xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 4272af9b3e7f55fc15e2ff704f46d76d69134d40)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstring>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 using namespace PatternMatch;
125 
126 #define DEBUG_TYPE "isel"
127 
128 /// LimitFloatPrecision - Generate low-precision inline sequences for
129 /// some float libcalls (6, 8 or 12 bits).
130 static unsigned LimitFloatPrecision;
131 
132 static cl::opt<unsigned, true>
133     LimitFPPrecision("limit-float-precision",
134                      cl::desc("Generate low-precision inline sequences "
135                               "for some float libcalls"),
136                      cl::location(LimitFloatPrecision), cl::Hidden,
137                      cl::init(0));
138 
139 static cl::opt<unsigned> SwitchPeelThreshold(
140     "switch-peel-threshold", cl::Hidden, cl::init(66),
141     cl::desc("Set the case probability threshold for peeling the case from a "
142              "switch statement. A value greater than 100 will void this "
143              "optimization"));
144 
145 // Limit the width of DAG chains. This is important in general to prevent
146 // DAG-based analysis from blowing up. For example, alias analysis and
147 // load clustering may not complete in reasonable time. It is difficult to
148 // recognize and avoid this situation within each individual analysis, and
149 // future analyses are likely to have the same behavior. Limiting DAG width is
150 // the safe approach and will be especially important with global DAGs.
151 //
152 // MaxParallelChains default is arbitrarily high to avoid affecting
153 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
154 // sequence over this should have been converted to llvm.memcpy by the
155 // frontend. It is easy to induce this behavior with .ll code such as:
156 // %buffer = alloca [4096 x i8]
157 // %data = load [4096 x i8]* %argPtr
158 // store [4096 x i8] %data, [4096 x i8]* %buffer
159 static const unsigned MaxParallelChains = 64;
160 
161 // Return the calling convention if the Value passed requires ABI mangling as it
162 // is a parameter to a function or a return value from a function which is not
163 // an intrinsic.
164 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
165   if (auto *R = dyn_cast<ReturnInst>(V))
166     return R->getParent()->getParent()->getCallingConv();
167 
168   if (auto *CI = dyn_cast<CallInst>(V)) {
169     const bool IsInlineAsm = CI->isInlineAsm();
170     const bool IsIndirectFunctionCall =
171         !IsInlineAsm && !CI->getCalledFunction();
172 
173     // It is possible that the call instruction is an inline asm statement or an
174     // indirect function call in which case the return value of
175     // getCalledFunction() would be nullptr.
176     const bool IsInstrinsicCall =
177         !IsInlineAsm && !IsIndirectFunctionCall &&
178         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
179 
180     if (!IsInlineAsm && !IsInstrinsicCall)
181       return CI->getCallingConv();
182   }
183 
184   return None;
185 }
186 
187 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
188                                       const SDValue *Parts, unsigned NumParts,
189                                       MVT PartVT, EVT ValueVT, const Value *V,
190                                       Optional<CallingConv::ID> CC);
191 
192 /// getCopyFromParts - Create a value that contains the specified legal parts
193 /// combined into the value they represent.  If the parts combine to a type
194 /// larger than ValueVT then AssertOp can be used to specify whether the extra
195 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
196 /// (ISD::AssertSext).
197 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
198                                 const SDValue *Parts, unsigned NumParts,
199                                 MVT PartVT, EVT ValueVT, const Value *V,
200                                 Optional<CallingConv::ID> CC = None,
201                                 Optional<ISD::NodeType> AssertOp = None) {
202   if (ValueVT.isVector())
203     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
204                                   CC);
205 
206   assert(NumParts > 0 && "No parts to assemble!");
207   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
208   SDValue Val = Parts[0];
209 
210   if (NumParts > 1) {
211     // Assemble the value from multiple parts.
212     if (ValueVT.isInteger()) {
213       unsigned PartBits = PartVT.getSizeInBits();
214       unsigned ValueBits = ValueVT.getSizeInBits();
215 
216       // Assemble the power of 2 part.
217       unsigned RoundParts = NumParts & (NumParts - 1) ?
218         1 << Log2_32(NumParts) : NumParts;
219       unsigned RoundBits = PartBits * RoundParts;
220       EVT RoundVT = RoundBits == ValueBits ?
221         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
222       SDValue Lo, Hi;
223 
224       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
225 
226       if (RoundParts > 2) {
227         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
228                               PartVT, HalfVT, V);
229         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
230                               RoundParts / 2, PartVT, HalfVT, V);
231       } else {
232         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
233         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
234       }
235 
236       if (DAG.getDataLayout().isBigEndian())
237         std::swap(Lo, Hi);
238 
239       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
240 
241       if (RoundParts < NumParts) {
242         // Assemble the trailing non-power-of-2 part.
243         unsigned OddParts = NumParts - RoundParts;
244         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
245         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
246                               OddVT, V, CC);
247 
248         // Combine the round and odd parts.
249         Lo = Val;
250         if (DAG.getDataLayout().isBigEndian())
251           std::swap(Lo, Hi);
252         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
253         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
254         Hi =
255             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
256                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
257                                         TLI.getPointerTy(DAG.getDataLayout())));
258         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
259         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
260       }
261     } else if (PartVT.isFloatingPoint()) {
262       // FP split into multiple FP parts (for ppcf128)
263       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
264              "Unexpected split");
265       SDValue Lo, Hi;
266       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
267       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
268       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
269         std::swap(Lo, Hi);
270       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
271     } else {
272       // FP split into integer parts (soft fp)
273       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
274              !PartVT.isVector() && "Unexpected split");
275       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
276       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
277     }
278   }
279 
280   // There is now one part, held in Val.  Correct it to match ValueVT.
281   // PartEVT is the type of the register class that holds the value.
282   // ValueVT is the type of the inline asm operation.
283   EVT PartEVT = Val.getValueType();
284 
285   if (PartEVT == ValueVT)
286     return Val;
287 
288   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
289       ValueVT.bitsLT(PartEVT)) {
290     // For an FP value in an integer part, we need to truncate to the right
291     // width first.
292     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
293     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
294   }
295 
296   // Handle types that have the same size.
297   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
298     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
299 
300   // Handle types with different sizes.
301   if (PartEVT.isInteger() && ValueVT.isInteger()) {
302     if (ValueVT.bitsLT(PartEVT)) {
303       // For a truncate, see if we have any information to
304       // indicate whether the truncated bits will always be
305       // zero or sign-extension.
306       if (AssertOp.hasValue())
307         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
308                           DAG.getValueType(ValueVT));
309       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
310     }
311     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
312   }
313 
314   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
315     // FP_ROUND's are always exact here.
316     if (ValueVT.bitsLT(Val.getValueType()))
317       return DAG.getNode(
318           ISD::FP_ROUND, DL, ValueVT, Val,
319           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
320 
321     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
322   }
323 
324   llvm_unreachable("Unknown mismatch!");
325 }
326 
327 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
328                                               const Twine &ErrMsg) {
329   const Instruction *I = dyn_cast_or_null<Instruction>(V);
330   if (!V)
331     return Ctx.emitError(ErrMsg);
332 
333   const char *AsmError = ", possible invalid constraint for vector type";
334   if (const CallInst *CI = dyn_cast<CallInst>(I))
335     if (isa<InlineAsm>(CI->getCalledValue()))
336       return Ctx.emitError(I, ErrMsg + AsmError);
337 
338   return Ctx.emitError(I, ErrMsg);
339 }
340 
341 /// getCopyFromPartsVector - Create a value that contains the specified legal
342 /// parts combined into the value they represent.  If the parts combine to a
343 /// type larger than ValueVT then AssertOp can be used to specify whether the
344 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
345 /// ValueVT (ISD::AssertSext).
346 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
347                                       const SDValue *Parts, unsigned NumParts,
348                                       MVT PartVT, EVT ValueVT, const Value *V,
349                                       Optional<CallingConv::ID> CallConv) {
350   assert(ValueVT.isVector() && "Not a vector value");
351   assert(NumParts > 0 && "No parts to assemble!");
352   const bool IsABIRegCopy = CallConv.hasValue();
353 
354   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
355   SDValue Val = Parts[0];
356 
357   // Handle a multi-element vector.
358   if (NumParts > 1) {
359     EVT IntermediateVT;
360     MVT RegisterVT;
361     unsigned NumIntermediates;
362     unsigned NumRegs;
363 
364     if (IsABIRegCopy) {
365       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
366           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
367           NumIntermediates, RegisterVT);
368     } else {
369       NumRegs =
370           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
371                                      NumIntermediates, RegisterVT);
372     }
373 
374     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
375     NumParts = NumRegs; // Silence a compiler warning.
376     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
377     assert(RegisterVT.getSizeInBits() ==
378            Parts[0].getSimpleValueType().getSizeInBits() &&
379            "Part type sizes don't match!");
380 
381     // Assemble the parts into intermediate operands.
382     SmallVector<SDValue, 8> Ops(NumIntermediates);
383     if (NumIntermediates == NumParts) {
384       // If the register was not expanded, truncate or copy the value,
385       // as appropriate.
386       for (unsigned i = 0; i != NumParts; ++i)
387         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
388                                   PartVT, IntermediateVT, V);
389     } else if (NumParts > 0) {
390       // If the intermediate type was expanded, build the intermediate
391       // operands from the parts.
392       assert(NumParts % NumIntermediates == 0 &&
393              "Must expand into a divisible number of parts!");
394       unsigned Factor = NumParts / NumIntermediates;
395       for (unsigned i = 0; i != NumIntermediates; ++i)
396         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
397                                   PartVT, IntermediateVT, V);
398     }
399 
400     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
401     // intermediate operands.
402     EVT BuiltVectorTy =
403         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
404                          (IntermediateVT.isVector()
405                               ? IntermediateVT.getVectorNumElements() * NumParts
406                               : NumIntermediates));
407     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
408                                                 : ISD::BUILD_VECTOR,
409                       DL, BuiltVectorTy, Ops);
410   }
411 
412   // There is now one part, held in Val.  Correct it to match ValueVT.
413   EVT PartEVT = Val.getValueType();
414 
415   if (PartEVT == ValueVT)
416     return Val;
417 
418   if (PartEVT.isVector()) {
419     // If the element type of the source/dest vectors are the same, but the
420     // parts vector has more elements than the value vector, then we have a
421     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
422     // elements we want.
423     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
424       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
425              "Cannot narrow, it would be a lossy transformation");
426       return DAG.getNode(
427           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
428           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
429     }
430 
431     // Vector/Vector bitcast.
432     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
433       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
434 
435     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
436       "Cannot handle this kind of promotion");
437     // Promoted vector extract
438     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
439 
440   }
441 
442   // Trivial bitcast if the types are the same size and the destination
443   // vector type is legal.
444   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
445       TLI.isTypeLegal(ValueVT))
446     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
447 
448   if (ValueVT.getVectorNumElements() != 1) {
449      // Certain ABIs require that vectors are passed as integers. For vectors
450      // are the same size, this is an obvious bitcast.
451      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
452        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
453      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
454        // Bitcast Val back the original type and extract the corresponding
455        // vector we want.
456        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
457        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
458                                            ValueVT.getVectorElementType(), Elts);
459        Val = DAG.getBitcast(WiderVecType, Val);
460        return DAG.getNode(
461            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
462            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
463      }
464 
465      diagnosePossiblyInvalidConstraint(
466          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
467      return DAG.getUNDEF(ValueVT);
468   }
469 
470   // Handle cases such as i8 -> <1 x i1>
471   EVT ValueSVT = ValueVT.getVectorElementType();
472   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
473     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
474                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
475 
476   return DAG.getBuildVector(ValueVT, DL, Val);
477 }
478 
479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
480                                  SDValue Val, SDValue *Parts, unsigned NumParts,
481                                  MVT PartVT, const Value *V,
482                                  Optional<CallingConv::ID> CallConv);
483 
484 /// getCopyToParts - Create a series of nodes that contain the specified value
485 /// split into legal parts.  If the parts contain more bits than Val, then, for
486 /// integers, ExtendKind can be used to specify how to generate the extra bits.
487 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
488                            SDValue *Parts, unsigned NumParts, MVT PartVT,
489                            const Value *V,
490                            Optional<CallingConv::ID> CallConv = None,
491                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
492   EVT ValueVT = Val.getValueType();
493 
494   // Handle the vector case separately.
495   if (ValueVT.isVector())
496     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
497                                 CallConv);
498 
499   unsigned PartBits = PartVT.getSizeInBits();
500   unsigned OrigNumParts = NumParts;
501   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
502          "Copying to an illegal type!");
503 
504   if (NumParts == 0)
505     return;
506 
507   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
508   EVT PartEVT = PartVT;
509   if (PartEVT == ValueVT) {
510     assert(NumParts == 1 && "No-op copy with multiple parts!");
511     Parts[0] = Val;
512     return;
513   }
514 
515   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
516     // If the parts cover more bits than the value has, promote the value.
517     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
518       assert(NumParts == 1 && "Do not know what to promote to!");
519       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
520     } else {
521       if (ValueVT.isFloatingPoint()) {
522         // FP values need to be bitcast, then extended if they are being put
523         // into a larger container.
524         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
525         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
526       }
527       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
528              ValueVT.isInteger() &&
529              "Unknown mismatch!");
530       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
531       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
532       if (PartVT == MVT::x86mmx)
533         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
534     }
535   } else if (PartBits == ValueVT.getSizeInBits()) {
536     // Different types of the same size.
537     assert(NumParts == 1 && PartEVT != ValueVT);
538     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
540     // If the parts cover less bits than value has, truncate the value.
541     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
542            ValueVT.isInteger() &&
543            "Unknown mismatch!");
544     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
545     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
546     if (PartVT == MVT::x86mmx)
547       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548   }
549 
550   // The value may have changed - recompute ValueVT.
551   ValueVT = Val.getValueType();
552   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
553          "Failed to tile the value with PartVT!");
554 
555   if (NumParts == 1) {
556     if (PartEVT != ValueVT) {
557       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
558                                         "scalar-to-vector conversion failed");
559       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560     }
561 
562     Parts[0] = Val;
563     return;
564   }
565 
566   // Expand the value into multiple parts.
567   if (NumParts & (NumParts - 1)) {
568     // The number of parts is not a power of 2.  Split off and copy the tail.
569     assert(PartVT.isInteger() && ValueVT.isInteger() &&
570            "Do not know what to expand to!");
571     unsigned RoundParts = 1 << Log2_32(NumParts);
572     unsigned RoundBits = RoundParts * PartBits;
573     unsigned OddParts = NumParts - RoundParts;
574     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
575                                  DAG.getIntPtrConstant(RoundBits, DL));
576     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
577                    CallConv);
578 
579     if (DAG.getDataLayout().isBigEndian())
580       // The odd parts were reversed by getCopyToParts - unreverse them.
581       std::reverse(Parts + RoundParts, Parts + NumParts);
582 
583     NumParts = RoundParts;
584     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
585     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
586   }
587 
588   // The number of parts is a power of 2.  Repeatedly bisect the value using
589   // EXTRACT_ELEMENT.
590   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
591                          EVT::getIntegerVT(*DAG.getContext(),
592                                            ValueVT.getSizeInBits()),
593                          Val);
594 
595   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
596     for (unsigned i = 0; i < NumParts; i += StepSize) {
597       unsigned ThisBits = StepSize * PartBits / 2;
598       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
599       SDValue &Part0 = Parts[i];
600       SDValue &Part1 = Parts[i+StepSize/2];
601 
602       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
603                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
604       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
606 
607       if (ThisBits == PartBits && ThisVT != PartVT) {
608         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
609         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
610       }
611     }
612   }
613 
614   if (DAG.getDataLayout().isBigEndian())
615     std::reverse(Parts, Parts + OrigNumParts);
616 }
617 
618 static SDValue widenVectorToPartType(SelectionDAG &DAG,
619                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
620   if (!PartVT.isVector())
621     return SDValue();
622 
623   EVT ValueVT = Val.getValueType();
624   unsigned PartNumElts = PartVT.getVectorNumElements();
625   unsigned ValueNumElts = ValueVT.getVectorNumElements();
626   if (PartNumElts > ValueNumElts &&
627       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
628     EVT ElementVT = PartVT.getVectorElementType();
629     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
630     // undef elements.
631     SmallVector<SDValue, 16> Ops;
632     DAG.ExtractVectorElements(Val, Ops);
633     SDValue EltUndef = DAG.getUNDEF(ElementVT);
634     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
635       Ops.push_back(EltUndef);
636 
637     // FIXME: Use CONCAT for 2x -> 4x.
638     return DAG.getBuildVector(PartVT, DL, Ops);
639   }
640 
641   return SDValue();
642 }
643 
644 /// getCopyToPartsVector - Create a series of nodes that contain the specified
645 /// value split into legal parts.
646 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
647                                  SDValue Val, SDValue *Parts, unsigned NumParts,
648                                  MVT PartVT, const Value *V,
649                                  Optional<CallingConv::ID> CallConv) {
650   EVT ValueVT = Val.getValueType();
651   assert(ValueVT.isVector() && "Not a vector");
652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
653   const bool IsABIRegCopy = CallConv.hasValue();
654 
655   if (NumParts == 1) {
656     EVT PartEVT = PartVT;
657     if (PartEVT == ValueVT) {
658       // Nothing to do.
659     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
660       // Bitconvert vector->vector case.
661       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
662     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
663       Val = Widened;
664     } else if (PartVT.isVector() &&
665                PartEVT.getVectorElementType().bitsGE(
666                  ValueVT.getVectorElementType()) &&
667                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
668 
669       // Promoted vector extract
670       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
671     } else {
672       if (ValueVT.getVectorNumElements() == 1) {
673         Val = DAG.getNode(
674             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
675             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
676       } else {
677         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
678                "lossy conversion of vector to scalar type");
679         EVT IntermediateType =
680             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
681         Val = DAG.getBitcast(IntermediateType, Val);
682         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
683       }
684     }
685 
686     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
687     Parts[0] = Val;
688     return;
689   }
690 
691   // Handle a multi-element vector.
692   EVT IntermediateVT;
693   MVT RegisterVT;
694   unsigned NumIntermediates;
695   unsigned NumRegs;
696   if (IsABIRegCopy) {
697     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
698         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
699         NumIntermediates, RegisterVT);
700   } else {
701     NumRegs =
702         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
703                                    NumIntermediates, RegisterVT);
704   }
705 
706   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
707   NumParts = NumRegs; // Silence a compiler warning.
708   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
709 
710   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
711     IntermediateVT.getVectorNumElements() : 1;
712 
713   // Convert the vector to the appropiate type if necessary.
714   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
715 
716   EVT BuiltVectorTy = EVT::getVectorVT(
717       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
718   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
719   if (ValueVT != BuiltVectorTy) {
720     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
721       Val = Widened;
722 
723     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
724   }
725 
726   // Split the vector into intermediate operands.
727   SmallVector<SDValue, 8> Ops(NumIntermediates);
728   for (unsigned i = 0; i != NumIntermediates; ++i) {
729     if (IntermediateVT.isVector()) {
730       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
731                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
732     } else {
733       Ops[i] = DAG.getNode(
734           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
735           DAG.getConstant(i, DL, IdxVT));
736     }
737   }
738 
739   // Split the intermediate operands into legal parts.
740   if (NumParts == NumIntermediates) {
741     // If the register was not expanded, promote or copy the value,
742     // as appropriate.
743     for (unsigned i = 0; i != NumParts; ++i)
744       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
745   } else if (NumParts > 0) {
746     // If the intermediate type was expanded, split each the value into
747     // legal parts.
748     assert(NumIntermediates != 0 && "division by zero");
749     assert(NumParts % NumIntermediates == 0 &&
750            "Must expand into a divisible number of parts!");
751     unsigned Factor = NumParts / NumIntermediates;
752     for (unsigned i = 0; i != NumIntermediates; ++i)
753       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
754                      CallConv);
755   }
756 }
757 
758 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
759                            EVT valuevt, Optional<CallingConv::ID> CC)
760     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
761       RegCount(1, regs.size()), CallConv(CC) {}
762 
763 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
764                            const DataLayout &DL, unsigned Reg, Type *Ty,
765                            Optional<CallingConv::ID> CC) {
766   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
767 
768   CallConv = CC;
769 
770   for (EVT ValueVT : ValueVTs) {
771     unsigned NumRegs =
772         isABIMangled()
773             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
774             : TLI.getNumRegisters(Context, ValueVT);
775     MVT RegisterVT =
776         isABIMangled()
777             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
778             : TLI.getRegisterType(Context, ValueVT);
779     for (unsigned i = 0; i != NumRegs; ++i)
780       Regs.push_back(Reg + i);
781     RegVTs.push_back(RegisterVT);
782     RegCount.push_back(NumRegs);
783     Reg += NumRegs;
784   }
785 }
786 
787 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
788                                       FunctionLoweringInfo &FuncInfo,
789                                       const SDLoc &dl, SDValue &Chain,
790                                       SDValue *Flag, const Value *V) const {
791   // A Value with type {} or [0 x %t] needs no registers.
792   if (ValueVTs.empty())
793     return SDValue();
794 
795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
796 
797   // Assemble the legal parts into the final values.
798   SmallVector<SDValue, 4> Values(ValueVTs.size());
799   SmallVector<SDValue, 8> Parts;
800   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
801     // Copy the legal parts from the registers.
802     EVT ValueVT = ValueVTs[Value];
803     unsigned NumRegs = RegCount[Value];
804     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
805                                           *DAG.getContext(),
806                                           CallConv.getValue(), RegVTs[Value])
807                                     : RegVTs[Value];
808 
809     Parts.resize(NumRegs);
810     for (unsigned i = 0; i != NumRegs; ++i) {
811       SDValue P;
812       if (!Flag) {
813         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
814       } else {
815         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
816         *Flag = P.getValue(2);
817       }
818 
819       Chain = P.getValue(1);
820       Parts[i] = P;
821 
822       // If the source register was virtual and if we know something about it,
823       // add an assert node.
824       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
825           !RegisterVT.isInteger())
826         continue;
827 
828       const FunctionLoweringInfo::LiveOutInfo *LOI =
829         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
830       if (!LOI)
831         continue;
832 
833       unsigned RegSize = RegisterVT.getScalarSizeInBits();
834       unsigned NumSignBits = LOI->NumSignBits;
835       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
836 
837       if (NumZeroBits == RegSize) {
838         // The current value is a zero.
839         // Explicitly express that as it would be easier for
840         // optimizations to kick in.
841         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
842         continue;
843       }
844 
845       // FIXME: We capture more information than the dag can represent.  For
846       // now, just use the tightest assertzext/assertsext possible.
847       bool isSExt;
848       EVT FromVT(MVT::Other);
849       if (NumZeroBits) {
850         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
851         isSExt = false;
852       } else if (NumSignBits > 1) {
853         FromVT =
854             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
855         isSExt = true;
856       } else {
857         continue;
858       }
859       // Add an assertion node.
860       assert(FromVT != MVT::Other);
861       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
862                              RegisterVT, P, DAG.getValueType(FromVT));
863     }
864 
865     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
866                                      RegisterVT, ValueVT, V, CallConv);
867     Part += NumRegs;
868     Parts.clear();
869   }
870 
871   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
872 }
873 
874 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
875                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
876                                  const Value *V,
877                                  ISD::NodeType PreferredExtendType) const {
878   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
879   ISD::NodeType ExtendKind = PreferredExtendType;
880 
881   // Get the list of the values's legal parts.
882   unsigned NumRegs = Regs.size();
883   SmallVector<SDValue, 8> Parts(NumRegs);
884   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
885     unsigned NumParts = RegCount[Value];
886 
887     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
888                                           *DAG.getContext(),
889                                           CallConv.getValue(), RegVTs[Value])
890                                     : RegVTs[Value];
891 
892     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
893       ExtendKind = ISD::ZERO_EXTEND;
894 
895     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
896                    NumParts, RegisterVT, V, CallConv, ExtendKind);
897     Part += NumParts;
898   }
899 
900   // Copy the parts into the registers.
901   SmallVector<SDValue, 8> Chains(NumRegs);
902   for (unsigned i = 0; i != NumRegs; ++i) {
903     SDValue Part;
904     if (!Flag) {
905       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
906     } else {
907       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
908       *Flag = Part.getValue(1);
909     }
910 
911     Chains[i] = Part.getValue(0);
912   }
913 
914   if (NumRegs == 1 || Flag)
915     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
916     // flagged to it. That is the CopyToReg nodes and the user are considered
917     // a single scheduling unit. If we create a TokenFactor and return it as
918     // chain, then the TokenFactor is both a predecessor (operand) of the
919     // user as well as a successor (the TF operands are flagged to the user).
920     // c1, f1 = CopyToReg
921     // c2, f2 = CopyToReg
922     // c3     = TokenFactor c1, c2
923     // ...
924     //        = op c3, ..., f2
925     Chain = Chains[NumRegs-1];
926   else
927     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
928 }
929 
930 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
931                                         unsigned MatchingIdx, const SDLoc &dl,
932                                         SelectionDAG &DAG,
933                                         std::vector<SDValue> &Ops) const {
934   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
935 
936   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
937   if (HasMatching)
938     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
939   else if (!Regs.empty() &&
940            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
941     // Put the register class of the virtual registers in the flag word.  That
942     // way, later passes can recompute register class constraints for inline
943     // assembly as well as normal instructions.
944     // Don't do this for tied operands that can use the regclass information
945     // from the def.
946     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
947     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
948     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
949   }
950 
951   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
952   Ops.push_back(Res);
953 
954   if (Code == InlineAsm::Kind_Clobber) {
955     // Clobbers should always have a 1:1 mapping with registers, and may
956     // reference registers that have illegal (e.g. vector) types. Hence, we
957     // shouldn't try to apply any sort of splitting logic to them.
958     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
959            "No 1:1 mapping from clobbers to regs?");
960     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
961     (void)SP;
962     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
963       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
964       assert(
965           (Regs[I] != SP ||
966            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
967           "If we clobbered the stack pointer, MFI should know about it.");
968     }
969     return;
970   }
971 
972   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
973     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
974     MVT RegisterVT = RegVTs[Value];
975     for (unsigned i = 0; i != NumRegs; ++i) {
976       assert(Reg < Regs.size() && "Mismatch in # registers expected");
977       unsigned TheReg = Regs[Reg++];
978       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
979     }
980   }
981 }
982 
983 SmallVector<std::pair<unsigned, unsigned>, 4>
984 RegsForValue::getRegsAndSizes() const {
985   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
986   unsigned I = 0;
987   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
988     unsigned RegCount = std::get<0>(CountAndVT);
989     MVT RegisterVT = std::get<1>(CountAndVT);
990     unsigned RegisterSize = RegisterVT.getSizeInBits();
991     for (unsigned E = I + RegCount; I != E; ++I)
992       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
993   }
994   return OutVec;
995 }
996 
997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
998                                const TargetLibraryInfo *li) {
999   AA = aa;
1000   GFI = gfi;
1001   LibInfo = li;
1002   DL = &DAG.getDataLayout();
1003   Context = DAG.getContext();
1004   LPadToCallSiteMap.clear();
1005 }
1006 
1007 void SelectionDAGBuilder::clear() {
1008   NodeMap.clear();
1009   UnusedArgNodeMap.clear();
1010   PendingLoads.clear();
1011   PendingExports.clear();
1012   CurInst = nullptr;
1013   HasTailCall = false;
1014   SDNodeOrder = LowestSDNodeOrder;
1015   StatepointLowering.clear();
1016 }
1017 
1018 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1019   DanglingDebugInfoMap.clear();
1020 }
1021 
1022 SDValue SelectionDAGBuilder::getRoot() {
1023   if (PendingLoads.empty())
1024     return DAG.getRoot();
1025 
1026   if (PendingLoads.size() == 1) {
1027     SDValue Root = PendingLoads[0];
1028     DAG.setRoot(Root);
1029     PendingLoads.clear();
1030     return Root;
1031   }
1032 
1033   // Otherwise, we have to make a token factor node.
1034   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1035   PendingLoads.clear();
1036   DAG.setRoot(Root);
1037   return Root;
1038 }
1039 
1040 SDValue SelectionDAGBuilder::getControlRoot() {
1041   SDValue Root = DAG.getRoot();
1042 
1043   if (PendingExports.empty())
1044     return Root;
1045 
1046   // Turn all of the CopyToReg chains into one factored node.
1047   if (Root.getOpcode() != ISD::EntryToken) {
1048     unsigned i = 0, e = PendingExports.size();
1049     for (; i != e; ++i) {
1050       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1051       if (PendingExports[i].getNode()->getOperand(0) == Root)
1052         break;  // Don't add the root if we already indirectly depend on it.
1053     }
1054 
1055     if (i == e)
1056       PendingExports.push_back(Root);
1057   }
1058 
1059   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1060                      PendingExports);
1061   PendingExports.clear();
1062   DAG.setRoot(Root);
1063   return Root;
1064 }
1065 
1066 void SelectionDAGBuilder::visit(const Instruction &I) {
1067   // Set up outgoing PHI node register values before emitting the terminator.
1068   if (I.isTerminator()) {
1069     HandlePHINodesInSuccessorBlocks(I.getParent());
1070   }
1071 
1072   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1073   if (!isa<DbgInfoIntrinsic>(I))
1074     ++SDNodeOrder;
1075 
1076   CurInst = &I;
1077 
1078   visit(I.getOpcode(), I);
1079 
1080   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1081     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1082     // maps to this instruction.
1083     // TODO: We could handle all flags (nsw, etc) here.
1084     // TODO: If an IR instruction maps to >1 node, only the final node will have
1085     //       flags set.
1086     if (SDNode *Node = getNodeForIRValue(&I)) {
1087       SDNodeFlags IncomingFlags;
1088       IncomingFlags.copyFMF(*FPMO);
1089       if (!Node->getFlags().isDefined())
1090         Node->setFlags(IncomingFlags);
1091       else
1092         Node->intersectFlagsWith(IncomingFlags);
1093     }
1094   }
1095 
1096   if (!I.isTerminator() && !HasTailCall &&
1097       !isStatepoint(&I)) // statepoints handle their exports internally
1098     CopyToExportRegsIfNeeded(&I);
1099 
1100   CurInst = nullptr;
1101 }
1102 
1103 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1104   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1105 }
1106 
1107 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1108   // Note: this doesn't use InstVisitor, because it has to work with
1109   // ConstantExpr's in addition to instructions.
1110   switch (Opcode) {
1111   default: llvm_unreachable("Unknown instruction type encountered!");
1112     // Build the switch statement using the Instruction.def file.
1113 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1114     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1115 #include "llvm/IR/Instruction.def"
1116   }
1117 }
1118 
1119 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1120                                                 const DIExpression *Expr) {
1121   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1122     const DbgValueInst *DI = DDI.getDI();
1123     DIVariable *DanglingVariable = DI->getVariable();
1124     DIExpression *DanglingExpr = DI->getExpression();
1125     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1126       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1127       return true;
1128     }
1129     return false;
1130   };
1131 
1132   for (auto &DDIMI : DanglingDebugInfoMap) {
1133     DanglingDebugInfoVector &DDIV = DDIMI.second;
1134     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1135   }
1136 }
1137 
1138 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1139 // generate the debug data structures now that we've seen its definition.
1140 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1141                                                    SDValue Val) {
1142   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1143   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1144     return;
1145 
1146   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1147   for (auto &DDI : DDIV) {
1148     const DbgValueInst *DI = DDI.getDI();
1149     assert(DI && "Ill-formed DanglingDebugInfo");
1150     DebugLoc dl = DDI.getdl();
1151     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1152     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1153     DILocalVariable *Variable = DI->getVariable();
1154     DIExpression *Expr = DI->getExpression();
1155     assert(Variable->isValidLocationForIntrinsic(dl) &&
1156            "Expected inlined-at fields to agree");
1157     SDDbgValue *SDV;
1158     if (Val.getNode()) {
1159       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1160         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1161                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1162         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1163         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1164         // inserted after the definition of Val when emitting the instructions
1165         // after ISel. An alternative could be to teach
1166         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1167         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1168                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1169                    << ValSDNodeOrder << "\n");
1170         SDV = getDbgValue(Val, Variable, Expr, dl,
1171                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1172         DAG.AddDbgValue(SDV, Val.getNode(), false);
1173       } else
1174         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1175                           << "in EmitFuncArgumentDbgValue\n");
1176     } else
1177       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1178   }
1179   DDIV.clear();
1180 }
1181 
1182 /// getCopyFromRegs - If there was virtual register allocated for the value V
1183 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1184 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1185   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1186   SDValue Result;
1187 
1188   if (It != FuncInfo.ValueMap.end()) {
1189     unsigned InReg = It->second;
1190 
1191     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1192                      DAG.getDataLayout(), InReg, Ty,
1193                      None); // This is not an ABI copy.
1194     SDValue Chain = DAG.getEntryNode();
1195     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1196                                  V);
1197     resolveDanglingDebugInfo(V, Result);
1198   }
1199 
1200   return Result;
1201 }
1202 
1203 /// getValue - Return an SDValue for the given Value.
1204 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1205   // If we already have an SDValue for this value, use it. It's important
1206   // to do this first, so that we don't create a CopyFromReg if we already
1207   // have a regular SDValue.
1208   SDValue &N = NodeMap[V];
1209   if (N.getNode()) return N;
1210 
1211   // If there's a virtual register allocated and initialized for this
1212   // value, use it.
1213   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1214     return copyFromReg;
1215 
1216   // Otherwise create a new SDValue and remember it.
1217   SDValue Val = getValueImpl(V);
1218   NodeMap[V] = Val;
1219   resolveDanglingDebugInfo(V, Val);
1220   return Val;
1221 }
1222 
1223 // Return true if SDValue exists for the given Value
1224 bool SelectionDAGBuilder::findValue(const Value *V) const {
1225   return (NodeMap.find(V) != NodeMap.end()) ||
1226     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1227 }
1228 
1229 /// getNonRegisterValue - Return an SDValue for the given Value, but
1230 /// don't look in FuncInfo.ValueMap for a virtual register.
1231 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1232   // If we already have an SDValue for this value, use it.
1233   SDValue &N = NodeMap[V];
1234   if (N.getNode()) {
1235     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1236       // Remove the debug location from the node as the node is about to be used
1237       // in a location which may differ from the original debug location.  This
1238       // is relevant to Constant and ConstantFP nodes because they can appear
1239       // as constant expressions inside PHI nodes.
1240       N->setDebugLoc(DebugLoc());
1241     }
1242     return N;
1243   }
1244 
1245   // Otherwise create a new SDValue and remember it.
1246   SDValue Val = getValueImpl(V);
1247   NodeMap[V] = Val;
1248   resolveDanglingDebugInfo(V, Val);
1249   return Val;
1250 }
1251 
1252 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1253 /// Create an SDValue for the given value.
1254 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1255   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1256 
1257   if (const Constant *C = dyn_cast<Constant>(V)) {
1258     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1259 
1260     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1261       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1262 
1263     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1264       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1265 
1266     if (isa<ConstantPointerNull>(C)) {
1267       unsigned AS = V->getType()->getPointerAddressSpace();
1268       return DAG.getConstant(0, getCurSDLoc(),
1269                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1270     }
1271 
1272     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1273       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1274 
1275     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1276       return DAG.getUNDEF(VT);
1277 
1278     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1279       visit(CE->getOpcode(), *CE);
1280       SDValue N1 = NodeMap[V];
1281       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1282       return N1;
1283     }
1284 
1285     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1286       SmallVector<SDValue, 4> Constants;
1287       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1288            OI != OE; ++OI) {
1289         SDNode *Val = getValue(*OI).getNode();
1290         // If the operand is an empty aggregate, there are no values.
1291         if (!Val) continue;
1292         // Add each leaf value from the operand to the Constants list
1293         // to form a flattened list of all the values.
1294         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1295           Constants.push_back(SDValue(Val, i));
1296       }
1297 
1298       return DAG.getMergeValues(Constants, getCurSDLoc());
1299     }
1300 
1301     if (const ConstantDataSequential *CDS =
1302           dyn_cast<ConstantDataSequential>(C)) {
1303       SmallVector<SDValue, 4> Ops;
1304       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1305         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1306         // Add each leaf value from the operand to the Constants list
1307         // to form a flattened list of all the values.
1308         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1309           Ops.push_back(SDValue(Val, i));
1310       }
1311 
1312       if (isa<ArrayType>(CDS->getType()))
1313         return DAG.getMergeValues(Ops, getCurSDLoc());
1314       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1315     }
1316 
1317     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1318       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1319              "Unknown struct or array constant!");
1320 
1321       SmallVector<EVT, 4> ValueVTs;
1322       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1323       unsigned NumElts = ValueVTs.size();
1324       if (NumElts == 0)
1325         return SDValue(); // empty struct
1326       SmallVector<SDValue, 4> Constants(NumElts);
1327       for (unsigned i = 0; i != NumElts; ++i) {
1328         EVT EltVT = ValueVTs[i];
1329         if (isa<UndefValue>(C))
1330           Constants[i] = DAG.getUNDEF(EltVT);
1331         else if (EltVT.isFloatingPoint())
1332           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1333         else
1334           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1335       }
1336 
1337       return DAG.getMergeValues(Constants, getCurSDLoc());
1338     }
1339 
1340     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1341       return DAG.getBlockAddress(BA, VT);
1342 
1343     VectorType *VecTy = cast<VectorType>(V->getType());
1344     unsigned NumElements = VecTy->getNumElements();
1345 
1346     // Now that we know the number and type of the elements, get that number of
1347     // elements into the Ops array based on what kind of constant it is.
1348     SmallVector<SDValue, 16> Ops;
1349     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1350       for (unsigned i = 0; i != NumElements; ++i)
1351         Ops.push_back(getValue(CV->getOperand(i)));
1352     } else {
1353       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1354       EVT EltVT =
1355           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1356 
1357       SDValue Op;
1358       if (EltVT.isFloatingPoint())
1359         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1360       else
1361         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1362       Ops.assign(NumElements, Op);
1363     }
1364 
1365     // Create a BUILD_VECTOR node.
1366     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1367   }
1368 
1369   // If this is a static alloca, generate it as the frameindex instead of
1370   // computation.
1371   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1372     DenseMap<const AllocaInst*, int>::iterator SI =
1373       FuncInfo.StaticAllocaMap.find(AI);
1374     if (SI != FuncInfo.StaticAllocaMap.end())
1375       return DAG.getFrameIndex(SI->second,
1376                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1377   }
1378 
1379   // If this is an instruction which fast-isel has deferred, select it now.
1380   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1381     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1382 
1383     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1384                      Inst->getType(), getABIRegCopyCC(V));
1385     SDValue Chain = DAG.getEntryNode();
1386     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1387   }
1388 
1389   llvm_unreachable("Can't get register for value!");
1390 }
1391 
1392 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1393   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1394   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1395   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1396   bool IsSEH = isAsynchronousEHPersonality(Pers);
1397   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1398   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1399   if (!IsSEH)
1400     CatchPadMBB->setIsEHScopeEntry();
1401   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1402   if (IsMSVCCXX || IsCoreCLR)
1403     CatchPadMBB->setIsEHFuncletEntry();
1404   // Wasm does not need catchpads anymore
1405   if (!IsWasmCXX)
1406     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1407                             getControlRoot()));
1408 }
1409 
1410 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1411   // Update machine-CFG edge.
1412   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1413   FuncInfo.MBB->addSuccessor(TargetMBB);
1414 
1415   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1416   bool IsSEH = isAsynchronousEHPersonality(Pers);
1417   if (IsSEH) {
1418     // If this is not a fall-through branch or optimizations are switched off,
1419     // emit the branch.
1420     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1421         TM.getOptLevel() == CodeGenOpt::None)
1422       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1423                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1424     return;
1425   }
1426 
1427   // Figure out the funclet membership for the catchret's successor.
1428   // This will be used by the FuncletLayout pass to determine how to order the
1429   // BB's.
1430   // A 'catchret' returns to the outer scope's color.
1431   Value *ParentPad = I.getCatchSwitchParentPad();
1432   const BasicBlock *SuccessorColor;
1433   if (isa<ConstantTokenNone>(ParentPad))
1434     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1435   else
1436     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1437   assert(SuccessorColor && "No parent funclet for catchret!");
1438   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1439   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1440 
1441   // Create the terminator node.
