCmpCall(I)) 6059 return; 6060 break; 6061 case LibFunc::strlen: 6062 if (visitStrLenCall(I)) 6063 return; 6064 break; 6065 case LibFunc::strnlen: 6066 if (visitStrNLenCall(I)) 6067 return; 6068 break; 6069 } 6070 } 6071 } 6072 6073 SDValue Callee; 6074 if (!RenameFn) 6075 Callee = getValue(I.getCalledValue()); 6076 else 6077 Callee = DAG.getExternalSymbol(RenameFn, 6078 TM.getTargetLowering()->getPointerTy()); 6079 6080 // Check if we can potentially perform a tail call. More detailed checking is 6081 // be done within LowerCallTo, after more information about the call is known. 6082 LowerCallTo(&I, Callee, I.isTailCall()); 6083 } 6084 6085 namespace { 6086 6087 /// AsmOperandInfo - This contains information for each constraint that we are 6088 /// lowering. 6089 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6090 public: 6091 /// CallOperand - If this is the result output operand or a clobber 6092 /// this is null, otherwise it is the incoming operand to the CallInst. 6093 /// This gets modified as the asm is processed. 6094 SDValue CallOperand; 6095 6096 /// AssignedRegs - If this is a register or register class operand, this 6097 /// contains the set of register corresponding to the operand. 6098 RegsForValue AssignedRegs; 6099 6100 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6101 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6102 } 6103 6104 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6105 /// corresponds to. If there is no Value* for this operand, it returns 6106 /// MVT::Other. 6107 EVT getCallOperandValEVT(LLVMContext &Context, 6108 const TargetLowering &TLI, 6109 const DataLayout *DL) const { 6110 if (!CallOperandVal) return MVT::Other; 6111 6112 if (isa<BasicBlock>(CallOperandVal)) 6113 return TLI.getPointerTy(); 6114 6115 llvm::Type *OpTy = CallOperandVal->getType(); 6116 6117 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6118 // If this is an indirect operand, the operand is a pointer to the 6119 // accessed type. 6120 if (isIndirect) { 6121 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6122 if (!PtrTy) 6123 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6124 OpTy = PtrTy->getElementType(); 6125 } 6126 6127 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6128 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6129 if (STy->getNumElements() == 1) 6130 OpTy = STy->getElementType(0); 6131 6132 // If OpTy is not a single value, it may be a struct/union that we 6133 // can tile with integers. 6134 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6135 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6136 switch (BitSize) { 6137 default: break; 6138 case 1: 6139 case 8: 6140 case 16: 6141 case 32: 6142 case 64: 6143 case 128: 6144 OpTy = IntegerType::get(Context, BitSize); 6145 break; 6146 } 6147 } 6148 6149 return TLI.getValueType(OpTy, true); 6150 } 6151 }; 6152 6153 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6154 6155 } // end anonymous namespace 6156 6157 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6158 /// specified operand. We prefer to assign virtual registers, to allow the 6159 /// register allocator to handle the assignment process. However, if the asm 6160 /// uses features that we can't model on machineinstrs, we have SDISel do the 6161 /// allocation. This produces generally horrible, but correct, code. 6162 /// 6163 /// OpInfo describes the operand. 6164 /// 6165 static void GetRegistersForValue(SelectionDAG &DAG, 6166 const TargetLowering &TLI, 6167 SDLoc DL, 6168 SDISelAsmOperandInfo &OpInfo) { 6169 LLVMContext &Context = *DAG.getContext(); 6170 6171 MachineFunction &MF = DAG.getMachineFunction(); 6172 SmallVector<unsigned, 4> Regs; 6173 6174 // If this is a constraint for a single physreg, or a constraint for a 6175 // register class, find it. 6176 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6177 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6178 OpInfo.ConstraintVT); 6179 6180 unsigned NumRegs = 1; 6181 if (OpInfo.ConstraintVT != MVT::Other) { 6182 // If this is a FP input in an integer register (or visa versa) insert a bit 6183 // cast of the input value. More generally, handle any case where the input 6184 // value disagrees with the register class we plan to stick this in. 6185 if (OpInfo.Type == InlineAsm::isInput && 6186 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6187 // Try to convert to the first EVT that the reg class contains. If the 6188 // types are identical size, use a bitcast to convert (e.g. two differing 6189 // vector types). 6190 MVT RegVT = *PhysReg.second->vt_begin(); 6191 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6192 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6193 RegVT, OpInfo.CallOperand); 6194 OpInfo.ConstraintVT = RegVT; 6195 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6196 // If the input is a FP value and we want it in FP registers, do a 6197 // bitcast to the corresponding integer type. This turns an f64 value 6198 // into i64, which can be passed with two i32 values on a 32-bit 6199 // machine. 6200 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6201 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6202 RegVT, OpInfo.CallOperand); 6203 OpInfo.ConstraintVT = RegVT; 6204 } 6205 } 6206 6207 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6208 } 6209 6210 MVT RegVT; 6211 EVT ValueVT = OpInfo.ConstraintVT; 6212 6213 // If this is a constraint for a specific physical register, like {r17}, 6214 // assign it now. 6215 if (unsigned AssignedReg = PhysReg.first) { 6216 const TargetRegisterClass *RC = PhysReg.second; 6217 if (OpInfo.ConstraintVT == MVT::Other) 6218 ValueVT = *RC->vt_begin(); 6219 6220 // Get the actual register value type. This is important, because the user 6221 // may have asked for (e.g.) the AX register in i32 type. We need to 6222 // remember that AX is actually i16 to get the right extension. 6223 RegVT = *RC->vt_begin(); 6224 6225 // This is a explicit reference to a physical register. 6226 Regs.push_back(AssignedReg); 6227 6228 // If this is an expanded reference, add the rest of the regs to Regs. 6229 if (NumRegs != 1) { 6230 TargetRegisterClass::iterator I = RC->begin(); 6231 for (; *I != AssignedReg; ++I) 6232 assert(I != RC->end() && "Didn't find reg!"); 6233 6234 // Already added the first reg. 6235 --NumRegs; ++I; 6236 for (; NumRegs; --NumRegs, ++I) { 6237 assert(I != RC->end() && "Ran out of registers to allocate!"); 6238 Regs.push_back(*I); 6239 } 6240 } 6241 6242 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6243 return; 6244 } 6245 6246 // Otherwise, if this was a reference to an LLVM register class, create vregs 6247 // for this reference. 6248 if (const TargetRegisterClass *RC = PhysReg.second) { 6249 RegVT = *RC->vt_begin(); 6250 if (OpInfo.ConstraintVT == MVT::Other) 6251 ValueVT = RegVT; 6252 6253 // Create the appropriate number of virtual registers. 6254 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6255 for (; NumRegs; --NumRegs) 6256 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6257 6258 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6259 return; 6260 } 6261 6262 // Otherwise, we couldn't allocate enough registers for this. 6263 } 6264 6265 /// visitInlineAsm - Handle a call to an InlineAsm object. 6266 /// 6267 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6268 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6269 6270 /// ConstraintOperands - Information about all of the constraints. 