xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 42f7bc96dd0b541ba57d3cf0ac10a2fc13de1524)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/FunctionLoweringInfo.h"
41 #include "llvm/CodeGen/GCMetadata.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstring>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 
125 #define DEBUG_TYPE "isel"
126 
127 /// LimitFloatPrecision - Generate low-precision inline sequences for
128 /// some float libcalls (6, 8 or 12 bits).
129 static unsigned LimitFloatPrecision;
130 
131 static cl::opt<unsigned, true>
132     LimitFPPrecision("limit-float-precision",
133                      cl::desc("Generate low-precision inline sequences "
134                               "for some float libcalls"),
135                      cl::location(LimitFloatPrecision), cl::Hidden,
136                      cl::init(0));
137 
138 static cl::opt<unsigned> SwitchPeelThreshold(
139     "switch-peel-threshold", cl::Hidden, cl::init(66),
140     cl::desc("Set the case probability threshold for peeling the case from a "
141              "switch statement. A value greater than 100 will void this "
142              "optimization"));
143 
144 // Limit the width of DAG chains. This is important in general to prevent
145 // DAG-based analysis from blowing up. For example, alias analysis and
146 // load clustering may not complete in reasonable time. It is difficult to
147 // recognize and avoid this situation within each individual analysis, and
148 // future analyses are likely to have the same behavior. Limiting DAG width is
149 // the safe approach and will be especially important with global DAGs.
150 //
151 // MaxParallelChains default is arbitrarily high to avoid affecting
152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
153 // sequence over this should have been converted to llvm.memcpy by the
154 // frontend. It is easy to induce this behavior with .ll code such as:
155 // %buffer = alloca [4096 x i8]
156 // %data = load [4096 x i8]* %argPtr
157 // store [4096 x i8] %data, [4096 x i8]* %buffer
158 static const unsigned MaxParallelChains = 64;
159 
160 // True if the Value passed requires ABI mangling as it is a parameter to a
161 // function or a return value from a function which is not an intrinsic.
162 static bool isABIRegCopy(const Value *V) {
163   const bool IsRetInst = V && isa<ReturnInst>(V);
164   const bool IsCallInst = V && isa<CallInst>(V);
165   const bool IsInLineAsm =
166       IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm();
167   const bool IsIndirectFunctionCall =
168       IsCallInst && !IsInLineAsm &&
169       !static_cast<const CallInst *>(V)->getCalledFunction();
170   // It is possible that the call instruction is an inline asm statement or an
171   // indirect function call in which case the return value of
172   // getCalledFunction() would be nullptr.
173   const bool IsInstrinsicCall =
174       IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall &&
175       static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() !=
176           Intrinsic::not_intrinsic;
177 
178   return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall));
179 }
180 
181 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
182                                       const SDValue *Parts, unsigned NumParts,
183                                       MVT PartVT, EVT ValueVT, const Value *V,
184                                       bool IsABIRegCopy);
185 
186 /// getCopyFromParts - Create a value that contains the specified legal parts
187 /// combined into the value they represent.  If the parts combine to a type
188 /// larger than ValueVT then AssertOp can be used to specify whether the extra
189 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
190 /// (ISD::AssertSext).
191 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
192                                 const SDValue *Parts, unsigned NumParts,
193                                 MVT PartVT, EVT ValueVT, const Value *V,
194                                 Optional<ISD::NodeType> AssertOp = None,
195                                 bool IsABIRegCopy = false) {
196   if (ValueVT.isVector())
197     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
198                                   PartVT, ValueVT, V, IsABIRegCopy);
199 
200   assert(NumParts > 0 && "No parts to assemble!");
201   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
202   SDValue Val = Parts[0];
203 
204   if (NumParts > 1) {
205     // Assemble the value from multiple parts.
206     if (ValueVT.isInteger()) {
207       unsigned PartBits = PartVT.getSizeInBits();
208       unsigned ValueBits = ValueVT.getSizeInBits();
209 
210       // Assemble the power of 2 part.
211       unsigned RoundParts = NumParts & (NumParts - 1) ?
212         1 << Log2_32(NumParts) : NumParts;
213       unsigned RoundBits = PartBits * RoundParts;
214       EVT RoundVT = RoundBits == ValueBits ?
215         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
216       SDValue Lo, Hi;
217 
218       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
219 
220       if (RoundParts > 2) {
221         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
222                               PartVT, HalfVT, V);
223         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
224                               RoundParts / 2, PartVT, HalfVT, V);
225       } else {
226         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
227         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
228       }
229 
230       if (DAG.getDataLayout().isBigEndian())
231         std::swap(Lo, Hi);
232 
233       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
234 
235       if (RoundParts < NumParts) {
236         // Assemble the trailing non-power-of-2 part.
237         unsigned OddParts = NumParts - RoundParts;
238         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
239         Hi = getCopyFromParts(DAG, DL,
240                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
241 
242         // Combine the round and odd parts.
243         Lo = Val;
244         if (DAG.getDataLayout().isBigEndian())
245           std::swap(Lo, Hi);
246         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
247         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
248         Hi =
249             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
250                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
251                                         TLI.getPointerTy(DAG.getDataLayout())));
252         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
253         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
254       }
255     } else if (PartVT.isFloatingPoint()) {
256       // FP split into multiple FP parts (for ppcf128)
257       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
258              "Unexpected split");
259       SDValue Lo, Hi;
260       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
261       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
262       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
263         std::swap(Lo, Hi);
264       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
265     } else {
266       // FP split into integer parts (soft fp)
267       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
268              !PartVT.isVector() && "Unexpected split");
269       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
270       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
271     }
272   }
273 
274   // There is now one part, held in Val.  Correct it to match ValueVT.
275   // PartEVT is the type of the register class that holds the value.
276   // ValueVT is the type of the inline asm operation.
277   EVT PartEVT = Val.getValueType();
278 
279   if (PartEVT == ValueVT)
280     return Val;
281 
282   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
283       ValueVT.bitsLT(PartEVT)) {
284     // For an FP value in an integer part, we need to truncate to the right
285     // width first.
286     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
287     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
288   }
289 
290   // Handle types that have the same size.
291   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
292     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
293 
294   // Handle types with different sizes.
295   if (PartEVT.isInteger() && ValueVT.isInteger()) {
296     if (ValueVT.bitsLT(PartEVT)) {
297       // For a truncate, see if we have any information to
298       // indicate whether the truncated bits will always be
299       // zero or sign-extension.
300       if (AssertOp.hasValue())
301         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
302                           DAG.getValueType(ValueVT));
303       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
304     }
305     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
306   }
307 
308   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
309     // FP_ROUND's are always exact here.
310     if (ValueVT.bitsLT(Val.getValueType()))
311       return DAG.getNode(
312           ISD::FP_ROUND, DL, ValueVT, Val,
313           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
314 
315     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
316   }
317 
318   llvm_unreachable("Unknown mismatch!");
319 }
320 
321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
322                                               const Twine &ErrMsg) {
323   const Instruction *I = dyn_cast_or_null<Instruction>(V);
324   if (!V)
325     return Ctx.emitError(ErrMsg);
326 
327   const char *AsmError = ", possible invalid constraint for vector type";
328   if (const CallInst *CI = dyn_cast<CallInst>(I))
329     if (isa<InlineAsm>(CI->getCalledValue()))
330       return Ctx.emitError(I, ErrMsg + AsmError);
331 
332   return Ctx.emitError(I, ErrMsg);
333 }
334 
335 /// getCopyFromPartsVector - Create a value that contains the specified legal
336 /// parts combined into the value they represent.  If the parts combine to a
337 /// type larger than ValueVT then AssertOp can be used to specify whether the
338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
339 /// ValueVT (ISD::AssertSext).
340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
341                                       const SDValue *Parts, unsigned NumParts,
342                                       MVT PartVT, EVT ValueVT, const Value *V,
343                                       bool IsABIRegCopy) {
344   assert(ValueVT.isVector() && "Not a vector value");
345   assert(NumParts > 0 && "No parts to assemble!");
346   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
347   SDValue Val = Parts[0];
348 
349   // Handle a multi-element vector.
350   if (NumParts > 1) {
351     EVT IntermediateVT;
352     MVT RegisterVT;
353     unsigned NumIntermediates;
354     unsigned NumRegs;
355 
356     if (IsABIRegCopy) {
357       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
358           *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
359           RegisterVT);
360     } else {
361       NumRegs =
362           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
363                                      NumIntermediates, RegisterVT);
364     }
365 
366     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
367     NumParts = NumRegs; // Silence a compiler warning.
368     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
369     assert(RegisterVT.getSizeInBits() ==
370            Parts[0].getSimpleValueType().getSizeInBits() &&
371            "Part type sizes don't match!");
372 
373     // Assemble the parts into intermediate operands.
374     SmallVector<SDValue, 8> Ops(NumIntermediates);
375     if (NumIntermediates == NumParts) {
376       // If the register was not expanded, truncate or copy the value,
377       // as appropriate.
378       for (unsigned i = 0; i != NumParts; ++i)
379         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
380                                   PartVT, IntermediateVT, V);
381     } else if (NumParts > 0) {
382       // If the intermediate type was expanded, build the intermediate
383       // operands from the parts.
384       assert(NumParts % NumIntermediates == 0 &&
385              "Must expand into a divisible number of parts!");
386       unsigned Factor = NumParts / NumIntermediates;
387       for (unsigned i = 0; i != NumIntermediates; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
389                                   PartVT, IntermediateVT, V);
390     }
391 
392     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
393     // intermediate operands.
394     EVT BuiltVectorTy =
395         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
396                          (IntermediateVT.isVector()
397                               ? IntermediateVT.getVectorNumElements() * NumParts
398                               : NumIntermediates));
399     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
400                                                 : ISD::BUILD_VECTOR,
401                       DL, BuiltVectorTy, Ops);
402   }
403 
404   // There is now one part, held in Val.  Correct it to match ValueVT.
405   EVT PartEVT = Val.getValueType();
406 
407   if (PartEVT == ValueVT)
408     return Val;
409 
410   if (PartEVT.isVector()) {
411     // If the element type of the source/dest vectors are the same, but the
412     // parts vector has more elements than the value vector, then we have a
413     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
414     // elements we want.
415     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
416       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
417              "Cannot narrow, it would be a lossy transformation");
418       return DAG.getNode(
419           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
420           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
421     }
422 
423     // Vector/Vector bitcast.
424     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
425       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
426 
427     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
428       "Cannot handle this kind of promotion");
429     // Promoted vector extract
430     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
431 
432   }
433 
434   // Trivial bitcast if the types are the same size and the destination
435   // vector type is legal.
436   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
437       TLI.isTypeLegal(ValueVT))
438     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
439 
440   if (ValueVT.getVectorNumElements() != 1) {
441      // Certain ABIs require that vectors are passed as integers. For vectors
442      // are the same size, this is an obvious bitcast.
443      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
444        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
445      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
446        // Bitcast Val back the original type and extract the corresponding
447        // vector we want.
448        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
449        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
450                                            ValueVT.getVectorElementType(), Elts);
451        Val = DAG.getBitcast(WiderVecType, Val);
452        return DAG.getNode(
453            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
454            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
455      }
456 
457      diagnosePossiblyInvalidConstraint(
458          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
459      return DAG.getUNDEF(ValueVT);
460   }
461 
462   // Handle cases such as i8 -> <1 x i1>
463   EVT ValueSVT = ValueVT.getVectorElementType();
464   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
465     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
466                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
467 
468   return DAG.getBuildVector(ValueVT, DL, Val);
469 }
470 
471 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
472                                  SDValue Val, SDValue *Parts, unsigned NumParts,
473                                  MVT PartVT, const Value *V, bool IsABIRegCopy);
474 
475 /// getCopyToParts - Create a series of nodes that contain the specified value
476 /// split into legal parts.  If the parts contain more bits than Val, then, for
477 /// integers, ExtendKind can be used to specify how to generate the extra bits.
478 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
479                            SDValue *Parts, unsigned NumParts, MVT PartVT,
480                            const Value *V,
481                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND,
482                            bool IsABIRegCopy = false) {
483   EVT ValueVT = Val.getValueType();
484 
485   // Handle the vector case separately.
486   if (ValueVT.isVector())
487     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
488                                 IsABIRegCopy);
489 
490   unsigned PartBits = PartVT.getSizeInBits();
491   unsigned OrigNumParts = NumParts;
492   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
493          "Copying to an illegal type!");
494 
495   if (NumParts == 0)
496     return;
497 
498   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
499   EVT PartEVT = PartVT;
500   if (PartEVT == ValueVT) {
501     assert(NumParts == 1 && "No-op copy with multiple parts!");
502     Parts[0] = Val;
503     return;
504   }
505 
506   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
507     // If the parts cover more bits than the value has, promote the value.
508     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
509       assert(NumParts == 1 && "Do not know what to promote to!");
510       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
511     } else {
512       if (ValueVT.isFloatingPoint()) {
513         // FP values need to be bitcast, then extended if they are being put
514         // into a larger container.
515         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
516         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
517       }
518       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
519              ValueVT.isInteger() &&
520              "Unknown mismatch!");
521       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
522       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
523       if (PartVT == MVT::x86mmx)
524         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     }
526   } else if (PartBits == ValueVT.getSizeInBits()) {
527     // Different types of the same size.
528     assert(NumParts == 1 && PartEVT != ValueVT);
529     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
530   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
531     // If the parts cover less bits than value has, truncate the value.
532     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533            ValueVT.isInteger() &&
534            "Unknown mismatch!");
535     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
537     if (PartVT == MVT::x86mmx)
538       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   }
540 
541   // The value may have changed - recompute ValueVT.
542   ValueVT = Val.getValueType();
543   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
544          "Failed to tile the value with PartVT!");
545 
546   if (NumParts == 1) {
547     if (PartEVT != ValueVT) {
548       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
549                                         "scalar-to-vector conversion failed");
550       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
551     }
552 
553     Parts[0] = Val;
554     return;
555   }
556 
557   // Expand the value into multiple parts.
558   if (NumParts & (NumParts - 1)) {
559     // The number of parts is not a power of 2.  Split off and copy the tail.
560     assert(PartVT.isInteger() && ValueVT.isInteger() &&
561            "Do not know what to expand to!");
562     unsigned RoundParts = 1 << Log2_32(NumParts);
563     unsigned RoundBits = RoundParts * PartBits;
564     unsigned OddParts = NumParts - RoundParts;
565     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
566                                  DAG.getIntPtrConstant(RoundBits, DL));
567     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
568 
569     if (DAG.getDataLayout().isBigEndian())
570       // The odd parts were reversed by getCopyToParts - unreverse them.
571       std::reverse(Parts + RoundParts, Parts + NumParts);
572 
573     NumParts = RoundParts;
574     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
575     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
576   }
577 
578   // The number of parts is a power of 2.  Repeatedly bisect the value using
579   // EXTRACT_ELEMENT.
580   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
581                          EVT::getIntegerVT(*DAG.getContext(),
582                                            ValueVT.getSizeInBits()),
583                          Val);
584 
585   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
586     for (unsigned i = 0; i < NumParts; i += StepSize) {
587       unsigned ThisBits = StepSize * PartBits / 2;
588       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
589       SDValue &Part0 = Parts[i];
590       SDValue &Part1 = Parts[i+StepSize/2];
591 
592       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
593                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
594       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
595                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
596 
597       if (ThisBits == PartBits && ThisVT != PartVT) {
598         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
599         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
600       }
601     }
602   }
603 
604   if (DAG.getDataLayout().isBigEndian())
605     std::reverse(Parts, Parts + OrigNumParts);
606 }
607 
608 
609 /// getCopyToPartsVector - Create a series of nodes that contain the specified
610 /// value split into legal parts.
611 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
612                                  SDValue Val, SDValue *Parts, unsigned NumParts,
613                                  MVT PartVT, const Value *V,
614                                  bool IsABIRegCopy) {
615   EVT ValueVT = Val.getValueType();
616   assert(ValueVT.isVector() && "Not a vector");
617   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
618 
619   if (NumParts == 1) {
620     EVT PartEVT = PartVT;
621     if (PartEVT == ValueVT) {
622       // Nothing to do.
623     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
624       // Bitconvert vector->vector case.
625       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
626     } else if (PartVT.isVector() &&
627                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
628                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
629       EVT ElementVT = PartVT.getVectorElementType();
630       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631       // undef elements.
632       SmallVector<SDValue, 16> Ops;
633       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
634         Ops.push_back(DAG.getNode(
635             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
636             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
637 
638       for (unsigned i = ValueVT.getVectorNumElements(),
639            e = PartVT.getVectorNumElements(); i != e; ++i)
640         Ops.push_back(DAG.getUNDEF(ElementVT));
641 
642       Val = DAG.getBuildVector(PartVT, DL, Ops);
643 
644       // FIXME: Use CONCAT for 2x -> 4x.
645 
646       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
647       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
648     } else if (PartVT.isVector() &&
649                PartEVT.getVectorElementType().bitsGE(
650                  ValueVT.getVectorElementType()) &&
651                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
652 
653       // Promoted vector extract
654       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
655     } else {
656       if (ValueVT.getVectorNumElements() == 1) {
657         Val = DAG.getNode(
658             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
659             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
660       } else {
661         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
662                "lossy conversion of vector to scalar type");
663         EVT IntermediateType =
664             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
665         Val = DAG.getBitcast(IntermediateType, Val);
666         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
667       }
668     }
669 
670     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
671     Parts[0] = Val;
672     return;
673   }
674 
675   // Handle a multi-element vector.
676   EVT IntermediateVT;
677   MVT RegisterVT;
678   unsigned NumIntermediates;
679   unsigned NumRegs;
680   if (IsABIRegCopy) {
681     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
682         *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
683         RegisterVT);
684   } else {
685     NumRegs =
686         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
687                                    NumIntermediates, RegisterVT);
688   }
689   unsigned NumElements = ValueVT.getVectorNumElements();
690 
691   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
692   NumParts = NumRegs; // Silence a compiler warning.
693   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
694 
695   // Convert the vector to the appropiate type if necessary.
696   unsigned DestVectorNoElts =
697       NumIntermediates *
698       (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1);
699   EVT BuiltVectorTy = EVT::getVectorVT(
700       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
701   if (Val.getValueType() != BuiltVectorTy)
702     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
703 
704   // Split the vector into intermediate operands.
705   SmallVector<SDValue, 8> Ops(NumIntermediates);
706   for (unsigned i = 0; i != NumIntermediates; ++i) {
707     if (IntermediateVT.isVector())
708       Ops[i] =
709           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
710                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
711                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
712     else
713       Ops[i] = DAG.getNode(
714           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
715           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
716   }
717 
718   // Split the intermediate operands into legal parts.
719   if (NumParts == NumIntermediates) {
720     // If the register was not expanded, promote or copy the value,
721     // as appropriate.
722     for (unsigned i = 0; i != NumParts; ++i)
723       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
724   } else if (NumParts > 0) {
725     // If the intermediate type was expanded, split each the value into
726     // legal parts.
727     assert(NumIntermediates != 0 && "division by zero");
728     assert(NumParts % NumIntermediates == 0 &&
729            "Must expand into a divisible number of parts!");
730     unsigned Factor = NumParts / NumIntermediates;
731     for (unsigned i = 0; i != NumIntermediates; ++i)
732       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
733   }
734 }
735 
736 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
737                            EVT valuevt, bool IsABIMangledValue)
738     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
739       RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {}
740 
741 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
742                            const DataLayout &DL, unsigned Reg, Type *Ty,
743                            bool IsABIMangledValue) {
744   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
745 
746   IsABIMangled = IsABIMangledValue;
747 
748   for (EVT ValueVT : ValueVTs) {
749     unsigned NumRegs = IsABIMangledValue
750                            ? TLI.getNumRegistersForCallingConv(Context, ValueVT)
751                            : TLI.getNumRegisters(Context, ValueVT);
752     MVT RegisterVT = IsABIMangledValue
753                          ? TLI.getRegisterTypeForCallingConv(Context, ValueVT)
754                          : TLI.getRegisterType(Context, ValueVT);
755     for (unsigned i = 0; i != NumRegs; ++i)
756       Regs.push_back(Reg + i);
757     RegVTs.push_back(RegisterVT);
758     RegCount.push_back(NumRegs);
759     Reg += NumRegs;
760   }
761 }
762 
763 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
764                                       FunctionLoweringInfo &FuncInfo,
765                                       const SDLoc &dl, SDValue &Chain,
766                                       SDValue *Flag, const Value *V) const {
767   // A Value with type {} or [0 x %t] needs no registers.
768   if (ValueVTs.empty())
769     return SDValue();
770 
771   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
772 
773   // Assemble the legal parts into the final values.
774   SmallVector<SDValue, 4> Values(ValueVTs.size());
775   SmallVector<SDValue, 8> Parts;
776   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
777     // Copy the legal parts from the registers.
778     EVT ValueVT = ValueVTs[Value];
779     unsigned NumRegs = RegCount[Value];
780     MVT RegisterVT = IsABIMangled
781       ? TLI.getRegisterTypeForCallingConv(*DAG.getContext(), RegVTs[Value])
782       : RegVTs[Value];
783 
784     Parts.resize(NumRegs);
785     for (unsigned i = 0; i != NumRegs; ++i) {
786       SDValue P;
787       if (!Flag) {
788         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
789       } else {
790         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
791         *Flag = P.getValue(2);
792       }
793 
794       Chain = P.getValue(1);
795       Parts[i] = P;
796 
797       // If the source register was virtual and if we know something about it,
798       // add an assert node.
799       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
800           !RegisterVT.isInteger() || RegisterVT.isVector())
801         continue;
802 
803       const FunctionLoweringInfo::LiveOutInfo *LOI =
804         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
805       if (!LOI)
806         continue;
807 
808       unsigned RegSize = RegisterVT.getSizeInBits();
809       unsigned NumSignBits = LOI->NumSignBits;
810       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
811 
812       if (NumZeroBits == RegSize) {
813         // The current value is a zero.
814         // Explicitly express that as it would be easier for
815         // optimizations to kick in.
816         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
817         continue;
818       }
819 
820       // FIXME: We capture more information than the dag can represent.  For
821       // now, just use the tightest assertzext/assertsext possible.
822       bool isSExt = true;
823       EVT FromVT(MVT::Other);
824       if (NumSignBits == RegSize) {
825         isSExt = true;   // ASSERT SEXT 1
826         FromVT = MVT::i1;
827       } else if (NumZeroBits >= RegSize - 1) {
828         isSExt = false;  // ASSERT ZEXT 1
829         FromVT = MVT::i1;
830       } else if (NumSignBits > RegSize - 8) {
831         isSExt = true;   // ASSERT SEXT 8
832         FromVT = MVT::i8;
833       } else if (NumZeroBits >= RegSize - 8) {
834         isSExt = false;  // ASSERT ZEXT 8
835         FromVT = MVT::i8;
836       } else if (NumSignBits > RegSize - 16) {
837         isSExt = true;   // ASSERT SEXT 16
838         FromVT = MVT::i16;
839       } else if (NumZeroBits >= RegSize - 16) {
840         isSExt = false;  // ASSERT ZEXT 16
841         FromVT = MVT::i16;
842       } else if (NumSignBits > RegSize - 32) {
843         isSExt = true;   // ASSERT SEXT 32
844         FromVT = MVT::i32;
845       } else if (NumZeroBits >= RegSize - 32) {
846         isSExt = false;  // ASSERT ZEXT 32
847         FromVT = MVT::i32;
848       } else {
849         continue;
850       }
851       // Add an assertion node.
852       assert(FromVT != MVT::Other);
853       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
854                              RegisterVT, P, DAG.getValueType(FromVT));
855     }
856 
857     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
858                                      NumRegs, RegisterVT, ValueVT, V);
859     Part += NumRegs;
860     Parts.clear();
861   }
862 
863   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
864 }
865 
866 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
867                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
868                                  const Value *V,
869                                  ISD::NodeType PreferredExtendType) const {
870   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
871   ISD::NodeType ExtendKind = PreferredExtendType;
872 
873   // Get the list of the values's legal parts.
874   unsigned NumRegs = Regs.size();
875   SmallVector<SDValue, 8> Parts(NumRegs);
876   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
877     unsigned NumParts = RegCount[Value];
878 
879     MVT RegisterVT = IsABIMangled
880       ? TLI.getRegisterTypeForCallingConv(*DAG.getContext(), RegVTs[Value])
881       : RegVTs[Value];
882 
883     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
884       ExtendKind = ISD::ZERO_EXTEND;
885 
886     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
887                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
888     Part += NumParts;
889   }
890 
891   // Copy the parts into the registers.
892   SmallVector<SDValue, 8> Chains(NumRegs);
893   for (unsigned i = 0; i != NumRegs; ++i) {
894     SDValue Part;
895     if (!Flag) {
896       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
897     } else {
898       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
899       *Flag = Part.getValue(1);
900     }
901 
902     Chains[i] = Part.getValue(0);
903   }
904 
905   if (NumRegs == 1 || Flag)
906     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
907     // flagged to it. That is the CopyToReg nodes and the user are considered
908     // a single scheduling unit. If we create a TokenFactor and return it as
909     // chain, then the TokenFactor is both a predecessor (operand) of the
910     // user as well as a successor (the TF operands are flagged to the user).
911     // c1, f1 = CopyToReg
912     // c2, f2 = CopyToReg
913     // c3     = TokenFactor c1, c2
914     // ...
915     //        = op c3, ..., f2
916     Chain = Chains[NumRegs-1];
917   else
918     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
919 }
920 
921 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
922                                         unsigned MatchingIdx, const SDLoc &dl,
923                                         SelectionDAG &DAG,
924                                         std::vector<SDValue> &Ops) const {
925   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
926 
927   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
928   if (HasMatching)
929     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
930   else if (!Regs.empty() &&
931            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
932     // Put the register class of the virtual registers in the flag word.  That
933     // way, later passes can recompute register class constraints for inline
934     // assembly as well as normal instructions.
935     // Don't do this for tied operands that can use the regclass information
936     // from the def.
937     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
938     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
939     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
940   }
941 
942   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
943   Ops.push_back(Res);
944 
945   if (Code == InlineAsm::Kind_Clobber) {
946     // Clobbers should always have a 1:1 mapping with registers, and may
947     // reference registers that have illegal (e.g. vector) types. Hence, we
948     // shouldn't try to apply any sort of splitting logic to them.
949     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
950            "No 1:1 mapping from clobbers to regs?");
951     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
952     (void)SP;
953     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
954       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
955       assert(
956           (Regs[I] != SP ||
957            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
958           "If we clobbered the stack pointer, MFI should know about it.");
959     }
960     return;
961   }
962 
963   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
964     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
965     MVT RegisterVT = RegVTs[Value];
966     for (unsigned i = 0; i != NumRegs; ++i) {
967       assert(Reg < Regs.size() && "Mismatch in # registers expected");
968       unsigned TheReg = Regs[Reg++];
969       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
970     }
971   }
972 }
973 
974 SmallVector<std::pair<unsigned, unsigned>, 4>
975 RegsForValue::getRegsAndSizes() const {
976   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
977   unsigned I = 0;
978   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
979     unsigned RegCount = std::get<0>(CountAndVT);
980     MVT RegisterVT = std::get<1>(CountAndVT);
981     unsigned RegisterSize = RegisterVT.getSizeInBits();
982     for (unsigned E = I + RegCount; I != E; ++I)
983       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
984   }
985   return OutVec;
986 }
987 
988 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
989                                const TargetLibraryInfo *li) {
990   AA = aa;
991   GFI = gfi;
992   LibInfo = li;
993   DL = &DAG.getDataLayout();
994   Context = DAG.getContext();
995   LPadToCallSiteMap.clear();
996 }
997 
998 void SelectionDAGBuilder::clear() {
999   NodeMap.clear();
1000   UnusedArgNodeMap.clear();
1001   PendingLoads.clear();
1002   PendingExports.clear();
1003   CurInst = nullptr;
1004   HasTailCall = false;
1005   SDNodeOrder = LowestSDNodeOrder;
1006   StatepointLowering.clear();
1007 }
1008 
1009 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1010   DanglingDebugInfoMap.clear();
1011 }
1012 
1013 SDValue SelectionDAGBuilder::getRoot() {
1014   if (PendingLoads.empty())
1015     return DAG.getRoot();
1016 
1017   if (PendingLoads.size() == 1) {
1018     SDValue Root = PendingLoads[0];
1019     DAG.setRoot(Root);
1020     PendingLoads.clear();
1021     return Root;
1022   }
1023 
1024   // Otherwise, we have to make a token factor node.
1025   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1026                              PendingLoads);
1027   PendingLoads.clear();
1028   DAG.setRoot(Root);
1029   return Root;
1030 }
1031 
1032 SDValue SelectionDAGBuilder::getControlRoot() {
1033   SDValue Root = DAG.getRoot();
1034 
1035   if (PendingExports.empty())
1036     return Root;
1037 
1038   // Turn all of the CopyToReg chains into one factored node.
1039   if (Root.getOpcode() != ISD::EntryToken) {
1040     unsigned i = 0, e = PendingExports.size();
1041     for (; i != e; ++i) {
1042       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1043       if (PendingExports[i].getNode()->getOperand(0) == Root)
1044         break;  // Don't add the root if we already indirectly depend on it.
1045     }
1046 
1047     if (i == e)
1048       PendingExports.push_back(Root);
1049   }
1050 
1051   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1052                      PendingExports);
1053   PendingExports.clear();
1054   DAG.setRoot(Root);
1055   return Root;
1056 }
1057 
1058 void SelectionDAGBuilder::visit(const Instruction &I) {
1059   // Set up outgoing PHI node register values before emitting the terminator.
1060   if (isa<TerminatorInst>(&I)) {
1061     HandlePHINodesInSuccessorBlocks(I.getParent());
1062   }
1063 
1064   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1065   if (!isa<DbgInfoIntrinsic>(I))
1066     ++SDNodeOrder;
1067 
1068   CurInst = &I;
1069 
1070   visit(I.getOpcode(), I);
1071 
1072   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1073     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1074     // maps to this instruction.
1075     // TODO: We could handle all flags (nsw, etc) here.
1076     // TODO: If an IR instruction maps to >1 node, only the final node will have
1077     //       flags set.
1078     if (SDNode *Node = getNodeForIRValue(&I)) {
1079       SDNodeFlags IncomingFlags;
1080       IncomingFlags.copyFMF(*FPMO);
1081       if (!Node->getFlags().isDefined())
1082         Node->setFlags(IncomingFlags);
1083       else
1084         Node->intersectFlagsWith(IncomingFlags);
1085     }
1086   }
1087 
1088   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
1089       !isStatepoint(&I)) // statepoints handle their exports internally
1090     CopyToExportRegsIfNeeded(&I);
1091 
1092   CurInst = nullptr;
1093 }
1094 
1095 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1096   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1097 }
1098 
1099 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1100   // Note: this doesn't use InstVisitor, because it has to work with
1101   // ConstantExpr's in addition to instructions.
1102   switch (Opcode) {
1103   default: llvm_unreachable("Unknown instruction type encountered!");
1104     // Build the switch statement using the Instruction.def file.
1105 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1106     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1107 #include "llvm/IR/Instruction.def"
1108   }
1109 }
1110 
1111 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1112                                                 const DIExpression *Expr) {
1113   for (auto &DDIMI : DanglingDebugInfoMap)
1114     for (auto &DDI : DDIMI.second)
1115       if (DDI.getDI()) {
1116         const DbgValueInst *DI = DDI.getDI();
1117         DIVariable *DanglingVariable = DI->getVariable();
1118         DIExpression *DanglingExpr = DI->getExpression();
1119         if (DanglingVariable == Variable &&
1120             Expr->fragmentsOverlap(DanglingExpr)) {
1121           LLVM_DEBUG(dbgs()
1122                      << "Dropping dangling debug info for " << *DI << "\n");
1123           DDI = DanglingDebugInfo();
1124         }
1125       }
1126 }
1127 
1128 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1129 // generate the debug data structures now that we've seen its definition.
1130 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1131                                                    SDValue Val) {
1132   DanglingDebugInfoVector &DDIV = DanglingDebugInfoMap[V];
1133   for (auto &DDI : DDIV) {
1134     if (!DDI.getDI())
1135       continue;
1136     const DbgValueInst *DI = DDI.getDI();
1137     DebugLoc dl = DDI.getdl();
1138     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1139     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1140     DILocalVariable *Variable = DI->getVariable();
1141     DIExpression *Expr = DI->getExpression();
1142     assert(Variable->isValidLocationForIntrinsic(dl) &&
1143            "Expected inlined-at fields to agree");
1144     SDDbgValue *SDV;
1145     if (Val.getNode()) {
1146       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1147         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1148                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1149         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1150         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1151         // inserted after the definition of Val when emitting the instructions
1152         // after ISel. An alternative could be to teach
1153         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1154         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1155                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1156                    << ValSDNodeOrder << "\n");
1157         SDV = getDbgValue(Val, Variable, Expr, dl,
1158                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1159         DAG.AddDbgValue(SDV, Val.getNode(), false);
1160       } else
1161         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1162                           << "in EmitFuncArgumentDbgValue\n");
1163     } else
1164       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1165   }
1166   DanglingDebugInfoMap[V].clear();
1167 }
1168 
1169 /// getCopyFromRegs - If there was virtual register allocated for the value V
1170 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1171 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1172   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1173   SDValue Result;
1174 
1175   if (It != FuncInfo.ValueMap.end()) {
1176     unsigned InReg = It->second;
1177 
1178     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1179                      DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V));
1180     SDValue Chain = DAG.getEntryNode();
1181     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1182                                  V);
1183     resolveDanglingDebugInfo(V, Result);
1184   }
1185 
1186   return Result;
1187 }
1188 
1189 /// getValue - Return an SDValue for the given Value.
1190 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1191   // If we already have an SDValue for this value, use it. It's important
1192   // to do this first, so that we don't create a CopyFromReg if we already
1193   // have a regular SDValue.
1194   SDValue &N = NodeMap[V];
1195   if (N.getNode()) return N;
1196 
1197   // If there's a virtual register allocated and initialized for this
1198   // value, use it.
1199   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1200     return copyFromReg;
1201 
1202   // Otherwise create a new SDValue and remember it.
1203   SDValue Val = getValueImpl(V);
1204   NodeMap[V] = Val;
1205   resolveDanglingDebugInfo(V, Val);
1206   return Val;
1207 }
1208 
1209 // Return true if SDValue exists for the given Value
1210 bool SelectionDAGBuilder::findValue(const Value *V) const {
1211   return (NodeMap.find(V) != NodeMap.end()) ||
1212     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1213 }
1214 
1215 /// getNonRegisterValue - Return an SDValue for the given Value, but
1216 /// don't look in FuncInfo.ValueMap for a virtual register.
1217 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1218   // If we already have an SDValue for this value, use it.
1219   SDValue &N = NodeMap[V];
1220   if (N.getNode()) {
1221     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1222       // Remove the debug location from the node as the node is about to be used
1223       // in a location which may differ from the original debug location.  This
1224       // is relevant to Constant and ConstantFP nodes because they can appear
1225       // as constant expressions inside PHI nodes.
1226       N->setDebugLoc(DebugLoc());
1227     }
1228     return N;
1229   }
1230 
1231   // Otherwise create a new SDValue and remember it.
1232   SDValue Val = getValueImpl(V);
1233   NodeMap[V] = Val;
1234   resolveDanglingDebugInfo(V, Val);
1235   return Val;
1236 }
1237 
1238 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1239 /// Create an SDValue for the given value.
1240 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1241   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1242 
1243   if (const Constant *C = dyn_cast<Constant>(V)) {
1244     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1245 
1246     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1247       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1248 
1249     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1250       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1251 
1252     if (isa<ConstantPointerNull>(C)) {
1253       unsigned AS = V->getType()->getPointerAddressSpace();
1254       return DAG.getConstant(0, getCurSDLoc(),
1255                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1256     }
1257 
1258     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1259       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1260 
1261     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1262       return DAG.getUNDEF(VT);
1263 
1264     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1265       visit(CE->getOpcode(), *CE);
1266       SDValue N1 = NodeMap[V];
1267       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1268       return N1;
1269     }
1270 
1271     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1272       SmallVector<SDValue, 4> Constants;
1273       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1274            OI != OE; ++OI) {
1275         SDNode *Val = getValue(*OI).getNode();
1276         // If the operand is an empty aggregate, there are no values.
1277         if (!Val) continue;
1278         // Add each leaf value from the operand to the Constants list
1279         // to form a flattened list of all the values.
1280         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1281           Constants.push_back(SDValue(Val, i));
1282       }
1283 
1284       return DAG.getMergeValues(Constants, getCurSDLoc());
1285     }
1286 
1287     if (const ConstantDataSequential *CDS =
1288           dyn_cast<ConstantDataSequential>(C)) {
1289       SmallVector<SDValue, 4> Ops;
1290       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1291         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1292         // Add each leaf value from the operand to the Constants list
1293         // to form a flattened list of all the values.
1294         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1295           Ops.push_back(SDValue(Val, i));
1296       }
1297 
1298       if (isa<ArrayType>(CDS->getType()))
1299         return DAG.getMergeValues(Ops, getCurSDLoc());
1300       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1301     }
1302 
1303     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1304       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1305              "Unknown struct or array constant!");
1306 
1307       SmallVector<EVT, 4> ValueVTs;
1308       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1309       unsigned NumElts = ValueVTs.size();
1310       if (NumElts == 0)
1311         return SDValue(); // empty struct
1312       SmallVector<SDValue, 4> Constants(NumElts);
1313       for (unsigned i = 0; i != NumElts; ++i) {
1314         EVT EltVT = ValueVTs[i];
1315         if (isa<UndefValue>(C))
1316           Constants[i] = DAG.getUNDEF(EltVT);
1317         else if (EltVT.isFloatingPoint())
1318           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1319         else
1320           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1321       }
1322 
1323       return DAG.getMergeValues(Constants, getCurSDLoc());
1324     }
1325 
1326     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1327       return DAG.getBlockAddress(BA, VT);
1328 
1329     VectorType *VecTy = cast<VectorType>(V->getType());
1330     unsigned NumElements = VecTy->getNumElements();
1331 
1332     // Now that we know the number and type of the elements, get that number of
1333     // elements into the Ops array based on what kind of constant it is.
1334     SmallVector<SDValue, 16> Ops;
1335     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1336       for (unsigned i = 0; i != NumElements; ++i)
1337         Ops.push_back(getValue(CV->getOperand(i)));
1338     } else {
1339       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1340       EVT EltVT =
1341           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1342 
1343       SDValue Op;
1344       if (EltVT.isFloatingPoint())
1345         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1346       else
1347         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1348       Ops.assign(NumElements, Op);
1349     }
1350 
1351     // Create a BUILD_VECTOR node.
1352     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1353   }
1354 
1355   // If this is a static alloca, generate it as the frameindex instead of
1356   // computation.
1357   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1358     DenseMap<const AllocaInst*, int>::iterator SI =
1359       FuncInfo.StaticAllocaMap.find(AI);
1360     if (SI != FuncInfo.StaticAllocaMap.end())
1361       return DAG.getFrameIndex(SI->second,
1362                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1363   }
1364 
1365   // If this is an instruction which fast-isel has deferred, select it now.
1366   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1367     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1368 
1369     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1370                      Inst->getType(), isABIRegCopy(V));
1371     SDValue Chain = DAG.getEntryNode();
1372     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1373   }
1374 
1375   llvm_unreachable("Can't get register for value!");
1376 }
1377 
1378 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1379   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1380   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1381   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1382   bool IsSEH = isAsynchronousEHPersonality(Pers);
1383   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1384   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1385   if (!IsSEH)
1386     CatchPadMBB->setIsEHScopeEntry();
1387   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1388   if (IsMSVCCXX || IsCoreCLR)
1389     CatchPadMBB->setIsEHFuncletEntry();
1390   // Wasm does not need catchpads anymore
1391   if (!IsWasmCXX)
1392     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1393                             getControlRoot()));
1394 }
1395 
1396 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1397   // Update machine-CFG edge.
1398   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1399   FuncInfo.MBB->addSuccessor(TargetMBB);
1400 
1401   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1402   bool IsSEH = isAsynchronousEHPersonality(Pers);
1403   if (IsSEH) {
1404     // If this is not a fall-through branch or optimizations are switched off,
1405     // emit the branch.