1442   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1443                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1444                             DAG.getBasicBlock(SuccessorColorMBB));
1445   DAG.setRoot(Ret);
1446 }
1447 
1448 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1449   // Don't emit any special code for the cleanuppad instruction. It just marks
1450   // the start of an EH scope/funclet.
1451   FuncInfo.MBB->setIsEHScopeEntry();
1452   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1453   if (Pers != EHPersonality::Wasm_CXX) {
1454     FuncInfo.MBB->setIsEHFuncletEntry();
1455     FuncInfo.MBB->setIsCleanupFuncletEntry();
1456   }
1457 }
1458 
1459 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1460 /// many places it could ultimately go. In the IR, we have a single unwind
1461 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1462 /// This function skips over imaginary basic blocks that hold catchswitch
1463 /// instructions, and finds all the "real" machine
1464 /// basic block destinations. As those destinations may not be successors of
1465 /// EHPadBB, here we also calculate the edge probability to those destinations.
1466 /// The passed-in Prob is the edge probability to EHPadBB.
1467 static void findUnwindDestinations(
1468     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1469     BranchProbability Prob,
1470     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1471         &UnwindDests) {
1472   EHPersonality Personality =
1473     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1474   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1475   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1476   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1477   bool IsSEH = isAsynchronousEHPersonality(Personality);
1478 
1479   while (EHPadBB) {
1480     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1481     BasicBlock *NewEHPadBB = nullptr;
1482     if (isa<LandingPadInst>(Pad)) {
1483       // Stop on landingpads. They are not funclets.
1484       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1485       break;
1486     } else if (isa<CleanupPadInst>(Pad)) {
1487       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1488       // personalities.
1489       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1490       UnwindDests.back().first->setIsEHScopeEntry();
1491       if (!IsWasmCXX)
1492         UnwindDests.back().first->setIsEHFuncletEntry();
1493       break;
1494     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1495       // Add the catchpad handlers to the possible destinations.
1496       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1497         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1498         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1499         if (IsMSVCCXX || IsCoreCLR)
1500           UnwindDests.back().first->setIsEHFuncletEntry();
1501         if (!IsSEH)
1502           UnwindDests.back().first->setIsEHScopeEntry();
1503       }
1504       NewEHPadBB = CatchSwitch->getUnwindDest();
1505     } else {
1506       continue;
1507     }
1508 
1509     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1510     if (BPI && NewEHPadBB)
1511       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1512     EHPadBB = NewEHPadBB;
1513   }
1514 }
1515 
1516 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1517   // Update successor info.
1518   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1519   auto UnwindDest = I.getUnwindDest();
1520   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1521   BranchProbability UnwindDestProb =
1522       (BPI && UnwindDest)
1523           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1524           : BranchProbability::getZero();
1525   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1526   for (auto &UnwindDest : UnwindDests) {
1527     UnwindDest.first->setIsEHPad();
1528     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1529   }
1530   FuncInfo.MBB->normalizeSuccProbs();
1531 
1532   // Create the terminator node.
1533   SDValue Ret =
1534       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1535   DAG.setRoot(Ret);
1536 }
1537 
1538 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1539   report_fatal_error("visitCatchSwitch not yet implemented!");
1540 }
1541 
1542 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1544   auto &DL = DAG.getDataLayout();
1545   SDValue Chain = getControlRoot();
1546   SmallVector<ISD::OutputArg, 8> Outs;
1547   SmallVector<SDValue, 8> OutVals;
1548 
1549   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1550   // lower
1551   //
1552   //   %val = call <ty> @llvm.experimental.deoptimize()
1553   //   ret <ty> %val
1554   //
1555   // differently.
1556   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1557     LowerDeoptimizingReturn();
1558     return;
1559   }
1560 
1561   if (!FuncInfo.CanLowerReturn) {
1562     unsigned DemoteReg = FuncInfo.DemoteRegister;
1563     const Function *F = I.getParent()->getParent();
1564 
1565     // Emit a store of the return value through the virtual register.
1566     // Leave Outs empty so that LowerReturn won't try to load return
1567     // registers the usual way.
1568     SmallVector<EVT, 1> PtrValueVTs;
1569     ComputeValueVTs(TLI, DL,
1570                     F->getReturnType()->getPointerTo(
1571                         DAG.getDataLayout().getAllocaAddrSpace()),
1572                     PtrValueVTs);
1573 
1574     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1575                                         DemoteReg, PtrValueVTs[0]);
1576     SDValue RetOp = getValue(I.getOperand(0));
1577 
1578     SmallVector<EVT, 4> ValueVTs;
1579     SmallVector<uint64_t, 4> Offsets;
1580     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1581     unsigned NumValues = ValueVTs.size();
1582 
1583     SmallVector<SDValue, 4> Chains(NumValues);
1584     for (unsigned i = 0; i != NumValues; ++i) {
1585       // An aggregate return value cannot wrap around the address space, so
1586       // offsets to its parts don't wrap either.
1587       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1588       Chains[i] = DAG.getStore(
1589           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1590           // FIXME: better loc info would be nice.
1591           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1592     }
1593 
1594     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1595                         MVT::Other, Chains);
1596   } else if (I.getNumOperands() != 0) {
1597     SmallVector<EVT, 4> ValueVTs;
1598     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1599     unsigned NumValues = ValueVTs.size();
1600     if (NumValues) {
1601       SDValue RetOp = getValue(I.getOperand(0));
1602 
1603       const Function *F = I.getParent()->getParent();
1604 
1605       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1606       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1607                                           Attribute::SExt))
1608         ExtendKind = ISD::SIGN_EXTEND;
1609       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1610                                                Attribute::ZExt))
1611         ExtendKind = ISD::ZERO_EXTEND;
1612 
1613       LLVMContext &Context = F->getContext();
1614       bool RetInReg = F->getAttributes().hasAttribute(
1615           AttributeList::ReturnIndex, Attribute::InReg);
1616 
1617       for (unsigned j = 0; j != NumValues; ++j) {
1618         EVT VT = ValueVTs[j];
1619 
1620         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1621           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1622 
1623         CallingConv::ID CC = F->getCallingConv();
1624 
1625         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1626         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1627         SmallVector<SDValue, 4> Parts(NumParts);
1628         getCopyToParts(DAG, getCurSDLoc(),
1629                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1630                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1631 
1632         // 'inreg' on function refers to return value
1633         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1634         if (RetInReg)
1635           Flags.setInReg();
1636 
1637         // Propagate extension type if any
1638         if (ExtendKind == ISD::SIGN_EXTEND)
1639           Flags.setSExt();
1640         else if (ExtendKind == ISD::ZERO_EXTEND)
1641           Flags.setZExt();
1642 
1643         for (unsigned i = 0; i < NumParts; ++i) {
1644           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1645                                         VT, /*isfixed=*/true, 0, 0));
1646           OutVals.push_back(Parts[i]);
1647         }
1648       }
1649     }
1650   }
1651 
1652   // Push in swifterror virtual register as the last element of Outs. This makes
1653   // sure swifterror virtual register will be returned in the swifterror
1654   // physical register.
1655   const Function *F = I.getParent()->getParent();
1656   if (TLI.supportSwiftError() &&
1657       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1658     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1659     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1660     Flags.setSwiftError();
1661     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1662                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1663                                   true /*isfixed*/, 1 /*origidx*/,
1664                                   0 /*partOffs*/));
1665     // Create SDNode for the swifterror virtual register.
1666     OutVals.push_back(
1667         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1668                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1669                         EVT(TLI.getPointerTy(DL))));
1670   }
1671 
1672   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1673   CallingConv::ID CallConv =
1674     DAG.getMachineFunction().getFunction().getCallingConv();
1675   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1676       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1677 
1678   // Verify that the target's LowerReturn behaved as expected.
1679   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1680          "LowerReturn didn't return a valid chain!");
1681 
1682   // Update the DAG with the new chain value resulting from return lowering.
1683   DAG.setRoot(Chain);
1684 }
1685 
1686 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1687 /// created for it, emit nodes to copy the value into the virtual
1688 /// registers.
1689 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1690   // Skip empty types
1691   if (V->getType()->isEmptyTy())
1692     return;
1693 
1694   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1695   if (VMI != FuncInfo.ValueMap.end()) {
1696     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1697     CopyValueToVirtualRegister(V, VMI->second);
1698   }
1699 }
1700 
1701 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1702 /// the current basic block, add it to ValueMap now so that we'll get a
1703 /// CopyTo/FromReg.
1704 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1705   // No need to export constants.
1706   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1707 
1708   // Already exported?
1709   if (FuncInfo.isExportedInst(V)) return;
1710 
1711   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1712   CopyValueToVirtualRegister(V, Reg);
1713 }
1714 
1715 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1716                                                      const BasicBlock *FromBB) {
1717   // The operands of the setcc have to be in this block.  We don't know
1718   // how to export them from some other block.
1719   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1720     // Can export from current BB.
1721     if (VI->getParent() == FromBB)
1722       return true;
1723 
1724     // Is already exported, noop.
1725     return FuncInfo.isExportedInst(V);
1726   }
1727 
1728   // If this is an argument, we can export it if the BB is the entry block or
1729   // if it is already exported.
1730   if (isa<Argument>(V)) {
1731     if (FromBB == &FromBB->getParent()->getEntryBlock())
1732       return true;
1733 
1734     // Otherwise, can only export this if it is already exported.
1735     return FuncInfo.isExportedInst(V);
1736   }
1737 
1738   // Otherwise, constants can always be exported.
1739   return true;
1740 }
1741 
1742 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1743 BranchProbability
1744 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1745                                         const MachineBasicBlock *Dst) const {
1746   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1747   const BasicBlock *SrcBB = Src->getBasicBlock();
1748   const BasicBlock *DstBB = Dst->getBasicBlock();
1749   if (!BPI) {
1750     // If BPI is not available, set the default probability as 1 / N, where N is
1751     // the number of successors.
1752     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1753     return BranchProbability(1, SuccSize);
1754   }
1755   return BPI->getEdgeProbability(SrcBB, DstBB);
1756 }
1757 
1758 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1759                                                MachineBasicBlock *Dst,
1760                                                BranchProbability Prob) {
1761   if (!FuncInfo.BPI)
1762     Src->addSuccessorWithoutProb(Dst);
1763   else {
1764     if (Prob.isUnknown())
1765       Prob = getEdgeProbability(Src, Dst);
1766     Src->addSuccessor(Dst, Prob);
1767   }
1768 }
1769 
1770 static bool InBlock(const Value *V, const BasicBlock *BB) {
1771   if (const Instruction *I = dyn_cast<Instruction>(V))
1772     return I->getParent() == BB;
1773   return true;
1774 }
1775 
1776 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1777 /// This function emits a branch and is used at the leaves of an OR or an
1778 /// AND operator tree.
1779 void
1780 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1781                                                   MachineBasicBlock *TBB,
1782                                                   MachineBasicBlock *FBB,
1783                                                   MachineBasicBlock *CurBB,
1784                                                   MachineBasicBlock *SwitchBB,
1785                                                   BranchProbability TProb,
1786                                                   BranchProbability FProb,
1787                                                   bool InvertCond) {
1788   const BasicBlock *BB = CurBB->getBasicBlock();
1789 
1790   // If the leaf of the tree is a comparison, merge the condition into
1791   // the caseblock.
1792   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1793     // The operands of the cmp have to be in this block.  We don't know
1794     // how to export them from some other block.  If this is the first block
1795     // of the sequence, no exporting is needed.
1796     if (CurBB == SwitchBB ||
1797         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1798          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1799       ISD::CondCode Condition;
1800       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1801         ICmpInst::Predicate Pred =
1802             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1803         Condition = getICmpCondCode(Pred);
1804       } else {
1805         const FCmpInst *FC = cast<FCmpInst>(Cond);
1806         FCmpInst::Predicate Pred =
1807             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1808         Condition = getFCmpCondCode(Pred);
1809         if (TM.Options.NoNaNsFPMath)
1810           Condition = getFCmpCodeWithoutNaN(Condition);
1811       }
1812 
1813       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1814                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1815       SwitchCases.push_back(CB);
1816       return;
1817     }
1818   }
1819 
1820   // Create a CaseBlock record representing this branch.
1821   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1822   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1823                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1824   SwitchCases.push_back(CB);
1825 }
1826 
1827 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1828                                                MachineBasicBlock *TBB,
1829                                                MachineBasicBlock *FBB,
1830                                                MachineBasicBlock *CurBB,
1831                                                MachineBasicBlock *SwitchBB,
1832                                                Instruction::BinaryOps Opc,
1833                                                BranchProbability TProb,
1834                                                BranchProbability FProb,
1835                                                bool InvertCond) {
1836   // Skip over not part of the tree and remember to invert op and operands at
1837   // next level.
1838   Value *NotCond;
1839   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
1840       InBlock(NotCond, CurBB->getBasicBlock())) {
1841     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1842                          !InvertCond);
1843     return;
1844   }
1845 
1846   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1847   // Compute the effective opcode for Cond, taking into account whether it needs
1848   // to be inverted, e.g.
1849   //   and (not (or A, B)), C
1850   // gets lowered as
1851   //   and (and (not A, not B), C)
1852   unsigned BOpc = 0;
1853   if (BOp) {
1854     BOpc = BOp->getOpcode();
1855     if (InvertCond) {
1856       if (BOpc == Instruction::And)
1857         BOpc = Instruction::Or;
1858       else if (BOpc == Instruction::Or)
1859         BOpc = Instruction::And;
1860     }
1861   }
1862 
1863   // If this node is not part of the or/and tree, emit it as a branch.
1864   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1865       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1866       BOp->getParent() != CurBB->getBasicBlock() ||
1867       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1868       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1869     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1870                                  TProb, FProb, InvertCond);
1871     return;
1872   }
1873 
1874   //  Create TmpBB after CurBB.
1875   MachineFunction::iterator BBI(CurBB);
1876   MachineFunction &MF = DAG.getMachineFunction();
1877   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1878   CurBB->getParent()->insert(++BBI, TmpBB);
1879 
1880   if (Opc == Instruction::Or) {
1881     // Codegen X | Y as:
1882     // BB1:
1883     //   jmp_if_X TBB
1884     //   jmp TmpBB
1885     // TmpBB:
1886     //   jmp_if_Y TBB
1887     //   jmp FBB
1888     //
1889 
1890     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1891     // The requirement is that
1892     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1893     //     = TrueProb for original BB.
1894     // Assuming the original probabilities are A and B, one choice is to set
1895     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1896     // A/(1+B) and 2B/(1+B). This choice assumes that
1897     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1898     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1899     // TmpBB, but the math is more complicated.
1900 
1901     auto NewTrueProb = TProb / 2;
1902     auto NewFalseProb = TProb / 2 + FProb;
1903     // Emit the LHS condition.
1904     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1905                          NewTrueProb, NewFalseProb, InvertCond);
1906 
1907     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1908     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1909     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1910     // Emit the RHS condition into TmpBB.
1911     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1912                          Probs[0], Probs[1], InvertCond);
1913   } else {
1914     assert(Opc == Instruction::And && "Unknown merge op!");
1915     // Codegen X & Y as:
1916     // BB1:
1917     //   jmp_if_X TmpBB
1918     //   jmp FBB
1919     // TmpBB:
1920     //   jmp_if_Y TBB
1921     //   jmp FBB
1922     //
1923     //  This requires creation of TmpBB after CurBB.
1924 
1925     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1926     // The requirement is that
1927     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1928     //     = FalseProb for original BB.
1929     // Assuming the original probabilities are A and B, one choice is to set
1930     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1931     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1932     // TrueProb for BB1 * FalseProb for TmpBB.
1933 
1934     auto NewTrueProb = TProb + FProb / 2;
1935     auto NewFalseProb = FProb / 2;
1936     // Emit the LHS condition.
1937     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1938                          NewTrueProb, NewFalseProb, InvertCond);
1939 
1940     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1941     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1942     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1943     // Emit the RHS condition into TmpBB.
1944     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1945                          Probs[0], Probs[1], InvertCond);
1946   }
1947 }
1948 
1949 /// If the set of cases should be emitted as a series of branches, return true.
1950 /// If we should emit this as a bunch of and/or'd together conditions, return
1951 /// false.
1952 bool
1953 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1954   if (Cases.size() != 2) return true;
1955 
1956   // If this is two comparisons of the same values or'd or and'd together, they
1957   // will get folded into a single comparison, so don't emit two blocks.
1958   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1959        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1960       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1961        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1962     return false;
1963   }
1964 
1965   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1966   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1967   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1968       Cases[0].CC == Cases[1].CC &&
1969       isa<Constant>(Cases[0].CmpRHS) &&
1970       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1971     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1972       return false;
1973     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1974       return false;
1975   }
1976 
1977   return true;
1978 }
1979 
1980 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1981   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1982 
1983   // Update machine-CFG edges.
1984   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1985 
1986   if (I.isUnconditional()) {
1987     // Update machine-CFG edges.
1988     BrMBB->addSuccessor(Succ0MBB);
1989 
1990     // If this is not a fall-through branch or optimizations are switched off,
1991     // emit the branch.
1992     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1993       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1994                               MVT::Other, getControlRoot(),
1995                               DAG.getBasicBlock(Succ0MBB)));
1996 
1997     return;
1998   }
1999 
2000   // If this condition is one of the special cases we handle, do special stuff
2001   // now.
2002   const Value *CondVal = I.getCondition();
2003   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2004 
2005   // If this is a series of conditions that are or'd or and'd together, emit
2006   // this as a sequence of branches instead of setcc's with and/or operations.
2007   // As long as jumps are not expensive, this should improve performance.
2008   // For example, instead of something like:
2009   //     cmp A, B
2010   //     C = seteq
2011   //     cmp D, E
2012   //     F = setle
2013   //     or C, F
2014   //     jnz foo
2015   // Emit:
2016   //     cmp A, B
2017   //     je foo
2018   //     cmp D, E
2019   //     jle foo
2020   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2021     Instruction::BinaryOps Opcode = BOp->getOpcode();
2022     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2023         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2024         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2025       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2026                            Opcode,
2027                            getEdgeProbability(BrMBB, Succ0MBB),
2028                            getEdgeProbability(BrMBB, Succ1MBB),
2029                            /*InvertCond=*/false);
2030       // If the compares in later blocks need to use values not currently
2031       // exported from this block, export them now.  This block should always
2032       // be the first entry.
2033       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2034 
2035       // Allow some cases to be rejected.
2036       if (ShouldEmitAsBranches(SwitchCases)) {
2037         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2038           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2039           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2040         }
2041 
2042         // Emit the branch for this block.
2043         visitSwitchCase(SwitchCases[0], BrMBB);
2044         SwitchCases.erase(SwitchCases.begin());
2045         return;
2046       }
2047 
2048       // Okay, we decided not to do this, remove any inserted MBB's and clear
2049       // SwitchCases.
2050       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2051         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2052 
2053       SwitchCases.clear();
2054     }
2055   }
2056 
2057   // Create a CaseBlock record representing this branch.
2058   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2059                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2060 
2061   // Use visitSwitchCase to actually insert the fast branch sequence for this
2062   // cond branch.
2063   visitSwitchCase(CB, BrMBB);
2064 }
2065 
2066 /// visitSwitchCase - Emits the necessary code to represent a single node in
2067 /// the binary search tree resulting from lowering a switch instruction.
2068 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2069                                           MachineBasicBlock *SwitchBB) {
2070   SDValue Cond;
2071   SDValue CondLHS = getValue(CB.CmpLHS);
2072   SDLoc dl = CB.DL;
2073 
2074   // Build the setcc now.
2075   if (!CB.CmpMHS) {
2076     // Fold "(X == true)" to X and "(X == false)" to !X to
2077     // handle common cases produced by branch lowering.
2078     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2079         CB.CC == ISD::SETEQ)
2080       Cond = CondLHS;
2081     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2082              CB.CC == ISD::SETEQ) {
2083       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2084       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2085     } else
2086       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2087   } else {
2088     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2089 
2090     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2091     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2092 
2093     SDValue CmpOp = getValue(CB.CmpMHS);
2094     EVT VT = CmpOp.getValueType();
2095 
2096     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2097       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2098                           ISD::SETLE);
2099     } else {
2100       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2101                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2102       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2103                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2104     }
2105   }
2106 
2107   // Update successor info
2108   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2109   // TrueBB and FalseBB are always different unless the incoming IR is
2110   // degenerate. This only happens when running llc on weird IR.
2111   if (CB.TrueBB != CB.FalseBB)
2112     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2113   SwitchBB->normalizeSuccProbs();
2114 
2115   // If the lhs block is the next block, invert the condition so that we can
2116   // fall through to the lhs instead of the rhs block.
2117   if (CB.TrueBB == NextBlock(SwitchBB)) {
2118     std::swap(CB.TrueBB, CB.FalseBB);
2119     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2120     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2121   }
2122 
2123   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2124                                MVT::Other, getControlRoot(), Cond,
2125                                DAG.getBasicBlock(CB.TrueBB));
2126 
2127   // Insert the false branch. Do this even if it's a fall through branch,
2128   // this makes it easier to do DAG optimizations which require inverting
2129   // the branch condition.
2130   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2131                        DAG.getBasicBlock(CB.FalseBB));
2132 
2133   DAG.setRoot(BrCond);
2134 }
2135 
2136 /// visitJumpTable - Emit JumpTable node in the current MBB
2137 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2138   // Emit the code for the jump table
2139   assert(JT.Reg != -1U && "Should lower JT Header first!");
2140   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2141   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2142                                      JT.Reg, PTy);
2143   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2144   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2145                                     MVT::Other, Index.getValue(1),
2146                                     Table, Index);
2147   DAG.setRoot(BrJumpTable);
2148 }
2149 
2150 /// visitJumpTableHeader - This function emits necessary code to produce index
2151 /// in the JumpTable from switch case.
2152 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2153                                                JumpTableHeader &JTH,
2154                                                MachineBasicBlock *SwitchBB) {
2155   SDLoc dl = getCurSDLoc();
2156 
2157   // Subtract the lowest switch case value from the value being switched on and
2158   // conditional branch to default mbb if the result is greater than the
2159   // difference between smallest and largest cases.
2160   SDValue SwitchOp = getValue(JTH.SValue);
2161   EVT VT = SwitchOp.getValueType();
2162   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2163                             DAG.getConstant(JTH.First, dl, VT));
2164 
2165   // The SDNode we just created, which holds the value being switched on minus
2166   // the smallest case value, needs to be copied to a virtual register so it
2167   // can be used as an index into the jump table in a subsequent basic block.
2168   // This value may be smaller or larger than the target's pointer type, and
2169   // therefore require extension or truncating.
2170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2171   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2172 
2173   unsigned JumpTableReg =
2174       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2175   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2176                                     JumpTableReg, SwitchOp);
2177   JT.Reg = JumpTableReg;
2178 
2179   if (!JTH.OmitRangeCheck) {
2180     // Emit the range check for the jump table, and branch to the default block
2181     // for the switch statement if the value being switched on exceeds the
2182     // largest case in the switch.
2183     SDValue CMP = DAG.getSetCC(
2184         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2185                                    Sub.getValueType()),
2186         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2187 
2188     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2189                                  MVT::Other, CopyTo, CMP,
2190                                  DAG.getBasicBlock(JT.Default));
2191 
2192     // Avoid emitting unnecessary branches to the next block.
2193     if (JT.MBB != NextBlock(SwitchBB))
2194       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2195                            DAG.getBasicBlock(JT.MBB));
2196 
2197     DAG.setRoot(BrCond);
2198   } else {
2199     SDValue BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2200                                  DAG.getBasicBlock(JT.MBB));
2201     DAG.setRoot(BrCond);
2202     SwitchBB->removeSuccessor(JT.Default, true);
2203   }
2204 }
2205 
2206 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2207 /// variable if there exists one.
2208 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2209                                  SDValue &Chain) {
2210   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2211   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2212   MachineFunction &MF = DAG.getMachineFunction();
2213   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2214   MachineSDNode *Node =
2215       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2216   if (Global) {
2217     MachinePointerInfo MPInfo(Global);
2218     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2219                  MachineMemOperand::MODereferenceable;
2220     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2221         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2222     DAG.setNodeMemRefs(Node, {MemRef});
2223   }
2224   return SDValue(Node, 0);
2225 }
2226 
2227 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2228 /// tail spliced into a stack protector check success bb.
2229 ///
2230 /// For a high level explanation of how this fits into the stack protector
2231 /// generation see the comment on the declaration of class
2232 /// StackProtectorDescriptor.
2233 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2234                                                   MachineBasicBlock *ParentBB) {
2235 
2236   // First create the loads to the guard/stack slot for the comparison.
2237   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2238   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2239 
2240   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2241   int FI = MFI.getStackProtectorIndex();
2242 
2243   SDValue Guard;
2244   SDLoc dl = getCurSDLoc();
2245   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2246   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2247   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2248 
2249   // Generate code to load the content of the guard slot.
2250   SDValue GuardVal = DAG.getLoad(
2251       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2252       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2253       MachineMemOperand::MOVolatile);
2254 
2255   if (TLI.useStackGuardXorFP())
2256     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2257 
2258   // Retrieve guard check function, nullptr if instrumentation is inlined.
2259   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2260     // The target provides a guard check function to validate the guard value.
2261     // Generate a call to that function with the content of the guard slot as
2262     // argument.
2263     auto *Fn = cast<Function>(GuardCheck);
2264     FunctionType *FnTy = Fn->getFunctionType();
2265     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2266 
2267     TargetLowering::ArgListTy Args;
2268     TargetLowering::ArgListEntry Entry;
2269     Entry.Node = GuardVal;
2270     Entry.Ty = FnTy->getParamType(0);
2271     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2272       Entry.IsInReg = true;
2273     Args.push_back(Entry);
2274 
2275     TargetLowering::CallLoweringInfo CLI(DAG);
2276     CLI.setDebugLoc(getCurSDLoc())
2277       .setChain(DAG.getEntryNode())
2278       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2279                  getValue(GuardCheck), std::move(Args));
2280 
2281     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2282     DAG.setRoot(Result.second);
2283     return;
2284   }
2285 
2286   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2287   // Otherwise, emit a volatile load to retrieve the stack guard value.
2288   SDValue Chain = DAG.getEntryNode();
2289   if (TLI.useLoadStackGuardNode()) {
2290     Guard = getLoadStackGuard(DAG, dl, Chain);
2291   } else {
2292     const Value *IRGuard = TLI.getSDagStackGuard(M);
2293     SDValue GuardPtr = getValue(IRGuard);
2294 
2295     Guard =
2296         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2297                     Align, MachineMemOperand::MOVolatile);
2298   }
2299 
2300   // Perform the comparison via a subtract/getsetcc.
2301   EVT VT = Guard.getValueType();
2302   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2303 
2304   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2305                                                         *DAG.getContext(),
2306                                                         Sub.getValueType()),
2307                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2308 
2309   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2310   // branch to failure MBB.
2311   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2312                                MVT::Other, GuardVal.getOperand(0),
2313                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2314   // Otherwise branch to success MBB.
2315   SDValue Br = DAG.getNode(ISD::BR, dl,
2316                            MVT::Other, BrCond,
2317                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2318 
2319   DAG.setRoot(Br);
2320 }
2321 
2322 /// Codegen the failure basic block for a stack protector check.
2323 ///
2324 /// A failure stack protector machine basic block consists simply of a call to
2325 /// __stack_chk_fail().
2326 ///
2327 /// For a high level explanation of how this fits into the stack protector
2328 /// generation see the comment on the declaration of class
2329 /// StackProtectorDescriptor.
2330 void
2331 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2332   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2333   SDValue Chain =
2334       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2335                       None, false, getCurSDLoc(), false, false).second;
2336   DAG.setRoot(Chain);
2337 }
2338 
2339 /// visitBitTestHeader - This function emits necessary code to produce value
2340 /// suitable for "bit tests"
2341 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2342                                              MachineBasicBlock *SwitchBB) {
2343   SDLoc dl = getCurSDLoc();
2344 
2345   // Subtract the minimum value
2346   SDValue SwitchOp = getValue(B.SValue);
2347   EVT VT = SwitchOp.getValueType();
2348   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2349                             DAG.getConstant(B.First, dl, VT));
2350 
2351   // Check range
2352   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2353   SDValue RangeCmp = DAG.getSetCC(
2354       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2355                                  Sub.getValueType()),
2356       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2357 
2358   // Determine the type of the test operands.
2359   bool UsePtrType = false;
2360   if (!TLI.isTypeLegal(VT))
2361     UsePtrType = true;
2362   else {
2363     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2364       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2365         // Switch table case range are encoded into series of masks.
2366         // Just use pointer type, it's guaranteed to fit.
2367         UsePtrType = true;
2368         break;
2369       }
2370   }
2371   if (UsePtrType) {
2372     VT = TLI.getPointerTy(DAG.getDataLayout());
2373     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2374   }
2375 
2376   B.RegVT = VT.getSimpleVT();
2377   B.Reg = FuncInfo.CreateReg(B.RegVT);
2378   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2379 
2380   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2381 
2382   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2383   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2384   SwitchBB->normalizeSuccProbs();
2385 
2386   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2387                                 MVT::Other, CopyTo, RangeCmp,
2388                                 DAG.getBasicBlock(B.Default));
2389 
2390   // Avoid emitting unnecessary branches to the next block.
2391   if (MBB != NextBlock(SwitchBB))
2392     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2393                           DAG.getBasicBlock(MBB));
2394 
2395   DAG.setRoot(BrRange);
2396 }
2397 
2398 /// visitBitTestCase - this function produces one "bit test"
2399 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2400                                            MachineBasicBlock* NextMBB,
2401                                            BranchProbability BranchProbToNext,
2402                                            unsigned Reg,
2403                                            BitTestCase &B,
2404                                            MachineBasicBlock *SwitchBB) {
2405   SDLoc dl = getCurSDLoc();
2406   MVT VT = BB.RegVT;
2407   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2408   SDValue Cmp;
2409   unsigned PopCount = countPopulation(B.Mask);
2410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2411   if (PopCount == 1) {
2412     // Testing for a single bit; just compare the shift count with what it
2413     // would need to be to shift a 1 bit in that position.
2414     Cmp = DAG.getSetCC(
2415         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2416         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2417         ISD::SETEQ);
2418   } else if (PopCount == BB.Range) {
2419     // There is only one zero bit in the range, test for it directly.
2420     Cmp = DAG.getSetCC(
2421         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2422         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2423         ISD::SETNE);
2424   } else {
2425     // Make desired shift
2426     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2427                                     DAG.getConstant(1, dl, VT), ShiftOp);
2428 
2429     // Emit bit tests and jumps
2430     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2431                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2432     Cmp = DAG.getSetCC(
2433         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2434         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2435   }
2436 
2437   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2438   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2439   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2440   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2441   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2442   // one as they are relative probabilities (and thus work more like weights),
2443   // and hence we need to normalize them to let the sum of them become one.
2444   SwitchBB->normalizeSuccProbs();
2445 
2446   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2447                               MVT::Other, getControlRoot(),
2448                               Cmp, DAG.getBasicBlock(B.TargetBB));
2449 
2450   // Avoid emitting unnecessary branches to the next block.
2451   if (NextMBB != NextBlock(SwitchBB))
2452     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2453                         DAG.getBasicBlock(NextMBB));
2454 
2455   DAG.setRoot(BrAnd);
2456 }
2457 
2458 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2459   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2460 
2461   // Retrieve successors. Look through artificial IR level blocks like
2462   // catchswitch for successors.
2463   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2464   const BasicBlock *EHPadBB = I.getSuccessor(1);
2465 
2466   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2467   // have to do anything here to lower funclet bundles.
2468   assert(!I.hasOperandBundlesOtherThan(
2469              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2470          "Cannot lower invokes with arbitrary operand bundles yet!");
2471 
2472   const Value *Callee(I.getCalledValue());
2473   const Function *Fn = dyn_cast<Function>(Callee);
2474   if (isa<InlineAsm>(Callee))
2475     visitInlineAsm(&I);
2476   else if (Fn && Fn->isIntrinsic()) {
2477     switch (Fn->getIntrinsicID()) {
2478     default:
2479       llvm_unreachable("Cannot invoke this intrinsic");
2480     case Intrinsic::donothing:
2481       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2482       break;
2483     case Intrinsic::experimental_patchpoint_void:
2484     case Intrinsic::experimental_patchpoint_i64:
2485       visitPatchpoint(&I, EHPadBB);
2486       break;
2487     case Intrinsic::experimental_gc_statepoint:
2488       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2489       break;
2490     }
2491   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2492     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2493     // Eventually we will support lowering the @llvm.experimental.deoptimize
2494     // intrinsic, and right now there are no plans to support other intrinsics
2495     // with deopt state.
2496     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2497   } else {
2498     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2499   }
2500 
2501   // If the value of the invoke is used outside of its defining block, make it
2502   // available as a virtual register.
2503   // We already took care of the exported value for the statepoint instruction
2504   // during call to the LowerStatepoint.
2505   if (!isStatepoint(I)) {
2506     CopyToExportRegsIfNeeded(&I);
2507   }
2508 
2509   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2510   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2511   BranchProbability EHPadBBProb =
2512       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2513           : BranchProbability::getZero();
2514   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2515 
2516   // Update successor info.
2517   addSuccessorWithProb(InvokeMBB, Return);
2518   for (auto &UnwindDest : UnwindDests) {
2519     UnwindDest.first->setIsEHPad();
2520     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2521   }
2522   InvokeMBB->normalizeSuccProbs();
2523 
2524   // Drop into normal successor.
2525   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2526                           MVT::Other, getControlRoot(),
2527                           DAG.getBasicBlock(Return)));
2528 }
2529 
2530 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2531   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2532 }
2533 
2534 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2535   assert(FuncInfo.MBB->isEHPad() &&
2536          "Call to landingpad not in landing pad!");
2537 
2538   // If there aren't registers to copy the values into (e.g., during SjLj
2539   // exceptions), then don't bother to create these DAG nodes.
2540   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2541   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2542   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2543       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2544     return;
2545 
2546   // If landingpad's return type is token type, we don't create DAG nodes
2547   // for its exception pointer and selector value. The extraction of exception
2548   // pointer or selector value from token type landingpads is not currently
2549   // supported.
2550   if (LP.getType()->isTokenTy())
2551     return;
2552 
2553   SmallVector<EVT, 2> ValueVTs;
2554   SDLoc dl = getCurSDLoc();
2555   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2556   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2557 
2558   // Get the two live-in registers as SDValues. The physregs have already been
2559   // copied into virtual registers.
2560   SDValue Ops[2];
2561   if (FuncInfo.ExceptionPointerVirtReg) {
2562     Ops[0] = DAG.getZExtOrTrunc(
2563         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2564                            FuncInfo.ExceptionPointerVirtReg,
2565                            TLI.getPointerTy(DAG.getDataLayout())),
2566         dl, ValueVTs[0]);
2567   } else {
2568     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2569   }
2570   Ops[1] = DAG.getZExtOrTrunc(
2571       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2572                          FuncInfo.ExceptionSelectorVirtReg,
2573                          TLI.getPointerTy(DAG.getDataLayout())),
2574       dl, ValueVTs[1]);
2575 
2576   // Merge into one.
2577   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2578                             DAG.getVTList(ValueVTs), Ops);
2579   setValue(&LP, Res);
2580 }
2581 
2582 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2583 #ifndef NDEBUG
2584   for (const CaseCluster &CC : Clusters)
2585     assert(CC.Low == CC.High && "Input clusters must be single-case");
2586 #endif
2587 
2588   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2589     return a.Low->getValue().slt(b.Low->getValue());
2590   });
2591 
2592   // Merge adjacent clusters with the same destination.
2593   const unsigned N = Clusters.size();
2594   unsigned DstIndex = 0;
2595   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2596     CaseCluster &CC = Clusters[SrcIndex];
2597     const ConstantInt *CaseVal = CC.Low;
2598     MachineBasicBlock *Succ = CC.MBB;
2599 
2600     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2601         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2602       // If this case has the same successor and is a neighbour, merge it into
2603       // the previous cluster.
2604       Clusters[DstIndex - 1].High = CaseVal;
2605       Clusters[DstIndex - 1].Prob += CC.Prob;
2606     } else {
2607       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2608                    sizeof(Clusters[SrcIndex]));
2609     }
2610   }
2611   Clusters.resize(DstIndex);
2612 }
2613 
2614 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2615                                            MachineBasicBlock *Last) {
2616   // Update JTCases.
2617   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2618     if (JTCases[i].first.HeaderBB == First)
2619       JTCases[i].first.HeaderBB = Last;
2620 
2621   // Update BitTestCases.
2622   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2623     if (BitTestCases[i].Parent == First)
2624       BitTestCases[i].Parent = Last;
2625 }
2626 
2627 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2628   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2629 
2630   // Update machine-CFG edges with unique successors.
2631   SmallSet<BasicBlock*, 32> Done;
2632   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2633     BasicBlock *BB = I.getSuccessor(i);
2634     bool Inserted = Done.insert(BB).second;
2635     if (!Inserted)
2636         continue;
2637 
2638     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2639     addSuccessorWithProb(IndirectBrMBB, Succ);
2640   }
2641   IndirectBrMBB->normalizeSuccProbs();
2642 
2643   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2644                           MVT::Other, getControlRoot(),
2645                           getValue(I.getAddress())));
2646 }
2647 
2648 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2649   if (!DAG.getTarget().Options.TrapUnreachable)
2650     return;
2651 
2652   // We may be able to ignore unreachable behind a noreturn call.
2653   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2654     const BasicBlock &BB = *I.getParent();
2655     if (&I != &BB.front()) {
2656       BasicBlock::const_iterator PredI =
2657         std::prev(BasicBlock::const_iterator(&I));
2658       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2659         if (Call->doesNotReturn())
2660           return;
2661       }
2662     }
2663   }
2664 
2665   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2666 }
2667 
2668 void SelectionDAGBuilder::visitFSub(const User &I) {
2669   // -0.0 - X --> fneg
2670   Type *Ty = I.getType();
2671   if (isa<Constant>(I.getOperand(0)) &&
2672       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2673     SDValue Op2 = getValue(I.getOperand(1));
2674     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2675                              Op2.getValueType(), Op2));
2676     return;
2677   }
2678 
2679   visitBinary(I, ISD::FSUB);
2680 }
2681 
2682 /// Checks if the given instruction performs a vector reduction, in which case
2683 /// we have the freedom to alter the elements in the result as long as the
2684 /// reduction of them stays unchanged.
2685 static bool isVectorReductionOp(const User *I) {
2686   const Instruction *Inst = dyn_cast<Instruction>(I);
2687   if (!Inst || !Inst->getType()->isVectorTy())
2688     return false;
2689 
2690   auto OpCode = Inst->getOpcode();
2691   switch (OpCode) {
2692   case Instruction::Add:
2693   case Instruction::Mul:
2694   case Instruction::And:
2695   case Instruction::Or:
2696   case Instruction::Xor:
2697     break;
2698   case Instruction::FAdd:
2699   case Instruction::FMul:
2700     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2701       if (FPOp->getFastMathFlags().isFast())
2702         break;
2703     LLVM_FALLTHROUGH;
2704   default:
2705     return false;
2706   }
2707 
2708   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2709   // Ensure the reduction size is a power of 2.
2710   if (!isPowerOf2_32(ElemNum))
2711     return false;
2712 
2713   unsigned ElemNumToReduce = ElemNum;
2714 
2715   // Do DFS search on the def-use chain from the given instruction. We only
2716   // allow four kinds of operations during the search until we reach the
2717   // instruction that extracts the first element from the vector:
2718   //
2719   //   1. The reduction operation of the same opcode as the given instruction.
2720   //
2721   //   2. PHI node.
2722   //
2723   //   3. ShuffleVector instruction together with a reduction operation that
2724   //      does a partial reduction.
2725   //
2726   //   4. ExtractElement that extracts the first element from the vector, and we
2727   //      stop searching the def-use chain here.
2728   //
2729   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2730   // from 1-3 to the stack to continue the DFS. The given instruction is not
2731   // a reduction operation if we meet any other instructions other than those
2732   // listed above.