6271 SDISelAsmOperandInfoVector ConstraintOperands; 6272 6273 const TargetLowering *TLI = TM.getTargetLowering(); 6274 TargetLowering::AsmOperandInfoVector 6275 TargetConstraints = TLI->ParseConstraints(CS); 6276 6277 bool hasMemory = false; 6278 6279 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6280 unsigned ResNo = 0; // ResNo - The result number of the next output. 6281 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6282 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6283 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6284 6285 MVT OpVT = MVT::Other; 6286 6287 // Compute the value type for each operand. 6288 switch (OpInfo.Type) { 6289 case InlineAsm::isOutput: 6290 // Indirect outputs just consume an argument. 6291 if (OpInfo.isIndirect) { 6292 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6293 break; 6294 } 6295 6296 // The return value of the call is this value. As such, there is no 6297 // corresponding argument. 6298 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6299 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6300 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6301 } else { 6302 assert(ResNo == 0 && "Asm only has one result!"); 6303 OpVT = TLI->getSimpleValueType(CS.getType()); 6304 } 6305 ++ResNo; 6306 break; 6307 case InlineAsm::isInput: 6308 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6309 break; 6310 case InlineAsm::isClobber: 6311 // Nothing to do. 6312 break; 6313 } 6314 6315 // If this is an input or an indirect output, process the call argument. 6316 // BasicBlocks are labels, currently appearing only in asm's. 6317 if (OpInfo.CallOperandVal) { 6318 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6319 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6320 } else { 6321 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6322 } 6323 6324 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6325 getSimpleVT(); 6326 } 6327 6328 OpInfo.ConstraintVT = OpVT; 6329 6330 // Indirect operand accesses access memory. 6331 if (OpInfo.isIndirect) 6332 hasMemory = true; 6333 else { 6334 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6335 TargetLowering::ConstraintType 6336 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6337 if (CType == TargetLowering::C_Memory) { 6338 hasMemory = true; 6339 break; 6340 } 6341 } 6342 } 6343 } 6344 6345 SDValue Chain, Flag; 6346 6347 // We won't need to flush pending loads if this asm doesn't touch 6348 // memory and is nonvolatile. 6349 if (hasMemory || IA->hasSideEffects()) 6350 Chain = getRoot(); 6351 else 6352 Chain = DAG.getRoot(); 6353 6354 // Second pass over the constraints: compute which constraint option to use 6355 // and assign registers to constraints that want a specific physreg. 6356 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6357 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6358 6359 // If this is an output operand with a matching input operand, look up the 6360 // matching input. If their types mismatch, e.g. one is an integer, the 6361 // other is floating point, or their sizes are different, flag it as an 6362 // error. 6363 if (OpInfo.hasMatchingInput()) { 6364 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6365 6366 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6367 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6368 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6369 OpInfo.ConstraintVT); 6370 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6371 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6372 Input.ConstraintVT); 6373 if ((OpInfo.ConstraintVT.isInteger() != 6374 Input.ConstraintVT.isInteger()) || 6375 (MatchRC.second != InputRC.second)) { 6376 report_fatal_error("Unsupported asm: input constraint" 6377 " with a matching output constraint of" 6378 " incompatible type!"); 6379 } 6380 Input.ConstraintVT = OpInfo.ConstraintVT; 6381 } 6382 } 6383 6384 // Compute the constraint code and ConstraintType to use. 6385 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6386 6387 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6388 OpInfo.Type == InlineAsm::isClobber) 6389 continue; 6390 6391 // If this is a memory input, and if the operand is not indirect, do what we 6392 // need to to provide an address for the memory input. 6393 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6394 !OpInfo.isIndirect) { 6395 assert((OpInfo.isMultipleAlternative || 6396 (OpInfo.Type == InlineAsm::isInput)) && 6397 "Can only indirectify direct input operands!"); 6398 6399 // Memory operands really want the address of the value. If we don't have 6400 // an indirect input, put it in the constpool if we can, otherwise spill 6401 // it to a stack slot. 6402 // TODO: This isn't quite right. We need to handle these according to 6403 // the addressing mode that the constraint wants. Also, this may take 6404 // an additional register for the computation and we don't want that 6405 // either. 6406 6407 // If the operand is a float, integer, or vector constant, spill to a 6408 // constant pool entry to get its address. 6409 const Value *OpVal = OpInfo.CallOperandVal; 6410 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6411 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6412 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6413 TLI->getPointerTy()); 6414 } else { 6415 // Otherwise, create a stack slot and emit a store to it before the 6416 // asm. 6417 Type *Ty = OpVal->getType(); 6418 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6419 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6420 MachineFunction &MF = DAG.getMachineFunction(); 6421 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6422 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6423 Chain = DAG.getStore(Chain, getCurSDLoc(), 6424 OpInfo.CallOperand, StackSlot, 6425 MachinePointerInfo::getFixedStack(SSFI), 6426 false, false, 0); 6427 OpInfo.CallOperand = StackSlot; 6428 } 6429 6430 // There is no longer a Value* corresponding to this operand. 6431 OpInfo.CallOperandVal = nullptr; 6432 6433 // It is now an indirect operand. 6434 OpInfo.isIndirect = true; 6435 } 6436 6437 // If this constraint is for a specific register, allocate it before 6438 // anything else. 6439 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6440 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6441 } 6442 6443 // Second pass - Loop over all of the operands, assigning virtual or physregs 6444 // to register class operands. 6445 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6446 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6447 6448 // C_Register operands have already been allocated, Other/Memory don't need 6449 // to be. 6450 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6451 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6452 } 6453 6454 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6455 std::vector<SDValue> AsmNodeOperands; 6456 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6457 AsmNodeOperands.push_back( 6458 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6459 TLI->getPointerTy())); 6460 6461 // If we have a !srcloc metadata node associated with it, we want to attach 6462 // this to the ultimately generated inline asm machineinstr. To do this, we 6463 // pass in the third operand as this (potentially null) inline asm MDNode. 6464 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6465 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6466 6467 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6468 // bits as operand 3. 6469 unsigned ExtraInfo = 0; 6470 if (IA->hasSideEffects()) 6471 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6472 if (IA->isAlignStack()) 6473 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6474 // Set the asm dialect. 