1406     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1407         TM.getOptLevel() == CodeGenOpt::None)
1408       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1409                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1410     return;
1411   }
1412 
1413   // Figure out the funclet membership for the catchret's successor.
1414   // This will be used by the FuncletLayout pass to determine how to order the
1415   // BB's.
1416   // A 'catchret' returns to the outer scope's color.
1417   Value *ParentPad = I.getCatchSwitchParentPad();
1418   const BasicBlock *SuccessorColor;
1419   if (isa<ConstantTokenNone>(ParentPad))
1420     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1421   else
1422     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1423   assert(SuccessorColor && "No parent funclet for catchret!");
1424   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1425   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1426 
1427   // Create the terminator node.
1428   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1429                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1430                             DAG.getBasicBlock(SuccessorColorMBB));
1431   DAG.setRoot(Ret);
1432 }
1433 
1434 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1435   // Don't emit any special code for the cleanuppad instruction. It just marks
1436   // the start of an EH scope/funclet.
1437   FuncInfo.MBB->setIsEHScopeEntry();
1438   FuncInfo.MBB->setIsEHFuncletEntry();
1439   FuncInfo.MBB->setIsCleanupFuncletEntry();
1440 }
1441 
1442 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1443 /// many places it could ultimately go. In the IR, we have a single unwind
1444 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1445 /// This function skips over imaginary basic blocks that hold catchswitch
1446 /// instructions, and finds all the "real" machine
1447 /// basic block destinations. As those destinations may not be successors of
1448 /// EHPadBB, here we also calculate the edge probability to those destinations.
1449 /// The passed-in Prob is the edge probability to EHPadBB.
1450 static void findUnwindDestinations(
1451     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1452     BranchProbability Prob,
1453     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1454         &UnwindDests) {
1455   EHPersonality Personality =
1456     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1457   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1458   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1459   bool IsSEH = isAsynchronousEHPersonality(Personality);
1460 
1461   while (EHPadBB) {
1462     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1463     BasicBlock *NewEHPadBB = nullptr;
1464     if (isa<LandingPadInst>(Pad)) {
1465       // Stop on landingpads. They are not funclets.
1466       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1467       break;
1468     } else if (isa<CleanupPadInst>(Pad)) {
1469       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1470       // personalities.
1471       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1472       UnwindDests.back().first->setIsEHScopeEntry();
1473       UnwindDests.back().first->setIsEHFuncletEntry();
1474       break;
1475     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1476       // Add the catchpad handlers to the possible destinations.
1477       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1478         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1479         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1480         if (IsMSVCCXX || IsCoreCLR)
1481           UnwindDests.back().first->setIsEHFuncletEntry();
1482         if (!IsSEH)
1483           UnwindDests.back().first->setIsEHScopeEntry();
1484       }
1485       NewEHPadBB = CatchSwitch->getUnwindDest();
1486     } else {
1487       continue;
1488     }
1489 
1490     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1491     if (BPI && NewEHPadBB)
1492       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1493     EHPadBB = NewEHPadBB;
1494   }
1495 }
1496 
1497 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1498   // Update successor info.
1499   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1500   auto UnwindDest = I.getUnwindDest();
1501   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1502   BranchProbability UnwindDestProb =
1503       (BPI && UnwindDest)
1504           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1505           : BranchProbability::getZero();
1506   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1507   for (auto &UnwindDest : UnwindDests) {
1508     UnwindDest.first->setIsEHPad();
1509     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1510   }
1511   FuncInfo.MBB->normalizeSuccProbs();
1512 
1513   // Create the terminator node.
1514   SDValue Ret =
1515       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1516   DAG.setRoot(Ret);
1517 }
1518 
1519 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1520   report_fatal_error("visitCatchSwitch not yet implemented!");
1521 }
1522 
1523 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1524   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1525   auto &DL = DAG.getDataLayout();
1526   SDValue Chain = getControlRoot();
1527   SmallVector<ISD::OutputArg, 8> Outs;
1528   SmallVector<SDValue, 8> OutVals;
1529 
1530   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1531   // lower
1532   //
1533   //   %val = call <ty> @llvm.experimental.deoptimize()
1534   //   ret <ty> %val
1535   //
1536   // differently.
1537   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1538     LowerDeoptimizingReturn();
1539     return;
1540   }
1541 
1542   if (!FuncInfo.CanLowerReturn) {
1543     unsigned DemoteReg = FuncInfo.DemoteRegister;
1544     const Function *F = I.getParent()->getParent();
1545 
1546     // Emit a store of the return value through the virtual register.
1547     // Leave Outs empty so that LowerReturn won't try to load return
1548     // registers the usual way.
1549     SmallVector<EVT, 1> PtrValueVTs;
1550     ComputeValueVTs(TLI, DL,
1551                     F->getReturnType()->getPointerTo(
1552                         DAG.getDataLayout().getAllocaAddrSpace()),
1553                     PtrValueVTs);
1554 
1555     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1556                                         DemoteReg, PtrValueVTs[0]);
1557     SDValue RetOp = getValue(I.getOperand(0));
1558 
1559     SmallVector<EVT, 4> ValueVTs;
1560     SmallVector<uint64_t, 4> Offsets;
1561     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1562     unsigned NumValues = ValueVTs.size();
1563 
1564     SmallVector<SDValue, 4> Chains(NumValues);
1565     for (unsigned i = 0; i != NumValues; ++i) {
1566       // An aggregate return value cannot wrap around the address space, so
1567       // offsets to its parts don't wrap either.
1568       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1569       Chains[i] = DAG.getStore(
1570           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1571           // FIXME: better loc info would be nice.
1572           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1573     }
1574 
1575     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1576                         MVT::Other, Chains);
1577   } else if (I.getNumOperands() != 0) {
1578     SmallVector<EVT, 4> ValueVTs;
1579     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1580     unsigned NumValues = ValueVTs.size();
1581     if (NumValues) {
1582       SDValue RetOp = getValue(I.getOperand(0));
1583 
1584       const Function *F = I.getParent()->getParent();
1585 
1586       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1587       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1588                                           Attribute::SExt))
1589         ExtendKind = ISD::SIGN_EXTEND;
1590       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1591                                                Attribute::ZExt))
1592         ExtendKind = ISD::ZERO_EXTEND;
1593 
1594       LLVMContext &Context = F->getContext();
1595       bool RetInReg = F->getAttributes().hasAttribute(
1596           AttributeList::ReturnIndex, Attribute::InReg);
1597 
1598       for (unsigned j = 0; j != NumValues; ++j) {
1599         EVT VT = ValueVTs[j];
1600 
1601         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1602           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1603 
1604         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT);
1605         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT);
1606         SmallVector<SDValue, 4> Parts(NumParts);
1607         getCopyToParts(DAG, getCurSDLoc(),
1608                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1609                        &Parts[0], NumParts, PartVT, &I, ExtendKind, true);
1610 
1611         // 'inreg' on function refers to return value
1612         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1613         if (RetInReg)
1614           Flags.setInReg();
1615 
1616         // Propagate extension type if any
1617         if (ExtendKind == ISD::SIGN_EXTEND)
1618           Flags.setSExt();
1619         else if (ExtendKind == ISD::ZERO_EXTEND)
1620           Flags.setZExt();
1621 
1622         for (unsigned i = 0; i < NumParts; ++i) {
1623           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1624                                         VT, /*isfixed=*/true, 0, 0));
1625           OutVals.push_back(Parts[i]);
1626         }
1627       }
1628     }
1629   }
1630 
1631   // Push in swifterror virtual register as the last element of Outs. This makes
1632   // sure swifterror virtual register will be returned in the swifterror
1633   // physical register.
1634   const Function *F = I.getParent()->getParent();
1635   if (TLI.supportSwiftError() &&
1636       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1637     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1638     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1639     Flags.setSwiftError();
1640     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1641                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1642                                   true /*isfixed*/, 1 /*origidx*/,
1643                                   0 /*partOffs*/));
1644     // Create SDNode for the swifterror virtual register.
1645     OutVals.push_back(
1646         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1647                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1648                         EVT(TLI.getPointerTy(DL))));
1649   }
1650 
1651   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1652   CallingConv::ID CallConv =
1653     DAG.getMachineFunction().getFunction().getCallingConv();
1654   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1655       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1656 
1657   // Verify that the target's LowerReturn behaved as expected.
1658   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1659          "LowerReturn didn't return a valid chain!");
1660 
1661   // Update the DAG with the new chain value resulting from return lowering.
1662   DAG.setRoot(Chain);
1663 }
1664 
1665 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1666 /// created for it, emit nodes to copy the value into the virtual
1667 /// registers.
1668 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1669   // Skip empty types
1670   if (V->getType()->isEmptyTy())
1671     return;
1672 
1673   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1674   if (VMI != FuncInfo.ValueMap.end()) {
1675     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1676     CopyValueToVirtualRegister(V, VMI->second);
1677   }
1678 }
1679 
1680 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1681 /// the current basic block, add it to ValueMap now so that we'll get a
1682 /// CopyTo/FromReg.
1683 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1684   // No need to export constants.
1685   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1686 
1687   // Already exported?
1688   if (FuncInfo.isExportedInst(V)) return;
1689 
1690   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1691   CopyValueToVirtualRegister(V, Reg);
1692 }
1693 
1694 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1695                                                      const BasicBlock *FromBB) {
1696   // The operands of the setcc have to be in this block.  We don't know
1697   // how to export them from some other block.
1698   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1699     // Can export from current BB.
1700     if (VI->getParent() == FromBB)
1701       return true;
1702 
1703     // Is already exported, noop.
1704     return FuncInfo.isExportedInst(V);
1705   }
1706 
1707   // If this is an argument, we can export it if the BB is the entry block or
1708   // if it is already exported.
1709   if (isa<Argument>(V)) {
1710     if (FromBB == &FromBB->getParent()->getEntryBlock())
1711       return true;
1712 
1713     // Otherwise, can only export this if it is already exported.
1714     return FuncInfo.isExportedInst(V);
1715   }
1716 
1717   // Otherwise, constants can always be exported.
1718   return true;
1719 }
1720 
1721 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1722 BranchProbability
1723 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1724                                         const MachineBasicBlock *Dst) const {
1725   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1726   const BasicBlock *SrcBB = Src->getBasicBlock();
1727   const BasicBlock *DstBB = Dst->getBasicBlock();
1728   if (!BPI) {
1729     // If BPI is not available, set the default probability as 1 / N, where N is
1730     // the number of successors.
1731     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1732     return BranchProbability(1, SuccSize);
1733   }
1734   return BPI->getEdgeProbability(SrcBB, DstBB);
1735 }
1736 
1737 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1738                                                MachineBasicBlock *Dst,
1739                                                BranchProbability Prob) {
1740   if (!FuncInfo.BPI)
1741     Src->addSuccessorWithoutProb(Dst);
1742   else {
1743     if (Prob.isUnknown())
1744       Prob = getEdgeProbability(Src, Dst);
1745     Src->addSuccessor(Dst, Prob);
1746   }
1747 }
1748 
1749 static bool InBlock(const Value *V, const BasicBlock *BB) {
1750   if (const Instruction *I = dyn_cast<Instruction>(V))
1751     return I->getParent() == BB;
1752   return true;
1753 }
1754 
1755 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1756 /// This function emits a branch and is used at the leaves of an OR or an
1757 /// AND operator tree.
1758 void
1759 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1760                                                   MachineBasicBlock *TBB,
1761                                                   MachineBasicBlock *FBB,
1762                                                   MachineBasicBlock *CurBB,
1763                                                   MachineBasicBlock *SwitchBB,
1764                                                   BranchProbability TProb,
1765                                                   BranchProbability FProb,
1766                                                   bool InvertCond) {
1767   const BasicBlock *BB = CurBB->getBasicBlock();
1768 
1769   // If the leaf of the tree is a comparison, merge the condition into
1770   // the caseblock.
1771   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1772     // The operands of the cmp have to be in this block.  We don't know
1773     // how to export them from some other block.  If this is the first block
1774     // of the sequence, no exporting is needed.
1775     if (CurBB == SwitchBB ||
1776         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1777          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1778       ISD::CondCode Condition;
1779       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1780         ICmpInst::Predicate Pred =
1781             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1782         Condition = getICmpCondCode(Pred);
1783       } else {
1784         const FCmpInst *FC = cast<FCmpInst>(Cond);
1785         FCmpInst::Predicate Pred =
1786             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1787         Condition = getFCmpCondCode(Pred);
1788         if (TM.Options.NoNaNsFPMath)
1789           Condition = getFCmpCodeWithoutNaN(Condition);
1790       }
1791 
1792       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1793                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1794       SwitchCases.push_back(CB);
1795       return;
1796     }
1797   }
1798 
1799   // Create a CaseBlock record representing this branch.
1800   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1801   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1802                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1803   SwitchCases.push_back(CB);
1804 }
1805 
1806 /// FindMergedConditions - If Cond is an expression like
1807 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1808                                                MachineBasicBlock *TBB,
1809                                                MachineBasicBlock *FBB,
1810                                                MachineBasicBlock *CurBB,
1811                                                MachineBasicBlock *SwitchBB,
1812                                                Instruction::BinaryOps Opc,
1813                                                BranchProbability TProb,
1814                                                BranchProbability FProb,
1815                                                bool InvertCond) {
1816   // Skip over not part of the tree and remember to invert op and operands at
1817   // next level.
1818   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1819     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1820     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1821       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1822                            !InvertCond);
1823       return;
1824     }
1825   }
1826 
1827   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1828   // Compute the effective opcode for Cond, taking into account whether it needs
1829   // to be inverted, e.g.
1830   //   and (not (or A, B)), C
1831   // gets lowered as
1832   //   and (and (not A, not B), C)
1833   unsigned BOpc = 0;
1834   if (BOp) {
1835     BOpc = BOp->getOpcode();
1836     if (InvertCond) {
1837       if (BOpc == Instruction::And)
1838         BOpc = Instruction::Or;
1839       else if (BOpc == Instruction::Or)
1840         BOpc = Instruction::And;
1841     }
1842   }
1843 
1844   // If this node is not part of the or/and tree, emit it as a branch.
1845   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1846       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1847       BOp->getParent() != CurBB->getBasicBlock() ||
1848       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1849       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1850     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1851                                  TProb, FProb, InvertCond);
1852     return;
1853   }
1854 
1855   //  Create TmpBB after CurBB.
1856   MachineFunction::iterator BBI(CurBB);
1857   MachineFunction &MF = DAG.getMachineFunction();
1858   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1859   CurBB->getParent()->insert(++BBI, TmpBB);
1860 
1861   if (Opc == Instruction::Or) {
1862     // Codegen X | Y as:
1863     // BB1:
1864     //   jmp_if_X TBB
1865     //   jmp TmpBB
1866     // TmpBB:
1867     //   jmp_if_Y TBB
1868     //   jmp FBB
1869     //
1870 
1871     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1872     // The requirement is that
1873     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1874     //     = TrueProb for original BB.
1875     // Assuming the original probabilities are A and B, one choice is to set
1876     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1877     // A/(1+B) and 2B/(1+B). This choice assumes that
1878     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1879     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1880     // TmpBB, but the math is more complicated.
1881 
1882     auto NewTrueProb = TProb / 2;
1883     auto NewFalseProb = TProb / 2 + FProb;
1884     // Emit the LHS condition.
1885     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1886                          NewTrueProb, NewFalseProb, InvertCond);
1887 
1888     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1889     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1890     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1891     // Emit the RHS condition into TmpBB.
1892     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1893                          Probs[0], Probs[1], InvertCond);
1894   } else {
1895     assert(Opc == Instruction::And && "Unknown merge op!");
1896     // Codegen X & Y as:
1897     // BB1:
1898     //   jmp_if_X TmpBB
1899     //   jmp FBB
1900     // TmpBB:
1901     //   jmp_if_Y TBB
1902     //   jmp FBB
1903     //
1904     //  This requires creation of TmpBB after CurBB.
1905 
1906     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1907     // The requirement is that
1908     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1909     //     = FalseProb for original BB.
1910     // Assuming the original probabilities are A and B, one choice is to set
1911     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1912     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1913     // TrueProb for BB1 * FalseProb for TmpBB.
1914 
1915     auto NewTrueProb = TProb + FProb / 2;
1916     auto NewFalseProb = FProb / 2;
1917     // Emit the LHS condition.
1918     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1919                          NewTrueProb, NewFalseProb, InvertCond);
1920 
1921     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1922     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1923     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1924     // Emit the RHS condition into TmpBB.
1925     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1926                          Probs[0], Probs[1], InvertCond);
1927   }
1928 }
1929 
1930 /// If the set of cases should be emitted as a series of branches, return true.
1931 /// If we should emit this as a bunch of and/or'd together conditions, return
1932 /// false.
1933 bool
1934 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1935   if (Cases.size() != 2) return true;
1936 
1937   // If this is two comparisons of the same values or'd or and'd together, they
1938   // will get folded into a single comparison, so don't emit two blocks.
1939   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1940        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1941       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1942        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1943     return false;
1944   }
1945 
1946   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1947   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1948   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1949       Cases[0].CC == Cases[1].CC &&
1950       isa<Constant>(Cases[0].CmpRHS) &&
1951       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1952     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1953       return false;
1954     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1955       return false;
1956   }
1957 
1958   return true;
1959 }
1960 
1961 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1962   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1963 
1964   // Update machine-CFG edges.
1965   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1966 
1967   if (I.isUnconditional()) {
1968     // Update machine-CFG edges.
1969     BrMBB->addSuccessor(Succ0MBB);
1970 
1971     // If this is not a fall-through branch or optimizations are switched off,
1972     // emit the branch.
1973     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1974       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1975                               MVT::Other, getControlRoot(),
1976                               DAG.getBasicBlock(Succ0MBB)));
1977 
1978     return;
1979   }
1980 
1981   // If this condition is one of the special cases we handle, do special stuff
1982   // now.
1983   const Value *CondVal = I.getCondition();
1984   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1985 
1986   // If this is a series of conditions that are or'd or and'd together, emit
1987   // this as a sequence of branches instead of setcc's with and/or operations.
1988   // As long as jumps are not expensive, this should improve performance.
1989   // For example, instead of something like:
1990   //     cmp A, B
1991   //     C = seteq
1992   //     cmp D, E
1993   //     F = setle
1994   //     or C, F
1995   //     jnz foo
1996   // Emit:
1997   //     cmp A, B
1998   //     je foo
1999   //     cmp D, E
2000   //     jle foo
2001   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2002     Instruction::BinaryOps Opcode = BOp->getOpcode();
2003     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2004         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2005         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2006       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2007                            Opcode,
2008                            getEdgeProbability(BrMBB, Succ0MBB),
2009                            getEdgeProbability(BrMBB, Succ1MBB),
2010                            /*InvertCond=*/false);
2011       // If the compares in later blocks need to use values not currently
2012       // exported from this block, export them now.  This block should always
2013       // be the first entry.
2014       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2015 
2016       // Allow some cases to be rejected.
2017       if (ShouldEmitAsBranches(SwitchCases)) {
2018         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2019           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2020           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2021         }
2022 
2023         // Emit the branch for this block.
2024         visitSwitchCase(SwitchCases[0], BrMBB);
2025         SwitchCases.erase(SwitchCases.begin());
2026         return;
2027       }
2028 
2029       // Okay, we decided not to do this, remove any inserted MBB's and clear
2030       // SwitchCases.
2031       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2032         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2033 
2034       SwitchCases.clear();
2035     }
2036   }
2037 
2038   // Create a CaseBlock record representing this branch.
2039   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2040                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2041 
2042   // Use visitSwitchCase to actually insert the fast branch sequence for this
2043   // cond branch.
2044   visitSwitchCase(CB, BrMBB);
2045 }
2046 
2047 /// visitSwitchCase - Emits the necessary code to represent a single node in
2048 /// the binary search tree resulting from lowering a switch instruction.
2049 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2050                                           MachineBasicBlock *SwitchBB) {
2051   SDValue Cond;
2052   SDValue CondLHS = getValue(CB.CmpLHS);
2053   SDLoc dl = CB.DL;
2054 
2055   // Build the setcc now.
2056   if (!CB.CmpMHS) {
2057     // Fold "(X == true)" to X and "(X == false)" to !X to
2058     // handle common cases produced by branch lowering.
2059     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2060         CB.CC == ISD::SETEQ)
2061       Cond = CondLHS;
2062     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2063              CB.CC == ISD::SETEQ) {
2064       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2065       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2066     } else
2067       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2068   } else {
2069     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2070 
2071     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2072     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2073 
2074     SDValue CmpOp = getValue(CB.CmpMHS);
2075     EVT VT = CmpOp.getValueType();
2076 
2077     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2078       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2079                           ISD::SETLE);
2080     } else {
2081       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2082                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2083       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2084                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2085     }
2086   }
2087 
2088   // Update successor info
2089   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2090   // TrueBB and FalseBB are always different unless the incoming IR is
2091   // degenerate. This only happens when running llc on weird IR.
2092   if (CB.TrueBB != CB.FalseBB)
2093     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2094   SwitchBB->normalizeSuccProbs();
2095 
2096   // If the lhs block is the next block, invert the condition so that we can
2097   // fall through to the lhs instead of the rhs block.
2098   if (CB.TrueBB == NextBlock(SwitchBB)) {
2099     std::swap(CB.TrueBB, CB.FalseBB);
2100     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2101     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2102   }
2103 
2104   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2105                                MVT::Other, getControlRoot(), Cond,
2106                                DAG.getBasicBlock(CB.TrueBB));
2107 
2108   // Insert the false branch. Do this even if it's a fall through branch,
2109   // this makes it easier to do DAG optimizations which require inverting
2110   // the branch condition.
2111   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2112                        DAG.getBasicBlock(CB.FalseBB));
2113 
2114   DAG.setRoot(BrCond);
2115 }
2116 
2117 /// visitJumpTable - Emit JumpTable node in the current MBB
2118 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2119   // Emit the code for the jump table
2120   assert(JT.Reg != -1U && "Should lower JT Header first!");
2121   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2122   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2123                                      JT.Reg, PTy);
2124   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2125   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2126                                     MVT::Other, Index.getValue(1),
2127                                     Table, Index);
2128   DAG.setRoot(BrJumpTable);
2129 }
2130 
2131 /// visitJumpTableHeader - This function emits necessary code to produce index
2132 /// in the JumpTable from switch case.
2133 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2134                                                JumpTableHeader &JTH,
2135                                                MachineBasicBlock *SwitchBB) {
2136   SDLoc dl = getCurSDLoc();
2137 
2138   // Subtract the lowest switch case value from the value being switched on and
2139   // conditional branch to default mbb if the result is greater than the
2140   // difference between smallest and largest cases.
2141   SDValue SwitchOp = getValue(JTH.SValue);
2142   EVT VT = SwitchOp.getValueType();
2143   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2144                             DAG.getConstant(JTH.First, dl, VT));
2145 
2146   // The SDNode we just created, which holds the value being switched on minus
2147   // the smallest case value, needs to be copied to a virtual register so it
2148   // can be used as an index into the jump table in a subsequent basic block.
2149   // This value may be smaller or larger than the target's pointer type, and
2150   // therefore require extension or truncating.
2151   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2152   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2153 
2154   unsigned JumpTableReg =
2155       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2156   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2157                                     JumpTableReg, SwitchOp);
2158   JT.Reg = JumpTableReg;
2159 
2160   // Emit the range check for the jump table, and branch to the default block
2161   // for the switch statement if the value being switched on exceeds the largest
2162   // case in the switch.
2163   SDValue CMP = DAG.getSetCC(
2164       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2165                                  Sub.getValueType()),
2166       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2167 
2168   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2169                                MVT::Other, CopyTo, CMP,
2170                                DAG.getBasicBlock(JT.Default));
2171 
2172   // Avoid emitting unnecessary branches to the next block.
2173   if (JT.MBB != NextBlock(SwitchBB))
2174     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2175                          DAG.getBasicBlock(JT.MBB));
2176 
2177   DAG.setRoot(BrCond);
2178 }
2179 
2180 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2181 /// variable if there exists one.
2182 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2183                                  SDValue &Chain) {
2184   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2185   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2186   MachineFunction &MF = DAG.getMachineFunction();
2187   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2188   MachineSDNode *Node =
2189       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2190   if (Global) {
2191     MachinePointerInfo MPInfo(Global);
2192     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2193     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2194                  MachineMemOperand::MODereferenceable;
2195     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2196                                        DAG.getEVTAlignment(PtrTy));
2197     Node->setMemRefs(MemRefs, MemRefs + 1);
2198   }
2199   return SDValue(Node, 0);
2200 }
2201 
2202 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2203 /// tail spliced into a stack protector check success bb.
2204 ///
2205 /// For a high level explanation of how this fits into the stack protector
2206 /// generation see the comment on the declaration of class
2207 /// StackProtectorDescriptor.
2208 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2209                                                   MachineBasicBlock *ParentBB) {
2210 
2211   // First create the loads to the guard/stack slot for the comparison.
2212   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2213   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2214 
2215   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2216   int FI = MFI.getStackProtectorIndex();
2217 
2218   SDValue Guard;
2219   SDLoc dl = getCurSDLoc();
2220   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2221   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2222   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2223 
2224   // Generate code to load the content of the guard slot.
2225   SDValue GuardVal = DAG.getLoad(
2226       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2227       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2228       MachineMemOperand::MOVolatile);
2229 
2230   if (TLI.useStackGuardXorFP())
2231     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2232 
2233   // Retrieve guard check function, nullptr if instrumentation is inlined.
2234   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2235     // The target provides a guard check function to validate the guard value.
2236     // Generate a call to that function with the content of the guard slot as
2237     // argument.
2238     auto *Fn = cast<Function>(GuardCheck);
2239     FunctionType *FnTy = Fn->getFunctionType();
2240     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2241 
2242     TargetLowering::ArgListTy Args;
2243     TargetLowering::ArgListEntry Entry;
2244     Entry.Node = GuardVal;
2245     Entry.Ty = FnTy->getParamType(0);
2246     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2247       Entry.IsInReg = true;
2248     Args.push_back(Entry);
2249 
2250     TargetLowering::CallLoweringInfo CLI(DAG);
2251     CLI.setDebugLoc(getCurSDLoc())
2252       .setChain(DAG.getEntryNode())
2253       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2254                  getValue(GuardCheck), std::move(Args));
2255 
2256     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2257     DAG.setRoot(Result.second);
2258     return;
2259   }
2260 
2261   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2262   // Otherwise, emit a volatile load to retrieve the stack guard value.
2263   SDValue Chain = DAG.getEntryNode();
2264   if (TLI.useLoadStackGuardNode()) {
2265     Guard = getLoadStackGuard(DAG, dl, Chain);
2266   } else {
2267     const Value *IRGuard = TLI.getSDagStackGuard(M);
2268     SDValue GuardPtr = getValue(IRGuard);
2269 
2270     Guard =
2271         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2272                     Align, MachineMemOperand::MOVolatile);
2273   }
2274 
2275   // Perform the comparison via a subtract/getsetcc.
2276   EVT VT = Guard.getValueType();
2277   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2278 
2279   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2280                                                         *DAG.getContext(),
2281                                                         Sub.getValueType()),
2282                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2283 
2284   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2285   // branch to failure MBB.
2286   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2287                                MVT::Other, GuardVal.getOperand(0),
2288                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2289   // Otherwise branch to success MBB.
2290   SDValue Br = DAG.getNode(ISD::BR, dl,
2291                            MVT::Other, BrCond,
2292                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2293 
2294   DAG.setRoot(Br);
2295 }
2296 
2297 /// Codegen the failure basic block for a stack protector check.
2298 ///
2299 /// A failure stack protector machine basic block consists simply of a call to
2300 /// __stack_chk_fail().
2301 ///
2302 /// For a high level explanation of how this fits into the stack protector
2303 /// generation see the comment on the declaration of class
2304 /// StackProtectorDescriptor.
2305 void
2306 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2307   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2308   SDValue Chain =
2309       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2310                       None, false, getCurSDLoc(), false, false).second;
2311   DAG.setRoot(Chain);
2312 }
2313 
2314 /// visitBitTestHeader - This function emits necessary code to produce value
2315 /// suitable for "bit tests"
2316 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2317                                              MachineBasicBlock *SwitchBB) {
2318   SDLoc dl = getCurSDLoc();
2319 
2320   // Subtract the minimum value
2321   SDValue SwitchOp = getValue(B.SValue);
2322   EVT VT = SwitchOp.getValueType();
2323   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2324                             DAG.getConstant(B.First, dl, VT));
2325 
2326   // Check range
2327   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2328   SDValue RangeCmp = DAG.getSetCC(
2329       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2330                                  Sub.getValueType()),
2331       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2332 
2333   // Determine the type of the test operands.
2334   bool UsePtrType = false;
2335   if (!TLI.isTypeLegal(VT))
2336     UsePtrType = true;
2337   else {
2338     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2339       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2340         // Switch table case range are encoded into series of masks.
2341         // Just use pointer type, it's guaranteed to fit.
2342         UsePtrType = true;
2343         break;
2344       }
2345   }
2346   if (UsePtrType) {
2347     VT = TLI.getPointerTy(DAG.getDataLayout());
2348     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2349   }
2350 
2351   B.RegVT = VT.getSimpleVT();
2352   B.Reg = FuncInfo.CreateReg(B.RegVT);
2353   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2354 
2355   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2356 
2357   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2358   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2359   SwitchBB->normalizeSuccProbs();
2360 
2361   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2362                                 MVT::Other, CopyTo, RangeCmp,
2363                                 DAG.getBasicBlock(B.Default));
2364 
2365   // Avoid emitting unnecessary branches to the next block.
2366   if (MBB != NextBlock(SwitchBB))
2367     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2368                           DAG.getBasicBlock(MBB));
2369 
2370   DAG.setRoot(BrRange);
2371 }
2372 
2373 /// visitBitTestCase - this function produces one "bit test"
2374 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2375                                            MachineBasicBlock* NextMBB,
2376                                            BranchProbability BranchProbToNext,
2377                                            unsigned Reg,
2378                                            BitTestCase &B,
2379                                            MachineBasicBlock *SwitchBB) {
2380   SDLoc dl = getCurSDLoc();
2381   MVT VT = BB.RegVT;
2382   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2383   SDValue Cmp;
2384   unsigned PopCount = countPopulation(B.Mask);
2385   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2386   if (PopCount == 1) {
2387     // Testing for a single bit; just compare the shift count with what it
2388     // would need to be to shift a 1 bit in that position.
2389     Cmp = DAG.getSetCC(
2390         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2391         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2392         ISD::SETEQ);
2393   } else if (PopCount == BB.Range) {
2394     // There is only one zero bit in the range, test for it directly.
2395     Cmp = DAG.getSetCC(
2396         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2397         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2398         ISD::SETNE);
2399   } else {
2400     // Make desired shift
2401     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2402                                     DAG.getConstant(1, dl, VT), ShiftOp);
2403 
2404     // Emit bit tests and jumps
2405     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2406                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2407     Cmp = DAG.getSetCC(
2408         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2409         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2410   }
2411 
2412   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2413   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2414   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2415   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2416   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2417   // one as they are relative probabilities (and thus work more like weights),
2418   // and hence we need to normalize them to let the sum of them become one.
2419   SwitchBB->normalizeSuccProbs();
2420 
2421   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2422                               MVT::Other, getControlRoot(),
2423                               Cmp, DAG.getBasicBlock(B.TargetBB));
2424 
2425   // Avoid emitting unnecessary branches to the next block.
2426   if (NextMBB != NextBlock(SwitchBB))
2427     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2428                         DAG.getBasicBlock(NextMBB));
2429 
2430   DAG.setRoot(BrAnd);
2431 }
2432 
2433 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2434   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2435 
2436   // Retrieve successors. Look through artificial IR level blocks like
2437   // catchswitch for successors.
2438   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2439   const BasicBlock *EHPadBB = I.getSuccessor(1);
2440 
2441   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2442   // have to do anything here to lower funclet bundles.
2443   assert(!I.hasOperandBundlesOtherThan(
2444              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2445          "Cannot lower invokes with arbitrary operand bundles yet!");
2446 
2447   const Value *Callee(I.getCalledValue());
2448   const Function *Fn = dyn_cast<Function>(Callee);
2449   if (isa<InlineAsm>(Callee))
2450     visitInlineAsm(&I);
2451   else if (Fn && Fn->isIntrinsic()) {
2452     switch (Fn->getIntrinsicID()) {
2453     default:
2454       llvm_unreachable("Cannot invoke this intrinsic");
2455     case Intrinsic::donothing:
2456       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2457       break;
2458     case Intrinsic::experimental_patchpoint_void:
2459     case Intrinsic::experimental_patchpoint_i64:
2460       visitPatchpoint(&I, EHPadBB);
2461       break;
2462     case Intrinsic::experimental_gc_statepoint:
2463       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2464       break;
2465     }
2466   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2467     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2468     // Eventually we will support lowering the @llvm.experimental.deoptimize
2469     // intrinsic, and right now there are no plans to support other intrinsics
2470     // with deopt state.
2471     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2472   } else {
2473     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2474   }
2475 
2476   // If the value of the invoke is used outside of its defining block, make it
2477   // available as a virtual register.
2478   // We already took care of the exported value for the statepoint instruction
2479   // during call to the LowerStatepoint.
2480   if (!isStatepoint(I)) {
2481     CopyToExportRegsIfNeeded(&I);
2482   }
2483 
2484   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2485   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2486   BranchProbability EHPadBBProb =
2487       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2488           : BranchProbability::getZero();
2489   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2490 
2491   // Update successor info.
2492   addSuccessorWithProb(InvokeMBB, Return);
2493   for (auto &UnwindDest : UnwindDests) {
2494     UnwindDest.first->setIsEHPad();
2495     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2496   }
2497   InvokeMBB->normalizeSuccProbs();
2498 
2499   // Drop into normal successor.
2500   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2501                           MVT::Other, getControlRoot(),
2502                           DAG.getBasicBlock(Return)));
2503 }
2504 
2505 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2506   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2507 }
2508 
2509 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2510   assert(FuncInfo.MBB->isEHPad() &&
2511          "Call to landingpad not in landing pad!");
2512 
2513   MachineBasicBlock *MBB = FuncInfo.MBB;
2514   addLandingPadInfo(LP, *MBB);
2515 
2516   // If there aren't registers to copy the values into (e.g., during SjLj
2517   // exceptions), then don't bother to create these DAG nodes.
2518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2519   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2520   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2521       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2522     return;
2523 
2524   // If landingpad's return type is token type, we don't create DAG nodes
2525   // for its exception pointer and selector value. The extraction of exception
2526   // pointer or selector value from token type landingpads is not currently
2527   // supported.
2528   if (LP.getType()->isTokenTy())
2529     return;
2530 
2531   SmallVector<EVT, 2> ValueVTs;
2532   SDLoc dl = getCurSDLoc();
2533   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2534   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2535 
2536   // Get the two live-in registers as SDValues. The physregs have already been
2537   // copied into virtual registers.
2538   SDValue Ops[2];
2539   if (FuncInfo.ExceptionPointerVirtReg) {
2540     Ops[0] = DAG.getZExtOrTrunc(
2541         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2542                            FuncInfo.ExceptionPointerVirtReg,
2543                            TLI.getPointerTy(DAG.getDataLayout())),
2544         dl, ValueVTs[0]);
2545   } else {
2546     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2547   }
2548   Ops[1] = DAG.getZExtOrTrunc(
2549       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2550                          FuncInfo.ExceptionSelectorVirtReg,
2551                          TLI.getPointerTy(DAG.getDataLayout())),
2552       dl, ValueVTs[1]);
2553 
2554   // Merge into one.
2555   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2556                             DAG.getVTList(ValueVTs), Ops);
2557   setValue(&LP, Res);
2558 }
2559 
2560 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2561 #ifndef NDEBUG
2562   for (const CaseCluster &CC : Clusters)
2563     assert(CC.Low == CC.High && "Input clusters must be single-case");
2564 #endif
2565 
2566   llvm::sort(Clusters.begin(), Clusters.end(),
2567              [](const CaseCluster &a, const CaseCluster &b) {
2568     return a.Low->getValue().slt(b.Low->getValue());
2569   });
2570 
2571   // Merge adjacent clusters with the same destination.
2572   const unsigned N = Clusters.size();
2573   unsigned DstIndex = 0;
2574   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2575     CaseCluster &CC = Clusters[SrcIndex];
2576     const ConstantInt *CaseVal = CC.Low;
2577     MachineBasicBlock *Succ = CC.MBB;
2578 
2579     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2580         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2581       // If this case has the same successor and is a neighbour, merge it into
2582       // the previous cluster.
2583       Clusters[DstIndex - 1].High = CaseVal;
2584       Clusters[DstIndex - 1].Prob += CC.Prob;
2585     } else {
2586       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2587                    sizeof(Clusters[SrcIndex]));
2588     }
2589   }
2590   Clusters.resize(DstIndex);
2591 }
2592 
2593 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2594                                            MachineBasicBlock *Last) {
2595   // Update JTCases.
2596   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2597     if (JTCases[i].first.HeaderBB == First)
2598       JTCases[i].first.HeaderBB = Last;
2599 
2600   // Update BitTestCases.
2601   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2602     if (BitTestCases[i].Parent == First)
2603       BitTestCases[i].Parent = Last;
2604 }
2605 
2606 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2607   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2608 
2609   // Update machine-CFG edges with unique successors.
2610   SmallSet<BasicBlock*, 32> Done;
2611   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2612     BasicBlock *BB = I.getSuccessor(i);
2613     bool Inserted = Done.insert(BB).second;
2614     if (!Inserted)
2615         continue;
2616 
2617     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2618     addSuccessorWithProb(IndirectBrMBB, Succ);
2619   }
2620   IndirectBrMBB->normalizeSuccProbs();
2621 
2622   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2623                           MVT::Other, getControlRoot(),
2624                           getValue(I.getAddress())));
2625 }
2626 
2627 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2628   if (DAG.getTarget().Options.TrapUnreachable)
2629     DAG.setRoot(
2630         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2631 }
2632 
2633 void SelectionDAGBuilder::visitFSub(const User &I) {
2634   // -0.0 - X --> fneg
2635   Type *Ty = I.getType();
2636   if (isa<Constant>(I.getOperand(0)) &&
2637       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2638     SDValue Op2 = getValue(I.getOperand(1));
2639     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2640                              Op2.getValueType(), Op2));
2641     return;
2642   }
2643 
2644   visitBinary(I, ISD::FSUB);
2645 }
2646 
2647 /// Checks if the given instruction performs a vector reduction, in which case
2648 /// we have the freedom to alter the elements in the result as long as the
2649 /// reduction of them stays unchanged.
2650 static bool isVectorReductionOp(const User *I) {
2651   const Instruction *Inst = dyn_cast<Instruction>(I);
2652   if (!Inst || !Inst->getType()->isVectorTy())
2653     return false;
2654 
2655   auto OpCode = Inst->getOpcode();
2656   switch (OpCode) {
2657   case Instruction::Add:
2658   case Instruction::Mul:
2659   case Instruction::And:
2660   case Instruction::Or:
2661   case Instruction::Xor:
2662     break;
2663   case Instruction::FAdd:
2664   case Instruction::FMul:
2665     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2666       if (FPOp->getFastMathFlags().isFast())
2667         break;
2668     LLVM_FALLTHROUGH;
2669   default:
2670     return false;
2671   }
2672 
2673   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2674   unsigned ElemNumToReduce = ElemNum;
2675 
2676   // Do DFS search on the def-use chain from the given instruction. We only
2677   // allow four kinds of operations during the search until we reach the
2678   // instruction that extracts the first element from the vector:
2679   //
2680   //   1. The reduction operation of the same opcode as the given instruction.
2681   //
2682   //   2. PHI node.
2683   //
2684   //   3. ShuffleVector instruction together with a reduction operation that
2685   //      does a partial reduction.
2686   //
2687   //   4. ExtractElement that extracts the first element from the vector, and we
2688   //      stop searching the def-use chain here.
2689   //
2690   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2691   // from 1-3 to the stack to continue the DFS. The given instruction is not
2692   // a reduction operation if we meet any other instructions other than those
2693   // listed above.