2733 
2734   SmallVector<const User *, 16> UsersToVisit{Inst};
2735   SmallPtrSet<const User *, 16> Visited;
2736   bool ReduxExtracted = false;
2737 
2738   while (!UsersToVisit.empty()) {
2739     auto User = UsersToVisit.back();
2740     UsersToVisit.pop_back();
2741     if (!Visited.insert(User).second)
2742       continue;
2743 
2744     for (const auto &U : User->users()) {
2745       auto Inst = dyn_cast<Instruction>(U);
2746       if (!Inst)
2747         return false;
2748 
2749       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2750         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2751           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2752             return false;
2753         UsersToVisit.push_back(U);
2754       } else if (const ShuffleVectorInst *ShufInst =
2755                      dyn_cast<ShuffleVectorInst>(U)) {
2756         // Detect the following pattern: A ShuffleVector instruction together
2757         // with a reduction that do partial reduction on the first and second
2758         // ElemNumToReduce / 2 elements, and store the result in
2759         // ElemNumToReduce / 2 elements in another vector.
2760 
2761         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2762         if (ResultElements < ElemNum)
2763           return false;
2764 
2765         if (ElemNumToReduce == 1)
2766           return false;
2767         if (!isa<UndefValue>(U->getOperand(1)))
2768           return false;
2769         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2770           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2771             return false;
2772         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2773           if (ShufInst->getMaskValue(i) != -1)
2774             return false;
2775 
2776         // There is only one user of this ShuffleVector instruction, which
2777         // must be a reduction operation.
2778         if (!U->hasOneUse())
2779           return false;
2780 
2781         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2782         if (!U2 || U2->getOpcode() != OpCode)
2783           return false;
2784 
2785         // Check operands of the reduction operation.
2786         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2787             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2788           UsersToVisit.push_back(U2);
2789           ElemNumToReduce /= 2;
2790         } else
2791           return false;
2792       } else if (isa<ExtractElementInst>(U)) {
2793         // At this moment we should have reduced all elements in the vector.
2794         if (ElemNumToReduce != 1)
2795           return false;
2796 
2797         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2798         if (!Val || !Val->isZero())
2799           return false;
2800 
2801         ReduxExtracted = true;
2802       } else
2803         return false;
2804     }
2805   }
2806   return ReduxExtracted;
2807 }
2808 
2809 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
2810   SDNodeFlags Flags;
2811 
2812   SDValue Op = getValue(I.getOperand(0));
2813   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
2814                                     Op, Flags);
2815   setValue(&I, UnNodeValue);
2816 }
2817 
2818 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2819   SDNodeFlags Flags;
2820   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2821     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2822     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2823   }
2824   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2825     Flags.setExact(ExactOp->isExact());
2826   }
2827   if (isVectorReductionOp(&I)) {
2828     Flags.setVectorReduction(true);
2829     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2830   }
2831 
2832   SDValue Op1 = getValue(I.getOperand(0));
2833   SDValue Op2 = getValue(I.getOperand(1));
2834   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2835                                      Op1, Op2, Flags);
2836   setValue(&I, BinNodeValue);
2837 }
2838 
2839 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2840   SDValue Op1 = getValue(I.getOperand(0));
2841   SDValue Op2 = getValue(I.getOperand(1));
2842 
2843   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2844       Op1.getValueType(), DAG.getDataLayout());
2845 
2846   // Coerce the shift amount to the right type if we can.
2847   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2848     unsigned ShiftSize = ShiftTy.getSizeInBits();
2849     unsigned Op2Size = Op2.getValueSizeInBits();
2850     SDLoc DL = getCurSDLoc();
2851 
2852     // If the operand is smaller than the shift count type, promote it.
2853     if (ShiftSize > Op2Size)
2854       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2855 
2856     // If the operand is larger than the shift count type but the shift
2857     // count type has enough bits to represent any shift value, truncate
2858     // it now. This is a common case and it exposes the truncate to
2859     // optimization early.
2860     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2861       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2862     // Otherwise we'll need to temporarily settle for some other convenient
2863     // type.  Type legalization will make adjustments once the shiftee is split.
2864     else
2865       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2866   }
2867 
2868   bool nuw = false;
2869   bool nsw = false;
2870   bool exact = false;
2871 
2872   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2873 
2874     if (const OverflowingBinaryOperator *OFBinOp =
2875             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2876       nuw = OFBinOp->hasNoUnsignedWrap();
2877       nsw = OFBinOp->hasNoSignedWrap();
2878     }
2879     if (const PossiblyExactOperator *ExactOp =
2880             dyn_cast<const PossiblyExactOperator>(&I))
2881       exact = ExactOp->isExact();
2882   }
2883   SDNodeFlags Flags;
2884   Flags.setExact(exact);
2885   Flags.setNoSignedWrap(nsw);
2886   Flags.setNoUnsignedWrap(nuw);
2887   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2888                             Flags);
2889   setValue(&I, Res);
2890 }
2891 
2892 void SelectionDAGBuilder::visitSDiv(const User &I) {
2893   SDValue Op1 = getValue(I.getOperand(0));
2894   SDValue Op2 = getValue(I.getOperand(1));
2895 
2896   SDNodeFlags Flags;
2897   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2898                  cast<PossiblyExactOperator>(&I)->isExact());
2899   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2900                            Op2, Flags));
2901 }
2902 
2903 void SelectionDAGBuilder::visitICmp(const User &I) {
2904   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2905   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2906     predicate = IC->getPredicate();
2907   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2908     predicate = ICmpInst::Predicate(IC->getPredicate());
2909   SDValue Op1 = getValue(I.getOperand(0));
2910   SDValue Op2 = getValue(I.getOperand(1));
2911   ISD::CondCode Opcode = getICmpCondCode(predicate);
2912 
2913   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2914                                                         I.getType());
2915   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2916 }
2917 
2918 void SelectionDAGBuilder::visitFCmp(const User &I) {
2919   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2920   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2921     predicate = FC->getPredicate();
2922   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2923     predicate = FCmpInst::Predicate(FC->getPredicate());
2924   SDValue Op1 = getValue(I.getOperand(0));
2925   SDValue Op2 = getValue(I.getOperand(1));
2926 
2927   ISD::CondCode Condition = getFCmpCondCode(predicate);
2928   auto *FPMO = dyn_cast<FPMathOperator>(&I);
2929   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
2930     Condition = getFCmpCodeWithoutNaN(Condition);
2931 
2932   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2933                                                         I.getType());
2934   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2935 }
2936 
2937 // Check if the condition of the select has one use or two users that are both
2938 // selects with the same condition.
2939 static bool hasOnlySelectUsers(const Value *Cond) {
2940   return llvm::all_of(Cond->users(), [](const Value *V) {
2941     return isa<SelectInst>(V);
2942   });
2943 }
2944 
2945 void SelectionDAGBuilder::visitSelect(const User &I) {
2946   SmallVector<EVT, 4> ValueVTs;
2947   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2948                   ValueVTs);
2949   unsigned NumValues = ValueVTs.size();
2950   if (NumValues == 0) return;
2951 
2952   SmallVector<SDValue, 4> Values(NumValues);
2953   SDValue Cond     = getValue(I.getOperand(0));
2954   SDValue LHSVal   = getValue(I.getOperand(1));
2955   SDValue RHSVal   = getValue(I.getOperand(2));
2956   auto BaseOps = {Cond};
2957   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2958     ISD::VSELECT : ISD::SELECT;
2959 
2960   // Min/max matching is only viable if all output VTs are the same.
2961   if (is_splat(ValueVTs)) {
2962     EVT VT = ValueVTs[0];
2963     LLVMContext &Ctx = *DAG.getContext();
2964     auto &TLI = DAG.getTargetLoweringInfo();
2965 
2966     // We care about the legality of the operation after it has been type
2967     // legalized.
2968     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2969            VT != TLI.getTypeToTransformTo(Ctx, VT))
2970       VT = TLI.getTypeToTransformTo(Ctx, VT);
2971 
2972     // If the vselect is legal, assume we want to leave this as a vector setcc +
2973     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2974     // min/max is legal on the scalar type.
2975     bool UseScalarMinMax = VT.isVector() &&
2976       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2977 
2978     Value *LHS, *RHS;
2979     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2980     ISD::NodeType Opc = ISD::DELETED_NODE;
2981     switch (SPR.Flavor) {
2982     case SPF_UMAX:    Opc = ISD::UMAX; break;
2983     case SPF_UMIN:    Opc = ISD::UMIN; break;
2984     case SPF_SMAX:    Opc = ISD::SMAX; break;
2985     case SPF_SMIN:    Opc = ISD::SMIN; break;
2986     case SPF_FMINNUM:
2987       switch (SPR.NaNBehavior) {
2988       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2989       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
2990       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2991       case SPNB_RETURNS_ANY: {
2992         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2993           Opc = ISD::FMINNUM;
2994         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
2995           Opc = ISD::FMINIMUM;
2996         else if (UseScalarMinMax)
2997           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2998             ISD::FMINNUM : ISD::FMINIMUM;
2999         break;
3000       }
3001       }
3002       break;
3003     case SPF_FMAXNUM:
3004       switch (SPR.NaNBehavior) {
3005       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3006       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3007       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3008       case SPNB_RETURNS_ANY:
3009 
3010         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3011           Opc = ISD::FMAXNUM;
3012         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3013           Opc = ISD::FMAXIMUM;
3014         else if (UseScalarMinMax)
3015           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3016             ISD::FMAXNUM : ISD::FMAXIMUM;
3017         break;
3018       }
3019       break;
3020     default: break;
3021     }
3022 
3023     if (Opc != ISD::DELETED_NODE &&
3024         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3025          (UseScalarMinMax &&
3026           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3027         // If the underlying comparison instruction is used by any other
3028         // instruction, the consumed instructions won't be destroyed, so it is
3029         // not profitable to convert to a min/max.
3030         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3031       OpCode = Opc;
3032       LHSVal = getValue(LHS);
3033       RHSVal = getValue(RHS);
3034       BaseOps = {};
3035     }
3036   }
3037 
3038   for (unsigned i = 0; i != NumValues; ++i) {
3039     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3040     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3041     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3042     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3043                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3044                             Ops);
3045   }
3046 
3047   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3048                            DAG.getVTList(ValueVTs), Values));
3049 }
3050 
3051 void SelectionDAGBuilder::visitTrunc(const User &I) {
3052   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3053   SDValue N = getValue(I.getOperand(0));
3054   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3055                                                         I.getType());
3056   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3057 }
3058 
3059 void SelectionDAGBuilder::visitZExt(const User &I) {
3060   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3061   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3062   SDValue N = getValue(I.getOperand(0));
3063   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3064                                                         I.getType());
3065   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3066 }
3067 
3068 void SelectionDAGBuilder::visitSExt(const User &I) {
3069   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3070   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3071   SDValue N = getValue(I.getOperand(0));
3072   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3073                                                         I.getType());
3074   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3075 }
3076 
3077 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3078   // FPTrunc is never a no-op cast, no need to check
3079   SDValue N = getValue(I.getOperand(0));
3080   SDLoc dl = getCurSDLoc();
3081   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3082   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3083   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3084                            DAG.getTargetConstant(
3085                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3086 }
3087 
3088 void SelectionDAGBuilder::visitFPExt(const User &I) {
3089   // FPExt is never a no-op cast, no need to check
3090   SDValue N = getValue(I.getOperand(0));
3091   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3092                                                         I.getType());
3093   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3094 }
3095 
3096 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3097   // FPToUI is never a no-op cast, no need to check
3098   SDValue N = getValue(I.getOperand(0));
3099   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3100                                                         I.getType());
3101   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3102 }
3103 
3104 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3105   // FPToSI is never a no-op cast, no need to check
3106   SDValue N = getValue(I.getOperand(0));
3107   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3108                                                         I.getType());
3109   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3110 }
3111 
3112 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3113   // UIToFP is never a no-op cast, no need to check
3114   SDValue N = getValue(I.getOperand(0));
3115   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3116                                                         I.getType());
3117   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3118 }
3119 
3120 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3121   // SIToFP is never a no-op cast, no need to check
3122   SDValue N = getValue(I.getOperand(0));
3123   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3124                                                         I.getType());
3125   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3126 }
3127 
3128 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3129   // What to do depends on the size of the integer and the size of the pointer.
3130   // We can either truncate, zero extend, or no-op, accordingly.
3131   SDValue N = getValue(I.getOperand(0));
3132   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3133                                                         I.getType());
3134   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3135 }
3136 
3137 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3138   // What to do depends on the size of the integer and the size of the pointer.
3139   // We can either truncate, zero extend, or no-op, accordingly.
3140   SDValue N = getValue(I.getOperand(0));
3141   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3142                                                         I.getType());
3143   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3144 }
3145 
3146 void SelectionDAGBuilder::visitBitCast(const User &I) {
3147   SDValue N = getValue(I.getOperand(0));
3148   SDLoc dl = getCurSDLoc();
3149   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3150                                                         I.getType());
3151 
3152   // BitCast assures us that source and destination are the same size so this is
3153   // either a BITCAST or a no-op.
3154   if (DestVT != N.getValueType())
3155     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3156                              DestVT, N)); // convert types.
3157   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3158   // might fold any kind of constant expression to an integer constant and that
3159   // is not what we are looking for. Only recognize a bitcast of a genuine
3160   // constant integer as an opaque constant.
3161   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3162     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3163                                  /*isOpaque*/true));
3164   else
3165     setValue(&I, N);            // noop cast.
3166 }
3167 
3168 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3169   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3170   const Value *SV = I.getOperand(0);
3171   SDValue N = getValue(SV);
3172   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3173 
3174   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3175   unsigned DestAS = I.getType()->getPointerAddressSpace();
3176 
3177   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3178     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3179 
3180   setValue(&I, N);
3181 }
3182 
3183 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3184   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3185   SDValue InVec = getValue(I.getOperand(0));
3186   SDValue InVal = getValue(I.getOperand(1));
3187   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3188                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3189   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3190                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3191                            InVec, InVal, InIdx));
3192 }
3193 
3194 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3195   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3196   SDValue InVec = getValue(I.getOperand(0));
3197   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3198                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3199   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3200                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3201                            InVec, InIdx));
3202 }
3203 
3204 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3205   SDValue Src1 = getValue(I.getOperand(0));
3206   SDValue Src2 = getValue(I.getOperand(1));
3207   SDLoc DL = getCurSDLoc();
3208 
3209   SmallVector<int, 8> Mask;
3210   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3211   unsigned MaskNumElts = Mask.size();
3212 
3213   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3214   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3215   EVT SrcVT = Src1.getValueType();
3216   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3217 
3218   if (SrcNumElts == MaskNumElts) {
3219     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3220     return;
3221   }
3222 
3223   // Normalize the shuffle vector since mask and vector length don't match.
3224   if (SrcNumElts < MaskNumElts) {
3225     // Mask is longer than the source vectors. We can use concatenate vector to
3226     // make the mask and vectors lengths match.
3227 
3228     if (MaskNumElts % SrcNumElts == 0) {
3229       // Mask length is a multiple of the source vector length.
3230       // Check if the shuffle is some kind of concatenation of the input
3231       // vectors.
3232       unsigned NumConcat = MaskNumElts / SrcNumElts;
3233       bool IsConcat = true;
3234       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3235       for (unsigned i = 0; i != MaskNumElts; ++i) {
3236         int Idx = Mask[i];
3237         if (Idx < 0)
3238           continue;
3239         // Ensure the indices in each SrcVT sized piece are sequential and that
3240         // the same source is used for the whole piece.
3241         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3242             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3243              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3244           IsConcat = false;
3245           break;
3246         }
3247         // Remember which source this index came from.
3248         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3249       }
3250 
3251       // The shuffle is concatenating multiple vectors together. Just emit
3252       // a CONCAT_VECTORS operation.
3253       if (IsConcat) {
3254         SmallVector<SDValue, 8> ConcatOps;
3255         for (auto Src : ConcatSrcs) {
3256           if (Src < 0)
3257             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3258           else if (Src == 0)
3259             ConcatOps.push_back(Src1);
3260           else
3261             ConcatOps.push_back(Src2);
3262         }
3263         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3264         return;
3265       }
3266     }
3267 
3268     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3269     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3270     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3271                                     PaddedMaskNumElts);
3272 
3273     // Pad both vectors with undefs to make them the same length as the mask.
3274     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3275 
3276     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3277     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3278     MOps1[0] = Src1;
3279     MOps2[0] = Src2;
3280 
3281     Src1 = Src1.isUndef()
3282                ? DAG.getUNDEF(PaddedVT)
3283                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3284     Src2 = Src2.isUndef()
3285                ? DAG.getUNDEF(PaddedVT)
3286                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3287 
3288     // Readjust mask for new input vector length.
3289     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3290     for (unsigned i = 0; i != MaskNumElts; ++i) {
3291       int Idx = Mask[i];
3292       if (Idx >= (int)SrcNumElts)
3293         Idx -= SrcNumElts - PaddedMaskNumElts;
3294       MappedOps[i] = Idx;
3295     }
3296 
3297     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3298 
3299     // If the concatenated vector was padded, extract a subvector with the
3300     // correct number of elements.
3301     if (MaskNumElts != PaddedMaskNumElts)
3302       Result = DAG.getNode(
3303           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3304           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3305 
3306     setValue(&I, Result);
3307     return;
3308   }
3309 
3310   if (SrcNumElts > MaskNumElts) {
3311     // Analyze the access pattern of the vector to see if we can extract
3312     // two subvectors and do the shuffle.
3313     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3314     bool CanExtract = true;
3315     for (int Idx : Mask) {
3316       unsigned Input = 0;
3317       if (Idx < 0)
3318         continue;
3319 
3320       if (Idx >= (int)SrcNumElts) {
3321         Input = 1;
3322         Idx -= SrcNumElts;
3323       }
3324 
3325       // If all the indices come from the same MaskNumElts sized portion of
3326       // the sources we can use extract. Also make sure the extract wouldn't
3327       // extract past the end of the source.
3328       int NewStartIdx = alignDown(Idx, MaskNumElts);
3329       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3330           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3331         CanExtract = false;
3332       // Make sure we always update StartIdx as we use it to track if all
3333       // elements are undef.
3334       StartIdx[Input] = NewStartIdx;
3335     }
3336 
3337     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3338       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3339       return;
3340     }
3341     if (CanExtract) {
3342       // Extract appropriate subvector and generate a vector shuffle
3343       for (unsigned Input = 0; Input < 2; ++Input) {
3344         SDValue &Src = Input == 0 ? Src1 : Src2;
3345         if (StartIdx[Input] < 0)
3346           Src = DAG.getUNDEF(VT);
3347         else {
3348           Src = DAG.getNode(
3349               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3350               DAG.getConstant(StartIdx[Input], DL,
3351                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3352         }
3353       }
3354 
3355       // Calculate new mask.
3356       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3357       for (int &Idx : MappedOps) {
3358         if (Idx >= (int)SrcNumElts)
3359           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3360         else if (Idx >= 0)
3361           Idx -= StartIdx[0];
3362       }
3363 
3364       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3365       return;
3366     }
3367   }
3368 
3369   // We can't use either concat vectors or extract subvectors so fall back to
3370   // replacing the shuffle with extract and build vector.
3371   // to insert and build vector.
3372   EVT EltVT = VT.getVectorElementType();
3373   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3374   SmallVector<SDValue,8> Ops;
3375   for (int Idx : Mask) {
3376     SDValue Res;
3377 
3378     if (Idx < 0) {
3379       Res = DAG.getUNDEF(EltVT);
3380     } else {
3381       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3382       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3383 
3384       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3385                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3386     }
3387 
3388     Ops.push_back(Res);
3389   }
3390 
3391   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3392 }
3393 
3394 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3395   ArrayRef<unsigned> Indices;
3396   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3397     Indices = IV->getIndices();
3398   else
3399     Indices = cast<ConstantExpr>(&I)->getIndices();
3400 
3401   const Value *Op0 = I.getOperand(0);
3402   const Value *Op1 = I.getOperand(1);
3403   Type *AggTy = I.getType();
3404   Type *ValTy = Op1->getType();
3405   bool IntoUndef = isa<UndefValue>(Op0);
3406   bool FromUndef = isa<UndefValue>(Op1);
3407 
3408   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3409 
3410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3411   SmallVector<EVT, 4> AggValueVTs;
3412   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3413   SmallVector<EVT, 4> ValValueVTs;
3414   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3415 
3416   unsigned NumAggValues = AggValueVTs.size();
3417   unsigned NumValValues = ValValueVTs.size();
3418   SmallVector<SDValue, 4> Values(NumAggValues);
3419 
3420   // Ignore an insertvalue that produces an empty object
3421   if (!NumAggValues) {
3422     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3423     return;
3424   }
3425 
3426   SDValue Agg = getValue(Op0);
3427   unsigned i = 0;
3428   // Copy the beginning value(s) from the original aggregate.
3429   for (; i != LinearIndex; ++i)
3430     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3431                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3432   // Copy values from the inserted value(s).
3433   if (NumValValues) {
3434     SDValue Val = getValue(Op1);
3435     for (; i != LinearIndex + NumValValues; ++i)
3436       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3437                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3438   }
3439   // Copy remaining value(s) from the original aggregate.
3440   for (; i != NumAggValues; ++i)
3441     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3442                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3443 
3444   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3445                            DAG.getVTList(AggValueVTs), Values));
3446 }
3447 
3448 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3449   ArrayRef<unsigned> Indices;
3450   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3451     Indices = EV->getIndices();
3452   else
3453     Indices = cast<ConstantExpr>(&I)->getIndices();
3454 
3455   const Value *Op0 = I.getOperand(0);
3456   Type *AggTy = Op0->getType();
3457   Type *ValTy = I.getType();
3458   bool OutOfUndef = isa<UndefValue>(Op0);
3459 
3460   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3461 
3462   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3463   SmallVector<EVT, 4> ValValueVTs;
3464   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3465 
3466   unsigned NumValValues = ValValueVTs.size();
3467 
3468   // Ignore a extractvalue that produces an empty object
3469   if (!NumValValues) {
3470     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3471     return;
3472   }
3473 
3474   SmallVector<SDValue, 4> Values(NumValValues);
3475 
3476   SDValue Agg = getValue(Op0);
3477   // Copy out the selected value(s).
3478   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3479     Values[i - LinearIndex] =
3480       OutOfUndef ?
3481         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3482         SDValue(Agg.getNode(), Agg.getResNo() + i);
3483 
3484   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3485                            DAG.getVTList(ValValueVTs), Values));
3486 }
3487 
3488 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3489   Value *Op0 = I.getOperand(0);
3490   // Note that the pointer operand may be a vector of pointers. Take the scalar
3491   // element which holds a pointer.
3492   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3493   SDValue N = getValue(Op0);
3494   SDLoc dl = getCurSDLoc();
3495 
3496   // Normalize Vector GEP - all scalar operands should be converted to the
3497   // splat vector.
3498   unsigned VectorWidth = I.getType()->isVectorTy() ?
3499     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3500 
3501   if (VectorWidth && !N.getValueType().isVector()) {
3502     LLVMContext &Context = *DAG.getContext();
3503     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3504     N = DAG.getSplatBuildVector(VT, dl, N);
3505   }
3506 
3507   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3508        GTI != E; ++GTI) {
3509     const Value *Idx = GTI.getOperand();
3510     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3511       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3512       if (Field) {
3513         // N = N + Offset
3514         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3515 
3516         // In an inbounds GEP with an offset that is nonnegative even when
3517         // interpreted as signed, assume there is no unsigned overflow.
3518         SDNodeFlags Flags;
3519         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3520           Flags.setNoUnsignedWrap(true);
3521 
3522         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3523                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3524       }
3525     } else {
3526       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3527       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3528       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3529 
3530       // If this is a scalar constant or a splat vector of constants,
3531       // handle it quickly.
3532       const auto *CI = dyn_cast<ConstantInt>(Idx);
3533       if (!CI && isa<ConstantDataVector>(Idx) &&
3534           cast<ConstantDataVector>(Idx)->getSplatValue())
3535         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3536 
3537       if (CI) {
3538         if (CI->isZero())
3539           continue;
3540         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3541         LLVMContext &Context = *DAG.getContext();
3542         SDValue OffsVal = VectorWidth ?
3543           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3544           DAG.getConstant(Offs, dl, IdxTy);
3545 
3546         // In an inbouds GEP with an offset that is nonnegative even when
3547         // interpreted as signed, assume there is no unsigned overflow.
3548         SDNodeFlags Flags;
3549         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3550           Flags.setNoUnsignedWrap(true);
3551 
3552         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3553         continue;
3554       }
3555 
3556       // N = N + Idx * ElementSize;
3557       SDValue IdxN = getValue(Idx);
3558 
3559       if (!IdxN.getValueType().isVector() && VectorWidth) {
3560         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3561         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3562       }
3563 
3564       // If the index is smaller or larger than intptr_t, truncate or extend
3565       // it.
3566       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3567 
3568       // If this is a multiply by a power of two, turn it into a shl
3569       // immediately.  This is a very common case.
3570       if (ElementSize != 1) {
3571         if (ElementSize.isPowerOf2()) {
3572           unsigned Amt = ElementSize.logBase2();
3573           IdxN = DAG.getNode(ISD::SHL, dl,
3574                              N.getValueType(), IdxN,
3575                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3576         } else {
3577           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3578           IdxN = DAG.getNode(ISD::MUL, dl,
3579                              N.getValueType(), IdxN, Scale);
3580         }
3581       }
3582 
3583       N = DAG.getNode(ISD::ADD, dl,
3584                       N.getValueType(), N, IdxN);
3585     }
3586   }
3587 
3588   setValue(&I, N);
3589 }
3590 
3591 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3592   // If this is a fixed sized alloca in the entry block of the function,
3593   // allocate it statically on the stack.
3594   if (FuncInfo.StaticAllocaMap.count(&I))
3595     return;   // getValue will auto-populate this.
3596 
3597   SDLoc dl = getCurSDLoc();
3598   Type *Ty = I.getAllocatedType();
3599   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3600   auto &DL = DAG.getDataLayout();
3601   uint64_t TySize = DL.getTypeAllocSize(Ty);
3602   unsigned Align =
3603       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3604 
3605   SDValue AllocSize = getValue(I.getArraySize());
3606 
3607   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3608   if (AllocSize.getValueType() != IntPtr)
3609     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3610 
3611   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3612                           AllocSize,
3613                           DAG.getConstant(TySize, dl, IntPtr));
3614 
3615   // Handle alignment.  If the requested alignment is less than or equal to
3616   // the stack alignment, ignore it.  If the size is greater than or equal to
3617   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3618   unsigned StackAlign =
3619       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3620   if (Align <= StackAlign)
3621     Align = 0;
3622 
3623   // Round the size of the allocation up to the stack alignment size
3624   // by add SA-1 to the size. This doesn't overflow because we're computing
3625   // an address inside an alloca.
3626   SDNodeFlags Flags;
3627   Flags.setNoUnsignedWrap(true);
3628   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3629                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3630 
3631   // Mask out the low bits for alignment purposes.
3632   AllocSize =
3633       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3634                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3635 
3636   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3637   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3638   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3639   setValue(&I, DSA);
3640   DAG.setRoot(DSA.getValue(1));
3641 
3642   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3643 }
3644 
3645 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3646   if (I.isAtomic())
3647     return visitAtomicLoad(I);
3648 
3649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3650   const Value *SV = I.getOperand(0);
3651   if (TLI.supportSwiftError()) {
3652     // Swifterror values can come from either a function parameter with
3653     // swifterror attribute or an alloca with swifterror attribute.
3654     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3655       if (Arg->hasSwiftErrorAttr())
3656         return visitLoadFromSwiftError(I);
3657     }
3658 
3659     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3660       if (Alloca->isSwiftError())
3661         return visitLoadFromSwiftError(I);
3662     }
3663   }
3664 
3665   SDValue Ptr = getValue(SV);
3666 
3667   Type *Ty = I.getType();
3668 
3669   bool isVolatile = I.isVolatile();
3670   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3671   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3672   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3673   unsigned Alignment = I.getAlignment();
3674 
3675   AAMDNodes AAInfo;
3676   I.getAAMetadata(AAInfo);
3677   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3678 
3679   SmallVector<EVT, 4> ValueVTs;
3680   SmallVector<uint64_t, 4> Offsets;
3681   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3682   unsigned NumValues = ValueVTs.size();
3683   if (NumValues == 0)
3684     return;
3685 
3686   SDValue Root;
3687   bool ConstantMemory = false;
3688   if (isVolatile || NumValues > MaxParallelChains)
3689     // Serialize volatile loads with other side effects.
3690     Root = getRoot();
3691   else if (AA &&
3692            AA->pointsToConstantMemory(MemoryLocation(
3693                SV,
3694                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3695                AAInfo))) {
3696     // Do not serialize (non-volatile) loads of constant memory with anything.
3697     Root = DAG.getEntryNode();
3698     ConstantMemory = true;
3699   } else {
3700     // Do not serialize non-volatile loads against each other.
3701     Root = DAG.getRoot();
3702   }
3703 
3704   SDLoc dl = getCurSDLoc();
3705 
3706   if (isVolatile)
3707     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3708 
3709   // An aggregate load cannot wrap around the address space, so offsets to its
3710   // parts don't wrap either.
3711   SDNodeFlags Flags;
3712   Flags.setNoUnsignedWrap(true);
3713 
3714   SmallVector<SDValue, 4> Values(NumValues);
3715   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3716   EVT PtrVT = Ptr.getValueType();
3717   unsigned ChainI = 0;
3718   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3719     // Serializing loads here may result in excessive register pressure, and
3720     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3721     // could recover a bit by hoisting nodes upward in the chain by recognizing
3722     // they are side-effect free or do not alias. The optimizer should really
3723     // avoid this case by converting large object/array copies to llvm.memcpy
3724     // (MaxParallelChains should always remain as failsafe).
3725     if (ChainI == MaxParallelChains) {
3726       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3727       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3728                                   makeArrayRef(Chains.data(), ChainI));
3729       Root = Chain;
3730       ChainI = 0;
3731     }
3732     SDValue A = DAG.getNode(ISD::ADD, dl,
3733                             PtrVT, Ptr,
3734                             DAG.getConstant(Offsets[i], dl, PtrVT),
3735                             Flags);
3736     auto MMOFlags = MachineMemOperand::MONone;
3737     if (isVolatile)
3738       MMOFlags |= MachineMemOperand::MOVolatile;
3739     if (isNonTemporal)
3740       MMOFlags |= MachineMemOperand::MONonTemporal;
3741     if (isInvariant)
3742       MMOFlags |= MachineMemOperand::MOInvariant;
3743     if (isDereferenceable)
3744       MMOFlags |= MachineMemOperand::MODereferenceable;
3745     MMOFlags |= TLI.getMMOFlags(I);
3746 
3747     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3748                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3749                             MMOFlags, AAInfo, Ranges);
3750 
3751     Values[i] = L;
3752     Chains[ChainI] = L.getValue(1);
3753   }
3754 
3755   if (!ConstantMemory) {
3756     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3757                                 makeArrayRef(Chains.data(), ChainI));
3758     if (isVolatile)
3759       DAG.setRoot(Chain);
3760     else
3761       PendingLoads.push_back(Chain);
3762   }
3763 
3764   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3765                            DAG.getVTList(ValueVTs), Values));
3766 }
3767 
3768 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3769   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3770          "call visitStoreToSwiftError when backend supports swifterror");
3771 
3772   SmallVector<EVT, 4> ValueVTs;
3773   SmallVector<uint64_t, 4> Offsets;
3774   const Value *SrcV = I.getOperand(0);
3775   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3776                   SrcV->getType(), ValueVTs, &Offsets);
3777   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3778          "expect a single EVT for swifterror");
3779 
3780   SDValue Src = getValue(SrcV);
3781   // Create a virtual register, then update the virtual register.
3782   unsigned VReg; bool CreatedVReg;
3783   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3784   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3785   // Chain can be getRoot or getControlRoot.
3786   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3787                                       SDValue(Src.getNode(), Src.getResNo()));
3788   DAG.setRoot(CopyNode);
3789   if (CreatedVReg)
3790     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3791 }
3792 
3793 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3794   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3795          "call visitLoadFromSwiftError when backend supports swifterror");
3796 
3797   assert(!I.isVolatile() &&
3798          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3799          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3800          "Support volatile, non temporal, invariant for load_from_swift_error");
3801 
3802   const Value *SV = I.getOperand(0);
3803   Type *Ty = I.getType();
3804   AAMDNodes AAInfo;
3805   I.getAAMetadata(AAInfo);
3806   assert(
3807       (!AA ||
3808        !AA->pointsToConstantMemory(MemoryLocation(
3809            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3810            AAInfo))) &&
3811       "load_from_swift_error should not be constant memory");
3812 
3813   SmallVector<EVT, 4> ValueVTs;
3814   SmallVector<uint64_t, 4> Offsets;
3815   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3816                   ValueVTs, &Offsets);
3817   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3818          "expect a single EVT for swifterror");
3819 
3820   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3821   SDValue L = DAG.getCopyFromReg(
3822       getRoot(), getCurSDLoc(),
3823       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3824       ValueVTs[0]);
3825 
3826   setValue(&I, L);
3827 }
3828 
3829 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3830   if (I.isAtomic())
3831     return visitAtomicStore(I);
3832 
3833   const Value *SrcV = I.getOperand(0);
3834   const Value *PtrV = I.getOperand(1);
3835 
3836   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3837   if (TLI.supportSwiftError()) {
3838     // Swifterror values can come from either a function parameter with
3839     // swifterror attribute or an alloca with swifterror attribute.
3840     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3841       if (Arg->hasSwiftErrorAttr())
3842         return visitStoreToSwiftError(I);
3843     }
3844 
3845     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3846       if (Alloca->isSwiftError())
3847         return visitStoreToSwiftError(I);
3848     }
3849   }
3850 
3851   SmallVector<EVT, 4> ValueVTs;
3852   SmallVector<uint64_t, 4> Offsets;
3853   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3854                   SrcV->getType(), ValueVTs, &Offsets);
3855   unsigned NumValues = ValueVTs.size();
3856   if (NumValues == 0)
3857     return;
3858 
3859   // Get the lowered operands. Note that we do this after
3860   // checking if NumResults is zero, because with zero results
3861   // the operands won't have values in the map.
3862   SDValue Src = getValue(SrcV);
3863   SDValue Ptr = getValue(PtrV);
3864 
3865   SDValue Root = getRoot();
3866   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3867   SDLoc dl = getCurSDLoc();
3868   EVT PtrVT = Ptr.getValueType();
3869   unsigned Alignment = I.getAlignment();
3870   AAMDNodes AAInfo;
3871   I.getAAMetadata(AAInfo);
3872 
3873   auto MMOFlags = MachineMemOperand::MONone;
3874   if (I.isVolatile())
3875     MMOFlags |= MachineMemOperand::MOVolatile;
3876   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3877     MMOFlags |= MachineMemOperand::MONonTemporal;
3878   MMOFlags |= TLI.getMMOFlags(I);
3879 
3880   // An aggregate load cannot wrap around the address space, so offsets to its
3881   // parts don't wrap either.
3882   SDNodeFlags Flags;
3883   Flags.setNoUnsignedWrap(true);
3884 
3885   unsigned ChainI = 0;
3886   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3887     // See visitLoad comments.
3888     if (ChainI == MaxParallelChains) {
3889       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3890                                   makeArrayRef(Chains.data(), ChainI));
3891       Root = Chain;
3892       ChainI = 0;
3893     }
3894     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3895                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3896     SDValue St = DAG.getStore(
3897         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3898         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3899     Chains[ChainI] = St;
3900   }
3901 
3902   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3903                                   makeArrayRef(Chains.data(), ChainI));
3904   DAG.setRoot(StoreNode);
3905 }
3906 
3907 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3908                                            bool IsCompressing) {
3909   SDLoc sdl = getCurSDLoc();
3910 
3911   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3912                            unsigned& Alignment) {
3913     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3914     Src0 = I.getArgOperand(0);
3915     Ptr = I.getArgOperand(1);
3916     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3917     Mask = I.getArgOperand(3);
3918   };
3919   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3920                            unsigned& Alignment) {
3921     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3922     Src0 = I.getArgOperand(0);
3923     Ptr = I.getArgOperand(1);
3924     Mask = I.getArgOperand(2);
3925     Alignment = 0;
3926   };
3927 
3928   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3929   unsigned Alignment;
3930   if (IsCompressing)
3931     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3932   else
3933     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3934 
3935   SDValue Ptr = getValue(PtrOperand);
3936   SDValue Src0 = getValue(Src0Operand);
3937   SDValue Mask = getValue(MaskOperand);
3938 
3939   EVT VT = Src0.getValueType();
3940   if (!Alignment)
3941     Alignment = DAG.getEVTAlignment(VT);
3942 
3943   AAMDNodes AAInfo;
3944   I.getAAMetadata(AAInfo);
3945 
3946   MachineMemOperand *MMO =
3947     DAG.getMachineFunction().
3948     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3949                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3950                           Alignment, AAInfo);
3951   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3952                                          MMO, false /* Truncating */,
3953                                          IsCompressing);
3954   DAG.setRoot(StoreNode);
3955   setValue(&I, StoreNode);
3956 }
3957 
3958 // Get a uniform base for the Gather/Scatter intrinsic.
3959 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3960 // We try to represent it as a base pointer + vector of indices.
3961 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3962 // The first operand of the GEP may be a single pointer or a vector of pointers
3963 // Example:
3964 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3965 //  or
3966 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3967 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3968 //
3969 // When the first GEP operand is a single pointer - it is the uniform base we
3970 // are looking for. If first operand of the GEP is a splat vector - we
3971 // extract the splat value and use it as a uniform base.
3972 // In all other cases the function returns 'false'.
3973 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3974                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3975   SelectionDAG& DAG = SDB->DAG;
3976   LLVMContext &Context = *DAG.getContext();
3977 
3978   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3979   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3980   if (!GEP)
3981     return false;
3982 
3983   const Value *GEPPtr = GEP->getPointerOperand();
3984   if (!GEPPtr->getType()->isVectorTy())
3985     Ptr = GEPPtr;
3986   else if (!(Ptr = getSplatValue(GEPPtr)))
3987     return false;
3988 
3989   unsigned FinalIndex = GEP->getNumOperands() - 1;
3990   Value *IndexVal = GEP->getOperand(FinalIndex);
3991 
3992   // Ensure all the other indices are 0.
3993   for (unsigned i = 1; i < FinalIndex; ++i) {
3994     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3995     if (!C || !C->isZero())
3996       return false;
3997   }
3998 
3999   // The operands of the GEP may be defined in another basic block.
4000   // In this case we'll not find nodes for the operands.
4001   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4002     return false;
4003 
4004   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4005   const DataLayout &DL = DAG.getDataLayout();
4006   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4007                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4008   Base = SDB->getValue(Ptr);
4009   Index = SDB->getValue(IndexVal);
4010 
4011   if (!Index.getValueType().isVector()) {
4012     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4013     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4014     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4015   }
4016   return true;
4017 }
4018 
4019 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4020   SDLoc sdl = getCurSDLoc();
4021 
4022   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4023   const Value *Ptr = I.getArgOperand(1);
4024   SDValue Src0 = getValue(I.getArgOperand(0));
4025   SDValue Mask = getValue(I.getArgOperand(3));
4026   EVT VT = Src0.getValueType();
4027   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4028   if (!Alignment)
4029     Alignment = DAG.getEVTAlignment(VT);
4030   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4031 
4032   AAMDNodes AAInfo;
4033   I.getAAMetadata(AAInfo);
4034 
4035   SDValue Base;
4036   SDValue Index;
4037   SDValue Scale;
4038   const Value *BasePtr = Ptr;
4039   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4040 
4041   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4042   MachineMemOperand *MMO = DAG.getMachineFunction().