6475 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6476 6477 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6478 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6479 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6480 6481 // Compute the constraint code and ConstraintType to use. 6482 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6483 6484 // Ideally, we would only check against memory constraints. However, the 6485 // meaning of an other constraint can be target-specific and we can't easily 6486 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6487 // for other constriants as well. 6488 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6489 OpInfo.ConstraintType == TargetLowering::C_Other) { 6490 if (OpInfo.Type == InlineAsm::isInput) 6491 ExtraInfo |= InlineAsm::Extra_MayLoad; 6492 else if (OpInfo.Type == InlineAsm::isOutput) 6493 ExtraInfo |= InlineAsm::Extra_MayStore; 6494 else if (OpInfo.Type == InlineAsm::isClobber) 6495 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6496 } 6497 } 6498 6499 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6500 TLI->getPointerTy())); 6501 6502 // Loop over all of the inputs, copying the operand values into the 6503 // appropriate registers and processing the output regs. 6504 RegsForValue RetValRegs; 6505 6506 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6507 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6508 6509 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6510 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6511 6512 switch (OpInfo.Type) { 6513 case InlineAsm::isOutput: { 6514 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6515 OpInfo.ConstraintType != TargetLowering::C_Register) { 6516 // Memory output, or 'other' output (e.g. 'X' constraint). 6517 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6518 6519 // Add information to the INLINEASM node to know about this output. 6520 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6521 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6522 TLI->getPointerTy())); 6523 AsmNodeOperands.push_back(OpInfo.CallOperand); 6524 break; 6525 } 6526 6527 // Otherwise, this is a register or register class output. 6528 6529 // Copy the output from the appropriate register. Find a register that 6530 // we can use. 6531 if (OpInfo.AssignedRegs.Regs.empty()) { 6532 LLVMContext &Ctx = *DAG.getContext(); 6533 Ctx.emitError(CS.getInstruction(), 6534 "couldn't allocate output register for constraint '" + 6535 Twine(OpInfo.ConstraintCode) + "'"); 6536 return; 6537 } 6538 6539 // If this is an indirect operand, store through the pointer after the 6540 // asm. 6541 if (OpInfo.isIndirect) { 6542 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6543 OpInfo.CallOperandVal)); 6544 } else { 6545 // This is the result value of the call. 6546 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6547 // Concatenate this output onto the outputs list. 6548 RetValRegs.append(OpInfo.AssignedRegs); 6549 } 6550 6551 // Add information to the INLINEASM node to know that this register is 6552 // set. 6553 OpInfo.AssignedRegs 6554 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6555 ? InlineAsm::Kind_RegDefEarlyClobber 6556 : InlineAsm::Kind_RegDef, 6557 false, 0, DAG, AsmNodeOperands); 6558 break; 6559 } 6560 case InlineAsm::isInput: { 6561 SDValue InOperandVal = OpInfo.CallOperand; 6562 6563 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6564 // If this is required to match an output register we have already set, 6565 // just use its register. 6566 unsigned OperandNo = OpInfo.getMatchedOperand(); 6567 6568 // Scan until we find the definition we already emitted of this operand. 6569 // When we find it, create a RegsForValue operand. 6570 unsigned CurOp = InlineAsm::Op_FirstOperand; 6571 for (; OperandNo; --OperandNo) { 6572 // Advance to the next operand. 6573 unsigned OpFlag = 6574 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6575 assert((InlineAsm::isRegDefKind(OpFlag) || 6576 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6577 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6578 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6579 } 6580 6581 unsigned OpFlag = 6582 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6583 if (InlineAsm::isRegDefKind(OpFlag) || 6584 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6585 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6586 if (OpInfo.isIndirect) { 6587 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6588 LLVMContext &Ctx = *DAG.getContext(); 6589 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6590 " don't know how to handle tied " 6591 "indirect register inputs"); 6592 return; 6593 } 6594 6595 RegsForValue MatchedRegs; 6596 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6597 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6598 MatchedRegs.RegVTs.push_back(RegVT); 6599 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6600 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6601 i != e; ++i) { 6602 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6603 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6604 else { 6605 LLVMContext &Ctx = *DAG.getContext(); 6606 Ctx.emitError(CS.getInstruction(), 6607 "inline asm error: This value" 6608 " type register class is not natively supported!"); 6609 return; 6610 } 6611 } 6612 // Use the produced MatchedRegs object to 6613 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6614 Chain, &Flag, CS.getInstruction()); 6615 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6616 true, OpInfo.getMatchedOperand(), 6617 DAG, AsmNodeOperands); 6618 break; 6619 } 6620 6621 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6622 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6623 "Unexpected number of operands"); 6624 // Add information to the INLINEASM node to know about this input. 6625 // See InlineAsm.h isUseOperandTiedToDef. 6626 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6627 OpInfo.getMatchedOperand()); 6628 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6629 TLI->getPointerTy())); 6630 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6631 break; 6632 } 6633 6634 // Treat indirect 'X' constraint as memory. 6635 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6636 OpInfo.isIndirect) 6637 OpInfo.ConstraintType = TargetLowering::C_Memory; 6638 6639 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6640 std::vector<SDValue> Ops; 6641 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6642 Ops, DAG); 6643 if (Ops.empty()) { 6644 LLVMContext &Ctx = *DAG.getContext(); 6645 Ctx.emitError(CS.getInstruction(), 6646 "invalid operand for inline asm constraint '" + 6647 Twine(OpInfo.ConstraintCode) + "'"); 6648 return; 6649 } 6650 6651 // Add information to the INLINEASM node to know about this input. 6652 unsigned ResOpType = 6653 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6654 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6655 TLI->getPointerTy())); 6656 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6657 break; 6658 } 6659 6660 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6661 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6662 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6663 "Memory operands expect pointer values"); 6664 6665 // Add information to the INLINEASM node to know about this input. 