2694 
2695   SmallVector<const User *, 16> UsersToVisit{Inst};
2696   SmallPtrSet<const User *, 16> Visited;
2697   bool ReduxExtracted = false;
2698 
2699   while (!UsersToVisit.empty()) {
2700     auto User = UsersToVisit.back();
2701     UsersToVisit.pop_back();
2702     if (!Visited.insert(User).second)
2703       continue;
2704 
2705     for (const auto &U : User->users()) {
2706       auto Inst = dyn_cast<Instruction>(U);
2707       if (!Inst)
2708         return false;
2709 
2710       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2711         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2712           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2713             return false;
2714         UsersToVisit.push_back(U);
2715       } else if (const ShuffleVectorInst *ShufInst =
2716                      dyn_cast<ShuffleVectorInst>(U)) {
2717         // Detect the following pattern: A ShuffleVector instruction together
2718         // with a reduction that do partial reduction on the first and second
2719         // ElemNumToReduce / 2 elements, and store the result in
2720         // ElemNumToReduce / 2 elements in another vector.
2721 
2722         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2723         if (ResultElements < ElemNum)
2724           return false;
2725 
2726         if (ElemNumToReduce == 1)
2727           return false;
2728         if (!isa<UndefValue>(U->getOperand(1)))
2729           return false;
2730         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2731           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2732             return false;
2733         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2734           if (ShufInst->getMaskValue(i) != -1)
2735             return false;
2736 
2737         // There is only one user of this ShuffleVector instruction, which
2738         // must be a reduction operation.
2739         if (!U->hasOneUse())
2740           return false;
2741 
2742         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2743         if (!U2 || U2->getOpcode() != OpCode)
2744           return false;
2745 
2746         // Check operands of the reduction operation.
2747         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2748             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2749           UsersToVisit.push_back(U2);
2750           ElemNumToReduce /= 2;
2751         } else
2752           return false;
2753       } else if (isa<ExtractElementInst>(U)) {
2754         // At this moment we should have reduced all elements in the vector.
2755         if (ElemNumToReduce != 1)
2756           return false;
2757 
2758         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2759         if (!Val || Val->getZExtValue() != 0)
2760           return false;
2761 
2762         ReduxExtracted = true;
2763       } else
2764         return false;
2765     }
2766   }
2767   return ReduxExtracted;
2768 }
2769 
2770 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2771   SDNodeFlags Flags;
2772   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2773     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2774     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2775   }
2776   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2777     Flags.setExact(ExactOp->isExact());
2778   }
2779   if (isVectorReductionOp(&I)) {
2780     Flags.setVectorReduction(true);
2781     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2782   }
2783 
2784   SDValue Op1 = getValue(I.getOperand(0));
2785   SDValue Op2 = getValue(I.getOperand(1));
2786   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2787                                      Op1, Op2, Flags);
2788   setValue(&I, BinNodeValue);
2789 }
2790 
2791 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2792   SDValue Op1 = getValue(I.getOperand(0));
2793   SDValue Op2 = getValue(I.getOperand(1));
2794 
2795   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2796       Op2.getValueType(), DAG.getDataLayout());
2797 
2798   // Coerce the shift amount to the right type if we can.
2799   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2800     unsigned ShiftSize = ShiftTy.getSizeInBits();
2801     unsigned Op2Size = Op2.getValueSizeInBits();
2802     SDLoc DL = getCurSDLoc();
2803 
2804     // If the operand is smaller than the shift count type, promote it.
2805     if (ShiftSize > Op2Size)
2806       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2807 
2808     // If the operand is larger than the shift count type but the shift
2809     // count type has enough bits to represent any shift value, truncate
2810     // it now. This is a common case and it exposes the truncate to
2811     // optimization early.
2812     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2813       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2814     // Otherwise we'll need to temporarily settle for some other convenient
2815     // type.  Type legalization will make adjustments once the shiftee is split.
2816     else
2817       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2818   }
2819 
2820   bool nuw = false;
2821   bool nsw = false;
2822   bool exact = false;
2823 
2824   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2825 
2826     if (const OverflowingBinaryOperator *OFBinOp =
2827             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2828       nuw = OFBinOp->hasNoUnsignedWrap();
2829       nsw = OFBinOp->hasNoSignedWrap();
2830     }
2831     if (const PossiblyExactOperator *ExactOp =
2832             dyn_cast<const PossiblyExactOperator>(&I))
2833       exact = ExactOp->isExact();
2834   }
2835   SDNodeFlags Flags;
2836   Flags.setExact(exact);
2837   Flags.setNoSignedWrap(nsw);
2838   Flags.setNoUnsignedWrap(nuw);
2839   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2840                             Flags);
2841   setValue(&I, Res);
2842 }
2843 
2844 void SelectionDAGBuilder::visitSDiv(const User &I) {
2845   SDValue Op1 = getValue(I.getOperand(0));
2846   SDValue Op2 = getValue(I.getOperand(1));
2847 
2848   SDNodeFlags Flags;
2849   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2850                  cast<PossiblyExactOperator>(&I)->isExact());
2851   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2852                            Op2, Flags));
2853 }
2854 
2855 void SelectionDAGBuilder::visitICmp(const User &I) {
2856   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2857   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2858     predicate = IC->getPredicate();
2859   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2860     predicate = ICmpInst::Predicate(IC->getPredicate());
2861   SDValue Op1 = getValue(I.getOperand(0));
2862   SDValue Op2 = getValue(I.getOperand(1));
2863   ISD::CondCode Opcode = getICmpCondCode(predicate);
2864 
2865   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2866                                                         I.getType());
2867   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2868 }
2869 
2870 void SelectionDAGBuilder::visitFCmp(const User &I) {
2871   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2872   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2873     predicate = FC->getPredicate();
2874   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2875     predicate = FCmpInst::Predicate(FC->getPredicate());
2876   SDValue Op1 = getValue(I.getOperand(0));
2877   SDValue Op2 = getValue(I.getOperand(1));
2878 
2879   ISD::CondCode Condition = getFCmpCondCode(predicate);
2880   auto *FPMO = dyn_cast<FPMathOperator>(&I);
2881   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
2882     Condition = getFCmpCodeWithoutNaN(Condition);
2883 
2884   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2885                                                         I.getType());
2886   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2887 }
2888 
2889 // Check if the condition of the select has one use or two users that are both
2890 // selects with the same condition.
2891 static bool hasOnlySelectUsers(const Value *Cond) {
2892   return llvm::all_of(Cond->users(), [](const Value *V) {
2893     return isa<SelectInst>(V);
2894   });
2895 }
2896 
2897 void SelectionDAGBuilder::visitSelect(const User &I) {
2898   SmallVector<EVT, 4> ValueVTs;
2899   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2900                   ValueVTs);
2901   unsigned NumValues = ValueVTs.size();
2902   if (NumValues == 0) return;
2903 
2904   SmallVector<SDValue, 4> Values(NumValues);
2905   SDValue Cond     = getValue(I.getOperand(0));
2906   SDValue LHSVal   = getValue(I.getOperand(1));
2907   SDValue RHSVal   = getValue(I.getOperand(2));
2908   auto BaseOps = {Cond};
2909   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2910     ISD::VSELECT : ISD::SELECT;
2911 
2912   // Min/max matching is only viable if all output VTs are the same.
2913   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2914     EVT VT = ValueVTs[0];
2915     LLVMContext &Ctx = *DAG.getContext();
2916     auto &TLI = DAG.getTargetLoweringInfo();
2917 
2918     // We care about the legality of the operation after it has been type
2919     // legalized.
2920     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2921            VT != TLI.getTypeToTransformTo(Ctx, VT))
2922       VT = TLI.getTypeToTransformTo(Ctx, VT);
2923 
2924     // If the vselect is legal, assume we want to leave this as a vector setcc +
2925     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2926     // min/max is legal on the scalar type.
2927     bool UseScalarMinMax = VT.isVector() &&
2928       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2929 
2930     Value *LHS, *RHS;
2931     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2932     ISD::NodeType Opc = ISD::DELETED_NODE;
2933     switch (SPR.Flavor) {
2934     case SPF_UMAX:    Opc = ISD::UMAX; break;
2935     case SPF_UMIN:    Opc = ISD::UMIN; break;
2936     case SPF_SMAX:    Opc = ISD::SMAX; break;
2937     case SPF_SMIN:    Opc = ISD::SMIN; break;
2938     case SPF_FMINNUM:
2939       switch (SPR.NaNBehavior) {
2940       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2941       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2942       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2943       case SPNB_RETURNS_ANY: {
2944         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2945           Opc = ISD::FMINNUM;
2946         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2947           Opc = ISD::FMINNAN;
2948         else if (UseScalarMinMax)
2949           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2950             ISD::FMINNUM : ISD::FMINNAN;
2951         break;
2952       }
2953       }
2954       break;
2955     case SPF_FMAXNUM:
2956       switch (SPR.NaNBehavior) {
2957       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2958       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2959       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2960       case SPNB_RETURNS_ANY:
2961 
2962         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2963           Opc = ISD::FMAXNUM;
2964         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2965           Opc = ISD::FMAXNAN;
2966         else if (UseScalarMinMax)
2967           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2968             ISD::FMAXNUM : ISD::FMAXNAN;
2969         break;
2970       }
2971       break;
2972     default: break;
2973     }
2974 
2975     if (Opc != ISD::DELETED_NODE &&
2976         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2977          (UseScalarMinMax &&
2978           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2979         // If the underlying comparison instruction is used by any other
2980         // instruction, the consumed instructions won't be destroyed, so it is
2981         // not profitable to convert to a min/max.
2982         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2983       OpCode = Opc;
2984       LHSVal = getValue(LHS);
2985       RHSVal = getValue(RHS);
2986       BaseOps = {};
2987     }
2988   }
2989 
2990   for (unsigned i = 0; i != NumValues; ++i) {
2991     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2992     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2993     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2994     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2995                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2996                             Ops);
2997   }
2998 
2999   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3000                            DAG.getVTList(ValueVTs), Values));
3001 }
3002 
3003 void SelectionDAGBuilder::visitTrunc(const User &I) {
3004   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3005   SDValue N = getValue(I.getOperand(0));
3006   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3007                                                         I.getType());
3008   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3009 }
3010 
3011 void SelectionDAGBuilder::visitZExt(const User &I) {
3012   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3013   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3014   SDValue N = getValue(I.getOperand(0));
3015   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3016                                                         I.getType());
3017   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3018 }
3019 
3020 void SelectionDAGBuilder::visitSExt(const User &I) {
3021   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3022   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3023   SDValue N = getValue(I.getOperand(0));
3024   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3025                                                         I.getType());
3026   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3027 }
3028 
3029 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3030   // FPTrunc is never a no-op cast, no need to check
3031   SDValue N = getValue(I.getOperand(0));
3032   SDLoc dl = getCurSDLoc();
3033   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3034   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3035   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3036                            DAG.getTargetConstant(
3037                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3038 }
3039 
3040 void SelectionDAGBuilder::visitFPExt(const User &I) {
3041   // FPExt is never a no-op cast, no need to check
3042   SDValue N = getValue(I.getOperand(0));
3043   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3044                                                         I.getType());
3045   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3046 }
3047 
3048 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3049   // FPToUI is never a no-op cast, no need to check
3050   SDValue N = getValue(I.getOperand(0));
3051   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3052                                                         I.getType());
3053   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3054 }
3055 
3056 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3057   // FPToSI is never a no-op cast, no need to check
3058   SDValue N = getValue(I.getOperand(0));
3059   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3060                                                         I.getType());
3061   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3062 }
3063 
3064 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3065   // UIToFP is never a no-op cast, no need to check
3066   SDValue N = getValue(I.getOperand(0));
3067   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3068                                                         I.getType());
3069   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3070 }
3071 
3072 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3073   // SIToFP is never a no-op cast, no need to check
3074   SDValue N = getValue(I.getOperand(0));
3075   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3076                                                         I.getType());
3077   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3078 }
3079 
3080 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3081   // What to do depends on the size of the integer and the size of the pointer.
3082   // We can either truncate, zero extend, or no-op, accordingly.
3083   SDValue N = getValue(I.getOperand(0));
3084   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3085                                                         I.getType());
3086   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3087 }
3088 
3089 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3090   // What to do depends on the size of the integer and the size of the pointer.
3091   // We can either truncate, zero extend, or no-op, accordingly.
3092   SDValue N = getValue(I.getOperand(0));
3093   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3094                                                         I.getType());
3095   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3096 }
3097 
3098 void SelectionDAGBuilder::visitBitCast(const User &I) {
3099   SDValue N = getValue(I.getOperand(0));
3100   SDLoc dl = getCurSDLoc();
3101   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3102                                                         I.getType());
3103 
3104   // BitCast assures us that source and destination are the same size so this is
3105   // either a BITCAST or a no-op.
3106   if (DestVT != N.getValueType())
3107     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3108                              DestVT, N)); // convert types.
3109   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3110   // might fold any kind of constant expression to an integer constant and that
3111   // is not what we are looking for. Only recognize a bitcast of a genuine
3112   // constant integer as an opaque constant.
3113   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3114     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3115                                  /*isOpaque*/true));
3116   else
3117     setValue(&I, N);            // noop cast.
3118 }
3119 
3120 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3121   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3122   const Value *SV = I.getOperand(0);
3123   SDValue N = getValue(SV);
3124   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3125 
3126   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3127   unsigned DestAS = I.getType()->getPointerAddressSpace();
3128 
3129   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3130     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3131 
3132   setValue(&I, N);
3133 }
3134 
3135 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3136   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3137   SDValue InVec = getValue(I.getOperand(0));
3138   SDValue InVal = getValue(I.getOperand(1));
3139   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3140                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3141   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3142                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3143                            InVec, InVal, InIdx));
3144 }
3145 
3146 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3147   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3148   SDValue InVec = getValue(I.getOperand(0));
3149   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3150                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3151   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3152                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3153                            InVec, InIdx));
3154 }
3155 
3156 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3157   SDValue Src1 = getValue(I.getOperand(0));
3158   SDValue Src2 = getValue(I.getOperand(1));
3159   SDLoc DL = getCurSDLoc();
3160 
3161   SmallVector<int, 8> Mask;
3162   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3163   unsigned MaskNumElts = Mask.size();
3164 
3165   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3166   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3167   EVT SrcVT = Src1.getValueType();
3168   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3169 
3170   if (SrcNumElts == MaskNumElts) {
3171     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3172     return;
3173   }
3174 
3175   // Normalize the shuffle vector since mask and vector length don't match.
3176   if (SrcNumElts < MaskNumElts) {
3177     // Mask is longer than the source vectors. We can use concatenate vector to
3178     // make the mask and vectors lengths match.
3179 
3180     if (MaskNumElts % SrcNumElts == 0) {
3181       // Mask length is a multiple of the source vector length.
3182       // Check if the shuffle is some kind of concatenation of the input
3183       // vectors.
3184       unsigned NumConcat = MaskNumElts / SrcNumElts;
3185       bool IsConcat = true;
3186       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3187       for (unsigned i = 0; i != MaskNumElts; ++i) {
3188         int Idx = Mask[i];
3189         if (Idx < 0)
3190           continue;
3191         // Ensure the indices in each SrcVT sized piece are sequential and that
3192         // the same source is used for the whole piece.
3193         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3194             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3195              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3196           IsConcat = false;
3197           break;
3198         }
3199         // Remember which source this index came from.
3200         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3201       }
3202 
3203       // The shuffle is concatenating multiple vectors together. Just emit
3204       // a CONCAT_VECTORS operation.
3205       if (IsConcat) {
3206         SmallVector<SDValue, 8> ConcatOps;
3207         for (auto Src : ConcatSrcs) {
3208           if (Src < 0)
3209             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3210           else if (Src == 0)
3211             ConcatOps.push_back(Src1);
3212           else
3213             ConcatOps.push_back(Src2);
3214         }
3215         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3216         return;
3217       }
3218     }
3219 
3220     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3221     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3222     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3223                                     PaddedMaskNumElts);
3224 
3225     // Pad both vectors with undefs to make them the same length as the mask.
3226     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3227 
3228     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3229     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3230     MOps1[0] = Src1;
3231     MOps2[0] = Src2;
3232 
3233     Src1 = Src1.isUndef()
3234                ? DAG.getUNDEF(PaddedVT)
3235                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3236     Src2 = Src2.isUndef()
3237                ? DAG.getUNDEF(PaddedVT)
3238                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3239 
3240     // Readjust mask for new input vector length.
3241     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3242     for (unsigned i = 0; i != MaskNumElts; ++i) {
3243       int Idx = Mask[i];
3244       if (Idx >= (int)SrcNumElts)
3245         Idx -= SrcNumElts - PaddedMaskNumElts;
3246       MappedOps[i] = Idx;
3247     }
3248 
3249     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3250 
3251     // If the concatenated vector was padded, extract a subvector with the
3252     // correct number of elements.
3253     if (MaskNumElts != PaddedMaskNumElts)
3254       Result = DAG.getNode(
3255           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3256           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3257 
3258     setValue(&I, Result);
3259     return;
3260   }
3261 
3262   if (SrcNumElts > MaskNumElts) {
3263     // Analyze the access pattern of the vector to see if we can extract
3264     // two subvectors and do the shuffle.
3265     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3266     bool CanExtract = true;
3267     for (int Idx : Mask) {
3268       unsigned Input = 0;
3269       if (Idx < 0)
3270         continue;
3271 
3272       if (Idx >= (int)SrcNumElts) {
3273         Input = 1;
3274         Idx -= SrcNumElts;
3275       }
3276 
3277       // If all the indices come from the same MaskNumElts sized portion of
3278       // the sources we can use extract. Also make sure the extract wouldn't
3279       // extract past the end of the source.
3280       int NewStartIdx = alignDown(Idx, MaskNumElts);
3281       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3282           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3283         CanExtract = false;
3284       // Make sure we always update StartIdx as we use it to track if all
3285       // elements are undef.
3286       StartIdx[Input] = NewStartIdx;
3287     }
3288 
3289     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3290       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3291       return;
3292     }
3293     if (CanExtract) {
3294       // Extract appropriate subvector and generate a vector shuffle
3295       for (unsigned Input = 0; Input < 2; ++Input) {
3296         SDValue &Src = Input == 0 ? Src1 : Src2;
3297         if (StartIdx[Input] < 0)
3298           Src = DAG.getUNDEF(VT);
3299         else {
3300           Src = DAG.getNode(
3301               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3302               DAG.getConstant(StartIdx[Input], DL,
3303                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3304         }
3305       }
3306 
3307       // Calculate new mask.
3308       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3309       for (int &Idx : MappedOps) {
3310         if (Idx >= (int)SrcNumElts)
3311           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3312         else if (Idx >= 0)
3313           Idx -= StartIdx[0];
3314       }
3315 
3316       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3317       return;
3318     }
3319   }
3320 
3321   // We can't use either concat vectors or extract subvectors so fall back to
3322   // replacing the shuffle with extract and build vector.
3323   // to insert and build vector.
3324   EVT EltVT = VT.getVectorElementType();
3325   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3326   SmallVector<SDValue,8> Ops;
3327   for (int Idx : Mask) {
3328     SDValue Res;
3329 
3330     if (Idx < 0) {
3331       Res = DAG.getUNDEF(EltVT);
3332     } else {
3333       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3334       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3335 
3336       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3337                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3338     }
3339 
3340     Ops.push_back(Res);
3341   }
3342 
3343   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3344 }
3345 
3346 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3347   ArrayRef<unsigned> Indices;
3348   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3349     Indices = IV->getIndices();
3350   else
3351     Indices = cast<ConstantExpr>(&I)->getIndices();
3352 
3353   const Value *Op0 = I.getOperand(0);
3354   const Value *Op1 = I.getOperand(1);
3355   Type *AggTy = I.getType();
3356   Type *ValTy = Op1->getType();
3357   bool IntoUndef = isa<UndefValue>(Op0);
3358   bool FromUndef = isa<UndefValue>(Op1);
3359 
3360   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3361 
3362   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3363   SmallVector<EVT, 4> AggValueVTs;
3364   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3365   SmallVector<EVT, 4> ValValueVTs;
3366   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3367 
3368   unsigned NumAggValues = AggValueVTs.size();
3369   unsigned NumValValues = ValValueVTs.size();
3370   SmallVector<SDValue, 4> Values(NumAggValues);
3371 
3372   // Ignore an insertvalue that produces an empty object
3373   if (!NumAggValues) {
3374     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3375     return;
3376   }
3377 
3378   SDValue Agg = getValue(Op0);
3379   unsigned i = 0;
3380   // Copy the beginning value(s) from the original aggregate.
3381   for (; i != LinearIndex; ++i)
3382     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3383                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3384   // Copy values from the inserted value(s).
3385   if (NumValValues) {
3386     SDValue Val = getValue(Op1);
3387     for (; i != LinearIndex + NumValValues; ++i)
3388       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3389                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3390   }
3391   // Copy remaining value(s) from the original aggregate.
3392   for (; i != NumAggValues; ++i)
3393     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3394                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3395 
3396   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3397                            DAG.getVTList(AggValueVTs), Values));
3398 }
3399 
3400 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3401   ArrayRef<unsigned> Indices;
3402   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3403     Indices = EV->getIndices();
3404   else
3405     Indices = cast<ConstantExpr>(&I)->getIndices();
3406 
3407   const Value *Op0 = I.getOperand(0);
3408   Type *AggTy = Op0->getType();
3409   Type *ValTy = I.getType();
3410   bool OutOfUndef = isa<UndefValue>(Op0);
3411 
3412   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3413 
3414   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3415   SmallVector<EVT, 4> ValValueVTs;
3416   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3417 
3418   unsigned NumValValues = ValValueVTs.size();
3419 
3420   // Ignore a extractvalue that produces an empty object
3421   if (!NumValValues) {
3422     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3423     return;
3424   }
3425 
3426   SmallVector<SDValue, 4> Values(NumValValues);
3427 
3428   SDValue Agg = getValue(Op0);
3429   // Copy out the selected value(s).
3430   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3431     Values[i - LinearIndex] =
3432       OutOfUndef ?
3433         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3434         SDValue(Agg.getNode(), Agg.getResNo() + i);
3435 
3436   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3437                            DAG.getVTList(ValValueVTs), Values));
3438 }
3439 
3440 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3441   Value *Op0 = I.getOperand(0);
3442   // Note that the pointer operand may be a vector of pointers. Take the scalar
3443   // element which holds a pointer.
3444   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3445   SDValue N = getValue(Op0);
3446   SDLoc dl = getCurSDLoc();
3447 
3448   // Normalize Vector GEP - all scalar operands should be converted to the
3449   // splat vector.
3450   unsigned VectorWidth = I.getType()->isVectorTy() ?
3451     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3452 
3453   if (VectorWidth && !N.getValueType().isVector()) {
3454     LLVMContext &Context = *DAG.getContext();
3455     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3456     N = DAG.getSplatBuildVector(VT, dl, N);
3457   }
3458 
3459   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3460        GTI != E; ++GTI) {
3461     const Value *Idx = GTI.getOperand();
3462     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3463       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3464       if (Field) {
3465         // N = N + Offset
3466         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3467 
3468         // In an inbounds GEP with an offset that is nonnegative even when
3469         // interpreted as signed, assume there is no unsigned overflow.
3470         SDNodeFlags Flags;
3471         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3472           Flags.setNoUnsignedWrap(true);
3473 
3474         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3475                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3476       }
3477     } else {
3478       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3479       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3480       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3481 
3482       // If this is a scalar constant or a splat vector of constants,
3483       // handle it quickly.
3484       const auto *CI = dyn_cast<ConstantInt>(Idx);
3485       if (!CI && isa<ConstantDataVector>(Idx) &&
3486           cast<ConstantDataVector>(Idx)->getSplatValue())
3487         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3488 
3489       if (CI) {
3490         if (CI->isZero())
3491           continue;
3492         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3493         LLVMContext &Context = *DAG.getContext();
3494         SDValue OffsVal = VectorWidth ?
3495           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3496           DAG.getConstant(Offs, dl, IdxTy);
3497 
3498         // In an inbouds GEP with an offset that is nonnegative even when
3499         // interpreted as signed, assume there is no unsigned overflow.
3500         SDNodeFlags Flags;
3501         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3502           Flags.setNoUnsignedWrap(true);
3503 
3504         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3505         continue;
3506       }
3507 
3508       // N = N + Idx * ElementSize;
3509       SDValue IdxN = getValue(Idx);
3510 
3511       if (!IdxN.getValueType().isVector() && VectorWidth) {
3512         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3513         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3514       }
3515 
3516       // If the index is smaller or larger than intptr_t, truncate or extend
3517       // it.
3518       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3519 
3520       // If this is a multiply by a power of two, turn it into a shl
3521       // immediately.  This is a very common case.
3522       if (ElementSize != 1) {
3523         if (ElementSize.isPowerOf2()) {
3524           unsigned Amt = ElementSize.logBase2();
3525           IdxN = DAG.getNode(ISD::SHL, dl,
3526                              N.getValueType(), IdxN,
3527                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3528         } else {
3529           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3530           IdxN = DAG.getNode(ISD::MUL, dl,
3531                              N.getValueType(), IdxN, Scale);
3532         }
3533       }
3534 
3535       N = DAG.getNode(ISD::ADD, dl,
3536                       N.getValueType(), N, IdxN);
3537     }
3538   }
3539 
3540   setValue(&I, N);
3541 }
3542 
3543 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3544   // If this is a fixed sized alloca in the entry block of the function,
3545   // allocate it statically on the stack.
3546   if (FuncInfo.StaticAllocaMap.count(&I))
3547     return;   // getValue will auto-populate this.
3548 
3549   SDLoc dl = getCurSDLoc();
3550   Type *Ty = I.getAllocatedType();
3551   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3552   auto &DL = DAG.getDataLayout();
3553   uint64_t TySize = DL.getTypeAllocSize(Ty);
3554   unsigned Align =
3555       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3556 
3557   SDValue AllocSize = getValue(I.getArraySize());
3558 
3559   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3560   if (AllocSize.getValueType() != IntPtr)
3561     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3562 
3563   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3564                           AllocSize,
3565                           DAG.getConstant(TySize, dl, IntPtr));
3566 
3567   // Handle alignment.  If the requested alignment is less than or equal to
3568   // the stack alignment, ignore it.  If the size is greater than or equal to
3569   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3570   unsigned StackAlign =
3571       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3572   if (Align <= StackAlign)
3573     Align = 0;
3574 
3575   // Round the size of the allocation up to the stack alignment size
3576   // by add SA-1 to the size. This doesn't overflow because we're computing
3577   // an address inside an alloca.
3578   SDNodeFlags Flags;
3579   Flags.setNoUnsignedWrap(true);
3580   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3581                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3582 
3583   // Mask out the low bits for alignment purposes.
3584   AllocSize =
3585       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3586                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3587 
3588   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3589   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3590   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3591   setValue(&I, DSA);
3592   DAG.setRoot(DSA.getValue(1));
3593 
3594   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3595 }
3596 
3597 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3598   if (I.isAtomic())
3599     return visitAtomicLoad(I);
3600 
3601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3602   const Value *SV = I.getOperand(0);
3603   if (TLI.supportSwiftError()) {
3604     // Swifterror values can come from either a function parameter with
3605     // swifterror attribute or an alloca with swifterror attribute.
3606     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3607       if (Arg->hasSwiftErrorAttr())
3608         return visitLoadFromSwiftError(I);
3609     }
3610 
3611     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3612       if (Alloca->isSwiftError())
3613         return visitLoadFromSwiftError(I);
3614     }
3615   }
3616 
3617   SDValue Ptr = getValue(SV);
3618 
3619   Type *Ty = I.getType();
3620 
3621   bool isVolatile = I.isVolatile();
3622   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3623   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3624   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3625   unsigned Alignment = I.getAlignment();
3626 
3627   AAMDNodes AAInfo;
3628   I.getAAMetadata(AAInfo);
3629   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3630 
3631   SmallVector<EVT, 4> ValueVTs;
3632   SmallVector<uint64_t, 4> Offsets;
3633   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3634   unsigned NumValues = ValueVTs.size();
3635   if (NumValues == 0)
3636     return;
3637 
3638   SDValue Root;
3639   bool ConstantMemory = false;
3640   if (isVolatile || NumValues > MaxParallelChains)
3641     // Serialize volatile loads with other side effects.
3642     Root = getRoot();
3643   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3644                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3645     // Do not serialize (non-volatile) loads of constant memory with anything.
3646     Root = DAG.getEntryNode();
3647     ConstantMemory = true;
3648   } else {
3649     // Do not serialize non-volatile loads against each other.
3650     Root = DAG.getRoot();
3651   }
3652 
3653   SDLoc dl = getCurSDLoc();
3654 
3655   if (isVolatile)
3656     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3657 
3658   // An aggregate load cannot wrap around the address space, so offsets to its
3659   // parts don't wrap either.
3660   SDNodeFlags Flags;
3661   Flags.setNoUnsignedWrap(true);
3662 
3663   SmallVector<SDValue, 4> Values(NumValues);
3664   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3665   EVT PtrVT = Ptr.getValueType();
3666   unsigned ChainI = 0;
3667   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3668     // Serializing loads here may result in excessive register pressure, and
3669     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3670     // could recover a bit by hoisting nodes upward in the chain by recognizing
3671     // they are side-effect free or do not alias. The optimizer should really
3672     // avoid this case by converting large object/array copies to llvm.memcpy
3673     // (MaxParallelChains should always remain as failsafe).
3674     if (ChainI == MaxParallelChains) {
3675       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3676       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3677                                   makeArrayRef(Chains.data(), ChainI));
3678       Root = Chain;
3679       ChainI = 0;
3680     }
3681     SDValue A = DAG.getNode(ISD::ADD, dl,
3682                             PtrVT, Ptr,
3683                             DAG.getConstant(Offsets[i], dl, PtrVT),
3684                             Flags);
3685     auto MMOFlags = MachineMemOperand::MONone;
3686     if (isVolatile)
3687       MMOFlags |= MachineMemOperand::MOVolatile;
3688     if (isNonTemporal)
3689       MMOFlags |= MachineMemOperand::MONonTemporal;
3690     if (isInvariant)
3691       MMOFlags |= MachineMemOperand::MOInvariant;
3692     if (isDereferenceable)
3693       MMOFlags |= MachineMemOperand::MODereferenceable;
3694     MMOFlags |= TLI.getMMOFlags(I);
3695 
3696     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3697                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3698                             MMOFlags, AAInfo, Ranges);
3699 
3700     Values[i] = L;
3701     Chains[ChainI] = L.getValue(1);
3702   }
3703 
3704   if (!ConstantMemory) {
3705     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3706                                 makeArrayRef(Chains.data(), ChainI));
3707     if (isVolatile)
3708       DAG.setRoot(Chain);
3709     else
3710       PendingLoads.push_back(Chain);
3711   }
3712 
3713   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3714                            DAG.getVTList(ValueVTs), Values));
3715 }
3716 
3717 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3718   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3719          "call visitStoreToSwiftError when backend supports swifterror");
3720 
3721   SmallVector<EVT, 4> ValueVTs;
3722   SmallVector<uint64_t, 4> Offsets;
3723   const Value *SrcV = I.getOperand(0);
3724   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3725                   SrcV->getType(), ValueVTs, &Offsets);
3726   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3727          "expect a single EVT for swifterror");
3728 
3729   SDValue Src = getValue(SrcV);
3730   // Create a virtual register, then update the virtual register.
3731   unsigned VReg; bool CreatedVReg;
3732   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3733   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3734   // Chain can be getRoot or getControlRoot.
3735   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3736                                       SDValue(Src.getNode(), Src.getResNo()));
3737   DAG.setRoot(CopyNode);
3738   if (CreatedVReg)
3739     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3740 }
3741 
3742 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3743   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3744          "call visitLoadFromSwiftError when backend supports swifterror");
3745 
3746   assert(!I.isVolatile() &&
3747          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3748          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3749          "Support volatile, non temporal, invariant for load_from_swift_error");
3750 
3751   const Value *SV = I.getOperand(0);
3752   Type *Ty = I.getType();
3753   AAMDNodes AAInfo;
3754   I.getAAMetadata(AAInfo);
3755   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3756              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3757          "load_from_swift_error should not be constant memory");
3758 
3759   SmallVector<EVT, 4> ValueVTs;
3760   SmallVector<uint64_t, 4> Offsets;
3761   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3762                   ValueVTs, &Offsets);
3763   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3764          "expect a single EVT for swifterror");
3765 
3766   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3767   SDValue L = DAG.getCopyFromReg(
3768       getRoot(), getCurSDLoc(),
3769       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3770       ValueVTs[0]);
3771 
3772   setValue(&I, L);
3773 }
3774 
3775 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3776   if (I.isAtomic())
3777     return visitAtomicStore(I);
3778 
3779   const Value *SrcV = I.getOperand(0);
3780   const Value *PtrV = I.getOperand(1);
3781 
3782   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3783   if (TLI.supportSwiftError()) {
3784     // Swifterror values can come from either a function parameter with
3785     // swifterror attribute or an alloca with swifterror attribute.
3786     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3787       if (Arg->hasSwiftErrorAttr())
3788         return visitStoreToSwiftError(I);
3789     }
3790 
3791     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3792       if (Alloca->isSwiftError())
3793         return visitStoreToSwiftError(I);
3794     }
3795   }
3796 
3797   SmallVector<EVT, 4> ValueVTs;
3798   SmallVector<uint64_t, 4> Offsets;
3799   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3800                   SrcV->getType(), ValueVTs, &Offsets);
3801   unsigned NumValues = ValueVTs.size();
3802   if (NumValues == 0)
3803     return;
3804 
3805   // Get the lowered operands. Note that we do this after
3806   // checking if NumResults is zero, because with zero results
3807   // the operands won't have values in the map.
3808   SDValue Src = getValue(SrcV);
3809   SDValue Ptr = getValue(PtrV);
3810 
3811   SDValue Root = getRoot();
3812   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3813   SDLoc dl = getCurSDLoc();
3814   EVT PtrVT = Ptr.getValueType();
3815   unsigned Alignment = I.getAlignment();
3816   AAMDNodes AAInfo;
3817   I.getAAMetadata(AAInfo);
3818 
3819   auto MMOFlags = MachineMemOperand::MONone;
3820   if (I.isVolatile())
3821     MMOFlags |= MachineMemOperand::MOVolatile;
3822   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3823     MMOFlags |= MachineMemOperand::MONonTemporal;
3824   MMOFlags |= TLI.getMMOFlags(I);
3825 
3826   // An aggregate load cannot wrap around the address space, so offsets to its
3827   // parts don't wrap either.
3828   SDNodeFlags Flags;
3829   Flags.setNoUnsignedWrap(true);
3830 
3831   unsigned ChainI = 0;
3832   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3833     // See visitLoad comments.
3834     if (ChainI == MaxParallelChains) {
3835       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3836                                   makeArrayRef(Chains.data(), ChainI));
3837       Root = Chain;
3838       ChainI = 0;
3839     }
3840     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3841                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3842     SDValue St = DAG.getStore(
3843         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3844         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3845     Chains[ChainI] = St;
3846   }
3847 
3848   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3849                                   makeArrayRef(Chains.data(), ChainI));
3850   DAG.setRoot(StoreNode);
3851 }
3852 
3853 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3854                                            bool IsCompressing) {
3855   SDLoc sdl = getCurSDLoc();
3856 
3857   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3858                            unsigned& Alignment) {
3859     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3860     Src0 = I.getArgOperand(0);
3861     Ptr = I.getArgOperand(1);
3862     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3863     Mask = I.getArgOperand(3);
3864   };
3865   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3866                            unsigned& Alignment) {
3867     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3868     Src0 = I.getArgOperand(0);
3869     Ptr = I.getArgOperand(1);
3870     Mask = I.getArgOperand(2);
3871     Alignment = 0;
3872   };
3873 
3874   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3875   unsigned Alignment;
3876   if (IsCompressing)
3877     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3878   else
3879     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3880 
3881   SDValue Ptr = getValue(PtrOperand);
3882   SDValue Src0 = getValue(Src0Operand);
3883   SDValue Mask = getValue(MaskOperand);
3884 
3885   EVT VT = Src0.getValueType();
3886   if (!Alignment)
3887     Alignment = DAG.getEVTAlignment(VT);
3888 
3889   AAMDNodes AAInfo;
3890   I.getAAMetadata(AAInfo);
3891 
3892   MachineMemOperand *MMO =
3893     DAG.getMachineFunction().
3894     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3895                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3896                           Alignment, AAInfo);
3897   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3898                                          MMO, false /* Truncating */,
3899                                          IsCompressing);
3900   DAG.setRoot(StoreNode);
3901   setValue(&I, StoreNode);
3902 }
3903 
3904 // Get a uniform base for the Gather/Scatter intrinsic.
3905 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3906 // We try to represent it as a base pointer + vector of indices.
3907 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3908 // The first operand of the GEP may be a single pointer or a vector of pointers
3909 // Example:
3910 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3911 //  or
3912 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3913 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3914 //
3915 // When the first GEP operand is a single pointer - it is the uniform base we
3916 // are looking for. If first operand of the GEP is a splat vector - we
3917 // extract the splat value and use it as a uniform base.
3918 // In all other cases the function returns 'false'.
3919 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3920                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3921   SelectionDAG& DAG = SDB->DAG;
3922   LLVMContext &Context = *DAG.getContext();
3923 
3924   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3925   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3926   if (!GEP)
3927     return false;
3928 
3929   const Value *GEPPtr = GEP->getPointerOperand();
3930   if (!GEPPtr->getType()->isVectorTy())
3931     Ptr = GEPPtr;
3932   else if (!(Ptr = getSplatValue(GEPPtr)))
3933     return false;
3934 
3935   unsigned FinalIndex = GEP->getNumOperands() - 1;
3936   Value *IndexVal = GEP->getOperand(FinalIndex);
3937 
3938   // Ensure all the other indices are 0.
3939   for (unsigned i = 1; i < FinalIndex; ++i) {
3940     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3941     if (!C || !C->isZero())
3942       return false;
3943   }
3944 
3945   // The operands of the GEP may be defined in another basic block.
3946   // In this case we'll not find nodes for the operands.
3947   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3948     return false;
3949 
3950   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3951   const DataLayout &DL = DAG.getDataLayout();
3952   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
3953                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
3954   Base = SDB->getValue(Ptr);
3955   Index = SDB->getValue(IndexVal);
3956 
3957   if (!Index.getValueType().isVector()) {
3958     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3959     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3960     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3961   }
3962   return true;
3963 }
3964 
3965 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3966   SDLoc sdl = getCurSDLoc();
3967 
3968   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3969   const Value *Ptr = I.getArgOperand(1);
3970   SDValue Src0 = getValue(I.getArgOperand(0));
3971   SDValue Mask = getValue(I.getArgOperand(3));
3972   EVT VT = Src0.getValueType();
3973   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3974   if (!Alignment)
3975     Alignment = DAG.getEVTAlignment(VT);
3976   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3977 
3978   AAMDNodes AAInfo;
3979   I.getAAMetadata(AAInfo);
3980 
3981   SDValue Base;
3982   SDValue Index;
3983   SDValue Scale;
3984   const Value *BasePtr = Ptr;
3985   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
3986 
3987   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3988   MachineMemOperand *MMO = DAG.getMachineFunction().
3989     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3990                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3991                          Alignment, AAInfo);
3992   if (!UniformBase) {
3993     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3994     Index = getValue(Ptr);
3995     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3996   }
3997   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
3998   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3999                                          Ops, MMO);
4000   DAG.setRoot(Scatter);
4001   setValue(&I, Scatter);
4002 }
4003 
4004 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4005   SDLoc sdl = getCurSDLoc();
4006 
4007   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4008                            unsigned& Alignment) {
4009     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4010     Ptr = I.getArgOperand(0);
4011     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4012     Mask = I.getArgOperand(2);
4013     Src0 = I.getArgOperand(3);
4014   };
4015   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4016                            unsigned& Alignment) {
4017     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4018     Ptr = I.getArgOperand(0);
4019     Alignment = 0;
4020     Mask = I.getArgOperand(1);
4021     Src0 = I.getArgOperand(2);
4022   };
4023 
4024   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4025   unsigned Alignment;
4026   if (IsExpanding)
4027     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4028   else
4029     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4030 
4031   SDValue Ptr = getValue(PtrOperand);
4032   SDValue Src0 = getValue(Src0Operand);
4033   SDValue Mask = getValue(MaskOperand);
4034 
4035   EVT VT = Src0.getValueType();
4036   if (!Alignment)
4037     Alignment = DAG.getEVTAlignment(VT);
4038 
4039   AAMDNodes AAInfo;
4040   I.getAAMetadata(AAInfo);
4041   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4042 
4043   // Do not serialize masked loads of constant memory with anything.