4043     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4044                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4045                          Alignment, AAInfo);
4046   if (!UniformBase) {
4047     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4048     Index = getValue(Ptr);
4049     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4050   }
4051   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4052   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4053                                          Ops, MMO);
4054   DAG.setRoot(Scatter);
4055   setValue(&I, Scatter);
4056 }
4057 
4058 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4059   SDLoc sdl = getCurSDLoc();
4060 
4061   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4062                            unsigned& Alignment) {
4063     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4064     Ptr = I.getArgOperand(0);
4065     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4066     Mask = I.getArgOperand(2);
4067     Src0 = I.getArgOperand(3);
4068   };
4069   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4070                            unsigned& Alignment) {
4071     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4072     Ptr = I.getArgOperand(0);
4073     Alignment = 0;
4074     Mask = I.getArgOperand(1);
4075     Src0 = I.getArgOperand(2);
4076   };
4077 
4078   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4079   unsigned Alignment;
4080   if (IsExpanding)
4081     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4082   else
4083     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4084 
4085   SDValue Ptr = getValue(PtrOperand);
4086   SDValue Src0 = getValue(Src0Operand);
4087   SDValue Mask = getValue(MaskOperand);
4088 
4089   EVT VT = Src0.getValueType();
4090   if (!Alignment)
4091     Alignment = DAG.getEVTAlignment(VT);
4092 
4093   AAMDNodes AAInfo;
4094   I.getAAMetadata(AAInfo);
4095   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4096 
4097   // Do not serialize masked loads of constant memory with anything.
4098   bool AddToChain =
4099       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4100                  PtrOperand,
4101                  LocationSize::precise(
4102                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4103                  AAInfo));
4104   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4105 
4106   MachineMemOperand *MMO =
4107     DAG.getMachineFunction().
4108     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4109                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4110                           Alignment, AAInfo, Ranges);
4111 
4112   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4113                                    ISD::NON_EXTLOAD, IsExpanding);
4114   if (AddToChain)
4115     PendingLoads.push_back(Load.getValue(1));
4116   setValue(&I, Load);
4117 }
4118 
4119 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4120   SDLoc sdl = getCurSDLoc();
4121 
4122   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4123   const Value *Ptr = I.getArgOperand(0);
4124   SDValue Src0 = getValue(I.getArgOperand(3));
4125   SDValue Mask = getValue(I.getArgOperand(2));
4126 
4127   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4128   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4129   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4130   if (!Alignment)
4131     Alignment = DAG.getEVTAlignment(VT);
4132 
4133   AAMDNodes AAInfo;
4134   I.getAAMetadata(AAInfo);
4135   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4136 
4137   SDValue Root = DAG.getRoot();
4138   SDValue Base;
4139   SDValue Index;
4140   SDValue Scale;
4141   const Value *BasePtr = Ptr;
4142   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4143   bool ConstantMemory = false;
4144   if (UniformBase && AA &&
4145       AA->pointsToConstantMemory(
4146           MemoryLocation(BasePtr,
4147                          LocationSize::precise(
4148                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4149                          AAInfo))) {
4150     // Do not serialize (non-volatile) loads of constant memory with anything.
4151     Root = DAG.getEntryNode();
4152     ConstantMemory = true;
4153   }
4154 
4155   MachineMemOperand *MMO =
4156     DAG.getMachineFunction().
4157     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4158                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4159                          Alignment, AAInfo, Ranges);
4160 
4161   if (!UniformBase) {
4162     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4163     Index = getValue(Ptr);
4164     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4165   }
4166   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4167   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4168                                        Ops, MMO);
4169 
4170   SDValue OutChain = Gather.getValue(1);
4171   if (!ConstantMemory)
4172     PendingLoads.push_back(OutChain);
4173   setValue(&I, Gather);
4174 }
4175 
4176 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4177   SDLoc dl = getCurSDLoc();
4178   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4179   AtomicOrdering FailureOrder = I.getFailureOrdering();
4180   SyncScope::ID SSID = I.getSyncScopeID();
4181 
4182   SDValue InChain = getRoot();
4183 
4184   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4185   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4186   SDValue L = DAG.getAtomicCmpSwap(
4187       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4188       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4189       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4190       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4191 
4192   SDValue OutChain = L.getValue(2);
4193 
4194   setValue(&I, L);
4195   DAG.setRoot(OutChain);
4196 }
4197 
4198 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4199   SDLoc dl = getCurSDLoc();
4200   ISD::NodeType NT;
4201   switch (I.getOperation()) {
4202   default: llvm_unreachable("Unknown atomicrmw operation");
4203   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4204   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4205   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4206   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4207   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4208   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4209   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4210   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4211   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4212   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4213   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4214   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4215   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4216   }
4217   AtomicOrdering Order = I.getOrdering();
4218   SyncScope::ID SSID = I.getSyncScopeID();
4219 
4220   SDValue InChain = getRoot();
4221 
4222   SDValue L =
4223     DAG.getAtomic(NT, dl,
4224                   getValue(I.getValOperand()).getSimpleValueType(),
4225                   InChain,
4226                   getValue(I.getPointerOperand()),
4227                   getValue(I.getValOperand()),
4228                   I.getPointerOperand(),
4229                   /* Alignment=*/ 0, Order, SSID);
4230 
4231   SDValue OutChain = L.getValue(1);
4232 
4233   setValue(&I, L);
4234   DAG.setRoot(OutChain);
4235 }
4236 
4237 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4238   SDLoc dl = getCurSDLoc();
4239   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4240   SDValue Ops[3];
4241   Ops[0] = getRoot();
4242   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4243                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4244   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4245                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4246   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4247 }
4248 
4249 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4250   SDLoc dl = getCurSDLoc();
4251   AtomicOrdering Order = I.getOrdering();
4252   SyncScope::ID SSID = I.getSyncScopeID();
4253 
4254   SDValue InChain = getRoot();
4255 
4256   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4257   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4258 
4259   if (!TLI.supportsUnalignedAtomics() &&
4260       I.getAlignment() < VT.getStoreSize())
4261     report_fatal_error("Cannot generate unaligned atomic load");
4262 
4263   MachineMemOperand *MMO =
4264       DAG.getMachineFunction().
4265       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4266                            MachineMemOperand::MOVolatile |
4267                            MachineMemOperand::MOLoad,
4268                            VT.getStoreSize(),
4269                            I.getAlignment() ? I.getAlignment() :
4270                                               DAG.getEVTAlignment(VT),
4271                            AAMDNodes(), nullptr, SSID, Order);
4272 
4273   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4274   SDValue L =
4275       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4276                     getValue(I.getPointerOperand()), MMO);
4277 
4278   SDValue OutChain = L.getValue(1);
4279 
4280   setValue(&I, L);
4281   DAG.setRoot(OutChain);
4282 }
4283 
4284 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4285   SDLoc dl = getCurSDLoc();
4286 
4287   AtomicOrdering Order = I.getOrdering();
4288   SyncScope::ID SSID = I.getSyncScopeID();
4289 
4290   SDValue InChain = getRoot();
4291 
4292   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4293   EVT VT =
4294       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4295 
4296   if (I.getAlignment() < VT.getStoreSize())
4297     report_fatal_error("Cannot generate unaligned atomic store");
4298 
4299   SDValue OutChain =
4300     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4301                   InChain,
4302                   getValue(I.getPointerOperand()),
4303                   getValue(I.getValueOperand()),
4304                   I.getPointerOperand(), I.getAlignment(),
4305                   Order, SSID);
4306 
4307   DAG.setRoot(OutChain);
4308 }
4309 
4310 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4311 /// node.
4312 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4313                                                unsigned Intrinsic) {
4314   // Ignore the callsite's attributes. A specific call site may be marked with
4315   // readnone, but the lowering code will expect the chain based on the
4316   // definition.
4317   const Function *F = I.getCalledFunction();
4318   bool HasChain = !F->doesNotAccessMemory();
4319   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4320 
4321   // Build the operand list.
4322   SmallVector<SDValue, 8> Ops;
4323   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4324     if (OnlyLoad) {
4325       // We don't need to serialize loads against other loads.
4326       Ops.push_back(DAG.getRoot());
4327     } else {
4328       Ops.push_back(getRoot());
4329     }
4330   }
4331 
4332   // Info is set by getTgtMemInstrinsic
4333   TargetLowering::IntrinsicInfo Info;
4334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4335   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4336                                                DAG.getMachineFunction(),
4337                                                Intrinsic);
4338 
4339   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4340   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4341       Info.opc == ISD::INTRINSIC_W_CHAIN)
4342     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4343                                         TLI.getPointerTy(DAG.getDataLayout())));
4344 
4345   // Add all operands of the call to the operand list.
4346   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4347     SDValue Op = getValue(I.getArgOperand(i));
4348     Ops.push_back(Op);
4349   }
4350 
4351   SmallVector<EVT, 4> ValueVTs;
4352   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4353 
4354   if (HasChain)
4355     ValueVTs.push_back(MVT::Other);
4356 
4357   SDVTList VTs = DAG.getVTList(ValueVTs);
4358 
4359   // Create the node.
4360   SDValue Result;
4361   if (IsTgtIntrinsic) {
4362     // This is target intrinsic that touches memory
4363     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4364       Ops, Info.memVT,
4365       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4366       Info.flags, Info.size);
4367   } else if (!HasChain) {
4368     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4369   } else if (!I.getType()->isVoidTy()) {
4370     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4371   } else {
4372     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4373   }
4374 
4375   if (HasChain) {
4376     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4377     if (OnlyLoad)
4378       PendingLoads.push_back(Chain);
4379     else
4380       DAG.setRoot(Chain);
4381   }
4382 
4383   if (!I.getType()->isVoidTy()) {
4384     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4385       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4386       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4387     } else
4388       Result = lowerRangeToAssertZExt(DAG, I, Result);
4389 
4390     setValue(&I, Result);
4391   }
4392 }
4393 
4394 /// GetSignificand - Get the significand and build it into a floating-point
4395 /// number with exponent of 1:
4396 ///
4397 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4398 ///
4399 /// where Op is the hexadecimal representation of floating point value.
4400 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4401   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4402                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4403   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4404                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4405   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4406 }
4407 
4408 /// GetExponent - Get the exponent:
4409 ///
4410 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4411 ///
4412 /// where Op is the hexadecimal representation of floating point value.
4413 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4414                            const TargetLowering &TLI, const SDLoc &dl) {
4415   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4416                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4417   SDValue t1 = DAG.getNode(
4418       ISD::SRL, dl, MVT::i32, t0,
4419       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4420   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4421                            DAG.getConstant(127, dl, MVT::i32));
4422   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4423 }
4424 
4425 /// getF32Constant - Get 32-bit floating point constant.
4426 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4427                               const SDLoc &dl) {
4428   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4429                            MVT::f32);
4430 }
4431 
4432 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4433                                        SelectionDAG &DAG) {
4434   // TODO: What fast-math-flags should be set on the floating-point nodes?
4435 
4436   //   IntegerPartOfX = ((int32_t)(t0);
4437   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4438 
4439   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4440   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4441   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4442 
4443   //   IntegerPartOfX <<= 23;
4444   IntegerPartOfX = DAG.getNode(
4445       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4446       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4447                                   DAG.getDataLayout())));
4448 
4449   SDValue TwoToFractionalPartOfX;
4450   if (LimitFloatPrecision <= 6) {
4451     // For floating-point precision of 6:
4452     //
4453     //   TwoToFractionalPartOfX =
4454     //     0.997535578f +
4455     //       (0.735607626f + 0.252464424f * x) * x;
4456     //
4457     // error 0.0144103317, which is 6 bits
4458     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4459                              getF32Constant(DAG, 0x3e814304, dl));
4460     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4461                              getF32Constant(DAG, 0x3f3c50c8, dl));
4462     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4463     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4464                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4465   } else if (LimitFloatPrecision <= 12) {
4466     // For floating-point precision of 12:
4467     //
4468     //   TwoToFractionalPartOfX =
4469     //     0.999892986f +
4470     //       (0.696457318f +
4471     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4472     //
4473     // error 0.000107046256, which is 13 to 14 bits
4474     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4475                              getF32Constant(DAG, 0x3da235e3, dl));
4476     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4477                              getF32Constant(DAG, 0x3e65b8f3, dl));
4478     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4479     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4480                              getF32Constant(DAG, 0x3f324b07, dl));
4481     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4482     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4483                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4484   } else { // LimitFloatPrecision <= 18
4485     // For floating-point precision of 18:
4486     //
4487     //   TwoToFractionalPartOfX =
4488     //     0.999999982f +
4489     //       (0.693148872f +
4490     //         (0.240227044f +
4491     //           (0.554906021e-1f +
4492     //             (0.961591928e-2f +
4493     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4494     // error 2.47208000*10^(-7), which is better than 18 bits
4495     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4496                              getF32Constant(DAG, 0x3924b03e, dl));
4497     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4498                              getF32Constant(DAG, 0x3ab24b87, dl));
4499     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4500     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4501                              getF32Constant(DAG, 0x3c1d8c17, dl));
4502     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4503     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4504                              getF32Constant(DAG, 0x3d634a1d, dl));
4505     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4506     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4507                              getF32Constant(DAG, 0x3e75fe14, dl));
4508     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4509     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4510                               getF32Constant(DAG, 0x3f317234, dl));
4511     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4512     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4513                                          getF32Constant(DAG, 0x3f800000, dl));
4514   }
4515 
4516   // Add the exponent into the result in integer domain.
4517   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4518   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4519                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4520 }
4521 
4522 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4523 /// limited-precision mode.
4524 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4525                          const TargetLowering &TLI) {
4526   if (Op.getValueType() == MVT::f32 &&
4527       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4528 
4529     // Put the exponent in the right bit position for later addition to the
4530     // final result:
4531     //
4532     //   #define LOG2OFe 1.4426950f
4533     //   t0 = Op * LOG2OFe
4534 
4535     // TODO: What fast-math-flags should be set here?
4536     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4537                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4538     return getLimitedPrecisionExp2(t0, dl, DAG);
4539   }
4540 
4541   // No special expansion.
4542   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4543 }
4544 
4545 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4546 /// limited-precision mode.
4547 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4548                          const TargetLowering &TLI) {
4549   // TODO: What fast-math-flags should be set on the floating-point nodes?
4550 
4551   if (Op.getValueType() == MVT::f32 &&
4552       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4553     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4554 
4555     // Scale the exponent by log(2) [0.69314718f].
4556     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4557     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4558                                         getF32Constant(DAG, 0x3f317218, dl));
4559 
4560     // Get the significand and build it into a floating-point number with
4561     // exponent of 1.
4562     SDValue X = GetSignificand(DAG, Op1, dl);
4563 
4564     SDValue LogOfMantissa;
4565     if (LimitFloatPrecision <= 6) {
4566       // For floating-point precision of 6:
4567       //
4568       //   LogofMantissa =
4569       //     -1.1609546f +
4570       //       (1.4034025f - 0.23903021f * x) * x;
4571       //
4572       // error 0.0034276066, which is better than 8 bits
4573       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4574                                getF32Constant(DAG, 0xbe74c456, dl));
4575       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4576                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4577       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4578       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4579                                   getF32Constant(DAG, 0x3f949a29, dl));
4580     } else if (LimitFloatPrecision <= 12) {
4581       // For floating-point precision of 12:
4582       //
4583       //   LogOfMantissa =
4584       //     -1.7417939f +
4585       //       (2.8212026f +
4586       //         (-1.4699568f +
4587       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4588       //
4589       // error 0.000061011436, which is 14 bits
4590       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4591                                getF32Constant(DAG, 0xbd67b6d6, dl));
4592       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4593                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4594       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4595       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4596                                getF32Constant(DAG, 0x3fbc278b, dl));
4597       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4598       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4599                                getF32Constant(DAG, 0x40348e95, dl));
4600       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4601       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4602                                   getF32Constant(DAG, 0x3fdef31a, dl));
4603     } else { // LimitFloatPrecision <= 18
4604       // For floating-point precision of 18:
4605       //
4606       //   LogOfMantissa =
4607       //     -2.1072184f +
4608       //       (4.2372794f +
4609       //         (-3.7029485f +
4610       //           (2.2781945f +
4611       //             (-0.87823314f +
4612       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4613       //
4614       // error 0.0000023660568, which is better than 18 bits
4615       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4616                                getF32Constant(DAG, 0xbc91e5ac, dl));
4617       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4618                                getF32Constant(DAG, 0x3e4350aa, dl));
4619       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4620       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4621                                getF32Constant(DAG, 0x3f60d3e3, dl));
4622       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4623       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4624                                getF32Constant(DAG, 0x4011cdf0, dl));
4625       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4626       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4627                                getF32Constant(DAG, 0x406cfd1c, dl));
4628       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4629       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4630                                getF32Constant(DAG, 0x408797cb, dl));
4631       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4632       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4633                                   getF32Constant(DAG, 0x4006dcab, dl));
4634     }
4635 
4636     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4637   }
4638 
4639   // No special expansion.
4640   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4641 }
4642 
4643 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4644 /// limited-precision mode.
4645 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4646                           const TargetLowering &TLI) {
4647   // TODO: What fast-math-flags should be set on the floating-point nodes?
4648 
4649   if (Op.getValueType() == MVT::f32 &&
4650       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4651     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4652 
4653     // Get the exponent.
4654     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4655 
4656     // Get the significand and build it into a floating-point number with
4657     // exponent of 1.
4658     SDValue X = GetSignificand(DAG, Op1, dl);
4659 
4660     // Different possible minimax approximations of significand in
4661     // floating-point for various degrees of accuracy over [1,2].
4662     SDValue Log2ofMantissa;
4663     if (LimitFloatPrecision <= 6) {
4664       // For floating-point precision of 6:
4665       //
4666       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4667       //
4668       // error 0.0049451742, which is more than 7 bits
4669       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4670                                getF32Constant(DAG, 0xbeb08fe0, dl));
4671       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4672                                getF32Constant(DAG, 0x40019463, dl));
4673       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4674       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4675                                    getF32Constant(DAG, 0x3fd6633d, dl));
4676     } else if (LimitFloatPrecision <= 12) {
4677       // For floating-point precision of 12:
4678       //
4679       //   Log2ofMantissa =
4680       //     -2.51285454f +
4681       //       (4.07009056f +
4682       //         (-2.12067489f +
4683       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4684       //
4685       // error 0.0000876136000, which is better than 13 bits
4686       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4687                                getF32Constant(DAG, 0xbda7262e, dl));
4688       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4689                                getF32Constant(DAG, 0x3f25280b, dl));
4690       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4691       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4692                                getF32Constant(DAG, 0x4007b923, dl));
4693       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4694       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4695                                getF32Constant(DAG, 0x40823e2f, dl));
4696       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4697       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4698                                    getF32Constant(DAG, 0x4020d29c, dl));
4699     } else { // LimitFloatPrecision <= 18
4700       // For floating-point precision of 18:
4701       //
4702       //   Log2ofMantissa =
4703       //     -3.0400495f +
4704       //       (6.1129976f +
4705       //         (-5.3420409f +
4706       //           (3.2865683f +
4707       //             (-1.2669343f +
4708       //               (0.27515199f -
4709       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4710       //
4711       // error 0.0000018516, which is better than 18 bits
4712       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4713                                getF32Constant(DAG, 0xbcd2769e, dl));
4714       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4715                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4716       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4717       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4718                                getF32Constant(DAG, 0x3fa22ae7, dl));
4719       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4720       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4721                                getF32Constant(DAG, 0x40525723, dl));
4722       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4723       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4724                                getF32Constant(DAG, 0x40aaf200, dl));
4725       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4726       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4727                                getF32Constant(DAG, 0x40c39dad, dl));
4728       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4729       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4730                                    getF32Constant(DAG, 0x4042902c, dl));
4731     }
4732 
4733     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4734   }
4735 
4736   // No special expansion.
4737   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4738 }
4739 
4740 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4741 /// limited-precision mode.
4742 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4743                            const TargetLowering &TLI) {
4744   // TODO: What fast-math-flags should be set on the floating-point nodes?
4745 
4746   if (Op.getValueType() == MVT::f32 &&
4747       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4748     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4749 
4750     // Scale the exponent by log10(2) [0.30102999f].
4751     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4752     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4753                                         getF32Constant(DAG, 0x3e9a209a, dl));
4754 
4755     // Get the significand and build it into a floating-point number with
4756     // exponent of 1.
4757     SDValue X = GetSignificand(DAG, Op1, dl);
4758 
4759     SDValue Log10ofMantissa;
4760     if (LimitFloatPrecision <= 6) {
4761       // For floating-point precision of 6:
4762       //
4763       //   Log10ofMantissa =
4764       //     -0.50419619f +
4765       //       (0.60948995f - 0.10380950f * x) * x;
4766       //
4767       // error 0.0014886165, which is 6 bits
4768       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4769                                getF32Constant(DAG, 0xbdd49a13, dl));
4770       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4771                                getF32Constant(DAG, 0x3f1c0789, dl));
4772       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4773       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4774                                     getF32Constant(DAG, 0x3f011300, dl));
4775     } else if (LimitFloatPrecision <= 12) {
4776       // For floating-point precision of 12:
4777       //
4778       //   Log10ofMantissa =
4779       //     -0.64831180f +
4780       //       (0.91751397f +
4781       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4782       //
4783       // error 0.00019228036, which is better than 12 bits
4784       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4785                                getF32Constant(DAG, 0x3d431f31, dl));
4786       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4787                                getF32Constant(DAG, 0x3ea21fb2, dl));
4788       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4789       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4790                                getF32Constant(DAG, 0x3f6ae232, dl));
4791       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4792       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4793                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4794     } else { // LimitFloatPrecision <= 18
4795       // For floating-point precision of 18:
4796       //
4797       //   Log10ofMantissa =
4798       //     -0.84299375f +
4799       //       (1.5327582f +
4800       //         (-1.0688956f +
4801       //           (0.49102474f +
4802       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4803       //
4804       // error 0.0000037995730, which is better than 18 bits
4805       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4806                                getF32Constant(DAG, 0x3c5d51ce, dl));
4807       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4808                                getF32Constant(DAG, 0x3e00685a, dl));
4809       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4810       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4811                                getF32Constant(DAG, 0x3efb6798, dl));
4812       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4813       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4814                                getF32Constant(DAG, 0x3f88d192, dl));
4815       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4816       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4817                                getF32Constant(DAG, 0x3fc4316c, dl));
4818       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4819       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4820                                     getF32Constant(DAG, 0x3f57ce70, dl));
4821     }
4822 
4823     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4824   }
4825 
4826   // No special expansion.
4827   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4828 }
4829 
4830 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4831 /// limited-precision mode.
4832 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4833                           const TargetLowering &TLI) {
4834   if (Op.getValueType() == MVT::f32 &&
4835       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4836     return getLimitedPrecisionExp2(Op, dl, DAG);
4837 
4838   // No special expansion.
4839   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4840 }
4841 
4842 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4843 /// limited-precision mode with x == 10.0f.
4844 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4845                          SelectionDAG &DAG, const TargetLowering &TLI) {
4846   bool IsExp10 = false;
4847   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4848       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4849     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4850       APFloat Ten(10.0f);
4851       IsExp10 = LHSC->isExactlyValue(Ten);
4852     }
4853   }
4854 
4855   // TODO: What fast-math-flags should be set on the FMUL node?
4856   if (IsExp10) {
4857     // Put the exponent in the right bit position for later addition to the
4858     // final result:
4859     //
4860     //   #define LOG2OF10 3.3219281f
4861     //   t0 = Op * LOG2OF10;
4862     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4863                              getF32Constant(DAG, 0x40549a78, dl));
4864     return getLimitedPrecisionExp2(t0, dl, DAG);
4865   }
4866 
4867   // No special expansion.
4868   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4869 }
4870 
4871 /// ExpandPowI - Expand a llvm.powi intrinsic.
4872 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4873                           SelectionDAG &DAG) {
4874   // If RHS is a constant, we can expand this out to a multiplication tree,
4875   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4876   // optimizing for size, we only want to do this if the expansion would produce
4877   // a small number of multiplies, otherwise we do the full expansion.
4878   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4879     // Get the exponent as a positive value.
4880     unsigned Val = RHSC->getSExtValue();
4881     if ((int)Val < 0) Val = -Val;
4882 
4883     // powi(x, 0) -> 1.0
4884     if (Val == 0)
4885       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4886 
4887     const Function &F = DAG.getMachineFunction().getFunction();
4888     if (!F.optForSize() ||
4889         // If optimizing for size, don't insert too many multiplies.
4890         // This inserts up to 5 multiplies.
4891         countPopulation(Val) + Log2_32(Val) < 7) {
4892       // We use the simple binary decomposition method to generate the multiply
4893       // sequence.  There are more optimal ways to do this (for example,
4894       // powi(x,15) generates one more multiply than it should), but this has
4895       // the benefit of being both really simple and much better than a libcall.
4896       SDValue Res;  // Logically starts equal to 1.0
4897       SDValue CurSquare = LHS;
4898       // TODO: Intrinsics should have fast-math-flags that propagate to these
4899       // nodes.
4900       while (Val) {
4901         if (Val & 1) {
4902           if (Res.getNode())
4903             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4904           else
4905             Res = CurSquare;  // 1.0*CurSquare.
4906         }
4907 
4908         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4909                                 CurSquare, CurSquare);
4910         Val >>= 1;
4911       }
4912 
4913       // If the original was negative, invert the result, producing 1/(x*x*x).
4914       if (RHSC->getSExtValue() < 0)
4915         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4916                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4917       return Res;
4918     }
4919   }
4920 
4921   // Otherwise, expand to a libcall.
4922   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4923 }
4924 
4925 // getUnderlyingArgReg - Find underlying register used for a truncated or
4926 // bitcasted argument.
4927 static unsigned getUnderlyingArgReg(const SDValue &N) {
4928   switch (N.getOpcode()) {
4929   case ISD::CopyFromReg:
4930     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4931   case ISD::BITCAST:
4932   case ISD::AssertZext:
4933   case ISD::AssertSext:
4934   case ISD::TRUNCATE:
4935     return getUnderlyingArgReg(N.getOperand(0));
4936   default:
4937     return 0;
4938   }
4939 }
4940 
4941 /// If the DbgValueInst is a dbg_value of a function argument, create the
4942 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4943 /// instruction selection, they will be inserted to the entry BB.
4944 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4945     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4946     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4947   const Argument *Arg = dyn_cast<Argument>(V);
4948   if (!Arg)
4949     return false;
4950 
4951   MachineFunction &MF = DAG.getMachineFunction();
4952   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4953 
4954   bool IsIndirect = false;
4955   Optional<MachineOperand> Op;
4956   // Some arguments' frame index is recorded during argument lowering.
4957   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4958   if (FI != std::numeric_limits<int>::max())
4959     Op = MachineOperand::CreateFI(FI);
4960 
4961   if (!Op && N.getNode()) {
4962     unsigned Reg = getUnderlyingArgReg(N);
4963     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4964       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4965       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4966       if (PR)
4967         Reg = PR;
4968     }
4969     if (Reg) {
4970       Op = MachineOperand::CreateReg(Reg, false);
4971       IsIndirect = IsDbgDeclare;
4972     }
4973   }
4974 
4975   if (!Op && N.getNode())
4976     // Check if frame index is available.
4977     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4978       if (FrameIndexSDNode *FINode =
4979           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4980         Op = MachineOperand::CreateFI(FINode->getIndex());
4981 
4982   if (!Op) {
4983     // Check if ValueMap has reg number.
4984     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4985     if (VMI != FuncInfo.ValueMap.end()) {
4986       const auto &TLI = DAG.getTargetLoweringInfo();
4987       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4988                        V->getType(), getABIRegCopyCC(V));
4989       if (RFV.occupiesMultipleRegs()) {
4990         unsigned Offset = 0;
4991         for (auto RegAndSize : RFV.getRegsAndSizes()) {
4992           Op = MachineOperand::CreateReg(RegAndSize.first, false);
4993           auto FragmentExpr = DIExpression::createFragmentExpression(
4994               Expr, Offset, RegAndSize.second);
4995           if (!FragmentExpr)
4996             continue;
4997           FuncInfo.ArgDbgValues.push_back(
4998               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4999                       Op->getReg(), Variable, *FragmentExpr));
5000           Offset += RegAndSize.second;
5001         }
5002         return true;
5003       }
5004       Op = MachineOperand::CreateReg(VMI->second, false);
5005       IsIndirect = IsDbgDeclare;
5006     }
5007   }
5008 
5009   if (!Op)
5010     return false;
5011 
5012   assert(Variable->isValidLocationForIntrinsic(DL) &&
5013          "Expected inlined-at fields to agree");
5014   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5015   FuncInfo.ArgDbgValues.push_back(
5016       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5017               *Op, Variable, Expr));
5018 
5019   return true;
5020 }
5021 
5022 /// Return the appropriate SDDbgValue based on N.
5023 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5024                                              DILocalVariable *Variable,
5025                                              DIExpression *Expr,
5026                                              const DebugLoc &dl,
5027                                              unsigned DbgSDNodeOrder) {
5028   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5029     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5030     // stack slot locations.
5031     //
5032     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5033     // debug values here after optimization:
5034     //
5035     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5036     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5037     //
5038     // Both describe the direct values of their associated variables.
5039     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5040                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5041   }
5042   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5043                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5044 }
5045 
5046 // VisualStudio defines setjmp as _setjmp
5047 #if defined(_MSC_VER) && defined(setjmp) && \
5048                          !defined(setjmp_undefined_for_msvc)
5049 #  pragma push_macro("setjmp")
5050 #  undef setjmp
5051 #  define setjmp_undefined_for_msvc
5052 #endif
5053 
5054 /// Lower the call to the specified intrinsic function. If we want to emit this
5055 /// as a call to a named external function, return the name. Otherwise, lower it
5056 /// and return null.
5057 const char *
5058 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5059   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5060   SDLoc sdl = getCurSDLoc();
5061   DebugLoc dl = getCurDebugLoc();
5062   SDValue Res;
5063 
5064   switch (Intrinsic) {
5065   default:
5066     // By default, turn this into a target intrinsic node.
5067     visitTargetIntrinsic(I, Intrinsic);
5068     return nullptr;
5069   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5070   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5071   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5072   case Intrinsic::returnaddress:
5073     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5074                              TLI.getPointerTy(DAG.getDataLayout()),
5075                              getValue(I.getArgOperand(0))));
5076     return nullptr;
5077   case Intrinsic::addressofreturnaddress:
5078     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5079                              TLI.getPointerTy(DAG.getDataLayout())));
5080     return nullptr;
5081   case Intrinsic::sponentry:
5082     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5083                              TLI.getPointerTy(DAG.getDataLayout())));
5084     return nullptr;
5085   case Intrinsic::frameaddress:
5086     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5087                              TLI.getPointerTy(DAG.getDataLayout()),
5088                              getValue(I.getArgOperand(0))));
5089     return nullptr;
5090   case Intrinsic::read_register: {
5091     Value *Reg = I.getArgOperand(0);
5092     SDValue Chain = getRoot();
5093     SDValue RegName =
5094         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5095     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5096     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5097       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5098     setValue(&I, Res);
5099     DAG.setRoot(Res.getValue(1));
5100     return nullptr;
5101   }
5102   case Intrinsic::write_register: {
5103     Value *Reg = I.getArgOperand(0);
5104     Value *RegValue = I.getArgOperand(1);
5105     SDValue Chain = getRoot();
5106     SDValue RegName =
5107         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5108     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5109                             RegName, getValue(RegValue)));
5110     return nullptr;
5111   }
5112   case Intrinsic::setjmp:
5113     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5114   case Intrinsic::longjmp:
5115     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5116   case Intrinsic::memcpy: {
5117     const auto &MCI = cast<MemCpyInst>(I);
5118     SDValue Op1 = getValue(I.getArgOperand(0));
5119     SDValue Op2 = getValue(I.getArgOperand(1));
5120     SDValue Op3 = getValue(I.getArgOperand(2));
5121     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5122     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5123     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5124     unsigned Align = MinAlign(DstAlign, SrcAlign);
5125     bool isVol = MCI.isVolatile();
5126     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5127     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5128     // node.
5129     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5130                                false, isTC,
5131                                MachinePointerInfo(I.getArgOperand(0)),
5132                                MachinePointerInfo(I.getArgOperand(1)));
5133     updateDAGForMaybeTailCall(MC);
5134     return nullptr;
5135   }
5136   case Intrinsic::memset: {
5137     const auto &MSI = cast<MemSetInst>(I);
5138     SDValue Op1 = getValue(I.getArgOperand(0));
5139     SDValue Op2 = getValue(I.getArgOperand(1));
5140     SDValue Op3 = getValue(I.getArgOperand(2));
5141     // @llvm.memset defines 0 and 1 to both mean no alignment.
5142     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5143     bool isVol = MSI.isVolatile();
5144     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5145     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5146                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5147     updateDAGForMaybeTailCall(MS);
5148     return nullptr;
5149   }
5150   case Intrinsic::memmove: {
5151     const auto &MMI = cast<MemMoveInst>(I);
5152     SDValue Op1 = getValue(I.getArgOperand(0));
5153     SDValue Op2 = getValue(I.getArgOperand(1));
5154     SDValue Op3 = getValue(I.getArgOperand(2));
5155     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5156     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5157     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5158     unsigned Align = MinAlign(DstAlign, SrcAlign);
5159     bool isVol = MMI.isVolatile();
5160     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5161     // FIXME: Support passing different dest/src alignments to the memmove DAG
5162     // node.
5163     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5164                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5165                                 MachinePointerInfo(I.getArgOperand(1)));
5166     updateDAGForMaybeTailCall(MM);
5167     return nullptr;
5168   }
5169   case Intrinsic::memcpy_element_unordered_atomic: {
5170     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5171     SDValue Dst = getValue(MI.getRawDest());
5172     SDValue Src = getValue(MI.getRawSource());
5173     SDValue Length = getValue(MI.getLength());
5174 
5175     unsigned DstAlign = MI.getDestAlignment();
5176     unsigned SrcAlign = MI.getSourceAlignment();
5177     Type *LengthTy = MI.getLength()->getType();
5178     unsigned ElemSz = MI.getElementSizeInBytes();
5179     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5180     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5181                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5182                                      MachinePointerInfo(MI.getRawDest()),
5183                                      MachinePointerInfo(MI.getRawSource()));
5184     updateDAGForMaybeTailCall(MC);
5185     return nullptr;
5186   }
5187   case Intrinsic::memmove_element_unordered_atomic: {
5188     auto &MI = cast<AtomicMemMoveInst>(I);
5189     SDValue Dst = getValue(MI.getRawDest());
5190     SDValue Src = getValue(MI.getRawSource());
5191     SDValue Length = getValue(MI.getLength());
5192 
5193     unsigned DstAlign = MI.getDestAlignment();
5194     unsigned SrcAlign = MI.getSourceAlignment();
5195     Type *LengthTy = MI.getLength()->getType();
5196     unsigned ElemSz = MI.getElementSizeInBytes();
5197     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5198     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5199                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5200                                       MachinePointerInfo(MI.getRawDest()),
5201                                       MachinePointerInfo(MI.getRawSource()));
5202     updateDAGForMaybeTailCall(MC);
5203     return nullptr;
5204   }
5205   case Intrinsic::memset_element_unordered_atomic: {
5206     auto &MI = cast<AtomicMemSetInst>(I);
5207     SDValue Dst = getValue(MI.getRawDest());
5208     SDValue Val = getValue(MI.getValue());
5209     SDValue Length = getValue(MI.getLength());
5210 
5211     unsigned DstAlign = MI.getDestAlignment();
5212     Type *LengthTy = MI.getLength()->getType();
5213     unsigned ElemSz = MI.getElementSizeInBytes();
5214     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5215     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5216                                      LengthTy, ElemSz, isTC,
5217                                      MachinePointerInfo(MI.getRawDest()));
5218     updateDAGForMaybeTailCall(MC);
5219     return nullptr;
5220   }
5221   case Intrinsic::dbg_addr:
5222   case Intrinsic::dbg_declare: {
5223     const auto &DI = cast<DbgVariableIntrinsic>(I);
5224     DILocalVariable *Variable = DI.getVariable();
5225     DIExpression *Expression = DI.getExpression();
5226     dropDanglingDebugInfo(Variable, Expression);
5227     assert(Variable && "Missing variable");
5228 
5229     // Check if address has undef value.
5230     const Value *Address = DI.getVariableLocation();
5231     if (!Address || isa<UndefValue>(Address) ||
5232         (Address->use_empty() && !isa<Argument>(Address))) {
5233       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5234       return nullptr;
5235     }
5236 
5237     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5238 
5239     // Check if this variable can be described by a frame index, typically
5240     // either as a static alloca or a byval parameter.
5241     int FI = std::numeric_limits<int>::max();
5242     if (const auto *AI =
5243             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5244       if (AI->isStaticAlloca()) {
5245         auto I = FuncInfo.StaticAllocaMap.find(AI);
5246         if (I != FuncInfo.StaticAllocaMap.end())
5247           FI = I->second;
5248       }
5249     } else if (const auto *Arg = dyn_cast<Argument>(
5250                    Address->stripInBoundsConstantOffsets())) {
5251       FI = FuncInfo.getArgumentFrameIndex(Arg);
5252     }
5253 
5254     // llvm.dbg.addr is control dependent and always generates indirect
5255     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5256     // the MachineFunction variable table.
5257     if (FI != std::numeric_limits<int>::max()) {
5258       if (Intrinsic == Intrinsic::dbg_addr) {
5259         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5260             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5261         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5262       }
5263       return nullptr;
5264     }
5265 
5266     SDValue &N = NodeMap[Address];
5267     if (!N.getNode() && isa<Argument>(Address))
5268       // Check unused arguments map.
5269       N = UnusedArgNodeMap[Address];
5270     SDDbgValue *SDV;
5271     if (N.getNode()) {
5272       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5273         Address = BCI->getOperand(0);
5274       // Parameters are handled specially.
5275       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5276       if (isParameter && FINode) {
5277         // Byval parameter. We have a frame index at this point.
5278         SDV =
5279             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5280                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5281       } else if (isa<Argument>(Address)) {
5282         // Address is an argument, so try to emit its dbg value using
5283         // virtual register info from the FuncInfo.ValueMap.
5284         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5285         return nullptr;
5286       } else {
5287         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5288                               true, dl, SDNodeOrder);
5289       }
5290       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5291     } else {
5292       // If Address is an argument then try to emit its dbg value using
5293       // virtual register info from the FuncInfo.ValueMap.
5294       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5295                                     N)) {
5296         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5297       }
5298     }
5299     return nullptr;
5300   }
5301   case Intrinsic::dbg_label: {
5302     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5303     DILabel *Label = DI.getLabel();
5304     assert(Label && "Missing label");
5305 
5306     SDDbgLabel *SDV;
5307     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5308     DAG.AddDbgLabel(SDV);
5309     return nullptr;
5310   }
5311   case Intrinsic::dbg_value: {
5312     const DbgValueInst &DI = cast<DbgValueInst>(I);
5313     assert(DI.getVariable() && "Missing variable");
5314 
5315     DILocalVariable *Variable = DI.getVariable();
5316     DIExpression *Expression = DI.getExpression();
5317     dropDanglingDebugInfo(Variable, Expression);
5318     const Value *V = DI.getValue();
5319     if (!V)
5320       return nullptr;
5321 
5322     SDDbgValue *SDV;
5323     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
5324         isa<ConstantPointerNull>(V)) {
5325       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5326       DAG.AddDbgValue(SDV, nullptr, false);
5327       return nullptr;
5328     }
5329 
5330     // If the Value is a frame index, we can create a FrameIndex debug value
5331     // without relying on the DAG at all.
5332     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
5333       auto SI = FuncInfo.StaticAllocaMap.find(AI);
5334       if (SI != FuncInfo.StaticAllocaMap.end()) {
5335         auto SDV =
5336             DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
5337                                       /*IsIndirect*/ false, dl, SDNodeOrder);
5338         // Do not attach the SDNodeDbgValue to an SDNode: this variable location
5339         // is still available even if the SDNode gets optimized out.
5340         DAG.AddDbgValue(SDV, nullptr, false);
5341         return nullptr;
5342       }
5343     }
5344 
5345     // Do not use getValue() in here; we don't want to generate code at
5346     // this point if it hasn't been done yet.
5347     SDValue N = NodeMap[V];
5348     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5349       N = UnusedArgNodeMap[V];
5350     if (N.getNode()) {
5351       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5352         return nullptr;
5353       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5354       DAG.AddDbgValue(SDV, N.getNode(), false);
5355       return nullptr;
5356     }
5357 
5358     // The value is not used in this block yet (or it would have an SDNode).
5359     // We still want the value to appear for the user if possible -- if it has
5360     // an associated VReg, we can refer to that instead.
