1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/CodeGen/Analysis.h" 40 #include "llvm/CodeGen/FunctionLoweringInfo.h" 41 #include "llvm/CodeGen/GCMetadata.h" 42 #include "llvm/CodeGen/ISDOpcodes.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstring> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "isel" 126 127 /// LimitFloatPrecision - Generate low-precision inline sequences for 128 /// some float libcalls (6, 8 or 12 bits). 129 static unsigned LimitFloatPrecision; 130 131 static cl::opt<unsigned, true> 132 LimitFPPrecision("limit-float-precision", 133 cl::desc("Generate low-precision inline sequences " 134 "for some float libcalls"), 135 cl::location(LimitFloatPrecision), cl::Hidden, 136 cl::init(0)); 137 138 static cl::opt<unsigned> SwitchPeelThreshold( 139 "switch-peel-threshold", cl::Hidden, cl::init(66), 140 cl::desc("Set the case probability threshold for peeling the case from a " 141 "switch statement. A value greater than 100 will void this " 142 "optimization")); 143 144 // Limit the width of DAG chains. This is important in general to prevent 145 // DAG-based analysis from blowing up. For example, alias analysis and 146 // load clustering may not complete in reasonable time. It is difficult to 147 // recognize and avoid this situation within each individual analysis, and 148 // future analyses are likely to have the same behavior. Limiting DAG width is 149 // the safe approach and will be especially important with global DAGs. 150 // 151 // MaxParallelChains default is arbitrarily high to avoid affecting 152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 153 // sequence over this should have been converted to llvm.memcpy by the 154 // frontend. It is easy to induce this behavior with .ll code such as: 155 // %buffer = alloca [4096 x i8] 156 // %data = load [4096 x i8]* %argPtr 157 // store [4096 x i8] %data, [4096 x i8]* %buffer 158 static const unsigned MaxParallelChains = 64; 159 160 // True if the Value passed requires ABI mangling as it is a parameter to a 161 // function or a return value from a function which is not an intrinsic. 162 static bool isABIRegCopy(const Value *V) { 163 const bool IsRetInst = V && isa<ReturnInst>(V); 164 const bool IsCallInst = V && isa<CallInst>(V); 165 const bool IsInLineAsm = 166 IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm(); 167 const bool IsIndirectFunctionCall = 168 IsCallInst && !IsInLineAsm && 169 !static_cast<const CallInst *>(V)->getCalledFunction(); 170 // It is possible that the call instruction is an inline asm statement or an 171 // indirect function call in which case the return value of 172 // getCalledFunction() would be nullptr. 173 const bool IsInstrinsicCall = 174 IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall && 175 static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() != 176 Intrinsic::not_intrinsic; 177 178 return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall)); 179 } 180 181 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 182 const SDValue *Parts, unsigned NumParts, 183 MVT PartVT, EVT ValueVT, const Value *V, 184 bool IsABIRegCopy); 185 186 /// getCopyFromParts - Create a value that contains the specified legal parts 187 /// combined into the value they represent. If the parts combine to a type 188 /// larger than ValueVT then AssertOp can be used to specify whether the extra 189 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 190 /// (ISD::AssertSext). 191 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 192 const SDValue *Parts, unsigned NumParts, 193 MVT PartVT, EVT ValueVT, const Value *V, 194 Optional<ISD::NodeType> AssertOp = None, 195 bool IsABIRegCopy = false) { 196 if (ValueVT.isVector()) 197 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 198 PartVT, ValueVT, V, IsABIRegCopy); 199 200 assert(NumParts > 0 && "No parts to assemble!"); 201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 202 SDValue Val = Parts[0]; 203 204 if (NumParts > 1) { 205 // Assemble the value from multiple parts. 206 if (ValueVT.isInteger()) { 207 unsigned PartBits = PartVT.getSizeInBits(); 208 unsigned ValueBits = ValueVT.getSizeInBits(); 209 210 // Assemble the power of 2 part. 211 unsigned RoundParts = NumParts & (NumParts - 1) ? 212 1 << Log2_32(NumParts) : NumParts; 213 unsigned RoundBits = PartBits * RoundParts; 214 EVT RoundVT = RoundBits == ValueBits ? 215 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 216 SDValue Lo, Hi; 217 218 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 219 220 if (RoundParts > 2) { 221 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 222 PartVT, HalfVT, V); 223 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 224 RoundParts / 2, PartVT, HalfVT, V); 225 } else { 226 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 227 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 228 } 229 230 if (DAG.getDataLayout().isBigEndian()) 231 std::swap(Lo, Hi); 232 233 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 234 235 if (RoundParts < NumParts) { 236 // Assemble the trailing non-power-of-2 part. 237 unsigned OddParts = NumParts - RoundParts; 238 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 239 Hi = getCopyFromParts(DAG, DL, 240 Parts + RoundParts, OddParts, PartVT, OddVT, V); 241 242 // Combine the round and odd parts. 243 Lo = Val; 244 if (DAG.getDataLayout().isBigEndian()) 245 std::swap(Lo, Hi); 246 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 247 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 248 Hi = 249 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 250 DAG.getConstant(Lo.getValueSizeInBits(), DL, 251 TLI.getPointerTy(DAG.getDataLayout()))); 252 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 253 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 254 } 255 } else if (PartVT.isFloatingPoint()) { 256 // FP split into multiple FP parts (for ppcf128) 257 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 258 "Unexpected split"); 259 SDValue Lo, Hi; 260 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 261 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 262 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 263 std::swap(Lo, Hi); 264 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 265 } else { 266 // FP split into integer parts (soft fp) 267 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 268 !PartVT.isVector() && "Unexpected split"); 269 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 270 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 271 } 272 } 273 274 // There is now one part, held in Val. Correct it to match ValueVT. 275 // PartEVT is the type of the register class that holds the value. 276 // ValueVT is the type of the inline asm operation. 277 EVT PartEVT = Val.getValueType(); 278 279 if (PartEVT == ValueVT) 280 return Val; 281 282 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 283 ValueVT.bitsLT(PartEVT)) { 284 // For an FP value in an integer part, we need to truncate to the right 285 // width first. 286 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 287 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 288 } 289 290 // Handle types that have the same size. 291 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 292 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 293 294 // Handle types with different sizes. 295 if (PartEVT.isInteger() && ValueVT.isInteger()) { 296 if (ValueVT.bitsLT(PartEVT)) { 297 // For a truncate, see if we have any information to 298 // indicate whether the truncated bits will always be 299 // zero or sign-extension. 300 if (AssertOp.hasValue()) 301 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 302 DAG.getValueType(ValueVT)); 303 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 304 } 305 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 306 } 307 308 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 309 // FP_ROUND's are always exact here. 310 if (ValueVT.bitsLT(Val.getValueType())) 311 return DAG.getNode( 312 ISD::FP_ROUND, DL, ValueVT, Val, 313 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 314 315 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 316 } 317 318 llvm_unreachable("Unknown mismatch!"); 319 } 320 321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 322 const Twine &ErrMsg) { 323 const Instruction *I = dyn_cast_or_null<Instruction>(V); 324 if (!V) 325 return Ctx.emitError(ErrMsg); 326 327 const char *AsmError = ", possible invalid constraint for vector type"; 328 if (const CallInst *CI = dyn_cast<CallInst>(I)) 329 if (isa<InlineAsm>(CI->getCalledValue())) 330 return Ctx.emitError(I, ErrMsg + AsmError); 331 332 return Ctx.emitError(I, ErrMsg); 333 } 334 335 /// getCopyFromPartsVector - Create a value that contains the specified legal 336 /// parts combined into the value they represent. If the parts combine to a 337 /// type larger than ValueVT then AssertOp can be used to specify whether the 338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 339 /// ValueVT (ISD::AssertSext). 340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 341 const SDValue *Parts, unsigned NumParts, 342 MVT PartVT, EVT ValueVT, const Value *V, 343 bool IsABIRegCopy) { 344 assert(ValueVT.isVector() && "Not a vector value"); 345 assert(NumParts > 0 && "No parts to assemble!"); 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 SDValue Val = Parts[0]; 348 349 // Handle a multi-element vector. 350 if (NumParts > 1) { 351 EVT IntermediateVT; 352 MVT RegisterVT; 353 unsigned NumIntermediates; 354 unsigned NumRegs; 355 356 if (IsABIRegCopy) { 357 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 358 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 359 RegisterVT); 360 } else { 361 NumRegs = 362 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } 365 366 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 367 NumParts = NumRegs; // Silence a compiler warning. 368 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 369 assert(RegisterVT.getSizeInBits() == 370 Parts[0].getSimpleValueType().getSizeInBits() && 371 "Part type sizes don't match!"); 372 373 // Assemble the parts into intermediate operands. 374 SmallVector<SDValue, 8> Ops(NumIntermediates); 375 if (NumIntermediates == NumParts) { 376 // If the register was not expanded, truncate or copy the value, 377 // as appropriate. 378 for (unsigned i = 0; i != NumParts; ++i) 379 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 380 PartVT, IntermediateVT, V); 381 } else if (NumParts > 0) { 382 // If the intermediate type was expanded, build the intermediate 383 // operands from the parts. 384 assert(NumParts % NumIntermediates == 0 && 385 "Must expand into a divisible number of parts!"); 386 unsigned Factor = NumParts / NumIntermediates; 387 for (unsigned i = 0; i != NumIntermediates; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 389 PartVT, IntermediateVT, V); 390 } 391 392 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 393 // intermediate operands. 394 EVT BuiltVectorTy = 395 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 396 (IntermediateVT.isVector() 397 ? IntermediateVT.getVectorNumElements() * NumParts 398 : NumIntermediates)); 399 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 400 : ISD::BUILD_VECTOR, 401 DL, BuiltVectorTy, Ops); 402 } 403 404 // There is now one part, held in Val. Correct it to match ValueVT. 405 EVT PartEVT = Val.getValueType(); 406 407 if (PartEVT == ValueVT) 408 return Val; 409 410 if (PartEVT.isVector()) { 411 // If the element type of the source/dest vectors are the same, but the 412 // parts vector has more elements than the value vector, then we have a 413 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 414 // elements we want. 415 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 416 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 417 "Cannot narrow, it would be a lossy transformation"); 418 return DAG.getNode( 419 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 420 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 421 } 422 423 // Vector/Vector bitcast. 424 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 425 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 426 427 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 428 "Cannot handle this kind of promotion"); 429 // Promoted vector extract 430 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 431 432 } 433 434 // Trivial bitcast if the types are the same size and the destination 435 // vector type is legal. 436 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 437 TLI.isTypeLegal(ValueVT)) 438 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 439 440 if (ValueVT.getVectorNumElements() != 1) { 441 // Certain ABIs require that vectors are passed as integers. For vectors 442 // are the same size, this is an obvious bitcast. 443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 445 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 446 // Bitcast Val back the original type and extract the corresponding 447 // vector we want. 448 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 449 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 450 ValueVT.getVectorElementType(), Elts); 451 Val = DAG.getBitcast(WiderVecType, Val); 452 return DAG.getNode( 453 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 454 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 455 } 456 457 diagnosePossiblyInvalidConstraint( 458 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 459 return DAG.getUNDEF(ValueVT); 460 } 461 462 // Handle cases such as i8 -> <1 x i1> 463 EVT ValueSVT = ValueVT.getVectorElementType(); 464 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 465 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 468 return DAG.getBuildVector(ValueVT, DL, Val); 469 } 470 471 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 472 SDValue Val, SDValue *Parts, unsigned NumParts, 473 MVT PartVT, const Value *V, bool IsABIRegCopy); 474 475 /// getCopyToParts - Create a series of nodes that contain the specified value 476 /// split into legal parts. If the parts contain more bits than Val, then, for 477 /// integers, ExtendKind can be used to specify how to generate the extra bits. 478 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 479 SDValue *Parts, unsigned NumParts, MVT PartVT, 480 const Value *V, 481 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 482 bool IsABIRegCopy = false) { 483 EVT ValueVT = Val.getValueType(); 484 485 // Handle the vector case separately. 486 if (ValueVT.isVector()) 487 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 488 IsABIRegCopy); 489 490 unsigned PartBits = PartVT.getSizeInBits(); 491 unsigned OrigNumParts = NumParts; 492 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 493 "Copying to an illegal type!"); 494 495 if (NumParts == 0) 496 return; 497 498 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 499 EVT PartEVT = PartVT; 500 if (PartEVT == ValueVT) { 501 assert(NumParts == 1 && "No-op copy with multiple parts!"); 502 Parts[0] = Val; 503 return; 504 } 505 506 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 507 // If the parts cover more bits than the value has, promote the value. 508 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 509 assert(NumParts == 1 && "Do not know what to promote to!"); 510 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 511 } else { 512 if (ValueVT.isFloatingPoint()) { 513 // FP values need to be bitcast, then extended if they are being put 514 // into a larger container. 515 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 516 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 517 } 518 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 519 ValueVT.isInteger() && 520 "Unknown mismatch!"); 521 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 522 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 523 if (PartVT == MVT::x86mmx) 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } 526 } else if (PartBits == ValueVT.getSizeInBits()) { 527 // Different types of the same size. 528 assert(NumParts == 1 && PartEVT != ValueVT); 529 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 530 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 531 // If the parts cover less bits than value has, truncate the value. 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 541 // The value may have changed - recompute ValueVT. 542 ValueVT = Val.getValueType(); 543 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 544 "Failed to tile the value with PartVT!"); 545 546 if (NumParts == 1) { 547 if (PartEVT != ValueVT) { 548 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 549 "scalar-to-vector conversion failed"); 550 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 551 } 552 553 Parts[0] = Val; 554 return; 555 } 556 557 // Expand the value into multiple parts. 558 if (NumParts & (NumParts - 1)) { 559 // The number of parts is not a power of 2. Split off and copy the tail. 560 assert(PartVT.isInteger() && ValueVT.isInteger() && 561 "Do not know what to expand to!"); 562 unsigned RoundParts = 1 << Log2_32(NumParts); 563 unsigned RoundBits = RoundParts * PartBits; 564 unsigned OddParts = NumParts - RoundParts; 565 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 566 DAG.getIntPtrConstant(RoundBits, DL)); 567 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 568 569 if (DAG.getDataLayout().isBigEndian()) 570 // The odd parts were reversed by getCopyToParts - unreverse them. 571 std::reverse(Parts + RoundParts, Parts + NumParts); 572 573 NumParts = RoundParts; 574 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 575 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 576 } 577 578 // The number of parts is a power of 2. Repeatedly bisect the value using 579 // EXTRACT_ELEMENT. 580 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 581 EVT::getIntegerVT(*DAG.getContext(), 582 ValueVT.getSizeInBits()), 583 Val); 584 585 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 586 for (unsigned i = 0; i < NumParts; i += StepSize) { 587 unsigned ThisBits = StepSize * PartBits / 2; 588 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 589 SDValue &Part0 = Parts[i]; 590 SDValue &Part1 = Parts[i+StepSize/2]; 591 592 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 593 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 594 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 595 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 596 597 if (ThisBits == PartBits && ThisVT != PartVT) { 598 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 599 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 600 } 601 } 602 } 603 604 if (DAG.getDataLayout().isBigEndian()) 605 std::reverse(Parts, Parts + OrigNumParts); 606 } 607 608 609 /// getCopyToPartsVector - Create a series of nodes that contain the specified 610 /// value split into legal parts. 611 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 612 SDValue Val, SDValue *Parts, unsigned NumParts, 613 MVT PartVT, const Value *V, 614 bool IsABIRegCopy) { 615 EVT ValueVT = Val.getValueType(); 616 assert(ValueVT.isVector() && "Not a vector"); 617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 618 619 if (NumParts == 1) { 620 EVT PartEVT = PartVT; 621 if (PartEVT == ValueVT) { 622 // Nothing to do. 623 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 624 // Bitconvert vector->vector case. 625 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 626 } else if (PartVT.isVector() && 627 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 628 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 634 Ops.push_back(DAG.getNode( 635 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 636 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 637 638 for (unsigned i = ValueVT.getVectorNumElements(), 639 e = PartVT.getVectorNumElements(); i != e; ++i) 640 Ops.push_back(DAG.getUNDEF(ElementVT)); 641 642 Val = DAG.getBuildVector(PartVT, DL, Ops); 643 644 // FIXME: Use CONCAT for 2x -> 4x. 645 646 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 647 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 648 } else if (PartVT.isVector() && 649 PartEVT.getVectorElementType().bitsGE( 650 ValueVT.getVectorElementType()) && 651 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 652 653 // Promoted vector extract 654 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 655 } else { 656 if (ValueVT.getVectorNumElements() == 1) { 657 Val = DAG.getNode( 658 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 659 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 660 } else { 661 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 662 "lossy conversion of vector to scalar type"); 663 EVT IntermediateType = 664 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 665 Val = DAG.getBitcast(IntermediateType, Val); 666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 667 } 668 } 669 670 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 671 Parts[0] = Val; 672 return; 673 } 674 675 // Handle a multi-element vector. 676 EVT IntermediateVT; 677 MVT RegisterVT; 678 unsigned NumIntermediates; 679 unsigned NumRegs; 680 if (IsABIRegCopy) { 681 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 682 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 683 RegisterVT); 684 } else { 685 NumRegs = 686 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 687 NumIntermediates, RegisterVT); 688 } 689 unsigned NumElements = ValueVT.getVectorNumElements(); 690 691 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 692 NumParts = NumRegs; // Silence a compiler warning. 693 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 694 695 // Convert the vector to the appropiate type if necessary. 696 unsigned DestVectorNoElts = 697 NumIntermediates * 698 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 699 EVT BuiltVectorTy = EVT::getVectorVT( 700 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 701 if (Val.getValueType() != BuiltVectorTy) 702 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 703 704 // Split the vector into intermediate operands. 705 SmallVector<SDValue, 8> Ops(NumIntermediates); 706 for (unsigned i = 0; i != NumIntermediates; ++i) { 707 if (IntermediateVT.isVector()) 708 Ops[i] = 709 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 710 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 711 TLI.getVectorIdxTy(DAG.getDataLayout()))); 712 else 713 Ops[i] = DAG.getNode( 714 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 715 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 716 } 717 718 // Split the intermediate operands into legal parts. 719 if (NumParts == NumIntermediates) { 720 // If the register was not expanded, promote or copy the value, 721 // as appropriate. 722 for (unsigned i = 0; i != NumParts; ++i) 723 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 724 } else if (NumParts > 0) { 725 // If the intermediate type was expanded, split each the value into 726 // legal parts. 727 assert(NumIntermediates != 0 && "division by zero"); 728 assert(NumParts % NumIntermediates == 0 && 729 "Must expand into a divisible number of parts!"); 730 unsigned Factor = NumParts / NumIntermediates; 731 for (unsigned i = 0; i != NumIntermediates; ++i) 732 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 733 } 734 } 735 736 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 737 EVT valuevt, bool IsABIMangledValue) 738 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 739 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 740 741 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 742 const DataLayout &DL, unsigned Reg, Type *Ty, 743 bool IsABIMangledValue) { 744 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 745 746 IsABIMangled = IsABIMangledValue; 747 748 for (EVT ValueVT : ValueVTs) { 749 unsigned NumRegs = IsABIMangledValue 750 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 751 : TLI.getNumRegisters(Context, ValueVT); 752 MVT RegisterVT = IsABIMangledValue 753 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 754 : TLI.getRegisterType(Context, ValueVT); 755 for (unsigned i = 0; i != NumRegs; ++i) 756 Regs.push_back(Reg + i); 757 RegVTs.push_back(RegisterVT); 758 RegCount.push_back(NumRegs); 759 Reg += NumRegs; 760 } 761 } 762 763 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 764 FunctionLoweringInfo &FuncInfo, 765 const SDLoc &dl, SDValue &Chain, 766 SDValue *Flag, const Value *V) const { 767 // A Value with type {} or [0 x %t] needs no registers. 768 if (ValueVTs.empty()) 769 return SDValue(); 770 771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 772 773 // Assemble the legal parts into the final values. 774 SmallVector<SDValue, 4> Values(ValueVTs.size()); 775 SmallVector<SDValue, 8> Parts; 776 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 777 // Copy the legal parts from the registers. 778 EVT ValueVT = ValueVTs[Value]; 779 unsigned NumRegs = RegCount[Value]; 780 MVT RegisterVT = IsABIMangled 781 ? TLI.getRegisterTypeForCallingConv(*DAG.getContext(), RegVTs[Value]) 782 : RegVTs[Value]; 783 784 Parts.resize(NumRegs); 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 SDValue P; 787 if (!Flag) { 788 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 789 } else { 790 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 791 *Flag = P.getValue(2); 792 } 793 794 Chain = P.getValue(1); 795 Parts[i] = P; 796 797 // If the source register was virtual and if we know something about it, 798 // add an assert node. 799 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 800 !RegisterVT.isInteger() || RegisterVT.isVector()) 801 continue; 802 803 const FunctionLoweringInfo::LiveOutInfo *LOI = 804 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 805 if (!LOI) 806 continue; 807 808 unsigned RegSize = RegisterVT.getSizeInBits(); 809 unsigned NumSignBits = LOI->NumSignBits; 810 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 811 812 if (NumZeroBits == RegSize) { 813 // The current value is a zero. 814 // Explicitly express that as it would be easier for 815 // optimizations to kick in. 816 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 817 continue; 818 } 819 820 // FIXME: We capture more information than the dag can represent. For 821 // now, just use the tightest assertzext/assertsext possible. 822 bool isSExt = true; 823 EVT FromVT(MVT::Other); 824 if (NumSignBits == RegSize) { 825 isSExt = true; // ASSERT SEXT 1 826 FromVT = MVT::i1; 827 } else if (NumZeroBits >= RegSize - 1) { 828 isSExt = false; // ASSERT ZEXT 1 829 FromVT = MVT::i1; 830 } else if (NumSignBits > RegSize - 8) { 831 isSExt = true; // ASSERT SEXT 8 832 FromVT = MVT::i8; 833 } else if (NumZeroBits >= RegSize - 8) { 834 isSExt = false; // ASSERT ZEXT 8 835 FromVT = MVT::i8; 836 } else if (NumSignBits > RegSize - 16) { 837 isSExt = true; // ASSERT SEXT 16 838 FromVT = MVT::i16; 839 } else if (NumZeroBits >= RegSize - 16) { 840 isSExt = false; // ASSERT ZEXT 16 841 FromVT = MVT::i16; 842 } else if (NumSignBits > RegSize - 32) { 843 isSExt = true; // ASSERT SEXT 32 844 FromVT = MVT::i32; 845 } else if (NumZeroBits >= RegSize - 32) { 846 isSExt = false; // ASSERT ZEXT 32 847 FromVT = MVT::i32; 848 } else { 849 continue; 850 } 851 // Add an assertion node. 852 assert(FromVT != MVT::Other); 853 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 854 RegisterVT, P, DAG.getValueType(FromVT)); 855 } 856 857 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 858 NumRegs, RegisterVT, ValueVT, V); 859 Part += NumRegs; 860 Parts.clear(); 861 } 862 863 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 864 } 865 866 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 867 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 868 const Value *V, 869 ISD::NodeType PreferredExtendType) const { 870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 871 ISD::NodeType ExtendKind = PreferredExtendType; 872 873 // Get the list of the values's legal parts. 874 unsigned NumRegs = Regs.size(); 875 SmallVector<SDValue, 8> Parts(NumRegs); 876 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 877 unsigned NumParts = RegCount[Value]; 878 879 MVT RegisterVT = IsABIMangled 880 ? TLI.getRegisterTypeForCallingConv(*DAG.getContext(), RegVTs[Value]) 881 : RegVTs[Value]; 882 883 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 884 ExtendKind = ISD::ZERO_EXTEND; 885 886 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 887 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 888 Part += NumParts; 889 } 890 891 // Copy the parts into the registers. 892 SmallVector<SDValue, 8> Chains(NumRegs); 893 for (unsigned i = 0; i != NumRegs; ++i) { 894 SDValue Part; 895 if (!Flag) { 896 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 897 } else { 898 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 899 *Flag = Part.getValue(1); 900 } 901 902 Chains[i] = Part.getValue(0); 903 } 904 905 if (NumRegs == 1 || Flag) 906 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 907 // flagged to it. That is the CopyToReg nodes and the user are considered 908 // a single scheduling unit. If we create a TokenFactor and return it as 909 // chain, then the TokenFactor is both a predecessor (operand) of the 910 // user as well as a successor (the TF operands are flagged to the user). 911 // c1, f1 = CopyToReg 912 // c2, f2 = CopyToReg 913 // c3 = TokenFactor c1, c2 914 // ... 915 // = op c3, ..., f2 916 Chain = Chains[NumRegs-1]; 917 else 918 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 919 } 920 921 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 922 unsigned MatchingIdx, const SDLoc &dl, 923 SelectionDAG &DAG, 924 std::vector<SDValue> &Ops) const { 925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 926 927 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 928 if (HasMatching) 929 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 930 else if (!Regs.empty() && 931 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 932 // Put the register class of the virtual registers in the flag word. That 933 // way, later passes can recompute register class constraints for inline 934 // assembly as well as normal instructions. 935 // Don't do this for tied operands that can use the regclass information 936 // from the def. 937 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 938 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 939 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 940 } 941 942 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 943 Ops.push_back(Res); 944 945 if (Code == InlineAsm::Kind_Clobber) { 946 // Clobbers should always have a 1:1 mapping with registers, and may 947 // reference registers that have illegal (e.g. vector) types. Hence, we 948 // shouldn't try to apply any sort of splitting logic to them. 949 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 950 "No 1:1 mapping from clobbers to regs?"); 951 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 952 (void)SP; 953 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 954 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 955 assert( 956 (Regs[I] != SP || 957 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 958 "If we clobbered the stack pointer, MFI should know about it."); 959 } 960 return; 961 } 962 963 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 964 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 965 MVT RegisterVT = RegVTs[Value]; 966 for (unsigned i = 0; i != NumRegs; ++i) { 967 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 968 unsigned TheReg = Regs[Reg++]; 969 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 970 } 971 } 972 } 973 974 SmallVector<std::pair<unsigned, unsigned>, 4> 975 RegsForValue::getRegsAndSizes() const { 976 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 977 unsigned I = 0; 978 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 979 unsigned RegCount = std::get<0>(CountAndVT); 980 MVT RegisterVT = std::get<1>(CountAndVT); 981 unsigned RegisterSize = RegisterVT.getSizeInBits(); 982 for (unsigned E = I + RegCount; I != E; ++I) 983 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 984 } 985 return OutVec; 986 } 987 988 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 989 const TargetLibraryInfo *li) { 990 AA = aa; 991 GFI = gfi; 992 LibInfo = li; 993 DL = &DAG.getDataLayout(); 994 Context = DAG.getContext(); 995 LPadToCallSiteMap.clear(); 996 } 997 998 void SelectionDAGBuilder::clear() { 999 NodeMap.clear(); 1000 UnusedArgNodeMap.clear(); 1001 PendingLoads.clear(); 1002 PendingExports.clear(); 1003 CurInst = nullptr; 1004 HasTailCall = false; 1005 SDNodeOrder = LowestSDNodeOrder; 1006 StatepointLowering.clear(); 1007 } 1008 1009 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1010 DanglingDebugInfoMap.clear(); 1011 } 1012 1013 SDValue SelectionDAGBuilder::getRoot() { 1014 if (PendingLoads.empty()) 1015 return DAG.getRoot(); 1016 1017 if (PendingLoads.size() == 1) { 1018 SDValue Root = PendingLoads[0]; 1019 DAG.setRoot(Root); 1020 PendingLoads.clear(); 1021 return Root; 1022 } 1023 1024 // Otherwise, we have to make a token factor node. 1025 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1026 PendingLoads); 1027 PendingLoads.clear(); 1028 DAG.setRoot(Root); 1029 return Root; 1030 } 1031 1032 SDValue SelectionDAGBuilder::getControlRoot() { 1033 SDValue Root = DAG.getRoot(); 1034 1035 if (PendingExports.empty()) 1036 return Root; 1037 1038 // Turn all of the CopyToReg chains into one factored node. 1039 if (Root.getOpcode() != ISD::EntryToken) { 1040 unsigned i = 0, e = PendingExports.size(); 1041 for (; i != e; ++i) { 1042 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1043 if (PendingExports[i].getNode()->getOperand(0) == Root) 1044 break; // Don't add the root if we already indirectly depend on it. 1045 } 1046 1047 if (i == e) 1048 PendingExports.push_back(Root); 1049 } 1050 1051 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1052 PendingExports); 1053 PendingExports.clear(); 1054 DAG.setRoot(Root); 1055 return Root; 1056 } 1057 1058 void SelectionDAGBuilder::visit(const Instruction &I) { 1059 // Set up outgoing PHI node register values before emitting the terminator. 1060 if (isa<TerminatorInst>(&I)) { 1061 HandlePHINodesInSuccessorBlocks(I.getParent()); 1062 } 1063 1064 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1065 if (!isa<DbgInfoIntrinsic>(I)) 1066 ++SDNodeOrder; 1067 1068 CurInst = &I; 1069 1070 visit(I.getOpcode(), I); 1071 1072 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1073 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1074 // maps to this instruction. 1075 // TODO: We could handle all flags (nsw, etc) here. 1076 // TODO: If an IR instruction maps to >1 node, only the final node will have 1077 // flags set. 1078 if (SDNode *Node = getNodeForIRValue(&I)) { 1079 SDNodeFlags IncomingFlags; 1080 IncomingFlags.copyFMF(*FPMO); 1081 if (!Node->getFlags().isDefined()) 1082 Node->setFlags(IncomingFlags); 1083 else 1084 Node->intersectFlagsWith(IncomingFlags); 1085 } 1086 } 1087 1088 if (!isa<TerminatorInst>(&I) && !HasTailCall && 1089 !isStatepoint(&I)) // statepoints handle their exports internally 1090 CopyToExportRegsIfNeeded(&I); 1091 1092 CurInst = nullptr; 1093 } 1094 1095 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1096 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1097 } 1098 1099 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1100 // Note: this doesn't use InstVisitor, because it has to work with 1101 // ConstantExpr's in addition to instructions. 1102 switch (Opcode) { 1103 default: llvm_unreachable("Unknown instruction type encountered!"); 1104 // Build the switch statement using the Instruction.def file. 1105 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1106 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1107 #include "llvm/IR/Instruction.def" 1108 } 1109 } 1110 1111 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1112 const DIExpression *Expr) { 1113 for (auto &DDIMI : DanglingDebugInfoMap) 1114 for (auto &DDI : DDIMI.second) 1115 if (DDI.getDI()) { 1116 const DbgValueInst *DI = DDI.getDI(); 1117 DIVariable *DanglingVariable = DI->getVariable(); 1118 DIExpression *DanglingExpr = DI->getExpression(); 1119 if (DanglingVariable == Variable && 1120 Expr->fragmentsOverlap(DanglingExpr)) { 1121 LLVM_DEBUG(dbgs() 1122 << "Dropping dangling debug info for " << *DI << "\n"); 1123 DDI = DanglingDebugInfo(); 1124 } 1125 } 1126 } 1127 1128 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1129 // generate the debug data structures now that we've seen its definition. 1130 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1131 SDValue Val) { 1132 DanglingDebugInfoVector &DDIV = DanglingDebugInfoMap[V]; 1133 for (auto &DDI : DDIV) { 1134 if (!DDI.getDI()) 1135 continue; 1136 const DbgValueInst *DI = DDI.getDI(); 1137 DebugLoc dl = DDI.getdl(); 1138 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1139 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1140 DILocalVariable *Variable = DI->getVariable(); 1141 DIExpression *Expr = DI->getExpression(); 1142 assert(Variable->isValidLocationForIntrinsic(dl) && 1143 "Expected inlined-at fields to agree"); 1144 SDDbgValue *SDV; 1145 if (Val.getNode()) { 1146 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1147 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1148 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1149 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1150 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1151 // inserted after the definition of Val when emitting the instructions 1152 // after ISel. An alternative could be to teach 1153 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1154 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1155 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1156 << ValSDNodeOrder << "\n"); 1157 SDV = getDbgValue(Val, Variable, Expr, dl, 1158 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1159 DAG.AddDbgValue(SDV, Val.getNode(), false); 1160 } else 1161 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1162 << "in EmitFuncArgumentDbgValue\n"); 1163 } else 1164 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1165 } 1166 DanglingDebugInfoMap[V].clear(); 1167 } 1168 1169 /// getCopyFromRegs - If there was virtual register allocated for the value V 1170 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1171 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1172 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1173 SDValue Result; 1174 1175 if (It != FuncInfo.ValueMap.end()) { 1176 unsigned InReg = It->second; 1177 1178 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1179 DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V)); 1180 SDValue Chain = DAG.getEntryNode(); 1181 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1182 V); 1183 resolveDanglingDebugInfo(V, Result); 1184 } 1185 1186 return Result; 1187 } 1188 1189 /// getValue - Return an SDValue for the given Value. 1190 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1191 // If we already have an SDValue for this value, use it. It's important 1192 // to do this first, so that we don't create a CopyFromReg if we already 1193 // have a regular SDValue. 1194 SDValue &N = NodeMap[V]; 1195 if (N.getNode()) return N; 1196 1197 // If there's a virtual register allocated and initialized for this 1198 // value, use it. 1199 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1200 return copyFromReg; 1201 1202 // Otherwise create a new SDValue and remember it. 1203 SDValue Val = getValueImpl(V); 1204 NodeMap[V] = Val; 1205 resolveDanglingDebugInfo(V, Val); 1206 return Val; 1207 } 1208 1209 // Return true if SDValue exists for the given Value 1210 bool SelectionDAGBuilder::findValue(const Value *V) const { 1211 return (NodeMap.find(V) != NodeMap.end()) || 1212 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1213 } 1214 1215 /// getNonRegisterValue - Return an SDValue for the given Value, but 1216 /// don't look in FuncInfo.ValueMap for a virtual register. 1217 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1218 // If we already have an SDValue for this value, use it. 1219 SDValue &N = NodeMap[V]; 1220 if (N.getNode()) { 1221 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1222 // Remove the debug location from the node as the node is about to be used 1223 // in a location which may differ from the original debug location. This 1224 // is relevant to Constant and ConstantFP nodes because they can appear 1225 // as constant expressions inside PHI nodes. 1226 N->setDebugLoc(DebugLoc()); 1227 } 1228 return N; 1229 } 1230 1231 // Otherwise create a new SDValue and remember it. 1232 SDValue Val = getValueImpl(V); 1233 NodeMap[V] = Val; 1234 resolveDanglingDebugInfo(V, Val); 1235 return Val; 1236 } 1237 1238 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1239 /// Create an SDValue for the given value. 1240 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1241 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1242 1243 if (const Constant *C = dyn_cast<Constant>(V)) { 1244 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1245 1246 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1247 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1248 1249 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1250 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1251 1252 if (isa<ConstantPointerNull>(C)) { 1253 unsigned AS = V->getType()->getPointerAddressSpace(); 1254 return DAG.getConstant(0, getCurSDLoc(), 1255 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1256 } 1257 1258 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1259 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1260 1261 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1262 return DAG.getUNDEF(VT); 1263 1264 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1265 visit(CE->getOpcode(), *CE); 1266 SDValue N1 = NodeMap[V]; 1267 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1268 return N1; 1269 } 1270 1271 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1272 SmallVector<SDValue, 4> Constants; 1273 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1274 OI != OE; ++OI) { 1275 SDNode *Val = getValue(*OI).getNode(); 1276 // If the operand is an empty aggregate, there are no values. 1277 if (!Val) continue; 1278 // Add each leaf value from the operand to the Constants list 1279 // to form a flattened list of all the values. 1280 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1281 Constants.push_back(SDValue(Val, i)); 1282 } 1283 1284 return DAG.getMergeValues(Constants, getCurSDLoc()); 1285 } 1286 1287 if (const ConstantDataSequential *CDS = 1288 dyn_cast<ConstantDataSequential>(C)) { 1289 SmallVector<SDValue, 4> Ops; 1290 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1291 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1292 // Add each leaf value from the operand to the Constants list 1293 // to form a flattened list of all the values. 1294 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1295 Ops.push_back(SDValue(Val, i)); 1296 } 1297 1298 if (isa<ArrayType>(CDS->getType())) 1299 return DAG.getMergeValues(Ops, getCurSDLoc()); 1300 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1301 } 1302 1303 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1304 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1305 "Unknown struct or array constant!"); 1306 1307 SmallVector<EVT, 4> ValueVTs; 1308 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1309 unsigned NumElts = ValueVTs.size(); 1310 if (NumElts == 0) 1311 return SDValue(); // empty struct 1312 SmallVector<SDValue, 4> Constants(NumElts); 1313 for (unsigned i = 0; i != NumElts; ++i) { 1314 EVT EltVT = ValueVTs[i]; 1315 if (isa<UndefValue>(C)) 1316 Constants[i] = DAG.getUNDEF(EltVT); 1317 else if (EltVT.isFloatingPoint()) 1318 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1319 else 1320 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1321 } 1322 1323 return DAG.getMergeValues(Constants, getCurSDLoc()); 1324 } 1325 1326 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1327 return DAG.getBlockAddress(BA, VT); 1328 1329 VectorType *VecTy = cast<VectorType>(V->getType()); 1330 unsigned NumElements = VecTy->getNumElements(); 1331 1332 // Now that we know the number and type of the elements, get that number of 1333 // elements into the Ops array based on what kind of constant it is. 1334 SmallVector<SDValue, 16> Ops; 1335 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1336 for (unsigned i = 0; i != NumElements; ++i) 1337 Ops.push_back(getValue(CV->getOperand(i))); 1338 } else { 1339 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1340 EVT EltVT = 1341 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1342 1343 SDValue Op; 1344 if (EltVT.isFloatingPoint()) 1345 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1346 else 1347 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1348 Ops.assign(NumElements, Op); 1349 } 1350 1351 // Create a BUILD_VECTOR node. 1352 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1353 } 1354 1355 // If this is a static alloca, generate it as the frameindex instead of 1356 // computation. 1357 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1358 DenseMap<const AllocaInst*, int>::iterator SI = 1359 FuncInfo.StaticAllocaMap.find(AI); 1360 if (SI != FuncInfo.StaticAllocaMap.end()) 1361 return DAG.getFrameIndex(SI->second, 1362 TLI.getFrameIndexTy(DAG.getDataLayout())); 1363 } 1364 1365 // If this is an instruction which fast-isel has deferred, select it now. 1366 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1367 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1368 1369 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1370 Inst->getType(), isABIRegCopy(V)); 1371 SDValue Chain = DAG.getEntryNode(); 1372 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1373 } 1374 1375 llvm_unreachable("Can't get register for value!"); 1376 } 1377 1378 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1379 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1380 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1381 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1382 bool IsSEH = isAsynchronousEHPersonality(Pers); 1383 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1384 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1385 if (!IsSEH) 1386 CatchPadMBB->setIsEHScopeEntry(); 1387 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1388 if (IsMSVCCXX || IsCoreCLR) 1389 CatchPadMBB->setIsEHFuncletEntry(); 1390 // Wasm does not need catchpads anymore 1391 if (!IsWasmCXX) 1392 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1393 getControlRoot())); 1394 } 1395 1396 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1397 // Update machine-CFG edge. 1398 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1399 FuncInfo.MBB->addSuccessor(TargetMBB); 1400 1401 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1402 bool IsSEH = isAsynchronousEHPersonality(Pers); 1403 if (IsSEH) { 1404 // If this is not a fall-through branch or optimizations are switched off, 1405 // emit the branch. 