4044   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
4045       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
4046   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4047 
4048   MachineMemOperand *MMO =
4049     DAG.getMachineFunction().
4050     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4051                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4052                           Alignment, AAInfo, Ranges);
4053 
4054   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4055                                    ISD::NON_EXTLOAD, IsExpanding);
4056   if (AddToChain) {
4057     SDValue OutChain = Load.getValue(1);
4058     DAG.setRoot(OutChain);
4059   }
4060   setValue(&I, Load);
4061 }
4062 
4063 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4064   SDLoc sdl = getCurSDLoc();
4065 
4066   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4067   const Value *Ptr = I.getArgOperand(0);
4068   SDValue Src0 = getValue(I.getArgOperand(3));
4069   SDValue Mask = getValue(I.getArgOperand(2));
4070 
4071   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4072   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4073   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4074   if (!Alignment)
4075     Alignment = DAG.getEVTAlignment(VT);
4076 
4077   AAMDNodes AAInfo;
4078   I.getAAMetadata(AAInfo);
4079   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4080 
4081   SDValue Root = DAG.getRoot();
4082   SDValue Base;
4083   SDValue Index;
4084   SDValue Scale;
4085   const Value *BasePtr = Ptr;
4086   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4087   bool ConstantMemory = false;
4088   if (UniformBase &&
4089       AA && AA->pointsToConstantMemory(MemoryLocation(
4090           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4091           AAInfo))) {
4092     // Do not serialize (non-volatile) loads of constant memory with anything.
4093     Root = DAG.getEntryNode();
4094     ConstantMemory = true;
4095   }
4096 
4097   MachineMemOperand *MMO =
4098     DAG.getMachineFunction().
4099     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4100                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4101                          Alignment, AAInfo, Ranges);
4102 
4103   if (!UniformBase) {
4104     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4105     Index = getValue(Ptr);
4106     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4107   }
4108   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4109   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4110                                        Ops, MMO);
4111 
4112   SDValue OutChain = Gather.getValue(1);
4113   if (!ConstantMemory)
4114     PendingLoads.push_back(OutChain);
4115   setValue(&I, Gather);
4116 }
4117 
4118 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4119   SDLoc dl = getCurSDLoc();
4120   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4121   AtomicOrdering FailureOrder = I.getFailureOrdering();
4122   SyncScope::ID SSID = I.getSyncScopeID();
4123 
4124   SDValue InChain = getRoot();
4125 
4126   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4127   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4128   SDValue L = DAG.getAtomicCmpSwap(
4129       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4130       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4131       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4132       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4133 
4134   SDValue OutChain = L.getValue(2);
4135 
4136   setValue(&I, L);
4137   DAG.setRoot(OutChain);
4138 }
4139 
4140 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4141   SDLoc dl = getCurSDLoc();
4142   ISD::NodeType NT;
4143   switch (I.getOperation()) {
4144   default: llvm_unreachable("Unknown atomicrmw operation");
4145   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4146   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4147   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4148   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4149   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4150   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4151   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4152   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4153   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4154   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4155   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4156   }
4157   AtomicOrdering Order = I.getOrdering();
4158   SyncScope::ID SSID = I.getSyncScopeID();
4159 
4160   SDValue InChain = getRoot();
4161 
4162   SDValue L =
4163     DAG.getAtomic(NT, dl,
4164                   getValue(I.getValOperand()).getSimpleValueType(),
4165                   InChain,
4166                   getValue(I.getPointerOperand()),
4167                   getValue(I.getValOperand()),
4168                   I.getPointerOperand(),
4169                   /* Alignment=*/ 0, Order, SSID);
4170 
4171   SDValue OutChain = L.getValue(1);
4172 
4173   setValue(&I, L);
4174   DAG.setRoot(OutChain);
4175 }
4176 
4177 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4178   SDLoc dl = getCurSDLoc();
4179   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4180   SDValue Ops[3];
4181   Ops[0] = getRoot();
4182   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4183                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4184   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4185                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4186   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4187 }
4188 
4189 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4190   SDLoc dl = getCurSDLoc();
4191   AtomicOrdering Order = I.getOrdering();
4192   SyncScope::ID SSID = I.getSyncScopeID();
4193 
4194   SDValue InChain = getRoot();
4195 
4196   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4197   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4198 
4199   if (!TLI.supportsUnalignedAtomics() &&
4200       I.getAlignment() < VT.getStoreSize())
4201     report_fatal_error("Cannot generate unaligned atomic load");
4202 
4203   MachineMemOperand *MMO =
4204       DAG.getMachineFunction().
4205       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4206                            MachineMemOperand::MOVolatile |
4207                            MachineMemOperand::MOLoad,
4208                            VT.getStoreSize(),
4209                            I.getAlignment() ? I.getAlignment() :
4210                                               DAG.getEVTAlignment(VT),
4211                            AAMDNodes(), nullptr, SSID, Order);
4212 
4213   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4214   SDValue L =
4215       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4216                     getValue(I.getPointerOperand()), MMO);
4217 
4218   SDValue OutChain = L.getValue(1);
4219 
4220   setValue(&I, L);
4221   DAG.setRoot(OutChain);
4222 }
4223 
4224 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4225   SDLoc dl = getCurSDLoc();
4226 
4227   AtomicOrdering Order = I.getOrdering();
4228   SyncScope::ID SSID = I.getSyncScopeID();
4229 
4230   SDValue InChain = getRoot();
4231 
4232   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4233   EVT VT =
4234       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4235 
4236   if (I.getAlignment() < VT.getStoreSize())
4237     report_fatal_error("Cannot generate unaligned atomic store");
4238 
4239   SDValue OutChain =
4240     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4241                   InChain,
4242                   getValue(I.getPointerOperand()),
4243                   getValue(I.getValueOperand()),
4244                   I.getPointerOperand(), I.getAlignment(),
4245                   Order, SSID);
4246 
4247   DAG.setRoot(OutChain);
4248 }
4249 
4250 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4251 /// node.
4252 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4253                                                unsigned Intrinsic) {
4254   // Ignore the callsite's attributes. A specific call site may be marked with
4255   // readnone, but the lowering code will expect the chain based on the
4256   // definition.
4257   const Function *F = I.getCalledFunction();
4258   bool HasChain = !F->doesNotAccessMemory();
4259   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4260 
4261   // Build the operand list.
4262   SmallVector<SDValue, 8> Ops;
4263   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4264     if (OnlyLoad) {
4265       // We don't need to serialize loads against other loads.
4266       Ops.push_back(DAG.getRoot());
4267     } else {
4268       Ops.push_back(getRoot());
4269     }
4270   }
4271 
4272   // Info is set by getTgtMemInstrinsic
4273   TargetLowering::IntrinsicInfo Info;
4274   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4275   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4276                                                DAG.getMachineFunction(),
4277                                                Intrinsic);
4278 
4279   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4280   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4281       Info.opc == ISD::INTRINSIC_W_CHAIN)
4282     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4283                                         TLI.getPointerTy(DAG.getDataLayout())));
4284 
4285   // Add all operands of the call to the operand list.
4286   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4287     SDValue Op = getValue(I.getArgOperand(i));
4288     Ops.push_back(Op);
4289   }
4290 
4291   SmallVector<EVT, 4> ValueVTs;
4292   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4293 
4294   if (HasChain)
4295     ValueVTs.push_back(MVT::Other);
4296 
4297   SDVTList VTs = DAG.getVTList(ValueVTs);
4298 
4299   // Create the node.
4300   SDValue Result;
4301   if (IsTgtIntrinsic) {
4302     // This is target intrinsic that touches memory
4303     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4304       Ops, Info.memVT,
4305       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4306       Info.flags, Info.size);
4307   } else if (!HasChain) {
4308     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4309   } else if (!I.getType()->isVoidTy()) {
4310     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4311   } else {
4312     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4313   }
4314 
4315   if (HasChain) {
4316     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4317     if (OnlyLoad)
4318       PendingLoads.push_back(Chain);
4319     else
4320       DAG.setRoot(Chain);
4321   }
4322 
4323   if (!I.getType()->isVoidTy()) {
4324     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4325       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4326       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4327     } else
4328       Result = lowerRangeToAssertZExt(DAG, I, Result);
4329 
4330     setValue(&I, Result);
4331   }
4332 }
4333 
4334 /// GetSignificand - Get the significand and build it into a floating-point
4335 /// number with exponent of 1:
4336 ///
4337 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4338 ///
4339 /// where Op is the hexadecimal representation of floating point value.
4340 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4341   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4342                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4343   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4344                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4345   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4346 }
4347 
4348 /// GetExponent - Get the exponent:
4349 ///
4350 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4351 ///
4352 /// where Op is the hexadecimal representation of floating point value.
4353 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4354                            const TargetLowering &TLI, const SDLoc &dl) {
4355   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4356                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4357   SDValue t1 = DAG.getNode(
4358       ISD::SRL, dl, MVT::i32, t0,
4359       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4360   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4361                            DAG.getConstant(127, dl, MVT::i32));
4362   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4363 }
4364 
4365 /// getF32Constant - Get 32-bit floating point constant.
4366 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4367                               const SDLoc &dl) {
4368   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4369                            MVT::f32);
4370 }
4371 
4372 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4373                                        SelectionDAG &DAG) {
4374   // TODO: What fast-math-flags should be set on the floating-point nodes?
4375 
4376   //   IntegerPartOfX = ((int32_t)(t0);
4377   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4378 
4379   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4380   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4381   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4382 
4383   //   IntegerPartOfX <<= 23;
4384   IntegerPartOfX = DAG.getNode(
4385       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4386       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4387                                   DAG.getDataLayout())));
4388 
4389   SDValue TwoToFractionalPartOfX;
4390   if (LimitFloatPrecision <= 6) {
4391     // For floating-point precision of 6:
4392     //
4393     //   TwoToFractionalPartOfX =
4394     //     0.997535578f +
4395     //       (0.735607626f + 0.252464424f * x) * x;
4396     //
4397     // error 0.0144103317, which is 6 bits
4398     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4399                              getF32Constant(DAG, 0x3e814304, dl));
4400     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4401                              getF32Constant(DAG, 0x3f3c50c8, dl));
4402     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4403     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4404                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4405   } else if (LimitFloatPrecision <= 12) {
4406     // For floating-point precision of 12:
4407     //
4408     //   TwoToFractionalPartOfX =
4409     //     0.999892986f +
4410     //       (0.696457318f +
4411     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4412     //
4413     // error 0.000107046256, which is 13 to 14 bits
4414     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4415                              getF32Constant(DAG, 0x3da235e3, dl));
4416     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4417                              getF32Constant(DAG, 0x3e65b8f3, dl));
4418     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4419     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4420                              getF32Constant(DAG, 0x3f324b07, dl));
4421     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4422     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4423                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4424   } else { // LimitFloatPrecision <= 18
4425     // For floating-point precision of 18:
4426     //
4427     //   TwoToFractionalPartOfX =
4428     //     0.999999982f +
4429     //       (0.693148872f +
4430     //         (0.240227044f +
4431     //           (0.554906021e-1f +
4432     //             (0.961591928e-2f +
4433     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4434     // error 2.47208000*10^(-7), which is better than 18 bits
4435     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4436                              getF32Constant(DAG, 0x3924b03e, dl));
4437     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4438                              getF32Constant(DAG, 0x3ab24b87, dl));
4439     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4440     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4441                              getF32Constant(DAG, 0x3c1d8c17, dl));
4442     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4443     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4444                              getF32Constant(DAG, 0x3d634a1d, dl));
4445     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4446     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4447                              getF32Constant(DAG, 0x3e75fe14, dl));
4448     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4449     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4450                               getF32Constant(DAG, 0x3f317234, dl));
4451     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4452     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4453                                          getF32Constant(DAG, 0x3f800000, dl));
4454   }
4455 
4456   // Add the exponent into the result in integer domain.
4457   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4458   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4459                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4460 }
4461 
4462 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4463 /// limited-precision mode.
4464 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4465                          const TargetLowering &TLI) {
4466   if (Op.getValueType() == MVT::f32 &&
4467       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4468 
4469     // Put the exponent in the right bit position for later addition to the
4470     // final result:
4471     //
4472     //   #define LOG2OFe 1.4426950f
4473     //   t0 = Op * LOG2OFe
4474 
4475     // TODO: What fast-math-flags should be set here?
4476     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4477                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4478     return getLimitedPrecisionExp2(t0, dl, DAG);
4479   }
4480 
4481   // No special expansion.
4482   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4483 }
4484 
4485 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4486 /// limited-precision mode.
4487 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4488                          const TargetLowering &TLI) {
4489   // TODO: What fast-math-flags should be set on the floating-point nodes?
4490 
4491   if (Op.getValueType() == MVT::f32 &&
4492       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4493     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4494 
4495     // Scale the exponent by log(2) [0.69314718f].
4496     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4497     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4498                                         getF32Constant(DAG, 0x3f317218, dl));
4499 
4500     // Get the significand and build it into a floating-point number with
4501     // exponent of 1.
4502     SDValue X = GetSignificand(DAG, Op1, dl);
4503 
4504     SDValue LogOfMantissa;
4505     if (LimitFloatPrecision <= 6) {
4506       // For floating-point precision of 6:
4507       //
4508       //   LogofMantissa =
4509       //     -1.1609546f +
4510       //       (1.4034025f - 0.23903021f * x) * x;
4511       //
4512       // error 0.0034276066, which is better than 8 bits
4513       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4514                                getF32Constant(DAG, 0xbe74c456, dl));
4515       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4516                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4517       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4518       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4519                                   getF32Constant(DAG, 0x3f949a29, dl));
4520     } else if (LimitFloatPrecision <= 12) {
4521       // For floating-point precision of 12:
4522       //
4523       //   LogOfMantissa =
4524       //     -1.7417939f +
4525       //       (2.8212026f +
4526       //         (-1.4699568f +
4527       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4528       //
4529       // error 0.000061011436, which is 14 bits
4530       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4531                                getF32Constant(DAG, 0xbd67b6d6, dl));
4532       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4533                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4534       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4535       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4536                                getF32Constant(DAG, 0x3fbc278b, dl));
4537       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4538       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4539                                getF32Constant(DAG, 0x40348e95, dl));
4540       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4541       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4542                                   getF32Constant(DAG, 0x3fdef31a, dl));
4543     } else { // LimitFloatPrecision <= 18
4544       // For floating-point precision of 18:
4545       //
4546       //   LogOfMantissa =
4547       //     -2.1072184f +
4548       //       (4.2372794f +
4549       //         (-3.7029485f +
4550       //           (2.2781945f +
4551       //             (-0.87823314f +
4552       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4553       //
4554       // error 0.0000023660568, which is better than 18 bits
4555       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4556                                getF32Constant(DAG, 0xbc91e5ac, dl));
4557       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4558                                getF32Constant(DAG, 0x3e4350aa, dl));
4559       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4560       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4561                                getF32Constant(DAG, 0x3f60d3e3, dl));
4562       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4563       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4564                                getF32Constant(DAG, 0x4011cdf0, dl));
4565       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4566       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4567                                getF32Constant(DAG, 0x406cfd1c, dl));
4568       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4569       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4570                                getF32Constant(DAG, 0x408797cb, dl));
4571       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4572       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4573                                   getF32Constant(DAG, 0x4006dcab, dl));
4574     }
4575 
4576     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4577   }
4578 
4579   // No special expansion.
4580   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4581 }
4582 
4583 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4584 /// limited-precision mode.
4585 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4586                           const TargetLowering &TLI) {
4587   // TODO: What fast-math-flags should be set on the floating-point nodes?
4588 
4589   if (Op.getValueType() == MVT::f32 &&
4590       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4591     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4592 
4593     // Get the exponent.
4594     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4595 
4596     // Get the significand and build it into a floating-point number with
4597     // exponent of 1.
4598     SDValue X = GetSignificand(DAG, Op1, dl);
4599 
4600     // Different possible minimax approximations of significand in
4601     // floating-point for various degrees of accuracy over [1,2].
4602     SDValue Log2ofMantissa;
4603     if (LimitFloatPrecision <= 6) {
4604       // For floating-point precision of 6:
4605       //
4606       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4607       //
4608       // error 0.0049451742, which is more than 7 bits
4609       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4610                                getF32Constant(DAG, 0xbeb08fe0, dl));
4611       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4612                                getF32Constant(DAG, 0x40019463, dl));
4613       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4614       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4615                                    getF32Constant(DAG, 0x3fd6633d, dl));
4616     } else if (LimitFloatPrecision <= 12) {
4617       // For floating-point precision of 12:
4618       //
4619       //   Log2ofMantissa =
4620       //     -2.51285454f +
4621       //       (4.07009056f +
4622       //         (-2.12067489f +
4623       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4624       //
4625       // error 0.0000876136000, which is better than 13 bits
4626       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4627                                getF32Constant(DAG, 0xbda7262e, dl));
4628       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4629                                getF32Constant(DAG, 0x3f25280b, dl));
4630       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4631       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4632                                getF32Constant(DAG, 0x4007b923, dl));
4633       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4634       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4635                                getF32Constant(DAG, 0x40823e2f, dl));
4636       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4637       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4638                                    getF32Constant(DAG, 0x4020d29c, dl));
4639     } else { // LimitFloatPrecision <= 18
4640       // For floating-point precision of 18:
4641       //
4642       //   Log2ofMantissa =
4643       //     -3.0400495f +
4644       //       (6.1129976f +
4645       //         (-5.3420409f +
4646       //           (3.2865683f +
4647       //             (-1.2669343f +
4648       //               (0.27515199f -
4649       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4650       //
4651       // error 0.0000018516, which is better than 18 bits
4652       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4653                                getF32Constant(DAG, 0xbcd2769e, dl));
4654       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4655                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4656       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4657       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4658                                getF32Constant(DAG, 0x3fa22ae7, dl));
4659       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4660       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4661                                getF32Constant(DAG, 0x40525723, dl));
4662       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4663       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4664                                getF32Constant(DAG, 0x40aaf200, dl));
4665       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4666       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4667                                getF32Constant(DAG, 0x40c39dad, dl));
4668       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4669       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4670                                    getF32Constant(DAG, 0x4042902c, dl));
4671     }
4672 
4673     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4674   }
4675 
4676   // No special expansion.
4677   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4678 }
4679 
4680 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4681 /// limited-precision mode.
4682 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4683                            const TargetLowering &TLI) {
4684   // TODO: What fast-math-flags should be set on the floating-point nodes?
4685 
4686   if (Op.getValueType() == MVT::f32 &&
4687       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4688     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4689 
4690     // Scale the exponent by log10(2) [0.30102999f].
4691     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4692     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4693                                         getF32Constant(DAG, 0x3e9a209a, dl));
4694 
4695     // Get the significand and build it into a floating-point number with
4696     // exponent of 1.
4697     SDValue X = GetSignificand(DAG, Op1, dl);
4698 
4699     SDValue Log10ofMantissa;
4700     if (LimitFloatPrecision <= 6) {
4701       // For floating-point precision of 6:
4702       //
4703       //   Log10ofMantissa =
4704       //     -0.50419619f +
4705       //       (0.60948995f - 0.10380950f * x) * x;
4706       //
4707       // error 0.0014886165, which is 6 bits
4708       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4709                                getF32Constant(DAG, 0xbdd49a13, dl));
4710       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4711                                getF32Constant(DAG, 0x3f1c0789, dl));
4712       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4713       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4714                                     getF32Constant(DAG, 0x3f011300, dl));
4715     } else if (LimitFloatPrecision <= 12) {
4716       // For floating-point precision of 12:
4717       //
4718       //   Log10ofMantissa =
4719       //     -0.64831180f +
4720       //       (0.91751397f +
4721       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4722       //
4723       // error 0.00019228036, which is better than 12 bits
4724       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4725                                getF32Constant(DAG, 0x3d431f31, dl));
4726       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4727                                getF32Constant(DAG, 0x3ea21fb2, dl));
4728       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4729       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4730                                getF32Constant(DAG, 0x3f6ae232, dl));
4731       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4732       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4733                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4734     } else { // LimitFloatPrecision <= 18
4735       // For floating-point precision of 18:
4736       //
4737       //   Log10ofMantissa =
4738       //     -0.84299375f +
4739       //       (1.5327582f +
4740       //         (-1.0688956f +
4741       //           (0.49102474f +
4742       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4743       //
4744       // error 0.0000037995730, which is better than 18 bits
4745       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4746                                getF32Constant(DAG, 0x3c5d51ce, dl));
4747       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4748                                getF32Constant(DAG, 0x3e00685a, dl));
4749       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4750       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4751                                getF32Constant(DAG, 0x3efb6798, dl));
4752       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4753       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4754                                getF32Constant(DAG, 0x3f88d192, dl));
4755       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4756       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4757                                getF32Constant(DAG, 0x3fc4316c, dl));
4758       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4759       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4760                                     getF32Constant(DAG, 0x3f57ce70, dl));
4761     }
4762 
4763     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4764   }
4765 
4766   // No special expansion.
4767   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4768 }
4769 
4770 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4771 /// limited-precision mode.
4772 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4773                           const TargetLowering &TLI) {
4774   if (Op.getValueType() == MVT::f32 &&
4775       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4776     return getLimitedPrecisionExp2(Op, dl, DAG);
4777 
4778   // No special expansion.
4779   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4780 }
4781 
4782 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4783 /// limited-precision mode with x == 10.0f.
4784 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4785                          SelectionDAG &DAG, const TargetLowering &TLI) {
4786   bool IsExp10 = false;
4787   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4788       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4789     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4790       APFloat Ten(10.0f);
4791       IsExp10 = LHSC->isExactlyValue(Ten);
4792     }
4793   }
4794 
4795   // TODO: What fast-math-flags should be set on the FMUL node?
4796   if (IsExp10) {
4797     // Put the exponent in the right bit position for later addition to the
4798     // final result:
4799     //
4800     //   #define LOG2OF10 3.3219281f
4801     //   t0 = Op * LOG2OF10;
4802     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4803                              getF32Constant(DAG, 0x40549a78, dl));
4804     return getLimitedPrecisionExp2(t0, dl, DAG);
4805   }
4806 
4807   // No special expansion.
4808   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4809 }
4810 
4811 /// ExpandPowI - Expand a llvm.powi intrinsic.
4812 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4813                           SelectionDAG &DAG) {
4814   // If RHS is a constant, we can expand this out to a multiplication tree,
4815   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4816   // optimizing for size, we only want to do this if the expansion would produce
4817   // a small number of multiplies, otherwise we do the full expansion.
4818   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4819     // Get the exponent as a positive value.
4820     unsigned Val = RHSC->getSExtValue();
4821     if ((int)Val < 0) Val = -Val;
4822 
4823     // powi(x, 0) -> 1.0
4824     if (Val == 0)
4825       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4826 
4827     const Function &F = DAG.getMachineFunction().getFunction();
4828     if (!F.optForSize() ||
4829         // If optimizing for size, don't insert too many multiplies.
4830         // This inserts up to 5 multiplies.
4831         countPopulation(Val) + Log2_32(Val) < 7) {
4832       // We use the simple binary decomposition method to generate the multiply
4833       // sequence.  There are more optimal ways to do this (for example,
4834       // powi(x,15) generates one more multiply than it should), but this has
4835       // the benefit of being both really simple and much better than a libcall.
4836       SDValue Res;  // Logically starts equal to 1.0
4837       SDValue CurSquare = LHS;
4838       // TODO: Intrinsics should have fast-math-flags that propagate to these
4839       // nodes.
4840       while (Val) {
4841         if (Val & 1) {
4842           if (Res.getNode())
4843             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4844           else
4845             Res = CurSquare;  // 1.0*CurSquare.
4846         }
4847 
4848         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4849                                 CurSquare, CurSquare);
4850         Val >>= 1;
4851       }
4852 
4853       // If the original was negative, invert the result, producing 1/(x*x*x).
4854       if (RHSC->getSExtValue() < 0)
4855         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4856                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4857       return Res;
4858     }
4859   }
4860 
4861   // Otherwise, expand to a libcall.
4862   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4863 }
4864 
4865 // getUnderlyingArgReg - Find underlying register used for a truncated or
4866 // bitcasted argument.
4867 static unsigned getUnderlyingArgReg(const SDValue &N) {
4868   switch (N.getOpcode()) {
4869   case ISD::CopyFromReg:
4870     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4871   case ISD::BITCAST:
4872   case ISD::AssertZext:
4873   case ISD::AssertSext:
4874   case ISD::TRUNCATE:
4875     return getUnderlyingArgReg(N.getOperand(0));
4876   default:
4877     return 0;
4878   }
4879 }
4880 
4881 /// If the DbgValueInst is a dbg_value of a function argument, create the
4882 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4883 /// instruction selection, they will be inserted to the entry BB.
4884 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4885     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4886     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4887   const Argument *Arg = dyn_cast<Argument>(V);
4888   if (!Arg)
4889     return false;
4890 
4891   MachineFunction &MF = DAG.getMachineFunction();
4892   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4893 
4894   bool IsIndirect = false;
4895   Optional<MachineOperand> Op;
4896   // Some arguments' frame index is recorded during argument lowering.
4897   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4898   if (FI != std::numeric_limits<int>::max())
4899     Op = MachineOperand::CreateFI(FI);
4900 
4901   if (!Op && N.getNode()) {
4902     unsigned Reg = getUnderlyingArgReg(N);
4903     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4904       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4905       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4906       if (PR)
4907         Reg = PR;
4908     }
4909     if (Reg) {
4910       Op = MachineOperand::CreateReg(Reg, false);
4911       IsIndirect = IsDbgDeclare;
4912     }
4913   }
4914 
4915   if (!Op && N.getNode())
4916     // Check if frame index is available.
4917     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4918       if (FrameIndexSDNode *FINode =
4919           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4920         Op = MachineOperand::CreateFI(FINode->getIndex());
4921 
4922   if (!Op) {
4923     // Check if ValueMap has reg number.
4924     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4925     if (VMI != FuncInfo.ValueMap.end()) {
4926       const auto &TLI = DAG.getTargetLoweringInfo();
4927       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4928                        V->getType(), isABIRegCopy(V));
4929       if (RFV.occupiesMultipleRegs()) {
4930         unsigned Offset = 0;
4931         for (auto RegAndSize : RFV.getRegsAndSizes()) {
4932           Op = MachineOperand::CreateReg(RegAndSize.first, false);
4933           auto FragmentExpr = DIExpression::createFragmentExpression(
4934               Expr, Offset, RegAndSize.second);
4935           if (!FragmentExpr)
4936             continue;
4937           FuncInfo.ArgDbgValues.push_back(
4938               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4939                       Op->getReg(), Variable, *FragmentExpr));
4940           Offset += RegAndSize.second;
4941         }
4942         return true;
4943       }
4944       Op = MachineOperand::CreateReg(VMI->second, false);
4945       IsIndirect = IsDbgDeclare;
4946     }
4947   }
4948 
4949   if (!Op)
4950     return false;
4951 
4952   assert(Variable->isValidLocationForIntrinsic(DL) &&
4953          "Expected inlined-at fields to agree");
4954   IsIndirect = (Op->isReg()) ? IsIndirect : true;
4955   FuncInfo.ArgDbgValues.push_back(
4956       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4957               *Op, Variable, Expr));
4958 
4959   return true;
4960 }
4961 
4962 /// Return the appropriate SDDbgValue based on N.
4963 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4964                                              DILocalVariable *Variable,
4965                                              DIExpression *Expr,
4966                                              const DebugLoc &dl,
4967                                              unsigned DbgSDNodeOrder) {
4968   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
4969     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4970     // stack slot locations as such instead of as indirectly addressed
4971     // locations.
4972     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl,
4973                                      DbgSDNodeOrder);
4974   }
4975   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl,
4976                          DbgSDNodeOrder);
4977 }
4978 
4979 // VisualStudio defines setjmp as _setjmp
4980 #if defined(_MSC_VER) && defined(setjmp) && \
4981                          !defined(setjmp_undefined_for_msvc)
4982 #  pragma push_macro("setjmp")
4983 #  undef setjmp
4984 #  define setjmp_undefined_for_msvc
4985 #endif
4986 
4987 /// Lower the call to the specified intrinsic function. If we want to emit this
4988 /// as a call to a named external function, return the name. Otherwise, lower it
4989 /// and return null.
4990 const char *
4991 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4992   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4993   SDLoc sdl = getCurSDLoc();
4994   DebugLoc dl = getCurDebugLoc();
4995   SDValue Res;
4996 
4997   switch (Intrinsic) {
4998   default:
4999     // By default, turn this into a target intrinsic node.
5000     visitTargetIntrinsic(I, Intrinsic);
5001     return nullptr;
5002   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5003   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5004   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5005   case Intrinsic::returnaddress:
5006     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5007                              TLI.getPointerTy(DAG.getDataLayout()),
5008                              getValue(I.getArgOperand(0))));
5009     return nullptr;
5010   case Intrinsic::addressofreturnaddress:
5011     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5012                              TLI.getPointerTy(DAG.getDataLayout())));
5013     return nullptr;
5014   case Intrinsic::frameaddress:
5015     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5016                              TLI.getPointerTy(DAG.getDataLayout()),
5017                              getValue(I.getArgOperand(0))));
5018     return nullptr;
5019   case Intrinsic::read_register: {
5020     Value *Reg = I.getArgOperand(0);
5021     SDValue Chain = getRoot();
5022     SDValue RegName =
5023         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5024     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5025     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5026       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5027     setValue(&I, Res);
5028     DAG.setRoot(Res.getValue(1));
5029     return nullptr;
5030   }
5031   case Intrinsic::write_register: {
5032     Value *Reg = I.getArgOperand(0);
5033     Value *RegValue = I.getArgOperand(1);
5034     SDValue Chain = getRoot();
5035     SDValue RegName =
5036         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5037     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5038                             RegName, getValue(RegValue)));
5039     return nullptr;
5040   }
5041   case Intrinsic::setjmp:
5042     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5043   case Intrinsic::longjmp:
5044     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5045   case Intrinsic::memcpy: {
5046     const auto &MCI = cast<MemCpyInst>(I);
5047     SDValue Op1 = getValue(I.getArgOperand(0));
5048     SDValue Op2 = getValue(I.getArgOperand(1));
5049     SDValue Op3 = getValue(I.getArgOperand(2));
5050     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5051     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5052     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5053     unsigned Align = MinAlign(DstAlign, SrcAlign);
5054     bool isVol = MCI.isVolatile();
5055     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5056     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5057     // node.
5058     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5059                                false, isTC,
5060                                MachinePointerInfo(I.getArgOperand(0)),
5061                                MachinePointerInfo(I.getArgOperand(1)));
5062     updateDAGForMaybeTailCall(MC);
5063     return nullptr;
5064   }
5065   case Intrinsic::memset: {
5066     const auto &MSI = cast<MemSetInst>(I);
5067     SDValue Op1 = getValue(I.getArgOperand(0));
5068     SDValue Op2 = getValue(I.getArgOperand(1));
5069     SDValue Op3 = getValue(I.getArgOperand(2));
5070     // @llvm.memset defines 0 and 1 to both mean no alignment.
5071     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5072     bool isVol = MSI.isVolatile();
5073     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5074     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5075                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5076     updateDAGForMaybeTailCall(MS);
5077     return nullptr;
5078   }
5079   case Intrinsic::memmove: {
5080     const auto &MMI = cast<MemMoveInst>(I);
5081     SDValue Op1 = getValue(I.getArgOperand(0));
5082     SDValue Op2 = getValue(I.getArgOperand(1));
5083     SDValue Op3 = getValue(I.getArgOperand(2));
5084     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5085     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5086     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5087     unsigned Align = MinAlign(DstAlign, SrcAlign);
5088     bool isVol = MMI.isVolatile();
5089     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5090     // FIXME: Support passing different dest/src alignments to the memmove DAG
5091     // node.
5092     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5093                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5094                                 MachinePointerInfo(I.getArgOperand(1)));
5095     updateDAGForMaybeTailCall(MM);
5096     return nullptr;
5097   }
5098   case Intrinsic::memcpy_element_unordered_atomic: {
5099     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5100     SDValue Dst = getValue(MI.getRawDest());
5101     SDValue Src = getValue(MI.getRawSource());
5102     SDValue Length = getValue(MI.getLength());
5103 
5104     unsigned DstAlign = MI.getDestAlignment();
5105     unsigned SrcAlign = MI.getSourceAlignment();
5106     Type *LengthTy = MI.getLength()->getType();
5107     unsigned ElemSz = MI.getElementSizeInBytes();
5108     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5109     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5110                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5111                                      MachinePointerInfo(MI.getRawDest()),
5112                                      MachinePointerInfo(MI.getRawSource()));
5113     updateDAGForMaybeTailCall(MC);
5114     return nullptr;
5115   }
5116   case Intrinsic::memmove_element_unordered_atomic: {
5117     auto &MI = cast<AtomicMemMoveInst>(I);
5118     SDValue Dst = getValue(MI.getRawDest());
5119     SDValue Src = getValue(MI.getRawSource());
5120     SDValue Length = getValue(MI.getLength());
5121 
5122     unsigned DstAlign = MI.getDestAlignment();
5123     unsigned SrcAlign = MI.getSourceAlignment();
5124     Type *LengthTy = MI.getLength()->getType();
5125     unsigned ElemSz = MI.getElementSizeInBytes();
5126     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5127     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5128                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5129                                       MachinePointerInfo(MI.getRawDest()),
5130                                       MachinePointerInfo(MI.getRawSource()));
5131     updateDAGForMaybeTailCall(MC);
5132     return nullptr;
5133   }
5134   case Intrinsic::memset_element_unordered_atomic: {
5135     auto &MI = cast<AtomicMemSetInst>(I);
5136     SDValue Dst = getValue(MI.getRawDest());
5137     SDValue Val = getValue(MI.getValue());
5138     SDValue Length = getValue(MI.getLength());
5139 
5140     unsigned DstAlign = MI.getDestAlignment();
5141     Type *LengthTy = MI.getLength()->getType();
5142     unsigned ElemSz = MI.getElementSizeInBytes();
5143     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5144     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5145                                      LengthTy, ElemSz, isTC,
5146                                      MachinePointerInfo(MI.getRawDest()));
5147     updateDAGForMaybeTailCall(MC);
5148     return nullptr;
5149   }
5150   case Intrinsic::dbg_addr:
5151   case Intrinsic::dbg_declare: {
5152     const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I);
5153     DILocalVariable *Variable = DI.getVariable();
5154     DIExpression *Expression = DI.getExpression();
5155     dropDanglingDebugInfo(Variable, Expression);
5156     assert(Variable && "Missing variable");
5157 
5158     // Check if address has undef value.
5159     const Value *Address = DI.getVariableLocation();
5160     if (!Address || isa<UndefValue>(Address) ||
5161         (Address->use_empty() && !isa<Argument>(Address))) {
5162       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5163       return nullptr;
5164     }
5165 
5166     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5167 
5168     // Check if this variable can be described by a frame index, typically
5169     // either as a static alloca or a byval parameter.
5170     int FI = std::numeric_limits<int>::max();
5171     if (const auto *AI =
5172             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5173       if (AI->isStaticAlloca()) {
5174         auto I = FuncInfo.StaticAllocaMap.find(AI);
5175         if (I != FuncInfo.StaticAllocaMap.end())
5176           FI = I->second;
5177       }
5178     } else if (const auto *Arg = dyn_cast<Argument>(
5179                    Address->stripInBoundsConstantOffsets())) {
5180       FI = FuncInfo.getArgumentFrameIndex(Arg);
5181     }
5182 
5183     // llvm.dbg.addr is control dependent and always generates indirect
5184     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5185     // the MachineFunction variable table.
5186     if (FI != std::numeric_limits<int>::max()) {
5187       if (Intrinsic == Intrinsic::dbg_addr) {
5188          SDDbgValue *SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5189                                                      FI, dl, SDNodeOrder);
5190          DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5191       }
5192       return nullptr;
5193     }
5194 
5195     SDValue &N = NodeMap[Address];
5196     if (!N.getNode() && isa<Argument>(Address))
5197       // Check unused arguments map.
5198       N = UnusedArgNodeMap[Address];
5199     SDDbgValue *SDV;
5200     if (N.getNode()) {
5201       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5202         Address = BCI->getOperand(0);
5203       // Parameters are handled specially.
5204       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5205       if (isParameter && FINode) {
5206         // Byval parameter. We have a frame index at this point.
5207         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5208                                         FINode->getIndex(), dl, SDNodeOrder);
5209       } else if (isa<Argument>(Address)) {
5210         // Address is an argument, so try to emit its dbg value using
5211         // virtual register info from the FuncInfo.ValueMap.
5212         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5213         return nullptr;
5214       } else {
5215         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5216                               true, dl, SDNodeOrder);
5217       }
5218       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5219     } else {
5220       // If Address is an argument then try to emit its dbg value using
5221       // virtual register info from the FuncInfo.ValueMap.
5222       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5223                                     N)) {
5224         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5225       }
5226     }
5227     return nullptr;
5228   }
5229   case Intrinsic::dbg_label: {
5230     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5231     DILabel *Label = DI.getLabel();
5232     assert(Label && "Missing label");
5233 
5234     SDDbgLabel *SDV;
5235     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5236     DAG.AddDbgLabel(SDV);
5237     return nullptr;
5238   }
5239   case Intrinsic::dbg_value: {
5240     const DbgValueInst &DI = cast<DbgValueInst>(I);
5241     assert(DI.getVariable() && "Missing variable");
5242 
5243     DILocalVariable *Variable = DI.getVariable();
5244     DIExpression *Expression = DI.getExpression();
5245     dropDanglingDebugInfo(Variable, Expression);
5246     const Value *V = DI.getValue();
5247     if (!V)
5248       return nullptr;
5249 
5250     SDDbgValue *SDV;
5251     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5252       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5253       DAG.AddDbgValue(SDV, nullptr, false);
5254       return nullptr;
5255     }
5256 
5257     // Do not use getValue() in here; we don't want to generate code at
5258     // this point if it hasn't been done yet.
5259     SDValue N = NodeMap[V];
5260     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5261       N = UnusedArgNodeMap[V];
5262     if (N.getNode()) {
5263       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5264         return nullptr;
5265       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5266       DAG.AddDbgValue(SDV, N.getNode(), false);
5267       return nullptr;
5268     }
5269 
5270     // PHI nodes have already been selected, so we should know which VReg that
5271     // is assigns to already.
5272     if (isa<PHINode>(V)) {
5273       auto VMI = FuncInfo.ValueMap.find(V);
5274       if (VMI != FuncInfo.ValueMap.end()) {
5275         unsigned Reg = VMI->second;
5276         // The PHI node may be split up into several MI PHI nodes (in
5277         // FunctionLoweringInfo::set).
5278         RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5279                          V->getType(), false);
5280         if (RFV.occupiesMultipleRegs()) {
5281           unsigned Offset = 0;
5282           unsigned BitsToDescribe = 0;
5283           if (auto VarSize = Variable->getSizeInBits())
5284             BitsToDescribe = *VarSize;
5285           if (auto Fragment = Expression->getFragmentInfo())
5286             BitsToDescribe = Fragment->SizeInBits;
5287           for (auto RegAndSize : RFV.getRegsAndSizes()) {
5288             unsigned RegisterSize = RegAndSize.second;
5289             // Bail out if all bits are described already.