5361     if (!isa<Argument>(V)) {
5362       auto VMI = FuncInfo.ValueMap.find(V);
5363       if (VMI != FuncInfo.ValueMap.end()) {
5364         unsigned Reg = VMI->second;
5365         // If this is a PHI node, it may be split up into several MI PHI nodes
5366         // (in FunctionLoweringInfo::set).
5367         RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5368                          V->getType(), None);
5369         if (RFV.occupiesMultipleRegs()) {
5370           unsigned Offset = 0;
5371           unsigned BitsToDescribe = 0;
5372           if (auto VarSize = Variable->getSizeInBits())
5373             BitsToDescribe = *VarSize;
5374           if (auto Fragment = Expression->getFragmentInfo())
5375             BitsToDescribe = Fragment->SizeInBits;
5376           for (auto RegAndSize : RFV.getRegsAndSizes()) {
5377             unsigned RegisterSize = RegAndSize.second;
5378             // Bail out if all bits are described already.
5379             if (Offset >= BitsToDescribe)
5380               break;
5381             unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5382                 ? BitsToDescribe - Offset
5383                 : RegisterSize;
5384             auto FragmentExpr = DIExpression::createFragmentExpression(
5385                 Expression, Offset, FragmentSize);
5386             if (!FragmentExpr)
5387                 continue;
5388             SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5389                                       false, dl, SDNodeOrder);
5390             DAG.AddDbgValue(SDV, nullptr, false);
5391             Offset += RegisterSize;
5392           }
5393         } else {
5394           SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5395                                     SDNodeOrder);
5396           DAG.AddDbgValue(SDV, nullptr, false);
5397         }
5398         return nullptr;
5399       }
5400     }
5401 
5402     // TODO: When we get here we will either drop the dbg.value completely, or
5403     // we try to move it forward by letting it dangle for awhile. So we should
5404     // probably add an extra DbgValue to the DAG here, with a reference to
5405     // "noreg", to indicate that we have lost the debug location for the
5406     // variable.
5407 
5408     if (!V->use_empty() ) {
5409       // Do not call getValue(V) yet, as we don't want to generate code.
5410       // Remember it for later.
5411       DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5412       return nullptr;
5413     }
5414 
5415     LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5416     LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5417     return nullptr;
5418   }
5419 
5420   case Intrinsic::eh_typeid_for: {
5421     // Find the type id for the given typeinfo.
5422     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5423     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5424     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5425     setValue(&I, Res);
5426     return nullptr;
5427   }
5428 
5429   case Intrinsic::eh_return_i32:
5430   case Intrinsic::eh_return_i64:
5431     DAG.getMachineFunction().setCallsEHReturn(true);
5432     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5433                             MVT::Other,
5434                             getControlRoot(),
5435                             getValue(I.getArgOperand(0)),
5436                             getValue(I.getArgOperand(1))));
5437     return nullptr;
5438   case Intrinsic::eh_unwind_init:
5439     DAG.getMachineFunction().setCallsUnwindInit(true);
5440     return nullptr;
5441   case Intrinsic::eh_dwarf_cfa:
5442     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5443                              TLI.getPointerTy(DAG.getDataLayout()),
5444                              getValue(I.getArgOperand(0))));
5445     return nullptr;
5446   case Intrinsic::eh_sjlj_callsite: {
5447     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5448     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5449     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5450     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5451 
5452     MMI.setCurrentCallSite(CI->getZExtValue());
5453     return nullptr;
5454   }
5455   case Intrinsic::eh_sjlj_functioncontext: {
5456     // Get and store the index of the function context.
5457     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5458     AllocaInst *FnCtx =
5459       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5460     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5461     MFI.setFunctionContextIndex(FI);
5462     return nullptr;
5463   }
5464   case Intrinsic::eh_sjlj_setjmp: {
5465     SDValue Ops[2];
5466     Ops[0] = getRoot();
5467     Ops[1] = getValue(I.getArgOperand(0));
5468     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5469                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5470     setValue(&I, Op.getValue(0));
5471     DAG.setRoot(Op.getValue(1));
5472     return nullptr;
5473   }
5474   case Intrinsic::eh_sjlj_longjmp:
5475     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5476                             getRoot(), getValue(I.getArgOperand(0))));
5477     return nullptr;
5478   case Intrinsic::eh_sjlj_setup_dispatch:
5479     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5480                             getRoot()));
5481     return nullptr;
5482   case Intrinsic::masked_gather:
5483     visitMaskedGather(I);
5484     return nullptr;
5485   case Intrinsic::masked_load:
5486     visitMaskedLoad(I);
5487     return nullptr;
5488   case Intrinsic::masked_scatter:
5489     visitMaskedScatter(I);
5490     return nullptr;
5491   case Intrinsic::masked_store:
5492     visitMaskedStore(I);
5493     return nullptr;
5494   case Intrinsic::masked_expandload:
5495     visitMaskedLoad(I, true /* IsExpanding */);
5496     return nullptr;
5497   case Intrinsic::masked_compressstore:
5498     visitMaskedStore(I, true /* IsCompressing */);
5499     return nullptr;
5500   case Intrinsic::x86_mmx_pslli_w:
5501   case Intrinsic::x86_mmx_pslli_d:
5502   case Intrinsic::x86_mmx_pslli_q:
5503   case Intrinsic::x86_mmx_psrli_w:
5504   case Intrinsic::x86_mmx_psrli_d:
5505   case Intrinsic::x86_mmx_psrli_q:
5506   case Intrinsic::x86_mmx_psrai_w:
5507   case Intrinsic::x86_mmx_psrai_d: {
5508     SDValue ShAmt = getValue(I.getArgOperand(1));
5509     if (isa<ConstantSDNode>(ShAmt)) {
5510       visitTargetIntrinsic(I, Intrinsic);
5511       return nullptr;
5512     }
5513     unsigned NewIntrinsic = 0;
5514     EVT ShAmtVT = MVT::v2i32;
5515     switch (Intrinsic) {
5516     case Intrinsic::x86_mmx_pslli_w:
5517       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5518       break;
5519     case Intrinsic::x86_mmx_pslli_d:
5520       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5521       break;
5522     case Intrinsic::x86_mmx_pslli_q:
5523       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5524       break;
5525     case Intrinsic::x86_mmx_psrli_w:
5526       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5527       break;
5528     case Intrinsic::x86_mmx_psrli_d:
5529       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5530       break;
5531     case Intrinsic::x86_mmx_psrli_q:
5532       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5533       break;
5534     case Intrinsic::x86_mmx_psrai_w:
5535       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5536       break;
5537     case Intrinsic::x86_mmx_psrai_d:
5538       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5539       break;
5540     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5541     }
5542 
5543     // The vector shift intrinsics with scalars uses 32b shift amounts but
5544     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5545     // to be zero.
5546     // We must do this early because v2i32 is not a legal type.
5547     SDValue ShOps[2];
5548     ShOps[0] = ShAmt;
5549     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5550     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5551     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5552     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5553     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5554                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5555                        getValue(I.getArgOperand(0)), ShAmt);
5556     setValue(&I, Res);
5557     return nullptr;
5558   }
5559   case Intrinsic::powi:
5560     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5561                             getValue(I.getArgOperand(1)), DAG));
5562     return nullptr;
5563   case Intrinsic::log:
5564     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5565     return nullptr;
5566   case Intrinsic::log2:
5567     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5568     return nullptr;
5569   case Intrinsic::log10:
5570     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5571     return nullptr;
5572   case Intrinsic::exp:
5573     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5574     return nullptr;
5575   case Intrinsic::exp2:
5576     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5577     return nullptr;
5578   case Intrinsic::pow:
5579     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5580                            getValue(I.getArgOperand(1)), DAG, TLI));
5581     return nullptr;
5582   case Intrinsic::sqrt:
5583   case Intrinsic::fabs:
5584   case Intrinsic::sin:
5585   case Intrinsic::cos:
5586   case Intrinsic::floor:
5587   case Intrinsic::ceil:
5588   case Intrinsic::trunc:
5589   case Intrinsic::rint:
5590   case Intrinsic::nearbyint:
5591   case Intrinsic::round:
5592   case Intrinsic::canonicalize: {
5593     unsigned Opcode;
5594     switch (Intrinsic) {
5595     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5596     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5597     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5598     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5599     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5600     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5601     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5602     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5603     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5604     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5605     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5606     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5607     }
5608 
5609     setValue(&I, DAG.getNode(Opcode, sdl,
5610                              getValue(I.getArgOperand(0)).getValueType(),
5611                              getValue(I.getArgOperand(0))));
5612     return nullptr;
5613   }
5614   case Intrinsic::minnum: {
5615     auto VT = getValue(I.getArgOperand(0)).getValueType();
5616     unsigned Opc =
5617         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5618             ? ISD::FMINIMUM
5619             : ISD::FMINNUM;
5620     setValue(&I, DAG.getNode(Opc, sdl, VT,
5621                              getValue(I.getArgOperand(0)),
5622                              getValue(I.getArgOperand(1))));
5623     return nullptr;
5624   }
5625   case Intrinsic::maxnum: {
5626     auto VT = getValue(I.getArgOperand(0)).getValueType();
5627     unsigned Opc =
5628         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5629             ? ISD::FMAXIMUM
5630             : ISD::FMAXNUM;
5631     setValue(&I, DAG.getNode(Opc, sdl, VT,
5632                              getValue(I.getArgOperand(0)),
5633                              getValue(I.getArgOperand(1))));
5634     return nullptr;
5635   }
5636   case Intrinsic::minimum:
5637     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5638                              getValue(I.getArgOperand(0)).getValueType(),
5639                              getValue(I.getArgOperand(0)),
5640                              getValue(I.getArgOperand(1))));
5641     return nullptr;
5642   case Intrinsic::maximum:
5643     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5644                              getValue(I.getArgOperand(0)).getValueType(),
5645                              getValue(I.getArgOperand(0)),
5646                              getValue(I.getArgOperand(1))));
5647     return nullptr;
5648   case Intrinsic::copysign:
5649     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5650                              getValue(I.getArgOperand(0)).getValueType(),
5651                              getValue(I.getArgOperand(0)),
5652                              getValue(I.getArgOperand(1))));
5653     return nullptr;
5654   case Intrinsic::fma:
5655     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5656                              getValue(I.getArgOperand(0)).getValueType(),
5657                              getValue(I.getArgOperand(0)),
5658                              getValue(I.getArgOperand(1)),
5659                              getValue(I.getArgOperand(2))));
5660     return nullptr;
5661   case Intrinsic::experimental_constrained_fadd:
5662   case Intrinsic::experimental_constrained_fsub:
5663   case Intrinsic::experimental_constrained_fmul:
5664   case Intrinsic::experimental_constrained_fdiv:
5665   case Intrinsic::experimental_constrained_frem:
5666   case Intrinsic::experimental_constrained_fma:
5667   case Intrinsic::experimental_constrained_sqrt:
5668   case Intrinsic::experimental_constrained_pow:
5669   case Intrinsic::experimental_constrained_powi:
5670   case Intrinsic::experimental_constrained_sin:
5671   case Intrinsic::experimental_constrained_cos:
5672   case Intrinsic::experimental_constrained_exp:
5673   case Intrinsic::experimental_constrained_exp2:
5674   case Intrinsic::experimental_constrained_log:
5675   case Intrinsic::experimental_constrained_log10:
5676   case Intrinsic::experimental_constrained_log2:
5677   case Intrinsic::experimental_constrained_rint:
5678   case Intrinsic::experimental_constrained_nearbyint:
5679   case Intrinsic::experimental_constrained_maxnum:
5680   case Intrinsic::experimental_constrained_minnum:
5681   case Intrinsic::experimental_constrained_ceil:
5682   case Intrinsic::experimental_constrained_floor:
5683   case Intrinsic::experimental_constrained_round:
5684   case Intrinsic::experimental_constrained_trunc:
5685     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5686     return nullptr;
5687   case Intrinsic::fmuladd: {
5688     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5689     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5690         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5691       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5692                                getValue(I.getArgOperand(0)).getValueType(),
5693                                getValue(I.getArgOperand(0)),
5694                                getValue(I.getArgOperand(1)),
5695                                getValue(I.getArgOperand(2))));
5696     } else {
5697       // TODO: Intrinsic calls should have fast-math-flags.
5698       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5699                                 getValue(I.getArgOperand(0)).getValueType(),
5700                                 getValue(I.getArgOperand(0)),
5701                                 getValue(I.getArgOperand(1)));
5702       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5703                                 getValue(I.getArgOperand(0)).getValueType(),
5704                                 Mul,
5705                                 getValue(I.getArgOperand(2)));
5706       setValue(&I, Add);
5707     }
5708     return nullptr;
5709   }
5710   case Intrinsic::convert_to_fp16:
5711     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5712                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5713                                          getValue(I.getArgOperand(0)),
5714                                          DAG.getTargetConstant(0, sdl,
5715                                                                MVT::i32))));
5716     return nullptr;
5717   case Intrinsic::convert_from_fp16:
5718     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5719                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5720                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5721                                          getValue(I.getArgOperand(0)))));
5722     return nullptr;
5723   case Intrinsic::pcmarker: {
5724     SDValue Tmp = getValue(I.getArgOperand(0));
5725     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5726     return nullptr;
5727   }
5728   case Intrinsic::readcyclecounter: {
5729     SDValue Op = getRoot();
5730     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5731                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5732     setValue(&I, Res);
5733     DAG.setRoot(Res.getValue(1));
5734     return nullptr;
5735   }
5736   case Intrinsic::bitreverse:
5737     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5738                              getValue(I.getArgOperand(0)).getValueType(),
5739                              getValue(I.getArgOperand(0))));
5740     return nullptr;
5741   case Intrinsic::bswap:
5742     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5743                              getValue(I.getArgOperand(0)).getValueType(),
5744                              getValue(I.getArgOperand(0))));
5745     return nullptr;
5746   case Intrinsic::cttz: {
5747     SDValue Arg = getValue(I.getArgOperand(0));
5748     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5749     EVT Ty = Arg.getValueType();
5750     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5751                              sdl, Ty, Arg));
5752     return nullptr;
5753   }
5754   case Intrinsic::ctlz: {
5755     SDValue Arg = getValue(I.getArgOperand(0));
5756     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5757     EVT Ty = Arg.getValueType();
5758     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5759                              sdl, Ty, Arg));
5760     return nullptr;
5761   }
5762   case Intrinsic::ctpop: {
5763     SDValue Arg = getValue(I.getArgOperand(0));
5764     EVT Ty = Arg.getValueType();
5765     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5766     return nullptr;
5767   }
5768   case Intrinsic::fshl:
5769   case Intrinsic::fshr: {
5770     bool IsFSHL = Intrinsic == Intrinsic::fshl;
5771     SDValue X = getValue(I.getArgOperand(0));
5772     SDValue Y = getValue(I.getArgOperand(1));
5773     SDValue Z = getValue(I.getArgOperand(2));
5774     EVT VT = X.getValueType();
5775     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
5776     SDValue Zero = DAG.getConstant(0, sdl, VT);
5777     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
5778 
5779     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
5780     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
5781       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
5782       return nullptr;
5783     }
5784 
5785     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
5786     // avoid the select that is necessary in the general case to filter out
5787     // the 0-shift possibility that leads to UB.
5788     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
5789       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
5790       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
5791         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
5792         return nullptr;
5793       }
5794 
5795       // Some targets only rotate one way. Try the opposite direction.
5796       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
5797       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
5798         // Negate the shift amount because it is safe to ignore the high bits.
5799         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5800         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
5801         return nullptr;
5802       }
5803 
5804       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
5805       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
5806       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5807       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
5808       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
5809       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
5810       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
5811       return nullptr;
5812     }
5813 
5814     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5815     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5816     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
5817     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
5818     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5819     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
5820 
5821     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5822     // and that is undefined. We must compare and select to avoid UB.
5823     EVT CCVT = MVT::i1;
5824     if (VT.isVector())
5825       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
5826 
5827     // For fshl, 0-shift returns the 1st arg (X).
5828     // For fshr, 0-shift returns the 2nd arg (Y).
5829     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
5830     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
5831     return nullptr;
5832   }
5833   case Intrinsic::sadd_sat: {
5834     SDValue Op1 = getValue(I.getArgOperand(0));
5835     SDValue Op2 = getValue(I.getArgOperand(1));
5836     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
5837     return nullptr;
5838   }
5839   case Intrinsic::uadd_sat: {
5840     SDValue Op1 = getValue(I.getArgOperand(0));
5841     SDValue Op2 = getValue(I.getArgOperand(1));
5842     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
5843     return nullptr;
5844   }
5845   case Intrinsic::ssub_sat: {
5846     SDValue Op1 = getValue(I.getArgOperand(0));
5847     SDValue Op2 = getValue(I.getArgOperand(1));
5848     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
5849     return nullptr;
5850   }
5851   case Intrinsic::usub_sat: {
5852     SDValue Op1 = getValue(I.getArgOperand(0));
5853     SDValue Op2 = getValue(I.getArgOperand(1));
5854     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
5855     return nullptr;
5856   }
5857   case Intrinsic::smul_fix: {
5858     SDValue Op1 = getValue(I.getArgOperand(0));
5859     SDValue Op2 = getValue(I.getArgOperand(1));
5860     SDValue Op3 = getValue(I.getArgOperand(2));
5861     setValue(&I,
5862              DAG.getNode(ISD::SMULFIX, sdl, Op1.getValueType(), Op1, Op2, Op3));
5863     return nullptr;
5864   }
5865   case Intrinsic::stacksave: {
5866     SDValue Op = getRoot();
5867     Res = DAG.getNode(
5868         ISD::STACKSAVE, sdl,
5869         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5870     setValue(&I, Res);
5871     DAG.setRoot(Res.getValue(1));
5872     return nullptr;
5873   }
5874   case Intrinsic::stackrestore:
5875     Res = getValue(I.getArgOperand(0));
5876     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5877     return nullptr;
5878   case Intrinsic::get_dynamic_area_offset: {
5879     SDValue Op = getRoot();
5880     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5881     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5882     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5883     // target.
5884     if (PtrTy != ResTy)
5885       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5886                          " intrinsic!");
5887     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5888                       Op);
5889     DAG.setRoot(Op);
5890     setValue(&I, Res);
5891     return nullptr;
5892   }
5893   case Intrinsic::stackguard: {
5894     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5895     MachineFunction &MF = DAG.getMachineFunction();
5896     const Module &M = *MF.getFunction().getParent();
5897     SDValue Chain = getRoot();
5898     if (TLI.useLoadStackGuardNode()) {
5899       Res = getLoadStackGuard(DAG, sdl, Chain);
5900     } else {
5901       const Value *Global = TLI.getSDagStackGuard(M);
5902       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5903       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5904                         MachinePointerInfo(Global, 0), Align,
5905                         MachineMemOperand::MOVolatile);
5906     }
5907     if (TLI.useStackGuardXorFP())
5908       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5909     DAG.setRoot(Chain);
5910     setValue(&I, Res);
5911     return nullptr;
5912   }
5913   case Intrinsic::stackprotector: {
5914     // Emit code into the DAG to store the stack guard onto the stack.
5915     MachineFunction &MF = DAG.getMachineFunction();
5916     MachineFrameInfo &MFI = MF.getFrameInfo();
5917     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5918     SDValue Src, Chain = getRoot();
5919 
5920     if (TLI.useLoadStackGuardNode())
5921       Src = getLoadStackGuard(DAG, sdl, Chain);
5922     else
5923       Src = getValue(I.getArgOperand(0));   // The guard's value.
5924 
5925     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5926 
5927     int FI = FuncInfo.StaticAllocaMap[Slot];
5928     MFI.setStackProtectorIndex(FI);
5929 
5930     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5931 
5932     // Store the stack protector onto the stack.
5933     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5934                                                  DAG.getMachineFunction(), FI),
5935                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5936     setValue(&I, Res);
5937     DAG.setRoot(Res);
5938     return nullptr;
5939   }
5940   case Intrinsic::objectsize: {
5941     // If we don't know by now, we're never going to know.
5942     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5943 
5944     assert(CI && "Non-constant type in __builtin_object_size?");
5945 
5946     SDValue Arg = getValue(I.getCalledValue());
5947     EVT Ty = Arg.getValueType();
5948 
5949     if (CI->isZero())
5950       Res = DAG.getConstant(-1ULL, sdl, Ty);
5951     else
5952       Res = DAG.getConstant(0, sdl, Ty);
5953 
5954     setValue(&I, Res);
5955     return nullptr;
5956   }
5957 
5958   case Intrinsic::is_constant:
5959     // If this wasn't constant-folded away by now, then it's not a
5960     // constant.
5961     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
5962     return nullptr;
5963 
5964   case Intrinsic::annotation:
5965   case Intrinsic::ptr_annotation:
5966   case Intrinsic::launder_invariant_group:
5967   case Intrinsic::strip_invariant_group:
5968     // Drop the intrinsic, but forward the value
5969     setValue(&I, getValue(I.getOperand(0)));
5970     return nullptr;
5971   case Intrinsic::assume:
5972   case Intrinsic::var_annotation:
5973   case Intrinsic::sideeffect:
5974     // Discard annotate attributes, assumptions, and artificial side-effects.
5975     return nullptr;
5976 
5977   case Intrinsic::codeview_annotation: {
5978     // Emit a label associated with this metadata.
5979     MachineFunction &MF = DAG.getMachineFunction();
5980     MCSymbol *Label =
5981         MF.getMMI().getContext().createTempSymbol("annotation", true);
5982     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5983     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5984     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5985     DAG.setRoot(Res);
5986     return nullptr;
5987   }
5988 
5989   case Intrinsic::init_trampoline: {
5990     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5991 
5992     SDValue Ops[6];
5993     Ops[0] = getRoot();
5994     Ops[1] = getValue(I.getArgOperand(0));
5995     Ops[2] = getValue(I.getArgOperand(1));
5996     Ops[3] = getValue(I.getArgOperand(2));
5997     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5998     Ops[5] = DAG.getSrcValue(F);
5999 
6000     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6001 
6002     DAG.setRoot(Res);
6003     return nullptr;
6004   }
6005   case Intrinsic::adjust_trampoline:
6006     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6007                              TLI.getPointerTy(DAG.getDataLayout()),
6008                              getValue(I.getArgOperand(0))));
6009     return nullptr;
6010   case Intrinsic::gcroot: {
6011     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6012            "only valid in functions with gc specified, enforced by Verifier");
6013     assert(GFI && "implied by previous");
6014     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6015     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6016 
6017     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6018     GFI->addStackRoot(FI->getIndex(), TypeMap);
6019     return nullptr;
6020   }
6021   case Intrinsic::gcread:
6022   case Intrinsic::gcwrite:
6023     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6024   case Intrinsic::flt_rounds:
6025     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6026     return nullptr;
6027 
6028   case Intrinsic::expect:
6029     // Just replace __builtin_expect(exp, c) with EXP.
6030     setValue(&I, getValue(I.getArgOperand(0)));
6031     return nullptr;
6032 
6033   case Intrinsic::debugtrap:
6034   case Intrinsic::trap: {
6035     StringRef TrapFuncName =
6036         I.getAttributes()
6037             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6038             .getValueAsString();
6039     if (TrapFuncName.empty()) {
6040       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6041         ISD::TRAP : ISD::DEBUGTRAP;
6042       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6043       return nullptr;
6044     }
6045     TargetLowering::ArgListTy Args;
6046 
6047     TargetLowering::CallLoweringInfo CLI(DAG);
6048     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6049         CallingConv::C, I.getType(),
6050         DAG.getExternalSymbol(TrapFuncName.data(),
6051                               TLI.getPointerTy(DAG.getDataLayout())),
6052         std::move(Args));
6053 
6054     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6055     DAG.setRoot(Result.second);
6056     return nullptr;
6057   }
6058 
6059   case Intrinsic::uadd_with_overflow:
6060   case Intrinsic::sadd_with_overflow:
6061   case Intrinsic::usub_with_overflow:
6062   case Intrinsic::ssub_with_overflow:
6063   case Intrinsic::umul_with_overflow:
6064   case Intrinsic::smul_with_overflow: {
6065     ISD::NodeType Op;
6066     switch (Intrinsic) {
6067     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6068     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6069     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6070     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6071     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6072     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6073     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6074     }
6075     SDValue Op1 = getValue(I.getArgOperand(0));
6076     SDValue Op2 = getValue(I.getArgOperand(1));
6077 
6078     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
6079     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6080     return nullptr;
6081   }
6082   case Intrinsic::prefetch: {
6083     SDValue Ops[5];
6084     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6085     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6086     Ops[0] = DAG.getRoot();
6087     Ops[1] = getValue(I.getArgOperand(0));
6088     Ops[2] = getValue(I.getArgOperand(1));
6089     Ops[3] = getValue(I.getArgOperand(2));
6090     Ops[4] = getValue(I.getArgOperand(3));
6091     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6092                                              DAG.getVTList(MVT::Other), Ops,
6093                                              EVT::getIntegerVT(*Context, 8),
6094                                              MachinePointerInfo(I.getArgOperand(0)),
6095                                              0, /* align */
6096                                              Flags);
6097 
6098     // Chain the prefetch in parallell with any pending loads, to stay out of
6099     // the way of later optimizations.
6100     PendingLoads.push_back(Result);
6101     Result = getRoot();
6102     DAG.setRoot(Result);
6103     return nullptr;
6104   }
6105   case Intrinsic::lifetime_start:
6106   case Intrinsic::lifetime_end: {
6107     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6108     // Stack coloring is not enabled in O0, discard region information.
6109     if (TM.getOptLevel() == CodeGenOpt::None)
6110       return nullptr;
6111 
6112     SmallVector<Value *, 4> Allocas;
6113     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
6114 
6115     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6116            E = Allocas.end(); Object != E; ++Object) {
6117       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6118 
6119       // Could not find an Alloca.
6120       if (!LifetimeObject)
6121         continue;
6122 
6123       // First check that the Alloca is static, otherwise it won't have a
6124       // valid frame index.
6125       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6126       if (SI == FuncInfo.StaticAllocaMap.end())
6127         return nullptr;
6128 
6129       int FI = SI->second;
6130 
6131       SDValue Ops[2];
6132       Ops[0] = getRoot();
6133       Ops[1] =
6134           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
6135       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
6136 
6137       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
6138       DAG.setRoot(Res);
6139     }
6140     return nullptr;
6141   }
6142   case Intrinsic::invariant_start:
6143     // Discard region information.
6144     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6145     return nullptr;
6146   case Intrinsic::invariant_end:
6147     // Discard region information.
6148     return nullptr;
6149   case Intrinsic::clear_cache:
6150     return TLI.getClearCacheBuiltinName();
6151   case Intrinsic::donothing:
6152     // ignore
6153     return nullptr;
6154   case Intrinsic::experimental_stackmap:
6155     visitStackmap(I);
6156     return nullptr;
6157   case Intrinsic::experimental_patchpoint_void:
6158   case Intrinsic::experimental_patchpoint_i64:
6159     visitPatchpoint(&I);
6160     return nullptr;
6161   case Intrinsic::experimental_gc_statepoint:
6162     LowerStatepoint(ImmutableStatepoint(&I));
6163     return nullptr;
6164   case Intrinsic::experimental_gc_result:
6165     visitGCResult(cast<GCResultInst>(I));
6166     return nullptr;
6167   case Intrinsic::experimental_gc_relocate:
6168     visitGCRelocate(cast<GCRelocateInst>(I));
6169     return nullptr;
6170   case Intrinsic::instrprof_increment:
6171     llvm_unreachable("instrprof failed to lower an increment");
6172   case Intrinsic::instrprof_value_profile:
6173     llvm_unreachable("instrprof failed to lower a value profiling call");
6174   case Intrinsic::localescape: {
6175     MachineFunction &MF = DAG.getMachineFunction();
6176     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6177 
6178     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6179     // is the same on all targets.
6180     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6181       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6182       if (isa<ConstantPointerNull>(Arg))
6183         continue; // Skip null pointers. They represent a hole in index space.
6184       AllocaInst *Slot = cast<AllocaInst>(Arg);
6185       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6186              "can only escape static allocas");
6187       int FI = FuncInfo.StaticAllocaMap[Slot];
6188       MCSymbol *FrameAllocSym =
6189           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6190               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6191       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6192               TII->get(TargetOpcode::LOCAL_ESCAPE))
6193           .addSym(FrameAllocSym)
6194           .addFrameIndex(FI);
6195     }
6196 
6197     MF.setHasLocalEscape(true);
6198 
6199     return nullptr;
6200   }
6201 
6202   case Intrinsic::localrecover: {
6203     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6204     MachineFunction &MF = DAG.getMachineFunction();
6205     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6206 
6207     // Get the symbol that defines the frame offset.
6208     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6209     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6210     unsigned IdxVal =
6211         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6212     MCSymbol *FrameAllocSym =
6213         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6214             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6215 
6216     // Create a MCSymbol for the label to avoid any target lowering
6217     // that would make this PC relative.
6218     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6219     SDValue OffsetVal =
6220         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6221 
6222     // Add the offset to the FP.
6223     Value *FP = I.getArgOperand(1);
6224     SDValue FPVal = getValue(FP);
6225     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6226     setValue(&I, Add);
6227 
6228     return nullptr;
6229   }
6230 
6231   case Intrinsic::eh_exceptionpointer:
6232   case Intrinsic::eh_exceptioncode: {
6233     // Get the exception pointer vreg, copy from it, and resize it to fit.
6234     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6235     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6236     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6237     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6238     SDValue N =
6239         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6240     if (Intrinsic == Intrinsic::eh_exceptioncode)
6241       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6242     setValue(&I, N);
6243     return nullptr;
6244   }
6245   case Intrinsic::xray_customevent: {
6246     // Here we want to make sure that the intrinsic behaves as if it has a
6247     // specific calling convention, and only for x86_64.
6248     // FIXME: Support other platforms later.
6249     const auto &Triple = DAG.getTarget().getTargetTriple();
6250     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6251       return nullptr;
6252 
6253     SDLoc DL = getCurSDLoc();
6254     SmallVector<SDValue, 8> Ops;
6255 
6256     // We want to say that we always want the arguments in registers.
6257     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6258     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6259     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6260     SDValue Chain = getRoot();
6261     Ops.push_back(LogEntryVal);
6262     Ops.push_back(StrSizeVal);
6263     Ops.push_back(Chain);
6264 
6265     // We need to enforce the calling convention for the callsite, so that
6266     // argument ordering is enforced correctly, and that register allocation can
6267     // see that some registers may be assumed clobbered and have to preserve
6268     // them across calls to the intrinsic.
6269     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6270                                            DL, NodeTys, Ops);
6271     SDValue patchableNode = SDValue(MN, 0);
6272     DAG.setRoot(patchableNode);
6273     setValue(&I, patchableNode);
6274     return nullptr;
6275   }
6276   case Intrinsic::xray_typedevent: {
6277     // Here we want to make sure that the intrinsic behaves as if it has a
6278     // specific calling convention, and only for x86_64.
6279     // FIXME: Support other platforms later.
6280     const auto &Triple = DAG.getTarget().getTargetTriple();
6281     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6282       return nullptr;
6283 
6284     SDLoc DL = getCurSDLoc();
6285     SmallVector<SDValue, 8> Ops;
6286 
6287     // We want to say that we always want the arguments in registers.
6288     // It's unclear to me how manipulating the selection DAG here forces callers
6289     // to provide arguments in registers instead of on the stack.
6290     SDValue LogTypeId = getValue(I.getArgOperand(0));
6291     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6292     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6293     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6294     SDValue Chain = getRoot();
6295     Ops.push_back(LogTypeId);
6296     Ops.push_back(LogEntryVal);
6297     Ops.push_back(StrSizeVal);
6298     Ops.push_back(Chain);
6299 
6300     // We need to enforce the calling convention for the callsite, so that
6301     // argument ordering is enforced correctly, and that register allocation can
6302     // see that some registers may be assumed clobbered and have to preserve
6303     // them across calls to the intrinsic.
6304     MachineSDNode *MN = DAG.getMachineNode(
6305         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6306     SDValue patchableNode = SDValue(MN, 0);
6307     DAG.setRoot(patchableNode);
6308     setValue(&I, patchableNode);
6309     return nullptr;
6310   }
6311   case Intrinsic::experimental_deoptimize:
6312     LowerDeoptimizeCall(&I);
6313     return nullptr;
6314 
6315   case Intrinsic::experimental_vector_reduce_fadd:
6316   case Intrinsic::experimental_vector_reduce_fmul:
6317   case Intrinsic::experimental_vector_reduce_add:
6318   case Intrinsic::experimental_vector_reduce_mul:
6319   case Intrinsic::experimental_vector_reduce_and:
6320   case Intrinsic::experimental_vector_reduce_or:
6321   case Intrinsic::experimental_vector_reduce_xor:
6322   case Intrinsic::experimental_vector_reduce_smax:
6323   case Intrinsic::experimental_vector_reduce_smin:
6324   case Intrinsic::experimental_vector_reduce_umax:
6325   case Intrinsic::experimental_vector_reduce_umin:
6326   case Intrinsic::experimental_vector_reduce_fmax:
6327   case Intrinsic::experimental_vector_reduce_fmin:
6328     visitVectorReduce(I, Intrinsic);
6329     return nullptr;
6330 
6331   case Intrinsic::icall_branch_funnel: {
6332     SmallVector<SDValue, 16> Ops;
6333     Ops.push_back(DAG.getRoot());
6334     Ops.push_back(getValue(I.getArgOperand(0)));
6335 
6336     int64_t Offset;
6337     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6338         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6339     if (!Base)
6340       report_fatal_error(
6341           "llvm.icall.branch.funnel operand must be a GlobalValue");
6342     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6343 
6344     struct BranchFunnelTarget {
6345       int64_t Offset;
6346       SDValue Target;
6347     };
6348     SmallVector<BranchFunnelTarget, 8> Targets;
6349 
6350     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6351       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6352           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6353       if (ElemBase != Base)
6354         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6355                            "to the same GlobalValue");
6356 
6357       SDValue Val = getValue(I.getArgOperand(Op + 1));
6358       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6359       if (!GA)
6360         report_fatal_error(
6361             "llvm.icall.branch.funnel operand must be a GlobalValue");
6362       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6363                                      GA->getGlobal(), getCurSDLoc(),
6364                                      Val.getValueType(), GA->getOffset())});
6365     }
6366     llvm::sort(Targets,
6367                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6368                  return T1.Offset < T2.Offset;
6369                });
6370 
6371     for (auto &T : Targets) {
6372       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6373       Ops.push_back(T.Target);
6374     }
6375 
6376     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6377                                  getCurSDLoc(), MVT::Other, Ops),
6378               0);
6379     DAG.setRoot(N);
6380     setValue(&I, N);
6381     HasTailCall = true;
6382     return nullptr;
6383   }
6384 
6385   case Intrinsic::wasm_landingpad_index:
6386     // Information this intrinsic contained has been transferred to
6387     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6388     // delete it now.
6389     return nullptr;
6390   }
6391 }
6392 
6393 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6394     const ConstrainedFPIntrinsic &FPI) {
6395   SDLoc sdl = getCurSDLoc();
6396   unsigned Opcode;
6397   switch (FPI.getIntrinsicID()) {
6398   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6399   case Intrinsic::experimental_constrained_fadd:
6400     Opcode = ISD::STRICT_FADD;
6401     break;
6402   case Intrinsic::experimental_constrained_fsub:
6403     Opcode = ISD::STRICT_FSUB;
6404     break;
6405   case Intrinsic::experimental_constrained_fmul:
6406     Opcode = ISD::STRICT_FMUL;
6407     break;
6408   case Intrinsic::experimental_constrained_fdiv:
6409     Opcode = ISD::STRICT_FDIV;
6410     break;
6411   case Intrinsic::experimental_constrained_frem:
6412     Opcode = ISD::STRICT_FREM;
6413     break;
6414   case Intrinsic::experimental_constrained_fma:
6415     Opcode = ISD::STRICT_FMA;
6416     break;
6417   case Intrinsic::experimental_constrained_sqrt:
6418     Opcode = ISD::STRICT_FSQRT;
6419     break;
6420   case Intrinsic::experimental_constrained_pow:
6421     Opcode = ISD::STRICT_FPOW;
6422     break;
6423   case Intrinsic::experimental_constrained_powi:
6424     Opcode = ISD::STRICT_FPOWI;
6425     break;
6426   case Intrinsic::experimental_constrained_sin:
6427     Opcode = ISD::STRICT_FSIN;
6428     break;
6429   case Intrinsic::experimental_constrained_cos:
6430     Opcode = ISD::STRICT_FCOS;
6431     break;
6432   case Intrinsic::experimental_constrained_exp:
6433     Opcode = ISD::STRICT_FEXP;
6434     break;
6435   case Intrinsic::experimental_constrained_exp2:
6436     Opcode = ISD::STRICT_FEXP2;
6437     break;
6438   case Intrinsic::experimental_constrained_log:
6439     Opcode = ISD::STRICT_FLOG;
6440     break;
6441   case Intrinsic::experimental_constrained_log10:
6442     Opcode = ISD::STRICT_FLOG10;
6443     break;
6444   case Intrinsic::experimental_constrained_log2:
6445     Opcode = ISD::STRICT_FLOG2;
6446     break;
6447   case Intrinsic::experimental_constrained_rint:
6448     Opcode = ISD::STRICT_FRINT;
6449     break;
6450   case Intrinsic::experimental_constrained_nearbyint:
6451     Opcode = ISD::STRICT_FNEARBYINT;
6452     break;
6453   case Intrinsic::experimental_constrained_maxnum:
6454     Opcode = ISD::STRICT_FMAXNUM;
6455     break;
6456   case Intrinsic::experimental_constrained_minnum:
6457     Opcode = ISD::STRICT_FMINNUM;
6458     break;
6459   case Intrinsic::experimental_constrained_ceil:
6460     Opcode = ISD::STRICT_FCEIL;
6461     break;
6462   case Intrinsic::experimental_constrained_floor:
6463     Opcode = ISD::STRICT_FFLOOR;
6464     break;
6465   case Intrinsic::experimental_constrained_round:
6466     Opcode = ISD::STRICT_FROUND;
6467     break;
6468   case Intrinsic::experimental_constrained_trunc:
6469     Opcode = ISD::STRICT_FTRUNC;
6470     break;
6471   }
6472   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6473   SDValue Chain = getRoot();
6474   SmallVector<EVT, 4> ValueVTs;
6475   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6476   ValueVTs.push_back(MVT::Other); // Out chain
6477 
6478   SDVTList VTs = DAG.getVTList(ValueVTs);
6479   SDValue Result;
6480   if (FPI.isUnaryOp())
6481     Result = DAG.getNode(Opcode, sdl, VTs,
6482                          { Chain, getValue(FPI.getArgOperand(0)) });
6483   else if (FPI.isTernaryOp())
6484     Result = DAG.getNode(Opcode, sdl, VTs,
6485                          { Chain, getValue(FPI.getArgOperand(0)),
6486                                   getValue(FPI.getArgOperand(1)),
6487                                   getValue(FPI.getArgOperand(2)) });
6488   else
6489     Result = DAG.getNode(Opcode, sdl, VTs,
6490                          { Chain, getValue(FPI.getArgOperand(0)),
6491                            getValue(FPI.getArgOperand(1))  });
6492 
6493   assert(Result.getNode()->getNumValues() == 2);
6494   SDValue OutChain = Result.getValue(1);
6495   DAG.setRoot(OutChain);
6496   SDValue FPResult = Result.getValue(0);
6497   setValue(&FPI, FPResult);
6498 }
6499 
6500 std::pair<SDValue, SDValue>
6501 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6502                                     const BasicBlock *EHPadBB) {
6503   MachineFunction &MF = DAG.getMachineFunction();
6504   MachineModuleInfo &MMI = MF.getMMI();
6505   MCSymbol *BeginLabel = nullptr;
6506 
6507   if (EHPadBB) {
6508     // Insert a label before the invoke call to mark the try range.  This can be
6509     // used to detect deletion of the invoke via the MachineModuleInfo.
6510     BeginLabel = MMI.getContext().createTempSymbol();
6511 
6512     // For SjLj, keep track of which landing pads go with which invokes
6513     // so as to maintain the ordering of pads in the LSDA.
6514     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6515     if (CallSiteIndex) {
6516       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6517       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6518 
6519       // Now that the call site is handled, stop tracking it.