6666 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6667 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6668 TLI->getPointerTy())); 6669 AsmNodeOperands.push_back(InOperandVal); 6670 break; 6671 } 6672 6673 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6674 OpInfo.ConstraintType == TargetLowering::C_Register) && 6675 "Unknown constraint type!"); 6676 6677 // TODO: Support this. 6678 if (OpInfo.isIndirect) { 6679 LLVMContext &Ctx = *DAG.getContext(); 6680 Ctx.emitError(CS.getInstruction(), 6681 "Don't know how to handle indirect register inputs yet " 6682 "for constraint '" + 6683 Twine(OpInfo.ConstraintCode) + "'"); 6684 return; 6685 } 6686 6687 // Copy the input into the appropriate registers. 6688 if (OpInfo.AssignedRegs.Regs.empty()) { 6689 LLVMContext &Ctx = *DAG.getContext(); 6690 Ctx.emitError(CS.getInstruction(), 6691 "couldn't allocate input reg for constraint '" + 6692 Twine(OpInfo.ConstraintCode) + "'"); 6693 return; 6694 } 6695 6696 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6697 Chain, &Flag, CS.getInstruction()); 6698 6699 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6700 DAG, AsmNodeOperands); 6701 break; 6702 } 6703 case InlineAsm::isClobber: { 6704 // Add the clobbered value to the operand list, so that the register 6705 // allocator is aware that the physreg got clobbered. 6706 if (!OpInfo.AssignedRegs.Regs.empty()) 6707 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6708 false, 0, DAG, 6709 AsmNodeOperands); 6710 break; 6711 } 6712 } 6713 } 6714 6715 // Finish up input operands. Set the input chain and add the flag last. 6716 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6717 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6718 6719 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6720 DAG.getVTList(MVT::Other, MVT::Glue), 6721 &AsmNodeOperands[0], AsmNodeOperands.size()); 6722 Flag = Chain.getValue(1); 6723 6724 // If this asm returns a register value, copy the result from that register 6725 // and set it as the value of the call. 6726 if (!RetValRegs.Regs.empty()) { 6727 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6728 Chain, &Flag, CS.getInstruction()); 6729 6730 // FIXME: Why don't we do this for inline asms with MRVs? 6731 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6732 EVT ResultType = TLI->getValueType(CS.getType()); 6733 6734 // If any of the results of the inline asm is a vector, it may have the 6735 // wrong width/num elts. This can happen for register classes that can 6736 // contain multiple different value types. The preg or vreg allocated may 6737 // not have the same VT as was expected. Convert it to the right type 6738 // with bit_convert. 6739 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6740 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6741 ResultType, Val); 6742 6743 } else if (ResultType != Val.getValueType() && 6744 ResultType.isInteger() && Val.getValueType().isInteger()) { 6745 // If a result value was tied to an input value, the computed result may 6746 // have a wider width than the expected result. Extract the relevant 6747 // portion. 6748 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6749 } 6750 6751 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6752 } 6753 6754 setValue(CS.getInstruction(), Val); 6755 // Don't need to use this as a chain in this case. 6756 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6757 return; 6758 } 6759 6760 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6761 6762 // Process indirect outputs, first output all of the flagged copies out of 6763 // physregs. 6764 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6765 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6766 const Value *Ptr = IndirectStoresToEmit[i].second; 6767 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6768 Chain, &Flag, IA); 6769 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6770 } 6771 6772 // Emit the non-flagged stores from the physregs. 6773 SmallVector<SDValue, 8> OutChains; 6774 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6775 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6776 StoresToEmit[i].first, 6777 getValue(StoresToEmit[i].second), 6778 MachinePointerInfo(StoresToEmit[i].second), 6779 false, false, 0); 6780 OutChains.push_back(Val); 6781 } 6782 6783 if (!OutChains.empty()) 6784 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 6785 &OutChains[0], OutChains.size()); 6786 6787 DAG.setRoot(Chain); 6788 } 6789 6790 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6791 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6792 MVT::Other, getRoot(), 6793 getValue(I.getArgOperand(0)), 6794 DAG.getSrcValue(I.getArgOperand(0)))); 6795 } 6796 6797 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6798 const TargetLowering *TLI = TM.getTargetLowering(); 6799 const DataLayout &DL = *TLI->getDataLayout(); 6800 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6801 getRoot(), getValue(I.getOperand(0)), 6802 DAG.getSrcValue(I.getOperand(0)), 6803 DL.getABITypeAlignment(I.getType())); 6804 setValue(&I, V); 6805 DAG.setRoot(V.getValue(1)); 6806 } 6807 6808 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6809 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6810 MVT::Other, getRoot(), 6811 getValue(I.getArgOperand(0)), 6812 DAG.getSrcValue(I.getArgOperand(0)))); 6813 } 6814 6815 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6816 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6817 MVT::Other, getRoot(), 6818 getValue(I.getArgOperand(0)), 6819 getValue(I.getArgOperand(1)), 6820 DAG.getSrcValue(I.getArgOperand(0)), 6821 DAG.getSrcValue(I.getArgOperand(1)))); 6822 } 6823 6824 /// \brief Lower an argument list according to the target calling convention. 6825 /// 6826 /// \return A tuple of <return-value, token-chain> 6827 /// 6828 /// This is a helper for lowering intrinsics that follow a target calling 6829 /// convention or require stack pointer adjustment. Only a subset of the 6830 /// intrinsic's operands need to participate in the calling convention. 6831 std::pair<SDValue, SDValue> 6832 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6833 unsigned NumArgs, SDValue Callee, 6834 bool useVoidTy) { 6835 TargetLowering::ArgListTy Args; 6836 Args.reserve(NumArgs); 6837 6838 // Populate the argument list. 6839 // Attributes for args start at offset 1, after the return attribute. 6840 ImmutableCallSite CS(&CI); 6841 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6842 ArgI != ArgE; ++ArgI) { 6843 const Value *V = CI.getOperand(ArgI); 6844 6845 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6846 6847 TargetLowering::ArgListEntry Entry; 6848 Entry.Node = getValue(V); 6849 Entry.Ty = V->getType(); 6850 Entry.setAttributes(&CS, AttrI); 6851 Args.push_back(Entry); 6852 } 6853 6854 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6855 TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false, 6856 /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs, 6857 CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false, 6858 /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc()); 6859 6860 const TargetLowering *TLI = TM.getTargetLowering(); 6861 return TLI->LowerCallTo(CLI); 6862 } 6863 6864 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6865 /// or patchpoint target node's operand list. 6866 /// 6867 /// Constants are converted to TargetConstants purely as an optimization to 6868 /// avoid constant materialization and register allocation. 