5290             if (Offset >= BitsToDescribe)
5291               break;
5292             unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5293                 ? BitsToDescribe - Offset
5294                 : RegisterSize;
5295             auto FragmentExpr = DIExpression::createFragmentExpression(
5296                 Expression, Offset, FragmentSize);
5297             if (!FragmentExpr)
5298                 continue;
5299             SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5300                                       false, dl, SDNodeOrder);
5301             DAG.AddDbgValue(SDV, nullptr, false);
5302             Offset += RegisterSize;
5303           }
5304         } else {
5305           SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5306                                     SDNodeOrder);
5307           DAG.AddDbgValue(SDV, nullptr, false);
5308         }
5309         return nullptr;
5310       }
5311     }
5312 
5313     // TODO: When we get here we will either drop the dbg.value completely, or
5314     // we try to move it forward by letting it dangle for awhile. So we should
5315     // probably add an extra DbgValue to the DAG here, with a reference to
5316     // "noreg", to indicate that we have lost the debug location for the
5317     // variable.
5318 
5319     if (!V->use_empty() ) {
5320       // Do not call getValue(V) yet, as we don't want to generate code.
5321       // Remember it for later.
5322       DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5323       DanglingDebugInfoMap[V].push_back(DDI);
5324       return nullptr;
5325     }
5326 
5327     LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5328     LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5329     return nullptr;
5330   }
5331 
5332   case Intrinsic::eh_typeid_for: {
5333     // Find the type id for the given typeinfo.
5334     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5335     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5336     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5337     setValue(&I, Res);
5338     return nullptr;
5339   }
5340 
5341   case Intrinsic::eh_return_i32:
5342   case Intrinsic::eh_return_i64:
5343     DAG.getMachineFunction().setCallsEHReturn(true);
5344     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5345                             MVT::Other,
5346                             getControlRoot(),
5347                             getValue(I.getArgOperand(0)),
5348                             getValue(I.getArgOperand(1))));
5349     return nullptr;
5350   case Intrinsic::eh_unwind_init:
5351     DAG.getMachineFunction().setCallsUnwindInit(true);
5352     return nullptr;
5353   case Intrinsic::eh_dwarf_cfa:
5354     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5355                              TLI.getPointerTy(DAG.getDataLayout()),
5356                              getValue(I.getArgOperand(0))));
5357     return nullptr;
5358   case Intrinsic::eh_sjlj_callsite: {
5359     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5360     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5361     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5362     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5363 
5364     MMI.setCurrentCallSite(CI->getZExtValue());
5365     return nullptr;
5366   }
5367   case Intrinsic::eh_sjlj_functioncontext: {
5368     // Get and store the index of the function context.
5369     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5370     AllocaInst *FnCtx =
5371       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5372     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5373     MFI.setFunctionContextIndex(FI);
5374     return nullptr;
5375   }
5376   case Intrinsic::eh_sjlj_setjmp: {
5377     SDValue Ops[2];
5378     Ops[0] = getRoot();
5379     Ops[1] = getValue(I.getArgOperand(0));
5380     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5381                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5382     setValue(&I, Op.getValue(0));
5383     DAG.setRoot(Op.getValue(1));
5384     return nullptr;
5385   }
5386   case Intrinsic::eh_sjlj_longjmp:
5387     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5388                             getRoot(), getValue(I.getArgOperand(0))));
5389     return nullptr;
5390   case Intrinsic::eh_sjlj_setup_dispatch:
5391     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5392                             getRoot()));
5393     return nullptr;
5394   case Intrinsic::masked_gather:
5395     visitMaskedGather(I);
5396     return nullptr;
5397   case Intrinsic::masked_load:
5398     visitMaskedLoad(I);
5399     return nullptr;
5400   case Intrinsic::masked_scatter:
5401     visitMaskedScatter(I);
5402     return nullptr;
5403   case Intrinsic::masked_store:
5404     visitMaskedStore(I);
5405     return nullptr;
5406   case Intrinsic::masked_expandload:
5407     visitMaskedLoad(I, true /* IsExpanding */);
5408     return nullptr;
5409   case Intrinsic::masked_compressstore:
5410     visitMaskedStore(I, true /* IsCompressing */);
5411     return nullptr;
5412   case Intrinsic::x86_mmx_pslli_w:
5413   case Intrinsic::x86_mmx_pslli_d:
5414   case Intrinsic::x86_mmx_pslli_q:
5415   case Intrinsic::x86_mmx_psrli_w:
5416   case Intrinsic::x86_mmx_psrli_d:
5417   case Intrinsic::x86_mmx_psrli_q:
5418   case Intrinsic::x86_mmx_psrai_w:
5419   case Intrinsic::x86_mmx_psrai_d: {
5420     SDValue ShAmt = getValue(I.getArgOperand(1));
5421     if (isa<ConstantSDNode>(ShAmt)) {
5422       visitTargetIntrinsic(I, Intrinsic);
5423       return nullptr;
5424     }
5425     unsigned NewIntrinsic = 0;
5426     EVT ShAmtVT = MVT::v2i32;
5427     switch (Intrinsic) {
5428     case Intrinsic::x86_mmx_pslli_w:
5429       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5430       break;
5431     case Intrinsic::x86_mmx_pslli_d:
5432       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5433       break;
5434     case Intrinsic::x86_mmx_pslli_q:
5435       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5436       break;
5437     case Intrinsic::x86_mmx_psrli_w:
5438       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5439       break;
5440     case Intrinsic::x86_mmx_psrli_d:
5441       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5442       break;
5443     case Intrinsic::x86_mmx_psrli_q:
5444       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5445       break;
5446     case Intrinsic::x86_mmx_psrai_w:
5447       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5448       break;
5449     case Intrinsic::x86_mmx_psrai_d:
5450       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5451       break;
5452     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5453     }
5454 
5455     // The vector shift intrinsics with scalars uses 32b shift amounts but
5456     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5457     // to be zero.
5458     // We must do this early because v2i32 is not a legal type.
5459     SDValue ShOps[2];
5460     ShOps[0] = ShAmt;
5461     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5462     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5463     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5464     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5465     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5466                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5467                        getValue(I.getArgOperand(0)), ShAmt);
5468     setValue(&I, Res);
5469     return nullptr;
5470   }
5471   case Intrinsic::powi:
5472     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5473                             getValue(I.getArgOperand(1)), DAG));
5474     return nullptr;
5475   case Intrinsic::log:
5476     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5477     return nullptr;
5478   case Intrinsic::log2:
5479     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5480     return nullptr;
5481   case Intrinsic::log10:
5482     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5483     return nullptr;
5484   case Intrinsic::exp:
5485     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5486     return nullptr;
5487   case Intrinsic::exp2:
5488     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5489     return nullptr;
5490   case Intrinsic::pow:
5491     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5492                            getValue(I.getArgOperand(1)), DAG, TLI));
5493     return nullptr;
5494   case Intrinsic::sqrt:
5495   case Intrinsic::fabs:
5496   case Intrinsic::sin:
5497   case Intrinsic::cos:
5498   case Intrinsic::floor:
5499   case Intrinsic::ceil:
5500   case Intrinsic::trunc:
5501   case Intrinsic::rint:
5502   case Intrinsic::nearbyint:
5503   case Intrinsic::round:
5504   case Intrinsic::canonicalize: {
5505     unsigned Opcode;
5506     switch (Intrinsic) {
5507     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5508     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5509     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5510     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5511     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5512     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5513     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5514     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5515     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5516     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5517     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5518     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5519     }
5520 
5521     setValue(&I, DAG.getNode(Opcode, sdl,
5522                              getValue(I.getArgOperand(0)).getValueType(),
5523                              getValue(I.getArgOperand(0))));
5524     return nullptr;
5525   }
5526   case Intrinsic::minnum: {
5527     auto VT = getValue(I.getArgOperand(0)).getValueType();
5528     unsigned Opc =
5529         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5530             ? ISD::FMINNAN
5531             : ISD::FMINNUM;
5532     setValue(&I, DAG.getNode(Opc, sdl, VT,
5533                              getValue(I.getArgOperand(0)),
5534                              getValue(I.getArgOperand(1))));
5535     return nullptr;
5536   }
5537   case Intrinsic::maxnum: {
5538     auto VT = getValue(I.getArgOperand(0)).getValueType();
5539     unsigned Opc =
5540         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5541             ? ISD::FMAXNAN
5542             : ISD::FMAXNUM;
5543     setValue(&I, DAG.getNode(Opc, sdl, VT,
5544                              getValue(I.getArgOperand(0)),
5545                              getValue(I.getArgOperand(1))));
5546     return nullptr;
5547   }
5548   case Intrinsic::copysign:
5549     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5550                              getValue(I.getArgOperand(0)).getValueType(),
5551                              getValue(I.getArgOperand(0)),
5552                              getValue(I.getArgOperand(1))));
5553     return nullptr;
5554   case Intrinsic::fma:
5555     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5556                              getValue(I.getArgOperand(0)).getValueType(),
5557                              getValue(I.getArgOperand(0)),
5558                              getValue(I.getArgOperand(1)),
5559                              getValue(I.getArgOperand(2))));
5560     return nullptr;
5561   case Intrinsic::experimental_constrained_fadd:
5562   case Intrinsic::experimental_constrained_fsub:
5563   case Intrinsic::experimental_constrained_fmul:
5564   case Intrinsic::experimental_constrained_fdiv:
5565   case Intrinsic::experimental_constrained_frem:
5566   case Intrinsic::experimental_constrained_fma:
5567   case Intrinsic::experimental_constrained_sqrt:
5568   case Intrinsic::experimental_constrained_pow:
5569   case Intrinsic::experimental_constrained_powi:
5570   case Intrinsic::experimental_constrained_sin:
5571   case Intrinsic::experimental_constrained_cos:
5572   case Intrinsic::experimental_constrained_exp:
5573   case Intrinsic::experimental_constrained_exp2:
5574   case Intrinsic::experimental_constrained_log:
5575   case Intrinsic::experimental_constrained_log10:
5576   case Intrinsic::experimental_constrained_log2:
5577   case Intrinsic::experimental_constrained_rint:
5578   case Intrinsic::experimental_constrained_nearbyint:
5579     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5580     return nullptr;
5581   case Intrinsic::fmuladd: {
5582     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5583     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5584         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5585       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5586                                getValue(I.getArgOperand(0)).getValueType(),
5587                                getValue(I.getArgOperand(0)),
5588                                getValue(I.getArgOperand(1)),
5589                                getValue(I.getArgOperand(2))));
5590     } else {
5591       // TODO: Intrinsic calls should have fast-math-flags.
5592       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5593                                 getValue(I.getArgOperand(0)).getValueType(),
5594                                 getValue(I.getArgOperand(0)),
5595                                 getValue(I.getArgOperand(1)));
5596       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5597                                 getValue(I.getArgOperand(0)).getValueType(),
5598                                 Mul,
5599                                 getValue(I.getArgOperand(2)));
5600       setValue(&I, Add);
5601     }
5602     return nullptr;
5603   }
5604   case Intrinsic::convert_to_fp16:
5605     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5606                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5607                                          getValue(I.getArgOperand(0)),
5608                                          DAG.getTargetConstant(0, sdl,
5609                                                                MVT::i32))));
5610     return nullptr;
5611   case Intrinsic::convert_from_fp16:
5612     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5613                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5614                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5615                                          getValue(I.getArgOperand(0)))));
5616     return nullptr;
5617   case Intrinsic::pcmarker: {
5618     SDValue Tmp = getValue(I.getArgOperand(0));
5619     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5620     return nullptr;
5621   }
5622   case Intrinsic::readcyclecounter: {
5623     SDValue Op = getRoot();
5624     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5625                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5626     setValue(&I, Res);
5627     DAG.setRoot(Res.getValue(1));
5628     return nullptr;
5629   }
5630   case Intrinsic::bitreverse:
5631     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5632                              getValue(I.getArgOperand(0)).getValueType(),
5633                              getValue(I.getArgOperand(0))));
5634     return nullptr;
5635   case Intrinsic::bswap:
5636     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5637                              getValue(I.getArgOperand(0)).getValueType(),
5638                              getValue(I.getArgOperand(0))));
5639     return nullptr;
5640   case Intrinsic::cttz: {
5641     SDValue Arg = getValue(I.getArgOperand(0));
5642     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5643     EVT Ty = Arg.getValueType();
5644     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5645                              sdl, Ty, Arg));
5646     return nullptr;
5647   }
5648   case Intrinsic::ctlz: {
5649     SDValue Arg = getValue(I.getArgOperand(0));
5650     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5651     EVT Ty = Arg.getValueType();
5652     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5653                              sdl, Ty, Arg));
5654     return nullptr;
5655   }
5656   case Intrinsic::ctpop: {
5657     SDValue Arg = getValue(I.getArgOperand(0));
5658     EVT Ty = Arg.getValueType();
5659     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5660     return nullptr;
5661   }
5662   case Intrinsic::stacksave: {
5663     SDValue Op = getRoot();
5664     Res = DAG.getNode(
5665         ISD::STACKSAVE, sdl,
5666         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5667     setValue(&I, Res);
5668     DAG.setRoot(Res.getValue(1));
5669     return nullptr;
5670   }
5671   case Intrinsic::stackrestore:
5672     Res = getValue(I.getArgOperand(0));
5673     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5674     return nullptr;
5675   case Intrinsic::get_dynamic_area_offset: {
5676     SDValue Op = getRoot();
5677     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5678     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5679     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5680     // target.
5681     if (PtrTy != ResTy)
5682       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5683                          " intrinsic!");
5684     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5685                       Op);
5686     DAG.setRoot(Op);
5687     setValue(&I, Res);
5688     return nullptr;
5689   }
5690   case Intrinsic::stackguard: {
5691     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5692     MachineFunction &MF = DAG.getMachineFunction();
5693     const Module &M = *MF.getFunction().getParent();
5694     SDValue Chain = getRoot();
5695     if (TLI.useLoadStackGuardNode()) {
5696       Res = getLoadStackGuard(DAG, sdl, Chain);
5697     } else {
5698       const Value *Global = TLI.getSDagStackGuard(M);
5699       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5700       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5701                         MachinePointerInfo(Global, 0), Align,
5702                         MachineMemOperand::MOVolatile);
5703     }
5704     if (TLI.useStackGuardXorFP())
5705       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5706     DAG.setRoot(Chain);
5707     setValue(&I, Res);
5708     return nullptr;
5709   }
5710   case Intrinsic::stackprotector: {
5711     // Emit code into the DAG to store the stack guard onto the stack.
5712     MachineFunction &MF = DAG.getMachineFunction();
5713     MachineFrameInfo &MFI = MF.getFrameInfo();
5714     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5715     SDValue Src, Chain = getRoot();
5716 
5717     if (TLI.useLoadStackGuardNode())
5718       Src = getLoadStackGuard(DAG, sdl, Chain);
5719     else
5720       Src = getValue(I.getArgOperand(0));   // The guard's value.
5721 
5722     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5723 
5724     int FI = FuncInfo.StaticAllocaMap[Slot];
5725     MFI.setStackProtectorIndex(FI);
5726 
5727     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5728 
5729     // Store the stack protector onto the stack.
5730     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5731                                                  DAG.getMachineFunction(), FI),
5732                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5733     setValue(&I, Res);
5734     DAG.setRoot(Res);
5735     return nullptr;
5736   }
5737   case Intrinsic::objectsize: {
5738     // If we don't know by now, we're never going to know.
5739     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5740 
5741     assert(CI && "Non-constant type in __builtin_object_size?");
5742 
5743     SDValue Arg = getValue(I.getCalledValue());
5744     EVT Ty = Arg.getValueType();
5745 
5746     if (CI->isZero())
5747       Res = DAG.getConstant(-1ULL, sdl, Ty);
5748     else
5749       Res = DAG.getConstant(0, sdl, Ty);
5750 
5751     setValue(&I, Res);
5752     return nullptr;
5753   }
5754   case Intrinsic::annotation:
5755   case Intrinsic::ptr_annotation:
5756   case Intrinsic::launder_invariant_group:
5757     // Drop the intrinsic, but forward the value
5758     setValue(&I, getValue(I.getOperand(0)));
5759     return nullptr;
5760   case Intrinsic::assume:
5761   case Intrinsic::var_annotation:
5762   case Intrinsic::sideeffect:
5763     // Discard annotate attributes, assumptions, and artificial side-effects.
5764     return nullptr;
5765 
5766   case Intrinsic::codeview_annotation: {
5767     // Emit a label associated with this metadata.
5768     MachineFunction &MF = DAG.getMachineFunction();
5769     MCSymbol *Label =
5770         MF.getMMI().getContext().createTempSymbol("annotation", true);
5771     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5772     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5773     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5774     DAG.setRoot(Res);
5775     return nullptr;
5776   }
5777 
5778   case Intrinsic::init_trampoline: {
5779     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5780 
5781     SDValue Ops[6];
5782     Ops[0] = getRoot();
5783     Ops[1] = getValue(I.getArgOperand(0));
5784     Ops[2] = getValue(I.getArgOperand(1));
5785     Ops[3] = getValue(I.getArgOperand(2));
5786     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5787     Ops[5] = DAG.getSrcValue(F);
5788 
5789     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5790 
5791     DAG.setRoot(Res);
5792     return nullptr;
5793   }
5794   case Intrinsic::adjust_trampoline:
5795     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5796                              TLI.getPointerTy(DAG.getDataLayout()),
5797                              getValue(I.getArgOperand(0))));
5798     return nullptr;
5799   case Intrinsic::gcroot: {
5800     assert(DAG.getMachineFunction().getFunction().hasGC() &&
5801            "only valid in functions with gc specified, enforced by Verifier");
5802     assert(GFI && "implied by previous");
5803     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5804     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5805 
5806     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5807     GFI->addStackRoot(FI->getIndex(), TypeMap);
5808     return nullptr;
5809   }
5810   case Intrinsic::gcread:
5811   case Intrinsic::gcwrite:
5812     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5813   case Intrinsic::flt_rounds:
5814     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5815     return nullptr;
5816 
5817   case Intrinsic::expect:
5818     // Just replace __builtin_expect(exp, c) with EXP.
5819     setValue(&I, getValue(I.getArgOperand(0)));
5820     return nullptr;
5821 
5822   case Intrinsic::debugtrap:
5823   case Intrinsic::trap: {
5824     StringRef TrapFuncName =
5825         I.getAttributes()
5826             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5827             .getValueAsString();
5828     if (TrapFuncName.empty()) {
5829       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5830         ISD::TRAP : ISD::DEBUGTRAP;
5831       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5832       return nullptr;
5833     }
5834     TargetLowering::ArgListTy Args;
5835 
5836     TargetLowering::CallLoweringInfo CLI(DAG);
5837     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5838         CallingConv::C, I.getType(),
5839         DAG.getExternalSymbol(TrapFuncName.data(),
5840                               TLI.getPointerTy(DAG.getDataLayout())),
5841         std::move(Args));
5842 
5843     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5844     DAG.setRoot(Result.second);
5845     return nullptr;
5846   }
5847 
5848   case Intrinsic::uadd_with_overflow:
5849   case Intrinsic::sadd_with_overflow:
5850   case Intrinsic::usub_with_overflow:
5851   case Intrinsic::ssub_with_overflow:
5852   case Intrinsic::umul_with_overflow:
5853   case Intrinsic::smul_with_overflow: {
5854     ISD::NodeType Op;
5855     switch (Intrinsic) {
5856     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5857     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5858     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5859     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5860     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5861     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5862     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5863     }
5864     SDValue Op1 = getValue(I.getArgOperand(0));
5865     SDValue Op2 = getValue(I.getArgOperand(1));
5866 
5867     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5868     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5869     return nullptr;
5870   }
5871   case Intrinsic::prefetch: {
5872     SDValue Ops[5];
5873     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5874     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
5875     Ops[0] = DAG.getRoot();
5876     Ops[1] = getValue(I.getArgOperand(0));
5877     Ops[2] = getValue(I.getArgOperand(1));
5878     Ops[3] = getValue(I.getArgOperand(2));
5879     Ops[4] = getValue(I.getArgOperand(3));
5880     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5881                                              DAG.getVTList(MVT::Other), Ops,
5882                                              EVT::getIntegerVT(*Context, 8),
5883                                              MachinePointerInfo(I.getArgOperand(0)),
5884                                              0, /* align */
5885                                              Flags);
5886 
5887     // Chain the prefetch in parallell with any pending loads, to stay out of
5888     // the way of later optimizations.
5889     PendingLoads.push_back(Result);
5890     Result = getRoot();
5891     DAG.setRoot(Result);
5892     return nullptr;
5893   }
5894   case Intrinsic::lifetime_start:
5895   case Intrinsic::lifetime_end: {
5896     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5897     // Stack coloring is not enabled in O0, discard region information.
5898     if (TM.getOptLevel() == CodeGenOpt::None)
5899       return nullptr;
5900 
5901     SmallVector<Value *, 4> Allocas;
5902     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5903 
5904     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5905            E = Allocas.end(); Object != E; ++Object) {
5906       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5907 
5908       // Could not find an Alloca.
5909       if (!LifetimeObject)
5910         continue;
5911 
5912       // First check that the Alloca is static, otherwise it won't have a
5913       // valid frame index.
5914       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5915       if (SI == FuncInfo.StaticAllocaMap.end())
5916         return nullptr;
5917 
5918       int FI = SI->second;
5919 
5920       SDValue Ops[2];
5921       Ops[0] = getRoot();
5922       Ops[1] =
5923           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
5924       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5925 
5926       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5927       DAG.setRoot(Res);
5928     }
5929     return nullptr;
5930   }
5931   case Intrinsic::invariant_start:
5932     // Discard region information.
5933     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5934     return nullptr;
5935   case Intrinsic::invariant_end:
5936     // Discard region information.
5937     return nullptr;
5938   case Intrinsic::clear_cache:
5939     return TLI.getClearCacheBuiltinName();
5940   case Intrinsic::donothing:
5941     // ignore
5942     return nullptr;
5943   case Intrinsic::experimental_stackmap:
5944     visitStackmap(I);
5945     return nullptr;
5946   case Intrinsic::experimental_patchpoint_void:
5947   case Intrinsic::experimental_patchpoint_i64:
5948     visitPatchpoint(&I);
5949     return nullptr;
5950   case Intrinsic::experimental_gc_statepoint:
5951     LowerStatepoint(ImmutableStatepoint(&I));
5952     return nullptr;
5953   case Intrinsic::experimental_gc_result:
5954     visitGCResult(cast<GCResultInst>(I));
5955     return nullptr;
5956   case Intrinsic::experimental_gc_relocate:
5957     visitGCRelocate(cast<GCRelocateInst>(I));
5958     return nullptr;
5959   case Intrinsic::instrprof_increment:
5960     llvm_unreachable("instrprof failed to lower an increment");
5961   case Intrinsic::instrprof_value_profile:
5962     llvm_unreachable("instrprof failed to lower a value profiling call");
5963   case Intrinsic::localescape: {
5964     MachineFunction &MF = DAG.getMachineFunction();
5965     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5966 
5967     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5968     // is the same on all targets.
5969     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5970       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5971       if (isa<ConstantPointerNull>(Arg))
5972         continue; // Skip null pointers. They represent a hole in index space.
5973       AllocaInst *Slot = cast<AllocaInst>(Arg);
5974       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5975              "can only escape static allocas");
5976       int FI = FuncInfo.StaticAllocaMap[Slot];
5977       MCSymbol *FrameAllocSym =
5978           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5979               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
5980       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5981               TII->get(TargetOpcode::LOCAL_ESCAPE))
5982           .addSym(FrameAllocSym)
5983           .addFrameIndex(FI);
5984     }
5985 
5986     return nullptr;
5987   }
5988 
5989   case Intrinsic::localrecover: {
5990     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5991     MachineFunction &MF = DAG.getMachineFunction();
5992     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5993 
5994     // Get the symbol that defines the frame offset.
5995     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5996     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5997     unsigned IdxVal =
5998         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
5999     MCSymbol *FrameAllocSym =
6000         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6001             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6002 
6003     // Create a MCSymbol for the label to avoid any target lowering
6004     // that would make this PC relative.
6005     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6006     SDValue OffsetVal =
6007         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6008 
6009     // Add the offset to the FP.
6010     Value *FP = I.getArgOperand(1);
6011     SDValue FPVal = getValue(FP);
6012     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6013     setValue(&I, Add);
6014 
6015     return nullptr;
6016   }
6017 
6018   case Intrinsic::eh_exceptionpointer:
6019   case Intrinsic::eh_exceptioncode: {
6020     // Get the exception pointer vreg, copy from it, and resize it to fit.
6021     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6022     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6023     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6024     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6025     SDValue N =
6026         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6027     if (Intrinsic == Intrinsic::eh_exceptioncode)
6028       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6029     setValue(&I, N);
6030     return nullptr;
6031   }
6032   case Intrinsic::xray_customevent: {
6033     // Here we want to make sure that the intrinsic behaves as if it has a
6034     // specific calling convention, and only for x86_64.
6035     // FIXME: Support other platforms later.
6036     const auto &Triple = DAG.getTarget().getTargetTriple();
6037     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6038       return nullptr;
6039 
6040     SDLoc DL = getCurSDLoc();
6041     SmallVector<SDValue, 8> Ops;
6042 
6043     // We want to say that we always want the arguments in registers.
6044     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6045     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6046     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6047     SDValue Chain = getRoot();
6048     Ops.push_back(LogEntryVal);
6049     Ops.push_back(StrSizeVal);
6050     Ops.push_back(Chain);
6051 
6052     // We need to enforce the calling convention for the callsite, so that
6053     // argument ordering is enforced correctly, and that register allocation can
6054     // see that some registers may be assumed clobbered and have to preserve
6055     // them across calls to the intrinsic.
6056     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6057                                            DL, NodeTys, Ops);
6058     SDValue patchableNode = SDValue(MN, 0);
6059     DAG.setRoot(patchableNode);
6060     setValue(&I, patchableNode);
6061     return nullptr;
6062   }
6063   case Intrinsic::xray_typedevent: {
6064     // Here we want to make sure that the intrinsic behaves as if it has a
6065     // specific calling convention, and only for x86_64.
6066     // FIXME: Support other platforms later.
6067     const auto &Triple = DAG.getTarget().getTargetTriple();
6068     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6069       return nullptr;
6070 
6071     SDLoc DL = getCurSDLoc();
6072     SmallVector<SDValue, 8> Ops;
6073 
6074     // We want to say that we always want the arguments in registers.
6075     // It's unclear to me how manipulating the selection DAG here forces callers
6076     // to provide arguments in registers instead of on the stack.
6077     SDValue LogTypeId = getValue(I.getArgOperand(0));
6078     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6079     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6080     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6081     SDValue Chain = getRoot();
6082     Ops.push_back(LogTypeId);
6083     Ops.push_back(LogEntryVal);
6084     Ops.push_back(StrSizeVal);
6085     Ops.push_back(Chain);
6086 
6087     // We need to enforce the calling convention for the callsite, so that
6088     // argument ordering is enforced correctly, and that register allocation can
6089     // see that some registers may be assumed clobbered and have to preserve
6090     // them across calls to the intrinsic.
6091     MachineSDNode *MN = DAG.getMachineNode(
6092         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6093     SDValue patchableNode = SDValue(MN, 0);
6094     DAG.setRoot(patchableNode);
6095     setValue(&I, patchableNode);
6096     return nullptr;
6097   }
6098   case Intrinsic::experimental_deoptimize:
6099     LowerDeoptimizeCall(&I);
6100     return nullptr;
6101 
6102   case Intrinsic::experimental_vector_reduce_fadd:
6103   case Intrinsic::experimental_vector_reduce_fmul:
6104   case Intrinsic::experimental_vector_reduce_add:
6105   case Intrinsic::experimental_vector_reduce_mul:
6106   case Intrinsic::experimental_vector_reduce_and:
6107   case Intrinsic::experimental_vector_reduce_or:
6108   case Intrinsic::experimental_vector_reduce_xor:
6109   case Intrinsic::experimental_vector_reduce_smax:
6110   case Intrinsic::experimental_vector_reduce_smin:
6111   case Intrinsic::experimental_vector_reduce_umax:
6112   case Intrinsic::experimental_vector_reduce_umin:
6113   case Intrinsic::experimental_vector_reduce_fmax:
6114   case Intrinsic::experimental_vector_reduce_fmin:
6115     visitVectorReduce(I, Intrinsic);
6116     return nullptr;
6117 
6118   case Intrinsic::icall_branch_funnel: {
6119     SmallVector<SDValue, 16> Ops;
6120     Ops.push_back(DAG.getRoot());
6121     Ops.push_back(getValue(I.getArgOperand(0)));
6122 
6123     int64_t Offset;
6124     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6125         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6126     if (!Base)
6127       report_fatal_error(
6128           "llvm.icall.branch.funnel operand must be a GlobalValue");
6129     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6130 
6131     struct BranchFunnelTarget {
6132       int64_t Offset;
6133       SDValue Target;
6134     };
6135     SmallVector<BranchFunnelTarget, 8> Targets;
6136 
6137     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6138       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6139           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6140       if (ElemBase != Base)
6141         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6142                            "to the same GlobalValue");
6143 
6144       SDValue Val = getValue(I.getArgOperand(Op + 1));
6145       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6146       if (!GA)
6147         report_fatal_error(
6148             "llvm.icall.branch.funnel operand must be a GlobalValue");
6149       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6150                                      GA->getGlobal(), getCurSDLoc(),
6151                                      Val.getValueType(), GA->getOffset())});
6152     }
6153     llvm::sort(Targets.begin(), Targets.end(),
6154                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6155                  return T1.Offset < T2.Offset;
6156                });
6157 
6158     for (auto &T : Targets) {
6159       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6160       Ops.push_back(T.Target);
6161     }
6162 
6163     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6164                                  getCurSDLoc(), MVT::Other, Ops),
6165               0);
6166     DAG.setRoot(N);
6167     setValue(&I, N);
6168     HasTailCall = true;
6169     return nullptr;
6170   }
6171 
6172   case Intrinsic::wasm_landingpad_index: {
6173     // TODO store landing pad index in a map, which will be used when generating
6174     // LSDA information
6175     return nullptr;
6176   }
6177   }
6178 }
6179 
6180 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6181     const ConstrainedFPIntrinsic &FPI) {
6182   SDLoc sdl = getCurSDLoc();
6183   unsigned Opcode;
6184   switch (FPI.getIntrinsicID()) {
6185   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6186   case Intrinsic::experimental_constrained_fadd:
6187     Opcode = ISD::STRICT_FADD;
6188     break;
6189   case Intrinsic::experimental_constrained_fsub:
6190     Opcode = ISD::STRICT_FSUB;
6191     break;
6192   case Intrinsic::experimental_constrained_fmul:
6193     Opcode = ISD::STRICT_FMUL;
6194     break;
6195   case Intrinsic::experimental_constrained_fdiv:
6196     Opcode = ISD::STRICT_FDIV;
6197     break;
6198   case Intrinsic::experimental_constrained_frem:
6199     Opcode = ISD::STRICT_FREM;
6200     break;
6201   case Intrinsic::experimental_constrained_fma:
6202     Opcode = ISD::STRICT_FMA;
6203     break;
6204   case Intrinsic::experimental_constrained_sqrt:
6205     Opcode = ISD::STRICT_FSQRT;
6206     break;
6207   case Intrinsic::experimental_constrained_pow:
6208     Opcode = ISD::STRICT_FPOW;
6209     break;
6210   case Intrinsic::experimental_constrained_powi:
6211     Opcode = ISD::STRICT_FPOWI;
6212     break;
6213   case Intrinsic::experimental_constrained_sin:
6214     Opcode = ISD::STRICT_FSIN;
6215     break;
6216   case Intrinsic::experimental_constrained_cos:
6217     Opcode = ISD::STRICT_FCOS;
6218     break;
6219   case Intrinsic::experimental_constrained_exp:
6220     Opcode = ISD::STRICT_FEXP;
6221     break;
6222   case Intrinsic::experimental_constrained_exp2:
6223     Opcode = ISD::STRICT_FEXP2;
6224     break;
6225   case Intrinsic::experimental_constrained_log:
6226     Opcode = ISD::STRICT_FLOG;
6227     break;
6228   case Intrinsic::experimental_constrained_log10:
6229     Opcode = ISD::STRICT_FLOG10;
6230     break;
6231   case Intrinsic::experimental_constrained_log2:
6232     Opcode = ISD::STRICT_FLOG2;
6233     break;
6234   case Intrinsic::experimental_constrained_rint:
6235     Opcode = ISD::STRICT_FRINT;
6236     break;
6237   case Intrinsic::experimental_constrained_nearbyint:
6238     Opcode = ISD::STRICT_FNEARBYINT;
6239     break;
6240   }
6241   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6242   SDValue Chain = getRoot();
6243   SmallVector<EVT, 4> ValueVTs;
6244   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6245   ValueVTs.push_back(MVT::Other); // Out chain
6246 
6247   SDVTList VTs = DAG.getVTList(ValueVTs);
6248   SDValue Result;
6249   if (FPI.isUnaryOp())
6250     Result = DAG.getNode(Opcode, sdl, VTs,
6251                          { Chain, getValue(FPI.getArgOperand(0)) });
6252   else if (FPI.isTernaryOp())
6253     Result = DAG.getNode(Opcode, sdl, VTs,
6254                          { Chain, getValue(FPI.getArgOperand(0)),
6255                                   getValue(FPI.getArgOperand(1)),
6256                                   getValue(FPI.getArgOperand(2)) });
6257   else
6258     Result = DAG.getNode(Opcode, sdl, VTs,
6259                          { Chain, getValue(FPI.getArgOperand(0)),
6260                            getValue(FPI.getArgOperand(1))  });
6261 
6262   assert(Result.getNode()->getNumValues() == 2);
6263   SDValue OutChain = Result.getValue(1);
6264   DAG.setRoot(OutChain);
6265   SDValue FPResult = Result.getValue(0);
6266   setValue(&FPI, FPResult);
6267 }
6268 
6269 std::pair<SDValue, SDValue>
6270 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6271                                     const BasicBlock *EHPadBB) {
6272   MachineFunction &MF = DAG.getMachineFunction();
6273   MachineModuleInfo &MMI = MF.getMMI();
6274   MCSymbol *BeginLabel = nullptr;
6275 
6276   if (EHPadBB) {
6277     // Insert a label before the invoke call to mark the try range.  This can be
6278     // used to detect deletion of the invoke via the MachineModuleInfo.
6279     BeginLabel = MMI.getContext().createTempSymbol();
6280 
6281     // For SjLj, keep track of which landing pads go with which invokes
6282     // so as to maintain the ordering of pads in the LSDA.
6283     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6284     if (CallSiteIndex) {
6285       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6286       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6287 
6288       // Now that the call site is handled, stop tracking it.
6289       MMI.setCurrentCallSite(0);
6290     }
6291 
6292     // Both PendingLoads and PendingExports must be flushed here;
6293     // this call might not return.
6294     (void)getRoot();
6295     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6296 
6297     CLI.setChain(getRoot());
6298   }
6299   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6300   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6301 
6302   assert((CLI.IsTailCall || Result.second.getNode()) &&
6303          "Non-null chain expected with non-tail call!");
6304   assert((Result.second.getNode() || !Result.first.getNode()) &&
6305          "Null value expected with tail call!");
6306 
6307   if (!Result.second.getNode()) {
6308     // As a special case, a null chain means that a tail call has been emitted
6309     // and the DAG root is already updated.
6310     HasTailCall = true;
6311 
6312     // Since there's no actual continuation from this block, nothing can be
6313     // relying on us setting vregs for them.
6314     PendingExports.clear();
6315   } else {
6316     DAG.setRoot(Result.second);
6317   }
6318 
6319   if (EHPadBB) {
6320     // Insert a label at the end of the invoke call to mark the try range.  This
6321     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6322     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6323     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6324 
6325     // Inform MachineModuleInfo of range.
6326     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6327     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6328     // actually use outlined funclets and their LSDA info style.
6329     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6330       assert(CLI.CS);
6331       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6332       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6333                                 BeginLabel, EndLabel);
6334     } else {
6335       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6336     }
6337   }
6338 
6339   return Result;
6340 }
6341 
6342 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6343                                       bool isTailCall,
6344                                       const BasicBlock *EHPadBB) {
6345   auto &DL = DAG.getDataLayout();
6346   FunctionType *FTy = CS.getFunctionType();
6347   Type *RetTy = CS.getType();
6348 
6349   TargetLowering::ArgListTy Args;
6350   Args.reserve(CS.arg_size());
6351 
6352   const Value *SwiftErrorVal = nullptr;
6353   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6354 
6355   // We can't tail call inside a function with a swifterror argument. Lowering
6356   // does not support this yet. It would have to move into the swifterror
6357   // register before the call.
6358   auto *Caller = CS.getInstruction()->getParent()->getParent();
6359   if (TLI.supportSwiftError() &&
6360       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6361     isTailCall = false;
6362 
6363   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6364        i != e; ++i) {
6365     TargetLowering::ArgListEntry Entry;
6366     const Value *V = *i;
6367 
6368     // Skip empty types
6369     if (V->getType()->isEmptyTy())
6370       continue;
6371 
6372     SDValue ArgNode = getValue(V);
6373     Entry.Node = ArgNode; Entry.Ty = V->getType();
6374 
6375     Entry.setAttributes(&CS, i - CS.arg_begin());
6376 
6377     // Use swifterror virtual register as input to the call.
6378     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6379       SwiftErrorVal = V;
6380       // We find the virtual register for the actual swifterror argument.
6381       // Instead of using the Value, we use the virtual register instead.
6382       Entry.Node = DAG.getRegister(FuncInfo
6383                                        .getOrCreateSwiftErrorVRegUseAt(
6384                                            CS.getInstruction(), FuncInfo.MBB, V)
6385                                        .first,
6386                                    EVT(TLI.getPointerTy(DL)));
6387     }
6388 
6389     Args.push_back(Entry);
6390 
6391     // If we have an explicit sret argument that is an Instruction, (i.e., it
6392     // might point to function-local memory), we can't meaningfully tail-call.
6393     if (Entry.IsSRet && isa<Instruction>(V))
6394       isTailCall = false;
6395   }
6396 
6397   // Check if target-independent constraints permit a tail call here.
6398   // Target-dependent constraints are checked within TLI->LowerCallTo.
6399   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6400     isTailCall = false;
6401 
6402   // Disable tail calls if there is an swifterror argument. Targets have not
6403   // been updated to support tail calls.
6404   if (TLI.supportSwiftError() && SwiftErrorVal)
6405     isTailCall = false;
6406 
6407   TargetLowering::CallLoweringInfo CLI(DAG);
6408   CLI.setDebugLoc(getCurSDLoc())
6409       .setChain(getRoot())
6410       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6411       .setTailCall(isTailCall)
6412       .setConvergent(CS.isConvergent());
6413   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6414 
6415   if (Result.first.getNode()) {
6416     const Instruction *Inst = CS.getInstruction();
6417     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6418     setValue(Inst, Result.first);
6419   }
6420 
6421   // The last element of CLI.InVals has the SDValue for swifterror return.
6422   // Here we copy it to a virtual register and update SwiftErrorMap for
6423   // book-keeping.
6424   if (SwiftErrorVal && TLI.supportSwiftError()) {
6425     // Get the last element of InVals.
6426     SDValue Src = CLI.InVals.back();
6427     unsigned VReg; bool CreatedVReg;
6428     std::tie(VReg, CreatedVReg) =
6429         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6430     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6431     // We update the virtual register for the actual swifterror argument.
6432     if (CreatedVReg)
6433       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6434     DAG.setRoot(CopyNode);
6435   }
6436 }
6437 
6438 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6439                              SelectionDAGBuilder &Builder) {
6440   // Check to see if this load can be trivially constant folded, e.g. if the
6441   // input is from a string literal.
6442   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6443     // Cast pointer to the type we really want to load.
6444     Type *LoadTy =
6445         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6446     if (LoadVT.isVector())
6447       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6448 
6449     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6450                                          PointerType::getUnqual(LoadTy));
6451 
6452     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6453             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6454       return Builder.getValue(LoadCst);
6455   }
6456 
6457   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6458   // still constant memory, the input chain can be the entry node.
6459   SDValue Root;
6460   bool ConstantMemory = false;
6461 
6462   // Do not serialize (non-volatile) loads of constant memory with anything.
6463   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6464     Root = Builder.DAG.getEntryNode();
6465     ConstantMemory = true;
6466   } else {
6467     // Do not serialize non-volatile loads against each other.