6520       MMI.setCurrentCallSite(0);
6521     }
6522 
6523     // Both PendingLoads and PendingExports must be flushed here;
6524     // this call might not return.
6525     (void)getRoot();
6526     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6527 
6528     CLI.setChain(getRoot());
6529   }
6530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6531   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6532 
6533   assert((CLI.IsTailCall || Result.second.getNode()) &&
6534          "Non-null chain expected with non-tail call!");
6535   assert((Result.second.getNode() || !Result.first.getNode()) &&
6536          "Null value expected with tail call!");
6537 
6538   if (!Result.second.getNode()) {
6539     // As a special case, a null chain means that a tail call has been emitted
6540     // and the DAG root is already updated.
6541     HasTailCall = true;
6542 
6543     // Since there's no actual continuation from this block, nothing can be
6544     // relying on us setting vregs for them.
6545     PendingExports.clear();
6546   } else {
6547     DAG.setRoot(Result.second);
6548   }
6549 
6550   if (EHPadBB) {
6551     // Insert a label at the end of the invoke call to mark the try range.  This
6552     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6553     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6554     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6555 
6556     // Inform MachineModuleInfo of range.
6557     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6558     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6559     // actually use outlined funclets and their LSDA info style.
6560     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6561       assert(CLI.CS);
6562       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6563       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6564                                 BeginLabel, EndLabel);
6565     } else if (!isScopedEHPersonality(Pers)) {
6566       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6567     }
6568   }
6569 
6570   return Result;
6571 }
6572 
6573 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6574                                       bool isTailCall,
6575                                       const BasicBlock *EHPadBB) {
6576   auto &DL = DAG.getDataLayout();
6577   FunctionType *FTy = CS.getFunctionType();
6578   Type *RetTy = CS.getType();
6579 
6580   TargetLowering::ArgListTy Args;
6581   Args.reserve(CS.arg_size());
6582 
6583   const Value *SwiftErrorVal = nullptr;
6584   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6585 
6586   // We can't tail call inside a function with a swifterror argument. Lowering
6587   // does not support this yet. It would have to move into the swifterror
6588   // register before the call.
6589   auto *Caller = CS.getInstruction()->getParent()->getParent();
6590   if (TLI.supportSwiftError() &&
6591       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6592     isTailCall = false;
6593 
6594   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6595        i != e; ++i) {
6596     TargetLowering::ArgListEntry Entry;
6597     const Value *V = *i;
6598 
6599     // Skip empty types
6600     if (V->getType()->isEmptyTy())
6601       continue;
6602 
6603     SDValue ArgNode = getValue(V);
6604     Entry.Node = ArgNode; Entry.Ty = V->getType();
6605 
6606     Entry.setAttributes(&CS, i - CS.arg_begin());
6607 
6608     // Use swifterror virtual register as input to the call.
6609     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6610       SwiftErrorVal = V;
6611       // We find the virtual register for the actual swifterror argument.
6612       // Instead of using the Value, we use the virtual register instead.
6613       Entry.Node = DAG.getRegister(FuncInfo
6614                                        .getOrCreateSwiftErrorVRegUseAt(
6615                                            CS.getInstruction(), FuncInfo.MBB, V)
6616                                        .first,
6617                                    EVT(TLI.getPointerTy(DL)));
6618     }
6619 
6620     Args.push_back(Entry);
6621 
6622     // If we have an explicit sret argument that is an Instruction, (i.e., it
6623     // might point to function-local memory), we can't meaningfully tail-call.
6624     if (Entry.IsSRet && isa<Instruction>(V))
6625       isTailCall = false;
6626   }
6627 
6628   // Check if target-independent constraints permit a tail call here.
6629   // Target-dependent constraints are checked within TLI->LowerCallTo.
6630   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6631     isTailCall = false;
6632 
6633   // Disable tail calls if there is an swifterror argument. Targets have not
6634   // been updated to support tail calls.
6635   if (TLI.supportSwiftError() && SwiftErrorVal)
6636     isTailCall = false;
6637 
6638   TargetLowering::CallLoweringInfo CLI(DAG);
6639   CLI.setDebugLoc(getCurSDLoc())
6640       .setChain(getRoot())
6641       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6642       .setTailCall(isTailCall)
6643       .setConvergent(CS.isConvergent());
6644   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6645 
6646   if (Result.first.getNode()) {
6647     const Instruction *Inst = CS.getInstruction();
6648     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6649     setValue(Inst, Result.first);
6650   }
6651 
6652   // The last element of CLI.InVals has the SDValue for swifterror return.
6653   // Here we copy it to a virtual register and update SwiftErrorMap for
6654   // book-keeping.
6655   if (SwiftErrorVal && TLI.supportSwiftError()) {
6656     // Get the last element of InVals.
6657     SDValue Src = CLI.InVals.back();
6658     unsigned VReg; bool CreatedVReg;
6659     std::tie(VReg, CreatedVReg) =
6660         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6661     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6662     // We update the virtual register for the actual swifterror argument.
6663     if (CreatedVReg)
6664       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6665     DAG.setRoot(CopyNode);
6666   }
6667 }
6668 
6669 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6670                              SelectionDAGBuilder &Builder) {
6671   // Check to see if this load can be trivially constant folded, e.g. if the
6672   // input is from a string literal.
6673   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6674     // Cast pointer to the type we really want to load.
6675     Type *LoadTy =
6676         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6677     if (LoadVT.isVector())
6678       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6679 
6680     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6681                                          PointerType::getUnqual(LoadTy));
6682 
6683     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6684             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6685       return Builder.getValue(LoadCst);
6686   }
6687 
6688   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6689   // still constant memory, the input chain can be the entry node.
6690   SDValue Root;
6691   bool ConstantMemory = false;
6692 
6693   // Do not serialize (non-volatile) loads of constant memory with anything.
6694   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6695     Root = Builder.DAG.getEntryNode();
6696     ConstantMemory = true;
6697   } else {
6698     // Do not serialize non-volatile loads against each other.
6699     Root = Builder.DAG.getRoot();
6700   }
6701 
6702   SDValue Ptr = Builder.getValue(PtrVal);
6703   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6704                                         Ptr, MachinePointerInfo(PtrVal),
6705                                         /* Alignment = */ 1);
6706 
6707   if (!ConstantMemory)
6708     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6709   return LoadVal;
6710 }
6711 
6712 /// Record the value for an instruction that produces an integer result,
6713 /// converting the type where necessary.
6714 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6715                                                   SDValue Value,
6716                                                   bool IsSigned) {
6717   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6718                                                     I.getType(), true);
6719   if (IsSigned)
6720     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6721   else
6722     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6723   setValue(&I, Value);
6724 }
6725 
6726 /// See if we can lower a memcmp call into an optimized form. If so, return
6727 /// true and lower it. Otherwise return false, and it will be lowered like a
6728 /// normal call.
6729 /// The caller already checked that \p I calls the appropriate LibFunc with a
6730 /// correct prototype.
6731 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6732   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6733   const Value *Size = I.getArgOperand(2);
6734   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6735   if (CSize && CSize->getZExtValue() == 0) {
6736     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6737                                                           I.getType(), true);
6738     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6739     return true;
6740   }
6741 
6742   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6743   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6744       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6745       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6746   if (Res.first.getNode()) {
6747     processIntegerCallValue(I, Res.first, true);
6748     PendingLoads.push_back(Res.second);
6749     return true;
6750   }
6751 
6752   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6753   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6754   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6755     return false;
6756 
6757   // If the target has a fast compare for the given size, it will return a
6758   // preferred load type for that size. Require that the load VT is legal and
6759   // that the target supports unaligned loads of that type. Otherwise, return
6760   // INVALID.
6761   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6762     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6763     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6764     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6765       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6766       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6767       // TODO: Check alignment of src and dest ptrs.
6768       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6769       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6770       if (!TLI.isTypeLegal(LVT) ||
6771           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6772           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6773         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6774     }
6775 
6776     return LVT;
6777   };
6778 
6779   // This turns into unaligned loads. We only do this if the target natively
6780   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6781   // we'll only produce a small number of byte loads.
6782   MVT LoadVT;
6783   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6784   switch (NumBitsToCompare) {
6785   default:
6786     return false;
6787   case 16:
6788     LoadVT = MVT::i16;
6789     break;
6790   case 32:
6791     LoadVT = MVT::i32;
6792     break;
6793   case 64:
6794   case 128:
6795   case 256:
6796     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6797     break;
6798   }
6799 
6800   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6801     return false;
6802 
6803   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6804   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6805 
6806   // Bitcast to a wide integer type if the loads are vectors.
6807   if (LoadVT.isVector()) {
6808     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6809     LoadL = DAG.getBitcast(CmpVT, LoadL);
6810     LoadR = DAG.getBitcast(CmpVT, LoadR);
6811   }
6812 
6813   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6814   processIntegerCallValue(I, Cmp, false);
6815   return true;
6816 }
6817 
6818 /// See if we can lower a memchr call into an optimized form. If so, return
6819 /// true and lower it. Otherwise return false, and it will be lowered like a
6820 /// normal call.
6821 /// The caller already checked that \p I calls the appropriate LibFunc with a
6822 /// correct prototype.
6823 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6824   const Value *Src = I.getArgOperand(0);
6825   const Value *Char = I.getArgOperand(1);
6826   const Value *Length = I.getArgOperand(2);
6827 
6828   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6829   std::pair<SDValue, SDValue> Res =
6830     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6831                                 getValue(Src), getValue(Char), getValue(Length),
6832                                 MachinePointerInfo(Src));
6833   if (Res.first.getNode()) {
6834     setValue(&I, Res.first);
6835     PendingLoads.push_back(Res.second);
6836     return true;
6837   }
6838 
6839   return false;
6840 }
6841 
6842 /// See if we can lower a mempcpy call into an optimized form. If so, return
6843 /// true and lower it. Otherwise return false, and it will be lowered like a
6844 /// normal call.
6845 /// The caller already checked that \p I calls the appropriate LibFunc with a
6846 /// correct prototype.
6847 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6848   SDValue Dst = getValue(I.getArgOperand(0));
6849   SDValue Src = getValue(I.getArgOperand(1));
6850   SDValue Size = getValue(I.getArgOperand(2));
6851 
6852   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6853   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6854   unsigned Align = std::min(DstAlign, SrcAlign);
6855   if (Align == 0) // Alignment of one or both could not be inferred.
6856     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6857 
6858   bool isVol = false;
6859   SDLoc sdl = getCurSDLoc();
6860 
6861   // In the mempcpy context we need to pass in a false value for isTailCall
6862   // because the return pointer needs to be adjusted by the size of
6863   // the copied memory.
6864   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6865                              false, /*isTailCall=*/false,
6866                              MachinePointerInfo(I.getArgOperand(0)),
6867                              MachinePointerInfo(I.getArgOperand(1)));
6868   assert(MC.getNode() != nullptr &&
6869          "** memcpy should not be lowered as TailCall in mempcpy context **");
6870   DAG.setRoot(MC);
6871 
6872   // Check if Size needs to be truncated or extended.
6873   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6874 
6875   // Adjust return pointer to point just past the last dst byte.
6876   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6877                                     Dst, Size);
6878   setValue(&I, DstPlusSize);
6879   return true;
6880 }
6881 
6882 /// See if we can lower a strcpy call into an optimized form.  If so, return
6883 /// true and lower it, otherwise return false and it will be lowered like a
6884 /// normal call.
6885 /// The caller already checked that \p I calls the appropriate LibFunc with a
6886 /// correct prototype.
6887 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6888   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6889 
6890   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6891   std::pair<SDValue, SDValue> Res =
6892     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6893                                 getValue(Arg0), getValue(Arg1),
6894                                 MachinePointerInfo(Arg0),
6895                                 MachinePointerInfo(Arg1), isStpcpy);
6896   if (Res.first.getNode()) {
6897     setValue(&I, Res.first);
6898     DAG.setRoot(Res.second);
6899     return true;
6900   }
6901 
6902   return false;
6903 }
6904 
6905 /// See if we can lower a strcmp call into an optimized form.  If so, return
6906 /// true and lower it, otherwise return false and it will be lowered like a
6907 /// normal call.
6908 /// The caller already checked that \p I calls the appropriate LibFunc with a
6909 /// correct prototype.
6910 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6911   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6912 
6913   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6914   std::pair<SDValue, SDValue> Res =
6915     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6916                                 getValue(Arg0), getValue(Arg1),
6917                                 MachinePointerInfo(Arg0),
6918                                 MachinePointerInfo(Arg1));
6919   if (Res.first.getNode()) {
6920     processIntegerCallValue(I, Res.first, true);
6921     PendingLoads.push_back(Res.second);
6922     return true;
6923   }
6924 
6925   return false;
6926 }
6927 
6928 /// See if we can lower a strlen call into an optimized form.  If so, return
6929 /// true and lower it, otherwise return false and it will be lowered like a
6930 /// normal call.
6931 /// The caller already checked that \p I calls the appropriate LibFunc with a
6932 /// correct prototype.
6933 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6934   const Value *Arg0 = I.getArgOperand(0);
6935 
6936   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6937   std::pair<SDValue, SDValue> Res =
6938     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6939                                 getValue(Arg0), MachinePointerInfo(Arg0));
6940   if (Res.first.getNode()) {
6941     processIntegerCallValue(I, Res.first, false);
6942     PendingLoads.push_back(Res.second);
6943     return true;
6944   }
6945 
6946   return false;
6947 }
6948 
6949 /// See if we can lower a strnlen call into an optimized form.  If so, return
6950 /// true and lower it, otherwise return false and it will be lowered like a
6951 /// normal call.
6952 /// The caller already checked that \p I calls the appropriate LibFunc with a
6953 /// correct prototype.
6954 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6955   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6956 
6957   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6958   std::pair<SDValue, SDValue> Res =
6959     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6960                                  getValue(Arg0), getValue(Arg1),
6961                                  MachinePointerInfo(Arg0));
6962   if (Res.first.getNode()) {
6963     processIntegerCallValue(I, Res.first, false);
6964     PendingLoads.push_back(Res.second);
6965     return true;
6966   }
6967 
6968   return false;
6969 }
6970 
6971 /// See if we can lower a unary floating-point operation into an SDNode with
6972 /// the specified Opcode.  If so, return true and lower it, otherwise return
6973 /// false and it will be lowered like a normal call.
6974 /// The caller already checked that \p I calls the appropriate LibFunc with a
6975 /// correct prototype.
6976 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6977                                               unsigned Opcode) {
6978   // We already checked this call's prototype; verify it doesn't modify errno.
6979   if (!I.onlyReadsMemory())
6980     return false;
6981 
6982   SDValue Tmp = getValue(I.getArgOperand(0));
6983   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6984   return true;
6985 }
6986 
6987 /// See if we can lower a binary floating-point operation into an SDNode with
6988 /// the specified Opcode. If so, return true and lower it. Otherwise return
6989 /// false, and it will be lowered like a normal call.
6990 /// The caller already checked that \p I calls the appropriate LibFunc with a
6991 /// correct prototype.
6992 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6993                                                unsigned Opcode) {
6994   // We already checked this call's prototype; verify it doesn't modify errno.
6995   if (!I.onlyReadsMemory())
6996     return false;
6997 
6998   SDValue Tmp0 = getValue(I.getArgOperand(0));
6999   SDValue Tmp1 = getValue(I.getArgOperand(1));
7000   EVT VT = Tmp0.getValueType();
7001   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7002   return true;
7003 }
7004 
7005 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7006   // Handle inline assembly differently.
7007   if (isa<InlineAsm>(I.getCalledValue())) {
7008     visitInlineAsm(&I);
7009     return;
7010   }
7011 
7012   const char *RenameFn = nullptr;
7013   if (Function *F = I.getCalledFunction()) {
7014     if (F->isDeclaration()) {
7015       // Is this an LLVM intrinsic or a target-specific intrinsic?
7016       unsigned IID = F->getIntrinsicID();
7017       if (!IID)
7018         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7019           IID = II->getIntrinsicID(F);
7020 
7021       if (IID) {
7022         RenameFn = visitIntrinsicCall(I, IID);
7023         if (!RenameFn)
7024           return;
7025       }
7026     }
7027 
7028     // Check for well-known libc/libm calls.  If the function is internal, it
7029     // can't be a library call.  Don't do the check if marked as nobuiltin for
7030     // some reason or the call site requires strict floating point semantics.
7031     LibFunc Func;
7032     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7033         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7034         LibInfo->hasOptimizedCodeGen(Func)) {
7035       switch (Func) {
7036       default: break;
7037       case LibFunc_copysign:
7038       case LibFunc_copysignf:
7039       case LibFunc_copysignl:
7040         // We already checked this call's prototype; verify it doesn't modify
7041         // errno.
7042         if (I.onlyReadsMemory()) {
7043           SDValue LHS = getValue(I.getArgOperand(0));
7044           SDValue RHS = getValue(I.getArgOperand(1));
7045           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7046                                    LHS.getValueType(), LHS, RHS));
7047           return;
7048         }
7049         break;
7050       case LibFunc_fabs:
7051       case LibFunc_fabsf:
7052       case LibFunc_fabsl:
7053         if (visitUnaryFloatCall(I, ISD::FABS))
7054           return;
7055         break;
7056       case LibFunc_fmin:
7057       case LibFunc_fminf:
7058       case LibFunc_fminl:
7059         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7060           return;
7061         break;
7062       case LibFunc_fmax:
7063       case LibFunc_fmaxf:
7064       case LibFunc_fmaxl:
7065         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7066           return;
7067         break;
7068       case LibFunc_sin:
7069       case LibFunc_sinf:
7070       case LibFunc_sinl:
7071         if (visitUnaryFloatCall(I, ISD::FSIN))
7072           return;
7073         break;
7074       case LibFunc_cos:
7075       case LibFunc_cosf:
7076       case LibFunc_cosl:
7077         if (visitUnaryFloatCall(I, ISD::FCOS))
7078           return;
7079         break;
7080       case LibFunc_sqrt:
7081       case LibFunc_sqrtf:
7082       case LibFunc_sqrtl:
7083       case LibFunc_sqrt_finite:
7084       case LibFunc_sqrtf_finite:
7085       case LibFunc_sqrtl_finite:
7086         if (visitUnaryFloatCall(I, ISD::FSQRT))
7087           return;
7088         break;
7089       case LibFunc_floor:
7090       case LibFunc_floorf:
7091       case LibFunc_floorl:
7092         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7093           return;
7094         break;
7095       case LibFunc_nearbyint:
7096       case LibFunc_nearbyintf:
7097       case LibFunc_nearbyintl:
7098         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7099           return;
7100         break;
7101       case LibFunc_ceil:
7102       case LibFunc_ceilf:
7103       case LibFunc_ceill:
7104         if (visitUnaryFloatCall(I, ISD::FCEIL))
7105           return;
7106         break;
7107       case LibFunc_rint:
7108       case LibFunc_rintf:
7109       case LibFunc_rintl:
7110         if (visitUnaryFloatCall(I, ISD::FRINT))
7111           return;
7112         break;
7113       case LibFunc_round:
7114       case LibFunc_roundf:
7115       case LibFunc_roundl:
7116         if (visitUnaryFloatCall(I, ISD::FROUND))
7117           return;
7118         break;
7119       case LibFunc_trunc:
7120       case LibFunc_truncf:
7121       case LibFunc_truncl:
7122         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7123           return;
7124         break;
7125       case LibFunc_log2:
7126       case LibFunc_log2f:
7127       case LibFunc_log2l:
7128         if (visitUnaryFloatCall(I, ISD::FLOG2))
7129           return;
7130         break;
7131       case LibFunc_exp2:
7132       case LibFunc_exp2f:
7133       case LibFunc_exp2l:
7134         if (visitUnaryFloatCall(I, ISD::FEXP2))
7135           return;
7136         break;
7137       case LibFunc_memcmp:
7138         if (visitMemCmpCall(I))
7139           return;
7140         break;
7141       case LibFunc_mempcpy:
7142         if (visitMemPCpyCall(I))
7143           return;
7144         break;
7145       case LibFunc_memchr:
7146         if (visitMemChrCall(I))
7147           return;
7148         break;
7149       case LibFunc_strcpy:
7150         if (visitStrCpyCall(I, false))
7151           return;
7152         break;
7153       case LibFunc_stpcpy:
7154         if (visitStrCpyCall(I, true))
7155           return;
7156         break;
7157       case LibFunc_strcmp:
7158         if (visitStrCmpCall(I))
7159           return;
7160         break;
7161       case LibFunc_strlen:
7162         if (visitStrLenCall(I))
7163           return;
7164         break;
7165       case LibFunc_strnlen:
7166         if (visitStrNLenCall(I))
7167           return;
7168         break;
7169       }
7170     }
7171   }
7172 
7173   SDValue Callee;
7174   if (!RenameFn)
7175     Callee = getValue(I.getCalledValue());
7176   else
7177     Callee = DAG.getExternalSymbol(
7178         RenameFn,
7179         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7180 
7181   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7182   // have to do anything here to lower funclet bundles.
7183   assert(!I.hasOperandBundlesOtherThan(
7184              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7185          "Cannot lower calls with arbitrary operand bundles!");
7186 
7187   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7188     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7189   else
7190     // Check if we can potentially perform a tail call. More detailed checking
7191     // is be done within LowerCallTo, after more information about the call is
7192     // known.
7193     LowerCallTo(&I, Callee, I.isTailCall());
7194 }
7195 
7196 namespace {
7197 
7198 /// AsmOperandInfo - This contains information for each constraint that we are
7199 /// lowering.
7200 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7201 public:
7202   /// CallOperand - If this is the result output operand or a clobber
7203   /// this is null, otherwise it is the incoming operand to the CallInst.
7204   /// This gets modified as the asm is processed.
7205   SDValue CallOperand;
7206 
7207   /// AssignedRegs - If this is a register or register class operand, this
7208   /// contains the set of register corresponding to the operand.
7209   RegsForValue AssignedRegs;
7210 
7211   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7212     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7213   }
7214 
7215   /// Whether or not this operand accesses memory
7216   bool hasMemory(const TargetLowering &TLI) const {
7217     // Indirect operand accesses access memory.
7218     if (isIndirect)
7219       return true;
7220 
7221     for (const auto &Code : Codes)
7222       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7223         return true;
7224 
7225     return false;
7226   }
7227 
7228   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7229   /// corresponds to.  If there is no Value* for this operand, it returns
7230   /// MVT::Other.
7231   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7232                            const DataLayout &DL) const {
7233     if (!CallOperandVal) return MVT::Other;
7234 
7235     if (isa<BasicBlock>(CallOperandVal))
7236       return TLI.getPointerTy(DL);
7237 
7238     llvm::Type *OpTy = CallOperandVal->getType();
7239 
7240     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7241     // If this is an indirect operand, the operand is a pointer to the
7242     // accessed type.
7243     if (isIndirect) {
7244       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7245       if (!PtrTy)
7246         report_fatal_error("Indirect operand for inline asm not a pointer!");
7247       OpTy = PtrTy->getElementType();
7248     }
7249 
7250     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7251     if (StructType *STy = dyn_cast<StructType>(OpTy))
7252       if (STy->getNumElements() == 1)
7253         OpTy = STy->getElementType(0);
7254 
7255     // If OpTy is not a single value, it may be a struct/union that we
7256     // can tile with integers.
7257     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7258       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7259       switch (BitSize) {
7260       default: break;
7261       case 1:
7262       case 8:
7263       case 16:
7264       case 32:
7265       case 64:
7266       case 128:
7267         OpTy = IntegerType::get(Context, BitSize);
7268         break;
7269       }
7270     }
7271 
7272     return TLI.getValueType(DL, OpTy, true);
7273   }
7274 };
7275 
7276 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7277 
7278 } // end anonymous namespace
7279 
7280 /// Make sure that the output operand \p OpInfo and its corresponding input
7281 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7282 /// out).
7283 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7284                                SDISelAsmOperandInfo &MatchingOpInfo,
7285                                SelectionDAG &DAG) {
7286   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7287     return;
7288 
7289   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7290   const auto &TLI = DAG.getTargetLoweringInfo();
7291 
7292   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7293       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7294                                        OpInfo.ConstraintVT);
7295   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7296       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7297                                        MatchingOpInfo.ConstraintVT);
7298   if ((OpInfo.ConstraintVT.isInteger() !=
7299        MatchingOpInfo.ConstraintVT.isInteger()) ||
7300       (MatchRC.second != InputRC.second)) {
7301     // FIXME: error out in a more elegant fashion
7302     report_fatal_error("Unsupported asm: input constraint"
7303                        " with a matching output constraint of"
7304                        " incompatible type!");
7305   }
7306   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7307 }
7308 
7309 /// Get a direct memory input to behave well as an indirect operand.
7310 /// This may introduce stores, hence the need for a \p Chain.
7311 /// \return The (possibly updated) chain.
7312 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7313                                         SDISelAsmOperandInfo &OpInfo,
7314                                         SelectionDAG &DAG) {
7315   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7316 
7317   // If we don't have an indirect input, put it in the constpool if we can,
7318   // otherwise spill it to a stack slot.
7319   // TODO: This isn't quite right. We need to handle these according to
7320   // the addressing mode that the constraint wants. Also, this may take
7321   // an additional register for the computation and we don't want that
7322   // either.
7323 
7324   // If the operand is a float, integer, or vector constant, spill to a
7325   // constant pool entry to get its address.
7326   const Value *OpVal = OpInfo.CallOperandVal;
7327   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7328       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7329     OpInfo.CallOperand = DAG.getConstantPool(
7330         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7331     return Chain;
7332   }
7333 
7334   // Otherwise, create a stack slot and emit a store to it before the asm.
7335   Type *Ty = OpVal->getType();
7336   auto &DL = DAG.getDataLayout();
7337   uint64_t TySize = DL.getTypeAllocSize(Ty);
7338   unsigned Align = DL.getPrefTypeAlignment(Ty);
7339   MachineFunction &MF = DAG.getMachineFunction();
7340   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7341   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7342   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7343                        MachinePointerInfo::getFixedStack(MF, SSFI));
7344   OpInfo.CallOperand = StackSlot;
7345 
7346   return Chain;
7347 }
7348 
7349 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7350 /// specified operand.  We prefer to assign virtual registers, to allow the
7351 /// register allocator to handle the assignment process.  However, if the asm
7352 /// uses features that we can't model on machineinstrs, we have SDISel do the
7353 /// allocation.  This produces generally horrible, but correct, code.
7354 ///
7355 ///   OpInfo describes the operand
7356 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7357 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7358                                  SDISelAsmOperandInfo &OpInfo,
7359                                  SDISelAsmOperandInfo &RefOpInfo) {
7360   LLVMContext &Context = *DAG.getContext();
7361   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7362 
7363   MachineFunction &MF = DAG.getMachineFunction();
7364   SmallVector<unsigned, 4> Regs;
7365   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7366 
7367   // No work to do for memory operations.
7368   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7369     return;
7370 
7371   // If this is a constraint for a single physreg, or a constraint for a
7372   // register class, find it.
7373   unsigned AssignedReg;
7374   const TargetRegisterClass *RC;
7375   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7376       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7377   // RC is unset only on failure. Return immediately.
7378   if (!RC)
7379     return;
7380 
7381   // Get the actual register value type.  This is important, because the user
7382   // may have asked for (e.g.) the AX register in i32 type.  We need to
7383   // remember that AX is actually i16 to get the right extension.
7384   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7385 
7386   if (OpInfo.ConstraintVT != MVT::Other) {
7387     // If this is an FP operand in an integer register (or visa versa), or more
7388     // generally if the operand value disagrees with the register class we plan
7389     // to stick it in, fix the operand type.
7390     //
7391     // If this is an input value, the bitcast to the new type is done now.
7392     // Bitcast for output value is done at the end of visitInlineAsm().
7393     if ((OpInfo.Type == InlineAsm::isOutput ||
7394          OpInfo.Type == InlineAsm::isInput) &&
7395         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7396       // Try to convert to the first EVT that the reg class contains.  If the
7397       // types are identical size, use a bitcast to convert (e.g. two differing
7398       // vector types).  Note: output bitcast is done at the end of
7399       // visitInlineAsm().
7400       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7401         // Exclude indirect inputs while they are unsupported because the code
7402         // to perform the load is missing and thus OpInfo.CallOperand still
7403         // refers to the input address rather than the pointed-to value.
7404         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7405           OpInfo.CallOperand =
7406               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7407         OpInfo.ConstraintVT = RegVT;
7408         // If the operand is an FP value and we want it in integer registers,
7409         // use the corresponding integer type. This turns an f64 value into
7410         // i64, which can be passed with two i32 values on a 32-bit machine.
7411       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7412         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7413         if (OpInfo.Type == InlineAsm::isInput)
7414           OpInfo.CallOperand =
7415               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7416         OpInfo.ConstraintVT = VT;
7417       }
7418     }
7419   }
7420 
7421   // No need to allocate a matching input constraint since the constraint it's
7422   // matching to has already been allocated.
7423   if (OpInfo.isMatchingInputConstraint())
7424     return;
7425 
7426   EVT ValueVT = OpInfo.ConstraintVT;
7427   if (OpInfo.ConstraintVT == MVT::Other)
7428     ValueVT = RegVT;
7429 
7430   // Initialize NumRegs.
7431   unsigned NumRegs = 1;
7432   if (OpInfo.ConstraintVT != MVT::Other)
7433     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7434 
7435   // If this is a constraint for a specific physical register, like {r17},
7436   // assign it now.
7437 
7438   // If this associated to a specific register, initialize iterator to correct
7439   // place. If virtual, make sure we have enough registers
7440 
7441   // Initialize iterator if necessary
7442   TargetRegisterClass::iterator I = RC->begin();
7443   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7444 
7445   // Do not check for single registers.
7446   if (AssignedReg) {
7447       for (; *I != AssignedReg; ++I)
7448         assert(I != RC->end() && "AssignedReg should be member of RC");
7449   }
7450 
7451   for (; NumRegs; --NumRegs, ++I) {
7452     assert(I != RC->end() && "Ran out of registers to allocate!");
7453     auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7454     Regs.push_back(R);
7455   }
7456 
7457   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7458 }
7459 
7460 static unsigned
7461 findMatchingInlineAsmOperand(unsigned OperandNo,
7462                              const std::vector<SDValue> &AsmNodeOperands) {
7463   // Scan until we find the definition we already emitted of this operand.
7464   unsigned CurOp = InlineAsm::Op_FirstOperand;
7465   for (; OperandNo; --OperandNo) {
7466     // Advance to the next operand.
7467     unsigned OpFlag =
7468         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7469     assert((InlineAsm::isRegDefKind(OpFlag) ||
7470             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7471             InlineAsm::isMemKind(OpFlag)) &&
7472            "Skipped past definitions?");
7473     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7474   }
7475   return CurOp;
7476 }
7477 
7478 namespace {
7479 
7480 class ExtraFlags {
7481   unsigned Flags = 0;
7482 
7483 public:
7484   explicit ExtraFlags(ImmutableCallSite CS) {
7485     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7486     if (IA->hasSideEffects())
7487       Flags |= InlineAsm::Extra_HasSideEffects;
7488     if (IA->isAlignStack())
7489       Flags |= InlineAsm::Extra_IsAlignStack;
7490     if (CS.isConvergent())
7491       Flags |= InlineAsm::Extra_IsConvergent;
7492     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7493   }
7494 
7495   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7496     // Ideally, we would only check against memory constraints.  However, the
7497     // meaning of an Other constraint can be target-specific and we can't easily
7498     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7499     // for Other constraints as well.
7500     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7501         OpInfo.ConstraintType == TargetLowering::C_Other) {
7502       if (OpInfo.Type == InlineAsm::isInput)
7503         Flags |= InlineAsm::Extra_MayLoad;
7504       else if (OpInfo.Type == InlineAsm::isOutput)
7505         Flags |= InlineAsm::Extra_MayStore;
7506       else if (OpInfo.Type == InlineAsm::isClobber)
7507         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7508     }
7509   }
7510 
7511   unsigned get() const { return Flags; }
7512 };
7513 
7514 } // end anonymous namespace
7515 
7516 /// visitInlineAsm - Handle a call to an InlineAsm object.
7517 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7518   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7519 
7520   /// ConstraintOperands - Information about all of the constraints.
7521   SDISelAsmOperandInfoVector ConstraintOperands;
7522 
7523   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7524   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7525       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7526 
7527   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7528   // AsmDialect, MayLoad, MayStore).
7529   bool HasSideEffect = IA->hasSideEffects();
7530   ExtraFlags ExtraInfo(CS);
7531 
7532   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7533   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7534   for (auto &T : TargetConstraints) {
7535     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7536     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7537 
7538     // Compute the value type for each operand.
7539     if (OpInfo.Type == InlineAsm::isInput ||
7540         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7541       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7542 
7543       // Process the call argument. BasicBlocks are labels, currently appearing
7544       // only in asm's.
7545       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7546         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7547       } else {
7548         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7549       }
7550 
7551       OpInfo.ConstraintVT =
7552           OpInfo
7553               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7554               .getSimpleVT();
7555     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7556       // The return value of the call is this value.  As such, there is no
7557       // corresponding argument.
7558       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7559       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7560         OpInfo.ConstraintVT = TLI.getSimpleValueType(
7561             DAG.getDataLayout(), STy->getElementType(ResNo));
7562       } else {
7563         assert(ResNo == 0 && "Asm only has one result!");
7564         OpInfo.ConstraintVT =
7565             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7566       }
7567       ++ResNo;
7568     } else {
7569       OpInfo.ConstraintVT = MVT::Other;
7570     }
7571 
7572     if (!HasSideEffect)
7573       HasSideEffect = OpInfo.hasMemory(TLI);
7574 
7575     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7576     // FIXME: Could we compute this on OpInfo rather than T?
7577 
7578     // Compute the constraint code and ConstraintType to use.
7579     TLI.ComputeConstraintToUse(T, SDValue());
7580 
7581     ExtraInfo.update(T);
7582   }
7583 
7584   // We won't need to flush pending loads if this asm doesn't touch
7585   // memory and is nonvolatile.
7586   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
7587 
7588   // Second pass over the constraints: compute which constraint option to use.
7589   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7590     // If this is an output operand with a matching input operand, look up the
7591     // matching input. If their types mismatch, e.g. one is an integer, the
7592     // other is floating point, or their sizes are different, flag it as an
7593     // error.
7594     if (OpInfo.hasMatchingInput()) {
7595       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7596       patchMatchingInput(OpInfo, Input, DAG);
7597     }
7598 
7599     // Compute the constraint code and ConstraintType to use.
7600     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7601 
7602     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7603         OpInfo.Type == InlineAsm::isClobber)
7604       continue;
7605 
7606     // If this is a memory input, and if the operand is not indirect, do what we
7607     // need to provide an address for the memory input.
7608     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7609         !OpInfo.isIndirect) {
7610       assert((OpInfo.isMultipleAlternative ||
7611               (OpInfo.Type == InlineAsm::isInput)) &&
7612              "Can only indirectify direct input operands!");
7613 
7614       // Memory operands really want the address of the value.
7615       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7616 
7617       // There is no longer a Value* corresponding to this operand.
7618       OpInfo.CallOperandVal = nullptr;
7619 
7620       // It is now an indirect operand.
7621       OpInfo.isIndirect = true;
7622     }
7623 
7624   }
7625 
7626   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7627   std::vector<SDValue> AsmNodeOperands;
7628   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7629   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7630       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7631 
7632   // If we have a !srcloc metadata node associated with it, we want to attach
7633   // this to the ultimately generated inline asm machineinstr.  To do this, we
7634   // pass in the third operand as this (potentially null) inline asm MDNode.
7635   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7636   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7637 
7638   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7639   // bits as operand 3.
7640   AsmNodeOperands.push_back(DAG.getTargetConstant(
7641       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7642 
7643   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
7644   // this, assign virtual and physical registers for inputs and otput.
7645   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7646     // Assign Registers.
7647     SDISelAsmOperandInfo &RefOpInfo =
7648         OpInfo.isMatchingInputConstraint()
7649             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7650             : OpInfo;
7651     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
7652 
7653     switch (OpInfo.Type) {
7654     case InlineAsm::isOutput:
7655       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7656           OpInfo.ConstraintType != TargetLowering::C_Register) {
7657         // Memory output, or 'other' output (e.g. 'X' constraint).
7658         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7659 
7660         unsigned ConstraintID =
7661             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7662         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7663                "Failed to convert memory constraint code to constraint id.");
7664 
7665         // Add information to the INLINEASM node to know about this output.
7666         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7667         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7668         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7669                                                         MVT::i32));
7670         AsmNodeOperands.push_back(OpInfo.CallOperand);
7671         break;
7672       } else if (OpInfo.ConstraintType == TargetLowering::C_Register ||
7673                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
7674         // Otherwise, this is a register or register class output.
7675 
7676         // Copy the output from the appropriate register.  Find a register that
7677         // we can use.
7678         if (OpInfo.AssignedRegs.Regs.empty()) {
7679           emitInlineAsmError(
7680               CS, "couldn't allocate output register for constraint '" +
7681                       Twine(OpInfo.ConstraintCode) + "'");
7682           return;
7683         }
7684 
7685         // Add information to the INLINEASM node to know that this register is
7686         // set.
7687         OpInfo.AssignedRegs.AddInlineAsmOperands(
7688             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
7689                                   : InlineAsm::Kind_RegDef,
7690             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7691       }
7692       break;
7693 
7694     case InlineAsm::isInput: {
7695       SDValue InOperandVal = OpInfo.CallOperand;
7696 
7697       if (OpInfo.isMatchingInputConstraint()) {
7698         // If this is required to match an output register we have already set,
7699         // just use its register.
7700         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7701                                                   AsmNodeOperands);
7702         unsigned OpFlag =
7703           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7704         if (InlineAsm::isRegDefKind(OpFlag) ||
7705             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7706           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7707           if (OpInfo.isIndirect) {
7708             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7709             emitInlineAsmError(CS, "inline asm not supported yet:"
7710                                    " don't know how to handle tied "
7711                                    "indirect register inputs");
7712             return;
7713           }
7714 
7715           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7716           SmallVector<unsigned, 4> Regs;
7717 
7718           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
7719             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
7720             MachineRegisterInfo &RegInfo =
7721                 DAG.getMachineFunction().getRegInfo();
7722             for (unsigned i = 0; i != NumRegs; ++i)
7723               Regs.push_back(RegInfo.createVirtualRegister(RC));
7724           } else {
7725             emitInlineAsmError(CS, "inline asm error: This value type register "
7726                                    "class is not natively supported!");
7727             return;
7728           }
7729 
7730           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7731 
7732           SDLoc dl = getCurSDLoc();
7733           // Use the produced MatchedRegs object to
7734           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7735                                     CS.getInstruction());
7736           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7737                                            true, OpInfo.getMatchedOperand(), dl,
7738                                            DAG, AsmNodeOperands);
7739           break;
7740         }
7741 
7742         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7743         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7744                "Unexpected number of operands");
7745         // Add information to the INLINEASM node to know about this input.
7746         // See InlineAsm.h isUseOperandTiedToDef.
7747         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7748         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7749                                                     OpInfo.getMatchedOperand());
7750         AsmNodeOperands.push_back(DAG.getTargetConstant(
7751             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7752         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7753         break;
7754       }
7755 
7756       // Treat indirect 'X' constraint as memory.
7757       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7758           OpInfo.isIndirect)
7759         OpInfo.ConstraintType = TargetLowering::C_Memory;
7760 
7761       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7762         std::vector<SDValue> Ops;
7763         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7764                                           Ops, DAG);
7765         if (Ops.empty()) {
7766           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7767                                      Twine(OpInfo.ConstraintCode) + "'");
7768           return;
7769         }
7770 
7771         // Add information to the INLINEASM node to know about this input.
7772         unsigned ResOpType =
7773           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7774         AsmNodeOperands.push_back(DAG.getTargetConstant(
7775             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7776         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7777         break;
7778       }
7779 
7780       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7781         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7782         assert(InOperandVal.getValueType() ==
7783                    TLI.getPointerTy(DAG.getDataLayout()) &&
7784                "Memory operands expect pointer values");
7785 
7786         unsigned ConstraintID =
7787             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7788         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7789                "Failed to convert memory constraint code to constraint id.");
7790 
7791         // Add information to the INLINEASM node to know about this input.