1406 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1407 TM.getOptLevel() == CodeGenOpt::None) 1408 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1409 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1410 return; 1411 } 1412 1413 // Figure out the funclet membership for the catchret's successor. 1414 // This will be used by the FuncletLayout pass to determine how to order the 1415 // BB's. 1416 // A 'catchret' returns to the outer scope's color. 1417 Value *ParentPad = I.getCatchSwitchParentPad(); 1418 const BasicBlock *SuccessorColor; 1419 if (isa<ConstantTokenNone>(ParentPad)) 1420 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1421 else 1422 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1423 assert(SuccessorColor && "No parent funclet for catchret!"); 1424 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1425 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1426 1427 // Create the terminator node. 1428 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1429 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1430 DAG.getBasicBlock(SuccessorColorMBB)); 1431 DAG.setRoot(Ret); 1432 } 1433 1434 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1435 // Don't emit any special code for the cleanuppad instruction. It just marks 1436 // the start of an EH scope/funclet. 1437 FuncInfo.MBB->setIsEHScopeEntry(); 1438 FuncInfo.MBB->setIsEHFuncletEntry(); 1439 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1440 } 1441 1442 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1443 /// many places it could ultimately go. In the IR, we have a single unwind 1444 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1445 /// This function skips over imaginary basic blocks that hold catchswitch 1446 /// instructions, and finds all the "real" machine 1447 /// basic block destinations. As those destinations may not be successors of 1448 /// EHPadBB, here we also calculate the edge probability to those destinations. 1449 /// The passed-in Prob is the edge probability to EHPadBB. 1450 static void findUnwindDestinations( 1451 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1452 BranchProbability Prob, 1453 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1454 &UnwindDests) { 1455 EHPersonality Personality = 1456 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1457 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1458 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1459 bool IsSEH = isAsynchronousEHPersonality(Personality); 1460 1461 while (EHPadBB) { 1462 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1463 BasicBlock *NewEHPadBB = nullptr; 1464 if (isa<LandingPadInst>(Pad)) { 1465 // Stop on landingpads. They are not funclets. 1466 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1467 break; 1468 } else if (isa<CleanupPadInst>(Pad)) { 1469 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1470 // personalities. 1471 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1472 UnwindDests.back().first->setIsEHScopeEntry(); 1473 UnwindDests.back().first->setIsEHFuncletEntry(); 1474 break; 1475 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1476 // Add the catchpad handlers to the possible destinations. 1477 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1478 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1479 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1480 if (IsMSVCCXX || IsCoreCLR) 1481 UnwindDests.back().first->setIsEHFuncletEntry(); 1482 if (!IsSEH) 1483 UnwindDests.back().first->setIsEHScopeEntry(); 1484 } 1485 NewEHPadBB = CatchSwitch->getUnwindDest(); 1486 } else { 1487 continue; 1488 } 1489 1490 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1491 if (BPI && NewEHPadBB) 1492 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1493 EHPadBB = NewEHPadBB; 1494 } 1495 } 1496 1497 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1498 // Update successor info. 1499 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1500 auto UnwindDest = I.getUnwindDest(); 1501 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1502 BranchProbability UnwindDestProb = 1503 (BPI && UnwindDest) 1504 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1505 : BranchProbability::getZero(); 1506 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1507 for (auto &UnwindDest : UnwindDests) { 1508 UnwindDest.first->setIsEHPad(); 1509 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1510 } 1511 FuncInfo.MBB->normalizeSuccProbs(); 1512 1513 // Create the terminator node. 1514 SDValue Ret = 1515 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1516 DAG.setRoot(Ret); 1517 } 1518 1519 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1520 report_fatal_error("visitCatchSwitch not yet implemented!"); 1521 } 1522 1523 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1524 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1525 auto &DL = DAG.getDataLayout(); 1526 SDValue Chain = getControlRoot(); 1527 SmallVector<ISD::OutputArg, 8> Outs; 1528 SmallVector<SDValue, 8> OutVals; 1529 1530 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1531 // lower 1532 // 1533 // %val = call <ty> @llvm.experimental.deoptimize() 1534 // ret <ty> %val 1535 // 1536 // differently. 1537 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1538 LowerDeoptimizingReturn(); 1539 return; 1540 } 1541 1542 if (!FuncInfo.CanLowerReturn) { 1543 unsigned DemoteReg = FuncInfo.DemoteRegister; 1544 const Function *F = I.getParent()->getParent(); 1545 1546 // Emit a store of the return value through the virtual register. 1547 // Leave Outs empty so that LowerReturn won't try to load return 1548 // registers the usual way. 1549 SmallVector<EVT, 1> PtrValueVTs; 1550 ComputeValueVTs(TLI, DL, 1551 F->getReturnType()->getPointerTo( 1552 DAG.getDataLayout().getAllocaAddrSpace()), 1553 PtrValueVTs); 1554 1555 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1556 DemoteReg, PtrValueVTs[0]); 1557 SDValue RetOp = getValue(I.getOperand(0)); 1558 1559 SmallVector<EVT, 4> ValueVTs; 1560 SmallVector<uint64_t, 4> Offsets; 1561 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1562 unsigned NumValues = ValueVTs.size(); 1563 1564 SmallVector<SDValue, 4> Chains(NumValues); 1565 for (unsigned i = 0; i != NumValues; ++i) { 1566 // An aggregate return value cannot wrap around the address space, so 1567 // offsets to its parts don't wrap either. 1568 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1569 Chains[i] = DAG.getStore( 1570 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1571 // FIXME: better loc info would be nice. 1572 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1573 } 1574 1575 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1576 MVT::Other, Chains); 1577 } else if (I.getNumOperands() != 0) { 1578 SmallVector<EVT, 4> ValueVTs; 1579 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1580 unsigned NumValues = ValueVTs.size(); 1581 if (NumValues) { 1582 SDValue RetOp = getValue(I.getOperand(0)); 1583 1584 const Function *F = I.getParent()->getParent(); 1585 1586 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1587 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1588 Attribute::SExt)) 1589 ExtendKind = ISD::SIGN_EXTEND; 1590 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1591 Attribute::ZExt)) 1592 ExtendKind = ISD::ZERO_EXTEND; 1593 1594 LLVMContext &Context = F->getContext(); 1595 bool RetInReg = F->getAttributes().hasAttribute( 1596 AttributeList::ReturnIndex, Attribute::InReg); 1597 1598 for (unsigned j = 0; j != NumValues; ++j) { 1599 EVT VT = ValueVTs[j]; 1600 1601 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1602 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1603 1604 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1605 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1606 SmallVector<SDValue, 4> Parts(NumParts); 1607 getCopyToParts(DAG, getCurSDLoc(), 1608 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1609 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1610 1611 // 'inreg' on function refers to return value 1612 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1613 if (RetInReg) 1614 Flags.setInReg(); 1615 1616 // Propagate extension type if any 1617 if (ExtendKind == ISD::SIGN_EXTEND) 1618 Flags.setSExt(); 1619 else if (ExtendKind == ISD::ZERO_EXTEND) 1620 Flags.setZExt(); 1621 1622 for (unsigned i = 0; i < NumParts; ++i) { 1623 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1624 VT, /*isfixed=*/true, 0, 0)); 1625 OutVals.push_back(Parts[i]); 1626 } 1627 } 1628 } 1629 } 1630 1631 // Push in swifterror virtual register as the last element of Outs. This makes 1632 // sure swifterror virtual register will be returned in the swifterror 1633 // physical register. 1634 const Function *F = I.getParent()->getParent(); 1635 if (TLI.supportSwiftError() && 1636 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1637 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1638 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1639 Flags.setSwiftError(); 1640 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1641 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1642 true /*isfixed*/, 1 /*origidx*/, 1643 0 /*partOffs*/)); 1644 // Create SDNode for the swifterror virtual register. 1645 OutVals.push_back( 1646 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1647 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1648 EVT(TLI.getPointerTy(DL)))); 1649 } 1650 1651 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1652 CallingConv::ID CallConv = 1653 DAG.getMachineFunction().getFunction().getCallingConv(); 1654 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1655 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1656 1657 // Verify that the target's LowerReturn behaved as expected. 1658 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1659 "LowerReturn didn't return a valid chain!"); 1660 1661 // Update the DAG with the new chain value resulting from return lowering. 1662 DAG.setRoot(Chain); 1663 } 1664 1665 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1666 /// created for it, emit nodes to copy the value into the virtual 1667 /// registers. 1668 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1669 // Skip empty types 1670 if (V->getType()->isEmptyTy()) 1671 return; 1672 1673 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1674 if (VMI != FuncInfo.ValueMap.end()) { 1675 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1676 CopyValueToVirtualRegister(V, VMI->second); 1677 } 1678 } 1679 1680 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1681 /// the current basic block, add it to ValueMap now so that we'll get a 1682 /// CopyTo/FromReg. 1683 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1684 // No need to export constants. 1685 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1686 1687 // Already exported? 1688 if (FuncInfo.isExportedInst(V)) return; 1689 1690 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1691 CopyValueToVirtualRegister(V, Reg); 1692 } 1693 1694 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1695 const BasicBlock *FromBB) { 1696 // The operands of the setcc have to be in this block. We don't know 1697 // how to export them from some other block. 1698 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1699 // Can export from current BB. 1700 if (VI->getParent() == FromBB) 1701 return true; 1702 1703 // Is already exported, noop. 1704 return FuncInfo.isExportedInst(V); 1705 } 1706 1707 // If this is an argument, we can export it if the BB is the entry block or 1708 // if it is already exported. 1709 if (isa<Argument>(V)) { 1710 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1711 return true; 1712 1713 // Otherwise, can only export this if it is already exported. 1714 return FuncInfo.isExportedInst(V); 1715 } 1716 1717 // Otherwise, constants can always be exported. 1718 return true; 1719 } 1720 1721 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1722 BranchProbability 1723 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1724 const MachineBasicBlock *Dst) const { 1725 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1726 const BasicBlock *SrcBB = Src->getBasicBlock(); 1727 const BasicBlock *DstBB = Dst->getBasicBlock(); 1728 if (!BPI) { 1729 // If BPI is not available, set the default probability as 1 / N, where N is 1730 // the number of successors. 1731 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1732 return BranchProbability(1, SuccSize); 1733 } 1734 return BPI->getEdgeProbability(SrcBB, DstBB); 1735 } 1736 1737 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1738 MachineBasicBlock *Dst, 1739 BranchProbability Prob) { 1740 if (!FuncInfo.BPI) 1741 Src->addSuccessorWithoutProb(Dst); 1742 else { 1743 if (Prob.isUnknown()) 1744 Prob = getEdgeProbability(Src, Dst); 1745 Src->addSuccessor(Dst, Prob); 1746 } 1747 } 1748 1749 static bool InBlock(const Value *V, const BasicBlock *BB) { 1750 if (const Instruction *I = dyn_cast<Instruction>(V)) 1751 return I->getParent() == BB; 1752 return true; 1753 } 1754 1755 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1756 /// This function emits a branch and is used at the leaves of an OR or an 1757 /// AND operator tree. 1758 void 1759 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1760 MachineBasicBlock *TBB, 1761 MachineBasicBlock *FBB, 1762 MachineBasicBlock *CurBB, 1763 MachineBasicBlock *SwitchBB, 1764 BranchProbability TProb, 1765 BranchProbability FProb, 1766 bool InvertCond) { 1767 const BasicBlock *BB = CurBB->getBasicBlock(); 1768 1769 // If the leaf of the tree is a comparison, merge the condition into 1770 // the caseblock. 1771 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1772 // The operands of the cmp have to be in this block. We don't know 1773 // how to export them from some other block. If this is the first block 1774 // of the sequence, no exporting is needed. 1775 if (CurBB == SwitchBB || 1776 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1777 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1778 ISD::CondCode Condition; 1779 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1780 ICmpInst::Predicate Pred = 1781 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1782 Condition = getICmpCondCode(Pred); 1783 } else { 1784 const FCmpInst *FC = cast<FCmpInst>(Cond); 1785 FCmpInst::Predicate Pred = 1786 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1787 Condition = getFCmpCondCode(Pred); 1788 if (TM.Options.NoNaNsFPMath) 1789 Condition = getFCmpCodeWithoutNaN(Condition); 1790 } 1791 1792 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1793 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1794 SwitchCases.push_back(CB); 1795 return; 1796 } 1797 } 1798 1799 // Create a CaseBlock record representing this branch. 1800 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1801 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1802 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1803 SwitchCases.push_back(CB); 1804 } 1805 1806 /// FindMergedConditions - If Cond is an expression like 1807 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1808 MachineBasicBlock *TBB, 1809 MachineBasicBlock *FBB, 1810 MachineBasicBlock *CurBB, 1811 MachineBasicBlock *SwitchBB, 1812 Instruction::BinaryOps Opc, 1813 BranchProbability TProb, 1814 BranchProbability FProb, 1815 bool InvertCond) { 1816 // Skip over not part of the tree and remember to invert op and operands at 1817 // next level. 1818 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1819 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1820 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1821 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1822 !InvertCond); 1823 return; 1824 } 1825 } 1826 1827 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1828 // Compute the effective opcode for Cond, taking into account whether it needs 1829 // to be inverted, e.g. 1830 // and (not (or A, B)), C 1831 // gets lowered as 1832 // and (and (not A, not B), C) 1833 unsigned BOpc = 0; 1834 if (BOp) { 1835 BOpc = BOp->getOpcode(); 1836 if (InvertCond) { 1837 if (BOpc == Instruction::And) 1838 BOpc = Instruction::Or; 1839 else if (BOpc == Instruction::Or) 1840 BOpc = Instruction::And; 1841 } 1842 } 1843 1844 // If this node is not part of the or/and tree, emit it as a branch. 1845 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1846 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1847 BOp->getParent() != CurBB->getBasicBlock() || 1848 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1849 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1850 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1851 TProb, FProb, InvertCond); 1852 return; 1853 } 1854 1855 // Create TmpBB after CurBB. 1856 MachineFunction::iterator BBI(CurBB); 1857 MachineFunction &MF = DAG.getMachineFunction(); 1858 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1859 CurBB->getParent()->insert(++BBI, TmpBB); 1860 1861 if (Opc == Instruction::Or) { 1862 // Codegen X | Y as: 1863 // BB1: 1864 // jmp_if_X TBB 1865 // jmp TmpBB 1866 // TmpBB: 1867 // jmp_if_Y TBB 1868 // jmp FBB 1869 // 1870 1871 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1872 // The requirement is that 1873 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1874 // = TrueProb for original BB. 1875 // Assuming the original probabilities are A and B, one choice is to set 1876 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1877 // A/(1+B) and 2B/(1+B). This choice assumes that 1878 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1879 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1880 // TmpBB, but the math is more complicated. 1881 1882 auto NewTrueProb = TProb / 2; 1883 auto NewFalseProb = TProb / 2 + FProb; 1884 // Emit the LHS condition. 1885 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1886 NewTrueProb, NewFalseProb, InvertCond); 1887 1888 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1889 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1890 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1891 // Emit the RHS condition into TmpBB. 1892 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1893 Probs[0], Probs[1], InvertCond); 1894 } else { 1895 assert(Opc == Instruction::And && "Unknown merge op!"); 1896 // Codegen X & Y as: 1897 // BB1: 1898 // jmp_if_X TmpBB 1899 // jmp FBB 1900 // TmpBB: 1901 // jmp_if_Y TBB 1902 // jmp FBB 1903 // 1904 // This requires creation of TmpBB after CurBB. 1905 1906 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1907 // The requirement is that 1908 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1909 // = FalseProb for original BB. 1910 // Assuming the original probabilities are A and B, one choice is to set 1911 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1912 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1913 // TrueProb for BB1 * FalseProb for TmpBB. 1914 1915 auto NewTrueProb = TProb + FProb / 2; 1916 auto NewFalseProb = FProb / 2; 1917 // Emit the LHS condition. 1918 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1919 NewTrueProb, NewFalseProb, InvertCond); 1920 1921 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1922 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1923 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1924 // Emit the RHS condition into TmpBB. 1925 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1926 Probs[0], Probs[1], InvertCond); 1927 } 1928 } 1929 1930 /// If the set of cases should be emitted as a series of branches, return true. 1931 /// If we should emit this as a bunch of and/or'd together conditions, return 1932 /// false. 1933 bool 1934 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1935 if (Cases.size() != 2) return true; 1936 1937 // If this is two comparisons of the same values or'd or and'd together, they 1938 // will get folded into a single comparison, so don't emit two blocks. 1939 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1940 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1941 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1942 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1943 return false; 1944 } 1945 1946 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1947 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1948 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1949 Cases[0].CC == Cases[1].CC && 1950 isa<Constant>(Cases[0].CmpRHS) && 1951 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1952 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1953 return false; 1954 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1955 return false; 1956 } 1957 1958 return true; 1959 } 1960 1961 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1962 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1963 1964 // Update machine-CFG edges. 1965 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1966 1967 if (I.isUnconditional()) { 1968 // Update machine-CFG edges. 1969 BrMBB->addSuccessor(Succ0MBB); 1970 1971 // If this is not a fall-through branch or optimizations are switched off, 1972 // emit the branch. 1973 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1974 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1975 MVT::Other, getControlRoot(), 1976 DAG.getBasicBlock(Succ0MBB))); 1977 1978 return; 1979 } 1980 1981 // If this condition is one of the special cases we handle, do special stuff 1982 // now. 1983 const Value *CondVal = I.getCondition(); 1984 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1985 1986 // If this is a series of conditions that are or'd or and'd together, emit 1987 // this as a sequence of branches instead of setcc's with and/or operations. 1988 // As long as jumps are not expensive, this should improve performance. 1989 // For example, instead of something like: 1990 // cmp A, B 1991 // C = seteq 1992 // cmp D, E 1993 // F = setle 1994 // or C, F 1995 // jnz foo 1996 // Emit: 1997 // cmp A, B 1998 // je foo 1999 // cmp D, E 2000 // jle foo 2001 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2002 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2003 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2004 !I.getMetadata(LLVMContext::MD_unpredictable) && 2005 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2006 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2007 Opcode, 2008 getEdgeProbability(BrMBB, Succ0MBB), 2009 getEdgeProbability(BrMBB, Succ1MBB), 2010 /*InvertCond=*/false); 2011 // If the compares in later blocks need to use values not currently 2012 // exported from this block, export them now. This block should always 2013 // be the first entry. 2014 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2015 2016 // Allow some cases to be rejected. 2017 if (ShouldEmitAsBranches(SwitchCases)) { 2018 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2019 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2020 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2021 } 2022 2023 // Emit the branch for this block. 2024 visitSwitchCase(SwitchCases[0], BrMBB); 2025 SwitchCases.erase(SwitchCases.begin()); 2026 return; 2027 } 2028 2029 // Okay, we decided not to do this, remove any inserted MBB's and clear 2030 // SwitchCases. 2031 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2032 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2033 2034 SwitchCases.clear(); 2035 } 2036 } 2037 2038 // Create a CaseBlock record representing this branch. 2039 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2040 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2041 2042 // Use visitSwitchCase to actually insert the fast branch sequence for this 2043 // cond branch. 2044 visitSwitchCase(CB, BrMBB); 2045 } 2046 2047 /// visitSwitchCase - Emits the necessary code to represent a single node in 2048 /// the binary search tree resulting from lowering a switch instruction. 2049 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2050 MachineBasicBlock *SwitchBB) { 2051 SDValue Cond; 2052 SDValue CondLHS = getValue(CB.CmpLHS); 2053 SDLoc dl = CB.DL; 2054 2055 // Build the setcc now. 2056 if (!CB.CmpMHS) { 2057 // Fold "(X == true)" to X and "(X == false)" to !X to 2058 // handle common cases produced by branch lowering. 2059 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2060 CB.CC == ISD::SETEQ) 2061 Cond = CondLHS; 2062 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2063 CB.CC == ISD::SETEQ) { 2064 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2065 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2066 } else 2067 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2068 } else { 2069 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2070 2071 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2072 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2073 2074 SDValue CmpOp = getValue(CB.CmpMHS); 2075 EVT VT = CmpOp.getValueType(); 2076 2077 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2078 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2079 ISD::SETLE); 2080 } else { 2081 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2082 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2083 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2084 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2085 } 2086 } 2087 2088 // Update successor info 2089 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2090 // TrueBB and FalseBB are always different unless the incoming IR is 2091 // degenerate. This only happens when running llc on weird IR. 2092 if (CB.TrueBB != CB.FalseBB) 2093 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2094 SwitchBB->normalizeSuccProbs(); 2095 2096 // If the lhs block is the next block, invert the condition so that we can 2097 // fall through to the lhs instead of the rhs block. 2098 if (CB.TrueBB == NextBlock(SwitchBB)) { 2099 std::swap(CB.TrueBB, CB.FalseBB); 2100 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2101 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2102 } 2103 2104 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2105 MVT::Other, getControlRoot(), Cond, 2106 DAG.getBasicBlock(CB.TrueBB)); 2107 2108 // Insert the false branch. Do this even if it's a fall through branch, 2109 // this makes it easier to do DAG optimizations which require inverting 2110 // the branch condition. 2111 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2112 DAG.getBasicBlock(CB.FalseBB)); 2113 2114 DAG.setRoot(BrCond); 2115 } 2116 2117 /// visitJumpTable - Emit JumpTable node in the current MBB 2118 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2119 // Emit the code for the jump table 2120 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2121 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2122 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2123 JT.Reg, PTy); 2124 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2125 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2126 MVT::Other, Index.getValue(1), 2127 Table, Index); 2128 DAG.setRoot(BrJumpTable); 2129 } 2130 2131 /// visitJumpTableHeader - This function emits necessary code to produce index 2132 /// in the JumpTable from switch case. 2133 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2134 JumpTableHeader &JTH, 2135 MachineBasicBlock *SwitchBB) { 2136 SDLoc dl = getCurSDLoc(); 2137 2138 // Subtract the lowest switch case value from the value being switched on and 2139 // conditional branch to default mbb if the result is greater than the 2140 // difference between smallest and largest cases. 2141 SDValue SwitchOp = getValue(JTH.SValue); 2142 EVT VT = SwitchOp.getValueType(); 2143 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2144 DAG.getConstant(JTH.First, dl, VT)); 2145 2146 // The SDNode we just created, which holds the value being switched on minus 2147 // the smallest case value, needs to be copied to a virtual register so it 2148 // can be used as an index into the jump table in a subsequent basic block. 2149 // This value may be smaller or larger than the target's pointer type, and 2150 // therefore require extension or truncating. 2151 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2152 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2153 2154 unsigned JumpTableReg = 2155 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2156 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2157 JumpTableReg, SwitchOp); 2158 JT.Reg = JumpTableReg; 2159 2160 // Emit the range check for the jump table, and branch to the default block 2161 // for the switch statement if the value being switched on exceeds the largest 2162 // case in the switch. 2163 SDValue CMP = DAG.getSetCC( 2164 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2165 Sub.getValueType()), 2166 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2167 2168 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2169 MVT::Other, CopyTo, CMP, 2170 DAG.getBasicBlock(JT.Default)); 2171 2172 // Avoid emitting unnecessary branches to the next block. 2173 if (JT.MBB != NextBlock(SwitchBB)) 2174 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2175 DAG.getBasicBlock(JT.MBB)); 2176 2177 DAG.setRoot(BrCond); 2178 } 2179 2180 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2181 /// variable if there exists one. 2182 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2183 SDValue &Chain) { 2184 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2185 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2186 MachineFunction &MF = DAG.getMachineFunction(); 2187 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2188 MachineSDNode *Node = 2189 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2190 if (Global) { 2191 MachinePointerInfo MPInfo(Global); 2192 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2193 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2194 MachineMemOperand::MODereferenceable; 2195 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2196 DAG.getEVTAlignment(PtrTy)); 2197 Node->setMemRefs(MemRefs, MemRefs + 1); 2198 } 2199 return SDValue(Node, 0); 2200 } 2201 2202 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2203 /// tail spliced into a stack protector check success bb. 2204 /// 2205 /// For a high level explanation of how this fits into the stack protector 2206 /// generation see the comment on the declaration of class 2207 /// StackProtectorDescriptor. 2208 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2209 MachineBasicBlock *ParentBB) { 2210 2211 // First create the loads to the guard/stack slot for the comparison. 2212 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2213 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2214 2215 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2216 int FI = MFI.getStackProtectorIndex(); 2217 2218 SDValue Guard; 2219 SDLoc dl = getCurSDLoc(); 2220 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2221 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2222 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2223 2224 // Generate code to load the content of the guard slot. 2225 SDValue GuardVal = DAG.getLoad( 2226 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2227 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2228 MachineMemOperand::MOVolatile); 2229 2230 if (TLI.useStackGuardXorFP()) 2231 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2232 2233 // Retrieve guard check function, nullptr if instrumentation is inlined. 2234 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2235 // The target provides a guard check function to validate the guard value. 2236 // Generate a call to that function with the content of the guard slot as 2237 // argument. 2238 auto *Fn = cast<Function>(GuardCheck); 2239 FunctionType *FnTy = Fn->getFunctionType(); 2240 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2241 2242 TargetLowering::ArgListTy Args; 2243 TargetLowering::ArgListEntry Entry; 2244 Entry.Node = GuardVal; 2245 Entry.Ty = FnTy->getParamType(0); 2246 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2247 Entry.IsInReg = true; 2248 Args.push_back(Entry); 2249 2250 TargetLowering::CallLoweringInfo CLI(DAG); 2251 CLI.setDebugLoc(getCurSDLoc()) 2252 .setChain(DAG.getEntryNode()) 2253 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2254 getValue(GuardCheck), std::move(Args)); 2255 2256 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2257 DAG.setRoot(Result.second); 2258 return; 2259 } 2260 2261 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2262 // Otherwise, emit a volatile load to retrieve the stack guard value. 2263 SDValue Chain = DAG.getEntryNode(); 2264 if (TLI.useLoadStackGuardNode()) { 2265 Guard = getLoadStackGuard(DAG, dl, Chain); 2266 } else { 2267 const Value *IRGuard = TLI.getSDagStackGuard(M); 2268 SDValue GuardPtr = getValue(IRGuard); 2269 2270 Guard = 2271 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2272 Align, MachineMemOperand::MOVolatile); 2273 } 2274 2275 // Perform the comparison via a subtract/getsetcc. 2276 EVT VT = Guard.getValueType(); 2277 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2278 2279 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2280 *DAG.getContext(), 2281 Sub.getValueType()), 2282 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2283 2284 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2285 // branch to failure MBB. 2286 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2287 MVT::Other, GuardVal.getOperand(0), 2288 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2289 // Otherwise branch to success MBB. 2290 SDValue Br = DAG.getNode(ISD::BR, dl, 2291 MVT::Other, BrCond, 2292 DAG.getBasicBlock(SPD.getSuccessMBB())); 2293 2294 DAG.setRoot(Br); 2295 } 2296 2297 /// Codegen the failure basic block for a stack protector check. 2298 /// 2299 /// A failure stack protector machine basic block consists simply of a call to 2300 /// __stack_chk_fail(). 2301 /// 2302 /// For a high level explanation of how this fits into the stack protector 2303 /// generation see the comment on the declaration of class 2304 /// StackProtectorDescriptor. 2305 void 2306 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2307 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2308 SDValue Chain = 2309 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2310 None, false, getCurSDLoc(), false, false).second; 2311 DAG.setRoot(Chain); 2312 } 2313 2314 /// visitBitTestHeader - This function emits necessary code to produce value 2315 /// suitable for "bit tests" 2316 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2317 MachineBasicBlock *SwitchBB) { 2318 SDLoc dl = getCurSDLoc(); 2319 2320 // Subtract the minimum value 2321 SDValue SwitchOp = getValue(B.SValue); 2322 EVT VT = SwitchOp.getValueType(); 2323 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2324 DAG.getConstant(B.First, dl, VT)); 2325 2326 // Check range 2327 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2328 SDValue RangeCmp = DAG.getSetCC( 2329 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2330 Sub.getValueType()), 2331 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2332 2333 // Determine the type of the test operands. 2334 bool UsePtrType = false; 2335 if (!TLI.isTypeLegal(VT)) 2336 UsePtrType = true; 2337 else { 2338 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2339 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2340 // Switch table case range are encoded into series of masks. 2341 // Just use pointer type, it's guaranteed to fit. 2342 UsePtrType = true; 2343 break; 2344 } 2345 } 2346 if (UsePtrType) { 2347 VT = TLI.getPointerTy(DAG.getDataLayout()); 2348 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2349 } 2350 2351 B.RegVT = VT.getSimpleVT(); 2352 B.Reg = FuncInfo.CreateReg(B.RegVT); 2353 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2354 2355 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2356 2357 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2358 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2359 SwitchBB->normalizeSuccProbs(); 2360 2361 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2362 MVT::Other, CopyTo, RangeCmp, 2363 DAG.getBasicBlock(B.Default)); 2364 2365 // Avoid emitting unnecessary branches to the next block. 2366 if (MBB != NextBlock(SwitchBB)) 2367 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2368 DAG.getBasicBlock(MBB)); 2369 2370 DAG.setRoot(BrRange); 2371 } 2372 2373 /// visitBitTestCase - this function produces one "bit test" 2374 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2375 MachineBasicBlock* NextMBB, 2376 BranchProbability BranchProbToNext, 2377 unsigned Reg, 2378 BitTestCase &B, 2379 MachineBasicBlock *SwitchBB) { 2380 SDLoc dl = getCurSDLoc(); 2381 MVT VT = BB.RegVT; 2382 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2383 SDValue Cmp; 2384 unsigned PopCount = countPopulation(B.Mask); 2385 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2386 if (PopCount == 1) { 2387 // Testing for a single bit; just compare the shift count with what it 2388 // would need to be to shift a 1 bit in that position. 2389 Cmp = DAG.getSetCC( 2390 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2391 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2392 ISD::SETEQ); 2393 } else if (PopCount == BB.Range) { 2394 // There is only one zero bit in the range, test for it directly. 2395 Cmp = DAG.getSetCC( 2396 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2397 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2398 ISD::SETNE); 2399 } else { 2400 // Make desired shift 2401 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2402 DAG.getConstant(1, dl, VT), ShiftOp); 2403 2404 // Emit bit tests and jumps 2405 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2406 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2407 Cmp = DAG.getSetCC( 2408 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2409 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2410 } 2411 2412 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2413 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2414 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2415 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2416 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2417 // one as they are relative probabilities (and thus work more like weights), 2418 // and hence we need to normalize them to let the sum of them become one. 2419 SwitchBB->normalizeSuccProbs(); 2420 2421 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2422 MVT::Other, getControlRoot(), 2423 Cmp, DAG.getBasicBlock(B.TargetBB)); 2424 2425 // Avoid emitting unnecessary branches to the next block. 2426 if (NextMBB != NextBlock(SwitchBB)) 2427 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2428 DAG.getBasicBlock(NextMBB)); 2429 2430 DAG.setRoot(BrAnd); 2431 } 2432 2433 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2434 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2435 2436 // Retrieve successors. Look through artificial IR level blocks like 2437 // catchswitch for successors. 2438 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2439 const BasicBlock *EHPadBB = I.getSuccessor(1); 2440 2441 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2442 // have to do anything here to lower funclet bundles. 2443 assert(!I.hasOperandBundlesOtherThan( 2444 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2445 "Cannot lower invokes with arbitrary operand bundles yet!"); 2446 2447 const Value *Callee(I.getCalledValue()); 2448 const Function *Fn = dyn_cast<Function>(Callee); 2449 if (isa<InlineAsm>(Callee)) 2450 visitInlineAsm(&I); 2451 else if (Fn && Fn->isIntrinsic()) { 2452 switch (Fn->getIntrinsicID()) { 2453 default: 2454 llvm_unreachable("Cannot invoke this intrinsic"); 2455 case Intrinsic::donothing: 2456 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2457 break; 2458 case Intrinsic::experimental_patchpoint_void: 2459 case Intrinsic::experimental_patchpoint_i64: 2460 visitPatchpoint(&I, EHPadBB); 2461 break; 2462 case Intrinsic::experimental_gc_statepoint: 2463 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2464 break; 2465 } 2466 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2467 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2468 // Eventually we will support lowering the @llvm.experimental.deoptimize 2469 // intrinsic, and right now there are no plans to support other intrinsics 2470 // with deopt state. 2471 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2472 } else { 2473 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2474 } 2475 2476 // If the value of the invoke is used outside of its defining block, make it 2477 // available as a virtual register. 2478 // We already took care of the exported value for the statepoint instruction 2479 // during call to the LowerStatepoint. 2480 if (!isStatepoint(I)) { 2481 CopyToExportRegsIfNeeded(&I); 2482 } 2483 2484 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2485 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2486 BranchProbability EHPadBBProb = 2487 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2488 : BranchProbability::getZero(); 2489 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2490 2491 // Update successor info. 2492 addSuccessorWithProb(InvokeMBB, Return); 2493 for (auto &UnwindDest : UnwindDests) { 2494 UnwindDest.first->setIsEHPad(); 2495 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2496 } 2497 InvokeMBB->normalizeSuccProbs(); 2498 2499 // Drop into normal successor. 2500 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2501 MVT::Other, getControlRoot(), 2502 DAG.getBasicBlock(Return))); 2503 } 2504 2505 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2506 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2507 } 2508 2509 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2510 assert(FuncInfo.MBB->isEHPad() && 2511 "Call to landingpad not in landing pad!"); 2512 2513 MachineBasicBlock *MBB = FuncInfo.MBB; 2514 addLandingPadInfo(LP, *MBB); 2515 2516 // If there aren't registers to copy the values into (e.g., during SjLj 2517 // exceptions), then don't bother to create these DAG nodes. 2518 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2519 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2520 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2521 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2522 return; 2523 2524 // If landingpad's return type is token type, we don't create DAG nodes 2525 // for its exception pointer and selector value. The extraction of exception 2526 // pointer or selector value from token type landingpads is not currently 2527 // supported. 2528 if (LP.getType()->isTokenTy()) 2529 return; 2530 2531 SmallVector<EVT, 2> ValueVTs; 2532 SDLoc dl = getCurSDLoc(); 2533 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2534 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2535 2536 // Get the two live-in registers as SDValues. The physregs have already been 2537 // copied into virtual registers. 2538 SDValue Ops[2]; 2539 if (FuncInfo.ExceptionPointerVirtReg) { 2540 Ops[0] = DAG.getZExtOrTrunc( 2541 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2542 FuncInfo.ExceptionPointerVirtReg, 2543 TLI.getPointerTy(DAG.getDataLayout())), 2544 dl, ValueVTs[0]); 2545 } else { 2546 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2547 } 2548 Ops[1] = DAG.getZExtOrTrunc( 2549 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2550 FuncInfo.ExceptionSelectorVirtReg, 2551 TLI.getPointerTy(DAG.getDataLayout())), 2552 dl, ValueVTs[1]); 2553 2554 // Merge into one. 2555 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2556 DAG.getVTList(ValueVTs), Ops); 2557 setValue(&LP, Res); 2558 } 2559 2560 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2561 #ifndef NDEBUG 2562 for (const CaseCluster &CC : Clusters) 2563 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2564 #endif 2565 2566 llvm::sort(Clusters.begin(), Clusters.end(), 2567 [](const CaseCluster &a, const CaseCluster &b) { 2568 return a.Low->getValue().slt(b.Low->getValue()); 2569 }); 2570 2571 // Merge adjacent clusters with the same destination. 2572 const unsigned N = Clusters.size(); 2573 unsigned DstIndex = 0; 2574 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2575 CaseCluster &CC = Clusters[SrcIndex]; 2576 const ConstantInt *CaseVal = CC.Low; 2577 MachineBasicBlock *Succ = CC.MBB; 2578 2579 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2580 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2581 // If this case has the same successor and is a neighbour, merge it into 2582 // the previous cluster. 2583 Clusters[DstIndex - 1].High = CaseVal; 2584 Clusters[DstIndex - 1].Prob += CC.Prob; 2585 } else { 2586 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2587 sizeof(Clusters[SrcIndex])); 2588 } 2589 } 2590 Clusters.resize(DstIndex); 2591 } 2592 2593 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2594 MachineBasicBlock *Last) { 2595 // Update JTCases. 2596 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2597 if (JTCases[i].first.HeaderBB == First) 2598 JTCases[i].first.HeaderBB = Last; 2599 2600 // Update BitTestCases. 2601 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2602 if (BitTestCases[i].Parent == First) 2603 BitTestCases[i].Parent = Last; 2604 } 2605 2606 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2607 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2608 2609 // Update machine-CFG edges with unique successors. 