6869 /// 6870 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6871 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6872 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6873 /// address materialization and register allocation, but may also be required 6874 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6875 /// alloca in the entry block, then the runtime may assume that the alloca's 6876 /// StackMap location can be read immediately after compilation and that the 6877 /// location is valid at any point during execution (this is similar to the 6878 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6879 /// only available in a register, then the runtime would need to trap when 6880 /// execution reaches the StackMap in order to read the alloca's location. 6881 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6882 SmallVectorImpl<SDValue> &Ops, 6883 SelectionDAGBuilder &Builder) { 6884 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6885 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6886 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6887 Ops.push_back( 6888 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6889 Ops.push_back( 6890 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6891 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6892 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6893 Ops.push_back( 6894 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6895 } else 6896 Ops.push_back(OpVal); 6897 } 6898 } 6899 6900 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6901 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6902 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6903 // [live variables...]) 6904 6905 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6906 6907 SDValue Chain, InFlag, Callee, NullPtr; 6908 SmallVector<SDValue, 32> Ops; 6909 6910 SDLoc DL = getCurSDLoc(); 6911 Callee = getValue(CI.getCalledValue()); 6912 NullPtr = DAG.getIntPtrConstant(0, true); 6913 6914 // The stackmap intrinsic only records the live variables (the arguemnts 6915 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6916 // intrinsic, this won't be lowered to a function call. This means we don't 6917 // have to worry about calling conventions and target specific lowering code. 6918 // Instead we perform the call lowering right here. 6919 // 6920 // chain, flag = CALLSEQ_START(chain, 0) 6921 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6922 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6923 // 6924 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6925 InFlag = Chain.getValue(1); 6926 6927 // Add the <id> and <numBytes> constants. 6928 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6929 Ops.push_back(DAG.getTargetConstant( 6930 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6931 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6932 Ops.push_back(DAG.getTargetConstant( 6933 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6934 6935 // Push live variables for the stack map. 6936 addStackMapLiveVars(CI, 2, Ops, *this); 6937 6938 // We are not pushing any register mask info here on the operands list, 6939 // because the stackmap doesn't clobber anything. 6940 6941 // Push the chain and the glue flag. 6942 Ops.push_back(Chain); 6943 Ops.push_back(InFlag); 6944 6945 // Create the STACKMAP node. 6946 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6947 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6948 Chain = SDValue(SM, 0); 6949 InFlag = Chain.getValue(1); 6950 6951 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6952 6953 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6954 6955 // Set the root to the target-lowered call chain. 6956 DAG.setRoot(Chain); 6957 6958 // Inform the Frame Information that we have a stackmap in this function. 6959 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6960 } 6961 6962 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6963 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6964 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6965 // i32 <numBytes>, 6966 // i8* <target>, 6967 // i32 <numArgs>, 6968 // [Args...], 6969 // [live variables...]) 6970 6971 CallingConv::ID CC = CI.getCallingConv(); 6972 bool isAnyRegCC = CC == CallingConv::AnyReg; 6973 bool hasDef = !CI.getType()->isVoidTy(); 6974 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6975 6976 // Get the real number of arguments participating in the call <numArgs> 6977 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6978 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6979 6980 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6981 // Intrinsics include all meta-operands up to but not including CC. 6982 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6983 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6984 "Not enough arguments provided to the patchpoint intrinsic"); 6985 6986 // For AnyRegCC the arguments are lowered later on manually. 6987 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6988 std::pair<SDValue, SDValue> Result = 6989 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6990 6991 // Set the root to the target-lowered call chain. 6992 SDValue Chain = Result.second; 6993 DAG.setRoot(Chain); 6994 6995 SDNode *CallEnd = Chain.getNode(); 6996 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6997 CallEnd = CallEnd->getOperand(0).getNode(); 6998 6999 /// Get a call instruction from the call sequence chain. 7000 /// Tail calls are not allowed. 7001 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7002 "Expected a callseq node."); 7003 SDNode *Call = CallEnd->getOperand(0).getNode(); 7004 bool hasGlue = Call->getGluedNode(); 7005 7006 // Replace the target specific call node with the patchable intrinsic. 7007 SmallVector<SDValue, 8> Ops; 7008 7009 // Add the <id> and <numBytes> constants. 7010 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7011 Ops.push_back(DAG.getTargetConstant( 7012 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7013 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7014 Ops.push_back(DAG.getTargetConstant( 7015 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7016 7017 // Assume that the Callee is a constant address. 7018 // FIXME: handle function symbols in the future. 7019 Ops.push_back( 7020 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7021 /*isTarget=*/true)); 7022 7023 // Adjust <numArgs> to account for any arguments that have been passed on the 7024 // stack instead. 7025 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7026 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7027 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7028 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7029 7030 // Add the calling convention 7031 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7032 7033 // Add the arguments we omitted previously. The register allocator should 7034 // place these in any free register. 7035 if (isAnyRegCC) 7036 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7037 Ops.push_back(getValue(CI.getArgOperand(i))); 7038 7039 // Push the arguments from the call instruction up to the register mask. 7040 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7041 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7042 Ops.push_back(*i); 7043 7044 // Push live variables for the stack map. 7045 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7046 7047 // Push the register mask info. 7048 if (hasGlue) 7049 Ops.push_back(*(Call->op_end()-2)); 7050 else 7051 Ops.push_back(*(Call->op_end()-1)); 7052 7053 // Push the chain (this is originally the first operand of the call, but 7054 // becomes now the last or second to last operand). 7055 Ops.push_back(*(Call->op_begin())); 7056 7057 // Push the glue flag (last operand). 