6468     Root = Builder.DAG.getRoot();
6469   }
6470 
6471   SDValue Ptr = Builder.getValue(PtrVal);
6472   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6473                                         Ptr, MachinePointerInfo(PtrVal),
6474                                         /* Alignment = */ 1);
6475 
6476   if (!ConstantMemory)
6477     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6478   return LoadVal;
6479 }
6480 
6481 /// Record the value for an instruction that produces an integer result,
6482 /// converting the type where necessary.
6483 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6484                                                   SDValue Value,
6485                                                   bool IsSigned) {
6486   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6487                                                     I.getType(), true);
6488   if (IsSigned)
6489     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6490   else
6491     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6492   setValue(&I, Value);
6493 }
6494 
6495 /// See if we can lower a memcmp call into an optimized form. If so, return
6496 /// true and lower it. Otherwise return false, and it will be lowered like a
6497 /// normal call.
6498 /// The caller already checked that \p I calls the appropriate LibFunc with a
6499 /// correct prototype.
6500 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6501   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6502   const Value *Size = I.getArgOperand(2);
6503   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6504   if (CSize && CSize->getZExtValue() == 0) {
6505     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6506                                                           I.getType(), true);
6507     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6508     return true;
6509   }
6510 
6511   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6512   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6513       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6514       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6515   if (Res.first.getNode()) {
6516     processIntegerCallValue(I, Res.first, true);
6517     PendingLoads.push_back(Res.second);
6518     return true;
6519   }
6520 
6521   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6522   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6523   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6524     return false;
6525 
6526   // If the target has a fast compare for the given size, it will return a
6527   // preferred load type for that size. Require that the load VT is legal and
6528   // that the target supports unaligned loads of that type. Otherwise, return
6529   // INVALID.
6530   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6531     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6532     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6533     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6534       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6535       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6536       // TODO: Check alignment of src and dest ptrs.
6537       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6538       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6539       if (!TLI.isTypeLegal(LVT) ||
6540           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6541           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6542         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6543     }
6544 
6545     return LVT;
6546   };
6547 
6548   // This turns into unaligned loads. We only do this if the target natively
6549   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6550   // we'll only produce a small number of byte loads.
6551   MVT LoadVT;
6552   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6553   switch (NumBitsToCompare) {
6554   default:
6555     return false;
6556   case 16:
6557     LoadVT = MVT::i16;
6558     break;
6559   case 32:
6560     LoadVT = MVT::i32;
6561     break;
6562   case 64:
6563   case 128:
6564   case 256:
6565     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6566     break;
6567   }
6568 
6569   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6570     return false;
6571 
6572   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6573   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6574 
6575   // Bitcast to a wide integer type if the loads are vectors.
6576   if (LoadVT.isVector()) {
6577     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6578     LoadL = DAG.getBitcast(CmpVT, LoadL);
6579     LoadR = DAG.getBitcast(CmpVT, LoadR);
6580   }
6581 
6582   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6583   processIntegerCallValue(I, Cmp, false);
6584   return true;
6585 }
6586 
6587 /// See if we can lower a memchr call into an optimized form. If so, return
6588 /// true and lower it. Otherwise return false, and it will be lowered like a
6589 /// normal call.
6590 /// The caller already checked that \p I calls the appropriate LibFunc with a
6591 /// correct prototype.
6592 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6593   const Value *Src = I.getArgOperand(0);
6594   const Value *Char = I.getArgOperand(1);
6595   const Value *Length = I.getArgOperand(2);
6596 
6597   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6598   std::pair<SDValue, SDValue> Res =
6599     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6600                                 getValue(Src), getValue(Char), getValue(Length),
6601                                 MachinePointerInfo(Src));
6602   if (Res.first.getNode()) {
6603     setValue(&I, Res.first);
6604     PendingLoads.push_back(Res.second);
6605     return true;
6606   }
6607 
6608   return false;
6609 }
6610 
6611 /// See if we can lower a mempcpy call into an optimized form. If so, return
6612 /// true and lower it. Otherwise return false, and it will be lowered like a
6613 /// normal call.
6614 /// The caller already checked that \p I calls the appropriate LibFunc with a
6615 /// correct prototype.
6616 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6617   SDValue Dst = getValue(I.getArgOperand(0));
6618   SDValue Src = getValue(I.getArgOperand(1));
6619   SDValue Size = getValue(I.getArgOperand(2));
6620 
6621   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6622   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6623   unsigned Align = std::min(DstAlign, SrcAlign);
6624   if (Align == 0) // Alignment of one or both could not be inferred.
6625     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6626 
6627   bool isVol = false;
6628   SDLoc sdl = getCurSDLoc();
6629 
6630   // In the mempcpy context we need to pass in a false value for isTailCall
6631   // because the return pointer needs to be adjusted by the size of
6632   // the copied memory.
6633   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6634                              false, /*isTailCall=*/false,
6635                              MachinePointerInfo(I.getArgOperand(0)),
6636                              MachinePointerInfo(I.getArgOperand(1)));
6637   assert(MC.getNode() != nullptr &&
6638          "** memcpy should not be lowered as TailCall in mempcpy context **");
6639   DAG.setRoot(MC);
6640 
6641   // Check if Size needs to be truncated or extended.
6642   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6643 
6644   // Adjust return pointer to point just past the last dst byte.
6645   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6646                                     Dst, Size);
6647   setValue(&I, DstPlusSize);
6648   return true;
6649 }
6650 
6651 /// See if we can lower a strcpy call into an optimized form.  If so, return
6652 /// true and lower it, otherwise return false and it will be lowered like a
6653 /// normal call.
6654 /// The caller already checked that \p I calls the appropriate LibFunc with a
6655 /// correct prototype.
6656 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6657   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6658 
6659   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6660   std::pair<SDValue, SDValue> Res =
6661     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6662                                 getValue(Arg0), getValue(Arg1),
6663                                 MachinePointerInfo(Arg0),
6664                                 MachinePointerInfo(Arg1), isStpcpy);
6665   if (Res.first.getNode()) {
6666     setValue(&I, Res.first);
6667     DAG.setRoot(Res.second);
6668     return true;
6669   }
6670 
6671   return false;
6672 }
6673 
6674 /// See if we can lower a strcmp call into an optimized form.  If so, return
6675 /// true and lower it, otherwise return false and it will be lowered like a
6676 /// normal call.
6677 /// The caller already checked that \p I calls the appropriate LibFunc with a
6678 /// correct prototype.
6679 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6680   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6681 
6682   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6683   std::pair<SDValue, SDValue> Res =
6684     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6685                                 getValue(Arg0), getValue(Arg1),
6686                                 MachinePointerInfo(Arg0),
6687                                 MachinePointerInfo(Arg1));
6688   if (Res.first.getNode()) {
6689     processIntegerCallValue(I, Res.first, true);
6690     PendingLoads.push_back(Res.second);
6691     return true;
6692   }
6693 
6694   return false;
6695 }
6696 
6697 /// See if we can lower a strlen call into an optimized form.  If so, return
6698 /// true and lower it, otherwise return false and it will be lowered like a
6699 /// normal call.
6700 /// The caller already checked that \p I calls the appropriate LibFunc with a
6701 /// correct prototype.
6702 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6703   const Value *Arg0 = I.getArgOperand(0);
6704 
6705   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6706   std::pair<SDValue, SDValue> Res =
6707     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6708                                 getValue(Arg0), MachinePointerInfo(Arg0));
6709   if (Res.first.getNode()) {
6710     processIntegerCallValue(I, Res.first, false);
6711     PendingLoads.push_back(Res.second);
6712     return true;
6713   }
6714 
6715   return false;
6716 }
6717 
6718 /// See if we can lower a strnlen call into an optimized form.  If so, return
6719 /// true and lower it, otherwise return false and it will be lowered like a
6720 /// normal call.
6721 /// The caller already checked that \p I calls the appropriate LibFunc with a
6722 /// correct prototype.
6723 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6724   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6725 
6726   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6727   std::pair<SDValue, SDValue> Res =
6728     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6729                                  getValue(Arg0), getValue(Arg1),
6730                                  MachinePointerInfo(Arg0));
6731   if (Res.first.getNode()) {
6732     processIntegerCallValue(I, Res.first, false);
6733     PendingLoads.push_back(Res.second);
6734     return true;
6735   }
6736 
6737   return false;
6738 }
6739 
6740 /// See if we can lower a unary floating-point operation into an SDNode with
6741 /// the specified Opcode.  If so, return true and lower it, otherwise return
6742 /// false and it will be lowered like a normal call.
6743 /// The caller already checked that \p I calls the appropriate LibFunc with a
6744 /// correct prototype.
6745 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6746                                               unsigned Opcode) {
6747   // We already checked this call's prototype; verify it doesn't modify errno.
6748   if (!I.onlyReadsMemory())
6749     return false;
6750 
6751   SDValue Tmp = getValue(I.getArgOperand(0));
6752   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6753   return true;
6754 }
6755 
6756 /// See if we can lower a binary floating-point operation into an SDNode with
6757 /// the specified Opcode. If so, return true and lower it. Otherwise return
6758 /// false, and it will be lowered like a normal call.
6759 /// The caller already checked that \p I calls the appropriate LibFunc with a
6760 /// correct prototype.
6761 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6762                                                unsigned Opcode) {
6763   // We already checked this call's prototype; verify it doesn't modify errno.
6764   if (!I.onlyReadsMemory())
6765     return false;
6766 
6767   SDValue Tmp0 = getValue(I.getArgOperand(0));
6768   SDValue Tmp1 = getValue(I.getArgOperand(1));
6769   EVT VT = Tmp0.getValueType();
6770   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6771   return true;
6772 }
6773 
6774 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6775   // Handle inline assembly differently.
6776   if (isa<InlineAsm>(I.getCalledValue())) {
6777     visitInlineAsm(&I);
6778     return;
6779   }
6780 
6781   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6782   computeUsesVAFloatArgument(I, MMI);
6783 
6784   const char *RenameFn = nullptr;
6785   if (Function *F = I.getCalledFunction()) {
6786     if (F->isDeclaration()) {
6787       // Is this an LLVM intrinsic or a target-specific intrinsic?
6788       unsigned IID = F->getIntrinsicID();
6789       if (!IID)
6790         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
6791           IID = II->getIntrinsicID(F);
6792 
6793       if (IID) {
6794         RenameFn = visitIntrinsicCall(I, IID);
6795         if (!RenameFn)
6796           return;
6797       }
6798     }
6799 
6800     // Check for well-known libc/libm calls.  If the function is internal, it
6801     // can't be a library call.  Don't do the check if marked as nobuiltin for
6802     // some reason or the call site requires strict floating point semantics.
6803     LibFunc Func;
6804     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6805         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6806         LibInfo->hasOptimizedCodeGen(Func)) {
6807       switch (Func) {
6808       default: break;
6809       case LibFunc_copysign:
6810       case LibFunc_copysignf:
6811       case LibFunc_copysignl:
6812         // We already checked this call's prototype; verify it doesn't modify
6813         // errno.
6814         if (I.onlyReadsMemory()) {
6815           SDValue LHS = getValue(I.getArgOperand(0));
6816           SDValue RHS = getValue(I.getArgOperand(1));
6817           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6818                                    LHS.getValueType(), LHS, RHS));
6819           return;
6820         }
6821         break;
6822       case LibFunc_fabs:
6823       case LibFunc_fabsf:
6824       case LibFunc_fabsl:
6825         if (visitUnaryFloatCall(I, ISD::FABS))
6826           return;
6827         break;
6828       case LibFunc_fmin:
6829       case LibFunc_fminf:
6830       case LibFunc_fminl:
6831         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6832           return;
6833         break;
6834       case LibFunc_fmax:
6835       case LibFunc_fmaxf:
6836       case LibFunc_fmaxl:
6837         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6838           return;
6839         break;
6840       case LibFunc_sin:
6841       case LibFunc_sinf:
6842       case LibFunc_sinl:
6843         if (visitUnaryFloatCall(I, ISD::FSIN))
6844           return;
6845         break;
6846       case LibFunc_cos:
6847       case LibFunc_cosf:
6848       case LibFunc_cosl:
6849         if (visitUnaryFloatCall(I, ISD::FCOS))
6850           return;
6851         break;
6852       case LibFunc_sqrt:
6853       case LibFunc_sqrtf:
6854       case LibFunc_sqrtl:
6855       case LibFunc_sqrt_finite:
6856       case LibFunc_sqrtf_finite:
6857       case LibFunc_sqrtl_finite:
6858         if (visitUnaryFloatCall(I, ISD::FSQRT))
6859           return;
6860         break;
6861       case LibFunc_floor:
6862       case LibFunc_floorf:
6863       case LibFunc_floorl:
6864         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6865           return;
6866         break;
6867       case LibFunc_nearbyint:
6868       case LibFunc_nearbyintf:
6869       case LibFunc_nearbyintl:
6870         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6871           return;
6872         break;
6873       case LibFunc_ceil:
6874       case LibFunc_ceilf:
6875       case LibFunc_ceill:
6876         if (visitUnaryFloatCall(I, ISD::FCEIL))
6877           return;
6878         break;
6879       case LibFunc_rint:
6880       case LibFunc_rintf:
6881       case LibFunc_rintl:
6882         if (visitUnaryFloatCall(I, ISD::FRINT))
6883           return;
6884         break;
6885       case LibFunc_round:
6886       case LibFunc_roundf:
6887       case LibFunc_roundl:
6888         if (visitUnaryFloatCall(I, ISD::FROUND))
6889           return;
6890         break;
6891       case LibFunc_trunc:
6892       case LibFunc_truncf:
6893       case LibFunc_truncl:
6894         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6895           return;
6896         break;
6897       case LibFunc_log2:
6898       case LibFunc_log2f:
6899       case LibFunc_log2l:
6900         if (visitUnaryFloatCall(I, ISD::FLOG2))
6901           return;
6902         break;
6903       case LibFunc_exp2:
6904       case LibFunc_exp2f:
6905       case LibFunc_exp2l:
6906         if (visitUnaryFloatCall(I, ISD::FEXP2))
6907           return;
6908         break;
6909       case LibFunc_memcmp:
6910         if (visitMemCmpCall(I))
6911           return;
6912         break;
6913       case LibFunc_mempcpy:
6914         if (visitMemPCpyCall(I))
6915           return;
6916         break;
6917       case LibFunc_memchr:
6918         if (visitMemChrCall(I))
6919           return;
6920         break;
6921       case LibFunc_strcpy:
6922         if (visitStrCpyCall(I, false))
6923           return;
6924         break;
6925       case LibFunc_stpcpy:
6926         if (visitStrCpyCall(I, true))
6927           return;
6928         break;
6929       case LibFunc_strcmp:
6930         if (visitStrCmpCall(I))
6931           return;
6932         break;
6933       case LibFunc_strlen:
6934         if (visitStrLenCall(I))
6935           return;
6936         break;
6937       case LibFunc_strnlen:
6938         if (visitStrNLenCall(I))
6939           return;
6940         break;
6941       }
6942     }
6943   }
6944 
6945   SDValue Callee;
6946   if (!RenameFn)
6947     Callee = getValue(I.getCalledValue());
6948   else
6949     Callee = DAG.getExternalSymbol(
6950         RenameFn,
6951         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6952 
6953   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6954   // have to do anything here to lower funclet bundles.
6955   assert(!I.hasOperandBundlesOtherThan(
6956              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6957          "Cannot lower calls with arbitrary operand bundles!");
6958 
6959   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6960     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6961   else
6962     // Check if we can potentially perform a tail call. More detailed checking
6963     // is be done within LowerCallTo, after more information about the call is
6964     // known.
6965     LowerCallTo(&I, Callee, I.isTailCall());
6966 }
6967 
6968 namespace {
6969 
6970 /// AsmOperandInfo - This contains information for each constraint that we are
6971 /// lowering.
6972 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6973 public:
6974   /// CallOperand - If this is the result output operand or a clobber
6975   /// this is null, otherwise it is the incoming operand to the CallInst.
6976   /// This gets modified as the asm is processed.
6977   SDValue CallOperand;
6978 
6979   /// AssignedRegs - If this is a register or register class operand, this
6980   /// contains the set of register corresponding to the operand.
6981   RegsForValue AssignedRegs;
6982 
6983   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6984     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
6985   }
6986 
6987   /// Whether or not this operand accesses memory
6988   bool hasMemory(const TargetLowering &TLI) const {
6989     // Indirect operand accesses access memory.
6990     if (isIndirect)
6991       return true;
6992 
6993     for (const auto &Code : Codes)
6994       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6995         return true;
6996 
6997     return false;
6998   }
6999 
7000   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7001   /// corresponds to.  If there is no Value* for this operand, it returns
7002   /// MVT::Other.
7003   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7004                            const DataLayout &DL) const {
7005     if (!CallOperandVal) return MVT::Other;
7006 
7007     if (isa<BasicBlock>(CallOperandVal))
7008       return TLI.getPointerTy(DL);
7009 
7010     llvm::Type *OpTy = CallOperandVal->getType();
7011 
7012     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7013     // If this is an indirect operand, the operand is a pointer to the
7014     // accessed type.
7015     if (isIndirect) {
7016       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7017       if (!PtrTy)
7018         report_fatal_error("Indirect operand for inline asm not a pointer!");
7019       OpTy = PtrTy->getElementType();
7020     }
7021 
7022     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7023     if (StructType *STy = dyn_cast<StructType>(OpTy))
7024       if (STy->getNumElements() == 1)
7025         OpTy = STy->getElementType(0);
7026 
7027     // If OpTy is not a single value, it may be a struct/union that we
7028     // can tile with integers.
7029     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7030       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7031       switch (BitSize) {
7032       default: break;
7033       case 1:
7034       case 8:
7035       case 16:
7036       case 32:
7037       case 64:
7038       case 128:
7039         OpTy = IntegerType::get(Context, BitSize);
7040         break;
7041       }
7042     }
7043 
7044     return TLI.getValueType(DL, OpTy, true);
7045   }
7046 };
7047 
7048 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7049 
7050 } // end anonymous namespace
7051 
7052 /// Make sure that the output operand \p OpInfo and its corresponding input
7053 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7054 /// out).
7055 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7056                                SDISelAsmOperandInfo &MatchingOpInfo,
7057                                SelectionDAG &DAG) {
7058   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7059     return;
7060 
7061   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7062   const auto &TLI = DAG.getTargetLoweringInfo();
7063 
7064   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7065       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7066                                        OpInfo.ConstraintVT);
7067   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7068       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7069                                        MatchingOpInfo.ConstraintVT);
7070   if ((OpInfo.ConstraintVT.isInteger() !=
7071        MatchingOpInfo.ConstraintVT.isInteger()) ||
7072       (MatchRC.second != InputRC.second)) {
7073     // FIXME: error out in a more elegant fashion
7074     report_fatal_error("Unsupported asm: input constraint"
7075                        " with a matching output constraint of"
7076                        " incompatible type!");
7077   }
7078   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7079 }
7080 
7081 /// Get a direct memory input to behave well as an indirect operand.
7082 /// This may introduce stores, hence the need for a \p Chain.
7083 /// \return The (possibly updated) chain.
7084 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7085                                         SDISelAsmOperandInfo &OpInfo,
7086                                         SelectionDAG &DAG) {
7087   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7088 
7089   // If we don't have an indirect input, put it in the constpool if we can,
7090   // otherwise spill it to a stack slot.
7091   // TODO: This isn't quite right. We need to handle these according to
7092   // the addressing mode that the constraint wants. Also, this may take
7093   // an additional register for the computation and we don't want that
7094   // either.
7095 
7096   // If the operand is a float, integer, or vector constant, spill to a
7097   // constant pool entry to get its address.
7098   const Value *OpVal = OpInfo.CallOperandVal;
7099   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7100       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7101     OpInfo.CallOperand = DAG.getConstantPool(
7102         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7103     return Chain;
7104   }
7105 
7106   // Otherwise, create a stack slot and emit a store to it before the asm.
7107   Type *Ty = OpVal->getType();
7108   auto &DL = DAG.getDataLayout();
7109   uint64_t TySize = DL.getTypeAllocSize(Ty);
7110   unsigned Align = DL.getPrefTypeAlignment(Ty);
7111   MachineFunction &MF = DAG.getMachineFunction();
7112   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7113   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7114   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7115                        MachinePointerInfo::getFixedStack(MF, SSFI));
7116   OpInfo.CallOperand = StackSlot;
7117 
7118   return Chain;
7119 }
7120 
7121 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7122 /// specified operand.  We prefer to assign virtual registers, to allow the
7123 /// register allocator to handle the assignment process.  However, if the asm
7124 /// uses features that we can't model on machineinstrs, we have SDISel do the
7125 /// allocation.  This produces generally horrible, but correct, code.
7126 ///
7127 ///   OpInfo describes the operand.
7128 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
7129                                  const SDLoc &DL,
7130                                  SDISelAsmOperandInfo &OpInfo) {
7131   LLVMContext &Context = *DAG.getContext();
7132 
7133   MachineFunction &MF = DAG.getMachineFunction();
7134   SmallVector<unsigned, 4> Regs;
7135   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7136 
7137   // If this is a constraint for a single physreg, or a constraint for a
7138   // register class, find it.
7139   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
7140       TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode,
7141                                        OpInfo.ConstraintVT);
7142 
7143   unsigned NumRegs = 1;
7144   if (OpInfo.ConstraintVT != MVT::Other) {
7145     // If this is a FP input in an integer register (or visa versa) insert a bit
7146     // cast of the input value.  More generally, handle any case where the input
7147     // value disagrees with the register class we plan to stick this in.
7148     if (OpInfo.Type == InlineAsm::isInput && PhysReg.second &&
7149         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
7150       // Try to convert to the first EVT that the reg class contains.  If the
7151       // types are identical size, use a bitcast to convert (e.g. two differing
7152       // vector types).
7153       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
7154       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
7155         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7156                                          RegVT, OpInfo.CallOperand);
7157         OpInfo.ConstraintVT = RegVT;
7158       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7159         // If the input is a FP value and we want it in FP registers, do a
7160         // bitcast to the corresponding integer type.  This turns an f64 value
7161         // into i64, which can be passed with two i32 values on a 32-bit
7162         // machine.
7163         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7164         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7165                                          RegVT, OpInfo.CallOperand);
7166         OpInfo.ConstraintVT = RegVT;
7167       }
7168     }
7169 
7170     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7171   }
7172 
7173   MVT RegVT;
7174   EVT ValueVT = OpInfo.ConstraintVT;
7175 
7176   // If this is a constraint for a specific physical register, like {r17},
7177   // assign it now.
7178   if (unsigned AssignedReg = PhysReg.first) {
7179     const TargetRegisterClass *RC = PhysReg.second;
7180     if (OpInfo.ConstraintVT == MVT::Other)
7181       ValueVT = *TRI.legalclasstypes_begin(*RC);
7182 
7183     // Get the actual register value type.  This is important, because the user
7184     // may have asked for (e.g.) the AX register in i32 type.  We need to
7185     // remember that AX is actually i16 to get the right extension.
7186     RegVT = *TRI.legalclasstypes_begin(*RC);
7187 
7188     // This is a explicit reference to a physical register.
7189     Regs.push_back(AssignedReg);
7190 
7191     // If this is an expanded reference, add the rest of the regs to Regs.
7192     if (NumRegs != 1) {
7193       TargetRegisterClass::iterator I = RC->begin();
7194       for (; *I != AssignedReg; ++I)
7195         assert(I != RC->end() && "Didn't find reg!");
7196 
7197       // Already added the first reg.
7198       --NumRegs; ++I;
7199       for (; NumRegs; --NumRegs, ++I) {
7200         assert(I != RC->end() && "Ran out of registers to allocate!");
7201         Regs.push_back(*I);
7202       }
7203     }
7204 
7205     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7206     return;
7207   }
7208 
7209   // Otherwise, if this was a reference to an LLVM register class, create vregs
7210   // for this reference.
7211   if (const TargetRegisterClass *RC = PhysReg.second) {
7212     RegVT = *TRI.legalclasstypes_begin(*RC);
7213     if (OpInfo.ConstraintVT == MVT::Other)
7214       ValueVT = RegVT;
7215 
7216     // Create the appropriate number of virtual registers.
7217     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7218     for (; NumRegs; --NumRegs)
7219       Regs.push_back(RegInfo.createVirtualRegister(RC));
7220 
7221     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7222     return;
7223   }
7224 
7225   // Otherwise, we couldn't allocate enough registers for this.
7226 }
7227 
7228 static unsigned
7229 findMatchingInlineAsmOperand(unsigned OperandNo,
7230                              const std::vector<SDValue> &AsmNodeOperands) {
7231   // Scan until we find the definition we already emitted of this operand.
7232   unsigned CurOp = InlineAsm::Op_FirstOperand;
7233   for (; OperandNo; --OperandNo) {
7234     // Advance to the next operand.
7235     unsigned OpFlag =
7236         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7237     assert((InlineAsm::isRegDefKind(OpFlag) ||
7238             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7239             InlineAsm::isMemKind(OpFlag)) &&
7240            "Skipped past definitions?");
7241     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7242   }
7243   return CurOp;
7244 }
7245 
7246 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7247 /// \return true if it has succeeded, false otherwise
7248 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7249                               MVT RegVT, SelectionDAG &DAG) {
7250   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7251   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7252   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7253     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7254       Regs.push_back(RegInfo.createVirtualRegister(RC));
7255     else
7256       return false;
7257   }
7258   return true;
7259 }
7260 
7261 namespace {
7262 
7263 class ExtraFlags {
7264   unsigned Flags = 0;
7265 
7266 public:
7267   explicit ExtraFlags(ImmutableCallSite CS) {
7268     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7269     if (IA->hasSideEffects())
7270       Flags |= InlineAsm::Extra_HasSideEffects;
7271     if (IA->isAlignStack())
7272       Flags |= InlineAsm::Extra_IsAlignStack;
7273     if (CS.isConvergent())
7274       Flags |= InlineAsm::Extra_IsConvergent;
7275     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7276   }
7277 
7278   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7279     // Ideally, we would only check against memory constraints.  However, the
7280     // meaning of an Other constraint can be target-specific and we can't easily
7281     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7282     // for Other constraints as well.
7283     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7284         OpInfo.ConstraintType == TargetLowering::C_Other) {
7285       if (OpInfo.Type == InlineAsm::isInput)
7286         Flags |= InlineAsm::Extra_MayLoad;
7287       else if (OpInfo.Type == InlineAsm::isOutput)
7288         Flags |= InlineAsm::Extra_MayStore;
7289       else if (OpInfo.Type == InlineAsm::isClobber)
7290         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7291     }
7292   }
7293 
7294   unsigned get() const { return Flags; }
7295 };
7296 
7297 } // end anonymous namespace
7298 
7299 /// visitInlineAsm - Handle a call to an InlineAsm object.
7300 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7301   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7302 
7303   /// ConstraintOperands - Information about all of the constraints.
7304   SDISelAsmOperandInfoVector ConstraintOperands;
7305 
7306   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7307   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7308       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7309 
7310   bool hasMemory = false;
7311 
7312   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7313   ExtraFlags ExtraInfo(CS);
7314 
7315   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7316   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7317   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7318     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7319     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7320 
7321     MVT OpVT = MVT::Other;
7322 
7323     // Compute the value type for each operand.
7324     if (OpInfo.Type == InlineAsm::isInput ||
7325         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7326       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7327 
7328       // Process the call argument. BasicBlocks are labels, currently appearing
7329       // only in asm's.
7330       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7331         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7332       } else {
7333         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7334       }
7335 
7336       OpVT =
7337           OpInfo
7338               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7339               .getSimpleVT();
7340     }
7341 
7342     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7343       // The return value of the call is this value.  As such, there is no
7344       // corresponding argument.
7345       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7346       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7347         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7348                                       STy->getElementType(ResNo));
7349       } else {
7350         assert(ResNo == 0 && "Asm only has one result!");
7351         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7352       }
7353       ++ResNo;
7354     }
7355 
7356     OpInfo.ConstraintVT = OpVT;
7357 
7358     if (!hasMemory)
7359       hasMemory = OpInfo.hasMemory(TLI);
7360 
7361     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7362     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7363     auto TargetConstraint = TargetConstraints[i];
7364 
7365     // Compute the constraint code and ConstraintType to use.
7366     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7367 
7368     ExtraInfo.update(TargetConstraint);
7369   }
7370 
7371   SDValue Chain, Flag;
7372 
7373   // We won't need to flush pending loads if this asm doesn't touch
7374   // memory and is nonvolatile.
7375   if (hasMemory || IA->hasSideEffects())
7376     Chain = getRoot();
7377   else
7378     Chain = DAG.getRoot();
7379 
7380   // Second pass over the constraints: compute which constraint option to use
7381   // and assign registers to constraints that want a specific physreg.
7382   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7383     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7384 
7385     // If this is an output operand with a matching input operand, look up the
7386     // matching input. If their types mismatch, e.g. one is an integer, the
7387     // other is floating point, or their sizes are different, flag it as an
7388     // error.
7389     if (OpInfo.hasMatchingInput()) {
7390       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7391       patchMatchingInput(OpInfo, Input, DAG);
7392     }
7393 
7394     // Compute the constraint code and ConstraintType to use.
7395     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7396 
7397     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7398         OpInfo.Type == InlineAsm::isClobber)
7399       continue;
7400 
7401     // If this is a memory input, and if the operand is not indirect, do what we
7402     // need to provide an address for the memory input.
7403     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7404         !OpInfo.isIndirect) {
7405       assert((OpInfo.isMultipleAlternative ||
7406               (OpInfo.Type == InlineAsm::isInput)) &&
7407              "Can only indirectify direct input operands!");
7408 
7409       // Memory operands really want the address of the value.
7410       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7411 
7412       // There is no longer a Value* corresponding to this operand.
7413       OpInfo.CallOperandVal = nullptr;
7414 
7415       // It is now an indirect operand.
7416       OpInfo.isIndirect = true;
7417     }
7418 
7419     // If this constraint is for a specific register, allocate it before
7420     // anything else.
7421     if (OpInfo.ConstraintType == TargetLowering::C_Register)
7422       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7423   }
7424 
7425   // Third pass - Loop over all of the operands, assigning virtual or physregs
7426   // to register class operands.
7427   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7428     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7429 
7430     // C_Register operands have already been allocated, Other/Memory don't need
7431     // to be.
7432     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7433       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7434   }
7435 
7436   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7437   std::vector<SDValue> AsmNodeOperands;
7438   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7439   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7440       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7441 
7442   // If we have a !srcloc metadata node associated with it, we want to attach
7443   // this to the ultimately generated inline asm machineinstr.  To do this, we
7444   // pass in the third operand as this (potentially null) inline asm MDNode.
7445   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7446   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7447 
7448   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7449   // bits as operand 3.
7450   AsmNodeOperands.push_back(DAG.getTargetConstant(
7451       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7452 
7453   // Loop over all of the inputs, copying the operand values into the
7454   // appropriate registers and processing the output regs.
7455   RegsForValue RetValRegs;
7456 
7457   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7458   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7459 
7460   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7461     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7462 
7463     switch (OpInfo.Type) {
7464     case InlineAsm::isOutput:
7465       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7466           OpInfo.ConstraintType != TargetLowering::C_Register) {
7467         // Memory output, or 'other' output (e.g. 'X' constraint).
7468         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7469 
7470         unsigned ConstraintID =
7471             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7472         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7473                "Failed to convert memory constraint code to constraint id.");
7474 
7475         // Add information to the INLINEASM node to know about this output.
7476         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7477         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7478         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7479                                                         MVT::i32));
7480         AsmNodeOperands.push_back(OpInfo.CallOperand);
7481         break;
7482       }
7483 
7484       // Otherwise, this is a register or register class output.
7485 
7486       // Copy the output from the appropriate register.  Find a register that
7487       // we can use.
7488       if (OpInfo.AssignedRegs.Regs.empty()) {
7489         emitInlineAsmError(
7490             CS, "couldn't allocate output register for constraint '" +
7491                     Twine(OpInfo.ConstraintCode) + "'");
7492         return;
7493       }
7494 
7495       // If this is an indirect operand, store through the pointer after the
7496       // asm.
7497       if (OpInfo.isIndirect) {
7498         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7499                                                       OpInfo.CallOperandVal));
7500       } else {
7501         // This is the result value of the call.
7502         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7503         // Concatenate this output onto the outputs list.
7504         RetValRegs.append(OpInfo.AssignedRegs);
7505       }
7506 
7507       // Add information to the INLINEASM node to know that this register is
7508       // set.
7509       OpInfo.AssignedRegs
7510           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7511                                     ? InlineAsm::Kind_RegDefEarlyClobber
7512                                     : InlineAsm::Kind_RegDef,
7513                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7514       break;
7515 
7516     case InlineAsm::isInput: {
7517       SDValue InOperandVal = OpInfo.CallOperand;
7518 
7519       if (OpInfo.isMatchingInputConstraint()) {
7520         // If this is required to match an output register we have already set,
7521         // just use its register.
7522         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7523                                                   AsmNodeOperands);
7524         unsigned OpFlag =
7525           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7526         if (InlineAsm::isRegDefKind(OpFlag) ||
7527             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7528           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7529           if (OpInfo.isIndirect) {
7530             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7531             emitInlineAsmError(CS, "inline asm not supported yet:"
7532                                    " don't know how to handle tied "
7533                                    "indirect register inputs");
7534             return;
7535           }
7536 
7537           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7538           SmallVector<unsigned, 4> Regs;
7539 
7540           if (!createVirtualRegs(Regs,
7541                                  InlineAsm::getNumOperandRegisters(OpFlag),
7542                                  RegVT, DAG)) {
7543             emitInlineAsmError(CS, "inline asm error: This value type register "
7544                                    "class is not natively supported!");
7545             return;
7546           }
7547 
7548           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7549 
7550           SDLoc dl = getCurSDLoc();
7551           // Use the produced MatchedRegs object to
7552           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7553                                     CS.getInstruction());
7554           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7555                                            true, OpInfo.getMatchedOperand(), dl,
7556                                            DAG, AsmNodeOperands);
7557           break;
7558         }
7559 
7560         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7561         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7562                "Unexpected number of operands");
7563         // Add information to the INLINEASM node to know about this input.
7564         // See InlineAsm.h isUseOperandTiedToDef.
7565         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7566         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7567                                                     OpInfo.getMatchedOperand());
7568         AsmNodeOperands.push_back(DAG.getTargetConstant(
7569             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7570         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7571         break;
7572       }
7573 
7574       // Treat indirect 'X' constraint as memory.
7575       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7576           OpInfo.isIndirect)
7577         OpInfo.ConstraintType = TargetLowering::C_Memory;
7578 
7579       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7580         std::vector<SDValue> Ops;
7581         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7582                                           Ops, DAG);
7583         if (Ops.empty()) {
7584           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7585                                      Twine(OpInfo.ConstraintCode) + "'");
7586           return;
7587         }
7588 
7589         // Add information to the INLINEASM node to know about this input.
7590         unsigned ResOpType =
7591           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7592         AsmNodeOperands.push_back(DAG.getTargetConstant(
7593             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7594         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7595         break;
7596       }
7597 
7598       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7599         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7600         assert(InOperandVal.getValueType() ==
7601                    TLI.getPointerTy(DAG.getDataLayout()) &&
7602                "Memory operands expect pointer values");
7603 
7604         unsigned ConstraintID =
7605             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7606         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7607                "Failed to convert memory constraint code to constraint id.");
7608 
7609         // Add information to the INLINEASM node to know about this input.
7610         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7611         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7612         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7613                                                         getCurSDLoc(),
7614                                                         MVT::i32));
7615         AsmNodeOperands.push_back(InOperandVal);
7616         break;
7617       }
7618 
7619       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7620               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7621              "Unknown constraint type!");
7622 
7623       // TODO: Support this.
7624       if (OpInfo.isIndirect) {
7625         emitInlineAsmError(
7626             CS, "Don't know how to handle indirect register inputs yet "
7627                 "for constraint '" +
7628                     Twine(OpInfo.ConstraintCode) + "'");
7629         return;
7630       }
7631 
7632       // Copy the input into the appropriate registers.
7633       if (OpInfo.AssignedRegs.Regs.empty()) {
7634         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7635                                    Twine(OpInfo.ConstraintCode) + "'");
7636         return;
7637       }
7638 
7639       SDLoc dl = getCurSDLoc();
7640 
7641       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7642                                         Chain, &Flag, CS.getInstruction());
7643 
7644       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7645                                                dl, DAG, AsmNodeOperands);
7646       break;
7647     }
7648     case InlineAsm::isClobber:
7649       // Add the clobbered value to the operand list, so that the register
7650       // allocator is aware that the physreg got clobbered.
7651       if (!OpInfo.AssignedRegs.Regs.empty())
7652         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7653                                                  false, 0, getCurSDLoc(), DAG,
7654                                                  AsmNodeOperands);
7655       break;
7656     }
7657   }
7658 
7659   // Finish up input operands.  Set the input chain and add the flag last.
7660   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7661   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7662 
7663   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7664                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7665   Flag = Chain.getValue(1);
7666 
7667   // If this asm returns a register value, copy the result from that register
7668   // and set it as the value of the call.
7669   if (!RetValRegs.Regs.empty()) {
7670     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7671                                              Chain, &Flag, CS.getInstruction());
7672 
7673     // FIXME: Why don't we do this for inline asms with MRVs?
7674     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7675       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7676 
7677       // If any of the results of the inline asm is a vector, it may have the
7678       // wrong width/num elts.  This can happen for register classes that can
7679       // contain multiple different value types.  The preg or vreg allocated may
7680       // not have the same VT as was expected.  Convert it to the right type
7681       // with bit_convert.
7682       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7683         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7684                           ResultType, Val);
7685 
7686       } else if (ResultType != Val.getValueType() &&
7687                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7688         // If a result value was tied to an input value, the computed result may
7689         // have a wider width than the expected result.  Extract the relevant
7690         // portion.
7691         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7692       }
7693 
7694       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7695     }
7696 
7697     setValue(CS.getInstruction(), Val);
7698     // Don't need to use this as a chain in this case.
7699     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7700       return;
7701   }
7702 
7703   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7704 
7705   // Process indirect outputs, first output all of the flagged copies out of
7706   // physregs.
7707   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7708     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7709     const Value *Ptr = IndirectStoresToEmit[i].second;
7710     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7711                                              Chain, &Flag, IA);
7712     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7713   }
7714 
7715   // Emit the non-flagged stores from the physregs.
7716   SmallVector<SDValue, 8> OutChains;
7717   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7718     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7719                                getValue(StoresToEmit[i].second),
7720                                MachinePointerInfo(StoresToEmit[i].second));
7721     OutChains.push_back(Val);
7722   }
7723 
7724   if (!OutChains.empty())
7725     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7726 
7727   DAG.setRoot(Chain);
7728 }
7729 
7730 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7731                                              const Twine &Message) {
7732   LLVMContext &Ctx = *DAG.getContext();
7733   Ctx.emitError(CS.getInstruction(), Message);
7734 
7735   // Make sure we leave the DAG in a valid state
7736   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7737   SmallVector<EVT, 1> ValueVTs;
7738   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7739 
7740   if (ValueVTs.empty())
7741     return;
7742 
7743   SmallVector<SDValue, 1> Ops;
7744   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
7745     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
7746 
7747   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
7748 }
7749 
7750 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7751   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7752                           MVT::Other, getRoot(),
7753                           getValue(I.getArgOperand(0)),
7754                           DAG.getSrcValue(I.getArgOperand(0))));
7755 }
7756 
7757 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7758   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7759   const DataLayout &DL = DAG.getDataLayout();
7760   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7761                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7762                            DAG.getSrcValue(I.getOperand(0)),
7763                            DL.getABITypeAlignment(I.getType()));
7764   setValue(&I, V);
7765   DAG.setRoot(V.getValue(1));
7766 }
7767 
7768 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7769   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7770                           MVT::Other, getRoot(),
7771                           getValue(I.getArgOperand(0)),
7772                           DAG.getSrcValue(I.getArgOperand(0))));
7773 }
7774 
7775 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7776   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7777                           MVT::Other, getRoot(),
7778                           getValue(I.getArgOperand(0)),
7779                           getValue(I.getArgOperand(1)),
7780                           DAG.getSrcValue(I.getArgOperand(0)),
7781                           DAG.getSrcValue(I.getArgOperand(1))));
7782 }
7783 
7784 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7785                                                     const Instruction &I,
7786                                                     SDValue Op) {
7787   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7788   if (!Range)
7789     return Op;
7790 
7791   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7792   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7793     return Op;
7794 
7795   APInt Lo = CR.getUnsignedMin();
7796   if (!Lo.isMinValue())
7797     return Op;
7798 
7799   APInt Hi = CR.getUnsignedMax();
7800   unsigned Bits = Hi.getActiveBits();
7801 
7802   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7803 
7804   SDLoc SL = getCurSDLoc();
7805 
7806   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7807                              DAG.getValueType(SmallVT));
7808   unsigned NumVals = Op.getNode()->getNumValues();
7809   if (NumVals == 1)
7810     return ZExt;
7811 
7812   SmallVector<SDValue, 4> Ops;
7813 
7814   Ops.push_back(ZExt);
7815   for (unsigned I = 1; I != NumVals; ++I)
7816     Ops.push_back(Op.getValue(I));
7817 
7818   return DAG.getMergeValues(Ops, SL);
7819 }
7820 
7821 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
7822 /// the call being lowered.