2610 SmallSet<BasicBlock*, 32> Done; 2611 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2612 BasicBlock *BB = I.getSuccessor(i); 2613 bool Inserted = Done.insert(BB).second; 2614 if (!Inserted) 2615 continue; 2616 2617 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2618 addSuccessorWithProb(IndirectBrMBB, Succ); 2619 } 2620 IndirectBrMBB->normalizeSuccProbs(); 2621 2622 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2623 MVT::Other, getControlRoot(), 2624 getValue(I.getAddress()))); 2625 } 2626 2627 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2628 if (DAG.getTarget().Options.TrapUnreachable) 2629 DAG.setRoot( 2630 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2631 } 2632 2633 void SelectionDAGBuilder::visitFSub(const User &I) { 2634 // -0.0 - X --> fneg 2635 Type *Ty = I.getType(); 2636 if (isa<Constant>(I.getOperand(0)) && 2637 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2638 SDValue Op2 = getValue(I.getOperand(1)); 2639 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2640 Op2.getValueType(), Op2)); 2641 return; 2642 } 2643 2644 visitBinary(I, ISD::FSUB); 2645 } 2646 2647 /// Checks if the given instruction performs a vector reduction, in which case 2648 /// we have the freedom to alter the elements in the result as long as the 2649 /// reduction of them stays unchanged. 2650 static bool isVectorReductionOp(const User *I) { 2651 const Instruction *Inst = dyn_cast<Instruction>(I); 2652 if (!Inst || !Inst->getType()->isVectorTy()) 2653 return false; 2654 2655 auto OpCode = Inst->getOpcode(); 2656 switch (OpCode) { 2657 case Instruction::Add: 2658 case Instruction::Mul: 2659 case Instruction::And: 2660 case Instruction::Or: 2661 case Instruction::Xor: 2662 break; 2663 case Instruction::FAdd: 2664 case Instruction::FMul: 2665 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2666 if (FPOp->getFastMathFlags().isFast()) 2667 break; 2668 LLVM_FALLTHROUGH; 2669 default: 2670 return false; 2671 } 2672 2673 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2674 unsigned ElemNumToReduce = ElemNum; 2675 2676 // Do DFS search on the def-use chain from the given instruction. We only 2677 // allow four kinds of operations during the search until we reach the 2678 // instruction that extracts the first element from the vector: 2679 // 2680 // 1. The reduction operation of the same opcode as the given instruction. 2681 // 2682 // 2. PHI node. 2683 // 2684 // 3. ShuffleVector instruction together with a reduction operation that 2685 // does a partial reduction. 2686 // 2687 // 4. ExtractElement that extracts the first element from the vector, and we 2688 // stop searching the def-use chain here. 2689 // 2690 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2691 // from 1-3 to the stack to continue the DFS. The given instruction is not 2692 // a reduction operation if we meet any other instructions other than those 2693 // listed above. 2694 2695 SmallVector<const User *, 16> UsersToVisit{Inst}; 2696 SmallPtrSet<const User *, 16> Visited; 2697 bool ReduxExtracted = false; 2698 2699 while (!UsersToVisit.empty()) { 2700 auto User = UsersToVisit.back(); 2701 UsersToVisit.pop_back(); 2702 if (!Visited.insert(User).second) 2703 continue; 2704 2705 for (const auto &U : User->users()) { 2706 auto Inst = dyn_cast<Instruction>(U); 2707 if (!Inst) 2708 return false; 2709 2710 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2711 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2712 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2713 return false; 2714 UsersToVisit.push_back(U); 2715 } else if (const ShuffleVectorInst *ShufInst = 2716 dyn_cast<ShuffleVectorInst>(U)) { 2717 // Detect the following pattern: A ShuffleVector instruction together 2718 // with a reduction that do partial reduction on the first and second 2719 // ElemNumToReduce / 2 elements, and store the result in 2720 // ElemNumToReduce / 2 elements in another vector. 2721 2722 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2723 if (ResultElements < ElemNum) 2724 return false; 2725 2726 if (ElemNumToReduce == 1) 2727 return false; 2728 if (!isa<UndefValue>(U->getOperand(1))) 2729 return false; 2730 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2731 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2732 return false; 2733 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2734 if (ShufInst->getMaskValue(i) != -1) 2735 return false; 2736 2737 // There is only one user of this ShuffleVector instruction, which 2738 // must be a reduction operation. 2739 if (!U->hasOneUse()) 2740 return false; 2741 2742 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2743 if (!U2 || U2->getOpcode() != OpCode) 2744 return false; 2745 2746 // Check operands of the reduction operation. 2747 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2748 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2749 UsersToVisit.push_back(U2); 2750 ElemNumToReduce /= 2; 2751 } else 2752 return false; 2753 } else if (isa<ExtractElementInst>(U)) { 2754 // At this moment we should have reduced all elements in the vector. 2755 if (ElemNumToReduce != 1) 2756 return false; 2757 2758 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2759 if (!Val || Val->getZExtValue() != 0) 2760 return false; 2761 2762 ReduxExtracted = true; 2763 } else 2764 return false; 2765 } 2766 } 2767 return ReduxExtracted; 2768 } 2769 2770 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2771 SDNodeFlags Flags; 2772 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2773 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2774 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2775 } 2776 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 2777 Flags.setExact(ExactOp->isExact()); 2778 } 2779 if (isVectorReductionOp(&I)) { 2780 Flags.setVectorReduction(true); 2781 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2782 } 2783 2784 SDValue Op1 = getValue(I.getOperand(0)); 2785 SDValue Op2 = getValue(I.getOperand(1)); 2786 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2787 Op1, Op2, Flags); 2788 setValue(&I, BinNodeValue); 2789 } 2790 2791 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2792 SDValue Op1 = getValue(I.getOperand(0)); 2793 SDValue Op2 = getValue(I.getOperand(1)); 2794 2795 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2796 Op2.getValueType(), DAG.getDataLayout()); 2797 2798 // Coerce the shift amount to the right type if we can. 2799 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2800 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2801 unsigned Op2Size = Op2.getValueSizeInBits(); 2802 SDLoc DL = getCurSDLoc(); 2803 2804 // If the operand is smaller than the shift count type, promote it. 2805 if (ShiftSize > Op2Size) 2806 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2807 2808 // If the operand is larger than the shift count type but the shift 2809 // count type has enough bits to represent any shift value, truncate 2810 // it now. This is a common case and it exposes the truncate to 2811 // optimization early. 2812 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2813 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2814 // Otherwise we'll need to temporarily settle for some other convenient 2815 // type. Type legalization will make adjustments once the shiftee is split. 2816 else 2817 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2818 } 2819 2820 bool nuw = false; 2821 bool nsw = false; 2822 bool exact = false; 2823 2824 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2825 2826 if (const OverflowingBinaryOperator *OFBinOp = 2827 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2828 nuw = OFBinOp->hasNoUnsignedWrap(); 2829 nsw = OFBinOp->hasNoSignedWrap(); 2830 } 2831 if (const PossiblyExactOperator *ExactOp = 2832 dyn_cast<const PossiblyExactOperator>(&I)) 2833 exact = ExactOp->isExact(); 2834 } 2835 SDNodeFlags Flags; 2836 Flags.setExact(exact); 2837 Flags.setNoSignedWrap(nsw); 2838 Flags.setNoUnsignedWrap(nuw); 2839 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2840 Flags); 2841 setValue(&I, Res); 2842 } 2843 2844 void SelectionDAGBuilder::visitSDiv(const User &I) { 2845 SDValue Op1 = getValue(I.getOperand(0)); 2846 SDValue Op2 = getValue(I.getOperand(1)); 2847 2848 SDNodeFlags Flags; 2849 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2850 cast<PossiblyExactOperator>(&I)->isExact()); 2851 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2852 Op2, Flags)); 2853 } 2854 2855 void SelectionDAGBuilder::visitICmp(const User &I) { 2856 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2857 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2858 predicate = IC->getPredicate(); 2859 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2860 predicate = ICmpInst::Predicate(IC->getPredicate()); 2861 SDValue Op1 = getValue(I.getOperand(0)); 2862 SDValue Op2 = getValue(I.getOperand(1)); 2863 ISD::CondCode Opcode = getICmpCondCode(predicate); 2864 2865 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2866 I.getType()); 2867 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2868 } 2869 2870 void SelectionDAGBuilder::visitFCmp(const User &I) { 2871 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2872 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2873 predicate = FC->getPredicate(); 2874 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2875 predicate = FCmpInst::Predicate(FC->getPredicate()); 2876 SDValue Op1 = getValue(I.getOperand(0)); 2877 SDValue Op2 = getValue(I.getOperand(1)); 2878 2879 ISD::CondCode Condition = getFCmpCondCode(predicate); 2880 auto *FPMO = dyn_cast<FPMathOperator>(&I); 2881 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 2882 Condition = getFCmpCodeWithoutNaN(Condition); 2883 2884 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2885 I.getType()); 2886 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2887 } 2888 2889 // Check if the condition of the select has one use or two users that are both 2890 // selects with the same condition. 2891 static bool hasOnlySelectUsers(const Value *Cond) { 2892 return llvm::all_of(Cond->users(), [](const Value *V) { 2893 return isa<SelectInst>(V); 2894 }); 2895 } 2896 2897 void SelectionDAGBuilder::visitSelect(const User &I) { 2898 SmallVector<EVT, 4> ValueVTs; 2899 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2900 ValueVTs); 2901 unsigned NumValues = ValueVTs.size(); 2902 if (NumValues == 0) return; 2903 2904 SmallVector<SDValue, 4> Values(NumValues); 2905 SDValue Cond = getValue(I.getOperand(0)); 2906 SDValue LHSVal = getValue(I.getOperand(1)); 2907 SDValue RHSVal = getValue(I.getOperand(2)); 2908 auto BaseOps = {Cond}; 2909 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2910 ISD::VSELECT : ISD::SELECT; 2911 2912 // Min/max matching is only viable if all output VTs are the same. 2913 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2914 EVT VT = ValueVTs[0]; 2915 LLVMContext &Ctx = *DAG.getContext(); 2916 auto &TLI = DAG.getTargetLoweringInfo(); 2917 2918 // We care about the legality of the operation after it has been type 2919 // legalized. 2920 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2921 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2922 VT = TLI.getTypeToTransformTo(Ctx, VT); 2923 2924 // If the vselect is legal, assume we want to leave this as a vector setcc + 2925 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2926 // min/max is legal on the scalar type. 2927 bool UseScalarMinMax = VT.isVector() && 2928 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2929 2930 Value *LHS, *RHS; 2931 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2932 ISD::NodeType Opc = ISD::DELETED_NODE; 2933 switch (SPR.Flavor) { 2934 case SPF_UMAX: Opc = ISD::UMAX; break; 2935 case SPF_UMIN: Opc = ISD::UMIN; break; 2936 case SPF_SMAX: Opc = ISD::SMAX; break; 2937 case SPF_SMIN: Opc = ISD::SMIN; break; 2938 case SPF_FMINNUM: 2939 switch (SPR.NaNBehavior) { 2940 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2941 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2942 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2943 case SPNB_RETURNS_ANY: { 2944 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2945 Opc = ISD::FMINNUM; 2946 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2947 Opc = ISD::FMINNAN; 2948 else if (UseScalarMinMax) 2949 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2950 ISD::FMINNUM : ISD::FMINNAN; 2951 break; 2952 } 2953 } 2954 break; 2955 case SPF_FMAXNUM: 2956 switch (SPR.NaNBehavior) { 2957 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2958 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2959 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2960 case SPNB_RETURNS_ANY: 2961 2962 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2963 Opc = ISD::FMAXNUM; 2964 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2965 Opc = ISD::FMAXNAN; 2966 else if (UseScalarMinMax) 2967 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2968 ISD::FMAXNUM : ISD::FMAXNAN; 2969 break; 2970 } 2971 break; 2972 default: break; 2973 } 2974 2975 if (Opc != ISD::DELETED_NODE && 2976 (TLI.isOperationLegalOrCustom(Opc, VT) || 2977 (UseScalarMinMax && 2978 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2979 // If the underlying comparison instruction is used by any other 2980 // instruction, the consumed instructions won't be destroyed, so it is 2981 // not profitable to convert to a min/max. 2982 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2983 OpCode = Opc; 2984 LHSVal = getValue(LHS); 2985 RHSVal = getValue(RHS); 2986 BaseOps = {}; 2987 } 2988 } 2989 2990 for (unsigned i = 0; i != NumValues; ++i) { 2991 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2992 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2993 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2994 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2995 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2996 Ops); 2997 } 2998 2999 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3000 DAG.getVTList(ValueVTs), Values)); 3001 } 3002 3003 void SelectionDAGBuilder::visitTrunc(const User &I) { 3004 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3005 SDValue N = getValue(I.getOperand(0)); 3006 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3007 I.getType()); 3008 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3009 } 3010 3011 void SelectionDAGBuilder::visitZExt(const User &I) { 3012 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3013 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3014 SDValue N = getValue(I.getOperand(0)); 3015 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3016 I.getType()); 3017 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3018 } 3019 3020 void SelectionDAGBuilder::visitSExt(const User &I) { 3021 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3022 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3023 SDValue N = getValue(I.getOperand(0)); 3024 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3025 I.getType()); 3026 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3027 } 3028 3029 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3030 // FPTrunc is never a no-op cast, no need to check 3031 SDValue N = getValue(I.getOperand(0)); 3032 SDLoc dl = getCurSDLoc(); 3033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3034 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3035 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3036 DAG.getTargetConstant( 3037 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3038 } 3039 3040 void SelectionDAGBuilder::visitFPExt(const User &I) { 3041 // FPExt is never a no-op cast, no need to check 3042 SDValue N = getValue(I.getOperand(0)); 3043 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3044 I.getType()); 3045 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3046 } 3047 3048 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3049 // FPToUI is never a no-op cast, no need to check 3050 SDValue N = getValue(I.getOperand(0)); 3051 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3052 I.getType()); 3053 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3054 } 3055 3056 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3057 // FPToSI is never a no-op cast, no need to check 3058 SDValue N = getValue(I.getOperand(0)); 3059 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3060 I.getType()); 3061 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3062 } 3063 3064 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3065 // UIToFP is never a no-op cast, no need to check 3066 SDValue N = getValue(I.getOperand(0)); 3067 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3068 I.getType()); 3069 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3070 } 3071 3072 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3073 // SIToFP is never a no-op cast, no need to check 3074 SDValue N = getValue(I.getOperand(0)); 3075 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3076 I.getType()); 3077 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3078 } 3079 3080 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3081 // What to do depends on the size of the integer and the size of the pointer. 3082 // We can either truncate, zero extend, or no-op, accordingly. 3083 SDValue N = getValue(I.getOperand(0)); 3084 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3085 I.getType()); 3086 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3087 } 3088 3089 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3090 // What to do depends on the size of the integer and the size of the pointer. 3091 // We can either truncate, zero extend, or no-op, accordingly. 3092 SDValue N = getValue(I.getOperand(0)); 3093 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3094 I.getType()); 3095 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3096 } 3097 3098 void SelectionDAGBuilder::visitBitCast(const User &I) { 3099 SDValue N = getValue(I.getOperand(0)); 3100 SDLoc dl = getCurSDLoc(); 3101 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3102 I.getType()); 3103 3104 // BitCast assures us that source and destination are the same size so this is 3105 // either a BITCAST or a no-op. 3106 if (DestVT != N.getValueType()) 3107 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3108 DestVT, N)); // convert types. 3109 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3110 // might fold any kind of constant expression to an integer constant and that 3111 // is not what we are looking for. Only recognize a bitcast of a genuine 3112 // constant integer as an opaque constant. 3113 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3114 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3115 /*isOpaque*/true)); 3116 else 3117 setValue(&I, N); // noop cast. 3118 } 3119 3120 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3122 const Value *SV = I.getOperand(0); 3123 SDValue N = getValue(SV); 3124 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3125 3126 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3127 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3128 3129 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3130 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3131 3132 setValue(&I, N); 3133 } 3134 3135 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3136 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3137 SDValue InVec = getValue(I.getOperand(0)); 3138 SDValue InVal = getValue(I.getOperand(1)); 3139 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3140 TLI.getVectorIdxTy(DAG.getDataLayout())); 3141 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3142 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3143 InVec, InVal, InIdx)); 3144 } 3145 3146 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3148 SDValue InVec = getValue(I.getOperand(0)); 3149 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3150 TLI.getVectorIdxTy(DAG.getDataLayout())); 3151 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3152 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3153 InVec, InIdx)); 3154 } 3155 3156 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3157 SDValue Src1 = getValue(I.getOperand(0)); 3158 SDValue Src2 = getValue(I.getOperand(1)); 3159 SDLoc DL = getCurSDLoc(); 3160 3161 SmallVector<int, 8> Mask; 3162 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3163 unsigned MaskNumElts = Mask.size(); 3164 3165 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3166 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3167 EVT SrcVT = Src1.getValueType(); 3168 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3169 3170 if (SrcNumElts == MaskNumElts) { 3171 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3172 return; 3173 } 3174 3175 // Normalize the shuffle vector since mask and vector length don't match. 3176 if (SrcNumElts < MaskNumElts) { 3177 // Mask is longer than the source vectors. We can use concatenate vector to 3178 // make the mask and vectors lengths match. 3179 3180 if (MaskNumElts % SrcNumElts == 0) { 3181 // Mask length is a multiple of the source vector length. 3182 // Check if the shuffle is some kind of concatenation of the input 3183 // vectors. 3184 unsigned NumConcat = MaskNumElts / SrcNumElts; 3185 bool IsConcat = true; 3186 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3187 for (unsigned i = 0; i != MaskNumElts; ++i) { 3188 int Idx = Mask[i]; 3189 if (Idx < 0) 3190 continue; 3191 // Ensure the indices in each SrcVT sized piece are sequential and that 3192 // the same source is used for the whole piece. 3193 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3194 (ConcatSrcs[i / SrcNumElts] >= 0 && 3195 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3196 IsConcat = false; 3197 break; 3198 } 3199 // Remember which source this index came from. 3200 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3201 } 3202 3203 // The shuffle is concatenating multiple vectors together. Just emit 3204 // a CONCAT_VECTORS operation. 3205 if (IsConcat) { 3206 SmallVector<SDValue, 8> ConcatOps; 3207 for (auto Src : ConcatSrcs) { 3208 if (Src < 0) 3209 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3210 else if (Src == 0) 3211 ConcatOps.push_back(Src1); 3212 else 3213 ConcatOps.push_back(Src2); 3214 } 3215 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3216 return; 3217 } 3218 } 3219 3220 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3221 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3222 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3223 PaddedMaskNumElts); 3224 3225 // Pad both vectors with undefs to make them the same length as the mask. 3226 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3227 3228 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3229 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3230 MOps1[0] = Src1; 3231 MOps2[0] = Src2; 3232 3233 Src1 = Src1.isUndef() 3234 ? DAG.getUNDEF(PaddedVT) 3235 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3236 Src2 = Src2.isUndef() 3237 ? DAG.getUNDEF(PaddedVT) 3238 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3239 3240 // Readjust mask for new input vector length. 3241 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3242 for (unsigned i = 0; i != MaskNumElts; ++i) { 3243 int Idx = Mask[i]; 3244 if (Idx >= (int)SrcNumElts) 3245 Idx -= SrcNumElts - PaddedMaskNumElts; 3246 MappedOps[i] = Idx; 3247 } 3248 3249 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3250 3251 // If the concatenated vector was padded, extract a subvector with the 3252 // correct number of elements. 3253 if (MaskNumElts != PaddedMaskNumElts) 3254 Result = DAG.getNode( 3255 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3256 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3257 3258 setValue(&I, Result); 3259 return; 3260 } 3261 3262 if (SrcNumElts > MaskNumElts) { 3263 // Analyze the access pattern of the vector to see if we can extract 3264 // two subvectors and do the shuffle. 3265 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3266 bool CanExtract = true; 3267 for (int Idx : Mask) { 3268 unsigned Input = 0; 3269 if (Idx < 0) 3270 continue; 3271 3272 if (Idx >= (int)SrcNumElts) { 3273 Input = 1; 3274 Idx -= SrcNumElts; 3275 } 3276 3277 // If all the indices come from the same MaskNumElts sized portion of 3278 // the sources we can use extract. Also make sure the extract wouldn't 3279 // extract past the end of the source. 3280 int NewStartIdx = alignDown(Idx, MaskNumElts); 3281 if (NewStartIdx + MaskNumElts > SrcNumElts || 3282 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3283 CanExtract = false; 3284 // Make sure we always update StartIdx as we use it to track if all 3285 // elements are undef. 3286 StartIdx[Input] = NewStartIdx; 3287 } 3288 3289 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3290 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3291 return; 3292 } 3293 if (CanExtract) { 3294 // Extract appropriate subvector and generate a vector shuffle 3295 for (unsigned Input = 0; Input < 2; ++Input) { 3296 SDValue &Src = Input == 0 ? Src1 : Src2; 3297 if (StartIdx[Input] < 0) 3298 Src = DAG.getUNDEF(VT); 3299 else { 3300 Src = DAG.getNode( 3301 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3302 DAG.getConstant(StartIdx[Input], DL, 3303 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3304 } 3305 } 3306 3307 // Calculate new mask. 3308 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3309 for (int &Idx : MappedOps) { 3310 if (Idx >= (int)SrcNumElts) 3311 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3312 else if (Idx >= 0) 3313 Idx -= StartIdx[0]; 3314 } 3315 3316 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3317 return; 3318 } 3319 } 3320 3321 // We can't use either concat vectors or extract subvectors so fall back to 3322 // replacing the shuffle with extract and build vector. 3323 // to insert and build vector. 3324 EVT EltVT = VT.getVectorElementType(); 3325 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3326 SmallVector<SDValue,8> Ops; 3327 for (int Idx : Mask) { 3328 SDValue Res; 3329 3330 if (Idx < 0) { 3331 Res = DAG.getUNDEF(EltVT); 3332 } else { 3333 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3334 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3335 3336 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3337 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3338 } 3339 3340 Ops.push_back(Res); 3341 } 3342 3343 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3344 } 3345 3346 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3347 ArrayRef<unsigned> Indices; 3348 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3349 Indices = IV->getIndices(); 3350 else 3351 Indices = cast<ConstantExpr>(&I)->getIndices(); 3352 3353 const Value *Op0 = I.getOperand(0); 3354 const Value *Op1 = I.getOperand(1); 3355 Type *AggTy = I.getType(); 3356 Type *ValTy = Op1->getType(); 3357 bool IntoUndef = isa<UndefValue>(Op0); 3358 bool FromUndef = isa<UndefValue>(Op1); 3359 3360 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3361 3362 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3363 SmallVector<EVT, 4> AggValueVTs; 3364 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3365 SmallVector<EVT, 4> ValValueVTs; 3366 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3367 3368 unsigned NumAggValues = AggValueVTs.size(); 3369 unsigned NumValValues = ValValueVTs.size(); 3370 SmallVector<SDValue, 4> Values(NumAggValues); 3371 3372 // Ignore an insertvalue that produces an empty object 3373 if (!NumAggValues) { 3374 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3375 return; 3376 } 3377 3378 SDValue Agg = getValue(Op0); 3379 unsigned i = 0; 3380 // Copy the beginning value(s) from the original aggregate. 3381 for (; i != LinearIndex; ++i) 3382 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3383 SDValue(Agg.getNode(), Agg.getResNo() + i); 3384 // Copy values from the inserted value(s). 3385 if (NumValValues) { 3386 SDValue Val = getValue(Op1); 3387 for (; i != LinearIndex + NumValValues; ++i) 3388 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3389 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3390 } 3391 // Copy remaining value(s) from the original aggregate. 3392 for (; i != NumAggValues; ++i) 3393 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3394 SDValue(Agg.getNode(), Agg.getResNo() + i); 3395 3396 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3397 DAG.getVTList(AggValueVTs), Values)); 3398 } 3399 3400 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3401 ArrayRef<unsigned> Indices; 3402 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3403 Indices = EV->getIndices(); 3404 else 3405 Indices = cast<ConstantExpr>(&I)->getIndices(); 3406 3407 const Value *Op0 = I.getOperand(0); 3408 Type *AggTy = Op0->getType(); 3409 Type *ValTy = I.getType(); 3410 bool OutOfUndef = isa<UndefValue>(Op0); 3411 3412 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3413 3414 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3415 SmallVector<EVT, 4> ValValueVTs; 3416 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3417 3418 unsigned NumValValues = ValValueVTs.size(); 3419 3420 // Ignore a extractvalue that produces an empty object 3421 if (!NumValValues) { 3422 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3423 return; 3424 } 3425 3426 SmallVector<SDValue, 4> Values(NumValValues); 3427 3428 SDValue Agg = getValue(Op0); 3429 // Copy out the selected value(s). 3430 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3431 Values[i - LinearIndex] = 3432 OutOfUndef ? 3433 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3434 SDValue(Agg.getNode(), Agg.getResNo() + i); 3435 3436 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3437 DAG.getVTList(ValValueVTs), Values)); 3438 } 3439 3440 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3441 Value *Op0 = I.getOperand(0); 3442 // Note that the pointer operand may be a vector of pointers. Take the scalar 3443 // element which holds a pointer. 3444 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3445 SDValue N = getValue(Op0); 3446 SDLoc dl = getCurSDLoc(); 3447 3448 // Normalize Vector GEP - all scalar operands should be converted to the 3449 // splat vector. 3450 unsigned VectorWidth = I.getType()->isVectorTy() ? 3451 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3452 3453 if (VectorWidth && !N.getValueType().isVector()) { 3454 LLVMContext &Context = *DAG.getContext(); 3455 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3456 N = DAG.getSplatBuildVector(VT, dl, N); 3457 } 3458 3459 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3460 GTI != E; ++GTI) { 3461 const Value *Idx = GTI.getOperand(); 3462 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3463 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3464 if (Field) { 3465 // N = N + Offset 3466 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3467 3468 // In an inbounds GEP with an offset that is nonnegative even when 3469 // interpreted as signed, assume there is no unsigned overflow. 3470 SDNodeFlags Flags; 3471 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3472 Flags.setNoUnsignedWrap(true); 3473 3474 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3475 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3476 } 3477 } else { 3478 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3479 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3480 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3481 3482 // If this is a scalar constant or a splat vector of constants, 3483 // handle it quickly. 3484 const auto *CI = dyn_cast<ConstantInt>(Idx); 3485 if (!CI && isa<ConstantDataVector>(Idx) && 3486 cast<ConstantDataVector>(Idx)->getSplatValue()) 3487 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3488 3489 if (CI) { 3490 if (CI->isZero()) 3491 continue; 3492 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3493 LLVMContext &Context = *DAG.getContext(); 3494 SDValue OffsVal = VectorWidth ? 3495 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3496 DAG.getConstant(Offs, dl, IdxTy); 3497 3498 // In an inbouds GEP with an offset that is nonnegative even when 3499 // interpreted as signed, assume there is no unsigned overflow. 3500 SDNodeFlags Flags; 3501 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3502 Flags.setNoUnsignedWrap(true); 3503 3504 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3505 continue; 3506 } 3507 3508 // N = N + Idx * ElementSize; 3509 SDValue IdxN = getValue(Idx); 3510 3511 if (!IdxN.getValueType().isVector() && VectorWidth) { 3512 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3513 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3514 } 3515 3516 // If the index is smaller or larger than intptr_t, truncate or extend 3517 // it. 3518 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3519 3520 // If this is a multiply by a power of two, turn it into a shl 3521 // immediately. This is a very common case. 3522 if (ElementSize != 1) { 3523 if (ElementSize.isPowerOf2()) { 3524 unsigned Amt = ElementSize.logBase2(); 3525 IdxN = DAG.getNode(ISD::SHL, dl, 3526 N.getValueType(), IdxN, 3527 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3528 } else { 3529 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3530 IdxN = DAG.getNode(ISD::MUL, dl, 3531 N.getValueType(), IdxN, Scale); 3532 } 3533 } 3534 3535 N = DAG.getNode(ISD::ADD, dl, 3536 N.getValueType(), N, IdxN); 3537 } 3538 } 3539 3540 setValue(&I, N); 3541 } 3542 3543 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3544 // If this is a fixed sized alloca in the entry block of the function, 3545 // allocate it statically on the stack. 3546 if (FuncInfo.StaticAllocaMap.count(&I)) 3547 return; // getValue will auto-populate this. 3548 3549 SDLoc dl = getCurSDLoc(); 3550 Type *Ty = I.getAllocatedType(); 3551 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3552 auto &DL = DAG.getDataLayout(); 3553 uint64_t TySize = DL.getTypeAllocSize(Ty); 3554 unsigned Align = 3555 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3556 3557 SDValue AllocSize = getValue(I.getArraySize()); 3558 3559 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3560 if (AllocSize.getValueType() != IntPtr) 3561 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3562 3563 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3564 AllocSize, 3565 DAG.getConstant(TySize, dl, IntPtr)); 3566 3567 // Handle alignment. If the requested alignment is less than or equal to 3568 // the stack alignment, ignore it. If the size is greater than or equal to 3569 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3570 unsigned StackAlign = 3571 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3572 if (Align <= StackAlign) 3573 Align = 0; 3574 3575 // Round the size of the allocation up to the stack alignment size 3576 // by add SA-1 to the size. This doesn't overflow because we're computing 3577 // an address inside an alloca. 3578 SDNodeFlags Flags; 3579 Flags.setNoUnsignedWrap(true); 3580 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3581 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3582 3583 // Mask out the low bits for alignment purposes. 3584 AllocSize = 3585 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3586 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3587 3588 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3589 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3590 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3591 setValue(&I, DSA); 3592 DAG.setRoot(DSA.getValue(1)); 3593 3594 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3595 } 3596 3597 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3598 if (I.isAtomic()) 3599 return visitAtomicLoad(I); 3600 3601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3602 const Value *SV = I.getOperand(0); 3603 if (TLI.supportSwiftError()) { 3604 // Swifterror values can come from either a function parameter with 3605 // swifterror attribute or an alloca with swifterror attribute. 3606 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3607 if (Arg->hasSwiftErrorAttr()) 3608 return visitLoadFromSwiftError(I); 3609 } 3610 3611 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3612 if (Alloca->isSwiftError()) 3613 return visitLoadFromSwiftError(I); 3614 } 3615 } 3616 3617 SDValue Ptr = getValue(SV); 3618 3619 Type *Ty = I.getType(); 3620 3621 bool isVolatile = I.isVolatile(); 3622 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3623 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3624 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3625 unsigned Alignment = I.getAlignment(); 3626 3627 AAMDNodes AAInfo; 3628 I.getAAMetadata(AAInfo); 3629 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3630 3631 SmallVector<EVT, 4> ValueVTs; 3632 SmallVector<uint64_t, 4> Offsets; 3633 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3634 unsigned NumValues = ValueVTs.size(); 3635 if (NumValues == 0) 3636 return; 3637 3638 SDValue Root; 3639 bool ConstantMemory = false; 3640 if (isVolatile || NumValues > MaxParallelChains) 3641 // Serialize volatile loads with other side effects. 3642 Root = getRoot(); 3643 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3644 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3645 // Do not serialize (non-volatile) loads of constant memory with anything. 3646 Root = DAG.getEntryNode(); 3647 ConstantMemory = true; 3648 } else { 3649 // Do not serialize non-volatile loads against each other. 3650 Root = DAG.getRoot(); 3651 } 3652 3653 SDLoc dl = getCurSDLoc(); 3654 3655 if (isVolatile) 3656 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3657 3658 // An aggregate load cannot wrap around the address space, so offsets to its 3659 // parts don't wrap either. 3660 SDNodeFlags Flags; 3661 Flags.setNoUnsignedWrap(true); 3662 3663 SmallVector<SDValue, 4> Values(NumValues); 3664 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3665 EVT PtrVT = Ptr.getValueType(); 3666 unsigned ChainI = 0; 3667 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3668 // Serializing loads here may result in excessive register pressure, and 3669 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3670 // could recover a bit by hoisting nodes upward in the chain by recognizing 3671 // they are side-effect free or do not alias. The optimizer should really 3672 // avoid this case by converting large object/array copies to llvm.memcpy 3673 // (MaxParallelChains should always remain as failsafe). 3674 if (ChainI == MaxParallelChains) { 3675 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3676 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3677 makeArrayRef(Chains.data(), ChainI)); 3678 Root = Chain; 3679 ChainI = 0; 3680 } 3681 SDValue A = DAG.getNode(ISD::ADD, dl, 3682 PtrVT, Ptr, 3683 DAG.getConstant(Offsets[i], dl, PtrVT), 3684 Flags); 3685 auto MMOFlags = MachineMemOperand::MONone; 3686 if (isVolatile) 3687 MMOFlags |= MachineMemOperand::MOVolatile; 3688 if (isNonTemporal) 3689 MMOFlags |= MachineMemOperand::MONonTemporal; 3690 if (isInvariant) 3691 MMOFlags |= MachineMemOperand::MOInvariant; 3692 if (isDereferenceable) 3693 MMOFlags |= MachineMemOperand::MODereferenceable; 3694 MMOFlags |= TLI.getMMOFlags(I); 3695 3696 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3697 MachinePointerInfo(SV, Offsets[i]), Alignment, 3698 MMOFlags, AAInfo, Ranges); 3699 3700 Values[i] = L; 3701 Chains[ChainI] = L.getValue(1); 3702 } 3703 3704 if (!ConstantMemory) { 3705 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3706 makeArrayRef(Chains.data(), ChainI)); 3707 if (isVolatile) 3708 DAG.setRoot(Chain); 3709 else 3710 PendingLoads.push_back(Chain); 3711 } 3712 3713 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3714 DAG.getVTList(ValueVTs), Values)); 3715 } 3716 3717 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3718 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3719 "call visitStoreToSwiftError when backend supports swifterror"); 3720 3721 SmallVector<EVT, 4> ValueVTs; 3722 SmallVector<uint64_t, 4> Offsets; 3723 const Value *SrcV = I.getOperand(0); 3724 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3725 SrcV->getType(), ValueVTs, &Offsets); 3726 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3727 "expect a single EVT for swifterror"); 3728 3729 SDValue Src = getValue(SrcV); 3730 // Create a virtual register, then update the virtual register. 3731 unsigned VReg; bool CreatedVReg; 3732 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3733 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3734 // Chain can be getRoot or getControlRoot. 3735 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3736 SDValue(Src.getNode(), Src.getResNo())); 3737 DAG.setRoot(CopyNode); 3738 if (CreatedVReg) 3739 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3740 } 3741 3742 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3743 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3744 "call visitLoadFromSwiftError when backend supports swifterror"); 3745 3746 assert(!I.isVolatile() && 3747 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3748 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3749 "Support volatile, non temporal, invariant for load_from_swift_error"); 3750 3751 const Value *SV = I.getOperand(0); 3752 Type *Ty = I.getType(); 3753 AAMDNodes AAInfo; 3754 I.getAAMetadata(AAInfo); 3755 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3756 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3757 "load_from_swift_error should not be constant memory"); 3758 3759 SmallVector<EVT, 4> ValueVTs; 3760 SmallVector<uint64_t, 4> Offsets; 3761 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3762 ValueVTs, &Offsets); 3763 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3764 "expect a single EVT for swifterror"); 3765 3766 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3767 SDValue L = DAG.getCopyFromReg( 3768 getRoot(), getCurSDLoc(), 3769 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3770 ValueVTs[0]); 3771 3772 setValue(&I, L); 3773 } 3774 3775 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3776 if (I.isAtomic()) 3777 return visitAtomicStore(I); 3778 3779 const Value *SrcV = I.getOperand(0); 3780 const Value *PtrV = I.getOperand(1); 3781 3782 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3783 if (TLI.supportSwiftError()) { 3784 // Swifterror values can come from either a function parameter with 3785 // swifterror attribute or an alloca with swifterror attribute. 3786 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3787 if (Arg->hasSwiftErrorAttr()) 3788 return visitStoreToSwiftError(I); 3789 } 3790 3791 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3792 if (Alloca->isSwiftError()) 3793 return visitStoreToSwiftError(I); 3794 } 3795 } 3796 3797 SmallVector<EVT, 4> ValueVTs; 3798 SmallVector<uint64_t, 4> Offsets; 3799 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3800 SrcV->getType(), ValueVTs, &Offsets); 3801 unsigned NumValues = ValueVTs.size(); 3802 if (NumValues == 0) 3803 return; 3804 3805 // Get the lowered operands. Note that we do this after 3806 // checking if NumResults is zero, because with zero results 3807 // the operands won't have values in the map. 3808 SDValue Src = getValue(SrcV); 3809 SDValue Ptr = getValue(PtrV); 3810 3811 SDValue Root = getRoot(); 3812 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3813 SDLoc dl = getCurSDLoc(); 3814 EVT PtrVT = Ptr.getValueType(); 3815 unsigned Alignment = I.getAlignment(); 3816 AAMDNodes AAInfo; 3817 I.getAAMetadata(AAInfo); 3818 3819 auto MMOFlags = MachineMemOperand::MONone; 3820 if (I.isVolatile()) 3821 MMOFlags |= MachineMemOperand::MOVolatile; 3822 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3823 MMOFlags |= MachineMemOperand::MONonTemporal; 3824 MMOFlags |= TLI.getMMOFlags(I); 3825 3826 // An aggregate load cannot wrap around the address space, so offsets to its 3827 // parts don't wrap either. 3828 SDNodeFlags Flags; 3829 Flags.setNoUnsignedWrap(true); 3830 3831 unsigned ChainI = 0; 3832 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3833 // See visitLoad comments. 3834 if (ChainI == MaxParallelChains) { 3835 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3836 makeArrayRef(Chains.data(), ChainI)); 3837 Root = Chain; 3838 ChainI = 0; 3839 } 3840 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3841 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3842 SDValue St = DAG.getStore( 3843 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3844 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3845 Chains[ChainI] = St; 3846 } 3847 3848 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3849 makeArrayRef(Chains.data(), ChainI)); 3850 DAG.setRoot(StoreNode); 3851 } 3852 3853 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3854 bool IsCompressing) { 3855 SDLoc sdl = getCurSDLoc(); 3856 3857 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3858 unsigned& Alignment) { 3859 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3860 Src0 = I.getArgOperand(0); 3861 Ptr = I.getArgOperand(1); 3862 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3863 Mask = I.getArgOperand(3); 3864 }; 3865 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3866 unsigned& Alignment) { 3867 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3868 Src0 = I.getArgOperand(0); 3869 Ptr = I.getArgOperand(1); 3870 Mask = I.getArgOperand(2); 3871 Alignment = 0; 3872 }; 3873 3874 Value *PtrOperand, *MaskOperand, *Src0Operand; 3875 unsigned Alignment; 3876 if (IsCompressing) 3877 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3878 else 3879 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3880 3881 SDValue Ptr = getValue(PtrOperand); 3882 SDValue Src0 = getValue(Src0Operand); 3883 SDValue Mask = getValue(MaskOperand); 3884 3885 EVT VT = Src0.getValueType(); 3886 if (!Alignment) 3887 Alignment = DAG.getEVTAlignment(VT); 3888 3889 AAMDNodes AAInfo; 3890 I.getAAMetadata(AAInfo); 3891 3892 MachineMemOperand *MMO = 3893 DAG.getMachineFunction(). 3894 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3895 MachineMemOperand::MOStore, VT.getStoreSize(), 3896 Alignment, AAInfo); 3897 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3898 MMO, false /* Truncating */, 3899 IsCompressing); 3900 DAG.setRoot(StoreNode); 3901 setValue(&I, StoreNode); 3902 } 3903 3904 // Get a uniform base for the Gather/Scatter intrinsic. 3905 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3906 // We try to represent it as a base pointer + vector of indices. 3907 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3908 // The first operand of the GEP may be a single pointer or a vector of pointers 3909 // Example: 3910 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3911 // or 3912 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3913 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3914 // 3915 // When the first GEP operand is a single pointer - it is the uniform base we 3916 // are looking for. If first operand of the GEP is a splat vector - we 3917 // extract the splat value and use it as a uniform base. 3918 // In all other cases the function returns 'false'. 