7792         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7793         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7794         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7795                                                         getCurSDLoc(),
7796                                                         MVT::i32));
7797         AsmNodeOperands.push_back(InOperandVal);
7798         break;
7799       }
7800 
7801       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7802               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7803              "Unknown constraint type!");
7804 
7805       // TODO: Support this.
7806       if (OpInfo.isIndirect) {
7807         emitInlineAsmError(
7808             CS, "Don't know how to handle indirect register inputs yet "
7809                 "for constraint '" +
7810                     Twine(OpInfo.ConstraintCode) + "'");
7811         return;
7812       }
7813 
7814       // Copy the input into the appropriate registers.
7815       if (OpInfo.AssignedRegs.Regs.empty()) {
7816         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7817                                    Twine(OpInfo.ConstraintCode) + "'");
7818         return;
7819       }
7820 
7821       SDLoc dl = getCurSDLoc();
7822 
7823       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7824                                         Chain, &Flag, CS.getInstruction());
7825 
7826       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7827                                                dl, DAG, AsmNodeOperands);
7828       break;
7829     }
7830     case InlineAsm::isClobber:
7831       // Add the clobbered value to the operand list, so that the register
7832       // allocator is aware that the physreg got clobbered.
7833       if (!OpInfo.AssignedRegs.Regs.empty())
7834         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7835                                                  false, 0, getCurSDLoc(), DAG,
7836                                                  AsmNodeOperands);
7837       break;
7838     }
7839   }
7840 
7841   // Finish up input operands.  Set the input chain and add the flag last.
7842   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7843   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7844 
7845   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7846                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7847   Flag = Chain.getValue(1);
7848 
7849   // Do additional work to generate outputs.
7850 
7851   SmallVector<EVT, 1> ResultVTs;
7852   SmallVector<SDValue, 1> ResultValues;
7853   SmallVector<SDValue, 8> OutChains;
7854 
7855   llvm::Type *CSResultType = CS.getType();
7856   unsigned NumReturns = 0;
7857   ArrayRef<Type *> ResultTypes;
7858   if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) {
7859     NumReturns = StructResult->getNumElements();
7860     ResultTypes = StructResult->elements();
7861   } else if (!CSResultType->isVoidTy()) {
7862     NumReturns = 1;
7863     ResultTypes = makeArrayRef(CSResultType);
7864   }
7865 
7866   auto CurResultType = ResultTypes.begin();
7867   auto handleRegAssign = [&](SDValue V) {
7868     assert(CurResultType != ResultTypes.end() && "Unexpected value");
7869     assert((*CurResultType)->isSized() && "Unexpected unsized type");
7870     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
7871     ++CurResultType;
7872     // If the type of the inline asm call site return value is different but has
7873     // same size as the type of the asm output bitcast it.  One example of this
7874     // is for vectors with different width / number of elements.  This can
7875     // happen for register classes that can contain multiple different value
7876     // types.  The preg or vreg allocated may not have the same VT as was
7877     // expected.
7878     //
7879     // This can also happen for a return value that disagrees with the register
7880     // class it is put in, eg. a double in a general-purpose register on a
7881     // 32-bit machine.
7882     if (ResultVT != V.getValueType() &&
7883         ResultVT.getSizeInBits() == V.getValueSizeInBits())
7884       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
7885     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
7886              V.getValueType().isInteger()) {
7887       // If a result value was tied to an input value, the computed result
7888       // may have a wider width than the expected result.  Extract the
7889       // relevant portion.
7890       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
7891     }
7892     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
7893     ResultVTs.push_back(ResultVT);
7894     ResultValues.push_back(V);
7895   };
7896 
7897   // Deal with assembly output fixups.
7898   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7899     if (OpInfo.Type == InlineAsm::isOutput &&
7900         (OpInfo.ConstraintType == TargetLowering::C_Register ||
7901          OpInfo.ConstraintType == TargetLowering::C_RegisterClass)) {
7902       if (OpInfo.isIndirect) {
7903         // Register indirect are manifest as stores.
7904         const RegsForValue &OutRegs = OpInfo.AssignedRegs;
7905         const Value *Ptr = OpInfo.CallOperandVal;
7906         SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7907                                                  Chain, &Flag, IA);
7908         SDValue Val = DAG.getStore(Chain, getCurSDLoc(), OutVal, getValue(Ptr),
7909                                    MachinePointerInfo(Ptr));
7910         OutChains.push_back(Val);
7911       } else {
7912         // generate CopyFromRegs to associated registers.
7913         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7914         SDValue Val = OpInfo.AssignedRegs.getCopyFromRegs(
7915             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
7916         if (Val.getOpcode() == ISD::MERGE_VALUES) {
7917           for (const SDValue &V : Val->op_values())
7918             handleRegAssign(V);
7919         } else
7920           handleRegAssign(Val);
7921       }
7922     }
7923   }
7924 
7925   // Set results.
7926   if (!ResultValues.empty()) {
7927     assert(CurResultType == ResultTypes.end() &&
7928            "Mismatch in number of ResultTypes");
7929     assert(ResultValues.size() == NumReturns &&
7930            "Mismatch in number of output operands in asm result");
7931 
7932     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
7933                             DAG.getVTList(ResultVTs), ResultValues);
7934     setValue(CS.getInstruction(), V);
7935   }
7936 
7937   // Collect store chains.
7938   if (!OutChains.empty())
7939     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7940 
7941   // Only Update Root if inline assembly has a memory effect.
7942   if (ResultValues.empty() || HasSideEffect || !OutChains.empty())
7943     DAG.setRoot(Chain);
7944 }
7945 
7946 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7947                                              const Twine &Message) {
7948   LLVMContext &Ctx = *DAG.getContext();
7949   Ctx.emitError(CS.getInstruction(), Message);
7950 
7951   // Make sure we leave the DAG in a valid state
7952   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7953   SmallVector<EVT, 1> ValueVTs;
7954   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7955 
7956   if (ValueVTs.empty())
7957     return;
7958 
7959   SmallVector<SDValue, 1> Ops;
7960   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
7961     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
7962 
7963   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
7964 }
7965 
7966 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7967   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7968                           MVT::Other, getRoot(),
7969                           getValue(I.getArgOperand(0)),
7970                           DAG.getSrcValue(I.getArgOperand(0))));
7971 }
7972 
7973 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7974   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7975   const DataLayout &DL = DAG.getDataLayout();
7976   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7977                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7978                            DAG.getSrcValue(I.getOperand(0)),
7979                            DL.getABITypeAlignment(I.getType()));
7980   setValue(&I, V);
7981   DAG.setRoot(V.getValue(1));
7982 }
7983 
7984 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7985   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7986                           MVT::Other, getRoot(),
7987                           getValue(I.getArgOperand(0)),
7988                           DAG.getSrcValue(I.getArgOperand(0))));
7989 }
7990 
7991 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7992   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7993                           MVT::Other, getRoot(),
7994                           getValue(I.getArgOperand(0)),
7995                           getValue(I.getArgOperand(1)),
7996                           DAG.getSrcValue(I.getArgOperand(0)),
7997                           DAG.getSrcValue(I.getArgOperand(1))));
7998 }
7999 
8000 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8001                                                     const Instruction &I,
8002                                                     SDValue Op) {
8003   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8004   if (!Range)
8005     return Op;
8006 
8007   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8008   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
8009     return Op;
8010 
8011   APInt Lo = CR.getUnsignedMin();
8012   if (!Lo.isMinValue())
8013     return Op;
8014 
8015   APInt Hi = CR.getUnsignedMax();
8016   unsigned Bits = std::max(Hi.getActiveBits(),
8017                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8018 
8019   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8020 
8021   SDLoc SL = getCurSDLoc();
8022 
8023   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8024                              DAG.getValueType(SmallVT));
8025   unsigned NumVals = Op.getNode()->getNumValues();
8026   if (NumVals == 1)
8027     return ZExt;
8028 
8029   SmallVector<SDValue, 4> Ops;
8030 
8031   Ops.push_back(ZExt);
8032   for (unsigned I = 1; I != NumVals; ++I)
8033     Ops.push_back(Op.getValue(I));
8034 
8035   return DAG.getMergeValues(Ops, SL);
8036 }
8037 
8038 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8039 /// the call being lowered.
8040 ///
8041 /// This is a helper for lowering intrinsics that follow a target calling
8042 /// convention or require stack pointer adjustment. Only a subset of the
8043 /// intrinsic's operands need to participate in the calling convention.
8044 void SelectionDAGBuilder::populateCallLoweringInfo(
8045     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
8046     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8047     bool IsPatchPoint) {
8048   TargetLowering::ArgListTy Args;
8049   Args.reserve(NumArgs);
8050 
8051   // Populate the argument list.
8052   // Attributes for args start at offset 1, after the return attribute.
8053   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8054        ArgI != ArgE; ++ArgI) {
8055     const Value *V = CS->getOperand(ArgI);
8056 
8057     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8058 
8059     TargetLowering::ArgListEntry Entry;
8060     Entry.Node = getValue(V);
8061     Entry.Ty = V->getType();
8062     Entry.setAttributes(&CS, ArgI);
8063     Args.push_back(Entry);
8064   }
8065 
8066   CLI.setDebugLoc(getCurSDLoc())
8067       .setChain(getRoot())
8068       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
8069       .setDiscardResult(CS->use_empty())
8070       .setIsPatchPoint(IsPatchPoint);
8071 }
8072 
8073 /// Add a stack map intrinsic call's live variable operands to a stackmap
8074 /// or patchpoint target node's operand list.
8075 ///
8076 /// Constants are converted to TargetConstants purely as an optimization to
8077 /// avoid constant materialization and register allocation.
8078 ///
8079 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8080 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8081 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8082 /// address materialization and register allocation, but may also be required
8083 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8084 /// alloca in the entry block, then the runtime may assume that the alloca's
8085 /// StackMap location can be read immediately after compilation and that the
8086 /// location is valid at any point during execution (this is similar to the
8087 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8088 /// only available in a register, then the runtime would need to trap when
8089 /// execution reaches the StackMap in order to read the alloca's location.
8090 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8091                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8092                                 SelectionDAGBuilder &Builder) {
8093   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8094     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8095     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8096       Ops.push_back(
8097         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8098       Ops.push_back(
8099         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8100     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8101       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8102       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8103           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8104     } else
8105       Ops.push_back(OpVal);
8106   }
8107 }
8108 
8109 /// Lower llvm.experimental.stackmap directly to its target opcode.
8110 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8111   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8112   //                                  [live variables...])
8113 
8114   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8115 
8116   SDValue Chain, InFlag, Callee, NullPtr;
8117   SmallVector<SDValue, 32> Ops;
8118 
8119   SDLoc DL = getCurSDLoc();
8120   Callee = getValue(CI.getCalledValue());
8121   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8122 
8123   // The stackmap intrinsic only records the live variables (the arguemnts
8124   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8125   // intrinsic, this won't be lowered to a function call. This means we don't
8126   // have to worry about calling conventions and target specific lowering code.
8127   // Instead we perform the call lowering right here.
8128   //
8129   // chain, flag = CALLSEQ_START(chain, 0, 0)
8130   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8131   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8132   //
8133   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8134   InFlag = Chain.getValue(1);
8135 
8136   // Add the <id> and <numBytes> constants.
8137   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8138   Ops.push_back(DAG.getTargetConstant(
8139                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8140   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8141   Ops.push_back(DAG.getTargetConstant(
8142                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8143                   MVT::i32));
8144 
8145   // Push live variables for the stack map.
8146   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8147 
8148   // We are not pushing any register mask info here on the operands list,
8149   // because the stackmap doesn't clobber anything.
8150 
8151   // Push the chain and the glue flag.
8152   Ops.push_back(Chain);
8153   Ops.push_back(InFlag);
8154 
8155   // Create the STACKMAP node.
8156   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8157   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8158   Chain = SDValue(SM, 0);
8159   InFlag = Chain.getValue(1);
8160 
8161   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8162 
8163   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8164 
8165   // Set the root to the target-lowered call chain.
8166   DAG.setRoot(Chain);
8167 
8168   // Inform the Frame Information that we have a stackmap in this function.
8169   FuncInfo.MF->getFrameInfo().setHasStackMap();
8170 }
8171 
8172 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8173 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8174                                           const BasicBlock *EHPadBB) {
8175   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8176   //                                                 i32 <numBytes>,
8177   //                                                 i8* <target>,
8178   //                                                 i32 <numArgs>,
8179   //                                                 [Args...],
8180   //                                                 [live variables...])
8181 
8182   CallingConv::ID CC = CS.getCallingConv();
8183   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8184   bool HasDef = !CS->getType()->isVoidTy();
8185   SDLoc dl = getCurSDLoc();
8186   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8187 
8188   // Handle immediate and symbolic callees.
8189   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8190     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8191                                    /*isTarget=*/true);
8192   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8193     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8194                                          SDLoc(SymbolicCallee),
8195                                          SymbolicCallee->getValueType(0));
8196 
8197   // Get the real number of arguments participating in the call <numArgs>
8198   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8199   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8200 
8201   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8202   // Intrinsics include all meta-operands up to but not including CC.
8203   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8204   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8205          "Not enough arguments provided to the patchpoint intrinsic");
8206 
8207   // For AnyRegCC the arguments are lowered later on manually.
8208   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8209   Type *ReturnTy =
8210     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8211 
8212   TargetLowering::CallLoweringInfo CLI(DAG);
8213   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
8214                            true);
8215   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8216 
8217   SDNode *CallEnd = Result.second.getNode();
8218   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8219     CallEnd = CallEnd->getOperand(0).getNode();
8220 
8221   /// Get a call instruction from the call sequence chain.
8222   /// Tail calls are not allowed.
8223   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8224          "Expected a callseq node.");
8225   SDNode *Call = CallEnd->getOperand(0).getNode();
8226   bool HasGlue = Call->getGluedNode();
8227 
8228   // Replace the target specific call node with the patchable intrinsic.
8229   SmallVector<SDValue, 8> Ops;
8230 
8231   // Add the <id> and <numBytes> constants.
8232   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8233   Ops.push_back(DAG.getTargetConstant(
8234                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8235   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8236   Ops.push_back(DAG.getTargetConstant(
8237                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8238                   MVT::i32));
8239 
8240   // Add the callee.
8241   Ops.push_back(Callee);
8242 
8243   // Adjust <numArgs> to account for any arguments that have been passed on the
8244   // stack instead.
8245   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8246   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8247   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8248   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8249 
8250   // Add the calling convention
8251   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8252 
8253   // Add the arguments we omitted previously. The register allocator should
8254   // place these in any free register.
8255   if (IsAnyRegCC)
8256     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8257       Ops.push_back(getValue(CS.getArgument(i)));
8258 
8259   // Push the arguments from the call instruction up to the register mask.
8260   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8261   Ops.append(Call->op_begin() + 2, e);
8262 
8263   // Push live variables for the stack map.
8264   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8265 
8266   // Push the register mask info.
8267   if (HasGlue)
8268     Ops.push_back(*(Call->op_end()-2));
8269   else
8270     Ops.push_back(*(Call->op_end()-1));
8271 
8272   // Push the chain (this is originally the first operand of the call, but
8273   // becomes now the last or second to last operand).
8274   Ops.push_back(*(Call->op_begin()));
8275 
8276   // Push the glue flag (last operand).
8277   if (HasGlue)
8278     Ops.push_back(*(Call->op_end()-1));
8279 
8280   SDVTList NodeTys;
8281   if (IsAnyRegCC && HasDef) {
8282     // Create the return types based on the intrinsic definition
8283     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8284     SmallVector<EVT, 3> ValueVTs;
8285     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8286     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8287 
8288     // There is always a chain and a glue type at the end
8289     ValueVTs.push_back(MVT::Other);
8290     ValueVTs.push_back(MVT::Glue);
8291     NodeTys = DAG.getVTList(ValueVTs);
8292   } else
8293     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8294 
8295   // Replace the target specific call node with a PATCHPOINT node.
8296   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8297                                          dl, NodeTys, Ops);
8298 
8299   // Update the NodeMap.
8300   if (HasDef) {
8301     if (IsAnyRegCC)
8302       setValue(CS.getInstruction(), SDValue(MN, 0));
8303     else
8304       setValue(CS.getInstruction(), Result.first);
8305   }
8306 
8307   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8308   // call sequence. Furthermore the location of the chain and glue can change
8309   // when the AnyReg calling convention is used and the intrinsic returns a
8310   // value.
8311   if (IsAnyRegCC && HasDef) {
8312     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8313     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8314     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8315   } else
8316     DAG.ReplaceAllUsesWith(Call, MN);
8317   DAG.DeleteNode(Call);
8318 
8319   // Inform the Frame Information that we have a patchpoint in this function.
8320   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8321 }
8322 
8323 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8324                                             unsigned Intrinsic) {
8325   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8326   SDValue Op1 = getValue(I.getArgOperand(0));
8327   SDValue Op2;
8328   if (I.getNumArgOperands() > 1)
8329     Op2 = getValue(I.getArgOperand(1));
8330   SDLoc dl = getCurSDLoc();
8331   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8332   SDValue Res;
8333   FastMathFlags FMF;
8334   if (isa<FPMathOperator>(I))
8335     FMF = I.getFastMathFlags();
8336 
8337   switch (Intrinsic) {
8338   case Intrinsic::experimental_vector_reduce_fadd:
8339     if (FMF.isFast())
8340       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8341     else
8342       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8343     break;
8344   case Intrinsic::experimental_vector_reduce_fmul:
8345     if (FMF.isFast())
8346       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8347     else
8348       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8349     break;
8350   case Intrinsic::experimental_vector_reduce_add:
8351     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8352     break;
8353   case Intrinsic::experimental_vector_reduce_mul:
8354     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8355     break;
8356   case Intrinsic::experimental_vector_reduce_and:
8357     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8358     break;
8359   case Intrinsic::experimental_vector_reduce_or:
8360     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8361     break;
8362   case Intrinsic::experimental_vector_reduce_xor:
8363     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8364     break;
8365   case Intrinsic::experimental_vector_reduce_smax:
8366     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8367     break;
8368   case Intrinsic::experimental_vector_reduce_smin:
8369     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8370     break;
8371   case Intrinsic::experimental_vector_reduce_umax:
8372     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8373     break;
8374   case Intrinsic::experimental_vector_reduce_umin:
8375     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8376     break;
8377   case Intrinsic::experimental_vector_reduce_fmax:
8378     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8379     break;
8380   case Intrinsic::experimental_vector_reduce_fmin:
8381     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8382     break;
8383   default:
8384     llvm_unreachable("Unhandled vector reduce intrinsic");
8385   }
8386   setValue(&I, Res);
8387 }
8388 
8389 /// Returns an AttributeList representing the attributes applied to the return
8390 /// value of the given call.
8391 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8392   SmallVector<Attribute::AttrKind, 2> Attrs;
8393   if (CLI.RetSExt)
8394     Attrs.push_back(Attribute::SExt);
8395   if (CLI.RetZExt)
8396     Attrs.push_back(Attribute::ZExt);
8397   if (CLI.IsInReg)
8398     Attrs.push_back(Attribute::InReg);
8399 
8400   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8401                             Attrs);
8402 }
8403 
8404 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8405 /// implementation, which just calls LowerCall.
8406 /// FIXME: When all targets are
8407 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8408 std::pair<SDValue, SDValue>
8409 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8410   // Handle the incoming return values from the call.
8411   CLI.Ins.clear();
8412   Type *OrigRetTy = CLI.RetTy;
8413   SmallVector<EVT, 4> RetTys;
8414   SmallVector<uint64_t, 4> Offsets;
8415   auto &DL = CLI.DAG.getDataLayout();
8416   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8417 
8418   if (CLI.IsPostTypeLegalization) {
8419     // If we are lowering a libcall after legalization, split the return type.
8420     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8421     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8422     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8423       EVT RetVT = OldRetTys[i];
8424       uint64_t Offset = OldOffsets[i];
8425       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8426       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8427       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8428       RetTys.append(NumRegs, RegisterVT);
8429       for (unsigned j = 0; j != NumRegs; ++j)
8430         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8431     }
8432   }
8433 
8434   SmallVector<ISD::OutputArg, 4> Outs;
8435   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8436 
8437   bool CanLowerReturn =
8438       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8439                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8440 
8441   SDValue DemoteStackSlot;
8442   int DemoteStackIdx = -100;
8443   if (!CanLowerReturn) {
8444     // FIXME: equivalent assert?
8445     // assert(!CS.hasInAllocaArgument() &&
8446     //        "sret demotion is incompatible with inalloca");
8447     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8448     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8449     MachineFunction &MF = CLI.DAG.getMachineFunction();
8450     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8451     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8452                                               DL.getAllocaAddrSpace());
8453 
8454     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8455     ArgListEntry Entry;
8456     Entry.Node = DemoteStackSlot;
8457     Entry.Ty = StackSlotPtrType;
8458     Entry.IsSExt = false;
8459     Entry.IsZExt = false;
8460     Entry.IsInReg = false;
8461     Entry.IsSRet = true;
8462     Entry.IsNest = false;
8463     Entry.IsByVal = false;
8464     Entry.IsReturned = false;
8465     Entry.IsSwiftSelf = false;
8466     Entry.IsSwiftError = false;
8467     Entry.Alignment = Align;
8468     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8469     CLI.NumFixedArgs += 1;
8470     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8471 
8472     // sret demotion isn't compatible with tail-calls, since the sret argument
8473     // points into the callers stack frame.
8474     CLI.IsTailCall = false;
8475   } else {
8476     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8477       EVT VT = RetTys[I];
8478       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8479                                                      CLI.CallConv, VT);
8480       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8481                                                        CLI.CallConv, VT);
8482       for (unsigned i = 0; i != NumRegs; ++i) {
8483         ISD::InputArg MyFlags;
8484         MyFlags.VT = RegisterVT;
8485         MyFlags.ArgVT = VT;
8486         MyFlags.Used = CLI.IsReturnValueUsed;
8487         if (CLI.RetSExt)
8488           MyFlags.Flags.setSExt();
8489         if (CLI.RetZExt)
8490           MyFlags.Flags.setZExt();
8491         if (CLI.IsInReg)
8492           MyFlags.Flags.setInReg();
8493         CLI.Ins.push_back(MyFlags);
8494       }
8495     }
8496   }
8497 
8498   // We push in swifterror return as the last element of CLI.Ins.
8499   ArgListTy &Args = CLI.getArgs();
8500   if (supportSwiftError()) {
8501     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8502       if (Args[i].IsSwiftError) {
8503         ISD::InputArg MyFlags;
8504         MyFlags.VT = getPointerTy(DL);
8505         MyFlags.ArgVT = EVT(getPointerTy(DL));
8506         MyFlags.Flags.setSwiftError();
8507         CLI.Ins.push_back(MyFlags);
8508       }
8509     }
8510   }
8511 
8512   // Handle all of the outgoing arguments.
8513   CLI.Outs.clear();
8514   CLI.OutVals.clear();
8515   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8516     SmallVector<EVT, 4> ValueVTs;
8517     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8518     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8519     Type *FinalType = Args[i].Ty;
8520     if (Args[i].IsByVal)
8521       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8522     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8523         FinalType, CLI.CallConv, CLI.IsVarArg);
8524     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8525          ++Value) {
8526       EVT VT = ValueVTs[Value];
8527       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8528       SDValue Op = SDValue(Args[i].Node.getNode(),
8529                            Args[i].Node.getResNo() + Value);
8530       ISD::ArgFlagsTy Flags;
8531 
8532       // Certain targets (such as MIPS), may have a different ABI alignment
8533       // for a type depending on the context. Give the target a chance to
8534       // specify the alignment it wants.
8535       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8536 
8537       if (Args[i].IsZExt)
8538         Flags.setZExt();
8539       if (Args[i].IsSExt)
8540         Flags.setSExt();
8541       if (Args[i].IsInReg) {
8542         // If we are using vectorcall calling convention, a structure that is
8543         // passed InReg - is surely an HVA
8544         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8545             isa<StructType>(FinalType)) {
8546           // The first value of a structure is marked
8547           if (0 == Value)
8548             Flags.setHvaStart();
8549           Flags.setHva();
8550         }
8551         // Set InReg Flag
8552         Flags.setInReg();
8553       }
8554       if (Args[i].IsSRet)
8555         Flags.setSRet();
8556       if (Args[i].IsSwiftSelf)
8557         Flags.setSwiftSelf();
8558       if (Args[i].IsSwiftError)
8559         Flags.setSwiftError();
8560       if (Args[i].IsByVal)
8561         Flags.setByVal();
8562       if (Args[i].IsInAlloca) {
8563         Flags.setInAlloca();
8564         // Set the byval flag for CCAssignFn callbacks that don't know about
8565         // inalloca.  This way we can know how many bytes we should've allocated
8566         // and how many bytes a callee cleanup function will pop.  If we port
8567         // inalloca to more targets, we'll have to add custom inalloca handling
8568         // in the various CC lowering callbacks.
8569         Flags.setByVal();
8570       }
8571       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8572         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8573         Type *ElementTy = Ty->getElementType();
8574         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8575         // For ByVal, alignment should come from FE.  BE will guess if this
8576         // info is not there but there are cases it cannot get right.
8577         unsigned FrameAlign;
8578         if (Args[i].Alignment)
8579           FrameAlign = Args[i].Alignment;
8580         else
8581           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8582         Flags.setByValAlign(FrameAlign);
8583       }
8584       if (Args[i].IsNest)
8585         Flags.setNest();
8586       if (NeedsRegBlock)
8587         Flags.setInConsecutiveRegs();
8588       Flags.setOrigAlign(OriginalAlignment);
8589 
8590       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8591                                                  CLI.CallConv, VT);
8592       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8593                                                         CLI.CallConv, VT);
8594       SmallVector<SDValue, 4> Parts(NumParts);
8595       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8596 
8597       if (Args[i].IsSExt)
8598         ExtendKind = ISD::SIGN_EXTEND;
8599       else if (Args[i].IsZExt)
8600         ExtendKind = ISD::ZERO_EXTEND;
8601 
8602       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8603       // for now.
8604       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8605           CanLowerReturn) {
8606         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8607                "unexpected use of 'returned'");
8608         // Before passing 'returned' to the target lowering code, ensure that
8609         // either the register MVT and the actual EVT are the same size or that
8610         // the return value and argument are extended in the same way; in these
8611         // cases it's safe to pass the argument register value unchanged as the
8612         // return register value (although it's at the target's option whether
8613         // to do so)
8614         // TODO: allow code generation to take advantage of partially preserved
8615         // registers rather than clobbering the entire register when the
8616         // parameter extension method is not compatible with the return
8617         // extension method
8618         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8619             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8620              CLI.RetZExt == Args[i].IsZExt))
8621           Flags.setReturned();
8622       }
8623 
8624       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8625                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8626 
8627       for (unsigned j = 0; j != NumParts; ++j) {
8628         // if it isn't first piece, alignment must be 1
8629         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8630                                i < CLI.NumFixedArgs,
8631                                i, j*Parts[j].getValueType().getStoreSize());
8632         if (NumParts > 1 && j == 0)
8633           MyFlags.Flags.setSplit();
8634         else if (j != 0) {
8635           MyFlags.Flags.setOrigAlign(1);
8636           if (j == NumParts - 1)
8637             MyFlags.Flags.setSplitEnd();
8638         }
8639 
8640         CLI.Outs.push_back(MyFlags);
8641         CLI.OutVals.push_back(Parts[j]);
8642       }
8643 
8644       if (NeedsRegBlock && Value == NumValues - 1)
8645         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8646     }
8647   }
8648 
8649   SmallVector<SDValue, 4> InVals;
8650   CLI.Chain = LowerCall(CLI, InVals);
8651 
8652   // Update CLI.InVals to use outside of this function.
8653   CLI.InVals = InVals;
8654 
8655   // Verify that the target's LowerCall behaved as expected.
8656   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8657          "LowerCall didn't return a valid chain!");
8658   assert((!CLI.IsTailCall || InVals.empty()) &&
8659          "LowerCall emitted a return value for a tail call!");
8660   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8661          "LowerCall didn't emit the correct number of values!");
8662 
8663   // For a tail call, the return value is merely live-out and there aren't
8664   // any nodes in the DAG representing it. Return a special value to
8665   // indicate that a tail call has been emitted and no more Instructions
8666   // should be processed in the current block.
8667   if (CLI.IsTailCall) {
8668     CLI.DAG.setRoot(CLI.Chain);
8669     return std::make_pair(SDValue(), SDValue());
8670   }
8671 
8672 #ifndef NDEBUG
8673   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8674     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8675     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8676            "LowerCall emitted a value with the wrong type!");
8677   }
8678 #endif
8679 
8680   SmallVector<SDValue, 4> ReturnValues;
8681   if (!CanLowerReturn) {
8682     // The instruction result is the result of loading from the
8683     // hidden sret parameter.
8684     SmallVector<EVT, 1> PVTs;
8685     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8686 
8687     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8688     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8689     EVT PtrVT = PVTs[0];
8690 
8691     unsigned NumValues = RetTys.size();
8692     ReturnValues.resize(NumValues);
8693     SmallVector<SDValue, 4> Chains(NumValues);
8694 
8695     // An aggregate return value cannot wrap around the address space, so
8696     // offsets to its parts don't wrap either.
8697     SDNodeFlags Flags;
8698     Flags.setNoUnsignedWrap(true);
8699 
8700     for (unsigned i = 0; i < NumValues; ++i) {
8701       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8702                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8703                                                         PtrVT), Flags);
8704       SDValue L = CLI.DAG.getLoad(
8705           RetTys[i], CLI.DL, CLI.Chain, Add,
8706           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8707                                             DemoteStackIdx, Offsets[i]),
8708           /* Alignment = */ 1);
8709       ReturnValues[i] = L;
8710       Chains[i] = L.getValue(1);
8711     }
8712 
8713     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8714   } else {
8715     // Collect the legal value parts into potentially illegal values
8716     // that correspond to the original function's return values.
8717     Optional<ISD::NodeType> AssertOp;
8718     if (CLI.RetSExt)
8719       AssertOp = ISD::AssertSext;
8720     else if (CLI.RetZExt)
8721       AssertOp = ISD::AssertZext;
8722     unsigned CurReg = 0;
8723     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8724       EVT VT = RetTys[I];
8725       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8726                                                      CLI.CallConv, VT);
8727       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8728                                                        CLI.CallConv, VT);
8729 
8730       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8731                                               NumRegs, RegisterVT, VT, nullptr,
8732                                               CLI.CallConv, AssertOp));
8733       CurReg += NumRegs;
8734     }
8735 
8736     // For a function returning void, there is no return value. We can't create
8737     // such a node, so we just return a null return value in that case. In
8738     // that case, nothing will actually look at the value.
8739     if (ReturnValues.empty())
8740       return std::make_pair(SDValue(), CLI.Chain);
8741   }
8742 
8743   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8744                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8745   return std::make_pair(Res, CLI.Chain);
8746 }
8747 
8748 void TargetLowering::LowerOperationWrapper(SDNode *N,
8749                                            SmallVectorImpl<SDValue> &Results,
8750                                            SelectionDAG &DAG) const {
8751   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8752     Results.push_back(Res);
8753 }
8754 
8755 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8756   llvm_unreachable("LowerOperation not implemented for this target!");
8757 }
8758 
8759 void
8760 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8761   SDValue Op = getNonRegisterValue(V);
8762   assert((Op.getOpcode() != ISD::CopyFromReg ||
8763           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8764          "Copy from a reg to the same reg!");
8765   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8766 
8767   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8768   // If this is an InlineAsm we have to match the registers required, not the
8769   // notional registers required by the type.
8770 
8771   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
8772                    None); // This is not an ABI copy.
8773   SDValue Chain = DAG.getEntryNode();
8774 
8775   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8776                               FuncInfo.PreferredExtendType.end())
8777                                  ? ISD::ANY_EXTEND
8778                                  : FuncInfo.PreferredExtendType[V];
8779   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8780   PendingExports.push_back(Chain);
8781 }
8782 
8783 #include "llvm/CodeGen/SelectionDAGISel.h"
8784 
8785 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8786 /// entry block, return true.  This includes arguments used by switches, since
8787 /// the switch may expand into multiple basic blocks.
8788 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8789   // With FastISel active, we may be splitting blocks, so force creation
8790   // of virtual registers for all non-dead arguments.
8791   if (FastISel)
8792     return A->use_empty();
8793 
8794   const BasicBlock &Entry = A->getParent()->front();
8795   for (const User *U : A->users())
8796     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8797       return false;  // Use not in entry block.
8798 
8799   return true;
8800 }
8801 
8802 using ArgCopyElisionMapTy =
8803     DenseMap<const Argument *,
8804              std::pair<const AllocaInst *, const StoreInst *>>;
8805 
8806 /// Scan the entry block of the function in FuncInfo for arguments that look
8807 /// like copies into a local alloca. Record any copied arguments in
8808 /// ArgCopyElisionCandidates.
8809 static void
8810 findArgumentCopyElisionCandidates(const DataLayout &DL,
8811                                   FunctionLoweringInfo *FuncInfo,
8812                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8813   // Record the state of every static alloca used in the entry block. Argument
8814   // allocas are all used in the entry block, so we need approximately as many
8815   // entries as we have arguments.
8816   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8817   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8818   unsigned NumArgs = FuncInfo->Fn->arg_size();
8819   StaticAllocas.reserve(NumArgs * 2);
8820 
8821   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8822     if (!V)
8823       return nullptr;
8824     V = V->stripPointerCasts();
8825     const auto *AI = dyn_cast<AllocaInst>(V);
8826     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8827       return nullptr;
8828     auto Iter = StaticAllocas.insert({AI, Unknown});
8829     return &Iter.first->second;
8830   };
8831 
8832   // Look for stores of arguments to static allocas. Look through bitcasts and
8833   // GEPs to handle type coercions, as long as the alloca is fully initialized
8834   // by the store. Any non-store use of an alloca escapes it and any subsequent
8835   // unanalyzed store might write it.
8836   // FIXME: Handle structs initialized with multiple stores.
8837   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8838     // Look for stores, and handle non-store uses conservatively.
8839     const auto *SI = dyn_cast<StoreInst>(&I);
8840     if (!SI) {
8841       // We will look through cast uses, so ignore them completely.
8842       if (I.isCast())
8843         continue;
8844       // Ignore debug info intrinsics, they don't escape or store to allocas.
8845       if (isa<DbgInfoIntrinsic>(I))
8846         continue;
8847       // This is an unknown instruction. Assume it escapes or writes to all
8848       // static alloca operands.
8849       for (const Use &U : I.operands()) {
8850         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8851           *Info = StaticAllocaInfo::Clobbered;
8852       }
8853       continue;
8854     }
8855 
8856     // If the stored value is a static alloca, mark it as escaped.
8857     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8858       *Info = StaticAllocaInfo::Clobbered;
8859 
8860     // Check if the destination is a static alloca.
8861     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8862     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8863     if (!Info)
8864       continue;
8865     const AllocaInst *AI = cast<AllocaInst>(Dst);
8866 
8867     // Skip allocas that have been initialized or clobbered.
8868     if (*Info != StaticAllocaInfo::Unknown)
8869       continue;
8870 
8871     // Check if the stored value is an argument, and that this store fully
8872     // initializes the alloca. Don't elide copies from the same argument twice.
8873     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8874     const auto *Arg = dyn_cast<Argument>(Val);
8875     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8876         Arg->getType()->isEmptyTy() ||
8877         DL.getTypeStoreSize(Arg->getType()) !=
8878             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8879         ArgCopyElisionCandidates.count(Arg)) {
8880       *Info = StaticAllocaInfo::Clobbered;
8881       continue;
8882     }
8883 
8884     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
8885                       << '\n');
8886 
8887     // Mark this alloca and store for argument copy elision.
8888     *Info = StaticAllocaInfo::Elidable;
8889     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8890 
8891     // Stop scanning if we've seen all arguments. This will happen early in -O0
8892     // builds, which is useful, because -O0 builds have large entry blocks and
8893     // many allocas.
8894     if (ArgCopyElisionCandidates.size() == NumArgs)
8895       break;
8896   }
8897 }
8898 
8899 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8900 /// ArgVal is a load from a suitable fixed stack object.
8901 static void tryToElideArgumentCopy(
8902     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8903     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8904     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8905     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8906     SDValue ArgVal, bool &ArgHasUses) {
8907   // Check if this is a load from a fixed stack object.
8908   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8909   if (!LNode)
8910     return;
8911   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8912   if (!FINode)
8913     return;
8914 
8915   // Check that the fixed stack object is the right size and alignment.
8916   // Look at the alignment that the user wrote on the alloca instead of looking
8917   // at the stack object.
8918   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8919   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8920   const AllocaInst *AI = ArgCopyIter->second.first;
8921   int FixedIndex = FINode->getIndex();
8922   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8923   int OldIndex = AllocaIndex;
8924   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8925   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8926     LLVM_DEBUG(
8927         dbgs() << "  argument copy elision failed due to bad fixed stack "
8928                   "object size\n");
8929     return;
8930   }
8931   unsigned RequiredAlignment = AI->getAlignment();
8932   if (!RequiredAlignment) {
8933     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8934         AI->getAllocatedType());
8935   }
8936   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8937     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8938                          "greater than stack argument alignment ("
8939                       << RequiredAlignment << " vs "
8940                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
8941     return;
8942   }
8943 
8944   // Perform the elision. Delete the old stack object and replace its only use
8945   // in the variable info map. Mark the stack object as mutable.
8946   LLVM_DEBUG({
8947     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8948            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8949            << '\n';
8950   });
8951   MFI.RemoveStackObject(OldIndex);
8952   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8953   AllocaIndex = FixedIndex;
8954   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8955   Chains.push_back(ArgVal.getValue(1));
8956 
8957   // Avoid emitting code for the store implementing the copy.
8958   const StoreInst *SI = ArgCopyIter->second.second;
8959   ElidedArgCopyInstrs.insert(SI);
8960 
8961   // Check for uses of the argument again so that we can avoid exporting ArgVal
8962   // if it is't used by anything other than the store.
8963   for (const Value *U : Arg.users()) {
8964     if (U != SI) {
8965       ArgHasUses = true;
8966       break;
8967     }
8968   }
8969 }
8970 
8971 void SelectionDAGISel::LowerArguments(const Function &F) {
8972   SelectionDAG &DAG = SDB->DAG;
8973   SDLoc dl = SDB->getCurSDLoc();
8974   const DataLayout &DL = DAG.getDataLayout();
8975   SmallVector<ISD::InputArg, 16> Ins;
8976 
8977   if (!FuncInfo->CanLowerReturn) {
8978     // Put in an sret pointer parameter before all the other parameters.
8979     SmallVector<EVT, 1> ValueVTs;
8980     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8981                     F.getReturnType()->getPointerTo(
8982                         DAG.getDataLayout().getAllocaAddrSpace()),
8983                     ValueVTs);
8984 
8985     // NOTE: Assuming that a pointer will never break down to more than one VT
8986     // or one register.
8987     ISD::ArgFlagsTy Flags;
8988     Flags.setSRet();
8989     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8990     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8991                          ISD::InputArg::NoArgIndex, 0);
8992     Ins.push_back(RetArg);
8993   }
8994 
8995   // Look for stores of arguments to static allocas. Mark such arguments with a
8996   // flag to ask the target to give us the memory location of that argument if
8997   // available.
8998   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8999   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9000 
9001   // Set up the incoming argument description vector.
9002   for (const Argument &Arg : F.args()) {
9003     unsigned ArgNo = Arg.getArgNo();
9004     SmallVector<EVT, 4> ValueVTs;
9005     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9006     bool isArgValueUsed = !Arg.use_empty();
9007     unsigned PartBase = 0;
9008     Type *FinalType = Arg.getType();
9009     if (Arg.hasAttribute(Attribute::ByVal))
9010       FinalType = cast<PointerType>(FinalType)->getElementType();
9011     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9012         FinalType, F.getCallingConv(), F.isVarArg());
9013     for (unsigned Value = 0, NumValues = ValueVTs.size();
9014          Value != NumValues; ++Value) {
9015       EVT VT = ValueVTs[Value];
9016       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9017       ISD::ArgFlagsTy Flags;
9018 
9019       // Certain targets (such as MIPS), may have a different ABI alignment
9020       // for a type depending on the context. Give the target a chance to
9021       // specify the alignment it wants.