7823 ///
7824 /// This is a helper for lowering intrinsics that follow a target calling
7825 /// convention or require stack pointer adjustment. Only a subset of the
7826 /// intrinsic's operands need to participate in the calling convention.
7827 void SelectionDAGBuilder::populateCallLoweringInfo(
7828     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7829     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7830     bool IsPatchPoint) {
7831   TargetLowering::ArgListTy Args;
7832   Args.reserve(NumArgs);
7833 
7834   // Populate the argument list.
7835   // Attributes for args start at offset 1, after the return attribute.
7836   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7837        ArgI != ArgE; ++ArgI) {
7838     const Value *V = CS->getOperand(ArgI);
7839 
7840     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7841 
7842     TargetLowering::ArgListEntry Entry;
7843     Entry.Node = getValue(V);
7844     Entry.Ty = V->getType();
7845     Entry.setAttributes(&CS, ArgI);
7846     Args.push_back(Entry);
7847   }
7848 
7849   CLI.setDebugLoc(getCurSDLoc())
7850       .setChain(getRoot())
7851       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7852       .setDiscardResult(CS->use_empty())
7853       .setIsPatchPoint(IsPatchPoint);
7854 }
7855 
7856 /// Add a stack map intrinsic call's live variable operands to a stackmap
7857 /// or patchpoint target node's operand list.
7858 ///
7859 /// Constants are converted to TargetConstants purely as an optimization to
7860 /// avoid constant materialization and register allocation.
7861 ///
7862 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7863 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7864 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7865 /// address materialization and register allocation, but may also be required
7866 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7867 /// alloca in the entry block, then the runtime may assume that the alloca's
7868 /// StackMap location can be read immediately after compilation and that the
7869 /// location is valid at any point during execution (this is similar to the
7870 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7871 /// only available in a register, then the runtime would need to trap when
7872 /// execution reaches the StackMap in order to read the alloca's location.
7873 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7874                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7875                                 SelectionDAGBuilder &Builder) {
7876   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7877     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7878     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7879       Ops.push_back(
7880         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7881       Ops.push_back(
7882         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7883     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7884       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7885       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7886           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
7887     } else
7888       Ops.push_back(OpVal);
7889   }
7890 }
7891 
7892 /// Lower llvm.experimental.stackmap directly to its target opcode.
7893 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7894   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7895   //                                  [live variables...])
7896 
7897   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7898 
7899   SDValue Chain, InFlag, Callee, NullPtr;
7900   SmallVector<SDValue, 32> Ops;
7901 
7902   SDLoc DL = getCurSDLoc();
7903   Callee = getValue(CI.getCalledValue());
7904   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7905 
7906   // The stackmap intrinsic only records the live variables (the arguemnts
7907   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7908   // intrinsic, this won't be lowered to a function call. This means we don't
7909   // have to worry about calling conventions and target specific lowering code.
7910   // Instead we perform the call lowering right here.
7911   //
7912   // chain, flag = CALLSEQ_START(chain, 0, 0)
7913   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7914   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7915   //
7916   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
7917   InFlag = Chain.getValue(1);
7918 
7919   // Add the <id> and <numBytes> constants.
7920   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7921   Ops.push_back(DAG.getTargetConstant(
7922                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7923   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7924   Ops.push_back(DAG.getTargetConstant(
7925                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7926                   MVT::i32));
7927 
7928   // Push live variables for the stack map.
7929   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7930 
7931   // We are not pushing any register mask info here on the operands list,
7932   // because the stackmap doesn't clobber anything.
7933 
7934   // Push the chain and the glue flag.
7935   Ops.push_back(Chain);
7936   Ops.push_back(InFlag);
7937 
7938   // Create the STACKMAP node.
7939   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7940   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7941   Chain = SDValue(SM, 0);
7942   InFlag = Chain.getValue(1);
7943 
7944   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7945 
7946   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7947 
7948   // Set the root to the target-lowered call chain.
7949   DAG.setRoot(Chain);
7950 
7951   // Inform the Frame Information that we have a stackmap in this function.
7952   FuncInfo.MF->getFrameInfo().setHasStackMap();
7953 }
7954 
7955 /// Lower llvm.experimental.patchpoint directly to its target opcode.
7956 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7957                                           const BasicBlock *EHPadBB) {
7958   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7959   //                                                 i32 <numBytes>,
7960   //                                                 i8* <target>,
7961   //                                                 i32 <numArgs>,
7962   //                                                 [Args...],
7963   //                                                 [live variables...])
7964 
7965   CallingConv::ID CC = CS.getCallingConv();
7966   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7967   bool HasDef = !CS->getType()->isVoidTy();
7968   SDLoc dl = getCurSDLoc();
7969   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7970 
7971   // Handle immediate and symbolic callees.
7972   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7973     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7974                                    /*isTarget=*/true);
7975   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7976     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7977                                          SDLoc(SymbolicCallee),
7978                                          SymbolicCallee->getValueType(0));
7979 
7980   // Get the real number of arguments participating in the call <numArgs>
7981   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7982   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7983 
7984   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7985   // Intrinsics include all meta-operands up to but not including CC.
7986   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7987   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7988          "Not enough arguments provided to the patchpoint intrinsic");
7989 
7990   // For AnyRegCC the arguments are lowered later on manually.
7991   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7992   Type *ReturnTy =
7993     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7994 
7995   TargetLowering::CallLoweringInfo CLI(DAG);
7996   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7997                            true);
7998   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7999 
8000   SDNode *CallEnd = Result.second.getNode();
8001   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8002     CallEnd = CallEnd->getOperand(0).getNode();
8003 
8004   /// Get a call instruction from the call sequence chain.
8005   /// Tail calls are not allowed.
8006   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8007          "Expected a callseq node.");
8008   SDNode *Call = CallEnd->getOperand(0).getNode();
8009   bool HasGlue = Call->getGluedNode();
8010 
8011   // Replace the target specific call node with the patchable intrinsic.
8012   SmallVector<SDValue, 8> Ops;
8013 
8014   // Add the <id> and <numBytes> constants.
8015   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8016   Ops.push_back(DAG.getTargetConstant(
8017                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8018   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8019   Ops.push_back(DAG.getTargetConstant(
8020                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8021                   MVT::i32));
8022 
8023   // Add the callee.
8024   Ops.push_back(Callee);
8025 
8026   // Adjust <numArgs> to account for any arguments that have been passed on the
8027   // stack instead.
8028   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8029   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8030   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8031   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8032 
8033   // Add the calling convention
8034   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8035 
8036   // Add the arguments we omitted previously. The register allocator should
8037   // place these in any free register.
8038   if (IsAnyRegCC)
8039     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8040       Ops.push_back(getValue(CS.getArgument(i)));
8041 
8042   // Push the arguments from the call instruction up to the register mask.
8043   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8044   Ops.append(Call->op_begin() + 2, e);
8045 
8046   // Push live variables for the stack map.
8047   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8048 
8049   // Push the register mask info.
8050   if (HasGlue)
8051     Ops.push_back(*(Call->op_end()-2));
8052   else
8053     Ops.push_back(*(Call->op_end()-1));
8054 
8055   // Push the chain (this is originally the first operand of the call, but
8056   // becomes now the last or second to last operand).
8057   Ops.push_back(*(Call->op_begin()));
8058 
8059   // Push the glue flag (last operand).
8060   if (HasGlue)
8061     Ops.push_back(*(Call->op_end()-1));
8062 
8063   SDVTList NodeTys;
8064   if (IsAnyRegCC && HasDef) {
8065     // Create the return types based on the intrinsic definition
8066     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8067     SmallVector<EVT, 3> ValueVTs;
8068     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8069     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8070 
8071     // There is always a chain and a glue type at the end
8072     ValueVTs.push_back(MVT::Other);
8073     ValueVTs.push_back(MVT::Glue);
8074     NodeTys = DAG.getVTList(ValueVTs);
8075   } else
8076     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8077 
8078   // Replace the target specific call node with a PATCHPOINT node.
8079   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8080                                          dl, NodeTys, Ops);
8081 
8082   // Update the NodeMap.
8083   if (HasDef) {
8084     if (IsAnyRegCC)
8085       setValue(CS.getInstruction(), SDValue(MN, 0));
8086     else
8087       setValue(CS.getInstruction(), Result.first);
8088   }
8089 
8090   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8091   // call sequence. Furthermore the location of the chain and glue can change
8092   // when the AnyReg calling convention is used and the intrinsic returns a
8093   // value.
8094   if (IsAnyRegCC && HasDef) {
8095     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8096     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8097     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8098   } else
8099     DAG.ReplaceAllUsesWith(Call, MN);
8100   DAG.DeleteNode(Call);
8101 
8102   // Inform the Frame Information that we have a patchpoint in this function.
8103   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8104 }
8105 
8106 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8107                                             unsigned Intrinsic) {
8108   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8109   SDValue Op1 = getValue(I.getArgOperand(0));
8110   SDValue Op2;
8111   if (I.getNumArgOperands() > 1)
8112     Op2 = getValue(I.getArgOperand(1));
8113   SDLoc dl = getCurSDLoc();
8114   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8115   SDValue Res;
8116   FastMathFlags FMF;
8117   if (isa<FPMathOperator>(I))
8118     FMF = I.getFastMathFlags();
8119 
8120   switch (Intrinsic) {
8121   case Intrinsic::experimental_vector_reduce_fadd:
8122     if (FMF.isFast())
8123       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8124     else
8125       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8126     break;
8127   case Intrinsic::experimental_vector_reduce_fmul:
8128     if (FMF.isFast())
8129       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8130     else
8131       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8132     break;
8133   case Intrinsic::experimental_vector_reduce_add:
8134     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8135     break;
8136   case Intrinsic::experimental_vector_reduce_mul:
8137     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8138     break;
8139   case Intrinsic::experimental_vector_reduce_and:
8140     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8141     break;
8142   case Intrinsic::experimental_vector_reduce_or:
8143     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8144     break;
8145   case Intrinsic::experimental_vector_reduce_xor:
8146     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8147     break;
8148   case Intrinsic::experimental_vector_reduce_smax:
8149     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8150     break;
8151   case Intrinsic::experimental_vector_reduce_smin:
8152     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8153     break;
8154   case Intrinsic::experimental_vector_reduce_umax:
8155     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8156     break;
8157   case Intrinsic::experimental_vector_reduce_umin:
8158     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8159     break;
8160   case Intrinsic::experimental_vector_reduce_fmax:
8161     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8162     break;
8163   case Intrinsic::experimental_vector_reduce_fmin:
8164     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8165     break;
8166   default:
8167     llvm_unreachable("Unhandled vector reduce intrinsic");
8168   }
8169   setValue(&I, Res);
8170 }
8171 
8172 /// Returns an AttributeList representing the attributes applied to the return
8173 /// value of the given call.
8174 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8175   SmallVector<Attribute::AttrKind, 2> Attrs;
8176   if (CLI.RetSExt)
8177     Attrs.push_back(Attribute::SExt);
8178   if (CLI.RetZExt)
8179     Attrs.push_back(Attribute::ZExt);
8180   if (CLI.IsInReg)
8181     Attrs.push_back(Attribute::InReg);
8182 
8183   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8184                             Attrs);
8185 }
8186 
8187 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8188 /// implementation, which just calls LowerCall.
8189 /// FIXME: When all targets are
8190 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8191 std::pair<SDValue, SDValue>
8192 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8193   // Handle the incoming return values from the call.
8194   CLI.Ins.clear();
8195   Type *OrigRetTy = CLI.RetTy;
8196   SmallVector<EVT, 4> RetTys;
8197   SmallVector<uint64_t, 4> Offsets;
8198   auto &DL = CLI.DAG.getDataLayout();
8199   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8200 
8201   if (CLI.IsPostTypeLegalization) {
8202     // If we are lowering a libcall after legalization, split the return type.
8203     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8204     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8205     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8206       EVT RetVT = OldRetTys[i];
8207       uint64_t Offset = OldOffsets[i];
8208       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8209       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8210       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8211       RetTys.append(NumRegs, RegisterVT);
8212       for (unsigned j = 0; j != NumRegs; ++j)
8213         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8214     }
8215   }
8216 
8217   SmallVector<ISD::OutputArg, 4> Outs;
8218   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8219 
8220   bool CanLowerReturn =
8221       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8222                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8223 
8224   SDValue DemoteStackSlot;
8225   int DemoteStackIdx = -100;
8226   if (!CanLowerReturn) {
8227     // FIXME: equivalent assert?
8228     // assert(!CS.hasInAllocaArgument() &&
8229     //        "sret demotion is incompatible with inalloca");
8230     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8231     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8232     MachineFunction &MF = CLI.DAG.getMachineFunction();
8233     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8234     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
8235 
8236     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8237     ArgListEntry Entry;
8238     Entry.Node = DemoteStackSlot;
8239     Entry.Ty = StackSlotPtrType;
8240     Entry.IsSExt = false;
8241     Entry.IsZExt = false;
8242     Entry.IsInReg = false;
8243     Entry.IsSRet = true;
8244     Entry.IsNest = false;
8245     Entry.IsByVal = false;
8246     Entry.IsReturned = false;
8247     Entry.IsSwiftSelf = false;
8248     Entry.IsSwiftError = false;
8249     Entry.Alignment = Align;
8250     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8251     CLI.NumFixedArgs += 1;
8252     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8253 
8254     // sret demotion isn't compatible with tail-calls, since the sret argument
8255     // points into the callers stack frame.
8256     CLI.IsTailCall = false;
8257   } else {
8258     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8259       EVT VT = RetTys[I];
8260       MVT RegisterVT =
8261           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8262       unsigned NumRegs =
8263           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8264       for (unsigned i = 0; i != NumRegs; ++i) {
8265         ISD::InputArg MyFlags;
8266         MyFlags.VT = RegisterVT;
8267         MyFlags.ArgVT = VT;
8268         MyFlags.Used = CLI.IsReturnValueUsed;
8269         if (CLI.RetSExt)
8270           MyFlags.Flags.setSExt();
8271         if (CLI.RetZExt)
8272           MyFlags.Flags.setZExt();
8273         if (CLI.IsInReg)
8274           MyFlags.Flags.setInReg();
8275         CLI.Ins.push_back(MyFlags);
8276       }
8277     }
8278   }
8279 
8280   // We push in swifterror return as the last element of CLI.Ins.
8281   ArgListTy &Args = CLI.getArgs();
8282   if (supportSwiftError()) {
8283     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8284       if (Args[i].IsSwiftError) {
8285         ISD::InputArg MyFlags;
8286         MyFlags.VT = getPointerTy(DL);
8287         MyFlags.ArgVT = EVT(getPointerTy(DL));
8288         MyFlags.Flags.setSwiftError();
8289         CLI.Ins.push_back(MyFlags);
8290       }
8291     }
8292   }
8293 
8294   // Handle all of the outgoing arguments.
8295   CLI.Outs.clear();
8296   CLI.OutVals.clear();
8297   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8298     SmallVector<EVT, 4> ValueVTs;
8299     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8300     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8301     Type *FinalType = Args[i].Ty;
8302     if (Args[i].IsByVal)
8303       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8304     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8305         FinalType, CLI.CallConv, CLI.IsVarArg);
8306     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8307          ++Value) {
8308       EVT VT = ValueVTs[Value];
8309       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8310       SDValue Op = SDValue(Args[i].Node.getNode(),
8311                            Args[i].Node.getResNo() + Value);
8312       ISD::ArgFlagsTy Flags;
8313 
8314       // Certain targets (such as MIPS), may have a different ABI alignment
8315       // for a type depending on the context. Give the target a chance to
8316       // specify the alignment it wants.
8317       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8318 
8319       if (Args[i].IsZExt)
8320         Flags.setZExt();
8321       if (Args[i].IsSExt)
8322         Flags.setSExt();
8323       if (Args[i].IsInReg) {
8324         // If we are using vectorcall calling convention, a structure that is
8325         // passed InReg - is surely an HVA
8326         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8327             isa<StructType>(FinalType)) {
8328           // The first value of a structure is marked
8329           if (0 == Value)
8330             Flags.setHvaStart();
8331           Flags.setHva();
8332         }
8333         // Set InReg Flag
8334         Flags.setInReg();
8335       }
8336       if (Args[i].IsSRet)
8337         Flags.setSRet();
8338       if (Args[i].IsSwiftSelf)
8339         Flags.setSwiftSelf();
8340       if (Args[i].IsSwiftError)
8341         Flags.setSwiftError();
8342       if (Args[i].IsByVal)
8343         Flags.setByVal();
8344       if (Args[i].IsInAlloca) {
8345         Flags.setInAlloca();
8346         // Set the byval flag for CCAssignFn callbacks that don't know about
8347         // inalloca.  This way we can know how many bytes we should've allocated
8348         // and how many bytes a callee cleanup function will pop.  If we port
8349         // inalloca to more targets, we'll have to add custom inalloca handling
8350         // in the various CC lowering callbacks.
8351         Flags.setByVal();
8352       }
8353       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8354         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8355         Type *ElementTy = Ty->getElementType();
8356         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8357         // For ByVal, alignment should come from FE.  BE will guess if this
8358         // info is not there but there are cases it cannot get right.
8359         unsigned FrameAlign;
8360         if (Args[i].Alignment)
8361           FrameAlign = Args[i].Alignment;
8362         else
8363           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8364         Flags.setByValAlign(FrameAlign);
8365       }
8366       if (Args[i].IsNest)
8367         Flags.setNest();
8368       if (NeedsRegBlock)
8369         Flags.setInConsecutiveRegs();
8370       Flags.setOrigAlign(OriginalAlignment);
8371 
8372       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8373       unsigned NumParts =
8374           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8375       SmallVector<SDValue, 4> Parts(NumParts);
8376       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8377 
8378       if (Args[i].IsSExt)
8379         ExtendKind = ISD::SIGN_EXTEND;
8380       else if (Args[i].IsZExt)
8381         ExtendKind = ISD::ZERO_EXTEND;
8382 
8383       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8384       // for now.
8385       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8386           CanLowerReturn) {
8387         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8388                "unexpected use of 'returned'");
8389         // Before passing 'returned' to the target lowering code, ensure that
8390         // either the register MVT and the actual EVT are the same size or that
8391         // the return value and argument are extended in the same way; in these
8392         // cases it's safe to pass the argument register value unchanged as the
8393         // return register value (although it's at the target's option whether
8394         // to do so)
8395         // TODO: allow code generation to take advantage of partially preserved
8396         // registers rather than clobbering the entire register when the
8397         // parameter extension method is not compatible with the return
8398         // extension method
8399         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8400             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8401              CLI.RetZExt == Args[i].IsZExt))
8402           Flags.setReturned();
8403       }
8404 
8405       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8406                      CLI.CS.getInstruction(), ExtendKind, true);
8407 
8408       for (unsigned j = 0; j != NumParts; ++j) {
8409         // if it isn't first piece, alignment must be 1
8410         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8411                                i < CLI.NumFixedArgs,
8412                                i, j*Parts[j].getValueType().getStoreSize());
8413         if (NumParts > 1 && j == 0)
8414           MyFlags.Flags.setSplit();
8415         else if (j != 0) {
8416           MyFlags.Flags.setOrigAlign(1);
8417           if (j == NumParts - 1)
8418             MyFlags.Flags.setSplitEnd();
8419         }
8420 
8421         CLI.Outs.push_back(MyFlags);
8422         CLI.OutVals.push_back(Parts[j]);
8423       }
8424 
8425       if (NeedsRegBlock && Value == NumValues - 1)
8426         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8427     }
8428   }
8429 
8430   SmallVector<SDValue, 4> InVals;
8431   CLI.Chain = LowerCall(CLI, InVals);
8432 
8433   // Update CLI.InVals to use outside of this function.
8434   CLI.InVals = InVals;
8435 
8436   // Verify that the target's LowerCall behaved as expected.
8437   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8438          "LowerCall didn't return a valid chain!");
8439   assert((!CLI.IsTailCall || InVals.empty()) &&
8440          "LowerCall emitted a return value for a tail call!");
8441   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8442          "LowerCall didn't emit the correct number of values!");
8443 
8444   // For a tail call, the return value is merely live-out and there aren't
8445   // any nodes in the DAG representing it. Return a special value to
8446   // indicate that a tail call has been emitted and no more Instructions
8447   // should be processed in the current block.
8448   if (CLI.IsTailCall) {
8449     CLI.DAG.setRoot(CLI.Chain);
8450     return std::make_pair(SDValue(), SDValue());
8451   }
8452 
8453 #ifndef NDEBUG
8454   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8455     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8456     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8457            "LowerCall emitted a value with the wrong type!");
8458   }
8459 #endif
8460 
8461   SmallVector<SDValue, 4> ReturnValues;
8462   if (!CanLowerReturn) {
8463     // The instruction result is the result of loading from the
8464     // hidden sret parameter.
8465     SmallVector<EVT, 1> PVTs;
8466     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8467 
8468     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8469     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8470     EVT PtrVT = PVTs[0];
8471 
8472     unsigned NumValues = RetTys.size();
8473     ReturnValues.resize(NumValues);
8474     SmallVector<SDValue, 4> Chains(NumValues);
8475 
8476     // An aggregate return value cannot wrap around the address space, so
8477     // offsets to its parts don't wrap either.
8478     SDNodeFlags Flags;
8479     Flags.setNoUnsignedWrap(true);
8480 
8481     for (unsigned i = 0; i < NumValues; ++i) {
8482       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8483                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8484                                                         PtrVT), Flags);
8485       SDValue L = CLI.DAG.getLoad(
8486           RetTys[i], CLI.DL, CLI.Chain, Add,
8487           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8488                                             DemoteStackIdx, Offsets[i]),
8489           /* Alignment = */ 1);
8490       ReturnValues[i] = L;
8491       Chains[i] = L.getValue(1);
8492     }
8493 
8494     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8495   } else {
8496     // Collect the legal value parts into potentially illegal values
8497     // that correspond to the original function's return values.
8498     Optional<ISD::NodeType> AssertOp;
8499     if (CLI.RetSExt)
8500       AssertOp = ISD::AssertSext;
8501     else if (CLI.RetZExt)
8502       AssertOp = ISD::AssertZext;
8503     unsigned CurReg = 0;
8504     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8505       EVT VT = RetTys[I];
8506       MVT RegisterVT =
8507           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8508       unsigned NumRegs =
8509           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8510 
8511       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8512                                               NumRegs, RegisterVT, VT, nullptr,
8513                                               AssertOp, true));
8514       CurReg += NumRegs;
8515     }
8516 
8517     // For a function returning void, there is no return value. We can't create
8518     // such a node, so we just return a null return value in that case. In
8519     // that case, nothing will actually look at the value.
8520     if (ReturnValues.empty())
8521       return std::make_pair(SDValue(), CLI.Chain);
8522   }
8523 
8524   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8525                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8526   return std::make_pair(Res, CLI.Chain);
8527 }
8528 
8529 void TargetLowering::LowerOperationWrapper(SDNode *N,
8530                                            SmallVectorImpl<SDValue> &Results,
8531                                            SelectionDAG &DAG) const {
8532   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8533     Results.push_back(Res);
8534 }
8535 
8536 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8537   llvm_unreachable("LowerOperation not implemented for this target!");
8538 }
8539 
8540 void
8541 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8542   SDValue Op = getNonRegisterValue(V);
8543   assert((Op.getOpcode() != ISD::CopyFromReg ||
8544           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8545          "Copy from a reg to the same reg!");
8546   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8547 
8548   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8549   // If this is an InlineAsm we have to match the registers required, not the
8550   // notional registers required by the type.
8551 
8552   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8553                    V->getType(), isABIRegCopy(V));
8554   SDValue Chain = DAG.getEntryNode();
8555 
8556   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8557                               FuncInfo.PreferredExtendType.end())
8558                                  ? ISD::ANY_EXTEND
8559                                  : FuncInfo.PreferredExtendType[V];
8560   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8561   PendingExports.push_back(Chain);
8562 }
8563 
8564 #include "llvm/CodeGen/SelectionDAGISel.h"
8565 
8566 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8567 /// entry block, return true.  This includes arguments used by switches, since
8568 /// the switch may expand into multiple basic blocks.
8569 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8570   // With FastISel active, we may be splitting blocks, so force creation
8571   // of virtual registers for all non-dead arguments.
8572   if (FastISel)
8573     return A->use_empty();
8574 
8575   const BasicBlock &Entry = A->getParent()->front();
8576   for (const User *U : A->users())
8577     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8578       return false;  // Use not in entry block.
8579 
8580   return true;
8581 }
8582 
8583 using ArgCopyElisionMapTy =
8584     DenseMap<const Argument *,
8585              std::pair<const AllocaInst *, const StoreInst *>>;
8586 
8587 /// Scan the entry block of the function in FuncInfo for arguments that look
8588 /// like copies into a local alloca. Record any copied arguments in
8589 /// ArgCopyElisionCandidates.
8590 static void
8591 findArgumentCopyElisionCandidates(const DataLayout &DL,
8592                                   FunctionLoweringInfo *FuncInfo,
8593                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8594   // Record the state of every static alloca used in the entry block. Argument
8595   // allocas are all used in the entry block, so we need approximately as many
8596   // entries as we have arguments.
8597   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8598   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8599   unsigned NumArgs = FuncInfo->Fn->arg_size();
8600   StaticAllocas.reserve(NumArgs * 2);
8601 
8602   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8603     if (!V)
8604       return nullptr;
8605     V = V->stripPointerCasts();
8606     const auto *AI = dyn_cast<AllocaInst>(V);
8607     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8608       return nullptr;
8609     auto Iter = StaticAllocas.insert({AI, Unknown});
8610     return &Iter.first->second;
8611   };
8612 
8613   // Look for stores of arguments to static allocas. Look through bitcasts and
8614   // GEPs to handle type coercions, as long as the alloca is fully initialized
8615   // by the store. Any non-store use of an alloca escapes it and any subsequent
8616   // unanalyzed store might write it.
8617   // FIXME: Handle structs initialized with multiple stores.
8618   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8619     // Look for stores, and handle non-store uses conservatively.
8620     const auto *SI = dyn_cast<StoreInst>(&I);
8621     if (!SI) {
8622       // We will look through cast uses, so ignore them completely.
8623       if (I.isCast())
8624         continue;
8625       // Ignore debug info intrinsics, they don't escape or store to allocas.
8626       if (isa<DbgInfoIntrinsic>(I))
8627         continue;
8628       // This is an unknown instruction. Assume it escapes or writes to all
8629       // static alloca operands.
8630       for (const Use &U : I.operands()) {
8631         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8632           *Info = StaticAllocaInfo::Clobbered;
8633       }
8634       continue;
8635     }
8636 
8637     // If the stored value is a static alloca, mark it as escaped.
8638     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8639       *Info = StaticAllocaInfo::Clobbered;
8640 
8641     // Check if the destination is a static alloca.
8642     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8643     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8644     if (!Info)
8645       continue;
8646     const AllocaInst *AI = cast<AllocaInst>(Dst);
8647 
8648     // Skip allocas that have been initialized or clobbered.
8649     if (*Info != StaticAllocaInfo::Unknown)
8650       continue;
8651 
8652     // Check if the stored value is an argument, and that this store fully
8653     // initializes the alloca. Don't elide copies from the same argument twice.
8654     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8655     const auto *Arg = dyn_cast<Argument>(Val);
8656     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8657         Arg->getType()->isEmptyTy() ||
8658         DL.getTypeStoreSize(Arg->getType()) !=
8659             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8660         ArgCopyElisionCandidates.count(Arg)) {
8661       *Info = StaticAllocaInfo::Clobbered;
8662       continue;
8663     }
8664 
8665     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
8666                       << '\n');
8667 
8668     // Mark this alloca and store for argument copy elision.
8669     *Info = StaticAllocaInfo::Elidable;
8670     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8671 
8672     // Stop scanning if we've seen all arguments. This will happen early in -O0
8673     // builds, which is useful, because -O0 builds have large entry blocks and
8674     // many allocas.
8675     if (ArgCopyElisionCandidates.size() == NumArgs)
8676       break;
8677   }
8678 }
8679 
8680 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8681 /// ArgVal is a load from a suitable fixed stack object.
8682 static void tryToElideArgumentCopy(
8683     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8684     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8685     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8686     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8687     SDValue ArgVal, bool &ArgHasUses) {
8688   // Check if this is a load from a fixed stack object.
8689   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8690   if (!LNode)
8691     return;
8692   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8693   if (!FINode)
8694     return;
8695 
8696   // Check that the fixed stack object is the right size and alignment.
8697   // Look at the alignment that the user wrote on the alloca instead of looking
8698   // at the stack object.
8699   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8700   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8701   const AllocaInst *AI = ArgCopyIter->second.first;
8702   int FixedIndex = FINode->getIndex();
8703   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8704   int OldIndex = AllocaIndex;
8705   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8706   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8707     LLVM_DEBUG(
8708         dbgs() << "  argument copy elision failed due to bad fixed stack "
8709                   "object size\n");
8710     return;
8711   }
8712   unsigned RequiredAlignment = AI->getAlignment();
8713   if (!RequiredAlignment) {
8714     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8715         AI->getAllocatedType());
8716   }
8717   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8718     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8719                          "greater than stack argument alignment ("
8720                       << RequiredAlignment << " vs "
8721                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
8722     return;
8723   }
8724 
8725   // Perform the elision. Delete the old stack object and replace its only use
8726   // in the variable info map. Mark the stack object as mutable.
8727   LLVM_DEBUG({
8728     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8729            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8730            << '\n';
8731   });
8732   MFI.RemoveStackObject(OldIndex);
8733   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8734   AllocaIndex = FixedIndex;
8735   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8736   Chains.push_back(ArgVal.getValue(1));
8737 
8738   // Avoid emitting code for the store implementing the copy.
8739   const StoreInst *SI = ArgCopyIter->second.second;
8740   ElidedArgCopyInstrs.insert(SI);
8741 
8742   // Check for uses of the argument again so that we can avoid exporting ArgVal
8743   // if it is't used by anything other than the store.
8744   for (const Value *U : Arg.users()) {
8745     if (U != SI) {
8746       ArgHasUses = true;
8747       break;
8748     }
8749   }
8750 }
8751 
8752 void SelectionDAGISel::LowerArguments(const Function &F) {
8753   SelectionDAG &DAG = SDB->DAG;
8754   SDLoc dl = SDB->getCurSDLoc();
8755   const DataLayout &DL = DAG.getDataLayout();
8756   SmallVector<ISD::InputArg, 16> Ins;
8757 
8758   if (!FuncInfo->CanLowerReturn) {
8759     // Put in an sret pointer parameter before all the other parameters.
8760     SmallVector<EVT, 1> ValueVTs;
8761     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8762                     F.getReturnType()->getPointerTo(
8763                         DAG.getDataLayout().getAllocaAddrSpace()),
8764                     ValueVTs);
8765 
8766     // NOTE: Assuming that a pointer will never break down to more than one VT
8767     // or one register.
8768     ISD::ArgFlagsTy Flags;
8769     Flags.setSRet();
8770     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8771     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8772                          ISD::InputArg::NoArgIndex, 0);
8773     Ins.push_back(RetArg);
8774   }
8775 
8776   // Look for stores of arguments to static allocas. Mark such arguments with a
8777   // flag to ask the target to give us the memory location of that argument if
8778   // available.
8779   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8780   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8781 
8782   // Set up the incoming argument description vector.
8783   for (const Argument &Arg : F.args()) {
8784     unsigned ArgNo = Arg.getArgNo();
8785     SmallVector<EVT, 4> ValueVTs;
8786     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8787     bool isArgValueUsed = !Arg.use_empty();
8788     unsigned PartBase = 0;
8789     Type *FinalType = Arg.getType();
8790     if (Arg.hasAttribute(Attribute::ByVal))
8791       FinalType = cast<PointerType>(FinalType)->getElementType();
8792     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8793         FinalType, F.getCallingConv(), F.isVarArg());
8794     for (unsigned Value = 0, NumValues = ValueVTs.size();
8795          Value != NumValues; ++Value) {
8796       EVT VT = ValueVTs[Value];
8797       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8798       ISD::ArgFlagsTy Flags;
8799 
8800       // Certain targets (such as MIPS), may have a different ABI alignment
8801       // for a type depending on the context. Give the target a chance to
8802       // specify the alignment it wants.
8803       unsigned OriginalAlignment =
8804           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8805 
8806       if (Arg.hasAttribute(Attribute::ZExt))
8807         Flags.setZExt();
8808       if (Arg.hasAttribute(Attribute::SExt))
8809         Flags.setSExt();
8810       if (Arg.hasAttribute(Attribute::InReg)) {
8811         // If we are using vectorcall calling convention, a structure that is
8812         // passed InReg - is surely an HVA
8813         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8814             isa<StructType>(Arg.getType())) {
8815           // The first value of a structure is marked
8816           if (0 == Value)
8817             Flags.setHvaStart();
8818           Flags.setHva();
8819         }
8820         // Set InReg Flag
8821         Flags.setInReg();
8822       }
8823       if (Arg.hasAttribute(Attribute::StructRet))
8824         Flags.setSRet();
8825       if (Arg.hasAttribute(Attribute::SwiftSelf))
8826         Flags.setSwiftSelf();
8827       if (Arg.hasAttribute(Attribute::SwiftError))
8828         Flags.setSwiftError();
8829       if (Arg.hasAttribute(Attribute::ByVal))
8830         Flags.setByVal();
8831       if (Arg.hasAttribute(Attribute::InAlloca)) {
8832         Flags.setInAlloca();
8833         // Set the byval flag for CCAssignFn callbacks that don't know about
8834         // inalloca.  This way we can know how many bytes we should've allocated
8835         // and how many bytes a callee cleanup function will pop.  If we port
8836         // inalloca to more targets, we'll have to add custom inalloca handling
8837         // in the various CC lowering callbacks.
8838         Flags.setByVal();
8839       }
8840       if (F.getCallingConv() == CallingConv::X86_INTR) {
8841         // IA Interrupt passes frame (1st parameter) by value in the stack.
8842         if (ArgNo == 0)
8843           Flags.setByVal();
8844       }
8845       if (Flags.isByVal() || Flags.isInAlloca()) {
8846         PointerType *Ty = cast<PointerType>(Arg.getType());
8847         Type *ElementTy = Ty->getElementType();
8848         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8849         // For ByVal, alignment should be passed from FE.  BE will guess if
8850         // this info is not there but there are cases it cannot get right.
8851         unsigned FrameAlign;
8852         if (Arg.getParamAlignment())
8853           FrameAlign = Arg.getParamAlignment();
8854         else
8855           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8856         Flags.setByValAlign(FrameAlign);
8857       }
8858       if (Arg.hasAttribute(Attribute::Nest))
8859         Flags.setNest();
8860       if (NeedsRegBlock)
8861         Flags.setInConsecutiveRegs();
8862       Flags.setOrigAlign(OriginalAlignment);
8863       if (ArgCopyElisionCandidates.count(&Arg))
8864         Flags.setCopyElisionCandidate();
8865 
8866       MVT RegisterVT =
8867           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8868       unsigned NumRegs =
8869           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8870       for (unsigned i = 0; i != NumRegs; ++i) {
8871         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8872                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
8873         if (NumRegs > 1 && i == 0)
8874           MyFlags.Flags.setSplit();
8875         // if it isn't first piece, alignment must be 1
8876         else if (i > 0) {
8877           MyFlags.Flags.setOrigAlign(1);
8878           if (i == NumRegs - 1)
8879             MyFlags.Flags.setSplitEnd();
8880         }
8881         Ins.push_back(MyFlags);
8882       }
8883       if (NeedsRegBlock && Value == NumValues - 1)
8884         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8885       PartBase += VT.getStoreSize();
8886     }
8887   }
8888 
8889   // Call the target to set up the argument values.
8890   SmallVector<SDValue, 8> InVals;
8891   SDValue NewRoot = TLI->LowerFormalArguments(
8892       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8893 
8894   // Verify that the target's LowerFormalArguments behaved as expected.
8895   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8896          "LowerFormalArguments didn't return a valid chain!");
8897   assert(InVals.size() == Ins.size() &&
8898          "LowerFormalArguments didn't emit the correct number of values!");
8899   LLVM_DEBUG({
8900     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8901       assert(InVals[i].getNode() &&
8902              "LowerFormalArguments emitted a null value!");
8903       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8904              "LowerFormalArguments emitted a value with the wrong type!");
8905     }
8906   });
8907 
8908   // Update the DAG with the new chain value resulting from argument lowering.
8909   DAG.setRoot(NewRoot);
8910 
8911   // Set up the argument values.
8912   unsigned i = 0;
8913   if (!FuncInfo->CanLowerReturn) {
8914     // Create a virtual register for the sret pointer, and put in a copy
8915     // from the sret argument into it.
8916     SmallVector<EVT, 1> ValueVTs;
8917     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8918                     F.getReturnType()->getPointerTo(
8919                         DAG.getDataLayout().getAllocaAddrSpace()),
8920                     ValueVTs);
8921     MVT VT = ValueVTs[0].getSimpleVT();
8922     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8923     Optional<ISD::NodeType> AssertOp = None;
8924     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8925                                         RegVT, VT, nullptr, AssertOp);
8926 
8927     MachineFunction& MF = SDB->DAG.getMachineFunction();
8928     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8929     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8930     FuncInfo->DemoteRegister = SRetReg;
8931     NewRoot =
8932         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8933     DAG.setRoot(NewRoot);
8934 
8935     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8936     ++i;
8937   }
8938 
8939   SmallVector<SDValue, 4> Chains;
8940   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
8941   for (const Argument &Arg : F.args()) {
8942     SmallVector<SDValue, 4> ArgValues;
8943     SmallVector<EVT, 4> ValueVTs;
8944     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8945     unsigned NumValues = ValueVTs.size();
8946     if (NumValues == 0)
8947       continue;
8948 
8949     bool ArgHasUses = !Arg.use_empty();
8950 
8951     // Elide the copying store if the target loaded this argument from a
8952     // suitable fixed stack object.
8953     if (Ins[i].Flags.isCopyElisionCandidate()) {
8954       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
8955                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
8956                              InVals[i], ArgHasUses);
8957     }
8958 
8959     // If this argument is unused then remember its value. It is used to generate
8960     // debugging information.
8961     bool isSwiftErrorArg =
8962         TLI->supportSwiftError() &&
8963         Arg.hasAttribute(Attribute::SwiftError);
8964     if (!ArgHasUses && !isSwiftErrorArg) {
8965       SDB->setUnusedArgValue(&Arg, InVals[i]);
8966 
8967       // Also remember any frame index for use in FastISel.
8968       if (FrameIndexSDNode *FI =
8969           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8970         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8971     }
8972 
8973     for (unsigned Val = 0; Val != NumValues; ++Val) {
8974       EVT VT = ValueVTs[Val];
8975       MVT PartVT =
8976           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8977       unsigned NumParts =
8978           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8979 
8980       // Even an apparant 'unused' swifterror argument needs to be returned. So
8981       // we do generate a copy for it that can be used on return from the
8982       // function.