7058 if (hasGlue) 7059 Ops.push_back(*(Call->op_end()-1)); 7060 7061 SDVTList NodeTys; 7062 if (isAnyRegCC && hasDef) { 7063 // Create the return types based on the intrinsic definition 7064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7065 SmallVector<EVT, 3> ValueVTs; 7066 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7067 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7068 7069 // There is always a chain and a glue type at the end 7070 ValueVTs.push_back(MVT::Other); 7071 ValueVTs.push_back(MVT::Glue); 7072 NodeTys = DAG.getVTList(ValueVTs); 7073 } else 7074 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7075 7076 // Replace the target specific call node with a PATCHPOINT node. 7077 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7078 getCurSDLoc(), NodeTys, Ops); 7079 7080 // Update the NodeMap. 7081 if (hasDef) { 7082 if (isAnyRegCC) 7083 setValue(&CI, SDValue(MN, 0)); 7084 else 7085 setValue(&CI, Result.first); 7086 } 7087 7088 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7089 // call sequence. Furthermore the location of the chain and glue can change 7090 // when the AnyReg calling convention is used and the intrinsic returns a 7091 // value. 7092 if (isAnyRegCC && hasDef) { 7093 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7094 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7095 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7096 } else 7097 DAG.ReplaceAllUsesWith(Call, MN); 7098 DAG.DeleteNode(Call); 7099 7100 // Inform the Frame Information that we have a patchpoint in this function. 7101 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7102 } 7103 7104 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7105 /// implementation, which just calls LowerCall. 7106 /// FIXME: When all targets are 7107 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7108 std::pair<SDValue, SDValue> 7109 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7110 // Handle the incoming return values from the call. 7111 CLI.Ins.clear(); 7112 SmallVector<EVT, 4> RetTys; 7113 ComputeValueVTs(*this, CLI.RetTy, RetTys); 7114 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7115 EVT VT = RetTys[I]; 7116 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7117 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7118 for (unsigned i = 0; i != NumRegs; ++i) { 7119 ISD::InputArg MyFlags; 7120 MyFlags.VT = RegisterVT; 7121 MyFlags.ArgVT = VT; 7122 MyFlags.Used = CLI.IsReturnValueUsed; 7123 if (CLI.RetSExt) 7124 MyFlags.Flags.setSExt(); 7125 if (CLI.RetZExt) 7126 MyFlags.Flags.setZExt(); 7127 if (CLI.IsInReg) 7128 MyFlags.Flags.setInReg(); 7129 CLI.Ins.push_back(MyFlags); 7130 } 7131 } 7132 7133 // Handle all of the outgoing arguments. 7134 CLI.Outs.clear(); 7135 CLI.OutVals.clear(); 7136 ArgListTy &Args = CLI.Args; 7137 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7138 SmallVector<EVT, 4> ValueVTs; 7139 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7140 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7141 Value != NumValues; ++Value) { 7142 EVT VT = ValueVTs[Value]; 7143 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7144 SDValue Op = SDValue(Args[i].Node.getNode(), 7145 Args[i].Node.getResNo() + Value); 7146 ISD::ArgFlagsTy Flags; 7147 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7148 7149 if (Args[i].isZExt) 7150 Flags.setZExt(); 7151 if (Args[i].isSExt) 7152 Flags.setSExt(); 7153 if (Args[i].isInReg) 7154 Flags.setInReg(); 7155 if (Args[i].isSRet) 7156 Flags.setSRet(); 7157 if (Args[i].isByVal) 7158 Flags.setByVal(); 7159 if (Args[i].isInAlloca) { 7160 Flags.setInAlloca(); 7161 // Set the byval flag for CCAssignFn callbacks that don't know about 7162 // inalloca. This way we can know how many bytes we should've allocated 7163 // and how many bytes a callee cleanup function will pop. If we port 7164 // inalloca to more targets, we'll have to add custom inalloca handling 7165 // in the various CC lowering callbacks. 7166 Flags.setByVal(); 7167 } 7168 if (Args[i].isByVal || Args[i].isInAlloca) { 7169 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7170 Type *ElementTy = Ty->getElementType(); 7171 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7172 // For ByVal, alignment should come from FE. BE will guess if this 7173 // info is not there but there are cases it cannot get right. 7174 unsigned FrameAlign; 7175 if (Args[i].Alignment) 7176 FrameAlign = Args[i].Alignment; 7177 else 7178 FrameAlign = getByValTypeAlignment(ElementTy); 7179 Flags.setByValAlign(FrameAlign); 7180 } 7181 if (Args[i].isNest) 7182 Flags.setNest(); 7183 Flags.setOrigAlign(OriginalAlignment); 7184 7185 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7186 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7187 SmallVector<SDValue, 4> Parts(NumParts); 7188 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7189 7190 if (Args[i].isSExt) 7191 ExtendKind = ISD::SIGN_EXTEND; 7192 else if (Args[i].isZExt) 7193 ExtendKind = ISD::ZERO_EXTEND; 7194 7195 // Conservatively only handle 'returned' on non-vectors for now 7196 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7197 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7198 "unexpected use of 'returned'"); 7199 // Before passing 'returned' to the target lowering code, ensure that 7200 // either the register MVT and the actual EVT are the same size or that 7201 // the return value and argument are extended in the same way; in these 7202 // cases it's safe to pass the argument register value unchanged as the 7203 // return register value (although it's at the target's option whether 7204 // to do so) 7205 // TODO: allow code generation to take advantage of partially preserved 7206 // registers rather than clobbering the entire register when the 7207 // parameter extension method is not compatible with the return 7208 // extension method 7209 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7210 (ExtendKind != ISD::ANY_EXTEND && 7211 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7212 Flags.setReturned(); 7213 } 7214 7215 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7216 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7217 7218 for (unsigned j = 0; j != NumParts; ++j) { 7219 // if it isn't first piece, alignment must be 1 7220 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7221 i < CLI.NumFixedArgs, 7222 i, j*Parts[j].getValueType().getStoreSize()); 7223 if (NumParts > 1 && j == 0) 7224 MyFlags.Flags.setSplit(); 7225 else if (j != 0) 7226 MyFlags.Flags.setOrigAlign(1); 7227 7228 CLI.Outs.push_back(MyFlags); 7229 CLI.OutVals.push_back(Parts[j]); 7230 } 7231 } 7232 } 7233 7234 SmallVector<SDValue, 4> InVals; 7235 CLI.Chain = LowerCall(CLI, InVals); 7236 7237 // Verify that the target's LowerCall behaved as expected. 7238 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7239 "LowerCall didn't return a valid chain!"); 7240 assert((!CLI.IsTailCall || InVals.empty()) && 7241 "LowerCall emitted a return value for a tail call!"); 7242 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7243 "LowerCall didn't emit the correct number of values!"); 7244 7245 // For a tail call, the return value is merely live-out and there aren't 7246 // any nodes in the DAG representing it. Return a special value to 7247 // indicate that a tail call has been emitted and no more Instructions 7248 // should be processed in the current block. 7249 if (CLI.IsTailCall) { 7250 CLI.DAG.setRoot(CLI.Chain); 7251 return std::make_pair(SDValue(), SDValue()); 7252 } 7253 7254 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7255 assert(InVals[i].getNode() && 7256 "LowerCall emitted a null value!"); 7257 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7258 "LowerCall emitted a value with the wrong type!"); 7259 }); 7260 7261 // Collect the legal value parts into potentially illegal values 7262 // that correspond to the original function's return values. 