3919 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3920 SDValue &Scale, SelectionDAGBuilder* SDB) { 3921 SelectionDAG& DAG = SDB->DAG; 3922 LLVMContext &Context = *DAG.getContext(); 3923 3924 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3925 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3926 if (!GEP) 3927 return false; 3928 3929 const Value *GEPPtr = GEP->getPointerOperand(); 3930 if (!GEPPtr->getType()->isVectorTy()) 3931 Ptr = GEPPtr; 3932 else if (!(Ptr = getSplatValue(GEPPtr))) 3933 return false; 3934 3935 unsigned FinalIndex = GEP->getNumOperands() - 1; 3936 Value *IndexVal = GEP->getOperand(FinalIndex); 3937 3938 // Ensure all the other indices are 0. 3939 for (unsigned i = 1; i < FinalIndex; ++i) { 3940 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3941 if (!C || !C->isZero()) 3942 return false; 3943 } 3944 3945 // The operands of the GEP may be defined in another basic block. 3946 // In this case we'll not find nodes for the operands. 3947 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3948 return false; 3949 3950 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3951 const DataLayout &DL = DAG.getDataLayout(); 3952 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 3953 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 3954 Base = SDB->getValue(Ptr); 3955 Index = SDB->getValue(IndexVal); 3956 3957 if (!Index.getValueType().isVector()) { 3958 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3959 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3960 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3961 } 3962 return true; 3963 } 3964 3965 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3966 SDLoc sdl = getCurSDLoc(); 3967 3968 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3969 const Value *Ptr = I.getArgOperand(1); 3970 SDValue Src0 = getValue(I.getArgOperand(0)); 3971 SDValue Mask = getValue(I.getArgOperand(3)); 3972 EVT VT = Src0.getValueType(); 3973 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3974 if (!Alignment) 3975 Alignment = DAG.getEVTAlignment(VT); 3976 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3977 3978 AAMDNodes AAInfo; 3979 I.getAAMetadata(AAInfo); 3980 3981 SDValue Base; 3982 SDValue Index; 3983 SDValue Scale; 3984 const Value *BasePtr = Ptr; 3985 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 3986 3987 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3988 MachineMemOperand *MMO = DAG.getMachineFunction(). 3989 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3990 MachineMemOperand::MOStore, VT.getStoreSize(), 3991 Alignment, AAInfo); 3992 if (!UniformBase) { 3993 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3994 Index = getValue(Ptr); 3995 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3996 } 3997 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 3998 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3999 Ops, MMO); 4000 DAG.setRoot(Scatter); 4001 setValue(&I, Scatter); 4002 } 4003 4004 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4005 SDLoc sdl = getCurSDLoc(); 4006 4007 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4008 unsigned& Alignment) { 4009 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4010 Ptr = I.getArgOperand(0); 4011 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4012 Mask = I.getArgOperand(2); 4013 Src0 = I.getArgOperand(3); 4014 }; 4015 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4016 unsigned& Alignment) { 4017 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4018 Ptr = I.getArgOperand(0); 4019 Alignment = 0; 4020 Mask = I.getArgOperand(1); 4021 Src0 = I.getArgOperand(2); 4022 }; 4023 4024 Value *PtrOperand, *MaskOperand, *Src0Operand; 4025 unsigned Alignment; 4026 if (IsExpanding) 4027 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4028 else 4029 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4030 4031 SDValue Ptr = getValue(PtrOperand); 4032 SDValue Src0 = getValue(Src0Operand); 4033 SDValue Mask = getValue(MaskOperand); 4034 4035 EVT VT = Src0.getValueType(); 4036 if (!Alignment) 4037 Alignment = DAG.getEVTAlignment(VT); 4038 4039 AAMDNodes AAInfo; 4040 I.getAAMetadata(AAInfo); 4041 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4042 4043 // Do not serialize masked loads of constant memory with anything. 4044 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 4045 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 4046 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4047 4048 MachineMemOperand *MMO = 4049 DAG.getMachineFunction(). 4050 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4051 MachineMemOperand::MOLoad, VT.getStoreSize(), 4052 Alignment, AAInfo, Ranges); 4053 4054 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4055 ISD::NON_EXTLOAD, IsExpanding); 4056 if (AddToChain) { 4057 SDValue OutChain = Load.getValue(1); 4058 DAG.setRoot(OutChain); 4059 } 4060 setValue(&I, Load); 4061 } 4062 4063 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4064 SDLoc sdl = getCurSDLoc(); 4065 4066 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4067 const Value *Ptr = I.getArgOperand(0); 4068 SDValue Src0 = getValue(I.getArgOperand(3)); 4069 SDValue Mask = getValue(I.getArgOperand(2)); 4070 4071 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4072 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4073 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4074 if (!Alignment) 4075 Alignment = DAG.getEVTAlignment(VT); 4076 4077 AAMDNodes AAInfo; 4078 I.getAAMetadata(AAInfo); 4079 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4080 4081 SDValue Root = DAG.getRoot(); 4082 SDValue Base; 4083 SDValue Index; 4084 SDValue Scale; 4085 const Value *BasePtr = Ptr; 4086 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4087 bool ConstantMemory = false; 4088 if (UniformBase && 4089 AA && AA->pointsToConstantMemory(MemoryLocation( 4090 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4091 AAInfo))) { 4092 // Do not serialize (non-volatile) loads of constant memory with anything. 4093 Root = DAG.getEntryNode(); 4094 ConstantMemory = true; 4095 } 4096 4097 MachineMemOperand *MMO = 4098 DAG.getMachineFunction(). 4099 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4100 MachineMemOperand::MOLoad, VT.getStoreSize(), 4101 Alignment, AAInfo, Ranges); 4102 4103 if (!UniformBase) { 4104 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4105 Index = getValue(Ptr); 4106 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4107 } 4108 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4109 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4110 Ops, MMO); 4111 4112 SDValue OutChain = Gather.getValue(1); 4113 if (!ConstantMemory) 4114 PendingLoads.push_back(OutChain); 4115 setValue(&I, Gather); 4116 } 4117 4118 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4119 SDLoc dl = getCurSDLoc(); 4120 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4121 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4122 SyncScope::ID SSID = I.getSyncScopeID(); 4123 4124 SDValue InChain = getRoot(); 4125 4126 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4127 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4128 SDValue L = DAG.getAtomicCmpSwap( 4129 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4130 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4131 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4132 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4133 4134 SDValue OutChain = L.getValue(2); 4135 4136 setValue(&I, L); 4137 DAG.setRoot(OutChain); 4138 } 4139 4140 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4141 SDLoc dl = getCurSDLoc(); 4142 ISD::NodeType NT; 4143 switch (I.getOperation()) { 4144 default: llvm_unreachable("Unknown atomicrmw operation"); 4145 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4146 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4147 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4148 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4149 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4150 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4151 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4152 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4153 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4154 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4155 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4156 } 4157 AtomicOrdering Order = I.getOrdering(); 4158 SyncScope::ID SSID = I.getSyncScopeID(); 4159 4160 SDValue InChain = getRoot(); 4161 4162 SDValue L = 4163 DAG.getAtomic(NT, dl, 4164 getValue(I.getValOperand()).getSimpleValueType(), 4165 InChain, 4166 getValue(I.getPointerOperand()), 4167 getValue(I.getValOperand()), 4168 I.getPointerOperand(), 4169 /* Alignment=*/ 0, Order, SSID); 4170 4171 SDValue OutChain = L.getValue(1); 4172 4173 setValue(&I, L); 4174 DAG.setRoot(OutChain); 4175 } 4176 4177 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4178 SDLoc dl = getCurSDLoc(); 4179 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4180 SDValue Ops[3]; 4181 Ops[0] = getRoot(); 4182 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4183 TLI.getFenceOperandTy(DAG.getDataLayout())); 4184 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4185 TLI.getFenceOperandTy(DAG.getDataLayout())); 4186 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4187 } 4188 4189 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4190 SDLoc dl = getCurSDLoc(); 4191 AtomicOrdering Order = I.getOrdering(); 4192 SyncScope::ID SSID = I.getSyncScopeID(); 4193 4194 SDValue InChain = getRoot(); 4195 4196 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4197 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4198 4199 if (!TLI.supportsUnalignedAtomics() && 4200 I.getAlignment() < VT.getStoreSize()) 4201 report_fatal_error("Cannot generate unaligned atomic load"); 4202 4203 MachineMemOperand *MMO = 4204 DAG.getMachineFunction(). 4205 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4206 MachineMemOperand::MOVolatile | 4207 MachineMemOperand::MOLoad, 4208 VT.getStoreSize(), 4209 I.getAlignment() ? I.getAlignment() : 4210 DAG.getEVTAlignment(VT), 4211 AAMDNodes(), nullptr, SSID, Order); 4212 4213 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4214 SDValue L = 4215 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4216 getValue(I.getPointerOperand()), MMO); 4217 4218 SDValue OutChain = L.getValue(1); 4219 4220 setValue(&I, L); 4221 DAG.setRoot(OutChain); 4222 } 4223 4224 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4225 SDLoc dl = getCurSDLoc(); 4226 4227 AtomicOrdering Order = I.getOrdering(); 4228 SyncScope::ID SSID = I.getSyncScopeID(); 4229 4230 SDValue InChain = getRoot(); 4231 4232 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4233 EVT VT = 4234 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4235 4236 if (I.getAlignment() < VT.getStoreSize()) 4237 report_fatal_error("Cannot generate unaligned atomic store"); 4238 4239 SDValue OutChain = 4240 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4241 InChain, 4242 getValue(I.getPointerOperand()), 4243 getValue(I.getValueOperand()), 4244 I.getPointerOperand(), I.getAlignment(), 4245 Order, SSID); 4246 4247 DAG.setRoot(OutChain); 4248 } 4249 4250 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4251 /// node. 4252 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4253 unsigned Intrinsic) { 4254 // Ignore the callsite's attributes. A specific call site may be marked with 4255 // readnone, but the lowering code will expect the chain based on the 4256 // definition. 4257 const Function *F = I.getCalledFunction(); 4258 bool HasChain = !F->doesNotAccessMemory(); 4259 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4260 4261 // Build the operand list. 4262 SmallVector<SDValue, 8> Ops; 4263 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4264 if (OnlyLoad) { 4265 // We don't need to serialize loads against other loads. 4266 Ops.push_back(DAG.getRoot()); 4267 } else { 4268 Ops.push_back(getRoot()); 4269 } 4270 } 4271 4272 // Info is set by getTgtMemInstrinsic 4273 TargetLowering::IntrinsicInfo Info; 4274 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4275 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4276 DAG.getMachineFunction(), 4277 Intrinsic); 4278 4279 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4280 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4281 Info.opc == ISD::INTRINSIC_W_CHAIN) 4282 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4283 TLI.getPointerTy(DAG.getDataLayout()))); 4284 4285 // Add all operands of the call to the operand list. 4286 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4287 SDValue Op = getValue(I.getArgOperand(i)); 4288 Ops.push_back(Op); 4289 } 4290 4291 SmallVector<EVT, 4> ValueVTs; 4292 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4293 4294 if (HasChain) 4295 ValueVTs.push_back(MVT::Other); 4296 4297 SDVTList VTs = DAG.getVTList(ValueVTs); 4298 4299 // Create the node. 4300 SDValue Result; 4301 if (IsTgtIntrinsic) { 4302 // This is target intrinsic that touches memory 4303 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4304 Ops, Info.memVT, 4305 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4306 Info.flags, Info.size); 4307 } else if (!HasChain) { 4308 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4309 } else if (!I.getType()->isVoidTy()) { 4310 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4311 } else { 4312 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4313 } 4314 4315 if (HasChain) { 4316 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4317 if (OnlyLoad) 4318 PendingLoads.push_back(Chain); 4319 else 4320 DAG.setRoot(Chain); 4321 } 4322 4323 if (!I.getType()->isVoidTy()) { 4324 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4325 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4326 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4327 } else 4328 Result = lowerRangeToAssertZExt(DAG, I, Result); 4329 4330 setValue(&I, Result); 4331 } 4332 } 4333 4334 /// GetSignificand - Get the significand and build it into a floating-point 4335 /// number with exponent of 1: 4336 /// 4337 /// Op = (Op & 0x007fffff) | 0x3f800000; 4338 /// 4339 /// where Op is the hexadecimal representation of floating point value. 4340 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4341 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4342 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4343 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4344 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4345 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4346 } 4347 4348 /// GetExponent - Get the exponent: 4349 /// 4350 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4351 /// 4352 /// where Op is the hexadecimal representation of floating point value. 4353 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4354 const TargetLowering &TLI, const SDLoc &dl) { 4355 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4356 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4357 SDValue t1 = DAG.getNode( 4358 ISD::SRL, dl, MVT::i32, t0, 4359 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4360 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4361 DAG.getConstant(127, dl, MVT::i32)); 4362 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4363 } 4364 4365 /// getF32Constant - Get 32-bit floating point constant. 4366 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4367 const SDLoc &dl) { 4368 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4369 MVT::f32); 4370 } 4371 4372 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4373 SelectionDAG &DAG) { 4374 // TODO: What fast-math-flags should be set on the floating-point nodes? 4375 4376 // IntegerPartOfX = ((int32_t)(t0); 4377 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4378 4379 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4380 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4381 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4382 4383 // IntegerPartOfX <<= 23; 4384 IntegerPartOfX = DAG.getNode( 4385 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4386 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4387 DAG.getDataLayout()))); 4388 4389 SDValue TwoToFractionalPartOfX; 4390 if (LimitFloatPrecision <= 6) { 4391 // For floating-point precision of 6: 4392 // 4393 // TwoToFractionalPartOfX = 4394 // 0.997535578f + 4395 // (0.735607626f + 0.252464424f * x) * x; 4396 // 4397 // error 0.0144103317, which is 6 bits 4398 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4399 getF32Constant(DAG, 0x3e814304, dl)); 4400 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4401 getF32Constant(DAG, 0x3f3c50c8, dl)); 4402 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4403 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4404 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4405 } else if (LimitFloatPrecision <= 12) { 4406 // For floating-point precision of 12: 4407 // 4408 // TwoToFractionalPartOfX = 4409 // 0.999892986f + 4410 // (0.696457318f + 4411 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4412 // 4413 // error 0.000107046256, which is 13 to 14 bits 4414 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4415 getF32Constant(DAG, 0x3da235e3, dl)); 4416 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4417 getF32Constant(DAG, 0x3e65b8f3, dl)); 4418 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4419 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4420 getF32Constant(DAG, 0x3f324b07, dl)); 4421 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4422 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4423 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4424 } else { // LimitFloatPrecision <= 18 4425 // For floating-point precision of 18: 4426 // 4427 // TwoToFractionalPartOfX = 4428 // 0.999999982f + 4429 // (0.693148872f + 4430 // (0.240227044f + 4431 // (0.554906021e-1f + 4432 // (0.961591928e-2f + 4433 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4434 // error 2.47208000*10^(-7), which is better than 18 bits 4435 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4436 getF32Constant(DAG, 0x3924b03e, dl)); 4437 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4438 getF32Constant(DAG, 0x3ab24b87, dl)); 4439 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4440 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4441 getF32Constant(DAG, 0x3c1d8c17, dl)); 4442 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4443 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4444 getF32Constant(DAG, 0x3d634a1d, dl)); 4445 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4446 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4447 getF32Constant(DAG, 0x3e75fe14, dl)); 4448 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4449 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4450 getF32Constant(DAG, 0x3f317234, dl)); 4451 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4452 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4453 getF32Constant(DAG, 0x3f800000, dl)); 4454 } 4455 4456 // Add the exponent into the result in integer domain. 4457 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4458 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4459 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4460 } 4461 4462 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4463 /// limited-precision mode. 4464 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4465 const TargetLowering &TLI) { 4466 if (Op.getValueType() == MVT::f32 && 4467 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4468 4469 // Put the exponent in the right bit position for later addition to the 4470 // final result: 4471 // 4472 // #define LOG2OFe 1.4426950f 4473 // t0 = Op * LOG2OFe 4474 4475 // TODO: What fast-math-flags should be set here? 4476 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4477 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4478 return getLimitedPrecisionExp2(t0, dl, DAG); 4479 } 4480 4481 // No special expansion. 4482 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4483 } 4484 4485 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4486 /// limited-precision mode. 4487 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4488 const TargetLowering &TLI) { 4489 // TODO: What fast-math-flags should be set on the floating-point nodes? 4490 4491 if (Op.getValueType() == MVT::f32 && 4492 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4493 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4494 4495 // Scale the exponent by log(2) [0.69314718f]. 4496 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4497 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4498 getF32Constant(DAG, 0x3f317218, dl)); 4499 4500 // Get the significand and build it into a floating-point number with 4501 // exponent of 1. 4502 SDValue X = GetSignificand(DAG, Op1, dl); 4503 4504 SDValue LogOfMantissa; 4505 if (LimitFloatPrecision <= 6) { 4506 // For floating-point precision of 6: 4507 // 4508 // LogofMantissa = 4509 // -1.1609546f + 4510 // (1.4034025f - 0.23903021f * x) * x; 4511 // 4512 // error 0.0034276066, which is better than 8 bits 4513 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4514 getF32Constant(DAG, 0xbe74c456, dl)); 4515 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4516 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4517 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4518 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4519 getF32Constant(DAG, 0x3f949a29, dl)); 4520 } else if (LimitFloatPrecision <= 12) { 4521 // For floating-point precision of 12: 4522 // 4523 // LogOfMantissa = 4524 // -1.7417939f + 4525 // (2.8212026f + 4526 // (-1.4699568f + 4527 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4528 // 4529 // error 0.000061011436, which is 14 bits 4530 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4531 getF32Constant(DAG, 0xbd67b6d6, dl)); 4532 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4533 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4534 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4535 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4536 getF32Constant(DAG, 0x3fbc278b, dl)); 4537 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4538 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4539 getF32Constant(DAG, 0x40348e95, dl)); 4540 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4541 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4542 getF32Constant(DAG, 0x3fdef31a, dl)); 4543 } else { // LimitFloatPrecision <= 18 4544 // For floating-point precision of 18: 4545 // 4546 // LogOfMantissa = 4547 // -2.1072184f + 4548 // (4.2372794f + 4549 // (-3.7029485f + 4550 // (2.2781945f + 4551 // (-0.87823314f + 4552 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4553 // 4554 // error 0.0000023660568, which is better than 18 bits 4555 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4556 getF32Constant(DAG, 0xbc91e5ac, dl)); 4557 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4558 getF32Constant(DAG, 0x3e4350aa, dl)); 4559 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4560 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4561 getF32Constant(DAG, 0x3f60d3e3, dl)); 4562 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4563 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4564 getF32Constant(DAG, 0x4011cdf0, dl)); 4565 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4566 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4567 getF32Constant(DAG, 0x406cfd1c, dl)); 4568 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4569 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4570 getF32Constant(DAG, 0x408797cb, dl)); 4571 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4572 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4573 getF32Constant(DAG, 0x4006dcab, dl)); 4574 } 4575 4576 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4577 } 4578 4579 // No special expansion. 4580 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4581 } 4582 4583 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4584 /// limited-precision mode. 4585 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4586 const TargetLowering &TLI) { 4587 // TODO: What fast-math-flags should be set on the floating-point nodes? 4588 4589 if (Op.getValueType() == MVT::f32 && 4590 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4591 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4592 4593 // Get the exponent. 4594 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4595 4596 // Get the significand and build it into a floating-point number with 4597 // exponent of 1. 4598 SDValue X = GetSignificand(DAG, Op1, dl); 4599 4600 // Different possible minimax approximations of significand in 4601 // floating-point for various degrees of accuracy over [1,2]. 4602 SDValue Log2ofMantissa; 4603 if (LimitFloatPrecision <= 6) { 4604 // For floating-point precision of 6: 4605 // 4606 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4607 // 4608 // error 0.0049451742, which is more than 7 bits 4609 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4610 getF32Constant(DAG, 0xbeb08fe0, dl)); 4611 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4612 getF32Constant(DAG, 0x40019463, dl)); 4613 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4614 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4615 getF32Constant(DAG, 0x3fd6633d, dl)); 4616 } else if (LimitFloatPrecision <= 12) { 4617 // For floating-point precision of 12: 4618 // 4619 // Log2ofMantissa = 4620 // -2.51285454f + 4621 // (4.07009056f + 4622 // (-2.12067489f + 4623 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4624 // 4625 // error 0.0000876136000, which is better than 13 bits 4626 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4627 getF32Constant(DAG, 0xbda7262e, dl)); 4628 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4629 getF32Constant(DAG, 0x3f25280b, dl)); 4630 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4631 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4632 getF32Constant(DAG, 0x4007b923, dl)); 4633 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4634 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4635 getF32Constant(DAG, 0x40823e2f, dl)); 4636 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4637 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4638 getF32Constant(DAG, 0x4020d29c, dl)); 4639 } else { // LimitFloatPrecision <= 18 4640 // For floating-point precision of 18: 4641 // 4642 // Log2ofMantissa = 4643 // -3.0400495f + 4644 // (6.1129976f + 4645 // (-5.3420409f + 4646 // (3.2865683f + 4647 // (-1.2669343f + 4648 // (0.27515199f - 4649 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4650 // 4651 // error 0.0000018516, which is better than 18 bits 4652 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4653 getF32Constant(DAG, 0xbcd2769e, dl)); 4654 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4655 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4656 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4657 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4658 getF32Constant(DAG, 0x3fa22ae7, dl)); 4659 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4660 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4661 getF32Constant(DAG, 0x40525723, dl)); 4662 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4663 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4664 getF32Constant(DAG, 0x40aaf200, dl)); 4665 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4666 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4667 getF32Constant(DAG, 0x40c39dad, dl)); 4668 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4669 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4670 getF32Constant(DAG, 0x4042902c, dl)); 4671 } 4672 4673 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4674 } 4675 4676 // No special expansion. 4677 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4678 } 4679 4680 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4681 /// limited-precision mode. 4682 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4683 const TargetLowering &TLI) { 4684 // TODO: What fast-math-flags should be set on the floating-point nodes? 4685 4686 if (Op.getValueType() == MVT::f32 && 4687 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4688 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4689 4690 // Scale the exponent by log10(2) [0.30102999f]. 4691 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4692 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4693 getF32Constant(DAG, 0x3e9a209a, dl)); 4694 4695 // Get the significand and build it into a floating-point number with 4696 // exponent of 1. 4697 SDValue X = GetSignificand(DAG, Op1, dl); 4698 4699 SDValue Log10ofMantissa; 4700 if (LimitFloatPrecision <= 6) { 4701 // For floating-point precision of 6: 4702 // 4703 // Log10ofMantissa = 4704 // -0.50419619f + 4705 // (0.60948995f - 0.10380950f * x) * x; 4706 // 4707 // error 0.0014886165, which is 6 bits 4708 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4709 getF32Constant(DAG, 0xbdd49a13, dl)); 4710 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4711 getF32Constant(DAG, 0x3f1c0789, dl)); 4712 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4713 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4714 getF32Constant(DAG, 0x3f011300, dl)); 4715 } else if (LimitFloatPrecision <= 12) { 4716 // For floating-point precision of 12: 4717 // 4718 // Log10ofMantissa = 4719 // -0.64831180f + 4720 // (0.91751397f + 4721 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4722 // 4723 // error 0.00019228036, which is better than 12 bits 4724 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4725 getF32Constant(DAG, 0x3d431f31, dl)); 4726 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4727 getF32Constant(DAG, 0x3ea21fb2, dl)); 4728 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4729 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4730 getF32Constant(DAG, 0x3f6ae232, dl)); 4731 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4732 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4733 getF32Constant(DAG, 0x3f25f7c3, dl)); 4734 } else { // LimitFloatPrecision <= 18 4735 // For floating-point precision of 18: 4736 // 4737 // Log10ofMantissa = 4738 // -0.84299375f + 4739 // (1.5327582f + 4740 // (-1.0688956f + 4741 // (0.49102474f + 4742 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4743 // 4744 // error 0.0000037995730, which is better than 18 bits 4745 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4746 getF32Constant(DAG, 0x3c5d51ce, dl)); 4747 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4748 getF32Constant(DAG, 0x3e00685a, dl)); 4749 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4750 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4751 getF32Constant(DAG, 0x3efb6798, dl)); 4752 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4753 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4754 getF32Constant(DAG, 0x3f88d192, dl)); 4755 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4756 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4757 getF32Constant(DAG, 0x3fc4316c, dl)); 4758 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4759 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4760 getF32Constant(DAG, 0x3f57ce70, dl)); 4761 } 4762 4763 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4764 } 4765 4766 // No special expansion. 4767 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4768 } 4769 4770 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4771 /// limited-precision mode. 4772 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4773 const TargetLowering &TLI) { 4774 if (Op.getValueType() == MVT::f32 && 4775 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4776 return getLimitedPrecisionExp2(Op, dl, DAG); 4777 4778 // No special expansion. 4779 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4780 } 4781 4782 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4783 /// limited-precision mode with x == 10.0f. 4784 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4785 SelectionDAG &DAG, const TargetLowering &TLI) { 4786 bool IsExp10 = false; 4787 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4788 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4789 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4790 APFloat Ten(10.0f); 4791 IsExp10 = LHSC->isExactlyValue(Ten); 4792 } 4793 } 4794 4795 // TODO: What fast-math-flags should be set on the FMUL node? 4796 if (IsExp10) { 4797 // Put the exponent in the right bit position for later addition to the 4798 // final result: 4799 // 4800 // #define LOG2OF10 3.3219281f 4801 // t0 = Op * LOG2OF10; 4802 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4803 getF32Constant(DAG, 0x40549a78, dl)); 4804 return getLimitedPrecisionExp2(t0, dl, DAG); 4805 } 4806 4807 // No special expansion. 4808 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4809 } 4810 4811 /// ExpandPowI - Expand a llvm.powi intrinsic. 4812 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4813 SelectionDAG &DAG) { 4814 // If RHS is a constant, we can expand this out to a multiplication tree, 4815 // otherwise we end up lowering to a call to __powidf2 (for example). When 4816 // optimizing for size, we only want to do this if the expansion would produce 4817 // a small number of multiplies, otherwise we do the full expansion. 4818 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4819 // Get the exponent as a positive value. 4820 unsigned Val = RHSC->getSExtValue(); 4821 if ((int)Val < 0) Val = -Val; 4822 4823 // powi(x, 0) -> 1.0 4824 if (Val == 0) 4825 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4826 4827 const Function &F = DAG.getMachineFunction().getFunction(); 4828 if (!F.optForSize() || 4829 // If optimizing for size, don't insert too many multiplies. 4830 // This inserts up to 5 multiplies. 4831 countPopulation(Val) + Log2_32(Val) < 7) { 4832 // We use the simple binary decomposition method to generate the multiply 4833 // sequence. There are more optimal ways to do this (for example, 4834 // powi(x,15) generates one more multiply than it should), but this has 4835 // the benefit of being both really simple and much better than a libcall. 4836 SDValue Res; // Logically starts equal to 1.0 4837 SDValue CurSquare = LHS; 4838 // TODO: Intrinsics should have fast-math-flags that propagate to these 4839 // nodes. 4840 while (Val) { 4841 if (Val & 1) { 4842 if (Res.getNode()) 4843 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4844 else 4845 Res = CurSquare; // 1.0*CurSquare. 4846 } 4847 4848 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4849 CurSquare, CurSquare); 4850 Val >>= 1; 4851 } 4852 4853 // If the original was negative, invert the result, producing 1/(x*x*x). 4854 if (RHSC->getSExtValue() < 0) 4855 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4856 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4857 return Res; 4858 } 4859 } 4860 4861 // Otherwise, expand to a libcall. 4862 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4863 } 4864 4865 // getUnderlyingArgReg - Find underlying register used for a truncated or 4866 // bitcasted argument. 4867 static unsigned getUnderlyingArgReg(const SDValue &N) { 4868 switch (N.getOpcode()) { 4869 case ISD::CopyFromReg: 4870 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4871 case ISD::BITCAST: 4872 case ISD::AssertZext: 4873 case ISD::AssertSext: 4874 case ISD::TRUNCATE: 4875 return getUnderlyingArgReg(N.getOperand(0)); 4876 default: 4877 return 0; 4878 } 4879 } 4880 4881 /// If the DbgValueInst is a dbg_value of a function argument, create the 4882 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4883 /// instruction selection, they will be inserted to the entry BB. 4884 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4885 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4886 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4887 const Argument *Arg = dyn_cast<Argument>(V); 4888 if (!Arg) 4889 return false; 4890 4891 MachineFunction &MF = DAG.getMachineFunction(); 4892 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4893 4894 bool IsIndirect = false; 4895 Optional<MachineOperand> Op; 4896 // Some arguments' frame index is recorded during argument lowering. 4897 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4898 if (FI != std::numeric_limits<int>::max()) 4899 Op = MachineOperand::CreateFI(FI); 4900 4901 if (!Op && N.getNode()) { 4902 unsigned Reg = getUnderlyingArgReg(N); 4903 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4904 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4905 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4906 if (PR) 4907 Reg = PR; 4908 } 4909 if (Reg) { 4910 Op = MachineOperand::CreateReg(Reg, false); 4911 IsIndirect = IsDbgDeclare; 4912 } 4913 } 4914 4915 if (!Op && N.getNode()) 4916 // Check if frame index is available. 4917 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4918 if (FrameIndexSDNode *FINode = 4919 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4920 Op = MachineOperand::CreateFI(FINode->getIndex()); 4921 4922 if (!Op) { 4923 // Check if ValueMap has reg number. 4924 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4925 if (VMI != FuncInfo.ValueMap.end()) { 4926 const auto &TLI = DAG.getTargetLoweringInfo(); 4927 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4928 V->getType(), isABIRegCopy(V)); 4929 if (RFV.occupiesMultipleRegs()) { 4930 unsigned Offset = 0; 4931 for (auto RegAndSize : RFV.getRegsAndSizes()) { 4932 Op = MachineOperand::CreateReg(RegAndSize.first, false); 4933 auto FragmentExpr = DIExpression::createFragmentExpression( 4934 Expr, Offset, RegAndSize.second); 4935 if (!FragmentExpr) 4936 continue; 4937 FuncInfo.ArgDbgValues.push_back( 4938 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4939 Op->getReg(), Variable, *FragmentExpr)); 4940 Offset += RegAndSize.second; 4941 } 4942 return true; 4943 } 4944 Op = MachineOperand::CreateReg(VMI->second, false); 4945 IsIndirect = IsDbgDeclare; 4946 } 4947 } 4948 4949 if (!Op) 4950 return false; 4951 4952 assert(Variable->isValidLocationForIntrinsic(DL) && 4953 "Expected inlined-at fields to agree"); 4954 IsIndirect = (Op->isReg()) ? IsIndirect : true; 4955 FuncInfo.ArgDbgValues.push_back( 4956 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4957 *Op, Variable, Expr)); 4958 4959 return true; 4960 } 4961 4962 /// Return the appropriate SDDbgValue based on N. 4963 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4964 DILocalVariable *Variable, 4965 DIExpression *Expr, 4966 const DebugLoc &dl, 4967 unsigned DbgSDNodeOrder) { 4968 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4969 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4970 // stack slot locations as such instead of as indirectly addressed 4971 // locations. 4972 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4973 DbgSDNodeOrder); 4974 } 4975 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4976 DbgSDNodeOrder); 4977 } 4978 4979 // VisualStudio defines setjmp as _setjmp 4980 #if defined(_MSC_VER) && defined(setjmp) && \ 4981 !defined(setjmp_undefined_for_msvc) 4982 # pragma push_macro("setjmp") 4983 # undef setjmp 4984 # define setjmp_undefined_for_msvc 4985 #endif 4986 4987 /// Lower the call to the specified intrinsic function. If we want to emit this 4988 /// as a call to a named external function, return the name. Otherwise, lower it 4989 /// and return null. 4990 const char * 4991 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4992 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4993 SDLoc sdl = getCurSDLoc(); 4994 DebugLoc dl = getCurDebugLoc(); 4995 SDValue Res; 4996 4997 switch (Intrinsic) { 4998 default: 4999 // By default, turn this into a target intrinsic node. 5000 visitTargetIntrinsic(I, Intrinsic); 5001 return nullptr; 5002 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5003 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5004 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5005 case Intrinsic::returnaddress: 5006 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5007 TLI.getPointerTy(DAG.getDataLayout()), 5008 getValue(I.getArgOperand(0)))); 5009 return nullptr; 5010 case Intrinsic::addressofreturnaddress: 5011 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5012 TLI.getPointerTy(DAG.getDataLayout()))); 5013 return nullptr; 5014 case Intrinsic::frameaddress: 5015 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5016 TLI.getPointerTy(DAG.getDataLayout()), 5017 getValue(I.getArgOperand(0)))); 5018 return nullptr; 5019 case Intrinsic::read_register: { 5020 Value *Reg = I.getArgOperand(0); 5021 SDValue Chain = getRoot(); 5022 SDValue RegName = 5023 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5024 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5025 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5026 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5027 setValue(&I, Res); 5028 DAG.setRoot(Res.getValue(1)); 5029 return nullptr; 5030 } 5031 case Intrinsic::write_register: { 5032 Value *Reg = I.getArgOperand(0); 5033 Value *RegValue = I.getArgOperand(1); 5034 SDValue Chain = getRoot(); 5035 SDValue RegName = 5036 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5037 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5038 RegName, getValue(RegValue))); 5039 return nullptr; 5040 } 5041 case Intrinsic::setjmp: 5042 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5043 case Intrinsic::longjmp: 5044 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5045 case Intrinsic::memcpy: { 5046 const auto &MCI = cast<MemCpyInst>(I); 5047 SDValue Op1 = getValue(I.getArgOperand(0)); 5048 SDValue Op2 = getValue(I.getArgOperand(1)); 5049 SDValue Op3 = getValue(I.getArgOperand(2)); 5050 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5051 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5052 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5053 unsigned Align = MinAlign(DstAlign, SrcAlign); 5054 bool isVol = MCI.isVolatile(); 5055 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5056 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5057 // node. 5058 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5059 false, isTC, 5060 MachinePointerInfo(I.getArgOperand(0)), 5061 MachinePointerInfo(I.getArgOperand(1))); 5062 updateDAGForMaybeTailCall(MC); 5063 return nullptr; 5064 } 5065 case Intrinsic::memset: { 5066 const auto &MSI = cast<MemSetInst>(I); 5067 SDValue Op1 = getValue(I.getArgOperand(0)); 5068 SDValue Op2 = getValue(I.getArgOperand(1)); 5069 SDValue Op3 = getValue(I.getArgOperand(2)); 5070 // @llvm.memset defines 0 and 1 to both mean no alignment. 5071 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5072 bool isVol = MSI.isVolatile(); 5073 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5074 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5075 isTC, MachinePointerInfo(I.getArgOperand(0))); 5076 updateDAGForMaybeTailCall(MS); 5077 return nullptr; 5078 } 5079 case Intrinsic::memmove: { 5080 const auto &MMI = cast<MemMoveInst>(I); 5081 SDValue Op1 = getValue(I.getArgOperand(0)); 5082 SDValue Op2 = getValue(I.getArgOperand(1)); 5083 SDValue Op3 = getValue(I.getArgOperand(2)); 5084 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5085 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5086 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5087 unsigned Align = MinAlign(DstAlign, SrcAlign); 5088 bool isVol = MMI.isVolatile(); 5089 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5090 // FIXME: Support passing different dest/src alignments to the memmove DAG 5091 // node. 5092 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5093 isTC, MachinePointerInfo(I.getArgOperand(0)), 5094 MachinePointerInfo(I.getArgOperand(1))); 5095 updateDAGForMaybeTailCall(MM); 5096 return nullptr; 5097 } 5098 case Intrinsic::memcpy_element_unordered_atomic: { 5099 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5100 SDValue Dst = getValue(MI.getRawDest()); 5101 SDValue Src = getValue(MI.getRawSource()); 5102 SDValue Length = getValue(MI.getLength()); 5103 5104 unsigned DstAlign = MI.getDestAlignment(); 5105 unsigned SrcAlign = MI.getSourceAlignment(); 5106 Type *LengthTy = MI.getLength()->getType(); 5107 unsigned ElemSz = MI.getElementSizeInBytes(); 5108 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5109 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5110 SrcAlign, Length, LengthTy, ElemSz, isTC, 5111 MachinePointerInfo(MI.getRawDest()), 5112 MachinePointerInfo(MI.getRawSource())); 5113 updateDAGForMaybeTailCall(MC); 5114 return nullptr; 5115 } 5116 case Intrinsic::memmove_element_unordered_atomic: { 5117 auto &MI = cast<AtomicMemMoveInst>(I); 5118 SDValue Dst = getValue(MI.getRawDest()); 5119 SDValue Src = getValue(MI.getRawSource()); 5120 SDValue Length = getValue(MI.getLength()); 5121 5122 unsigned DstAlign = MI.getDestAlignment(); 5123 unsigned SrcAlign = MI.getSourceAlignment(); 5124 Type *LengthTy = MI.getLength()->getType(); 5125 unsigned ElemSz = MI.getElementSizeInBytes(); 5126 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5127 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5128 SrcAlign, Length, LengthTy, ElemSz, isTC, 5129 MachinePointerInfo(MI.getRawDest()), 5130 MachinePointerInfo(MI.getRawSource())); 5131 updateDAGForMaybeTailCall(MC); 5132 return nullptr; 5133 } 5134 case Intrinsic::memset_element_unordered_atomic: { 5135 auto &MI = cast<AtomicMemSetInst>(I); 5136 SDValue Dst = getValue(MI.getRawDest()); 5137 SDValue Val = getValue(MI.getValue()); 5138 SDValue Length = getValue(MI.getLength()); 5139 5140 unsigned DstAlign = MI.getDestAlignment(); 5141 Type *LengthTy = MI.getLength()->getType(); 5142 unsigned ElemSz = MI.getElementSizeInBytes(); 5143 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5144 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5145 LengthTy, ElemSz, isTC, 5146 MachinePointerInfo(MI.getRawDest())); 5147 updateDAGForMaybeTailCall(MC); 5148 return nullptr; 5149 } 5150 case Intrinsic::dbg_addr: 5151 case Intrinsic::dbg_declare: { 5152 const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I); 5153 DILocalVariable *Variable = DI.getVariable(); 5154 DIExpression *Expression = DI.getExpression(); 5155 dropDanglingDebugInfo(Variable, Expression); 5156 assert(Variable && "Missing variable"); 5157 5158 // Check if address has undef value. 