8983       if (ArgHasUses || isSwiftErrorArg) {
8984         Optional<ISD::NodeType> AssertOp;
8985         if (Arg.hasAttribute(Attribute::SExt))
8986           AssertOp = ISD::AssertSext;
8987         else if (Arg.hasAttribute(Attribute::ZExt))
8988           AssertOp = ISD::AssertZext;
8989 
8990         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
8991                                              PartVT, VT, nullptr, AssertOp,
8992                                              true));
8993       }
8994 
8995       i += NumParts;
8996     }
8997 
8998     // We don't need to do anything else for unused arguments.
8999     if (ArgValues.empty())
9000       continue;
9001 
9002     // Note down frame index.
9003     if (FrameIndexSDNode *FI =
9004         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9005       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9006 
9007     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9008                                      SDB->getCurSDLoc());
9009 
9010     SDB->setValue(&Arg, Res);
9011     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9012       // We want to associate the argument with the frame index, among
9013       // involved operands, that correspond to the lowest address. The
9014       // getCopyFromParts function, called earlier, is swapping the order of
9015       // the operands to BUILD_PAIR depending on endianness. The result of
9016       // that swapping is that the least significant bits of the argument will
9017       // be in the first operand of the BUILD_PAIR node, and the most
9018       // significant bits will be in the second operand.
9019       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9020       if (LoadSDNode *LNode =
9021           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9022         if (FrameIndexSDNode *FI =
9023             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9024           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9025     }
9026 
9027     // Update the SwiftErrorVRegDefMap.
9028     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9029       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9030       if (TargetRegisterInfo::isVirtualRegister(Reg))
9031         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9032                                            FuncInfo->SwiftErrorArg, Reg);
9033     }
9034 
9035     // If this argument is live outside of the entry block, insert a copy from
9036     // wherever we got it to the vreg that other BB's will reference it as.
9037     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9038       // If we can, though, try to skip creating an unnecessary vreg.
9039       // FIXME: This isn't very clean... it would be nice to make this more
9040       // general.  It's also subtly incompatible with the hacks FastISel
9041       // uses with vregs.
9042       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9043       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9044         FuncInfo->ValueMap[&Arg] = Reg;
9045         continue;
9046       }
9047     }
9048     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9049       FuncInfo->InitializeRegForValue(&Arg);
9050       SDB->CopyToExportRegsIfNeeded(&Arg);
9051     }
9052   }
9053 
9054   if (!Chains.empty()) {
9055     Chains.push_back(NewRoot);
9056     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9057   }
9058 
9059   DAG.setRoot(NewRoot);
9060 
9061   assert(i == InVals.size() && "Argument register count mismatch!");
9062 
9063   // If any argument copy elisions occurred and we have debug info, update the
9064   // stale frame indices used in the dbg.declare variable info table.
9065   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9066   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9067     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9068       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9069       if (I != ArgCopyElisionFrameIndexMap.end())
9070         VI.Slot = I->second;
9071     }
9072   }
9073 
9074   // Finally, if the target has anything special to do, allow it to do so.
9075   EmitFunctionEntryCode();
9076 }
9077 
9078 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9079 /// ensure constants are generated when needed.  Remember the virtual registers
9080 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9081 /// directly add them, because expansion might result in multiple MBB's for one
9082 /// BB.  As such, the start of the BB might correspond to a different MBB than
9083 /// the end.
9084 void
9085 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9086   const TerminatorInst *TI = LLVMBB->getTerminator();
9087 
9088   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9089 
9090   // Check PHI nodes in successors that expect a value to be available from this
9091   // block.
9092   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9093     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9094     if (!isa<PHINode>(SuccBB->begin())) continue;
9095     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9096 
9097     // If this terminator has multiple identical successors (common for
9098     // switches), only handle each succ once.
9099     if (!SuccsHandled.insert(SuccMBB).second)
9100       continue;
9101 
9102     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9103 
9104     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9105     // nodes and Machine PHI nodes, but the incoming operands have not been
9106     // emitted yet.
9107     for (const PHINode &PN : SuccBB->phis()) {
9108       // Ignore dead phi's.
9109       if (PN.use_empty())
9110         continue;
9111 
9112       // Skip empty types
9113       if (PN.getType()->isEmptyTy())
9114         continue;
9115 
9116       unsigned Reg;
9117       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9118 
9119       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9120         unsigned &RegOut = ConstantsOut[C];
9121         if (RegOut == 0) {
9122           RegOut = FuncInfo.CreateRegs(C->getType());
9123           CopyValueToVirtualRegister(C, RegOut);
9124         }
9125         Reg = RegOut;
9126       } else {
9127         DenseMap<const Value *, unsigned>::iterator I =
9128           FuncInfo.ValueMap.find(PHIOp);
9129         if (I != FuncInfo.ValueMap.end())
9130           Reg = I->second;
9131         else {
9132           assert(isa<AllocaInst>(PHIOp) &&
9133                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9134                  "Didn't codegen value into a register!??");
9135           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9136           CopyValueToVirtualRegister(PHIOp, Reg);
9137         }
9138       }
9139 
9140       // Remember that this register needs to added to the machine PHI node as
9141       // the input for this MBB.
9142       SmallVector<EVT, 4> ValueVTs;
9143       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9144       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9145       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9146         EVT VT = ValueVTs[vti];
9147         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9148         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9149           FuncInfo.PHINodesToUpdate.push_back(
9150               std::make_pair(&*MBBI++, Reg + i));
9151         Reg += NumRegisters;
9152       }
9153     }
9154   }
9155 
9156   ConstantsOut.clear();
9157 }
9158 
9159 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9160 /// is 0.
9161 MachineBasicBlock *
9162 SelectionDAGBuilder::StackProtectorDescriptor::
9163 AddSuccessorMBB(const BasicBlock *BB,
9164                 MachineBasicBlock *ParentMBB,
9165                 bool IsLikely,
9166                 MachineBasicBlock *SuccMBB) {
9167   // If SuccBB has not been created yet, create it.
9168   if (!SuccMBB) {
9169     MachineFunction *MF = ParentMBB->getParent();
9170     MachineFunction::iterator BBI(ParentMBB);
9171     SuccMBB = MF->CreateMachineBasicBlock(BB);
9172     MF->insert(++BBI, SuccMBB);
9173   }
9174   // Add it as a successor of ParentMBB.
9175   ParentMBB->addSuccessor(
9176       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9177   return SuccMBB;
9178 }
9179 
9180 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9181   MachineFunction::iterator I(MBB);
9182   if (++I == FuncInfo.MF->end())
9183     return nullptr;
9184   return &*I;
9185 }
9186 
9187 /// During lowering new call nodes can be created (such as memset, etc.).
9188 /// Those will become new roots of the current DAG, but complications arise
9189 /// when they are tail calls. In such cases, the call lowering will update
9190 /// the root, but the builder still needs to know that a tail call has been
9191 /// lowered in order to avoid generating an additional return.
9192 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9193   // If the node is null, we do have a tail call.
9194   if (MaybeTC.getNode() != nullptr)
9195     DAG.setRoot(MaybeTC);
9196   else
9197     HasTailCall = true;
9198 }
9199 
9200 uint64_t
9201 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9202                                        unsigned First, unsigned Last) const {
9203   assert(Last >= First);
9204   const APInt &LowCase = Clusters[First].Low->getValue();
9205   const APInt &HighCase = Clusters[Last].High->getValue();
9206   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9207 
9208   // FIXME: A range of consecutive cases has 100% density, but only requires one
9209   // comparison to lower. We should discriminate against such consecutive ranges
9210   // in jump tables.
9211 
9212   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9213 }
9214 
9215 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9216     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9217     unsigned Last) const {
9218   assert(Last >= First);
9219   assert(TotalCases[Last] >= TotalCases[First]);
9220   uint64_t NumCases =
9221       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9222   return NumCases;
9223 }
9224 
9225 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9226                                          unsigned First, unsigned Last,
9227                                          const SwitchInst *SI,
9228                                          MachineBasicBlock *DefaultMBB,
9229                                          CaseCluster &JTCluster) {
9230   assert(First <= Last);
9231 
9232   auto Prob = BranchProbability::getZero();
9233   unsigned NumCmps = 0;
9234   std::vector<MachineBasicBlock*> Table;
9235   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9236 
9237   // Initialize probabilities in JTProbs.
9238   for (unsigned I = First; I <= Last; ++I)
9239     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9240 
9241   for (unsigned I = First; I <= Last; ++I) {
9242     assert(Clusters[I].Kind == CC_Range);
9243     Prob += Clusters[I].Prob;
9244     const APInt &Low = Clusters[I].Low->getValue();
9245     const APInt &High = Clusters[I].High->getValue();
9246     NumCmps += (Low == High) ? 1 : 2;
9247     if (I != First) {
9248       // Fill the gap between this and the previous cluster.
9249       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9250       assert(PreviousHigh.slt(Low));
9251       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9252       for (uint64_t J = 0; J < Gap; J++)
9253         Table.push_back(DefaultMBB);
9254     }
9255     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9256     for (uint64_t J = 0; J < ClusterSize; ++J)
9257       Table.push_back(Clusters[I].MBB);
9258     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9259   }
9260 
9261   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9262   unsigned NumDests = JTProbs.size();
9263   if (TLI.isSuitableForBitTests(
9264           NumDests, NumCmps, Clusters[First].Low->getValue(),
9265           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9266     // Clusters[First..Last] should be lowered as bit tests instead.
9267     return false;
9268   }
9269 
9270   // Create the MBB that will load from and jump through the table.
9271   // Note: We create it here, but it's not inserted into the function yet.
9272   MachineFunction *CurMF = FuncInfo.MF;
9273   MachineBasicBlock *JumpTableMBB =
9274       CurMF->CreateMachineBasicBlock(SI->getParent());
9275 
9276   // Add successors. Note: use table order for determinism.
9277   SmallPtrSet<MachineBasicBlock *, 8> Done;
9278   for (MachineBasicBlock *Succ : Table) {
9279     if (Done.count(Succ))
9280       continue;
9281     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9282     Done.insert(Succ);
9283   }
9284   JumpTableMBB->normalizeSuccProbs();
9285 
9286   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9287                      ->createJumpTableIndex(Table);
9288 
9289   // Set up the jump table info.
9290   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9291   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9292                       Clusters[Last].High->getValue(), SI->getCondition(),
9293                       nullptr, false);
9294   JTCases.emplace_back(std::move(JTH), std::move(JT));
9295 
9296   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9297                                      JTCases.size() - 1, Prob);
9298   return true;
9299 }
9300 
9301 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9302                                          const SwitchInst *SI,
9303                                          MachineBasicBlock *DefaultMBB) {
9304 #ifndef NDEBUG
9305   // Clusters must be non-empty, sorted, and only contain Range clusters.
9306   assert(!Clusters.empty());
9307   for (CaseCluster &C : Clusters)
9308     assert(C.Kind == CC_Range);
9309   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9310     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9311 #endif
9312 
9313   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9314   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9315     return;
9316 
9317   const int64_t N = Clusters.size();
9318   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9319   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9320 
9321   if (N < 2 || N < MinJumpTableEntries)
9322     return;
9323 
9324   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9325   SmallVector<unsigned, 8> TotalCases(N);
9326   for (unsigned i = 0; i < N; ++i) {
9327     const APInt &Hi = Clusters[i].High->getValue();
9328     const APInt &Lo = Clusters[i].Low->getValue();
9329     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9330     if (i != 0)
9331       TotalCases[i] += TotalCases[i - 1];
9332   }
9333 
9334   // Cheap case: the whole range may be suitable for jump table.
9335   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9336   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9337   assert(NumCases < UINT64_MAX / 100);
9338   assert(Range >= NumCases);
9339   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9340     CaseCluster JTCluster;
9341     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9342       Clusters[0] = JTCluster;
9343       Clusters.resize(1);
9344       return;
9345     }
9346   }
9347 
9348   // The algorithm below is not suitable for -O0.
9349   if (TM.getOptLevel() == CodeGenOpt::None)
9350     return;
9351 
9352   // Split Clusters into minimum number of dense partitions. The algorithm uses
9353   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9354   // for the Case Statement'" (1994), but builds the MinPartitions array in
9355   // reverse order to make it easier to reconstruct the partitions in ascending
9356   // order. In the choice between two optimal partitionings, it picks the one
9357   // which yields more jump tables.
9358 
9359   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9360   SmallVector<unsigned, 8> MinPartitions(N);
9361   // LastElement[i] is the last element of the partition starting at i.
9362   SmallVector<unsigned, 8> LastElement(N);
9363   // PartitionsScore[i] is used to break ties when choosing between two
9364   // partitionings resulting in the same number of partitions.
9365   SmallVector<unsigned, 8> PartitionsScore(N);
9366   // For PartitionsScore, a small number of comparisons is considered as good as
9367   // a jump table and a single comparison is considered better than a jump
9368   // table.
9369   enum PartitionScores : unsigned {
9370     NoTable = 0,
9371     Table = 1,
9372     FewCases = 1,
9373     SingleCase = 2
9374   };
9375 
9376   // Base case: There is only one way to partition Clusters[N-1].
9377   MinPartitions[N - 1] = 1;
9378   LastElement[N - 1] = N - 1;
9379   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9380 
9381   // Note: loop indexes are signed to avoid underflow.
9382   for (int64_t i = N - 2; i >= 0; i--) {
9383     // Find optimal partitioning of Clusters[i..N-1].
9384     // Baseline: Put Clusters[i] into a partition on its own.
9385     MinPartitions[i] = MinPartitions[i + 1] + 1;
9386     LastElement[i] = i;
9387     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9388 
9389     // Search for a solution that results in fewer partitions.
9390     for (int64_t j = N - 1; j > i; j--) {
9391       // Try building a partition from Clusters[i..j].
9392       uint64_t Range = getJumpTableRange(Clusters, i, j);
9393       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9394       assert(NumCases < UINT64_MAX / 100);
9395       assert(Range >= NumCases);
9396       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9397         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9398         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9399         int64_t NumEntries = j - i + 1;
9400 
9401         if (NumEntries == 1)
9402           Score += PartitionScores::SingleCase;
9403         else if (NumEntries <= SmallNumberOfEntries)
9404           Score += PartitionScores::FewCases;
9405         else if (NumEntries >= MinJumpTableEntries)
9406           Score += PartitionScores::Table;
9407 
9408         // If this leads to fewer partitions, or to the same number of
9409         // partitions with better score, it is a better partitioning.
9410         if (NumPartitions < MinPartitions[i] ||
9411             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9412           MinPartitions[i] = NumPartitions;
9413           LastElement[i] = j;
9414           PartitionsScore[i] = Score;
9415         }
9416       }
9417     }
9418   }
9419 
9420   // Iterate over the partitions, replacing some with jump tables in-place.
9421   unsigned DstIndex = 0;
9422   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9423     Last = LastElement[First];
9424     assert(Last >= First);
9425     assert(DstIndex <= First);
9426     unsigned NumClusters = Last - First + 1;
9427 
9428     CaseCluster JTCluster;
9429     if (NumClusters >= MinJumpTableEntries &&
9430         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9431       Clusters[DstIndex++] = JTCluster;
9432     } else {
9433       for (unsigned I = First; I <= Last; ++I)
9434         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9435     }
9436   }
9437   Clusters.resize(DstIndex);
9438 }
9439 
9440 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9441                                         unsigned First, unsigned Last,
9442                                         const SwitchInst *SI,
9443                                         CaseCluster &BTCluster) {
9444   assert(First <= Last);
9445   if (First == Last)
9446     return false;
9447 
9448   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9449   unsigned NumCmps = 0;
9450   for (int64_t I = First; I <= Last; ++I) {
9451     assert(Clusters[I].Kind == CC_Range);
9452     Dests.set(Clusters[I].MBB->getNumber());
9453     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9454   }
9455   unsigned NumDests = Dests.count();
9456 
9457   APInt Low = Clusters[First].Low->getValue();
9458   APInt High = Clusters[Last].High->getValue();
9459   assert(Low.slt(High));
9460 
9461   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9462   const DataLayout &DL = DAG.getDataLayout();
9463   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9464     return false;
9465 
9466   APInt LowBound;
9467   APInt CmpRange;
9468 
9469   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9470   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9471          "Case range must fit in bit mask!");
9472 
9473   // Check if the clusters cover a contiguous range such that no value in the
9474   // range will jump to the default statement.
9475   bool ContiguousRange = true;
9476   for (int64_t I = First + 1; I <= Last; ++I) {
9477     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9478       ContiguousRange = false;
9479       break;
9480     }
9481   }
9482 
9483   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9484     // Optimize the case where all the case values fit in a word without having
9485     // to subtract minValue. In this case, we can optimize away the subtraction.
9486     LowBound = APInt::getNullValue(Low.getBitWidth());
9487     CmpRange = High;
9488     ContiguousRange = false;
9489   } else {
9490     LowBound = Low;
9491     CmpRange = High - Low;
9492   }
9493 
9494   CaseBitsVector CBV;
9495   auto TotalProb = BranchProbability::getZero();
9496   for (unsigned i = First; i <= Last; ++i) {
9497     // Find the CaseBits for this destination.
9498     unsigned j;
9499     for (j = 0; j < CBV.size(); ++j)
9500       if (CBV[j].BB == Clusters[i].MBB)
9501         break;
9502     if (j == CBV.size())
9503       CBV.push_back(
9504           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9505     CaseBits *CB = &CBV[j];
9506 
9507     // Update Mask, Bits and ExtraProb.
9508     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9509     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9510     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9511     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9512     CB->Bits += Hi - Lo + 1;
9513     CB->ExtraProb += Clusters[i].Prob;
9514     TotalProb += Clusters[i].Prob;
9515   }
9516 
9517   BitTestInfo BTI;
9518   llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9519     // Sort by probability first, number of bits second, bit mask third.
9520     if (a.ExtraProb != b.ExtraProb)
9521       return a.ExtraProb > b.ExtraProb;
9522     if (a.Bits != b.Bits)
9523       return a.Bits > b.Bits;
9524     return a.Mask < b.Mask;
9525   });
9526 
9527   for (auto &CB : CBV) {
9528     MachineBasicBlock *BitTestBB =
9529         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9530     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9531   }
9532   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9533                             SI->getCondition(), -1U, MVT::Other, false,
9534                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9535                             TotalProb);
9536 
9537   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9538                                     BitTestCases.size() - 1, TotalProb);
9539   return true;
9540 }
9541 
9542 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9543                                               const SwitchInst *SI) {
9544 // Partition Clusters into as few subsets as possible, where each subset has a
9545 // range that fits in a machine word and has <= 3 unique destinations.
9546 
9547 #ifndef NDEBUG
9548   // Clusters must be sorted and contain Range or JumpTable clusters.
9549   assert(!Clusters.empty());
9550   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9551   for (const CaseCluster &C : Clusters)
9552     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9553   for (unsigned i = 1; i < Clusters.size(); ++i)
9554     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9555 #endif
9556 
9557   // The algorithm below is not suitable for -O0.
9558   if (TM.getOptLevel() == CodeGenOpt::None)
9559     return;
9560 
9561   // If target does not have legal shift left, do not emit bit tests at all.
9562   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9563   const DataLayout &DL = DAG.getDataLayout();
9564 
9565   EVT PTy = TLI.getPointerTy(DL);
9566   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9567     return;
9568 
9569   int BitWidth = PTy.getSizeInBits();
9570   const int64_t N = Clusters.size();
9571 
9572   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9573   SmallVector<unsigned, 8> MinPartitions(N);
9574   // LastElement[i] is the last element of the partition starting at i.
9575   SmallVector<unsigned, 8> LastElement(N);
9576 
9577   // FIXME: This might not be the best algorithm for finding bit test clusters.
9578 
9579   // Base case: There is only one way to partition Clusters[N-1].
9580   MinPartitions[N - 1] = 1;
9581   LastElement[N - 1] = N - 1;
9582 
9583   // Note: loop indexes are signed to avoid underflow.
9584   for (int64_t i = N - 2; i >= 0; --i) {
9585     // Find optimal partitioning of Clusters[i..N-1].
9586     // Baseline: Put Clusters[i] into a partition on its own.
9587     MinPartitions[i] = MinPartitions[i + 1] + 1;
9588     LastElement[i] = i;
9589 
9590     // Search for a solution that results in fewer partitions.
9591     // Note: the search is limited by BitWidth, reducing time complexity.
9592     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9593       // Try building a partition from Clusters[i..j].
9594 
9595       // Check the range.
9596       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9597                                Clusters[j].High->getValue(), DL))
9598         continue;
9599 
9600       // Check nbr of destinations and cluster types.
9601       // FIXME: This works, but doesn't seem very efficient.
9602       bool RangesOnly = true;
9603       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9604       for (int64_t k = i; k <= j; k++) {
9605         if (Clusters[k].Kind != CC_Range) {
9606           RangesOnly = false;
9607           break;
9608         }
9609         Dests.set(Clusters[k].MBB->getNumber());
9610       }
9611       if (!RangesOnly || Dests.count() > 3)
9612         break;
9613 
9614       // Check if it's a better partition.
9615       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9616       if (NumPartitions < MinPartitions[i]) {
9617         // Found a better partition.
9618         MinPartitions[i] = NumPartitions;
9619         LastElement[i] = j;
9620       }
9621     }
9622   }
9623 
9624   // Iterate over the partitions, replacing with bit-test clusters in-place.
9625   unsigned DstIndex = 0;
9626   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9627     Last = LastElement[First];
9628     assert(First <= Last);
9629     assert(DstIndex <= First);
9630 
9631     CaseCluster BitTestCluster;
9632     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9633       Clusters[DstIndex++] = BitTestCluster;
9634     } else {
9635       size_t NumClusters = Last - First + 1;
9636       std::memmove(&Clusters[DstIndex], &Clusters[First],
9637                    sizeof(Clusters[0]) * NumClusters);
9638       DstIndex += NumClusters;
9639     }
9640   }
9641   Clusters.resize(DstIndex);
9642 }
9643 
9644 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9645                                         MachineBasicBlock *SwitchMBB,
9646                                         MachineBasicBlock *DefaultMBB) {
9647   MachineFunction *CurMF = FuncInfo.MF;
9648   MachineBasicBlock *NextMBB = nullptr;
9649   MachineFunction::iterator BBI(W.MBB);
9650   if (++BBI != FuncInfo.MF->end())
9651     NextMBB = &*BBI;
9652 
9653   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9654 
9655   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9656 
9657   if (Size == 2 && W.MBB == SwitchMBB) {
9658     // If any two of the cases has the same destination, and if one value
9659     // is the same as the other, but has one bit unset that the other has set,
9660     // use bit manipulation to do two compares at once.  For example:
9661     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9662     // TODO: This could be extended to merge any 2 cases in switches with 3
9663     // cases.
9664     // TODO: Handle cases where W.CaseBB != SwitchBB.
9665     CaseCluster &Small = *W.FirstCluster;
9666     CaseCluster &Big = *W.LastCluster;
9667 
9668     if (Small.Low == Small.High && Big.Low == Big.High &&
9669         Small.MBB == Big.MBB) {
9670       const APInt &SmallValue = Small.Low->getValue();
9671       const APInt &BigValue = Big.Low->getValue();
9672 
9673       // Check that there is only one bit different.
9674       APInt CommonBit = BigValue ^ SmallValue;
9675       if (CommonBit.isPowerOf2()) {
9676         SDValue CondLHS = getValue(Cond);
9677         EVT VT = CondLHS.getValueType();
9678         SDLoc DL = getCurSDLoc();
9679 
9680         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9681                                  DAG.getConstant(CommonBit, DL, VT));
9682         SDValue Cond = DAG.getSetCC(
9683             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9684             ISD::SETEQ);
9685 
9686         // Update successor info.
9687         // Both Small and Big will jump to Small.BB, so we sum up the
9688         // probabilities.
9689         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9690         if (BPI)
9691           addSuccessorWithProb(
9692               SwitchMBB, DefaultMBB,
9693               // The default destination is the first successor in IR.
9694               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9695         else
9696           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9697 
9698         // Insert the true branch.
9699         SDValue BrCond =
9700             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9701                         DAG.getBasicBlock(Small.MBB));
9702         // Insert the false branch.
9703         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9704                              DAG.getBasicBlock(DefaultMBB));
9705 
9706         DAG.setRoot(BrCond);
9707         return;
9708       }
9709     }
9710   }
9711 
9712   if (TM.getOptLevel() != CodeGenOpt::None) {
9713     // Here, we order cases by probability so the most likely case will be
9714     // checked first. However, two clusters can have the same probability in
9715     // which case their relative ordering is non-deterministic. So we use Low
9716     // as a tie-breaker as clusters are guaranteed to never overlap.
9717     llvm::sort(W.FirstCluster, W.LastCluster + 1,
9718                [](const CaseCluster &a, const CaseCluster &b) {
9719       return a.Prob != b.Prob ?
9720              a.Prob > b.Prob :
9721              a.Low->getValue().slt(b.Low->getValue());
9722     });
9723 
9724     // Rearrange the case blocks so that the last one falls through if possible
9725     // without changing the order of probabilities.
9726     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9727       --I;
9728       if (I->Prob > W.LastCluster->Prob)
9729         break;
9730       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9731         std::swap(*I, *W.LastCluster);
9732         break;
9733       }
9734     }
9735   }
9736 
9737   // Compute total probability.
9738   BranchProbability DefaultProb = W.DefaultProb;
9739   BranchProbability UnhandledProbs = DefaultProb;
9740   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9741     UnhandledProbs += I->Prob;
9742 
9743   MachineBasicBlock *CurMBB = W.MBB;
9744   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9745     MachineBasicBlock *Fallthrough;
9746     if (I == W.LastCluster) {
9747       // For the last cluster, fall through to the default destination.
9748       Fallthrough = DefaultMBB;
9749     } else {
9750       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9751       CurMF->insert(BBI, Fallthrough);
9752       // Put Cond in a virtual register to make it available from the new blocks.
9753       ExportFromCurrentBlock(Cond);
9754     }
9755     UnhandledProbs -= I->Prob;
9756 
9757     switch (I->Kind) {
9758       case CC_JumpTable: {
9759         // FIXME: Optimize away range check based on pivot comparisons.
9760         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9761         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9762 
9763         // The jump block hasn't been inserted yet; insert it here.
9764         MachineBasicBlock *JumpMBB = JT->MBB;
9765         CurMF->insert(BBI, JumpMBB);
9766 
9767         auto JumpProb = I->Prob;
9768         auto FallthroughProb = UnhandledProbs;
9769 
9770         // If the default statement is a target of the jump table, we evenly
9771         // distribute the default probability to successors of CurMBB. Also
9772         // update the probability on the edge from JumpMBB to Fallthrough.
9773         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9774                                               SE = JumpMBB->succ_end();
9775              SI != SE; ++SI) {
9776           if (*SI == DefaultMBB) {
9777             JumpProb += DefaultProb / 2;
9778             FallthroughProb -= DefaultProb / 2;
9779             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9780             JumpMBB->normalizeSuccProbs();
9781             break;
9782           }
9783         }
9784 
9785         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9786         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9787         CurMBB->normalizeSuccProbs();
9788 
9789         // The jump table header will be inserted in our current block, do the
9790         // range check, and fall through to our fallthrough block.
9791         JTH->HeaderBB = CurMBB;
9792         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9793 
9794         // If we're in the right place, emit the jump table header right now.
9795         if (CurMBB == SwitchMBB) {
9796           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9797           JTH->Emitted = true;
9798         }
9799         break;
9800       }
9801       case CC_BitTests: {
9802         // FIXME: Optimize away range check based on pivot comparisons.
9803         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9804 
9805         // The bit test blocks haven't been inserted yet; insert them here.
9806         for (BitTestCase &BTC : BTB->Cases)
9807           CurMF->insert(BBI, BTC.ThisBB);
9808 
9809         // Fill in fields of the BitTestBlock.
9810         BTB->Parent = CurMBB;
9811         BTB->Default = Fallthrough;
9812 
9813         BTB->DefaultProb = UnhandledProbs;
9814         // If the cases in bit test don't form a contiguous range, we evenly
9815         // distribute the probability on the edge to Fallthrough to two
9816         // successors of CurMBB.
9817         if (!BTB->ContiguousRange) {
9818           BTB->Prob += DefaultProb / 2;
9819           BTB->DefaultProb -= DefaultProb / 2;
9820         }
9821 
9822         // If we're in the right place, emit the bit test header right now.
9823         if (CurMBB == SwitchMBB) {
9824           visitBitTestHeader(*BTB, SwitchMBB);
9825           BTB->Emitted = true;
9826         }
9827         break;
9828       }
9829       case CC_Range: {
9830         const Value *RHS, *LHS, *MHS;
9831         ISD::CondCode CC;
9832         if (I->Low == I->High) {
9833           // Check Cond == I->Low.
9834           CC = ISD::SETEQ;
9835           LHS = Cond;
9836           RHS=I->Low;
9837           MHS = nullptr;
9838         } else {
9839           // Check I->Low <= Cond <= I->High.
9840           CC = ISD::SETLE;
9841           LHS = I->Low;
9842           MHS = Cond;
9843           RHS = I->High;
9844         }
9845 
9846         // The false probability is the sum of all unhandled cases.
9847         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
9848                      getCurSDLoc(), I->Prob, UnhandledProbs);
9849 
9850         if (CurMBB == SwitchMBB)
9851           visitSwitchCase(CB, SwitchMBB);
9852         else
9853           SwitchCases.push_back(CB);
9854 
9855         break;
9856       }
9857     }
9858     CurMBB = Fallthrough;
9859   }
9860 }
9861 
9862 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9863                                               CaseClusterIt First,
9864                                               CaseClusterIt Last) {
9865   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9866     if (X.Prob != CC.Prob)
9867       return X.Prob > CC.Prob;
9868 
9869     // Ties are broken by comparing the case value.
9870     return X.Low->getValue().slt(CC.Low->getValue());
9871   });
9872 }
9873 
9874 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9875                                         const SwitchWorkListItem &W,
9876                                         Value *Cond,
9877                                         MachineBasicBlock *SwitchMBB) {
9878   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9879          "Clusters not sorted?");
9880 
9881   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9882 
9883   // Balance the tree based on branch probabilities to create a near-optimal (in
9884   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9885   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9886   CaseClusterIt LastLeft = W.FirstCluster;
9887   CaseClusterIt FirstRight = W.LastCluster;
9888   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9889   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9890 
9891   // Move LastLeft and FirstRight towards each other from opposite directions to
9892   // find a partitioning of the clusters which balances the probability on both
9893   // sides. If LeftProb and RightProb are equal, alternate which side is
9894   // taken to ensure 0-probability nodes are distributed evenly.
9895   unsigned I = 0;
9896   while (LastLeft + 1 < FirstRight) {
9897     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9898       LeftProb += (++LastLeft)->Prob;
9899     else
9900       RightProb += (--FirstRight)->Prob;
9901     I++;
9902   }
9903 
9904   while (true) {
9905     // Our binary search tree differs from a typical BST in that ours can have up
9906     // to three values in each leaf. The pivot selection above doesn't take that
9907     // into account, which means the tree might require more nodes and be less
9908     // efficient. We compensate for this here.
9909 
9910     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9911     unsigned NumRight = W.LastCluster - FirstRight + 1;
9912 
9913     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9914       // If one side has less than 3 clusters, and the other has more than 3,
9915       // consider taking a cluster from the other side.
9916 
9917       if (NumLeft < NumRight) {
9918         // Consider moving the first cluster on the right to the left side.
9919         CaseCluster &CC = *FirstRight;
9920         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9921         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9922         if (LeftSideRank <= RightSideRank) {
9923           // Moving the cluster to the left does not demote it.
9924           ++LastLeft;
9925           ++FirstRight;
9926           continue;
9927         }
9928       } else {
9929         assert(NumRight < NumLeft);
9930         // Consider moving the last element on the left to the right side.
9931         CaseCluster &CC = *LastLeft;
9932         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9933         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9934         if (RightSideRank <= LeftSideRank) {
9935           // Moving the cluster to the right does not demot it.
9936           --LastLeft;
9937           --FirstRight;
9938           continue;
9939         }
9940       }
9941     }
9942     break;
9943   }
9944 
9945   assert(LastLeft + 1 == FirstRight);
9946   assert(LastLeft >= W.FirstCluster);
9947   assert(FirstRight <= W.LastCluster);
9948 
9949   // Use the first element on the right as pivot since we will make less-than
9950   // comparisons against it.
9951   CaseClusterIt PivotCluster = FirstRight;
9952   assert(PivotCluster > W.FirstCluster);
9953   assert(PivotCluster <= W.LastCluster);
9954 
9955   CaseClusterIt FirstLeft = W.FirstCluster;
9956   CaseClusterIt LastRight = W.LastCluster;
9957 
9958   const ConstantInt *Pivot = PivotCluster->Low;
9959 
9960   // New blocks will be inserted immediately after the current one.
9961   MachineFunction::iterator BBI(W.MBB);
9962   ++BBI;
9963 
9964   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9965   // we can branch to its destination directly if it's squeezed exactly in
9966   // between the known lower bound and Pivot - 1.
9967   MachineBasicBlock *LeftMBB;
9968   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9969       FirstLeft->Low == W.GE &&
9970       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9971     LeftMBB = FirstLeft->MBB;
9972   } else {
9973     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9974     FuncInfo.MF->insert(BBI, LeftMBB);
9975     WorkList.push_back(
9976         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9977     // Put Cond in a virtual register to make it available from the new blocks.
9978     ExportFromCurrentBlock(Cond);
9979   }
9980 
9981   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9982   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9983   // directly if RHS.High equals the current upper bound.
9984   MachineBasicBlock *RightMBB;
9985   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9986       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9987     RightMBB = FirstRight->MBB;
9988   } else {
9989     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9990     FuncInfo.MF->insert(BBI, RightMBB);
9991     WorkList.push_back(
9992         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9993     // Put Cond in a virtual register to make it available from the new blocks.
9994     ExportFromCurrentBlock(Cond);
9995   }
9996 
9997   // Create the CaseBlock record that will be used to lower the branch.
9998   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9999                getCurSDLoc(), LeftProb, RightProb);
10000 
10001   if (W.MBB == SwitchMBB)
10002     visitSwitchCase(CB, SwitchMBB);
10003   else
10004     SwitchCases.push_back(CB);
10005 }
10006 
10007 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10008 // from the swith statement.
10009 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10010                                             BranchProbability PeeledCaseProb) {
10011   if (PeeledCaseProb == BranchProbability::getOne())
10012     return BranchProbability::getZero();
10013   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10014 
10015   uint32_t Numerator = CaseProb.getNumerator();
10016   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10017   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10018 }
10019 
10020 // Try to peel the top probability case if it exceeds the threshold.
10021 // Return current MachineBasicBlock for the switch statement if the peeling
10022 // does not occur.
10023 // If the peeling is performed, return the newly created MachineBasicBlock
10024 // for the peeled switch statement. Also update Clusters to remove the peeled
10025 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10026 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10027     const SwitchInst &SI, CaseClusterVector &Clusters,
10028     BranchProbability &PeeledCaseProb) {
10029   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10030   // Don't perform if there is only one cluster or optimizing for size.
10031   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10032       TM.getOptLevel() == CodeGenOpt::None ||
10033       SwitchMBB->getParent()->getFunction().optForMinSize())
10034     return SwitchMBB;
10035 
10036   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10037   unsigned PeeledCaseIndex = 0;
10038   bool SwitchPeeled = false;
10039   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10040     CaseCluster &CC = Clusters[Index];
10041     if (CC.Prob < TopCaseProb)
10042       continue;
10043     TopCaseProb = CC.Prob;
10044     PeeledCaseIndex = Index;
10045     SwitchPeeled = true;
10046   }
10047   if (!SwitchPeeled)
10048     return SwitchMBB;
10049 
10050   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10051                     << TopCaseProb << "\n");
10052 
10053   // Record the MBB for the peeled switch statement.
10054   MachineFunction::iterator BBI(SwitchMBB);
10055   ++BBI;
10056   MachineBasicBlock *PeeledSwitchMBB =
10057       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10058   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10059 
10060   ExportFromCurrentBlock(SI.getCondition());
10061   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10062   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10063                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10064   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10065 
10066   Clusters.erase(PeeledCaseIt);
10067   for (CaseCluster &CC : Clusters) {
10068     LLVM_DEBUG(
10069         dbgs() << "Scale the probablity for one cluster, before scaling: "
10070                << CC.Prob << "\n");
10071     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10072     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10073   }
10074   PeeledCaseProb = TopCaseProb;
10075   return PeeledSwitchMBB;
10076 }
10077 
10078 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10079   // Extract cases from the switch.
10080   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10081   CaseClusterVector Clusters;
10082   Clusters.reserve(SI.getNumCases());
10083   for (auto I : SI.cases()) {
10084     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10085     const ConstantInt *CaseVal = I.getCaseValue();
10086     BranchProbability Prob =
10087         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10088             : BranchProbability(1, SI.getNumCases() + 1);
10089     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10090   }
10091 
10092   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10093 
10094   // Cluster adjacent cases with the same destination. We do this at all
10095   // optimization levels because it's cheap to do and will make codegen faster
10096   // if there are many clusters.
10097   sortAndRangeify(Clusters);
10098 
10099   if (TM.getOptLevel() != CodeGenOpt::None) {
10100     // Replace an unreachable default with the most popular destination.
10101     // FIXME: Exploit unreachable default more aggressively.
10102     bool UnreachableDefault =
10103         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10104     if (UnreachableDefault && !Clusters.empty()) {
10105       DenseMap<const BasicBlock *, unsigned> Popularity;
10106       unsigned MaxPop = 0;
10107       const BasicBlock *MaxBB = nullptr;
10108       for (auto I : SI.cases()) {
10109         const BasicBlock *BB = I.getCaseSuccessor();
10110         if (++Popularity[BB] > MaxPop) {
10111           MaxPop = Popularity[BB];
10112           MaxBB = BB;
10113         }
10114       }
10115       // Set new default.
10116       assert(MaxPop > 0 && MaxBB);
10117       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10118 
10119       // Remove cases that were pointing to the destination that is now the
10120       // default.
10121       CaseClusterVector New;
10122       New.reserve(Clusters.size());
10123       for (CaseCluster &CC : Clusters) {
10124         if (CC.MBB != DefaultMBB)
10125           New.push_back(CC);
10126       }
10127       Clusters = std::move(New);
10128     }
10129   }
10130 
10131   // The branch probablity of the peeled case.
10132   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10133   MachineBasicBlock *PeeledSwitchMBB =
10134       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10135 
10136   // If there is only the default destination, jump there directly.
10137   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10138   if (Clusters.empty()) {
10139     assert(PeeledSwitchMBB == SwitchMBB);
10140     SwitchMBB->addSuccessor(DefaultMBB);
10141     if (DefaultMBB != NextBlock(SwitchMBB)) {
10142       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10143                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10144     }
10145     return;
10146   }
10147 
10148   findJumpTables(Clusters, &SI, DefaultMBB);
10149   findBitTestClusters(Clusters, &SI);
10150 
10151   LLVM_DEBUG({
10152     dbgs() << "Case clusters: ";
10153     for (const CaseCluster &C : Clusters) {
10154       if (C.Kind == CC_JumpTable)
10155         dbgs() << "JT:";
10156       if (C.Kind == CC_BitTests)
10157         dbgs() << "BT:";
10158 
10159       C.Low->getValue().print(dbgs(), true);
10160       if (C.Low != C.High) {
10161         dbgs() << '-';
10162         C.High->getValue().print(dbgs(), true);
10163       }
10164       dbgs() << ' ';
10165     }
10166     dbgs() << '\n';
10167   });
10168 
10169   assert(!Clusters.empty());
10170   SwitchWorkList WorkList;
10171   CaseClusterIt First = Clusters.begin();
10172   CaseClusterIt Last = Clusters.end() - 1;
10173   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10174   // Scale the branchprobability for DefaultMBB if the peel occurs and
10175   // DefaultMBB is not replaced.
10176   if (PeeledCaseProb != BranchProbability::getZero() &&
10177       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10178     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10179   WorkList.push_back(
10180       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10181 
10182   while (!WorkList.empty()) {
10183     SwitchWorkListItem W = WorkList.back();
10184     WorkList.pop_back();
10185     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10186 
10187     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10188         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10189       // For optimized builds, lower large range as a balanced binary tree.
10190       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10191       continue;
10192     }
10193 
10194     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10195   }
10196 }
10197