7263 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7264 if (CLI.RetSExt) 7265 AssertOp = ISD::AssertSext; 7266 else if (CLI.RetZExt) 7267 AssertOp = ISD::AssertZext; 7268 SmallVector<SDValue, 4> ReturnValues; 7269 unsigned CurReg = 0; 7270 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7271 EVT VT = RetTys[I]; 7272 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7273 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7274 7275 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7276 NumRegs, RegisterVT, VT, nullptr, 7277 AssertOp)); 7278 CurReg += NumRegs; 7279 } 7280 7281 // For a function returning void, there is no return value. We can't create 7282 // such a node, so we just return a null return value in that case. In 7283 // that case, nothing will actually look at the value. 7284 if (ReturnValues.empty()) 7285 return std::make_pair(SDValue(), CLI.Chain); 7286 7287 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7288 CLI.DAG.getVTList(RetTys), 7289 &ReturnValues[0], ReturnValues.size()); 7290 return std::make_pair(Res, CLI.Chain); 7291 } 7292 7293 void TargetLowering::LowerOperationWrapper(SDNode *N, 7294 SmallVectorImpl<SDValue> &Results, 7295 SelectionDAG &DAG) const { 7296 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7297 if (Res.getNode()) 7298 Results.push_back(Res); 7299 } 7300 7301 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7302 llvm_unreachable("LowerOperation not implemented for this target!"); 7303 } 7304 7305 void 7306 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7307 SDValue Op = getNonRegisterValue(V); 7308 assert((Op.getOpcode() != ISD::CopyFromReg || 7309 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7310 "Copy from a reg to the same reg!"); 7311 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7312 7313 const TargetLowering *TLI = TM.getTargetLowering(); 7314 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7315 SDValue Chain = DAG.getEntryNode(); 7316 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V); 7317 PendingExports.push_back(Chain); 7318 } 7319 7320 #include "llvm/CodeGen/SelectionDAGISel.h" 7321 7322 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7323 /// entry block, return true. This includes arguments used by switches, since 7324 /// the switch may expand into multiple basic blocks. 7325 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7326 // With FastISel active, we may be splitting blocks, so force creation 7327 // of virtual registers for all non-dead arguments. 7328 if (FastISel) 7329 return A->use_empty(); 7330 7331 const BasicBlock *Entry = A->getParent()->begin(); 7332 for (const User *U : A->users()) 7333 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7334 return false; // Use not in entry block. 7335 7336 return true; 7337 } 7338 7339 void SelectionDAGISel::LowerArguments(const Function &F) { 7340 SelectionDAG &DAG = SDB->DAG; 7341 SDLoc dl = SDB->getCurSDLoc(); 7342 const TargetLowering *TLI = getTargetLowering(); 7343 const DataLayout *DL = TLI->getDataLayout(); 7344 SmallVector<ISD::InputArg, 16> Ins; 7345 7346 if (!FuncInfo->CanLowerReturn) { 7347 // Put in an sret pointer parameter before all the other parameters. 7348 SmallVector<EVT, 1> ValueVTs; 7349 ComputeValueVTs(*getTargetLowering(), 7350 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7351 7352 // NOTE: Assuming that a pointer will never break down to more than one VT 7353 // or one register. 7354 ISD::ArgFlagsTy Flags; 7355 Flags.setSRet(); 7356 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7357 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7358 Ins.push_back(RetArg); 7359 } 7360 7361 // Set up the incoming argument description vector. 7362 unsigned Idx = 1; 7363 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7364 I != E; ++I, ++Idx) { 7365 SmallVector<EVT, 4> ValueVTs; 7366 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7367 bool isArgValueUsed = !I->use_empty(); 7368 unsigned PartBase = 0; 7369 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7370 Value != NumValues; ++Value) { 7371 EVT VT = ValueVTs[Value]; 7372 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7373 ISD::ArgFlagsTy Flags; 7374 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7375 7376 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7377 Flags.setZExt(); 7378 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7379 Flags.setSExt(); 7380 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7381 Flags.setInReg(); 7382 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7383 Flags.setSRet(); 7384 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7385 Flags.setByVal(); 7386 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7387 Flags.setInAlloca(); 7388 // Set the byval flag for CCAssignFn callbacks that don't know about 7389 // inalloca. This way we can know how many bytes we should've allocated 7390 // and how many bytes a callee cleanup function will pop. If we port 7391 // inalloca to more targets, we'll have to add custom inalloca handling 7392 // in the various CC lowering callbacks. 7393 Flags.setByVal(); 7394 } 7395 if (Flags.isByVal() || Flags.isInAlloca()) { 7396 PointerType *Ty = cast<PointerType>(I->getType()); 7397 Type *ElementTy = Ty->getElementType(); 7398 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7399 // For ByVal, alignment should be passed from FE. BE will guess if 7400 // this info is not there but there are cases it cannot get right. 7401 unsigned FrameAlign; 7402 if (F.getParamAlignment(Idx)) 7403 FrameAlign = F.getParamAlignment(Idx); 7404 else 7405 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7406 Flags.setByValAlign(FrameAlign); 7407 } 7408 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7409 Flags.setNest(); 7410 Flags.setOrigAlign(OriginalAlignment); 7411 7412 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7413 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7414 for (unsigned i = 0; i != NumRegs; ++i) { 7415 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7416 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7417 if (NumRegs > 1 && i == 0) 7418 MyFlags.Flags.setSplit(); 7419 // if it isn't first piece, alignment must be 1 7420 else if (i > 0) 7421 MyFlags.Flags.setOrigAlign(1); 7422 Ins.push_back(MyFlags); 7423 } 7424 PartBase += VT.getStoreSize(); 7425 } 7426 } 7427 7428 // Call the target to set up the argument values. 7429 SmallVector<SDValue, 8> InVals; 7430 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7431 F.isVarArg(), Ins, 7432 dl, DAG, InVals); 7433 7434 // Verify that the target's LowerFormalArguments behaved as expected. 7435 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7436 "LowerFormalArguments didn't return a valid chain!"); 7437 assert(InVals.size() == Ins.size() && 7438 "LowerFormalArguments didn't emit the correct number of values!"); 7439 DEBUG({ 7440 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7441 assert(InVals[i].getNode() && 7442 "LowerFormalArguments emitted a null value!"); 7443 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7444 "LowerFormalArguments emitted a value with the wrong type!"); 7445 } 7446 }); 7447 7448 // Update the DAG with the new chain value resulting from argument lowering. 7449 DAG.setRoot(NewRoot); 7450 7451 // Set up the argument values. 