5159 const Value *Address = DI.getVariableLocation(); 5160 if (!Address || isa<UndefValue>(Address) || 5161 (Address->use_empty() && !isa<Argument>(Address))) { 5162 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5163 return nullptr; 5164 } 5165 5166 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5167 5168 // Check if this variable can be described by a frame index, typically 5169 // either as a static alloca or a byval parameter. 5170 int FI = std::numeric_limits<int>::max(); 5171 if (const auto *AI = 5172 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5173 if (AI->isStaticAlloca()) { 5174 auto I = FuncInfo.StaticAllocaMap.find(AI); 5175 if (I != FuncInfo.StaticAllocaMap.end()) 5176 FI = I->second; 5177 } 5178 } else if (const auto *Arg = dyn_cast<Argument>( 5179 Address->stripInBoundsConstantOffsets())) { 5180 FI = FuncInfo.getArgumentFrameIndex(Arg); 5181 } 5182 5183 // llvm.dbg.addr is control dependent and always generates indirect 5184 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5185 // the MachineFunction variable table. 5186 if (FI != std::numeric_limits<int>::max()) { 5187 if (Intrinsic == Intrinsic::dbg_addr) { 5188 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5189 FI, dl, SDNodeOrder); 5190 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5191 } 5192 return nullptr; 5193 } 5194 5195 SDValue &N = NodeMap[Address]; 5196 if (!N.getNode() && isa<Argument>(Address)) 5197 // Check unused arguments map. 5198 N = UnusedArgNodeMap[Address]; 5199 SDDbgValue *SDV; 5200 if (N.getNode()) { 5201 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5202 Address = BCI->getOperand(0); 5203 // Parameters are handled specially. 5204 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5205 if (isParameter && FINode) { 5206 // Byval parameter. We have a frame index at this point. 5207 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5208 FINode->getIndex(), dl, SDNodeOrder); 5209 } else if (isa<Argument>(Address)) { 5210 // Address is an argument, so try to emit its dbg value using 5211 // virtual register info from the FuncInfo.ValueMap. 5212 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5213 return nullptr; 5214 } else { 5215 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5216 true, dl, SDNodeOrder); 5217 } 5218 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5219 } else { 5220 // If Address is an argument then try to emit its dbg value using 5221 // virtual register info from the FuncInfo.ValueMap. 5222 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5223 N)) { 5224 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5225 } 5226 } 5227 return nullptr; 5228 } 5229 case Intrinsic::dbg_label: { 5230 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5231 DILabel *Label = DI.getLabel(); 5232 assert(Label && "Missing label"); 5233 5234 SDDbgLabel *SDV; 5235 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5236 DAG.AddDbgLabel(SDV); 5237 return nullptr; 5238 } 5239 case Intrinsic::dbg_value: { 5240 const DbgValueInst &DI = cast<DbgValueInst>(I); 5241 assert(DI.getVariable() && "Missing variable"); 5242 5243 DILocalVariable *Variable = DI.getVariable(); 5244 DIExpression *Expression = DI.getExpression(); 5245 dropDanglingDebugInfo(Variable, Expression); 5246 const Value *V = DI.getValue(); 5247 if (!V) 5248 return nullptr; 5249 5250 SDDbgValue *SDV; 5251 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5252 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5253 DAG.AddDbgValue(SDV, nullptr, false); 5254 return nullptr; 5255 } 5256 5257 // Do not use getValue() in here; we don't want to generate code at 5258 // this point if it hasn't been done yet. 5259 SDValue N = NodeMap[V]; 5260 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5261 N = UnusedArgNodeMap[V]; 5262 if (N.getNode()) { 5263 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5264 return nullptr; 5265 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5266 DAG.AddDbgValue(SDV, N.getNode(), false); 5267 return nullptr; 5268 } 5269 5270 // PHI nodes have already been selected, so we should know which VReg that 5271 // is assigns to already. 5272 if (isa<PHINode>(V)) { 5273 auto VMI = FuncInfo.ValueMap.find(V); 5274 if (VMI != FuncInfo.ValueMap.end()) { 5275 unsigned Reg = VMI->second; 5276 // The PHI node may be split up into several MI PHI nodes (in 5277 // FunctionLoweringInfo::set). 5278 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 5279 V->getType(), false); 5280 if (RFV.occupiesMultipleRegs()) { 5281 unsigned Offset = 0; 5282 unsigned BitsToDescribe = 0; 5283 if (auto VarSize = Variable->getSizeInBits()) 5284 BitsToDescribe = *VarSize; 5285 if (auto Fragment = Expression->getFragmentInfo()) 5286 BitsToDescribe = Fragment->SizeInBits; 5287 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5288 unsigned RegisterSize = RegAndSize.second; 5289 // Bail out if all bits are described already. 5290 if (Offset >= BitsToDescribe) 5291 break; 5292 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 5293 ? BitsToDescribe - Offset 5294 : RegisterSize; 5295 auto FragmentExpr = DIExpression::createFragmentExpression( 5296 Expression, Offset, FragmentSize); 5297 if (!FragmentExpr) 5298 continue; 5299 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first, 5300 false, dl, SDNodeOrder); 5301 DAG.AddDbgValue(SDV, nullptr, false); 5302 Offset += RegisterSize; 5303 } 5304 } else { 5305 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5306 SDNodeOrder); 5307 DAG.AddDbgValue(SDV, nullptr, false); 5308 } 5309 return nullptr; 5310 } 5311 } 5312 5313 // TODO: When we get here we will either drop the dbg.value completely, or 5314 // we try to move it forward by letting it dangle for awhile. So we should 5315 // probably add an extra DbgValue to the DAG here, with a reference to 5316 // "noreg", to indicate that we have lost the debug location for the 5317 // variable. 5318 5319 if (!V->use_empty() ) { 5320 // Do not call getValue(V) yet, as we don't want to generate code. 5321 // Remember it for later. 5322 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5323 DanglingDebugInfoMap[V].push_back(DDI); 5324 return nullptr; 5325 } 5326 5327 LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5328 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5329 return nullptr; 5330 } 5331 5332 case Intrinsic::eh_typeid_for: { 5333 // Find the type id for the given typeinfo. 5334 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5335 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5336 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5337 setValue(&I, Res); 5338 return nullptr; 5339 } 5340 5341 case Intrinsic::eh_return_i32: 5342 case Intrinsic::eh_return_i64: 5343 DAG.getMachineFunction().setCallsEHReturn(true); 5344 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5345 MVT::Other, 5346 getControlRoot(), 5347 getValue(I.getArgOperand(0)), 5348 getValue(I.getArgOperand(1)))); 5349 return nullptr; 5350 case Intrinsic::eh_unwind_init: 5351 DAG.getMachineFunction().setCallsUnwindInit(true); 5352 return nullptr; 5353 case Intrinsic::eh_dwarf_cfa: 5354 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5355 TLI.getPointerTy(DAG.getDataLayout()), 5356 getValue(I.getArgOperand(0)))); 5357 return nullptr; 5358 case Intrinsic::eh_sjlj_callsite: { 5359 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5360 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5361 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5362 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5363 5364 MMI.setCurrentCallSite(CI->getZExtValue()); 5365 return nullptr; 5366 } 5367 case Intrinsic::eh_sjlj_functioncontext: { 5368 // Get and store the index of the function context. 5369 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5370 AllocaInst *FnCtx = 5371 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5372 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5373 MFI.setFunctionContextIndex(FI); 5374 return nullptr; 5375 } 5376 case Intrinsic::eh_sjlj_setjmp: { 5377 SDValue Ops[2]; 5378 Ops[0] = getRoot(); 5379 Ops[1] = getValue(I.getArgOperand(0)); 5380 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5381 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5382 setValue(&I, Op.getValue(0)); 5383 DAG.setRoot(Op.getValue(1)); 5384 return nullptr; 5385 } 5386 case Intrinsic::eh_sjlj_longjmp: 5387 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5388 getRoot(), getValue(I.getArgOperand(0)))); 5389 return nullptr; 5390 case Intrinsic::eh_sjlj_setup_dispatch: 5391 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5392 getRoot())); 5393 return nullptr; 5394 case Intrinsic::masked_gather: 5395 visitMaskedGather(I); 5396 return nullptr; 5397 case Intrinsic::masked_load: 5398 visitMaskedLoad(I); 5399 return nullptr; 5400 case Intrinsic::masked_scatter: 5401 visitMaskedScatter(I); 5402 return nullptr; 5403 case Intrinsic::masked_store: 5404 visitMaskedStore(I); 5405 return nullptr; 5406 case Intrinsic::masked_expandload: 5407 visitMaskedLoad(I, true /* IsExpanding */); 5408 return nullptr; 5409 case Intrinsic::masked_compressstore: 5410 visitMaskedStore(I, true /* IsCompressing */); 5411 return nullptr; 5412 case Intrinsic::x86_mmx_pslli_w: 5413 case Intrinsic::x86_mmx_pslli_d: 5414 case Intrinsic::x86_mmx_pslli_q: 5415 case Intrinsic::x86_mmx_psrli_w: 5416 case Intrinsic::x86_mmx_psrli_d: 5417 case Intrinsic::x86_mmx_psrli_q: 5418 case Intrinsic::x86_mmx_psrai_w: 5419 case Intrinsic::x86_mmx_psrai_d: { 5420 SDValue ShAmt = getValue(I.getArgOperand(1)); 5421 if (isa<ConstantSDNode>(ShAmt)) { 5422 visitTargetIntrinsic(I, Intrinsic); 5423 return nullptr; 5424 } 5425 unsigned NewIntrinsic = 0; 5426 EVT ShAmtVT = MVT::v2i32; 5427 switch (Intrinsic) { 5428 case Intrinsic::x86_mmx_pslli_w: 5429 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5430 break; 5431 case Intrinsic::x86_mmx_pslli_d: 5432 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5433 break; 5434 case Intrinsic::x86_mmx_pslli_q: 5435 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5436 break; 5437 case Intrinsic::x86_mmx_psrli_w: 5438 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5439 break; 5440 case Intrinsic::x86_mmx_psrli_d: 5441 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5442 break; 5443 case Intrinsic::x86_mmx_psrli_q: 5444 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5445 break; 5446 case Intrinsic::x86_mmx_psrai_w: 5447 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5448 break; 5449 case Intrinsic::x86_mmx_psrai_d: 5450 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5451 break; 5452 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5453 } 5454 5455 // The vector shift intrinsics with scalars uses 32b shift amounts but 5456 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5457 // to be zero. 5458 // We must do this early because v2i32 is not a legal type. 5459 SDValue ShOps[2]; 5460 ShOps[0] = ShAmt; 5461 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5462 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5463 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5464 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5465 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5466 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5467 getValue(I.getArgOperand(0)), ShAmt); 5468 setValue(&I, Res); 5469 return nullptr; 5470 } 5471 case Intrinsic::powi: 5472 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5473 getValue(I.getArgOperand(1)), DAG)); 5474 return nullptr; 5475 case Intrinsic::log: 5476 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5477 return nullptr; 5478 case Intrinsic::log2: 5479 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5480 return nullptr; 5481 case Intrinsic::log10: 5482 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5483 return nullptr; 5484 case Intrinsic::exp: 5485 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5486 return nullptr; 5487 case Intrinsic::exp2: 5488 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5489 return nullptr; 5490 case Intrinsic::pow: 5491 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5492 getValue(I.getArgOperand(1)), DAG, TLI)); 5493 return nullptr; 5494 case Intrinsic::sqrt: 5495 case Intrinsic::fabs: 5496 case Intrinsic::sin: 5497 case Intrinsic::cos: 5498 case Intrinsic::floor: 5499 case Intrinsic::ceil: 5500 case Intrinsic::trunc: 5501 case Intrinsic::rint: 5502 case Intrinsic::nearbyint: 5503 case Intrinsic::round: 5504 case Intrinsic::canonicalize: { 5505 unsigned Opcode; 5506 switch (Intrinsic) { 5507 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5508 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5509 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5510 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5511 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5512 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5513 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5514 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5515 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5516 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5517 case Intrinsic::round: Opcode = ISD::FROUND; break; 5518 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5519 } 5520 5521 setValue(&I, DAG.getNode(Opcode, sdl, 5522 getValue(I.getArgOperand(0)).getValueType(), 5523 getValue(I.getArgOperand(0)))); 5524 return nullptr; 5525 } 5526 case Intrinsic::minnum: { 5527 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5528 unsigned Opc = 5529 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5530 ? ISD::FMINNAN 5531 : ISD::FMINNUM; 5532 setValue(&I, DAG.getNode(Opc, sdl, VT, 5533 getValue(I.getArgOperand(0)), 5534 getValue(I.getArgOperand(1)))); 5535 return nullptr; 5536 } 5537 case Intrinsic::maxnum: { 5538 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5539 unsigned Opc = 5540 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5541 ? ISD::FMAXNAN 5542 : ISD::FMAXNUM; 5543 setValue(&I, DAG.getNode(Opc, sdl, VT, 5544 getValue(I.getArgOperand(0)), 5545 getValue(I.getArgOperand(1)))); 5546 return nullptr; 5547 } 5548 case Intrinsic::copysign: 5549 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5550 getValue(I.getArgOperand(0)).getValueType(), 5551 getValue(I.getArgOperand(0)), 5552 getValue(I.getArgOperand(1)))); 5553 return nullptr; 5554 case Intrinsic::fma: 5555 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5556 getValue(I.getArgOperand(0)).getValueType(), 5557 getValue(I.getArgOperand(0)), 5558 getValue(I.getArgOperand(1)), 5559 getValue(I.getArgOperand(2)))); 5560 return nullptr; 5561 case Intrinsic::experimental_constrained_fadd: 5562 case Intrinsic::experimental_constrained_fsub: 5563 case Intrinsic::experimental_constrained_fmul: 5564 case Intrinsic::experimental_constrained_fdiv: 5565 case Intrinsic::experimental_constrained_frem: 5566 case Intrinsic::experimental_constrained_fma: 5567 case Intrinsic::experimental_constrained_sqrt: 5568 case Intrinsic::experimental_constrained_pow: 5569 case Intrinsic::experimental_constrained_powi: 5570 case Intrinsic::experimental_constrained_sin: 5571 case Intrinsic::experimental_constrained_cos: 5572 case Intrinsic::experimental_constrained_exp: 5573 case Intrinsic::experimental_constrained_exp2: 5574 case Intrinsic::experimental_constrained_log: 5575 case Intrinsic::experimental_constrained_log10: 5576 case Intrinsic::experimental_constrained_log2: 5577 case Intrinsic::experimental_constrained_rint: 5578 case Intrinsic::experimental_constrained_nearbyint: 5579 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5580 return nullptr; 5581 case Intrinsic::fmuladd: { 5582 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5583 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5584 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5585 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5586 getValue(I.getArgOperand(0)).getValueType(), 5587 getValue(I.getArgOperand(0)), 5588 getValue(I.getArgOperand(1)), 5589 getValue(I.getArgOperand(2)))); 5590 } else { 5591 // TODO: Intrinsic calls should have fast-math-flags. 5592 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5593 getValue(I.getArgOperand(0)).getValueType(), 5594 getValue(I.getArgOperand(0)), 5595 getValue(I.getArgOperand(1))); 5596 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5597 getValue(I.getArgOperand(0)).getValueType(), 5598 Mul, 5599 getValue(I.getArgOperand(2))); 5600 setValue(&I, Add); 5601 } 5602 return nullptr; 5603 } 5604 case Intrinsic::convert_to_fp16: 5605 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5606 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5607 getValue(I.getArgOperand(0)), 5608 DAG.getTargetConstant(0, sdl, 5609 MVT::i32)))); 5610 return nullptr; 5611 case Intrinsic::convert_from_fp16: 5612 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5613 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5614 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5615 getValue(I.getArgOperand(0))))); 5616 return nullptr; 5617 case Intrinsic::pcmarker: { 5618 SDValue Tmp = getValue(I.getArgOperand(0)); 5619 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5620 return nullptr; 5621 } 5622 case Intrinsic::readcyclecounter: { 5623 SDValue Op = getRoot(); 5624 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5625 DAG.getVTList(MVT::i64, MVT::Other), Op); 5626 setValue(&I, Res); 5627 DAG.setRoot(Res.getValue(1)); 5628 return nullptr; 5629 } 5630 case Intrinsic::bitreverse: 5631 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5632 getValue(I.getArgOperand(0)).getValueType(), 5633 getValue(I.getArgOperand(0)))); 5634 return nullptr; 5635 case Intrinsic::bswap: 5636 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5637 getValue(I.getArgOperand(0)).getValueType(), 5638 getValue(I.getArgOperand(0)))); 5639 return nullptr; 5640 case Intrinsic::cttz: { 5641 SDValue Arg = getValue(I.getArgOperand(0)); 5642 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5643 EVT Ty = Arg.getValueType(); 5644 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5645 sdl, Ty, Arg)); 5646 return nullptr; 5647 } 5648 case Intrinsic::ctlz: { 5649 SDValue Arg = getValue(I.getArgOperand(0)); 5650 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5651 EVT Ty = Arg.getValueType(); 5652 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5653 sdl, Ty, Arg)); 5654 return nullptr; 5655 } 5656 case Intrinsic::ctpop: { 5657 SDValue Arg = getValue(I.getArgOperand(0)); 5658 EVT Ty = Arg.getValueType(); 5659 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5660 return nullptr; 5661 } 5662 case Intrinsic::stacksave: { 5663 SDValue Op = getRoot(); 5664 Res = DAG.getNode( 5665 ISD::STACKSAVE, sdl, 5666 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5667 setValue(&I, Res); 5668 DAG.setRoot(Res.getValue(1)); 5669 return nullptr; 5670 } 5671 case Intrinsic::stackrestore: 5672 Res = getValue(I.getArgOperand(0)); 5673 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5674 return nullptr; 5675 case Intrinsic::get_dynamic_area_offset: { 5676 SDValue Op = getRoot(); 5677 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5678 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5679 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5680 // target. 5681 if (PtrTy != ResTy) 5682 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5683 " intrinsic!"); 5684 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5685 Op); 5686 DAG.setRoot(Op); 5687 setValue(&I, Res); 5688 return nullptr; 5689 } 5690 case Intrinsic::stackguard: { 5691 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5692 MachineFunction &MF = DAG.getMachineFunction(); 5693 const Module &M = *MF.getFunction().getParent(); 5694 SDValue Chain = getRoot(); 5695 if (TLI.useLoadStackGuardNode()) { 5696 Res = getLoadStackGuard(DAG, sdl, Chain); 5697 } else { 5698 const Value *Global = TLI.getSDagStackGuard(M); 5699 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5700 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5701 MachinePointerInfo(Global, 0), Align, 5702 MachineMemOperand::MOVolatile); 5703 } 5704 if (TLI.useStackGuardXorFP()) 5705 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5706 DAG.setRoot(Chain); 5707 setValue(&I, Res); 5708 return nullptr; 5709 } 5710 case Intrinsic::stackprotector: { 5711 // Emit code into the DAG to store the stack guard onto the stack. 5712 MachineFunction &MF = DAG.getMachineFunction(); 5713 MachineFrameInfo &MFI = MF.getFrameInfo(); 5714 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5715 SDValue Src, Chain = getRoot(); 5716 5717 if (TLI.useLoadStackGuardNode()) 5718 Src = getLoadStackGuard(DAG, sdl, Chain); 5719 else 5720 Src = getValue(I.getArgOperand(0)); // The guard's value. 5721 5722 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5723 5724 int FI = FuncInfo.StaticAllocaMap[Slot]; 5725 MFI.setStackProtectorIndex(FI); 5726 5727 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5728 5729 // Store the stack protector onto the stack. 5730 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5731 DAG.getMachineFunction(), FI), 5732 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5733 setValue(&I, Res); 5734 DAG.setRoot(Res); 5735 return nullptr; 5736 } 5737 case Intrinsic::objectsize: { 5738 // If we don't know by now, we're never going to know. 5739 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5740 5741 assert(CI && "Non-constant type in __builtin_object_size?"); 5742 5743 SDValue Arg = getValue(I.getCalledValue()); 5744 EVT Ty = Arg.getValueType(); 5745 5746 if (CI->isZero()) 5747 Res = DAG.getConstant(-1ULL, sdl, Ty); 5748 else 5749 Res = DAG.getConstant(0, sdl, Ty); 5750 5751 setValue(&I, Res); 5752 return nullptr; 5753 } 5754 case Intrinsic::annotation: 5755 case Intrinsic::ptr_annotation: 5756 case Intrinsic::launder_invariant_group: 5757 // Drop the intrinsic, but forward the value 5758 setValue(&I, getValue(I.getOperand(0))); 5759 return nullptr; 5760 case Intrinsic::assume: 5761 case Intrinsic::var_annotation: 5762 case Intrinsic::sideeffect: 5763 // Discard annotate attributes, assumptions, and artificial side-effects. 5764 return nullptr; 5765 5766 case Intrinsic::codeview_annotation: { 5767 // Emit a label associated with this metadata. 5768 MachineFunction &MF = DAG.getMachineFunction(); 5769 MCSymbol *Label = 5770 MF.getMMI().getContext().createTempSymbol("annotation", true); 5771 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5772 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5773 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5774 DAG.setRoot(Res); 5775 return nullptr; 5776 } 5777 5778 case Intrinsic::init_trampoline: { 5779 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5780 5781 SDValue Ops[6]; 5782 Ops[0] = getRoot(); 5783 Ops[1] = getValue(I.getArgOperand(0)); 5784 Ops[2] = getValue(I.getArgOperand(1)); 5785 Ops[3] = getValue(I.getArgOperand(2)); 5786 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5787 Ops[5] = DAG.getSrcValue(F); 5788 5789 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5790 5791 DAG.setRoot(Res); 5792 return nullptr; 5793 } 5794 case Intrinsic::adjust_trampoline: 5795 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5796 TLI.getPointerTy(DAG.getDataLayout()), 5797 getValue(I.getArgOperand(0)))); 5798 return nullptr; 5799 case Intrinsic::gcroot: { 5800 assert(DAG.getMachineFunction().getFunction().hasGC() && 5801 "only valid in functions with gc specified, enforced by Verifier"); 5802 assert(GFI && "implied by previous"); 5803 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5804 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5805 5806 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5807 GFI->addStackRoot(FI->getIndex(), TypeMap); 5808 return nullptr; 5809 } 5810 case Intrinsic::gcread: 5811 case Intrinsic::gcwrite: 5812 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5813 case Intrinsic::flt_rounds: 5814 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5815 return nullptr; 5816 5817 case Intrinsic::expect: 5818 // Just replace __builtin_expect(exp, c) with EXP. 5819 setValue(&I, getValue(I.getArgOperand(0))); 5820 return nullptr; 5821 5822 case Intrinsic::debugtrap: 5823 case Intrinsic::trap: { 5824 StringRef TrapFuncName = 5825 I.getAttributes() 5826 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5827 .getValueAsString(); 5828 if (TrapFuncName.empty()) { 5829 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5830 ISD::TRAP : ISD::DEBUGTRAP; 5831 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5832 return nullptr; 5833 } 5834 TargetLowering::ArgListTy Args; 5835 5836 TargetLowering::CallLoweringInfo CLI(DAG); 5837 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5838 CallingConv::C, I.getType(), 5839 DAG.getExternalSymbol(TrapFuncName.data(), 5840 TLI.getPointerTy(DAG.getDataLayout())), 5841 std::move(Args)); 5842 5843 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5844 DAG.setRoot(Result.second); 5845 return nullptr; 5846 } 5847 5848 case Intrinsic::uadd_with_overflow: 5849 case Intrinsic::sadd_with_overflow: 5850 case Intrinsic::usub_with_overflow: 5851 case Intrinsic::ssub_with_overflow: 5852 case Intrinsic::umul_with_overflow: 5853 case Intrinsic::smul_with_overflow: { 5854 ISD::NodeType Op; 5855 switch (Intrinsic) { 5856 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5857 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5858 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5859 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5860 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5861 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5862 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5863 } 5864 SDValue Op1 = getValue(I.getArgOperand(0)); 5865 SDValue Op2 = getValue(I.getArgOperand(1)); 5866 5867 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5868 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5869 return nullptr; 5870 } 5871 case Intrinsic::prefetch: { 5872 SDValue Ops[5]; 5873 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5874 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 5875 Ops[0] = DAG.getRoot(); 5876 Ops[1] = getValue(I.getArgOperand(0)); 5877 Ops[2] = getValue(I.getArgOperand(1)); 5878 Ops[3] = getValue(I.getArgOperand(2)); 5879 Ops[4] = getValue(I.getArgOperand(3)); 5880 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5881 DAG.getVTList(MVT::Other), Ops, 5882 EVT::getIntegerVT(*Context, 8), 5883 MachinePointerInfo(I.getArgOperand(0)), 5884 0, /* align */ 5885 Flags); 5886 5887 // Chain the prefetch in parallell with any pending loads, to stay out of 5888 // the way of later optimizations. 5889 PendingLoads.push_back(Result); 5890 Result = getRoot(); 5891 DAG.setRoot(Result); 5892 return nullptr; 5893 } 5894 case Intrinsic::lifetime_start: 5895 case Intrinsic::lifetime_end: { 5896 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5897 // Stack coloring is not enabled in O0, discard region information. 5898 if (TM.getOptLevel() == CodeGenOpt::None) 5899 return nullptr; 5900 5901 SmallVector<Value *, 4> Allocas; 5902 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5903 5904 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5905 E = Allocas.end(); Object != E; ++Object) { 5906 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5907 5908 // Could not find an Alloca. 5909 if (!LifetimeObject) 5910 continue; 5911 5912 // First check that the Alloca is static, otherwise it won't have a 5913 // valid frame index. 5914 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5915 if (SI == FuncInfo.StaticAllocaMap.end()) 5916 return nullptr; 5917 5918 int FI = SI->second; 5919 5920 SDValue Ops[2]; 5921 Ops[0] = getRoot(); 5922 Ops[1] = 5923 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5924 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5925 5926 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5927 DAG.setRoot(Res); 5928 } 5929 return nullptr; 5930 } 5931 case Intrinsic::invariant_start: 5932 // Discard region information. 5933 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5934 return nullptr; 5935 case Intrinsic::invariant_end: 5936 // Discard region information. 5937 return nullptr; 5938 case Intrinsic::clear_cache: 5939 return TLI.getClearCacheBuiltinName(); 5940 case Intrinsic::donothing: 5941 // ignore 5942 return nullptr; 5943 case Intrinsic::experimental_stackmap: 5944 visitStackmap(I); 5945 return nullptr; 5946 case Intrinsic::experimental_patchpoint_void: 5947 case Intrinsic::experimental_patchpoint_i64: 5948 visitPatchpoint(&I); 5949 return nullptr; 5950 case Intrinsic::experimental_gc_statepoint: 5951 LowerStatepoint(ImmutableStatepoint(&I)); 5952 return nullptr; 5953 case Intrinsic::experimental_gc_result: 5954 visitGCResult(cast<GCResultInst>(I)); 5955 return nullptr; 5956 case Intrinsic::experimental_gc_relocate: 5957 visitGCRelocate(cast<GCRelocateInst>(I)); 5958 return nullptr; 5959 case Intrinsic::instrprof_increment: 5960 llvm_unreachable("instrprof failed to lower an increment"); 5961 case Intrinsic::instrprof_value_profile: 5962 llvm_unreachable("instrprof failed to lower a value profiling call"); 5963 case Intrinsic::localescape: { 5964 MachineFunction &MF = DAG.getMachineFunction(); 5965 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5966 5967 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5968 // is the same on all targets. 5969 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5970 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5971 if (isa<ConstantPointerNull>(Arg)) 5972 continue; // Skip null pointers. They represent a hole in index space. 5973 AllocaInst *Slot = cast<AllocaInst>(Arg); 5974 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5975 "can only escape static allocas"); 5976 int FI = FuncInfo.StaticAllocaMap[Slot]; 5977 MCSymbol *FrameAllocSym = 5978 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5979 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 5980 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5981 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5982 .addSym(FrameAllocSym) 5983 .addFrameIndex(FI); 5984 } 5985 5986 return nullptr; 5987 } 5988 5989 case Intrinsic::localrecover: { 5990 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5991 MachineFunction &MF = DAG.getMachineFunction(); 5992 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5993 5994 // Get the symbol that defines the frame offset. 5995 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5996 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5997 unsigned IdxVal = 5998 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 5999 MCSymbol *FrameAllocSym = 6000 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6001 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6002 6003 // Create a MCSymbol for the label to avoid any target lowering 6004 // that would make this PC relative. 6005 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6006 SDValue OffsetVal = 6007 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6008 6009 // Add the offset to the FP. 6010 Value *FP = I.getArgOperand(1); 6011 SDValue FPVal = getValue(FP); 6012 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6013 setValue(&I, Add); 6014 6015 return nullptr; 6016 } 6017 6018 case Intrinsic::eh_exceptionpointer: 6019 case Intrinsic::eh_exceptioncode: { 6020 // Get the exception pointer vreg, copy from it, and resize it to fit. 6021 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6022 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6023 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6024 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6025 SDValue N = 6026 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6027 if (Intrinsic == Intrinsic::eh_exceptioncode) 6028 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6029 setValue(&I, N); 6030 return nullptr; 6031 } 6032 case Intrinsic::xray_customevent: { 6033 // Here we want to make sure that the intrinsic behaves as if it has a 6034 // specific calling convention, and only for x86_64. 6035 // FIXME: Support other platforms later. 6036 const auto &Triple = DAG.getTarget().getTargetTriple(); 6037 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6038 return nullptr; 6039 6040 SDLoc DL = getCurSDLoc(); 6041 SmallVector<SDValue, 8> Ops; 6042 6043 // We want to say that we always want the arguments in registers. 6044 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6045 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6046 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6047 SDValue Chain = getRoot(); 6048 Ops.push_back(LogEntryVal); 6049 Ops.push_back(StrSizeVal); 6050 Ops.push_back(Chain); 6051 6052 // We need to enforce the calling convention for the callsite, so that 6053 // argument ordering is enforced correctly, and that register allocation can 6054 // see that some registers may be assumed clobbered and have to preserve 6055 // them across calls to the intrinsic. 6056 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6057 DL, NodeTys, Ops); 6058 SDValue patchableNode = SDValue(MN, 0); 6059 DAG.setRoot(patchableNode); 6060 setValue(&I, patchableNode); 6061 return nullptr; 6062 } 6063 case Intrinsic::xray_typedevent: { 6064 // Here we want to make sure that the intrinsic behaves as if it has a 6065 // specific calling convention, and only for x86_64. 6066 // FIXME: Support other platforms later. 6067 const auto &Triple = DAG.getTarget().getTargetTriple(); 6068 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6069 return nullptr; 6070 6071 SDLoc DL = getCurSDLoc(); 6072 SmallVector<SDValue, 8> Ops; 6073 6074 // We want to say that we always want the arguments in registers. 6075 // It's unclear to me how manipulating the selection DAG here forces callers 6076 // to provide arguments in registers instead of on the stack. 6077 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6078 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6079 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6080 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6081 SDValue Chain = getRoot(); 6082 Ops.push_back(LogTypeId); 6083 Ops.push_back(LogEntryVal); 6084 Ops.push_back(StrSizeVal); 6085 Ops.push_back(Chain); 6086 6087 // We need to enforce the calling convention for the callsite, so that 6088 // argument ordering is enforced correctly, and that register allocation can 6089 // see that some registers may be assumed clobbered and have to preserve 6090 // them across calls to the intrinsic. 6091 MachineSDNode *MN = DAG.getMachineNode( 6092 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6093 SDValue patchableNode = SDValue(MN, 0); 6094 DAG.setRoot(patchableNode); 6095 setValue(&I, patchableNode); 6096 return nullptr; 6097 } 6098 case Intrinsic::experimental_deoptimize: 6099 LowerDeoptimizeCall(&I); 6100 return nullptr; 6101 6102 case Intrinsic::experimental_vector_reduce_fadd: 6103 case Intrinsic::experimental_vector_reduce_fmul: 6104 case Intrinsic::experimental_vector_reduce_add: 6105 case Intrinsic::experimental_vector_reduce_mul: 6106 case Intrinsic::experimental_vector_reduce_and: 6107 case Intrinsic::experimental_vector_reduce_or: 6108 case Intrinsic::experimental_vector_reduce_xor: 6109 case Intrinsic::experimental_vector_reduce_smax: 6110 case Intrinsic::experimental_vector_reduce_smin: 6111 case Intrinsic::experimental_vector_reduce_umax: 6112 case Intrinsic::experimental_vector_reduce_umin: 6113 case Intrinsic::experimental_vector_reduce_fmax: 6114 case Intrinsic::experimental_vector_reduce_fmin: 6115 visitVectorReduce(I, Intrinsic); 6116 return nullptr; 6117 6118 case Intrinsic::icall_branch_funnel: { 6119 SmallVector<SDValue, 16> Ops; 6120 Ops.push_back(DAG.getRoot()); 6121 Ops.push_back(getValue(I.getArgOperand(0))); 6122 6123 int64_t Offset; 6124 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6125 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6126 if (!Base) 6127 report_fatal_error( 6128 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6129 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6130 6131 struct BranchFunnelTarget { 6132 int64_t Offset; 6133 SDValue Target; 6134 }; 6135 SmallVector<BranchFunnelTarget, 8> Targets; 6136 6137 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6138 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6139 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6140 if (ElemBase != Base) 6141 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6142 "to the same GlobalValue"); 6143 6144 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6145 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6146 if (!GA) 6147 report_fatal_error( 6148 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6149 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6150 GA->getGlobal(), getCurSDLoc(), 6151 Val.getValueType(), GA->getOffset())}); 6152 } 6153 llvm::sort(Targets.begin(), Targets.end(), 6154 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6155 return T1.Offset < T2.Offset; 6156 }); 6157 6158 for (auto &T : Targets) { 6159 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6160 Ops.push_back(T.Target); 6161 } 6162 6163 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6164 getCurSDLoc(), MVT::Other, Ops), 6165 0); 6166 DAG.setRoot(N); 6167 setValue(&I, N); 6168 HasTailCall = true; 6169 return nullptr; 6170 } 6171 6172 case Intrinsic::wasm_landingpad_index: { 6173 // TODO store landing pad index in a map, which will be used when generating 6174 // LSDA information 6175 return nullptr; 6176 } 6177 } 6178 } 6179 6180 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6181 const ConstrainedFPIntrinsic &FPI) { 6182 SDLoc sdl = getCurSDLoc(); 6183 unsigned Opcode; 6184 switch (FPI.getIntrinsicID()) { 6185 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6186 case Intrinsic::experimental_constrained_fadd: 6187 Opcode = ISD::STRICT_FADD; 6188 break; 6189 case Intrinsic::experimental_constrained_fsub: 6190 Opcode = ISD::STRICT_FSUB; 6191 break; 6192 case Intrinsic::experimental_constrained_fmul: 6193 Opcode = ISD::STRICT_FMUL; 6194 break; 6195 case Intrinsic::experimental_constrained_fdiv: 6196 Opcode = ISD::STRICT_FDIV; 6197 break; 6198 case Intrinsic::experimental_constrained_frem: 6199 Opcode = ISD::STRICT_FREM; 6200 break; 6201 case Intrinsic::experimental_constrained_fma: 6202 Opcode = ISD::STRICT_FMA; 6203 break; 6204 case Intrinsic::experimental_constrained_sqrt: 6205 Opcode = ISD::STRICT_FSQRT; 6206 break; 6207 case Intrinsic::experimental_constrained_pow: 6208 Opcode = ISD::STRICT_FPOW; 6209 break; 6210 case Intrinsic::experimental_constrained_powi: 6211 Opcode = ISD::STRICT_FPOWI; 6212 break; 6213 case Intrinsic::experimental_constrained_sin: 6214 Opcode = ISD::STRICT_FSIN; 6215 break; 6216 case Intrinsic::experimental_constrained_cos: 6217 Opcode = ISD::STRICT_FCOS; 6218 break; 6219 case Intrinsic::experimental_constrained_exp: 6220 Opcode = ISD::STRICT_FEXP; 6221 break; 6222 case Intrinsic::experimental_constrained_exp2: 6223 Opcode = ISD::STRICT_FEXP2; 6224 break; 6225 case Intrinsic::experimental_constrained_log: 6226 Opcode = ISD::STRICT_FLOG; 6227 break; 6228 case Intrinsic::experimental_constrained_log10: 6229 Opcode = ISD::STRICT_FLOG10; 6230 break; 6231 case Intrinsic::experimental_constrained_log2: 6232 Opcode = ISD::STRICT_FLOG2; 6233 break; 6234 case Intrinsic::experimental_constrained_rint: 6235 Opcode = ISD::STRICT_FRINT; 6236 break; 6237 case Intrinsic::experimental_constrained_nearbyint: 6238 Opcode = ISD::STRICT_FNEARBYINT; 6239 break; 6240 } 6241 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6242 SDValue Chain = getRoot(); 6243 SmallVector<EVT, 4> ValueVTs; 6244 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6245 ValueVTs.push_back(MVT::Other); // Out chain 6246 6247 SDVTList VTs = DAG.getVTList(ValueVTs); 6248 SDValue Result; 6249 if (FPI.isUnaryOp()) 6250 Result = DAG.getNode(Opcode, sdl, VTs, 6251 { Chain, getValue(FPI.getArgOperand(0)) }); 6252 else if (FPI.isTernaryOp()) 6253 Result = DAG.getNode(Opcode, sdl, VTs, 6254 { Chain, getValue(FPI.getArgOperand(0)), 6255 getValue(FPI.getArgOperand(1)), 6256 getValue(FPI.getArgOperand(2)) }); 6257 else 6258 Result = DAG.getNode(Opcode, sdl, VTs, 6259 { Chain, getValue(FPI.getArgOperand(0)), 6260 getValue(FPI.getArgOperand(1)) }); 6261 6262 assert(Result.getNode()->getNumValues() == 2); 6263 SDValue OutChain = Result.getValue(1); 6264 DAG.setRoot(OutChain); 6265 SDValue FPResult = Result.getValue(0); 6266 setValue(&FPI, FPResult); 6267 } 6268 6269 std::pair<SDValue, SDValue> 6270 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6271 const BasicBlock *EHPadBB) { 6272 MachineFunction &MF = DAG.getMachineFunction(); 6273 MachineModuleInfo &MMI = MF.getMMI(); 6274 MCSymbol *BeginLabel = nullptr; 6275 6276 if (EHPadBB) { 6277 // Insert a label before the invoke call to mark the try range. This can be 6278 // used to detect deletion of the invoke via the MachineModuleInfo. 6279 BeginLabel = MMI.getContext().createTempSymbol(); 6280 6281 // For SjLj, keep track of which landing pads go with which invokes 6282 // so as to maintain the ordering of pads in the LSDA. 6283 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6284 if (CallSiteIndex) { 6285 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6286 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6287 6288 // Now that the call site is handled, stop tracking it. 6289 MMI.setCurrentCallSite(0); 6290 } 6291 6292 // Both PendingLoads and PendingExports must be flushed here; 6293 // this call might not return. 6294 (void)getRoot(); 6295 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6296 6297 CLI.setChain(getRoot()); 6298 } 6299 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6300 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6301 6302 assert((CLI.IsTailCall || Result.second.getNode()) && 6303 "Non-null chain expected with non-tail call!"); 6304 assert((Result.second.getNode() || !Result.first.getNode()) && 6305 "Null value expected with tail call!"); 6306 6307 if (!Result.second.getNode()) { 6308 // As a special case, a null chain means that a tail call has been emitted 6309 // and the DAG root is already updated. 6310 HasTailCall = true; 6311 6312 // Since there's no actual continuation from this block, nothing can be 6313 // relying on us setting vregs for them. 6314 PendingExports.clear(); 6315 } else { 6316 DAG.setRoot(Result.second); 6317 } 6318 6319 if (EHPadBB) { 6320 // Insert a label at the end of the invoke call to mark the try range. This 6321 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6322 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6323 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6324 6325 // Inform MachineModuleInfo of range. 6326 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6327 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6328 // actually use outlined funclets and their LSDA info style. 6329 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6330 assert(CLI.CS); 6331 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6332 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6333 BeginLabel, EndLabel); 6334 } else { 6335 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6336 } 6337 } 6338 6339 return Result; 6340 } 6341 6342 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6343 bool isTailCall, 6344 const BasicBlock *EHPadBB) { 6345 auto &DL = DAG.getDataLayout(); 6346 FunctionType *FTy = CS.getFunctionType(); 6347 Type *RetTy = CS.getType(); 6348 6349 TargetLowering::ArgListTy Args; 6350 Args.reserve(CS.arg_size()); 6351 6352 const Value *SwiftErrorVal = nullptr; 6353 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6354 6355 // We can't tail call inside a function with a swifterror argument. Lowering 6356 // does not support this yet. It would have to move into the swifterror 6357 // register before the call. 6358 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6359 if (TLI.supportSwiftError() && 6360 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6361 isTailCall = false; 6362 6363 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6364 i != e; ++i) { 6365 TargetLowering::ArgListEntry Entry; 6366 const Value *V = *i; 6367 6368 // Skip empty types 6369 if (V->getType()->isEmptyTy()) 6370 continue; 6371 6372 SDValue ArgNode = getValue(V); 6373 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6374 6375 Entry.setAttributes(&CS, i - CS.arg_begin()); 6376 6377 // Use swifterror virtual register as input to the call. 6378 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6379 SwiftErrorVal = V; 6380 // We find the virtual register for the actual swifterror argument. 6381 // Instead of using the Value, we use the virtual register instead. 6382 Entry.Node = DAG.getRegister(FuncInfo 6383 .getOrCreateSwiftErrorVRegUseAt( 6384 CS.getInstruction(), FuncInfo.MBB, V) 6385 .first, 6386 EVT(TLI.getPointerTy(DL))); 6387 } 6388 6389 Args.push_back(Entry); 6390 6391 // If we have an explicit sret argument that is an Instruction, (i.e., it 6392 // might point to function-local memory), we can't meaningfully tail-call. 6393 if (Entry.IsSRet && isa<Instruction>(V)) 6394 isTailCall = false; 6395 } 6396 6397 // Check if target-independent constraints permit a tail call here. 6398 // Target-dependent constraints are checked within TLI->LowerCallTo. 6399 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6400 isTailCall = false; 6401 6402 // Disable tail calls if there is an swifterror argument. Targets have not 6403 // been updated to support tail calls. 6404 if (TLI.supportSwiftError() && SwiftErrorVal) 6405 isTailCall = false; 6406 6407 TargetLowering::CallLoweringInfo CLI(DAG); 6408 CLI.setDebugLoc(getCurSDLoc()) 6409 .setChain(getRoot()) 6410 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6411 .setTailCall(isTailCall) 6412 .setConvergent(CS.isConvergent()); 6413 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6414 6415 if (Result.first.getNode()) { 6416 const Instruction *Inst = CS.getInstruction(); 6417 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6418 setValue(Inst, Result.first); 6419 } 6420 6421 // The last element of CLI.InVals has the SDValue for swifterror return. 6422 // Here we copy it to a virtual register and update SwiftErrorMap for 6423 // book-keeping. 