7452 unsigned i = 0; 7453 Idx = 1; 7454 if (!FuncInfo->CanLowerReturn) { 7455 // Create a virtual register for the sret pointer, and put in a copy 7456 // from the sret argument into it. 7457 SmallVector<EVT, 1> ValueVTs; 7458 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7459 MVT VT = ValueVTs[0].getSimpleVT(); 7460 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7461 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7462 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7463 RegVT, VT, nullptr, AssertOp); 7464 7465 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7466 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7467 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7468 FuncInfo->DemoteRegister = SRetReg; 7469 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7470 SRetReg, ArgValue); 7471 DAG.setRoot(NewRoot); 7472 7473 // i indexes lowered arguments. Bump it past the hidden sret argument. 7474 // Idx indexes LLVM arguments. Don't touch it. 7475 ++i; 7476 } 7477 7478 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7479 ++I, ++Idx) { 7480 SmallVector<SDValue, 4> ArgValues; 7481 SmallVector<EVT, 4> ValueVTs; 7482 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7483 unsigned NumValues = ValueVTs.size(); 7484 7485 // If this argument is unused then remember its value. It is used to generate 7486 // debugging information. 7487 if (I->use_empty() && NumValues) { 7488 SDB->setUnusedArgValue(I, InVals[i]); 7489 7490 // Also remember any frame index for use in FastISel. 7491 if (FrameIndexSDNode *FI = 7492 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7493 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7494 } 7495 7496 for (unsigned Val = 0; Val != NumValues; ++Val) { 7497 EVT VT = ValueVTs[Val]; 7498 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7499 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7500 7501 if (!I->use_empty()) { 7502 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7503 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7504 AssertOp = ISD::AssertSext; 7505 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7506 AssertOp = ISD::AssertZext; 7507 7508 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7509 NumParts, PartVT, VT, 7510 nullptr, AssertOp)); 7511 } 7512 7513 i += NumParts; 7514 } 7515 7516 // We don't need to do anything else for unused arguments. 7517 if (ArgValues.empty()) 7518 continue; 7519 7520 // Note down frame index. 7521 if (FrameIndexSDNode *FI = 7522 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7523 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7524 7525 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 7526 SDB->getCurSDLoc()); 7527 7528 SDB->setValue(I, Res); 7529 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7530 if (LoadSDNode *LNode = 7531 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7532 if (FrameIndexSDNode *FI = 7533 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7534 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7535 } 7536 7537 // If this argument is live outside of the entry block, insert a copy from 7538 // wherever we got it to the vreg that other BB's will reference it as. 7539 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7540 // If we can, though, try to skip creating an unnecessary vreg. 7541 // FIXME: This isn't very clean... it would be nice to make this more 7542 // general. It's also subtly incompatible with the hacks FastISel 7543 // uses with vregs. 7544 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7545 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7546 FuncInfo->ValueMap[I] = Reg; 7547 continue; 7548 } 7549 } 7550 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7551 FuncInfo->InitializeRegForValue(I); 7552 SDB->CopyToExportRegsIfNeeded(I); 7553 } 7554 } 7555 7556 assert(i == InVals.size() && "Argument register count mismatch!"); 7557 7558 // Finally, if the target has anything special to do, allow it to do so. 7559 // FIXME: this should insert code into the DAG! 7560 EmitFunctionEntryCode(); 7561 } 7562 7563 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7564 /// ensure constants are generated when needed. Remember the virtual registers 7565 /// that need to be added to the Machine PHI nodes as input. We cannot just 7566 /// directly add them, because expansion might result in multiple MBB's for one 7567 /// BB. As such, the start of the BB might correspond to a different MBB than 7568 /// the end. 7569 /// 7570 void 7571 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7572 const TerminatorInst *TI = LLVMBB->getTerminator(); 7573 7574 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7575 7576 // Check successor nodes' PHI nodes that expect a constant to be available 7577 // from this block. 7578 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7579 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7580 if (!isa<PHINode>(SuccBB->begin())) continue; 7581 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7582 7583 // If this terminator has multiple identical successors (common for 7584 // switches), only handle each succ once. 7585 if (!SuccsHandled.insert(SuccMBB)) continue; 7586 7587 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7588 7589 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7590 // nodes and Machine PHI nodes, but the incoming operands have not been 7591 // emitted yet. 7592 for (BasicBlock::const_iterator I = SuccBB->begin(); 7593 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7594 // Ignore dead phi's. 7595 if (PN->use_empty()) continue; 7596 7597 // Skip empty types 7598 if (PN->getType()->isEmptyTy()) 7599 continue; 7600 7601 unsigned Reg; 7602 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7603 7604 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7605 unsigned &RegOut = ConstantsOut[C]; 7606 if (RegOut == 0) { 7607 RegOut = FuncInfo.CreateRegs(C->getType()); 7608 CopyValueToVirtualRegister(C, RegOut); 7609 } 7610 Reg = RegOut; 7611 } else { 7612 DenseMap<const Value *, unsigned>::iterator I = 7613 FuncInfo.ValueMap.find(PHIOp); 7614 if (I != FuncInfo.ValueMap.end()) 7615 Reg = I->second; 7616 else { 7617 assert(isa<AllocaInst>(PHIOp) && 7618 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7619 "Didn't codegen value into a register!??"); 7620 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7621 CopyValueToVirtualRegister(PHIOp, Reg); 7622 } 7623 } 7624 7625 // Remember that this register needs to added to the machine PHI node as 7626 // the input for this MBB. 7627 SmallVector<EVT, 4> ValueVTs; 7628 const TargetLowering *TLI = TM.getTargetLowering(); 7629 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7630 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7631 EVT VT = ValueVTs[vti]; 7632 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7633 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7634 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7635 Reg += NumRegisters; 7636 } 7637 } 7638 } 7639 7640 ConstantsOut.clear(); 7641 } 7642 7643 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7644 /// is 0. 7645 MachineBasicBlock * 7646 SelectionDAGBuilder::StackProtectorDescriptor:: 7647 AddSuccessorMBB(const BasicBlock *BB, 7648 MachineBasicBlock *ParentMBB, 7649 MachineBasicBlock *SuccMBB) { 7650 // If SuccBB has not been created yet, create it. 7651 if (!SuccMBB) { 7652 MachineFunction *MF = ParentMBB->getParent(); 7653 MachineFunction::iterator BBI = ParentMBB; 7654 SuccMBB = MF->CreateMachineBasicBlock(BB); 7655 MF->insert(++BBI, SuccMBB); 7656 } 7657 // Add it as a successor of ParentMBB. 7658 ParentMBB->addSuccessor(SuccMBB); 7659 return SuccMBB; 7660 } 7661