6424 if (SwiftErrorVal && TLI.supportSwiftError()) { 6425 // Get the last element of InVals. 6426 SDValue Src = CLI.InVals.back(); 6427 unsigned VReg; bool CreatedVReg; 6428 std::tie(VReg, CreatedVReg) = 6429 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6430 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6431 // We update the virtual register for the actual swifterror argument. 6432 if (CreatedVReg) 6433 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6434 DAG.setRoot(CopyNode); 6435 } 6436 } 6437 6438 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6439 SelectionDAGBuilder &Builder) { 6440 // Check to see if this load can be trivially constant folded, e.g. if the 6441 // input is from a string literal. 6442 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6443 // Cast pointer to the type we really want to load. 6444 Type *LoadTy = 6445 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6446 if (LoadVT.isVector()) 6447 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6448 6449 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6450 PointerType::getUnqual(LoadTy)); 6451 6452 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6453 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6454 return Builder.getValue(LoadCst); 6455 } 6456 6457 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6458 // still constant memory, the input chain can be the entry node. 6459 SDValue Root; 6460 bool ConstantMemory = false; 6461 6462 // Do not serialize (non-volatile) loads of constant memory with anything. 6463 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6464 Root = Builder.DAG.getEntryNode(); 6465 ConstantMemory = true; 6466 } else { 6467 // Do not serialize non-volatile loads against each other. 6468 Root = Builder.DAG.getRoot(); 6469 } 6470 6471 SDValue Ptr = Builder.getValue(PtrVal); 6472 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6473 Ptr, MachinePointerInfo(PtrVal), 6474 /* Alignment = */ 1); 6475 6476 if (!ConstantMemory) 6477 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6478 return LoadVal; 6479 } 6480 6481 /// Record the value for an instruction that produces an integer result, 6482 /// converting the type where necessary. 6483 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6484 SDValue Value, 6485 bool IsSigned) { 6486 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6487 I.getType(), true); 6488 if (IsSigned) 6489 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6490 else 6491 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6492 setValue(&I, Value); 6493 } 6494 6495 /// See if we can lower a memcmp call into an optimized form. If so, return 6496 /// true and lower it. Otherwise return false, and it will be lowered like a 6497 /// normal call. 6498 /// The caller already checked that \p I calls the appropriate LibFunc with a 6499 /// correct prototype. 6500 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6501 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6502 const Value *Size = I.getArgOperand(2); 6503 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6504 if (CSize && CSize->getZExtValue() == 0) { 6505 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6506 I.getType(), true); 6507 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6508 return true; 6509 } 6510 6511 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6512 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6513 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6514 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6515 if (Res.first.getNode()) { 6516 processIntegerCallValue(I, Res.first, true); 6517 PendingLoads.push_back(Res.second); 6518 return true; 6519 } 6520 6521 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6522 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6523 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6524 return false; 6525 6526 // If the target has a fast compare for the given size, it will return a 6527 // preferred load type for that size. Require that the load VT is legal and 6528 // that the target supports unaligned loads of that type. Otherwise, return 6529 // INVALID. 6530 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6532 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6533 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6534 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6535 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6536 // TODO: Check alignment of src and dest ptrs. 6537 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6538 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6539 if (!TLI.isTypeLegal(LVT) || 6540 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6541 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6542 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6543 } 6544 6545 return LVT; 6546 }; 6547 6548 // This turns into unaligned loads. We only do this if the target natively 6549 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6550 // we'll only produce a small number of byte loads. 6551 MVT LoadVT; 6552 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6553 switch (NumBitsToCompare) { 6554 default: 6555 return false; 6556 case 16: 6557 LoadVT = MVT::i16; 6558 break; 6559 case 32: 6560 LoadVT = MVT::i32; 6561 break; 6562 case 64: 6563 case 128: 6564 case 256: 6565 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6566 break; 6567 } 6568 6569 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6570 return false; 6571 6572 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6573 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6574 6575 // Bitcast to a wide integer type if the loads are vectors. 6576 if (LoadVT.isVector()) { 6577 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6578 LoadL = DAG.getBitcast(CmpVT, LoadL); 6579 LoadR = DAG.getBitcast(CmpVT, LoadR); 6580 } 6581 6582 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6583 processIntegerCallValue(I, Cmp, false); 6584 return true; 6585 } 6586 6587 /// See if we can lower a memchr call into an optimized form. If so, return 6588 /// true and lower it. Otherwise return false, and it will be lowered like a 6589 /// normal call. 6590 /// The caller already checked that \p I calls the appropriate LibFunc with a 6591 /// correct prototype. 6592 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6593 const Value *Src = I.getArgOperand(0); 6594 const Value *Char = I.getArgOperand(1); 6595 const Value *Length = I.getArgOperand(2); 6596 6597 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6598 std::pair<SDValue, SDValue> Res = 6599 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6600 getValue(Src), getValue(Char), getValue(Length), 6601 MachinePointerInfo(Src)); 6602 if (Res.first.getNode()) { 6603 setValue(&I, Res.first); 6604 PendingLoads.push_back(Res.second); 6605 return true; 6606 } 6607 6608 return false; 6609 } 6610 6611 /// See if we can lower a mempcpy call into an optimized form. If so, return 6612 /// true and lower it. Otherwise return false, and it will be lowered like a 6613 /// normal call. 6614 /// The caller already checked that \p I calls the appropriate LibFunc with a 6615 /// correct prototype. 6616 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6617 SDValue Dst = getValue(I.getArgOperand(0)); 6618 SDValue Src = getValue(I.getArgOperand(1)); 6619 SDValue Size = getValue(I.getArgOperand(2)); 6620 6621 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6622 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6623 unsigned Align = std::min(DstAlign, SrcAlign); 6624 if (Align == 0) // Alignment of one or both could not be inferred. 6625 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6626 6627 bool isVol = false; 6628 SDLoc sdl = getCurSDLoc(); 6629 6630 // In the mempcpy context we need to pass in a false value for isTailCall 6631 // because the return pointer needs to be adjusted by the size of 6632 // the copied memory. 6633 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6634 false, /*isTailCall=*/false, 6635 MachinePointerInfo(I.getArgOperand(0)), 6636 MachinePointerInfo(I.getArgOperand(1))); 6637 assert(MC.getNode() != nullptr && 6638 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6639 DAG.setRoot(MC); 6640 6641 // Check if Size needs to be truncated or extended. 6642 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6643 6644 // Adjust return pointer to point just past the last dst byte. 6645 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6646 Dst, Size); 6647 setValue(&I, DstPlusSize); 6648 return true; 6649 } 6650 6651 /// See if we can lower a strcpy call into an optimized form. If so, return 6652 /// true and lower it, otherwise return false and it will be lowered like a 6653 /// normal call. 6654 /// The caller already checked that \p I calls the appropriate LibFunc with a 6655 /// correct prototype. 6656 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6657 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6658 6659 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6660 std::pair<SDValue, SDValue> Res = 6661 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6662 getValue(Arg0), getValue(Arg1), 6663 MachinePointerInfo(Arg0), 6664 MachinePointerInfo(Arg1), isStpcpy); 6665 if (Res.first.getNode()) { 6666 setValue(&I, Res.first); 6667 DAG.setRoot(Res.second); 6668 return true; 6669 } 6670 6671 return false; 6672 } 6673 6674 /// See if we can lower a strcmp call into an optimized form. If so, return 6675 /// true and lower it, otherwise return false and it will be lowered like a 6676 /// normal call. 6677 /// The caller already checked that \p I calls the appropriate LibFunc with a 6678 /// correct prototype. 6679 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6680 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6681 6682 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6683 std::pair<SDValue, SDValue> Res = 6684 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6685 getValue(Arg0), getValue(Arg1), 6686 MachinePointerInfo(Arg0), 6687 MachinePointerInfo(Arg1)); 6688 if (Res.first.getNode()) { 6689 processIntegerCallValue(I, Res.first, true); 6690 PendingLoads.push_back(Res.second); 6691 return true; 6692 } 6693 6694 return false; 6695 } 6696 6697 /// See if we can lower a strlen call into an optimized form. If so, return 6698 /// true and lower it, otherwise return false and it will be lowered like a 6699 /// normal call. 6700 /// The caller already checked that \p I calls the appropriate LibFunc with a 6701 /// correct prototype. 6702 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6703 const Value *Arg0 = I.getArgOperand(0); 6704 6705 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6706 std::pair<SDValue, SDValue> Res = 6707 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6708 getValue(Arg0), MachinePointerInfo(Arg0)); 6709 if (Res.first.getNode()) { 6710 processIntegerCallValue(I, Res.first, false); 6711 PendingLoads.push_back(Res.second); 6712 return true; 6713 } 6714 6715 return false; 6716 } 6717 6718 /// See if we can lower a strnlen call into an optimized form. If so, return 6719 /// true and lower it, otherwise return false and it will be lowered like a 6720 /// normal call. 6721 /// The caller already checked that \p I calls the appropriate LibFunc with a 6722 /// correct prototype. 6723 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6724 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6725 6726 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6727 std::pair<SDValue, SDValue> Res = 6728 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6729 getValue(Arg0), getValue(Arg1), 6730 MachinePointerInfo(Arg0)); 6731 if (Res.first.getNode()) { 6732 processIntegerCallValue(I, Res.first, false); 6733 PendingLoads.push_back(Res.second); 6734 return true; 6735 } 6736 6737 return false; 6738 } 6739 6740 /// See if we can lower a unary floating-point operation into an SDNode with 6741 /// the specified Opcode. If so, return true and lower it, otherwise return 6742 /// false and it will be lowered like a normal call. 6743 /// The caller already checked that \p I calls the appropriate LibFunc with a 6744 /// correct prototype. 6745 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6746 unsigned Opcode) { 6747 // We already checked this call's prototype; verify it doesn't modify errno. 6748 if (!I.onlyReadsMemory()) 6749 return false; 6750 6751 SDValue Tmp = getValue(I.getArgOperand(0)); 6752 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6753 return true; 6754 } 6755 6756 /// See if we can lower a binary floating-point operation into an SDNode with 6757 /// the specified Opcode. If so, return true and lower it. Otherwise return 6758 /// false, and it will be lowered like a normal call. 6759 /// The caller already checked that \p I calls the appropriate LibFunc with a 6760 /// correct prototype. 6761 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6762 unsigned Opcode) { 6763 // We already checked this call's prototype; verify it doesn't modify errno. 6764 if (!I.onlyReadsMemory()) 6765 return false; 6766 6767 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6768 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6769 EVT VT = Tmp0.getValueType(); 6770 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6771 return true; 6772 } 6773 6774 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6775 // Handle inline assembly differently. 6776 if (isa<InlineAsm>(I.getCalledValue())) { 6777 visitInlineAsm(&I); 6778 return; 6779 } 6780 6781 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6782 computeUsesVAFloatArgument(I, MMI); 6783 6784 const char *RenameFn = nullptr; 6785 if (Function *F = I.getCalledFunction()) { 6786 if (F->isDeclaration()) { 6787 // Is this an LLVM intrinsic or a target-specific intrinsic? 6788 unsigned IID = F->getIntrinsicID(); 6789 if (!IID) 6790 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 6791 IID = II->getIntrinsicID(F); 6792 6793 if (IID) { 6794 RenameFn = visitIntrinsicCall(I, IID); 6795 if (!RenameFn) 6796 return; 6797 } 6798 } 6799 6800 // Check for well-known libc/libm calls. If the function is internal, it 6801 // can't be a library call. Don't do the check if marked as nobuiltin for 6802 // some reason or the call site requires strict floating point semantics. 6803 LibFunc Func; 6804 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6805 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6806 LibInfo->hasOptimizedCodeGen(Func)) { 6807 switch (Func) { 6808 default: break; 6809 case LibFunc_copysign: 6810 case LibFunc_copysignf: 6811 case LibFunc_copysignl: 6812 // We already checked this call's prototype; verify it doesn't modify 6813 // errno. 6814 if (I.onlyReadsMemory()) { 6815 SDValue LHS = getValue(I.getArgOperand(0)); 6816 SDValue RHS = getValue(I.getArgOperand(1)); 6817 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6818 LHS.getValueType(), LHS, RHS)); 6819 return; 6820 } 6821 break; 6822 case LibFunc_fabs: 6823 case LibFunc_fabsf: 6824 case LibFunc_fabsl: 6825 if (visitUnaryFloatCall(I, ISD::FABS)) 6826 return; 6827 break; 6828 case LibFunc_fmin: 6829 case LibFunc_fminf: 6830 case LibFunc_fminl: 6831 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6832 return; 6833 break; 6834 case LibFunc_fmax: 6835 case LibFunc_fmaxf: 6836 case LibFunc_fmaxl: 6837 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6838 return; 6839 break; 6840 case LibFunc_sin: 6841 case LibFunc_sinf: 6842 case LibFunc_sinl: 6843 if (visitUnaryFloatCall(I, ISD::FSIN)) 6844 return; 6845 break; 6846 case LibFunc_cos: 6847 case LibFunc_cosf: 6848 case LibFunc_cosl: 6849 if (visitUnaryFloatCall(I, ISD::FCOS)) 6850 return; 6851 break; 6852 case LibFunc_sqrt: 6853 case LibFunc_sqrtf: 6854 case LibFunc_sqrtl: 6855 case LibFunc_sqrt_finite: 6856 case LibFunc_sqrtf_finite: 6857 case LibFunc_sqrtl_finite: 6858 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6859 return; 6860 break; 6861 case LibFunc_floor: 6862 case LibFunc_floorf: 6863 case LibFunc_floorl: 6864 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6865 return; 6866 break; 6867 case LibFunc_nearbyint: 6868 case LibFunc_nearbyintf: 6869 case LibFunc_nearbyintl: 6870 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6871 return; 6872 break; 6873 case LibFunc_ceil: 6874 case LibFunc_ceilf: 6875 case LibFunc_ceill: 6876 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6877 return; 6878 break; 6879 case LibFunc_rint: 6880 case LibFunc_rintf: 6881 case LibFunc_rintl: 6882 if (visitUnaryFloatCall(I, ISD::FRINT)) 6883 return; 6884 break; 6885 case LibFunc_round: 6886 case LibFunc_roundf: 6887 case LibFunc_roundl: 6888 if (visitUnaryFloatCall(I, ISD::FROUND)) 6889 return; 6890 break; 6891 case LibFunc_trunc: 6892 case LibFunc_truncf: 6893 case LibFunc_truncl: 6894 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6895 return; 6896 break; 6897 case LibFunc_log2: 6898 case LibFunc_log2f: 6899 case LibFunc_log2l: 6900 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6901 return; 6902 break; 6903 case LibFunc_exp2: 6904 case LibFunc_exp2f: 6905 case LibFunc_exp2l: 6906 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6907 return; 6908 break; 6909 case LibFunc_memcmp: 6910 if (visitMemCmpCall(I)) 6911 return; 6912 break; 6913 case LibFunc_mempcpy: 6914 if (visitMemPCpyCall(I)) 6915 return; 6916 break; 6917 case LibFunc_memchr: 6918 if (visitMemChrCall(I)) 6919 return; 6920 break; 6921 case LibFunc_strcpy: 6922 if (visitStrCpyCall(I, false)) 6923 return; 6924 break; 6925 case LibFunc_stpcpy: 6926 if (visitStrCpyCall(I, true)) 6927 return; 6928 break; 6929 case LibFunc_strcmp: 6930 if (visitStrCmpCall(I)) 6931 return; 6932 break; 6933 case LibFunc_strlen: 6934 if (visitStrLenCall(I)) 6935 return; 6936 break; 6937 case LibFunc_strnlen: 6938 if (visitStrNLenCall(I)) 6939 return; 6940 break; 6941 } 6942 } 6943 } 6944 6945 SDValue Callee; 6946 if (!RenameFn) 6947 Callee = getValue(I.getCalledValue()); 6948 else 6949 Callee = DAG.getExternalSymbol( 6950 RenameFn, 6951 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6952 6953 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6954 // have to do anything here to lower funclet bundles. 6955 assert(!I.hasOperandBundlesOtherThan( 6956 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6957 "Cannot lower calls with arbitrary operand bundles!"); 6958 6959 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6960 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6961 else 6962 // Check if we can potentially perform a tail call. More detailed checking 6963 // is be done within LowerCallTo, after more information about the call is 6964 // known. 6965 LowerCallTo(&I, Callee, I.isTailCall()); 6966 } 6967 6968 namespace { 6969 6970 /// AsmOperandInfo - This contains information for each constraint that we are 6971 /// lowering. 6972 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6973 public: 6974 /// CallOperand - If this is the result output operand or a clobber 6975 /// this is null, otherwise it is the incoming operand to the CallInst. 6976 /// This gets modified as the asm is processed. 6977 SDValue CallOperand; 6978 6979 /// AssignedRegs - If this is a register or register class operand, this 6980 /// contains the set of register corresponding to the operand. 6981 RegsForValue AssignedRegs; 6982 6983 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6984 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 6985 } 6986 6987 /// Whether or not this operand accesses memory 6988 bool hasMemory(const TargetLowering &TLI) const { 6989 // Indirect operand accesses access memory. 6990 if (isIndirect) 6991 return true; 6992 6993 for (const auto &Code : Codes) 6994 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6995 return true; 6996 6997 return false; 6998 } 6999 7000 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7001 /// corresponds to. If there is no Value* for this operand, it returns 7002 /// MVT::Other. 7003 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7004 const DataLayout &DL) const { 7005 if (!CallOperandVal) return MVT::Other; 7006 7007 if (isa<BasicBlock>(CallOperandVal)) 7008 return TLI.getPointerTy(DL); 7009 7010 llvm::Type *OpTy = CallOperandVal->getType(); 7011 7012 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7013 // If this is an indirect operand, the operand is a pointer to the 7014 // accessed type. 7015 if (isIndirect) { 7016 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7017 if (!PtrTy) 7018 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7019 OpTy = PtrTy->getElementType(); 7020 } 7021 7022 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7023 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7024 if (STy->getNumElements() == 1) 7025 OpTy = STy->getElementType(0); 7026 7027 // If OpTy is not a single value, it may be a struct/union that we 7028 // can tile with integers. 7029 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7030 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7031 switch (BitSize) { 7032 default: break; 7033 case 1: 7034 case 8: 7035 case 16: 7036 case 32: 7037 case 64: 7038 case 128: 7039 OpTy = IntegerType::get(Context, BitSize); 7040 break; 7041 } 7042 } 7043 7044 return TLI.getValueType(DL, OpTy, true); 7045 } 7046 }; 7047 7048 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7049 7050 } // end anonymous namespace 7051 7052 /// Make sure that the output operand \p OpInfo and its corresponding input 7053 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7054 /// out). 7055 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7056 SDISelAsmOperandInfo &MatchingOpInfo, 7057 SelectionDAG &DAG) { 7058 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7059 return; 7060 7061 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7062 const auto &TLI = DAG.getTargetLoweringInfo(); 7063 7064 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7065 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7066 OpInfo.ConstraintVT); 7067 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7068 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7069 MatchingOpInfo.ConstraintVT); 7070 if ((OpInfo.ConstraintVT.isInteger() != 7071 MatchingOpInfo.ConstraintVT.isInteger()) || 7072 (MatchRC.second != InputRC.second)) { 7073 // FIXME: error out in a more elegant fashion 7074 report_fatal_error("Unsupported asm: input constraint" 7075 " with a matching output constraint of" 7076 " incompatible type!"); 7077 } 7078 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7079 } 7080 7081 /// Get a direct memory input to behave well as an indirect operand. 7082 /// This may introduce stores, hence the need for a \p Chain. 7083 /// \return The (possibly updated) chain. 7084 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7085 SDISelAsmOperandInfo &OpInfo, 7086 SelectionDAG &DAG) { 7087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7088 7089 // If we don't have an indirect input, put it in the constpool if we can, 7090 // otherwise spill it to a stack slot. 7091 // TODO: This isn't quite right. We need to handle these according to 7092 // the addressing mode that the constraint wants. Also, this may take 7093 // an additional register for the computation and we don't want that 7094 // either. 7095 7096 // If the operand is a float, integer, or vector constant, spill to a 7097 // constant pool entry to get its address. 7098 const Value *OpVal = OpInfo.CallOperandVal; 7099 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7100 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7101 OpInfo.CallOperand = DAG.getConstantPool( 7102 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7103 return Chain; 7104 } 7105 7106 // Otherwise, create a stack slot and emit a store to it before the asm. 7107 Type *Ty = OpVal->getType(); 7108 auto &DL = DAG.getDataLayout(); 7109 uint64_t TySize = DL.getTypeAllocSize(Ty); 7110 unsigned Align = DL.getPrefTypeAlignment(Ty); 7111 MachineFunction &MF = DAG.getMachineFunction(); 7112 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7113 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7114 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7115 MachinePointerInfo::getFixedStack(MF, SSFI)); 7116 OpInfo.CallOperand = StackSlot; 7117 7118 return Chain; 7119 } 7120 7121 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7122 /// specified operand. We prefer to assign virtual registers, to allow the 7123 /// register allocator to handle the assignment process. However, if the asm 7124 /// uses features that we can't model on machineinstrs, we have SDISel do the 7125 /// allocation. This produces generally horrible, but correct, code. 7126 /// 7127 /// OpInfo describes the operand. 7128 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 7129 const SDLoc &DL, 7130 SDISelAsmOperandInfo &OpInfo) { 7131 LLVMContext &Context = *DAG.getContext(); 7132 7133 MachineFunction &MF = DAG.getMachineFunction(); 7134 SmallVector<unsigned, 4> Regs; 7135 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7136 7137 // If this is a constraint for a single physreg, or a constraint for a 7138 // register class, find it. 7139 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7140 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 7141 OpInfo.ConstraintVT); 7142 7143 unsigned NumRegs = 1; 7144 if (OpInfo.ConstraintVT != MVT::Other) { 7145 // If this is a FP input in an integer register (or visa versa) insert a bit 7146 // cast of the input value. More generally, handle any case where the input 7147 // value disagrees with the register class we plan to stick this in. 7148 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 7149 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7150 // Try to convert to the first EVT that the reg class contains. If the 7151 // types are identical size, use a bitcast to convert (e.g. two differing 7152 // vector types). 7153 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7154 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 7155 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7156 RegVT, OpInfo.CallOperand); 7157 OpInfo.ConstraintVT = RegVT; 7158 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7159 // If the input is a FP value and we want it in FP registers, do a 7160 // bitcast to the corresponding integer type. This turns an f64 value 7161 // into i64, which can be passed with two i32 values on a 32-bit 7162 // machine. 7163 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7164 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7165 RegVT, OpInfo.CallOperand); 7166 OpInfo.ConstraintVT = RegVT; 7167 } 7168 } 7169 7170 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7171 } 7172 7173 MVT RegVT; 7174 EVT ValueVT = OpInfo.ConstraintVT; 7175 7176 // If this is a constraint for a specific physical register, like {r17}, 7177 // assign it now. 7178 if (unsigned AssignedReg = PhysReg.first) { 7179 const TargetRegisterClass *RC = PhysReg.second; 7180 if (OpInfo.ConstraintVT == MVT::Other) 7181 ValueVT = *TRI.legalclasstypes_begin(*RC); 7182 7183 // Get the actual register value type. This is important, because the user 7184 // may have asked for (e.g.) the AX register in i32 type. We need to 7185 // remember that AX is actually i16 to get the right extension. 7186 RegVT = *TRI.legalclasstypes_begin(*RC); 7187 7188 // This is a explicit reference to a physical register. 7189 Regs.push_back(AssignedReg); 7190 7191 // If this is an expanded reference, add the rest of the regs to Regs. 7192 if (NumRegs != 1) { 7193 TargetRegisterClass::iterator I = RC->begin(); 7194 for (; *I != AssignedReg; ++I) 7195 assert(I != RC->end() && "Didn't find reg!"); 7196 7197 // Already added the first reg. 7198 --NumRegs; ++I; 7199 for (; NumRegs; --NumRegs, ++I) { 7200 assert(I != RC->end() && "Ran out of registers to allocate!"); 7201 Regs.push_back(*I); 7202 } 7203 } 7204 7205 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7206 return; 7207 } 7208 7209 // Otherwise, if this was a reference to an LLVM register class, create vregs 7210 // for this reference. 7211 if (const TargetRegisterClass *RC = PhysReg.second) { 7212 RegVT = *TRI.legalclasstypes_begin(*RC); 7213 if (OpInfo.ConstraintVT == MVT::Other) 7214 ValueVT = RegVT; 7215 7216 // Create the appropriate number of virtual registers. 7217 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7218 for (; NumRegs; --NumRegs) 7219 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7220 7221 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7222 return; 7223 } 7224 7225 // Otherwise, we couldn't allocate enough registers for this. 7226 } 7227 7228 static unsigned 7229 findMatchingInlineAsmOperand(unsigned OperandNo, 7230 const std::vector<SDValue> &AsmNodeOperands) { 7231 // Scan until we find the definition we already emitted of this operand. 7232 unsigned CurOp = InlineAsm::Op_FirstOperand; 7233 for (; OperandNo; --OperandNo) { 7234 // Advance to the next operand. 7235 unsigned OpFlag = 7236 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7237 assert((InlineAsm::isRegDefKind(OpFlag) || 7238 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7239 InlineAsm::isMemKind(OpFlag)) && 7240 "Skipped past definitions?"); 7241 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7242 } 7243 return CurOp; 7244 } 7245 7246 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7247 /// \return true if it has succeeded, false otherwise 7248 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7249 MVT RegVT, SelectionDAG &DAG) { 7250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7251 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7252 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7253 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7254 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7255 else 7256 return false; 7257 } 7258 return true; 7259 } 7260 7261 namespace { 7262 7263 class ExtraFlags { 7264 unsigned Flags = 0; 7265 7266 public: 7267 explicit ExtraFlags(ImmutableCallSite CS) { 7268 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7269 if (IA->hasSideEffects()) 7270 Flags |= InlineAsm::Extra_HasSideEffects; 7271 if (IA->isAlignStack()) 7272 Flags |= InlineAsm::Extra_IsAlignStack; 7273 if (CS.isConvergent()) 7274 Flags |= InlineAsm::Extra_IsConvergent; 7275 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7276 } 7277 7278 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7279 // Ideally, we would only check against memory constraints. However, the 7280 // meaning of an Other constraint can be target-specific and we can't easily 7281 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7282 // for Other constraints as well. 7283 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7284 OpInfo.ConstraintType == TargetLowering::C_Other) { 7285 if (OpInfo.Type == InlineAsm::isInput) 7286 Flags |= InlineAsm::Extra_MayLoad; 7287 else if (OpInfo.Type == InlineAsm::isOutput) 7288 Flags |= InlineAsm::Extra_MayStore; 7289 else if (OpInfo.Type == InlineAsm::isClobber) 7290 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7291 } 7292 } 7293 7294 unsigned get() const { return Flags; } 7295 }; 7296 7297 } // end anonymous namespace 7298 7299 /// visitInlineAsm - Handle a call to an InlineAsm object. 7300 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7301 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7302 7303 /// ConstraintOperands - Information about all of the constraints. 7304 SDISelAsmOperandInfoVector ConstraintOperands; 7305 7306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7307 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7308 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7309 7310 bool hasMemory = false; 7311 7312 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7313 ExtraFlags ExtraInfo(CS); 7314 7315 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7316 unsigned ResNo = 0; // ResNo - The result number of the next output. 7317 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7318 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7319 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7320 7321 MVT OpVT = MVT::Other; 7322 7323 // Compute the value type for each operand. 7324 if (OpInfo.Type == InlineAsm::isInput || 7325 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7326 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7327 7328 // Process the call argument. BasicBlocks are labels, currently appearing 7329 // only in asm's. 7330 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7331 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7332 } else { 7333 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7334 } 7335 7336 OpVT = 7337 OpInfo 7338 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7339 .getSimpleVT(); 7340 } 7341 7342 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7343 // The return value of the call is this value. As such, there is no 7344 // corresponding argument. 7345 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7346 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7347 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7348 STy->getElementType(ResNo)); 7349 } else { 7350 assert(ResNo == 0 && "Asm only has one result!"); 7351 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7352 } 7353 ++ResNo; 7354 } 7355 7356 OpInfo.ConstraintVT = OpVT; 7357 7358 if (!hasMemory) 7359 hasMemory = OpInfo.hasMemory(TLI); 7360 7361 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7362 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7363 auto TargetConstraint = TargetConstraints[i]; 7364 7365 // Compute the constraint code and ConstraintType to use. 7366 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7367 7368 ExtraInfo.update(TargetConstraint); 7369 } 7370 7371 SDValue Chain, Flag; 7372 7373 // We won't need to flush pending loads if this asm doesn't touch 7374 // memory and is nonvolatile. 7375 if (hasMemory || IA->hasSideEffects()) 7376 Chain = getRoot(); 7377 else 7378 Chain = DAG.getRoot(); 7379 7380 // Second pass over the constraints: compute which constraint option to use 7381 // and assign registers to constraints that want a specific physreg. 7382 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7383 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7384 7385 // If this is an output operand with a matching input operand, look up the 7386 // matching input. If their types mismatch, e.g. one is an integer, the 7387 // other is floating point, or their sizes are different, flag it as an 7388 // error. 7389 if (OpInfo.hasMatchingInput()) { 7390 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7391 patchMatchingInput(OpInfo, Input, DAG); 7392 } 7393 7394 // Compute the constraint code and ConstraintType to use. 7395 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7396 7397 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7398 OpInfo.Type == InlineAsm::isClobber) 7399 continue; 7400 7401 // If this is a memory input, and if the operand is not indirect, do what we 7402 // need to provide an address for the memory input. 7403 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7404 !OpInfo.isIndirect) { 7405 assert((OpInfo.isMultipleAlternative || 7406 (OpInfo.Type == InlineAsm::isInput)) && 7407 "Can only indirectify direct input operands!"); 7408 7409 // Memory operands really want the address of the value. 7410 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7411 7412 // There is no longer a Value* corresponding to this operand. 7413 OpInfo.CallOperandVal = nullptr; 7414 7415 // It is now an indirect operand. 7416 OpInfo.isIndirect = true; 7417 } 7418 7419 // If this constraint is for a specific register, allocate it before 7420 // anything else. 7421 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7422 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7423 } 7424 7425 // Third pass - Loop over all of the operands, assigning virtual or physregs 7426 // to register class operands. 7427 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7428 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7429 7430 // C_Register operands have already been allocated, Other/Memory don't need 7431 // to be. 7432 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7433 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7434 } 7435 7436 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7437 std::vector<SDValue> AsmNodeOperands; 7438 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7439 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7440 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7441 7442 // If we have a !srcloc metadata node associated with it, we want to attach 7443 // this to the ultimately generated inline asm machineinstr. To do this, we 7444 // pass in the third operand as this (potentially null) inline asm MDNode. 7445 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7446 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7447 7448 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7449 // bits as operand 3. 7450 AsmNodeOperands.push_back(DAG.getTargetConstant( 7451 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7452 7453 // Loop over all of the inputs, copying the operand values into the 7454 // appropriate registers and processing the output regs. 7455 RegsForValue RetValRegs; 7456 7457 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7458 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7459 7460 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7461 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7462 7463 switch (OpInfo.Type) { 7464 case InlineAsm::isOutput: 7465 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7466 OpInfo.ConstraintType != TargetLowering::C_Register) { 7467 // Memory output, or 'other' output (e.g. 'X' constraint). 7468 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7469 7470 unsigned ConstraintID = 7471 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7472 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7473 "Failed to convert memory constraint code to constraint id."); 7474 7475 // Add information to the INLINEASM node to know about this output. 7476 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7477 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7478 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7479 MVT::i32)); 7480 AsmNodeOperands.push_back(OpInfo.CallOperand); 7481 break; 7482 } 7483 7484 // Otherwise, this is a register or register class output. 7485 7486 // Copy the output from the appropriate register. Find a register that 7487 // we can use. 7488 if (OpInfo.AssignedRegs.Regs.empty()) { 7489 emitInlineAsmError( 7490 CS, "couldn't allocate output register for constraint '" + 7491 Twine(OpInfo.ConstraintCode) + "'"); 7492 return; 7493 } 7494 7495 // If this is an indirect operand, store through the pointer after the 7496 // asm. 7497 if (OpInfo.isIndirect) { 7498 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7499 OpInfo.CallOperandVal)); 7500 } else { 7501 // This is the result value of the call. 7502 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7503 // Concatenate this output onto the outputs list. 7504 RetValRegs.append(OpInfo.AssignedRegs); 7505 } 7506 7507 // Add information to the INLINEASM node to know that this register is 7508 // set. 7509 OpInfo.AssignedRegs 7510 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7511 ? InlineAsm::Kind_RegDefEarlyClobber 7512 : InlineAsm::Kind_RegDef, 7513 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7514 break; 7515 7516 case InlineAsm::isInput: { 7517 SDValue InOperandVal = OpInfo.CallOperand; 7518 7519 if (OpInfo.isMatchingInputConstraint()) { 7520 // If this is required to match an output register we have already set, 7521 // just use its register. 7522 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7523 AsmNodeOperands); 7524 unsigned OpFlag = 7525 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7526 if (InlineAsm::isRegDefKind(OpFlag) || 7527 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7528 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7529 if (OpInfo.isIndirect) { 7530 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7531 emitInlineAsmError(CS, "inline asm not supported yet:" 7532 " don't know how to handle tied " 7533 "indirect register inputs"); 7534 return; 7535 } 7536 7537 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7538 SmallVector<unsigned, 4> Regs; 7539 7540 if (!createVirtualRegs(Regs, 7541 InlineAsm::getNumOperandRegisters(OpFlag), 7542 RegVT, DAG)) { 7543 emitInlineAsmError(CS, "inline asm error: This value type register " 7544 "class is not natively supported!"); 7545 return; 7546 } 7547 7548 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7549 7550 SDLoc dl = getCurSDLoc(); 7551 // Use the produced MatchedRegs object to 7552 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7553 CS.getInstruction()); 7554 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7555 true, OpInfo.getMatchedOperand(), dl, 7556 DAG, AsmNodeOperands); 7557 break; 7558 } 7559 7560 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7561 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7562 "Unexpected number of operands"); 7563 // Add information to the INLINEASM node to know about this input. 7564 // See InlineAsm.h isUseOperandTiedToDef. 7565 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7566 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7567 OpInfo.getMatchedOperand()); 7568 AsmNodeOperands.push_back(DAG.getTargetConstant( 7569 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7570 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7571 break; 7572 } 7573 7574 // Treat indirect 'X' constraint as memory. 7575 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7576 OpInfo.isIndirect) 7577 OpInfo.ConstraintType = TargetLowering::C_Memory; 7578 7579 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7580 std::vector<SDValue> Ops; 7581 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7582 Ops, DAG); 7583 if (Ops.empty()) { 7584 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7585 Twine(OpInfo.ConstraintCode) + "'"); 7586 return; 7587 } 7588 7589 // Add information to the INLINEASM node to know about this input. 7590 unsigned ResOpType = 7591 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7592 AsmNodeOperands.push_back(DAG.getTargetConstant( 7593 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7594 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7595 break; 7596 } 7597 7598 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7599 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7600 assert(InOperandVal.getValueType() == 7601 TLI.getPointerTy(DAG.getDataLayout()) && 7602 "Memory operands expect pointer values"); 7603 7604 unsigned ConstraintID = 7605 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7606 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7607 "Failed to convert memory constraint code to constraint id."); 7608 7609 // Add information to the INLINEASM node to know about this input. 7610 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7611 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7612 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7613 getCurSDLoc(), 7614 MVT::i32)); 7615 AsmNodeOperands.push_back(InOperandVal); 7616 break; 7617 } 7618 7619 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7620 OpInfo.ConstraintType == TargetLowering::C_Register) && 7621 "Unknown constraint type!"); 7622 7623 // TODO: Support this. 7624 if (OpInfo.isIndirect) { 7625 emitInlineAsmError( 7626 CS, "Don't know how to handle indirect register inputs yet " 7627 "for constraint '" + 7628 Twine(OpInfo.ConstraintCode) + "'"); 7629 return; 7630 } 7631 7632 // Copy the input into the appropriate registers. 7633 if (OpInfo.AssignedRegs.Regs.empty()) { 7634 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7635 Twine(OpInfo.ConstraintCode) + "'"); 7636 return; 7637 } 7638 7639 SDLoc dl = getCurSDLoc(); 7640 7641 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7642 Chain, &Flag, CS.getInstruction()); 7643 7644 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7645 dl, DAG, AsmNodeOperands); 7646 break; 7647 } 7648 case InlineAsm::isClobber: 7649 // Add the clobbered value to the operand list, so that the register 7650 // allocator is aware that the physreg got clobbered. 7651 if (!OpInfo.AssignedRegs.Regs.empty()) 7652 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7653 false, 0, getCurSDLoc(), DAG, 7654 AsmNodeOperands); 7655 break; 7656 } 7657 } 7658 7659 // Finish up input operands. Set the input chain and add the flag last. 7660 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7661 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7662 7663 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7664 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7665 Flag = Chain.getValue(1); 7666 7667 // If this asm returns a register value, copy the result from that register 7668 // and set it as the value of the call. 7669 if (!RetValRegs.Regs.empty()) { 7670 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7671 Chain, &Flag, CS.getInstruction()); 7672 7673 // FIXME: Why don't we do this for inline asms with MRVs? 7674 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7675 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7676 7677 // If any of the results of the inline asm is a vector, it may have the 7678 // wrong width/num elts. This can happen for register classes that can 7679 // contain multiple different value types. The preg or vreg allocated may 7680 // not have the same VT as was expected. Convert it to the right type 7681 // with bit_convert. 7682 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7683 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7684 ResultType, Val); 7685 7686 } else if (ResultType != Val.getValueType() && 7687 ResultType.isInteger() && Val.getValueType().isInteger()) { 7688 // If a result value was tied to an input value, the computed result may 7689 // have a wider width than the expected result. Extract the relevant 7690 // portion. 7691 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7692 } 7693 7694 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7695 } 7696 7697 setValue(CS.getInstruction(), Val); 7698 // Don't need to use this as a chain in this case. 7699 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7700 return; 7701 } 7702 7703 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7704 7705 // Process indirect outputs, first output all of the flagged copies out of 7706 // physregs. 7707 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7708 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7709 const Value *Ptr = IndirectStoresToEmit[i].second; 7710 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7711 Chain, &Flag, IA); 7712 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7713 } 7714 7715 // Emit the non-flagged stores from the physregs. 7716 SmallVector<SDValue, 8> OutChains; 7717 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7718 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7719 getValue(StoresToEmit[i].second), 7720 MachinePointerInfo(StoresToEmit[i].second)); 7721 OutChains.push_back(Val); 7722 } 7723 7724 if (!OutChains.empty()) 7725 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7726 7727 DAG.setRoot(Chain); 7728 } 7729 7730 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7731 const Twine &Message) { 7732 LLVMContext &Ctx = *DAG.getContext(); 7733 Ctx.emitError(CS.getInstruction(), Message); 7734 7735 // Make sure we leave the DAG in a valid state 7736 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7737 SmallVector<EVT, 1> ValueVTs; 7738 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7739 7740 if (ValueVTs.empty()) 7741 return; 7742 7743 SmallVector<SDValue, 1> Ops; 7744 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 7745 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 7746 7747 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 7748 } 7749 7750 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7751 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7752 MVT::Other, getRoot(), 7753 getValue(I.getArgOperand(0)), 7754 DAG.getSrcValue(I.getArgOperand(0)))); 7755 } 7756 7757 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7758 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7759 const DataLayout &DL = DAG.getDataLayout(); 7760 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7761 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7762 DAG.getSrcValue(I.getOperand(0)), 7763 DL.getABITypeAlignment(I.getType())); 7764 setValue(&I, V); 7765 DAG.setRoot(V.getValue(1)); 7766 } 7767 7768 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7769 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7770 MVT::Other, getRoot(), 7771 getValue(I.getArgOperand(0)), 7772 DAG.getSrcValue(I.getArgOperand(0)))); 7773 } 7774 7775 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7776 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7777 MVT::Other, getRoot(), 7778 getValue(I.getArgOperand(0)), 7779 getValue(I.getArgOperand(1)), 7780 DAG.getSrcValue(I.getArgOperand(0)), 7781 DAG.getSrcValue(I.getArgOperand(1)))); 7782 } 7783 7784 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7785 const Instruction &I, 7786 SDValue Op) { 7787 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7788 if (!Range) 7789 return Op; 7790 7791 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7792 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7793 return Op; 7794 7795 APInt Lo = CR.getUnsignedMin(); 7796 if (!Lo.isMinValue()) 7797 return Op; 7798 7799 APInt Hi = CR.getUnsignedMax(); 7800 unsigned Bits = Hi.getActiveBits(); 7801 7802 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7803 7804 SDLoc SL = getCurSDLoc(); 7805 7806 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7807 DAG.getValueType(SmallVT)); 7808 unsigned NumVals = Op.getNode()->getNumValues(); 7809 if (NumVals == 1) 7810 return ZExt; 7811 7812 SmallVector<SDValue, 4> Ops; 7813 7814 Ops.push_back(ZExt); 7815 for (unsigned I = 1; I != NumVals; ++I) 7816 Ops.push_back(Op.getValue(I)); 7817 7818 return DAG.getMergeValues(Ops, SL); 7819 } 7820 7821 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 7822 /// the call being lowered. 7823 /// 7824 /// This is a helper for lowering intrinsics that follow a target calling 7825 /// convention or require stack pointer adjustment. Only a subset of the 7826 /// intrinsic's operands need to participate in the calling convention. 7827 void SelectionDAGBuilder::populateCallLoweringInfo( 7828 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7829 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7830 bool IsPatchPoint) { 7831 TargetLowering::ArgListTy Args; 7832 Args.reserve(NumArgs); 7833 7834 // Populate the argument list. 7835 // Attributes for args start at offset 1, after the return attribute. 7836 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7837 ArgI != ArgE; ++ArgI) { 7838 const Value *V = CS->getOperand(ArgI); 7839 7840 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7841 7842 TargetLowering::ArgListEntry Entry; 7843 Entry.Node = getValue(V); 7844 Entry.Ty = V->getType(); 7845 Entry.setAttributes(&CS, ArgI); 7846 Args.push_back(Entry); 7847 } 7848 7849 CLI.setDebugLoc(getCurSDLoc()) 7850 .setChain(getRoot()) 7851 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7852 .setDiscardResult(CS->use_empty()) 7853 .setIsPatchPoint(IsPatchPoint); 7854 } 7855 7856 /// Add a stack map intrinsic call's live variable operands to a stackmap 7857 /// or patchpoint target node's operand list. 7858 /// 7859 /// Constants are converted to TargetConstants purely as an optimization to 7860 /// avoid constant materialization and register allocation. 7861 /// 7862 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7863 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7864 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7865 /// address materialization and register allocation, but may also be required 7866 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7867 /// alloca in the entry block, then the runtime may assume that the alloca's 7868 /// StackMap location can be read immediately after compilation and that the 7869 /// location is valid at any point during execution (this is similar to the 7870 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7871 /// only available in a register, then the runtime would need to trap when 7872 /// execution reaches the StackMap in order to read the alloca's location. 7873 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7874 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7875 SelectionDAGBuilder &Builder) { 7876 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7877 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7878 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7879 Ops.push_back( 7880 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7881 Ops.push_back( 7882 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7883 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7884 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7885 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7886 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7887 } else 7888 Ops.push_back(OpVal); 7889 } 7890 } 7891 7892 /// Lower llvm.experimental.stackmap directly to its target opcode. 7893 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7894 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7895 // [live variables...]) 7896 7897 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7898 7899 SDValue Chain, InFlag, Callee, NullPtr; 7900 SmallVector<SDValue, 32> Ops; 7901 7902 SDLoc DL = getCurSDLoc(); 7903 Callee = getValue(CI.getCalledValue()); 7904 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7905 7906 // The stackmap intrinsic only records the live variables (the arguemnts 7907 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7908 // intrinsic, this won't be lowered to a function call. This means we don't 7909 // have to worry about calling conventions and target specific lowering code. 7910 // Instead we perform the call lowering right here. 7911 // 7912 // chain, flag = CALLSEQ_START(chain, 0, 0) 7913 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7914 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7915 // 7916 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7917 InFlag = Chain.getValue(1); 7918 7919 // Add the <id> and <numBytes> constants. 7920 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7921 Ops.push_back(DAG.getTargetConstant( 7922 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7923 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7924 Ops.push_back(DAG.getTargetConstant( 7925 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7926 MVT::i32)); 7927 7928 // Push live variables for the stack map. 7929 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7930 7931 // We are not pushing any register mask info here on the operands list, 7932 // because the stackmap doesn't clobber anything. 7933 7934 // Push the chain and the glue flag. 7935 Ops.push_back(Chain); 7936 Ops.push_back(InFlag); 7937 7938 // Create the STACKMAP node. 7939 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7940 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7941 Chain = SDValue(SM, 0); 7942 InFlag = Chain.getValue(1); 7943 7944 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7945 7946 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7947 7948 // Set the root to the target-lowered call chain. 7949 DAG.setRoot(Chain); 7950 7951 // Inform the Frame Information that we have a stackmap in this function. 7952 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7953 } 7954 7955 /// Lower llvm.experimental.patchpoint directly to its target opcode. 7956 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7957 const BasicBlock *EHPadBB) { 7958 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7959 // i32 <numBytes>, 7960 // i8* <target>, 7961 // i32 <numArgs>, 7962 // [Args...], 7963 // [live variables...]) 7964 7965 CallingConv::ID CC = CS.getCallingConv(); 7966 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7967 bool HasDef = !CS->getType()->isVoidTy(); 7968 SDLoc dl = getCurSDLoc(); 7969 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7970 7971 // Handle immediate and symbolic callees. 7972 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7973 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7974 /*isTarget=*/true); 7975 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7976 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7977 SDLoc(SymbolicCallee), 7978 SymbolicCallee->getValueType(0)); 7979 7980 // Get the real number of arguments participating in the call <numArgs> 7981 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7982 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7983 7984 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7985 // Intrinsics include all meta-operands up to but not including CC. 7986 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7987 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7988 "Not enough arguments provided to the patchpoint intrinsic"); 7989 7990 // For AnyRegCC the arguments are lowered later on manually. 7991 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7992 Type *ReturnTy = 7993 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7994 7995 TargetLowering::CallLoweringInfo CLI(DAG); 7996 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7997 true); 7998 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7999 8000 SDNode *CallEnd = Result.second.getNode(); 8001 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8002 CallEnd = CallEnd->getOperand(0).getNode(); 8003 8004 /// Get a call instruction from the call sequence chain. 8005 /// Tail calls are not allowed. 8006 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8007 "Expected a callseq node."); 8008 SDNode *Call = CallEnd->getOperand(0).getNode(); 8009 bool HasGlue = Call->getGluedNode(); 8010 8011 // Replace the target specific call node with the patchable intrinsic. 8012 SmallVector<SDValue, 8> Ops; 8013 8014 // Add the <id> and <numBytes> constants. 8015 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8016 Ops.push_back(DAG.getTargetConstant( 8017 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8018 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8019 Ops.push_back(DAG.getTargetConstant( 8020 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8021 MVT::i32)); 8022 8023 // Add the callee. 8024 Ops.push_back(Callee); 8025 8026 // Adjust <numArgs> to account for any arguments that have been passed on the 8027 // stack instead. 8028 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8029 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8030 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8031 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8032 8033 // Add the calling convention 8034 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8035 8036 // Add the arguments we omitted previously. The register allocator should 8037 // place these in any free register. 8038 if (IsAnyRegCC) 8039 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8040 Ops.push_back(getValue(CS.getArgument(i))); 8041 8042 // Push the arguments from the call instruction up to the register mask. 8043 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8044 Ops.append(Call->op_begin() + 2, e); 8045 8046 // Push live variables for the stack map. 8047 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8048 8049 // Push the register mask info. 8050 if (HasGlue) 8051 Ops.push_back(*(Call->op_end()-2)); 8052 else 8053 Ops.push_back(*(Call->op_end()-1)); 8054 8055 // Push the chain (this is originally the first operand of the call, but 8056 // becomes now the last or second to last operand). 8057 Ops.push_back(*(Call->op_begin())); 8058 8059 // Push the glue flag (last operand). 8060 if (HasGlue) 8061 Ops.push_back(*(Call->op_end()-1)); 8062 8063 SDVTList NodeTys; 8064 if (IsAnyRegCC && HasDef) { 8065 // Create the return types based on the intrinsic definition 8066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8067 SmallVector<EVT, 3> ValueVTs; 8068 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8069 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8070 8071 // There is always a chain and a glue type at the end 8072 ValueVTs.push_back(MVT::Other); 8073 ValueVTs.push_back(MVT::Glue); 8074 NodeTys = DAG.getVTList(ValueVTs); 8075 } else 8076 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8077 8078 // Replace the target specific call node with a PATCHPOINT node. 8079 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8080 dl, NodeTys, Ops); 8081 8082 // Update the NodeMap. 8083 if (HasDef) { 8084 if (IsAnyRegCC) 8085 setValue(CS.getInstruction(), SDValue(MN, 0)); 8086 else 8087 setValue(CS.getInstruction(), Result.first); 8088 } 8089 8090 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8091 // call sequence. Furthermore the location of the chain and glue can change 8092 // when the AnyReg calling convention is used and the intrinsic returns a 8093 // value. 8094 if (IsAnyRegCC && HasDef) { 8095 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8096 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8097 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8098 } else 8099 DAG.ReplaceAllUsesWith(Call, MN); 8100 DAG.DeleteNode(Call); 8101 8102 // Inform the Frame Information that we have a patchpoint in this function. 8103 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8104 } 8105 8106 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8107 unsigned Intrinsic) { 8108 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8109 SDValue Op1 = getValue(I.getArgOperand(0)); 8110 SDValue Op2; 8111 if (I.getNumArgOperands() > 1) 8112 Op2 = getValue(I.getArgOperand(1)); 8113 SDLoc dl = getCurSDLoc(); 8114 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8115 SDValue Res; 8116 FastMathFlags FMF; 8117 if (isa<FPMathOperator>(I)) 8118 FMF = I.getFastMathFlags(); 8119 8120 switch (Intrinsic) { 8121 case Intrinsic::experimental_vector_reduce_fadd: 8122 if (FMF.isFast()) 8123 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8124 else 8125 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8126 break; 8127 case Intrinsic::experimental_vector_reduce_fmul: 8128 if (FMF.isFast()) 8129 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8130 else 8131 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8132 break; 8133 case Intrinsic::experimental_vector_reduce_add: 8134 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8135 break; 8136 case Intrinsic::experimental_vector_reduce_mul: 8137 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8138 break; 8139 case Intrinsic::experimental_vector_reduce_and: 8140 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8141 break; 8142 case Intrinsic::experimental_vector_reduce_or: 8143 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8144 break; 8145 case Intrinsic::experimental_vector_reduce_xor: 8146 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8147 break; 8148 case Intrinsic::experimental_vector_reduce_smax: 8149 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8150 break; 8151 case Intrinsic::experimental_vector_reduce_smin: 8152 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8153 break; 8154 case Intrinsic::experimental_vector_reduce_umax: 8155 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8156 break; 8157 case Intrinsic::experimental_vector_reduce_umin: 8158 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8159 break; 8160 case Intrinsic::experimental_vector_reduce_fmax: 8161 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8162 break; 8163 case Intrinsic::experimental_vector_reduce_fmin: 8164 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8165 break; 8166 default: 8167 llvm_unreachable("Unhandled vector reduce intrinsic"); 8168 } 8169 setValue(&I, Res); 8170 } 8171 8172 /// Returns an AttributeList representing the attributes applied to the return 8173 /// value of the given call. 8174 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8175 SmallVector<Attribute::AttrKind, 2> Attrs; 8176 if (CLI.RetSExt) 8177 Attrs.push_back(Attribute::SExt); 8178 if (CLI.RetZExt) 8179 Attrs.push_back(Attribute::ZExt); 8180 if (CLI.IsInReg) 8181 Attrs.push_back(Attribute::InReg); 8182 8183 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8184 Attrs); 8185 } 8186 8187 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8188 /// implementation, which just calls LowerCall. 8189 /// FIXME: When all targets are 8190 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8191 std::pair<SDValue, SDValue> 8192 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8193 // Handle the incoming return values from the call. 8194 CLI.Ins.clear(); 8195 Type *OrigRetTy = CLI.RetTy; 8196 SmallVector<EVT, 4> RetTys; 8197 SmallVector<uint64_t, 4> Offsets; 8198 auto &DL = CLI.DAG.getDataLayout(); 8199 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8200 8201 if (CLI.IsPostTypeLegalization) { 8202 // If we are lowering a libcall after legalization, split the return type. 8203 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8204 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8205 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8206 EVT RetVT = OldRetTys[i]; 8207 uint64_t Offset = OldOffsets[i]; 8208 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8209 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8210 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8211 RetTys.append(NumRegs, RegisterVT); 8212 for (unsigned j = 0; j != NumRegs; ++j) 8213 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8214 } 8215 } 8216 8217 SmallVector<ISD::OutputArg, 4> Outs; 8218 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8219 8220 bool CanLowerReturn = 8221 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8222 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8223 8224 SDValue DemoteStackSlot; 8225 int DemoteStackIdx = -100; 8226 if (!CanLowerReturn) { 8227 // FIXME: equivalent assert? 8228 // assert(!CS.hasInAllocaArgument() && 8229 // "sret demotion is incompatible with inalloca"); 8230 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8231 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8232 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8233 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8234 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 8235 8236 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8237 ArgListEntry Entry; 8238 Entry.Node = DemoteStackSlot; 8239 Entry.Ty = StackSlotPtrType; 8240 Entry.IsSExt = false; 8241 Entry.IsZExt = false; 8242 Entry.IsInReg = false; 8243 Entry.IsSRet = true; 8244 Entry.IsNest = false; 8245 Entry.IsByVal = false; 8246 Entry.IsReturned = false; 8247 Entry.IsSwiftSelf = false; 8248 Entry.IsSwiftError = false; 8249 Entry.Alignment = Align; 8250 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8251 CLI.NumFixedArgs += 1; 8252 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8253 8254 // sret demotion isn't compatible with tail-calls, since the sret argument 8255 // points into the callers stack frame. 8256 CLI.IsTailCall = false; 8257 } else { 8258 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8259 EVT VT = RetTys[I]; 8260 MVT RegisterVT = 8261 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8262 unsigned NumRegs = 8263 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8264 for (unsigned i = 0; i != NumRegs; ++i) { 8265 ISD::InputArg MyFlags; 8266 MyFlags.VT = RegisterVT; 8267 MyFlags.ArgVT = VT; 8268 MyFlags.Used = CLI.IsReturnValueUsed; 8269 if (CLI.RetSExt) 8270 MyFlags.Flags.setSExt(); 8271 if (CLI.RetZExt) 8272 MyFlags.Flags.setZExt(); 8273 if (CLI.IsInReg) 8274 MyFlags.Flags.setInReg(); 8275 CLI.Ins.push_back(MyFlags); 8276 } 8277 } 8278 } 8279 8280 // We push in swifterror return as the last element of CLI.Ins. 8281 ArgListTy &Args = CLI.getArgs(); 8282 if (supportSwiftError()) { 8283 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8284 if (Args[i].IsSwiftError) { 8285 ISD::InputArg MyFlags; 8286 MyFlags.VT = getPointerTy(DL); 8287 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8288 MyFlags.Flags.setSwiftError(); 8289 CLI.Ins.push_back(MyFlags); 8290 } 8291 } 8292 } 8293 8294 // Handle all of the outgoing arguments. 8295 CLI.Outs.clear(); 8296 CLI.OutVals.clear(); 8297 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8298 SmallVector<EVT, 4> ValueVTs; 8299 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8300 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8301 Type *FinalType = Args[i].Ty; 8302 if (Args[i].IsByVal) 8303 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8304 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8305 FinalType, CLI.CallConv, CLI.IsVarArg); 8306 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8307 ++Value) { 8308 EVT VT = ValueVTs[Value]; 8309 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8310 SDValue Op = SDValue(Args[i].Node.getNode(), 8311 Args[i].Node.getResNo() + Value); 8312 ISD::ArgFlagsTy Flags; 8313 8314 // Certain targets (such as MIPS), may have a different ABI alignment 8315 // for a type depending on the context. Give the target a chance to 8316 // specify the alignment it wants. 8317 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8318 8319 if (Args[i].IsZExt) 8320 Flags.setZExt(); 8321 if (Args[i].IsSExt) 8322 Flags.setSExt(); 8323 if (Args[i].IsInReg) { 8324 // If we are using vectorcall calling convention, a structure that is 8325 // passed InReg - is surely an HVA 8326 if (CLI.CallConv == CallingConv::X86_VectorCall && 8327 isa<StructType>(FinalType)) { 8328 // The first value of a structure is marked 8329 if (0 == Value) 8330 Flags.setHvaStart(); 8331 Flags.setHva(); 8332 } 8333 // Set InReg Flag 8334 Flags.setInReg(); 8335 } 8336 if (Args[i].IsSRet) 8337 Flags.setSRet(); 8338 if (Args[i].IsSwiftSelf) 8339 Flags.setSwiftSelf(); 8340 if (Args[i].IsSwiftError) 8341 Flags.setSwiftError(); 8342 if (Args[i].IsByVal) 8343 Flags.setByVal(); 8344 if (Args[i].IsInAlloca) { 8345 Flags.setInAlloca(); 8346 // Set the byval flag for CCAssignFn callbacks that don't know about 8347 // inalloca. This way we can know how many bytes we should've allocated 8348 // and how many bytes a callee cleanup function will pop. If we port 8349 // inalloca to more targets, we'll have to add custom inalloca handling 8350 // in the various CC lowering callbacks. 8351 Flags.setByVal(); 8352 } 8353 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8354 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8355 Type *ElementTy = Ty->getElementType(); 8356 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8357 // For ByVal, alignment should come from FE. BE will guess if this 8358 // info is not there but there are cases it cannot get right. 8359 unsigned FrameAlign; 8360 if (Args[i].Alignment) 8361 FrameAlign = Args[i].Alignment; 8362 else 8363 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8364 Flags.setByValAlign(FrameAlign); 8365 } 8366 if (Args[i].IsNest) 8367 Flags.setNest(); 8368 if (NeedsRegBlock) 8369 Flags.setInConsecutiveRegs(); 8370 Flags.setOrigAlign(OriginalAlignment); 8371 8372 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8373 unsigned NumParts = 8374 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8375 SmallVector<SDValue, 4> Parts(NumParts); 8376 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8377 8378 if (Args[i].IsSExt) 8379 ExtendKind = ISD::SIGN_EXTEND; 8380 else if (Args[i].IsZExt) 8381 ExtendKind = ISD::ZERO_EXTEND; 8382 8383 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8384 // for now. 8385 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8386 CanLowerReturn) { 8387 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8388 "unexpected use of 'returned'"); 8389 // Before passing 'returned' to the target lowering code, ensure that 8390 // either the register MVT and the actual EVT are the same size or that 8391 // the return value and argument are extended in the same way; in these 8392 // cases it's safe to pass the argument register value unchanged as the 8393 // return register value (although it's at the target's option whether 8394 // to do so) 8395 // TODO: allow code generation to take advantage of partially preserved 8396 // registers rather than clobbering the entire register when the 8397 // parameter extension method is not compatible with the return 8398 // extension method 8399 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8400 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8401 CLI.RetZExt == Args[i].IsZExt)) 8402 Flags.setReturned(); 8403 } 8404 8405 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8406 CLI.CS.getInstruction(), ExtendKind, true); 8407 8408 for (unsigned j = 0; j != NumParts; ++j) { 8409 // if it isn't first piece, alignment must be 1 8410 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8411 i < CLI.NumFixedArgs, 8412 i, j*Parts[j].getValueType().getStoreSize()); 8413 if (NumParts > 1 && j == 0) 8414 MyFlags.Flags.setSplit(); 8415 else if (j != 0) { 8416 MyFlags.Flags.setOrigAlign(1); 8417 if (j == NumParts - 1) 8418 MyFlags.Flags.setSplitEnd(); 8419 } 8420 8421 CLI.Outs.push_back(MyFlags); 8422 CLI.OutVals.push_back(Parts[j]); 8423 } 8424 8425 if (NeedsRegBlock && Value == NumValues - 1) 8426 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8427 } 8428 } 8429 8430 SmallVector<SDValue, 4> InVals; 8431 CLI.Chain = LowerCall(CLI, InVals); 8432 8433 // Update CLI.InVals to use outside of this function. 8434 CLI.InVals = InVals; 8435 8436 // Verify that the target's LowerCall behaved as expected. 8437 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8438 "LowerCall didn't return a valid chain!"); 8439 assert((!CLI.IsTailCall || InVals.empty()) && 8440 "LowerCall emitted a return value for a tail call!"); 8441 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8442 "LowerCall didn't emit the correct number of values!"); 8443 8444 // For a tail call, the return value is merely live-out and there aren't 8445 // any nodes in the DAG representing it. Return a special value to 8446 // indicate that a tail call has been emitted and no more Instructions 8447 // should be processed in the current block. 8448 if (CLI.IsTailCall) { 8449 CLI.DAG.setRoot(CLI.Chain); 8450 return std::make_pair(SDValue(), SDValue()); 8451 } 8452 8453 #ifndef NDEBUG 8454 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8455 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8456 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8457 "LowerCall emitted a value with the wrong type!"); 8458 } 8459 #endif 8460 8461 SmallVector<SDValue, 4> ReturnValues; 8462 if (!CanLowerReturn) { 8463 // The instruction result is the result of loading from the 8464 // hidden sret parameter. 8465 SmallVector<EVT, 1> PVTs; 8466 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8467 8468 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8469 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8470 EVT PtrVT = PVTs[0]; 8471 8472 unsigned NumValues = RetTys.size(); 8473 ReturnValues.resize(NumValues); 8474 SmallVector<SDValue, 4> Chains(NumValues); 8475 8476 // An aggregate return value cannot wrap around the address space, so 8477 // offsets to its parts don't wrap either. 8478 SDNodeFlags Flags; 8479 Flags.setNoUnsignedWrap(true); 8480 8481 for (unsigned i = 0; i < NumValues; ++i) { 8482 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8483 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8484 PtrVT), Flags); 8485 SDValue L = CLI.DAG.getLoad( 8486 RetTys[i], CLI.DL, CLI.Chain, Add, 8487 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8488 DemoteStackIdx, Offsets[i]), 8489 /* Alignment = */ 1); 8490 ReturnValues[i] = L; 8491 Chains[i] = L.getValue(1); 8492 } 8493 8494 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8495 } else { 8496 // Collect the legal value parts into potentially illegal values 8497 // that correspond to the original function's return values. 8498 Optional<ISD::NodeType> AssertOp; 8499 if (CLI.RetSExt) 8500 AssertOp = ISD::AssertSext; 8501 else if (CLI.RetZExt) 8502 AssertOp = ISD::AssertZext; 8503 unsigned CurReg = 0; 8504 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8505 EVT VT = RetTys[I]; 8506 MVT RegisterVT = 8507 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8508 unsigned NumRegs = 8509 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8510 8511 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8512 NumRegs, RegisterVT, VT, nullptr, 8513 AssertOp, true)); 8514 CurReg += NumRegs; 8515 } 8516 8517 // For a function returning void, there is no return value. We can't create 8518 // such a node, so we just return a null return value in that case. In 8519 // that case, nothing will actually look at the value. 8520 if (ReturnValues.empty()) 8521 return std::make_pair(SDValue(), CLI.Chain); 8522 } 8523 8524 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8525 CLI.DAG.getVTList(RetTys), ReturnValues); 8526 return std::make_pair(Res, CLI.Chain); 8527 } 8528 8529 void TargetLowering::LowerOperationWrapper(SDNode *N, 8530 SmallVectorImpl<SDValue> &Results, 8531 SelectionDAG &DAG) const { 8532 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8533 Results.push_back(Res); 8534 } 8535 8536 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8537 llvm_unreachable("LowerOperation not implemented for this target!"); 8538 } 8539 8540 void 8541 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8542 SDValue Op = getNonRegisterValue(V); 8543 assert((Op.getOpcode() != ISD::CopyFromReg || 8544 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8545 "Copy from a reg to the same reg!"); 8546 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8547 8548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8549 // If this is an InlineAsm we have to match the registers required, not the 8550 // notional registers required by the type. 8551 8552 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8553 V->getType(), isABIRegCopy(V)); 8554 SDValue Chain = DAG.getEntryNode(); 8555 8556 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8557 FuncInfo.PreferredExtendType.end()) 8558 ? ISD::ANY_EXTEND 8559 : FuncInfo.PreferredExtendType[V]; 8560 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8561 PendingExports.push_back(Chain); 8562 } 8563 8564 #include "llvm/CodeGen/SelectionDAGISel.h" 8565 8566 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8567 /// entry block, return true. This includes arguments used by switches, since 8568 /// the switch may expand into multiple basic blocks. 8569 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8570 // With FastISel active, we may be splitting blocks, so force creation 8571 // of virtual registers for all non-dead arguments. 8572 if (FastISel) 8573 return A->use_empty(); 8574 8575 const BasicBlock &Entry = A->getParent()->front(); 8576 for (const User *U : A->users()) 8577 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8578 return false; // Use not in entry block. 8579 8580 return true; 8581 } 8582 8583 using ArgCopyElisionMapTy = 8584 DenseMap<const Argument *, 8585 std::pair<const AllocaInst *, const StoreInst *>>; 8586 8587 /// Scan the entry block of the function in FuncInfo for arguments that look 8588 /// like copies into a local alloca. Record any copied arguments in 8589 /// ArgCopyElisionCandidates. 8590 static void 8591 findArgumentCopyElisionCandidates(const DataLayout &DL, 8592 FunctionLoweringInfo *FuncInfo, 8593 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8594 // Record the state of every static alloca used in the entry block. Argument 8595 // allocas are all used in the entry block, so we need approximately as many 8596 // entries as we have arguments. 8597 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8598 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8599 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8600 StaticAllocas.reserve(NumArgs * 2); 8601 8602 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8603 if (!V) 8604 return nullptr; 8605 V = V->stripPointerCasts(); 8606 const auto *AI = dyn_cast<AllocaInst>(V); 8607 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8608 return nullptr; 8609 auto Iter = StaticAllocas.insert({AI, Unknown}); 8610 return &Iter.first->second; 8611 }; 8612 8613 // Look for stores of arguments to static allocas. Look through bitcasts and 8614 // GEPs to handle type coercions, as long as the alloca is fully initialized 8615 // by the store. Any non-store use of an alloca escapes it and any subsequent 8616 // unanalyzed store might write it. 8617 // FIXME: Handle structs initialized with multiple stores. 8618 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8619 // Look for stores, and handle non-store uses conservatively. 8620 const auto *SI = dyn_cast<StoreInst>(&I); 8621 if (!SI) { 8622 // We will look through cast uses, so ignore them completely. 8623 if (I.isCast()) 8624 continue; 8625 // Ignore debug info intrinsics, they don't escape or store to allocas. 8626 if (isa<DbgInfoIntrinsic>(I)) 8627 continue; 8628 // This is an unknown instruction. Assume it escapes or writes to all 8629 // static alloca operands. 8630 for (const Use &U : I.operands()) { 8631 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8632 *Info = StaticAllocaInfo::Clobbered; 8633 } 8634 continue; 8635 } 8636 8637 // If the stored value is a static alloca, mark it as escaped. 8638 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8639 *Info = StaticAllocaInfo::Clobbered; 8640 8641 // Check if the destination is a static alloca. 8642 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8643 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8644 if (!Info) 8645 continue; 8646 const AllocaInst *AI = cast<AllocaInst>(Dst); 8647 8648 // Skip allocas that have been initialized or clobbered. 8649 if (*Info != StaticAllocaInfo::Unknown) 8650 continue; 8651 8652 // Check if the stored value is an argument, and that this store fully 8653 // initializes the alloca. Don't elide copies from the same argument twice. 8654 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8655 const auto *Arg = dyn_cast<Argument>(Val); 8656 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8657 Arg->getType()->isEmptyTy() || 8658 DL.getTypeStoreSize(Arg->getType()) != 8659 DL.getTypeAllocSize(AI->getAllocatedType()) || 8660 ArgCopyElisionCandidates.count(Arg)) { 8661 *Info = StaticAllocaInfo::Clobbered; 8662 continue; 8663 } 8664 8665 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 8666 << '\n'); 8667 8668 // Mark this alloca and store for argument copy elision. 8669 *Info = StaticAllocaInfo::Elidable; 8670 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8671 8672 // Stop scanning if we've seen all arguments. This will happen early in -O0 8673 // builds, which is useful, because -O0 builds have large entry blocks and 8674 // many allocas. 8675 if (ArgCopyElisionCandidates.size() == NumArgs) 8676 break; 8677 } 8678 } 8679 8680 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8681 /// ArgVal is a load from a suitable fixed stack object. 8682 static void tryToElideArgumentCopy( 8683 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8684 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8685 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8686 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8687 SDValue ArgVal, bool &ArgHasUses) { 8688 // Check if this is a load from a fixed stack object. 8689 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8690 if (!LNode) 8691 return; 8692 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8693 if (!FINode) 8694 return; 8695 8696 // Check that the fixed stack object is the right size and alignment. 8697 // Look at the alignment that the user wrote on the alloca instead of looking 8698 // at the stack object. 8699 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8700 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8701 const AllocaInst *AI = ArgCopyIter->second.first; 8702 int FixedIndex = FINode->getIndex(); 8703 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8704 int OldIndex = AllocaIndex; 8705 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8706 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8707 LLVM_DEBUG( 8708 dbgs() << " argument copy elision failed due to bad fixed stack " 8709 "object size\n"); 8710 return; 8711 } 8712 unsigned RequiredAlignment = AI->getAlignment(); 8713 if (!RequiredAlignment) { 8714 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8715 AI->getAllocatedType()); 8716 } 8717 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8718 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8719 "greater than stack argument alignment (" 8720 << RequiredAlignment << " vs " 8721 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8722 return; 8723 } 8724 8725 // Perform the elision. Delete the old stack object and replace its only use 8726 // in the variable info map. Mark the stack object as mutable. 8727 LLVM_DEBUG({ 8728 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8729 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8730 << '\n'; 8731 }); 8732 MFI.RemoveStackObject(OldIndex); 8733 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8734 AllocaIndex = FixedIndex; 8735 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8736 Chains.push_back(ArgVal.getValue(1)); 8737 8738 // Avoid emitting code for the store implementing the copy. 8739 const StoreInst *SI = ArgCopyIter->second.second; 8740 ElidedArgCopyInstrs.insert(SI); 8741 8742 // Check for uses of the argument again so that we can avoid exporting ArgVal 8743 // if it is't used by anything other than the store. 8744 for (const Value *U : Arg.users()) { 8745 if (U != SI) { 8746 ArgHasUses = true; 8747 break; 8748 } 8749 } 8750 } 8751 8752 void SelectionDAGISel::LowerArguments(const Function &F) { 8753 SelectionDAG &DAG = SDB->DAG; 8754 SDLoc dl = SDB->getCurSDLoc(); 8755 const DataLayout &DL = DAG.getDataLayout(); 8756 SmallVector<ISD::InputArg, 16> Ins; 8757 8758 if (!FuncInfo->CanLowerReturn) { 8759 // Put in an sret pointer parameter before all the other parameters. 8760 SmallVector<EVT, 1> ValueVTs; 8761 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8762 F.getReturnType()->getPointerTo( 8763 DAG.getDataLayout().getAllocaAddrSpace()), 8764 ValueVTs); 8765 8766 // NOTE: Assuming that a pointer will never break down to more than one VT 8767 // or one register. 8768 ISD::ArgFlagsTy Flags; 8769 Flags.setSRet(); 8770 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8771 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8772 ISD::InputArg::NoArgIndex, 0); 8773 Ins.push_back(RetArg); 8774 } 8775 8776 // Look for stores of arguments to static allocas. Mark such arguments with a 8777 // flag to ask the target to give us the memory location of that argument if 8778 // available. 8779 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8780 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8781 8782 // Set up the incoming argument description vector. 8783 for (const Argument &Arg : F.args()) { 8784 unsigned ArgNo = Arg.getArgNo(); 8785 SmallVector<EVT, 4> ValueVTs; 8786 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8787 bool isArgValueUsed = !Arg.use_empty(); 8788 unsigned PartBase = 0; 8789 Type *FinalType = Arg.getType(); 8790 if (Arg.hasAttribute(Attribute::ByVal)) 8791 FinalType = cast<PointerType>(FinalType)->getElementType(); 8792 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8793 FinalType, F.getCallingConv(), F.isVarArg()); 8794 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8795 Value != NumValues; ++Value) { 8796 EVT VT = ValueVTs[Value]; 8797 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8798 ISD::ArgFlagsTy Flags; 8799 8800 // Certain targets (such as MIPS), may have a different ABI alignment 8801 // for a type depending on the context. Give the target a chance to 8802 // specify the alignment it wants. 8803 unsigned OriginalAlignment = 8804 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8805 8806 if (Arg.hasAttribute(Attribute::ZExt)) 8807 Flags.setZExt(); 8808 if (Arg.hasAttribute(Attribute::SExt)) 8809 Flags.setSExt(); 8810 if (Arg.hasAttribute(Attribute::InReg)) { 8811 // If we are using vectorcall calling convention, a structure that is 8812 // passed InReg - is surely an HVA 8813 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8814 isa<StructType>(Arg.getType())) { 8815 // The first value of a structure is marked 8816 if (0 == Value) 8817 Flags.setHvaStart(); 8818 Flags.setHva(); 8819 } 8820 // Set InReg Flag 8821 Flags.setInReg(); 8822 } 8823 if (Arg.hasAttribute(Attribute::StructRet)) 8824 Flags.setSRet(); 8825 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8826 Flags.setSwiftSelf(); 8827 if (Arg.hasAttribute(Attribute::SwiftError)) 8828 Flags.setSwiftError(); 8829 if (Arg.hasAttribute(Attribute::ByVal)) 8830 Flags.setByVal(); 8831 if (Arg.hasAttribute(Attribute::InAlloca)) { 8832 Flags.setInAlloca(); 8833 // Set the byval flag for CCAssignFn callbacks that don't know about 8834 // inalloca. This way we can know how many bytes we should've allocated 8835 // and how many bytes a callee cleanup function will pop. If we port 8836 // inalloca to more targets, we'll have to add custom inalloca handling 8837 // in the various CC lowering callbacks. 8838 Flags.setByVal(); 8839 } 8840 if (F.getCallingConv() == CallingConv::X86_INTR) { 8841 // IA Interrupt passes frame (1st parameter) by value in the stack. 8842 if (ArgNo == 0) 8843 Flags.setByVal(); 8844 } 8845 if (Flags.isByVal() || Flags.isInAlloca()) { 8846 PointerType *Ty = cast<PointerType>(Arg.getType()); 8847 Type *ElementTy = Ty->getElementType(); 8848 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8849 // For ByVal, alignment should be passed from FE. BE will guess if 8850 // this info is not there but there are cases it cannot get right. 8851 unsigned FrameAlign; 8852 if (Arg.getParamAlignment()) 8853 FrameAlign = Arg.getParamAlignment(); 8854 else 8855 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8856 Flags.setByValAlign(FrameAlign); 8857 } 8858 if (Arg.hasAttribute(Attribute::Nest)) 8859 Flags.setNest(); 8860 if (NeedsRegBlock) 8861 Flags.setInConsecutiveRegs(); 8862 Flags.setOrigAlign(OriginalAlignment); 8863 if (ArgCopyElisionCandidates.count(&Arg)) 8864 Flags.setCopyElisionCandidate(); 8865 8866 MVT RegisterVT = 8867 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8868 unsigned NumRegs = 8869 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8870 for (unsigned i = 0; i != NumRegs; ++i) { 8871 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8872 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8873 if (NumRegs > 1 && i == 0) 8874 MyFlags.Flags.setSplit(); 8875 // if it isn't first piece, alignment must be 1 8876 else if (i > 0) { 8877 MyFlags.Flags.setOrigAlign(1); 8878 if (i == NumRegs - 1) 8879 MyFlags.Flags.setSplitEnd(); 8880 } 8881 Ins.push_back(MyFlags); 8882 } 8883 if (NeedsRegBlock && Value == NumValues - 1) 8884 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8885 PartBase += VT.getStoreSize(); 8886 } 8887 } 8888 8889 // Call the target to set up the argument values. 8890 SmallVector<SDValue, 8> InVals; 8891 SDValue NewRoot = TLI->LowerFormalArguments( 8892 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8893 8894 // Verify that the target's LowerFormalArguments behaved as expected. 8895 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8896 "LowerFormalArguments didn't return a valid chain!"); 8897 assert(InVals.size() == Ins.size() && 8898 "LowerFormalArguments didn't emit the correct number of values!"); 8899 LLVM_DEBUG({ 8900 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8901 assert(InVals[i].getNode() && 8902 "LowerFormalArguments emitted a null value!"); 8903 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8904 "LowerFormalArguments emitted a value with the wrong type!"); 8905 } 8906 }); 8907 8908 // Update the DAG with the new chain value resulting from argument lowering. 8909 DAG.setRoot(NewRoot); 8910 8911 // Set up the argument values. 8912 unsigned i = 0; 8913 if (!FuncInfo->CanLowerReturn) { 8914 // Create a virtual register for the sret pointer, and put in a copy 8915 // from the sret argument into it. 8916 SmallVector<EVT, 1> ValueVTs; 8917 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8918 F.getReturnType()->getPointerTo( 8919 DAG.getDataLayout().getAllocaAddrSpace()), 8920 ValueVTs); 8921 MVT VT = ValueVTs[0].getSimpleVT(); 8922 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8923 Optional<ISD::NodeType> AssertOp = None; 8924 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8925 RegVT, VT, nullptr, AssertOp); 8926 8927 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8928 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8929 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8930 FuncInfo->DemoteRegister = SRetReg; 8931 NewRoot = 8932 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8933 DAG.setRoot(NewRoot); 8934 8935 // i indexes lowered arguments. Bump it past the hidden sret argument. 8936 ++i; 8937 } 8938 8939 SmallVector<SDValue, 4> Chains; 8940 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8941 for (const Argument &Arg : F.args()) { 8942 SmallVector<SDValue, 4> ArgValues; 8943 SmallVector<EVT, 4> ValueVTs; 8944 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8945 unsigned NumValues = ValueVTs.size(); 8946 if (NumValues == 0) 8947 continue; 8948 8949 bool ArgHasUses = !Arg.use_empty(); 8950 8951 // Elide the copying store if the target loaded this argument from a 8952 // suitable fixed stack object. 8953 if (Ins[i].Flags.isCopyElisionCandidate()) { 8954 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8955 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8956 InVals[i], ArgHasUses); 8957 } 8958 8959 // If this argument is unused then remember its value. It is used to generate 8960 // debugging information. 8961 bool isSwiftErrorArg = 8962 TLI->supportSwiftError() && 8963 Arg.hasAttribute(Attribute::SwiftError); 8964 if (!ArgHasUses && !isSwiftErrorArg) { 8965 SDB->setUnusedArgValue(&Arg, InVals[i]); 8966 8967 // Also remember any frame index for use in FastISel. 8968 if (FrameIndexSDNode *FI = 8969 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8970 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8971 } 8972 8973 for (unsigned Val = 0; Val != NumValues; ++Val) { 8974 EVT VT = ValueVTs[Val]; 8975 MVT PartVT = 8976 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8977 unsigned NumParts = 8978 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8979 8980 // Even an apparant 'unused' swifterror argument needs to be returned. So 8981 // we do generate a copy for it that can be used on return from the 8982 // function. 8983 if (ArgHasUses || isSwiftErrorArg) { 8984 Optional<ISD::NodeType> AssertOp; 8985 if (Arg.hasAttribute(Attribute::SExt)) 8986 AssertOp = ISD::AssertSext; 8987 else if (Arg.hasAttribute(Attribute::ZExt)) 8988 AssertOp = ISD::AssertZext; 8989 8990 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8991 PartVT, VT, nullptr, AssertOp, 8992 true)); 8993 } 8994 8995 i += NumParts; 8996 } 8997 8998 // We don't need to do anything else for unused arguments. 8999 if (ArgValues.empty()) 9000 continue; 9001 9002 // Note down frame index. 9003 if (FrameIndexSDNode *FI = 9004 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9005 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9006 9007 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9008 SDB->getCurSDLoc()); 9009 9010 SDB->setValue(&Arg, Res); 9011 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9012 // We want to associate the argument with the frame index, among 9013 // involved operands, that correspond to the lowest address. The 9014 // getCopyFromParts function, called earlier, is swapping the order of 9015 // the operands to BUILD_PAIR depending on endianness. The result of 9016 // that swapping is that the least significant bits of the argument will 9017 // be in the first operand of the BUILD_PAIR node, and the most 9018 // significant bits will be in the second operand. 9019 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9020 if (LoadSDNode *LNode = 9021 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9022 if (FrameIndexSDNode *FI = 9023 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9024 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9025 } 9026 9027 // Update the SwiftErrorVRegDefMap. 9028 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9029 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9030 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9031 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9032 FuncInfo->SwiftErrorArg, Reg); 9033 } 9034 9035 // If this argument is live outside of the entry block, insert a copy from 9036 // wherever we got it to the vreg that other BB's will reference it as. 9037 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9038 // If we can, though, try to skip creating an unnecessary vreg. 9039 // FIXME: This isn't very clean... it would be nice to make this more 9040 // general. It's also subtly incompatible with the hacks FastISel 9041 // uses with vregs. 9042 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9043 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9044 FuncInfo->ValueMap[&Arg] = Reg; 9045 continue; 9046 } 9047 } 9048 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9049 FuncInfo->InitializeRegForValue(&Arg); 9050 SDB->CopyToExportRegsIfNeeded(&Arg); 9051 } 9052 } 9053 9054 if (!Chains.empty()) { 9055 Chains.push_back(NewRoot); 9056 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9057 } 9058 9059 DAG.setRoot(NewRoot); 9060 9061 assert(i == InVals.size() && "Argument register count mismatch!"); 9062 9063 // If any argument copy elisions occurred and we have debug info, update the 9064 // stale frame indices used in the dbg.declare variable info table. 9065 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9066 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9067 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9068 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9069 if (I != ArgCopyElisionFrameIndexMap.end()) 9070 VI.Slot = I->second; 9071 } 9072 } 9073 9074 // Finally, if the target has anything special to do, allow it to do so. 9075 EmitFunctionEntryCode(); 9076 } 9077 9078 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9079 /// ensure constants are generated when needed. Remember the virtual registers 9080 /// that need to be added to the Machine PHI nodes as input. We cannot just 9081 /// directly add them, because expansion might result in multiple MBB's for one 9082 /// BB. As such, the start of the BB might correspond to a different MBB than 9083 /// the end. 9084 void 9085 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9086 const TerminatorInst *TI = LLVMBB->getTerminator(); 9087 9088 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9089 9090 // Check PHI nodes in successors that expect a value to be available from this 9091 // block. 9092 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9093 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9094 if (!isa<PHINode>(SuccBB->begin())) continue; 9095 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9096 9097 // If this terminator has multiple identical successors (common for 9098 // switches), only handle each succ once. 9099 if (!SuccsHandled.insert(SuccMBB).second) 9100 continue; 9101 9102 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9103 9104 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9105 // nodes and Machine PHI nodes, but the incoming operands have not been 9106 // emitted yet. 9107 for (const PHINode &PN : SuccBB->phis()) { 9108 // Ignore dead phi's. 9109 if (PN.use_empty()) 9110 continue; 9111 9112 // Skip empty types 9113 if (PN.getType()->isEmptyTy()) 9114 continue; 9115 9116 unsigned Reg; 9117 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9118 9119 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9120 unsigned &RegOut = ConstantsOut[C]; 9121 if (RegOut == 0) { 9122 RegOut = FuncInfo.CreateRegs(C->getType()); 9123 CopyValueToVirtualRegister(C, RegOut); 9124 } 9125 Reg = RegOut; 9126 } else { 9127 DenseMap<const Value *, unsigned>::iterator I = 9128 FuncInfo.ValueMap.find(PHIOp); 9129 if (I != FuncInfo.ValueMap.end()) 9130 Reg = I->second; 9131 else { 9132 assert(isa<AllocaInst>(PHIOp) && 9133 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9134 "Didn't codegen value into a register!??"); 9135 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9136 CopyValueToVirtualRegister(PHIOp, Reg); 9137 } 9138 } 9139 9140 // Remember that this register needs to added to the machine PHI node as 9141 // the input for this MBB. 9142 SmallVector<EVT, 4> ValueVTs; 9143 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9144 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9145 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9146 EVT VT = ValueVTs[vti]; 9147 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9148 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9149 FuncInfo.PHINodesToUpdate.push_back( 9150 std::make_pair(&*MBBI++, Reg + i)); 9151 Reg += NumRegisters; 9152 } 9153 } 9154 } 9155 9156 ConstantsOut.clear(); 9157 } 9158 9159 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9160 /// is 0. 9161 MachineBasicBlock * 9162 SelectionDAGBuilder::StackProtectorDescriptor:: 9163 AddSuccessorMBB(const BasicBlock *BB, 9164 MachineBasicBlock *ParentMBB, 9165 bool IsLikely, 9166 MachineBasicBlock *SuccMBB) { 9167 // If SuccBB has not been created yet, create it. 9168 if (!SuccMBB) { 9169 MachineFunction *MF = ParentMBB->getParent(); 9170 MachineFunction::iterator BBI(ParentMBB); 9171 SuccMBB = MF->CreateMachineBasicBlock(BB); 9172 MF->insert(++BBI, SuccMBB); 9173 } 9174 // Add it as a successor of ParentMBB. 9175 ParentMBB->addSuccessor( 9176 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9177 return SuccMBB; 9178 } 9179 9180 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9181 MachineFunction::iterator I(MBB); 9182 if (++I == FuncInfo.MF->end()) 9183 return nullptr; 9184 return &*I; 9185 } 9186 9187 /// During lowering new call nodes can be created (such as memset, etc.). 9188 /// Those will become new roots of the current DAG, but complications arise 9189 /// when they are tail calls. In such cases, the call lowering will update 9190 /// the root, but the builder still needs to know that a tail call has been 9191 /// lowered in order to avoid generating an additional return. 9192 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9193 // If the node is null, we do have a tail call. 9194 if (MaybeTC.getNode() != nullptr) 9195 DAG.setRoot(MaybeTC); 9196 else 9197 HasTailCall = true; 9198 } 9199 9200 uint64_t 9201 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9202 unsigned First, unsigned Last) const { 9203 assert(Last >= First); 9204 const APInt &LowCase = Clusters[First].Low->getValue(); 9205 const APInt &HighCase = Clusters[Last].High->getValue(); 9206 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9207 9208 // FIXME: A range of consecutive cases has 100% density, but only requires one 9209 // comparison to lower. We should discriminate against such consecutive ranges 9210 // in jump tables. 9211 9212 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9213 } 9214 9215 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9216 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9217 unsigned Last) const { 9218 assert(Last >= First); 9219 assert(TotalCases[Last] >= TotalCases[First]); 9220 uint64_t NumCases = 9221 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9222 return NumCases; 9223 } 9224 9225 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9226 unsigned First, unsigned Last, 9227 const SwitchInst *SI, 9228 MachineBasicBlock *DefaultMBB, 9229 CaseCluster &JTCluster) { 9230 assert(First <= Last); 9231 9232 auto Prob = BranchProbability::getZero(); 9233 unsigned NumCmps = 0; 9234 std::vector<MachineBasicBlock*> Table; 9235 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9236 9237 // Initialize probabilities in JTProbs. 9238 for (unsigned I = First; I <= Last; ++I) 9239 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9240 9241 for (unsigned I = First; I <= Last; ++I) { 9242 assert(Clusters[I].Kind == CC_Range); 9243 Prob += Clusters[I].Prob; 9244 const APInt &Low = Clusters[I].Low->getValue(); 9245 const APInt &High = Clusters[I].High->getValue(); 9246 NumCmps += (Low == High) ? 1 : 2; 9247 if (I != First) { 9248 // Fill the gap between this and the previous cluster. 9249 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9250 assert(PreviousHigh.slt(Low)); 9251 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9252 for (uint64_t J = 0; J < Gap; J++) 9253 Table.push_back(DefaultMBB); 9254 } 9255 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9256 for (uint64_t J = 0; J < ClusterSize; ++J) 9257 Table.push_back(Clusters[I].MBB); 9258 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9259 } 9260 9261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9262 unsigned NumDests = JTProbs.size(); 9263 if (TLI.isSuitableForBitTests( 9264 NumDests, NumCmps, Clusters[First].Low->getValue(), 9265 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9266 // Clusters[First..Last] should be lowered as bit tests instead. 9267 return false; 9268 } 9269 9270 // Create the MBB that will load from and jump through the table. 9271 // Note: We create it here, but it's not inserted into the function yet. 9272 MachineFunction *CurMF = FuncInfo.MF; 9273 MachineBasicBlock *JumpTableMBB = 9274 CurMF->CreateMachineBasicBlock(SI->getParent()); 9275 9276 // Add successors. Note: use table order for determinism. 9277 SmallPtrSet<MachineBasicBlock *, 8> Done; 9278 for (MachineBasicBlock *Succ : Table) { 9279 if (Done.count(Succ)) 9280 continue; 9281 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9282 Done.insert(Succ); 9283 } 9284 JumpTableMBB->normalizeSuccProbs(); 9285 9286 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9287 ->createJumpTableIndex(Table); 9288 9289 // Set up the jump table info. 9290 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9291 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9292 Clusters[Last].High->getValue(), SI->getCondition(), 9293 nullptr, false); 9294 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9295 9296 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9297 JTCases.size() - 1, Prob); 9298 return true; 9299 } 9300 9301 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9302 const SwitchInst *SI, 9303 MachineBasicBlock *DefaultMBB) { 9304 #ifndef NDEBUG 9305 // Clusters must be non-empty, sorted, and only contain Range clusters. 9306 assert(!Clusters.empty()); 9307 for (CaseCluster &C : Clusters) 9308 assert(C.Kind == CC_Range); 9309 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9310 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9311 #endif 9312 9313 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9314 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9315 return; 9316 9317 const int64_t N = Clusters.size(); 9318 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9319 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9320 9321 if (N < 2 || N < MinJumpTableEntries) 9322 return; 9323 9324 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9325 SmallVector<unsigned, 8> TotalCases(N); 9326 for (unsigned i = 0; i < N; ++i) { 9327 const APInt &Hi = Clusters[i].High->getValue(); 9328 const APInt &Lo = Clusters[i].Low->getValue(); 9329 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9330 if (i != 0) 9331 TotalCases[i] += TotalCases[i - 1]; 9332 } 9333 9334 // Cheap case: the whole range may be suitable for jump table. 9335 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9336 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9337 assert(NumCases < UINT64_MAX / 100); 9338 assert(Range >= NumCases); 9339 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9340 CaseCluster JTCluster; 9341 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9342 Clusters[0] = JTCluster; 9343 Clusters.resize(1); 9344 return; 9345 } 9346 } 9347 9348 // The algorithm below is not suitable for -O0. 9349 if (TM.getOptLevel() == CodeGenOpt::None) 9350 return; 9351 9352 // Split Clusters into minimum number of dense partitions. The algorithm uses 9353 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9354 // for the Case Statement'" (1994), but builds the MinPartitions array in 9355 // reverse order to make it easier to reconstruct the partitions in ascending 9356 // order. In the choice between two optimal partitionings, it picks the one 9357 // which yields more jump tables. 9358 9359 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9360 SmallVector<unsigned, 8> MinPartitions(N); 9361 // LastElement[i] is the last element of the partition starting at i. 9362 SmallVector<unsigned, 8> LastElement(N); 9363 // PartitionsScore[i] is used to break ties when choosing between two 9364 // partitionings resulting in the same number of partitions. 9365 SmallVector<unsigned, 8> PartitionsScore(N); 9366 // For PartitionsScore, a small number of comparisons is considered as good as 9367 // a jump table and a single comparison is considered better than a jump 9368 // table. 9369 enum PartitionScores : unsigned { 9370 NoTable = 0, 9371 Table = 1, 9372 FewCases = 1, 9373 SingleCase = 2 9374 }; 9375 9376 // Base case: There is only one way to partition Clusters[N-1]. 9377 MinPartitions[N - 1] = 1; 9378 LastElement[N - 1] = N - 1; 9379 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9380 9381 // Note: loop indexes are signed to avoid underflow. 9382 for (int64_t i = N - 2; i >= 0; i--) { 9383 // Find optimal partitioning of Clusters[i..N-1]. 9384 // Baseline: Put Clusters[i] into a partition on its own. 9385 MinPartitions[i] = MinPartitions[i + 1] + 1; 9386 LastElement[i] = i; 9387 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9388 9389 // Search for a solution that results in fewer partitions. 9390 for (int64_t j = N - 1; j > i; j--) { 9391 // Try building a partition from Clusters[i..j]. 9392 uint64_t Range = getJumpTableRange(Clusters, i, j); 9393 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9394 assert(NumCases < UINT64_MAX / 100); 9395 assert(Range >= NumCases); 9396 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9397 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9398 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9399 int64_t NumEntries = j - i + 1; 9400 9401 if (NumEntries == 1) 9402 Score += PartitionScores::SingleCase; 9403 else if (NumEntries <= SmallNumberOfEntries) 9404 Score += PartitionScores::FewCases; 9405 else if (NumEntries >= MinJumpTableEntries) 9406 Score += PartitionScores::Table; 9407 9408 // If this leads to fewer partitions, or to the same number of 9409 // partitions with better score, it is a better partitioning. 9410 if (NumPartitions < MinPartitions[i] || 9411 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9412 MinPartitions[i] = NumPartitions; 9413 LastElement[i] = j; 9414 PartitionsScore[i] = Score; 9415 } 9416 } 9417 } 9418 } 9419 9420 // Iterate over the partitions, replacing some with jump tables in-place. 9421 unsigned DstIndex = 0; 9422 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9423 Last = LastElement[First]; 9424 assert(Last >= First); 9425 assert(DstIndex <= First); 9426 unsigned NumClusters = Last - First + 1; 9427 9428 CaseCluster JTCluster; 9429 if (NumClusters >= MinJumpTableEntries && 9430 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9431 Clusters[DstIndex++] = JTCluster; 9432 } else { 9433 for (unsigned I = First; I <= Last; ++I) 9434 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9435 } 9436 } 9437 Clusters.resize(DstIndex); 9438 } 9439 9440 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9441 unsigned First, unsigned Last, 9442 const SwitchInst *SI, 9443 CaseCluster &BTCluster) { 9444 assert(First <= Last); 9445 if (First == Last) 9446 return false; 9447 9448 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9449 unsigned NumCmps = 0; 9450 for (int64_t I = First; I <= Last; ++I) { 9451 assert(Clusters[I].Kind == CC_Range); 9452 Dests.set(Clusters[I].MBB->getNumber()); 9453 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9454 } 9455 unsigned NumDests = Dests.count(); 9456 9457 APInt Low = Clusters[First].Low->getValue(); 9458 APInt High = Clusters[Last].High->getValue(); 9459 assert(Low.slt(High)); 9460 9461 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9462 const DataLayout &DL = DAG.getDataLayout(); 9463 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9464 return false; 9465 9466 APInt LowBound; 9467 APInt CmpRange; 9468 9469 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9470 assert(TLI.rangeFitsInWord(Low, High, DL) && 9471 "Case range must fit in bit mask!"); 9472 9473 // Check if the clusters cover a contiguous range such that no value in the 9474 // range will jump to the default statement. 9475 bool ContiguousRange = true; 9476 for (int64_t I = First + 1; I <= Last; ++I) { 9477 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9478 ContiguousRange = false; 9479 break; 9480 } 9481 } 9482 9483 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9484 // Optimize the case where all the case values fit in a word without having 9485 // to subtract minValue. In this case, we can optimize away the subtraction. 9486 LowBound = APInt::getNullValue(Low.getBitWidth()); 9487 CmpRange = High; 9488 ContiguousRange = false; 9489 } else { 9490 LowBound = Low; 9491 CmpRange = High - Low; 9492 } 9493 9494 CaseBitsVector CBV; 9495 auto TotalProb = BranchProbability::getZero(); 9496 for (unsigned i = First; i <= Last; ++i) { 9497 // Find the CaseBits for this destination. 9498 unsigned j; 9499 for (j = 0; j < CBV.size(); ++j) 9500 if (CBV[j].BB == Clusters[i].MBB) 9501 break; 9502 if (j == CBV.size()) 9503 CBV.push_back( 9504 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9505 CaseBits *CB = &CBV[j]; 9506 9507 // Update Mask, Bits and ExtraProb. 9508 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9509 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9510 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9511 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9512 CB->Bits += Hi - Lo + 1; 9513 CB->ExtraProb += Clusters[i].Prob; 9514 TotalProb += Clusters[i].Prob; 9515 } 9516 9517 BitTestInfo BTI; 9518 llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9519 // Sort by probability first, number of bits second, bit mask third. 9520 if (a.ExtraProb != b.ExtraProb) 9521 return a.ExtraProb > b.ExtraProb; 9522 if (a.Bits != b.Bits) 9523 return a.Bits > b.Bits; 9524 return a.Mask < b.Mask; 9525 }); 9526 9527 for (auto &CB : CBV) { 9528 MachineBasicBlock *BitTestBB = 9529 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9530 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9531 } 9532 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9533 SI->getCondition(), -1U, MVT::Other, false, 9534 ContiguousRange, nullptr, nullptr, std::move(BTI), 9535 TotalProb); 9536 9537 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9538 BitTestCases.size() - 1, TotalProb); 9539 return true; 9540 } 9541 9542 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9543 const SwitchInst *SI) { 9544 // Partition Clusters into as few subsets as possible, where each subset has a 9545 // range that fits in a machine word and has <= 3 unique destinations. 9546 9547 #ifndef NDEBUG 9548 // Clusters must be sorted and contain Range or JumpTable clusters. 9549 assert(!Clusters.empty()); 9550 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9551 for (const CaseCluster &C : Clusters) 9552 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9553 for (unsigned i = 1; i < Clusters.size(); ++i) 9554 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9555 #endif 9556 9557 // The algorithm below is not suitable for -O0. 9558 if (TM.getOptLevel() == CodeGenOpt::None) 9559 return; 9560 9561 // If target does not have legal shift left, do not emit bit tests at all. 9562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9563 const DataLayout &DL = DAG.getDataLayout(); 9564 9565 EVT PTy = TLI.getPointerTy(DL); 9566 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9567 return; 9568 9569 int BitWidth = PTy.getSizeInBits(); 9570 const int64_t N = Clusters.size(); 9571 9572 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9573 SmallVector<unsigned, 8> MinPartitions(N); 9574 // LastElement[i] is the last element of the partition starting at i. 9575 SmallVector<unsigned, 8> LastElement(N); 9576 9577 // FIXME: This might not be the best algorithm for finding bit test clusters. 9578 9579 // Base case: There is only one way to partition Clusters[N-1]. 9580 MinPartitions[N - 1] = 1; 9581 LastElement[N - 1] = N - 1; 9582 9583 // Note: loop indexes are signed to avoid underflow. 9584 for (int64_t i = N - 2; i >= 0; --i) { 9585 // Find optimal partitioning of Clusters[i..N-1]. 9586 // Baseline: Put Clusters[i] into a partition on its own. 9587 MinPartitions[i] = MinPartitions[i + 1] + 1; 9588 LastElement[i] = i; 9589 9590 // Search for a solution that results in fewer partitions. 9591 // Note: the search is limited by BitWidth, reducing time complexity. 9592 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9593 // Try building a partition from Clusters[i..j]. 9594 9595 // Check the range. 9596 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9597 Clusters[j].High->getValue(), DL)) 9598 continue; 9599 9600 // Check nbr of destinations and cluster types. 9601 // FIXME: This works, but doesn't seem very efficient. 9602 bool RangesOnly = true; 9603 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9604 for (int64_t k = i; k <= j; k++) { 9605 if (Clusters[k].Kind != CC_Range) { 9606 RangesOnly = false; 9607 break; 9608 } 9609 Dests.set(Clusters[k].MBB->getNumber()); 9610 } 9611 if (!RangesOnly || Dests.count() > 3) 9612 break; 9613 9614 // Check if it's a better partition. 9615 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9616 if (NumPartitions < MinPartitions[i]) { 9617 // Found a better partition. 9618 MinPartitions[i] = NumPartitions; 9619 LastElement[i] = j; 9620 } 9621 } 9622 } 9623 9624 // Iterate over the partitions, replacing with bit-test clusters in-place. 9625 unsigned DstIndex = 0; 9626 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9627 Last = LastElement[First]; 9628 assert(First <= Last); 9629 assert(DstIndex <= First); 9630 9631 CaseCluster BitTestCluster; 9632 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9633 Clusters[DstIndex++] = BitTestCluster; 9634 } else { 9635 size_t NumClusters = Last - First + 1; 9636 std::memmove(&Clusters[DstIndex], &Clusters[First], 9637 sizeof(Clusters[0]) * NumClusters); 9638 DstIndex += NumClusters; 9639 } 9640 } 9641 Clusters.resize(DstIndex); 9642 } 9643 9644 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9645 MachineBasicBlock *SwitchMBB, 9646 MachineBasicBlock *DefaultMBB) { 9647 MachineFunction *CurMF = FuncInfo.MF; 9648 MachineBasicBlock *NextMBB = nullptr; 9649 MachineFunction::iterator BBI(W.MBB); 9650 if (++BBI != FuncInfo.MF->end()) 9651 NextMBB = &*BBI; 9652 9653 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9654 9655 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9656 9657 if (Size == 2 && W.MBB == SwitchMBB) { 9658 // If any two of the cases has the same destination, and if one value 9659 // is the same as the other, but has one bit unset that the other has set, 9660 // use bit manipulation to do two compares at once. For example: 9661 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9662 // TODO: This could be extended to merge any 2 cases in switches with 3 9663 // cases. 9664 // TODO: Handle cases where W.CaseBB != SwitchBB. 9665 CaseCluster &Small = *W.FirstCluster; 9666 CaseCluster &Big = *W.LastCluster; 9667 9668 if (Small.Low == Small.High && Big.Low == Big.High && 9669 Small.MBB == Big.MBB) { 9670 const APInt &SmallValue = Small.Low->getValue(); 9671 const APInt &BigValue = Big.Low->getValue(); 9672 9673 // Check that there is only one bit different. 9674 APInt CommonBit = BigValue ^ SmallValue; 9675 if (CommonBit.isPowerOf2()) { 9676 SDValue CondLHS = getValue(Cond); 9677 EVT VT = CondLHS.getValueType(); 9678 SDLoc DL = getCurSDLoc(); 9679 9680 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9681 DAG.getConstant(CommonBit, DL, VT)); 9682 SDValue Cond = DAG.getSetCC( 9683 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9684 ISD::SETEQ); 9685 9686 // Update successor info. 9687 // Both Small and Big will jump to Small.BB, so we sum up the 9688 // probabilities. 9689 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9690 if (BPI) 9691 addSuccessorWithProb( 9692 SwitchMBB, DefaultMBB, 9693 // The default destination is the first successor in IR. 9694 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9695 else 9696 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9697 9698 // Insert the true branch. 9699 SDValue BrCond = 9700 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9701 DAG.getBasicBlock(Small.MBB)); 9702 // Insert the false branch. 9703 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9704 DAG.getBasicBlock(DefaultMBB)); 9705 9706 DAG.setRoot(BrCond); 9707 return; 9708 } 9709 } 9710 } 9711 9712 if (TM.getOptLevel() != CodeGenOpt::None) { 9713 // Here, we order cases by probability so the most likely case will be 9714 // checked first. However, two clusters can have the same probability in 9715 // which case their relative ordering is non-deterministic. So we use Low 9716 // as a tie-breaker as clusters are guaranteed to never overlap. 9717 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9718 [](const CaseCluster &a, const CaseCluster &b) { 9719 return a.Prob != b.Prob ? 9720 a.Prob > b.Prob : 9721 a.Low->getValue().slt(b.Low->getValue()); 9722 }); 9723 9724 // Rearrange the case blocks so that the last one falls through if possible 9725 // without changing the order of probabilities. 9726 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9727 --I; 9728 if (I->Prob > W.LastCluster->Prob) 9729 break; 9730 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9731 std::swap(*I, *W.LastCluster); 9732 break; 9733 } 9734 } 9735 } 9736 9737 // Compute total probability. 9738 BranchProbability DefaultProb = W.DefaultProb; 9739 BranchProbability UnhandledProbs = DefaultProb; 9740 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9741 UnhandledProbs += I->Prob; 9742 9743 MachineBasicBlock *CurMBB = W.MBB; 9744 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9745 MachineBasicBlock *Fallthrough; 9746 if (I == W.LastCluster) { 9747 // For the last cluster, fall through to the default destination. 9748 Fallthrough = DefaultMBB; 9749 } else { 9750 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9751 CurMF->insert(BBI, Fallthrough); 9752 // Put Cond in a virtual register to make it available from the new blocks. 9753 ExportFromCurrentBlock(Cond); 9754 } 9755 UnhandledProbs -= I->Prob; 9756 9757 switch (I->Kind) { 9758 case CC_JumpTable: { 9759 // FIXME: Optimize away range check based on pivot comparisons. 9760 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9761 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9762 9763 // The jump block hasn't been inserted yet; insert it here. 9764 MachineBasicBlock *JumpMBB = JT->MBB; 9765 CurMF->insert(BBI, JumpMBB); 9766 9767 auto JumpProb = I->Prob; 9768 auto FallthroughProb = UnhandledProbs; 9769 9770 // If the default statement is a target of the jump table, we evenly 9771 // distribute the default probability to successors of CurMBB. Also 9772 // update the probability on the edge from JumpMBB to Fallthrough. 9773 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9774 SE = JumpMBB->succ_end(); 9775 SI != SE; ++SI) { 9776 if (*SI == DefaultMBB) { 9777 JumpProb += DefaultProb / 2; 9778 FallthroughProb -= DefaultProb / 2; 9779 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9780 JumpMBB->normalizeSuccProbs(); 9781 break; 9782 } 9783 } 9784 9785 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9786 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9787 CurMBB->normalizeSuccProbs(); 9788 9789 // The jump table header will be inserted in our current block, do the 9790 // range check, and fall through to our fallthrough block. 9791 JTH->HeaderBB = CurMBB; 9792 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9793 9794 // If we're in the right place, emit the jump table header right now. 9795 if (CurMBB == SwitchMBB) { 9796 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9797 JTH->Emitted = true; 9798 } 9799 break; 9800 } 9801 case CC_BitTests: { 9802 // FIXME: Optimize away range check based on pivot comparisons. 9803 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9804 9805 // The bit test blocks haven't been inserted yet; insert them here. 9806 for (BitTestCase &BTC : BTB->Cases) 9807 CurMF->insert(BBI, BTC.ThisBB); 9808 9809 // Fill in fields of the BitTestBlock. 9810 BTB->Parent = CurMBB; 9811 BTB->Default = Fallthrough; 9812 9813 BTB->DefaultProb = UnhandledProbs; 9814 // If the cases in bit test don't form a contiguous range, we evenly 9815 // distribute the probability on the edge to Fallthrough to two 9816 // successors of CurMBB. 9817 if (!BTB->ContiguousRange) { 9818 BTB->Prob += DefaultProb / 2; 9819 BTB->DefaultProb -= DefaultProb / 2; 9820 } 9821 9822 // If we're in the right place, emit the bit test header right now. 9823 if (CurMBB == SwitchMBB) { 9824 visitBitTestHeader(*BTB, SwitchMBB); 9825 BTB->Emitted = true; 9826 } 9827 break; 9828 } 9829 case CC_Range: { 9830 const Value *RHS, *LHS, *MHS; 9831 ISD::CondCode CC; 9832 if (I->Low == I->High) { 9833 // Check Cond == I->Low. 9834 CC = ISD::SETEQ; 9835 LHS = Cond; 9836 RHS=I->Low; 9837 MHS = nullptr; 9838 } else { 9839 // Check I->Low <= Cond <= I->High. 9840 CC = ISD::SETLE; 9841 LHS = I->Low; 9842 MHS = Cond; 9843 RHS = I->High; 9844 } 9845 9846 // The false probability is the sum of all unhandled cases. 9847 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 9848 getCurSDLoc(), I->Prob, UnhandledProbs); 9849 9850 if (CurMBB == SwitchMBB) 9851 visitSwitchCase(CB, SwitchMBB); 9852 else 9853 SwitchCases.push_back(CB); 9854 9855 break; 9856 } 9857 } 9858 CurMBB = Fallthrough; 9859 } 9860 } 9861 9862 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9863 CaseClusterIt First, 9864 CaseClusterIt Last) { 9865 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9866 if (X.Prob != CC.Prob) 9867 return X.Prob > CC.Prob; 9868 9869 // Ties are broken by comparing the case value. 9870 return X.Low->getValue().slt(CC.Low->getValue()); 9871 }); 9872 } 9873 9874 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9875 const SwitchWorkListItem &W, 9876 Value *Cond, 9877 MachineBasicBlock *SwitchMBB) { 9878 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9879 "Clusters not sorted?"); 9880 9881 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9882 9883 // Balance the tree based on branch probabilities to create a near-optimal (in 9884 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9885 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9886 CaseClusterIt LastLeft = W.FirstCluster; 9887 CaseClusterIt FirstRight = W.LastCluster; 9888 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9889 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9890 9891 // Move LastLeft and FirstRight towards each other from opposite directions to 9892 // find a partitioning of the clusters which balances the probability on both 9893 // sides. If LeftProb and RightProb are equal, alternate which side is 9894 // taken to ensure 0-probability nodes are distributed evenly. 9895 unsigned I = 0; 9896 while (LastLeft + 1 < FirstRight) { 9897 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9898 LeftProb += (++LastLeft)->Prob; 9899 else 9900 RightProb += (--FirstRight)->Prob; 9901 I++; 9902 } 9903 9904 while (true) { 9905 // Our binary search tree differs from a typical BST in that ours can have up 9906 // to three values in each leaf. The pivot selection above doesn't take that 9907 // into account, which means the tree might require more nodes and be less 9908 // efficient. We compensate for this here. 9909 9910 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9911 unsigned NumRight = W.LastCluster - FirstRight + 1; 9912 9913 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9914 // If one side has less than 3 clusters, and the other has more than 3, 9915 // consider taking a cluster from the other side. 9916 9917 if (NumLeft < NumRight) { 9918 // Consider moving the first cluster on the right to the left side. 9919 CaseCluster &CC = *FirstRight; 9920 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9921 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9922 if (LeftSideRank <= RightSideRank) { 9923 // Moving the cluster to the left does not demote it. 9924 ++LastLeft; 9925 ++FirstRight; 9926 continue; 9927 } 9928 } else { 9929 assert(NumRight < NumLeft); 9930 // Consider moving the last element on the left to the right side. 9931 CaseCluster &CC = *LastLeft; 9932 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9933 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9934 if (RightSideRank <= LeftSideRank) { 9935 // Moving the cluster to the right does not demot it. 9936 --LastLeft; 9937 --FirstRight; 9938 continue; 9939 } 9940 } 9941 } 9942 break; 9943 } 9944 9945 assert(LastLeft + 1 == FirstRight); 9946 assert(LastLeft >= W.FirstCluster); 9947 assert(FirstRight <= W.LastCluster); 9948 9949 // Use the first element on the right as pivot since we will make less-than 9950 // comparisons against it. 9951 CaseClusterIt PivotCluster = FirstRight; 9952 assert(PivotCluster > W.FirstCluster); 9953 assert(PivotCluster <= W.LastCluster); 9954 9955 CaseClusterIt FirstLeft = W.FirstCluster; 9956 CaseClusterIt LastRight = W.LastCluster; 9957 9958 const ConstantInt *Pivot = PivotCluster->Low; 9959 9960 // New blocks will be inserted immediately after the current one. 9961 MachineFunction::iterator BBI(W.MBB); 9962 ++BBI; 9963 9964 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9965 // we can branch to its destination directly if it's squeezed exactly in 9966 // between the known lower bound and Pivot - 1. 9967 MachineBasicBlock *LeftMBB; 9968 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9969 FirstLeft->Low == W.GE && 9970 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9971 LeftMBB = FirstLeft->MBB; 9972 } else { 9973 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9974 FuncInfo.MF->insert(BBI, LeftMBB); 9975 WorkList.push_back( 9976 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9977 // Put Cond in a virtual register to make it available from the new blocks. 9978 ExportFromCurrentBlock(Cond); 9979 } 9980 9981 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9982 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9983 // directly if RHS.High equals the current upper bound. 9984 MachineBasicBlock *RightMBB; 9985 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9986 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9987 RightMBB = FirstRight->MBB; 9988 } else { 9989 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9990 FuncInfo.MF->insert(BBI, RightMBB); 9991 WorkList.push_back( 9992 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9993 // Put Cond in a virtual register to make it available from the new blocks. 9994 ExportFromCurrentBlock(Cond); 9995 } 9996 9997 // Create the CaseBlock record that will be used to lower the branch. 9998 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9999 getCurSDLoc(), LeftProb, RightProb); 10000 10001 if (W.MBB == SwitchMBB) 10002 visitSwitchCase(CB, SwitchMBB); 10003 else 10004 SwitchCases.push_back(CB); 10005 } 10006 10007 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10008 // from the swith statement. 10009 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10010 BranchProbability PeeledCaseProb) { 10011 if (PeeledCaseProb == BranchProbability::getOne()) 10012 return BranchProbability::getZero(); 10013 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10014 10015 uint32_t Numerator = CaseProb.getNumerator(); 10016 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10017 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10018 } 10019 10020 // Try to peel the top probability case if it exceeds the threshold. 10021 // Return current MachineBasicBlock for the switch statement if the peeling 10022 // does not occur. 10023 // If the peeling is performed, return the newly created MachineBasicBlock 10024 // for the peeled switch statement. Also update Clusters to remove the peeled 10025 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10026 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10027 const SwitchInst &SI, CaseClusterVector &Clusters, 10028 BranchProbability &PeeledCaseProb) { 10029 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10030 // Don't perform if there is only one cluster or optimizing for size. 10031 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10032 TM.getOptLevel() == CodeGenOpt::None || 10033 SwitchMBB->getParent()->getFunction().optForMinSize()) 10034 return SwitchMBB; 10035 10036 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10037 unsigned PeeledCaseIndex = 0; 10038 bool SwitchPeeled = false; 10039 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10040 CaseCluster &CC = Clusters[Index]; 10041 if (CC.Prob < TopCaseProb) 10042 continue; 10043 TopCaseProb = CC.Prob; 10044 PeeledCaseIndex = Index; 10045 SwitchPeeled = true; 10046 } 10047 if (!SwitchPeeled) 10048 return SwitchMBB; 10049 10050 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10051 << TopCaseProb << "\n"); 10052 10053 // Record the MBB for the peeled switch statement. 10054 MachineFunction::iterator BBI(SwitchMBB); 10055 ++BBI; 10056 MachineBasicBlock *PeeledSwitchMBB = 10057 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10058 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10059 10060 ExportFromCurrentBlock(SI.getCondition()); 10061 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10062 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10063 nullptr, nullptr, TopCaseProb.getCompl()}; 10064 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10065 10066 Clusters.erase(PeeledCaseIt); 10067 for (CaseCluster &CC : Clusters) { 10068 LLVM_DEBUG( 10069 dbgs() << "Scale the probablity for one cluster, before scaling: " 10070 << CC.Prob << "\n"); 10071 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10072 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10073 } 10074 PeeledCaseProb = TopCaseProb; 10075 return PeeledSwitchMBB; 10076 } 10077 10078 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10079 // Extract cases from the switch. 10080 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10081 CaseClusterVector Clusters; 10082 Clusters.reserve(SI.getNumCases()); 10083 for (auto I : SI.cases()) { 10084 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10085 const ConstantInt *CaseVal = I.getCaseValue(); 10086 BranchProbability Prob = 10087 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10088 : BranchProbability(1, SI.getNumCases() + 1); 10089 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10090 } 10091 10092 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10093 10094 // Cluster adjacent cases with the same destination. We do this at all 10095 // optimization levels because it's cheap to do and will make codegen faster 10096 // if there are many clusters. 10097 sortAndRangeify(Clusters); 10098 10099 if (TM.getOptLevel() != CodeGenOpt::None) { 10100 // Replace an unreachable default with the most popular destination. 10101 // FIXME: Exploit unreachable default more aggressively. 10102 bool UnreachableDefault = 10103 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10104 if (UnreachableDefault && !Clusters.empty()) { 10105 DenseMap<const BasicBlock *, unsigned> Popularity; 10106 unsigned MaxPop = 0; 10107 const BasicBlock *MaxBB = nullptr; 10108 for (auto I : SI.cases()) { 10109 const BasicBlock *BB = I.getCaseSuccessor(); 10110 if (++Popularity[BB] > MaxPop) { 10111 MaxPop = Popularity[BB]; 10112 MaxBB = BB; 10113 } 10114 } 10115 // Set new default. 10116 assert(MaxPop > 0 && MaxBB); 10117 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10118 10119 // Remove cases that were pointing to the destination that is now the 10120 // default. 10121 CaseClusterVector New; 10122 New.reserve(Clusters.size()); 10123 for (CaseCluster &CC : Clusters) { 10124 if (CC.MBB != DefaultMBB) 10125 New.push_back(CC); 10126 } 10127 Clusters = std::move(New); 10128 } 10129 } 10130 10131 // The branch probablity of the peeled case. 10132 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10133 MachineBasicBlock *PeeledSwitchMBB = 10134 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10135 10136 // If there is only the default destination, jump there directly. 10137 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10138 if (Clusters.empty()) { 10139 assert(PeeledSwitchMBB == SwitchMBB); 10140 SwitchMBB->addSuccessor(DefaultMBB); 10141 if (DefaultMBB != NextBlock(SwitchMBB)) { 10142 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10143 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10144 } 10145 return; 10146 } 10147 10148 findJumpTables(Clusters, &SI, DefaultMBB); 10149 findBitTestClusters(Clusters, &SI); 10150 10151 LLVM_DEBUG({ 10152 dbgs() << "Case clusters: "; 10153 for (const CaseCluster &C : Clusters) { 10154 if (C.Kind == CC_JumpTable) 10155 dbgs() << "JT:"; 10156 if (C.Kind == CC_BitTests) 10157 dbgs() << "BT:"; 10158 10159 C.Low->getValue().print(dbgs(), true); 10160 if (C.Low != C.High) { 10161 dbgs() << '-'; 10162 C.High->getValue().print(dbgs(), true); 10163 } 10164 dbgs() << ' '; 10165 } 10166 dbgs() << '\n'; 10167 }); 10168 10169 assert(!Clusters.empty()); 10170 SwitchWorkList WorkList; 10171 CaseClusterIt First = Clusters.begin(); 10172 CaseClusterIt Last = Clusters.end() - 1; 10173 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10174 // Scale the branchprobability for DefaultMBB if the peel occurs and 10175 // DefaultMBB is not replaced. 10176 if (PeeledCaseProb != BranchProbability::getZero() && 10177 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10178 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10179 WorkList.push_back( 10180 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10181 10182 while (!WorkList.empty()) { 10183 SwitchWorkListItem W = WorkList.back(); 10184 WorkList.pop_back(); 10185 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10186 10187 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10188 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10189 // For optimized builds, lower large range as a balanced binary tree. 10190 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10191 continue; 10192 } 10193 10194 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10195 } 10196 } 10197