9022       unsigned OriginalAlignment =
9023           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9024 
9025       if (Arg.hasAttribute(Attribute::ZExt))
9026         Flags.setZExt();
9027       if (Arg.hasAttribute(Attribute::SExt))
9028         Flags.setSExt();
9029       if (Arg.hasAttribute(Attribute::InReg)) {
9030         // If we are using vectorcall calling convention, a structure that is
9031         // passed InReg - is surely an HVA
9032         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9033             isa<StructType>(Arg.getType())) {
9034           // The first value of a structure is marked
9035           if (0 == Value)
9036             Flags.setHvaStart();
9037           Flags.setHva();
9038         }
9039         // Set InReg Flag
9040         Flags.setInReg();
9041       }
9042       if (Arg.hasAttribute(Attribute::StructRet))
9043         Flags.setSRet();
9044       if (Arg.hasAttribute(Attribute::SwiftSelf))
9045         Flags.setSwiftSelf();
9046       if (Arg.hasAttribute(Attribute::SwiftError))
9047         Flags.setSwiftError();
9048       if (Arg.hasAttribute(Attribute::ByVal))
9049         Flags.setByVal();
9050       if (Arg.hasAttribute(Attribute::InAlloca)) {
9051         Flags.setInAlloca();
9052         // Set the byval flag for CCAssignFn callbacks that don't know about
9053         // inalloca.  This way we can know how many bytes we should've allocated
9054         // and how many bytes a callee cleanup function will pop.  If we port
9055         // inalloca to more targets, we'll have to add custom inalloca handling
9056         // in the various CC lowering callbacks.
9057         Flags.setByVal();
9058       }
9059       if (F.getCallingConv() == CallingConv::X86_INTR) {
9060         // IA Interrupt passes frame (1st parameter) by value in the stack.
9061         if (ArgNo == 0)
9062           Flags.setByVal();
9063       }
9064       if (Flags.isByVal() || Flags.isInAlloca()) {
9065         PointerType *Ty = cast<PointerType>(Arg.getType());
9066         Type *ElementTy = Ty->getElementType();
9067         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9068         // For ByVal, alignment should be passed from FE.  BE will guess if
9069         // this info is not there but there are cases it cannot get right.
9070         unsigned FrameAlign;
9071         if (Arg.getParamAlignment())
9072           FrameAlign = Arg.getParamAlignment();
9073         else
9074           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9075         Flags.setByValAlign(FrameAlign);
9076       }
9077       if (Arg.hasAttribute(Attribute::Nest))
9078         Flags.setNest();
9079       if (NeedsRegBlock)
9080         Flags.setInConsecutiveRegs();
9081       Flags.setOrigAlign(OriginalAlignment);
9082       if (ArgCopyElisionCandidates.count(&Arg))
9083         Flags.setCopyElisionCandidate();
9084 
9085       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9086           *CurDAG->getContext(), F.getCallingConv(), VT);
9087       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9088           *CurDAG->getContext(), F.getCallingConv(), VT);
9089       for (unsigned i = 0; i != NumRegs; ++i) {
9090         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9091                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9092         if (NumRegs > 1 && i == 0)
9093           MyFlags.Flags.setSplit();
9094         // if it isn't first piece, alignment must be 1
9095         else if (i > 0) {
9096           MyFlags.Flags.setOrigAlign(1);
9097           if (i == NumRegs - 1)
9098             MyFlags.Flags.setSplitEnd();
9099         }
9100         Ins.push_back(MyFlags);
9101       }
9102       if (NeedsRegBlock && Value == NumValues - 1)
9103         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9104       PartBase += VT.getStoreSize();
9105     }
9106   }
9107 
9108   // Call the target to set up the argument values.
9109   SmallVector<SDValue, 8> InVals;
9110   SDValue NewRoot = TLI->LowerFormalArguments(
9111       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9112 
9113   // Verify that the target's LowerFormalArguments behaved as expected.
9114   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9115          "LowerFormalArguments didn't return a valid chain!");
9116   assert(InVals.size() == Ins.size() &&
9117          "LowerFormalArguments didn't emit the correct number of values!");
9118   LLVM_DEBUG({
9119     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9120       assert(InVals[i].getNode() &&
9121              "LowerFormalArguments emitted a null value!");
9122       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9123              "LowerFormalArguments emitted a value with the wrong type!");
9124     }
9125   });
9126 
9127   // Update the DAG with the new chain value resulting from argument lowering.
9128   DAG.setRoot(NewRoot);
9129 
9130   // Set up the argument values.
9131   unsigned i = 0;
9132   if (!FuncInfo->CanLowerReturn) {
9133     // Create a virtual register for the sret pointer, and put in a copy
9134     // from the sret argument into it.
9135     SmallVector<EVT, 1> ValueVTs;
9136     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9137                     F.getReturnType()->getPointerTo(
9138                         DAG.getDataLayout().getAllocaAddrSpace()),
9139                     ValueVTs);
9140     MVT VT = ValueVTs[0].getSimpleVT();
9141     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9142     Optional<ISD::NodeType> AssertOp = None;
9143     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9144                                         nullptr, F.getCallingConv(), AssertOp);
9145 
9146     MachineFunction& MF = SDB->DAG.getMachineFunction();
9147     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9148     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9149     FuncInfo->DemoteRegister = SRetReg;
9150     NewRoot =
9151         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9152     DAG.setRoot(NewRoot);
9153 
9154     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9155     ++i;
9156   }
9157 
9158   SmallVector<SDValue, 4> Chains;
9159   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9160   for (const Argument &Arg : F.args()) {
9161     SmallVector<SDValue, 4> ArgValues;
9162     SmallVector<EVT, 4> ValueVTs;
9163     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9164     unsigned NumValues = ValueVTs.size();
9165     if (NumValues == 0)
9166       continue;
9167 
9168     bool ArgHasUses = !Arg.use_empty();
9169 
9170     // Elide the copying store if the target loaded this argument from a
9171     // suitable fixed stack object.
9172     if (Ins[i].Flags.isCopyElisionCandidate()) {
9173       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9174                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9175                              InVals[i], ArgHasUses);
9176     }
9177 
9178     // If this argument is unused then remember its value. It is used to generate
9179     // debugging information.
9180     bool isSwiftErrorArg =
9181         TLI->supportSwiftError() &&
9182         Arg.hasAttribute(Attribute::SwiftError);
9183     if (!ArgHasUses && !isSwiftErrorArg) {
9184       SDB->setUnusedArgValue(&Arg, InVals[i]);
9185 
9186       // Also remember any frame index for use in FastISel.
9187       if (FrameIndexSDNode *FI =
9188           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9189         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9190     }
9191 
9192     for (unsigned Val = 0; Val != NumValues; ++Val) {
9193       EVT VT = ValueVTs[Val];
9194       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9195                                                       F.getCallingConv(), VT);
9196       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9197           *CurDAG->getContext(), F.getCallingConv(), VT);
9198 
9199       // Even an apparant 'unused' swifterror argument needs to be returned. So
9200       // we do generate a copy for it that can be used on return from the
9201       // function.
9202       if (ArgHasUses || isSwiftErrorArg) {
9203         Optional<ISD::NodeType> AssertOp;
9204         if (Arg.hasAttribute(Attribute::SExt))
9205           AssertOp = ISD::AssertSext;
9206         else if (Arg.hasAttribute(Attribute::ZExt))
9207           AssertOp = ISD::AssertZext;
9208 
9209         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9210                                              PartVT, VT, nullptr,
9211                                              F.getCallingConv(), AssertOp));
9212       }
9213 
9214       i += NumParts;
9215     }
9216 
9217     // We don't need to do anything else for unused arguments.
9218     if (ArgValues.empty())
9219       continue;
9220 
9221     // Note down frame index.
9222     if (FrameIndexSDNode *FI =
9223         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9224       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9225 
9226     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9227                                      SDB->getCurSDLoc());
9228 
9229     SDB->setValue(&Arg, Res);
9230     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9231       // We want to associate the argument with the frame index, among
9232       // involved operands, that correspond to the lowest address. The
9233       // getCopyFromParts function, called earlier, is swapping the order of
9234       // the operands to BUILD_PAIR depending on endianness. The result of
9235       // that swapping is that the least significant bits of the argument will
9236       // be in the first operand of the BUILD_PAIR node, and the most
9237       // significant bits will be in the second operand.
9238       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9239       if (LoadSDNode *LNode =
9240           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9241         if (FrameIndexSDNode *FI =
9242             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9243           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9244     }
9245 
9246     // Update the SwiftErrorVRegDefMap.
9247     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9248       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9249       if (TargetRegisterInfo::isVirtualRegister(Reg))
9250         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9251                                            FuncInfo->SwiftErrorArg, Reg);
9252     }
9253 
9254     // If this argument is live outside of the entry block, insert a copy from
9255     // wherever we got it to the vreg that other BB's will reference it as.
9256     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9257       // If we can, though, try to skip creating an unnecessary vreg.
9258       // FIXME: This isn't very clean... it would be nice to make this more
9259       // general.  It's also subtly incompatible with the hacks FastISel
9260       // uses with vregs.
9261       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9262       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9263         FuncInfo->ValueMap[&Arg] = Reg;
9264         continue;
9265       }
9266     }
9267     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9268       FuncInfo->InitializeRegForValue(&Arg);
9269       SDB->CopyToExportRegsIfNeeded(&Arg);
9270     }
9271   }
9272 
9273   if (!Chains.empty()) {
9274     Chains.push_back(NewRoot);
9275     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9276   }
9277 
9278   DAG.setRoot(NewRoot);
9279 
9280   assert(i == InVals.size() && "Argument register count mismatch!");
9281 
9282   // If any argument copy elisions occurred and we have debug info, update the
9283   // stale frame indices used in the dbg.declare variable info table.
9284   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9285   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9286     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9287       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9288       if (I != ArgCopyElisionFrameIndexMap.end())
9289         VI.Slot = I->second;
9290     }
9291   }
9292 
9293   // Finally, if the target has anything special to do, allow it to do so.
9294   EmitFunctionEntryCode();
9295 }
9296 
9297 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9298 /// ensure constants are generated when needed.  Remember the virtual registers
9299 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9300 /// directly add them, because expansion might result in multiple MBB's for one
9301 /// BB.  As such, the start of the BB might correspond to a different MBB than
9302 /// the end.
9303 void
9304 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9305   const Instruction *TI = LLVMBB->getTerminator();
9306 
9307   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9308 
9309   // Check PHI nodes in successors that expect a value to be available from this
9310   // block.
9311   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9312     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9313     if (!isa<PHINode>(SuccBB->begin())) continue;
9314     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9315 
9316     // If this terminator has multiple identical successors (common for
9317     // switches), only handle each succ once.
9318     if (!SuccsHandled.insert(SuccMBB).second)
9319       continue;
9320 
9321     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9322 
9323     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9324     // nodes and Machine PHI nodes, but the incoming operands have not been
9325     // emitted yet.
9326     for (const PHINode &PN : SuccBB->phis()) {
9327       // Ignore dead phi's.
9328       if (PN.use_empty())
9329         continue;
9330 
9331       // Skip empty types
9332       if (PN.getType()->isEmptyTy())
9333         continue;
9334 
9335       unsigned Reg;
9336       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9337 
9338       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9339         unsigned &RegOut = ConstantsOut[C];
9340         if (RegOut == 0) {
9341           RegOut = FuncInfo.CreateRegs(C->getType());
9342           CopyValueToVirtualRegister(C, RegOut);
9343         }
9344         Reg = RegOut;
9345       } else {
9346         DenseMap<const Value *, unsigned>::iterator I =
9347           FuncInfo.ValueMap.find(PHIOp);
9348         if (I != FuncInfo.ValueMap.end())
9349           Reg = I->second;
9350         else {
9351           assert(isa<AllocaInst>(PHIOp) &&
9352                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9353                  "Didn't codegen value into a register!??");
9354           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9355           CopyValueToVirtualRegister(PHIOp, Reg);
9356         }
9357       }
9358 
9359       // Remember that this register needs to added to the machine PHI node as
9360       // the input for this MBB.
9361       SmallVector<EVT, 4> ValueVTs;
9362       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9363       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9364       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9365         EVT VT = ValueVTs[vti];
9366         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9367         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9368           FuncInfo.PHINodesToUpdate.push_back(
9369               std::make_pair(&*MBBI++, Reg + i));
9370         Reg += NumRegisters;
9371       }
9372     }
9373   }
9374 
9375   ConstantsOut.clear();
9376 }
9377 
9378 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9379 /// is 0.
9380 MachineBasicBlock *
9381 SelectionDAGBuilder::StackProtectorDescriptor::
9382 AddSuccessorMBB(const BasicBlock *BB,
9383                 MachineBasicBlock *ParentMBB,
9384                 bool IsLikely,
9385                 MachineBasicBlock *SuccMBB) {
9386   // If SuccBB has not been created yet, create it.
9387   if (!SuccMBB) {
9388     MachineFunction *MF = ParentMBB->getParent();
9389     MachineFunction::iterator BBI(ParentMBB);
9390     SuccMBB = MF->CreateMachineBasicBlock(BB);
9391     MF->insert(++BBI, SuccMBB);
9392   }
9393   // Add it as a successor of ParentMBB.
9394   ParentMBB->addSuccessor(
9395       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9396   return SuccMBB;
9397 }
9398 
9399 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9400   MachineFunction::iterator I(MBB);
9401   if (++I == FuncInfo.MF->end())
9402     return nullptr;
9403   return &*I;
9404 }
9405 
9406 /// During lowering new call nodes can be created (such as memset, etc.).
9407 /// Those will become new roots of the current DAG, but complications arise
9408 /// when they are tail calls. In such cases, the call lowering will update
9409 /// the root, but the builder still needs to know that a tail call has been
9410 /// lowered in order to avoid generating an additional return.
9411 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9412   // If the node is null, we do have a tail call.
9413   if (MaybeTC.getNode() != nullptr)
9414     DAG.setRoot(MaybeTC);
9415   else
9416     HasTailCall = true;
9417 }
9418 
9419 uint64_t
9420 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9421                                        unsigned First, unsigned Last) const {
9422   assert(Last >= First);
9423   const APInt &LowCase = Clusters[First].Low->getValue();
9424   const APInt &HighCase = Clusters[Last].High->getValue();
9425   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9426 
9427   // FIXME: A range of consecutive cases has 100% density, but only requires one
9428   // comparison to lower. We should discriminate against such consecutive ranges
9429   // in jump tables.
9430 
9431   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9432 }
9433 
9434 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9435     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9436     unsigned Last) const {
9437   assert(Last >= First);
9438   assert(TotalCases[Last] >= TotalCases[First]);
9439   uint64_t NumCases =
9440       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9441   return NumCases;
9442 }
9443 
9444 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9445                                          unsigned First, unsigned Last,
9446                                          const SwitchInst *SI,
9447                                          MachineBasicBlock *DefaultMBB,
9448                                          CaseCluster &JTCluster) {
9449   assert(First <= Last);
9450 
9451   auto Prob = BranchProbability::getZero();
9452   unsigned NumCmps = 0;
9453   std::vector<MachineBasicBlock*> Table;
9454   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9455 
9456   // Initialize probabilities in JTProbs.
9457   for (unsigned I = First; I <= Last; ++I)
9458     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9459 
9460   for (unsigned I = First; I <= Last; ++I) {
9461     assert(Clusters[I].Kind == CC_Range);
9462     Prob += Clusters[I].Prob;
9463     const APInt &Low = Clusters[I].Low->getValue();
9464     const APInt &High = Clusters[I].High->getValue();
9465     NumCmps += (Low == High) ? 1 : 2;
9466     if (I != First) {
9467       // Fill the gap between this and the previous cluster.
9468       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9469       assert(PreviousHigh.slt(Low));
9470       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9471       for (uint64_t J = 0; J < Gap; J++)
9472         Table.push_back(DefaultMBB);
9473     }
9474     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9475     for (uint64_t J = 0; J < ClusterSize; ++J)
9476       Table.push_back(Clusters[I].MBB);
9477     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9478   }
9479 
9480   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9481   unsigned NumDests = JTProbs.size();
9482   if (TLI.isSuitableForBitTests(
9483           NumDests, NumCmps, Clusters[First].Low->getValue(),
9484           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9485     // Clusters[First..Last] should be lowered as bit tests instead.
9486     return false;
9487   }
9488 
9489   // Create the MBB that will load from and jump through the table.
9490   // Note: We create it here, but it's not inserted into the function yet.
9491   MachineFunction *CurMF = FuncInfo.MF;
9492   MachineBasicBlock *JumpTableMBB =
9493       CurMF->CreateMachineBasicBlock(SI->getParent());
9494 
9495   // Add successors. Note: use table order for determinism.
9496   SmallPtrSet<MachineBasicBlock *, 8> Done;
9497   for (MachineBasicBlock *Succ : Table) {
9498     if (Done.count(Succ))
9499       continue;
9500     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9501     Done.insert(Succ);
9502   }
9503   JumpTableMBB->normalizeSuccProbs();
9504 
9505   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9506                      ->createJumpTableIndex(Table);
9507 
9508   // Set up the jump table info.
9509   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9510   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9511                       Clusters[Last].High->getValue(), SI->getCondition(),
9512                       nullptr, false);
9513   JTCases.emplace_back(std::move(JTH), std::move(JT));
9514 
9515   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9516                                      JTCases.size() - 1, Prob);
9517   return true;
9518 }
9519 
9520 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9521                                          const SwitchInst *SI,
9522                                          MachineBasicBlock *DefaultMBB) {
9523 #ifndef NDEBUG
9524   // Clusters must be non-empty, sorted, and only contain Range clusters.
9525   assert(!Clusters.empty());
9526   for (CaseCluster &C : Clusters)
9527     assert(C.Kind == CC_Range);
9528   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9529     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9530 #endif
9531 
9532   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9533   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9534     return;
9535 
9536   const int64_t N = Clusters.size();
9537   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9538   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9539 
9540   if (N < 2 || N < MinJumpTableEntries)
9541     return;
9542 
9543   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9544   SmallVector<unsigned, 8> TotalCases(N);
9545   for (unsigned i = 0; i < N; ++i) {
9546     const APInt &Hi = Clusters[i].High->getValue();
9547     const APInt &Lo = Clusters[i].Low->getValue();
9548     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9549     if (i != 0)
9550       TotalCases[i] += TotalCases[i - 1];
9551   }
9552 
9553   // Cheap case: the whole range may be suitable for jump table.
9554   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9555   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9556   assert(NumCases < UINT64_MAX / 100);
9557   assert(Range >= NumCases);
9558   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9559     CaseCluster JTCluster;
9560     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9561       Clusters[0] = JTCluster;
9562       Clusters.resize(1);
9563       return;
9564     }
9565   }
9566 
9567   // The algorithm below is not suitable for -O0.
9568   if (TM.getOptLevel() == CodeGenOpt::None)
9569     return;
9570 
9571   // Split Clusters into minimum number of dense partitions. The algorithm uses
9572   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9573   // for the Case Statement'" (1994), but builds the MinPartitions array in
9574   // reverse order to make it easier to reconstruct the partitions in ascending
9575   // order. In the choice between two optimal partitionings, it picks the one
9576   // which yields more jump tables.
9577 
9578   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9579   SmallVector<unsigned, 8> MinPartitions(N);
9580   // LastElement[i] is the last element of the partition starting at i.
9581   SmallVector<unsigned, 8> LastElement(N);
9582   // PartitionsScore[i] is used to break ties when choosing between two
9583   // partitionings resulting in the same number of partitions.
9584   SmallVector<unsigned, 8> PartitionsScore(N);
9585   // For PartitionsScore, a small number of comparisons is considered as good as
9586   // a jump table and a single comparison is considered better than a jump
9587   // table.
9588   enum PartitionScores : unsigned {
9589     NoTable = 0,
9590     Table = 1,
9591     FewCases = 1,
9592     SingleCase = 2
9593   };
9594 
9595   // Base case: There is only one way to partition Clusters[N-1].
9596   MinPartitions[N - 1] = 1;
9597   LastElement[N - 1] = N - 1;
9598   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9599 
9600   // Note: loop indexes are signed to avoid underflow.
9601   for (int64_t i = N - 2; i >= 0; i--) {
9602     // Find optimal partitioning of Clusters[i..N-1].
9603     // Baseline: Put Clusters[i] into a partition on its own.
9604     MinPartitions[i] = MinPartitions[i + 1] + 1;
9605     LastElement[i] = i;
9606     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9607 
9608     // Search for a solution that results in fewer partitions.
9609     for (int64_t j = N - 1; j > i; j--) {
9610       // Try building a partition from Clusters[i..j].
9611       uint64_t Range = getJumpTableRange(Clusters, i, j);
9612       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9613       assert(NumCases < UINT64_MAX / 100);
9614       assert(Range >= NumCases);
9615       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9616         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9617         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9618         int64_t NumEntries = j - i + 1;
9619 
9620         if (NumEntries == 1)
9621           Score += PartitionScores::SingleCase;
9622         else if (NumEntries <= SmallNumberOfEntries)
9623           Score += PartitionScores::FewCases;
9624         else if (NumEntries >= MinJumpTableEntries)
9625           Score += PartitionScores::Table;
9626 
9627         // If this leads to fewer partitions, or to the same number of
9628         // partitions with better score, it is a better partitioning.
9629         if (NumPartitions < MinPartitions[i] ||
9630             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9631           MinPartitions[i] = NumPartitions;
9632           LastElement[i] = j;
9633           PartitionsScore[i] = Score;
9634         }
9635       }
9636     }
9637   }
9638 
9639   // Iterate over the partitions, replacing some with jump tables in-place.
9640   unsigned DstIndex = 0;
9641   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9642     Last = LastElement[First];
9643     assert(Last >= First);
9644     assert(DstIndex <= First);
9645     unsigned NumClusters = Last - First + 1;
9646 
9647     CaseCluster JTCluster;
9648     if (NumClusters >= MinJumpTableEntries &&
9649         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9650       Clusters[DstIndex++] = JTCluster;
9651     } else {
9652       for (unsigned I = First; I <= Last; ++I)
9653         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9654     }
9655   }
9656   Clusters.resize(DstIndex);
9657 }
9658 
9659 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9660                                         unsigned First, unsigned Last,
9661                                         const SwitchInst *SI,
9662                                         CaseCluster &BTCluster) {
9663   assert(First <= Last);
9664   if (First == Last)
9665     return false;
9666 
9667   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9668   unsigned NumCmps = 0;
9669   for (int64_t I = First; I <= Last; ++I) {
9670     assert(Clusters[I].Kind == CC_Range);
9671     Dests.set(Clusters[I].MBB->getNumber());
9672     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9673   }
9674   unsigned NumDests = Dests.count();
9675 
9676   APInt Low = Clusters[First].Low->getValue();
9677   APInt High = Clusters[Last].High->getValue();
9678   assert(Low.slt(High));
9679 
9680   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9681   const DataLayout &DL = DAG.getDataLayout();
9682   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9683     return false;
9684 
9685   APInt LowBound;
9686   APInt CmpRange;
9687 
9688   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9689   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9690          "Case range must fit in bit mask!");
9691 
9692   // Check if the clusters cover a contiguous range such that no value in the
9693   // range will jump to the default statement.
9694   bool ContiguousRange = true;
9695   for (int64_t I = First + 1; I <= Last; ++I) {
9696     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9697       ContiguousRange = false;
9698       break;
9699     }
9700   }
9701 
9702   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9703     // Optimize the case where all the case values fit in a word without having
9704     // to subtract minValue. In this case, we can optimize away the subtraction.
9705     LowBound = APInt::getNullValue(Low.getBitWidth());
9706     CmpRange = High;
9707     ContiguousRange = false;
9708   } else {
9709     LowBound = Low;
9710     CmpRange = High - Low;
9711   }
9712 
9713   CaseBitsVector CBV;
9714   auto TotalProb = BranchProbability::getZero();
9715   for (unsigned i = First; i <= Last; ++i) {
9716     // Find the CaseBits for this destination.
9717     unsigned j;
9718     for (j = 0; j < CBV.size(); ++j)
9719       if (CBV[j].BB == Clusters[i].MBB)
9720         break;
9721     if (j == CBV.size())
9722       CBV.push_back(
9723           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9724     CaseBits *CB = &CBV[j];
9725 
9726     // Update Mask, Bits and ExtraProb.
9727     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9728     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9729     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9730     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9731     CB->Bits += Hi - Lo + 1;
9732     CB->ExtraProb += Clusters[i].Prob;
9733     TotalProb += Clusters[i].Prob;
9734   }
9735 
9736   BitTestInfo BTI;
9737   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
9738     // Sort by probability first, number of bits second, bit mask third.
9739     if (a.ExtraProb != b.ExtraProb)
9740       return a.ExtraProb > b.ExtraProb;
9741     if (a.Bits != b.Bits)
9742       return a.Bits > b.Bits;
9743     return a.Mask < b.Mask;
9744   });
9745 
9746   for (auto &CB : CBV) {
9747     MachineBasicBlock *BitTestBB =
9748         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9749     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9750   }
9751   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9752                             SI->getCondition(), -1U, MVT::Other, false,
9753                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9754                             TotalProb);
9755 
9756   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9757                                     BitTestCases.size() - 1, TotalProb);
9758   return true;
9759 }
9760 
9761 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9762                                               const SwitchInst *SI) {
9763 // Partition Clusters into as few subsets as possible, where each subset has a
9764 // range that fits in a machine word and has <= 3 unique destinations.
9765 
9766 #ifndef NDEBUG
9767   // Clusters must be sorted and contain Range or JumpTable clusters.
9768   assert(!Clusters.empty());
9769   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9770   for (const CaseCluster &C : Clusters)
9771     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9772   for (unsigned i = 1; i < Clusters.size(); ++i)
9773     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9774 #endif
9775 
9776   // The algorithm below is not suitable for -O0.
9777   if (TM.getOptLevel() == CodeGenOpt::None)
9778     return;
9779 
9780   // If target does not have legal shift left, do not emit bit tests at all.
9781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9782   const DataLayout &DL = DAG.getDataLayout();
9783 
9784   EVT PTy = TLI.getPointerTy(DL);
9785   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9786     return;
9787 
9788   int BitWidth = PTy.getSizeInBits();
9789   const int64_t N = Clusters.size();
9790 
9791   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9792   SmallVector<unsigned, 8> MinPartitions(N);
9793   // LastElement[i] is the last element of the partition starting at i.
9794   SmallVector<unsigned, 8> LastElement(N);
9795 
9796   // FIXME: This might not be the best algorithm for finding bit test clusters.
9797 
9798   // Base case: There is only one way to partition Clusters[N-1].
9799   MinPartitions[N - 1] = 1;
9800   LastElement[N - 1] = N - 1;
9801 
9802   // Note: loop indexes are signed to avoid underflow.
9803   for (int64_t i = N - 2; i >= 0; --i) {
9804     // Find optimal partitioning of Clusters[i..N-1].
9805     // Baseline: Put Clusters[i] into a partition on its own.
9806     MinPartitions[i] = MinPartitions[i + 1] + 1;
9807     LastElement[i] = i;
9808 
9809     // Search for a solution that results in fewer partitions.
9810     // Note: the search is limited by BitWidth, reducing time complexity.
9811     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9812       // Try building a partition from Clusters[i..j].
9813 
9814       // Check the range.
9815       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9816                                Clusters[j].High->getValue(), DL))
9817         continue;
9818 
9819       // Check nbr of destinations and cluster types.
9820       // FIXME: This works, but doesn't seem very efficient.
9821       bool RangesOnly = true;
9822       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9823       for (int64_t k = i; k <= j; k++) {
9824         if (Clusters[k].Kind != CC_Range) {
9825           RangesOnly = false;
9826           break;
9827         }
9828         Dests.set(Clusters[k].MBB->getNumber());
9829       }
9830       if (!RangesOnly || Dests.count() > 3)
9831         break;
9832 
9833       // Check if it's a better partition.
9834       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9835       if (NumPartitions < MinPartitions[i]) {
9836         // Found a better partition.
9837         MinPartitions[i] = NumPartitions;
9838         LastElement[i] = j;
9839       }
9840     }
9841   }
9842 
9843   // Iterate over the partitions, replacing with bit-test clusters in-place.
9844   unsigned DstIndex = 0;
9845   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9846     Last = LastElement[First];
9847     assert(First <= Last);
9848     assert(DstIndex <= First);
9849 
9850     CaseCluster BitTestCluster;
9851     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9852       Clusters[DstIndex++] = BitTestCluster;
9853     } else {
9854       size_t NumClusters = Last - First + 1;
9855       std::memmove(&Clusters[DstIndex], &Clusters[First],
9856                    sizeof(Clusters[0]) * NumClusters);
9857       DstIndex += NumClusters;
9858     }
9859   }
9860   Clusters.resize(DstIndex);
9861 }
9862 
9863 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9864                                         MachineBasicBlock *SwitchMBB,
9865                                         MachineBasicBlock *DefaultMBB) {
9866   MachineFunction *CurMF = FuncInfo.MF;
9867   MachineBasicBlock *NextMBB = nullptr;
9868   MachineFunction::iterator BBI(W.MBB);
9869   if (++BBI != FuncInfo.MF->end())
9870     NextMBB = &*BBI;
9871 
9872   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9873 
9874   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9875 
9876   if (Size == 2 && W.MBB == SwitchMBB) {
9877     // If any two of the cases has the same destination, and if one value
9878     // is the same as the other, but has one bit unset that the other has set,
9879     // use bit manipulation to do two compares at once.  For example:
9880     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9881     // TODO: This could be extended to merge any 2 cases in switches with 3
9882     // cases.
9883     // TODO: Handle cases where W.CaseBB != SwitchBB.
9884     CaseCluster &Small = *W.FirstCluster;
9885     CaseCluster &Big = *W.LastCluster;
9886 
9887     if (Small.Low == Small.High && Big.Low == Big.High &&
9888         Small.MBB == Big.MBB) {
9889       const APInt &SmallValue = Small.Low->getValue();
9890       const APInt &BigValue = Big.Low->getValue();
9891 
9892       // Check that there is only one bit different.
9893       APInt CommonBit = BigValue ^ SmallValue;
9894       if (CommonBit.isPowerOf2()) {
9895         SDValue CondLHS = getValue(Cond);
9896         EVT VT = CondLHS.getValueType();
9897         SDLoc DL = getCurSDLoc();
9898 
9899         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9900                                  DAG.getConstant(CommonBit, DL, VT));
9901         SDValue Cond = DAG.getSetCC(
9902             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9903             ISD::SETEQ);
9904 
9905         // Update successor info.
9906         // Both Small and Big will jump to Small.BB, so we sum up the
9907         // probabilities.
9908         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9909         if (BPI)
9910           addSuccessorWithProb(
9911               SwitchMBB, DefaultMBB,
9912               // The default destination is the first successor in IR.
9913               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9914         else
9915           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9916 
9917         // Insert the true branch.
9918         SDValue BrCond =
9919             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9920                         DAG.getBasicBlock(Small.MBB));
9921         // Insert the false branch.
9922         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9923                              DAG.getBasicBlock(DefaultMBB));
9924 
9925         DAG.setRoot(BrCond);
9926         return;
9927       }
9928     }
9929   }
9930 
9931   if (TM.getOptLevel() != CodeGenOpt::None) {
9932     // Here, we order cases by probability so the most likely case will be
9933     // checked first. However, two clusters can have the same probability in
9934     // which case their relative ordering is non-deterministic. So we use Low
9935     // as a tie-breaker as clusters are guaranteed to never overlap.
9936     llvm::sort(W.FirstCluster, W.LastCluster + 1,
9937                [](const CaseCluster &a, const CaseCluster &b) {
9938       return a.Prob != b.Prob ?
9939              a.Prob > b.Prob :
9940              a.Low->getValue().slt(b.Low->getValue());
9941     });
9942 
9943     // Rearrange the case blocks so that the last one falls through if possible
9944     // without changing the order of probabilities.
9945     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9946       --I;
9947       if (I->Prob > W.LastCluster->Prob)
9948         break;
9949       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9950         std::swap(*I, *W.LastCluster);
9951         break;
9952       }
9953     }
9954   }
9955 
9956   // Compute total probability.
9957   BranchProbability DefaultProb = W.DefaultProb;
9958   BranchProbability UnhandledProbs = DefaultProb;
9959   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9960     UnhandledProbs += I->Prob;
9961 
9962   MachineBasicBlock *CurMBB = W.MBB;
9963   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9964     MachineBasicBlock *Fallthrough;
9965     if (I == W.LastCluster) {
9966       // For the last cluster, fall through to the default destination.
9967       Fallthrough = DefaultMBB;
9968     } else {
9969       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9970       CurMF->insert(BBI, Fallthrough);
9971       // Put Cond in a virtual register to make it available from the new blocks.
9972       ExportFromCurrentBlock(Cond);
9973     }
9974     UnhandledProbs -= I->Prob;
9975 
9976     switch (I->Kind) {
9977       case CC_JumpTable: {
9978         // FIXME: Optimize away range check based on pivot comparisons.
9979         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9980         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9981 
9982         // The jump block hasn't been inserted yet; insert it here.
9983         MachineBasicBlock *JumpMBB = JT->MBB;
9984         CurMF->insert(BBI, JumpMBB);
9985 
9986         auto JumpProb = I->Prob;
9987         auto FallthroughProb = UnhandledProbs;
9988 
9989         // If the default statement is a target of the jump table, we evenly
9990         // distribute the default probability to successors of CurMBB. Also
9991         // update the probability on the edge from JumpMBB to Fallthrough.
9992         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9993                                               SE = JumpMBB->succ_end();
9994              SI != SE; ++SI) {
9995           if (*SI == DefaultMBB) {
9996             JumpProb += DefaultProb / 2;
9997             FallthroughProb -= DefaultProb / 2;
9998             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9999             JumpMBB->normalizeSuccProbs();
10000             break;
10001           }
10002         }
10003 
10004         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10005         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10006         CurMBB->normalizeSuccProbs();
10007 
10008         // The jump table header will be inserted in our current block, do the
10009         // range check, and fall through to our fallthrough block.
10010         JTH->HeaderBB = CurMBB;
10011         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10012 
10013         // If we're in the right place, emit the jump table header right now.
10014         if (CurMBB == SwitchMBB) {
10015           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10016           JTH->Emitted = true;
10017         }
10018         break;
10019       }
10020       case CC_BitTests: {
10021         // FIXME: Optimize away range check based on pivot comparisons.
10022         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10023 
10024         // The bit test blocks haven't been inserted yet; insert them here.
10025         for (BitTestCase &BTC : BTB->Cases)
10026           CurMF->insert(BBI, BTC.ThisBB);
10027 
10028         // Fill in fields of the BitTestBlock.
10029         BTB->Parent = CurMBB;
10030         BTB->Default = Fallthrough;
10031 
10032         BTB->DefaultProb = UnhandledProbs;
10033         // If the cases in bit test don't form a contiguous range, we evenly
10034         // distribute the probability on the edge to Fallthrough to two
10035         // successors of CurMBB.
10036         if (!BTB->ContiguousRange) {
10037           BTB->Prob += DefaultProb / 2;
10038           BTB->DefaultProb -= DefaultProb / 2;
10039         }
10040 
10041         // If we're in the right place, emit the bit test header right now.
10042         if (CurMBB == SwitchMBB) {
10043           visitBitTestHeader(*BTB, SwitchMBB);
10044           BTB->Emitted = true;
10045         }
10046         break;
10047       }
10048       case CC_Range: {
10049         const Value *RHS, *LHS, *MHS;
10050         ISD::CondCode CC;
10051         if (I->Low == I->High) {
10052           // Check Cond == I->Low.
10053           CC = ISD::SETEQ;
10054           LHS = Cond;
10055           RHS=I->Low;
10056           MHS = nullptr;
10057         } else {
10058           // Check I->Low <= Cond <= I->High.
10059           CC = ISD::SETLE;
10060           LHS = I->Low;
10061           MHS = Cond;
10062           RHS = I->High;
10063         }
10064 
10065         // The false probability is the sum of all unhandled cases.
10066         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10067                      getCurSDLoc(), I->Prob, UnhandledProbs);
10068 
10069         if (CurMBB == SwitchMBB)
10070           visitSwitchCase(CB, SwitchMBB);
10071         else
10072           SwitchCases.push_back(CB);
10073 
10074         break;
10075       }
10076     }
10077     CurMBB = Fallthrough;
10078   }
10079 }
10080 
10081 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10082                                               CaseClusterIt First,
10083                                               CaseClusterIt Last) {
10084   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10085     if (X.Prob != CC.Prob)
10086       return X.Prob > CC.Prob;
10087 
10088     // Ties are broken by comparing the case value.
10089     return X.Low->getValue().slt(CC.Low->getValue());
10090   });
10091 }
10092 
10093 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10094                                         const SwitchWorkListItem &W,
10095                                         Value *Cond,
10096                                         MachineBasicBlock *SwitchMBB) {
10097   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10098          "Clusters not sorted?");
10099 
10100   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10101 
10102   // Balance the tree based on branch probabilities to create a near-optimal (in
10103   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10104   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10105   CaseClusterIt LastLeft = W.FirstCluster;
10106   CaseClusterIt FirstRight = W.LastCluster;
10107   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10108   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10109 
10110   // Move LastLeft and FirstRight towards each other from opposite directions to
10111   // find a partitioning of the clusters which balances the probability on both
10112   // sides. If LeftProb and RightProb are equal, alternate which side is
10113   // taken to ensure 0-probability nodes are distributed evenly.
10114   unsigned I = 0;
10115   while (LastLeft + 1 < FirstRight) {
10116     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10117       LeftProb += (++LastLeft)->Prob;
10118     else
10119       RightProb += (--FirstRight)->Prob;
10120     I++;
10121   }
10122 
10123   while (true) {
10124     // Our binary search tree differs from a typical BST in that ours can have up
10125     // to three values in each leaf. The pivot selection above doesn't take that
10126     // into account, which means the tree might require more nodes and be less
10127     // efficient. We compensate for this here.
10128 
10129     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10130     unsigned NumRight = W.LastCluster - FirstRight + 1;
10131 
10132     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10133       // If one side has less than 3 clusters, and the other has more than 3,
10134       // consider taking a cluster from the other side.
10135 
10136       if (NumLeft < NumRight) {
10137         // Consider moving the first cluster on the right to the left side.
10138         CaseCluster &CC = *FirstRight;
10139         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10140         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10141         if (LeftSideRank <= RightSideRank) {
10142           // Moving the cluster to the left does not demote it.
10143           ++LastLeft;
10144           ++FirstRight;
10145           continue;
10146         }
10147       } else {
10148         assert(NumRight < NumLeft);
10149         // Consider moving the last element on the left to the right side.
10150         CaseCluster &CC = *LastLeft;
10151         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10152         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10153         if (RightSideRank <= LeftSideRank) {
10154           // Moving the cluster to the right does not demot it.
10155           --LastLeft;
10156           --FirstRight;
10157           continue;
10158         }
10159       }
10160     }
10161     break;
10162   }
10163 
10164   assert(LastLeft + 1 == FirstRight);
10165   assert(LastLeft >= W.FirstCluster);
10166   assert(FirstRight <= W.LastCluster);
10167 
10168   // Use the first element on the right as pivot since we will make less-than
10169   // comparisons against it.
10170   CaseClusterIt PivotCluster = FirstRight;
10171   assert(PivotCluster > W.FirstCluster);
10172   assert(PivotCluster <= W.LastCluster);
10173 
10174   CaseClusterIt FirstLeft = W.FirstCluster;
10175   CaseClusterIt LastRight = W.LastCluster;
10176 
10177   const ConstantInt *Pivot = PivotCluster->Low;
10178 
10179   // New blocks will be inserted immediately after the current one.
10180   MachineFunction::iterator BBI(W.MBB);
10181   ++BBI;
10182 
10183   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10184   // we can branch to its destination directly if it's squeezed exactly in
10185   // between the known lower bound and Pivot - 1.
10186   MachineBasicBlock *LeftMBB;
10187   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10188       FirstLeft->Low == W.GE &&
10189       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10190     LeftMBB = FirstLeft->MBB;
10191   } else {
10192     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10193     FuncInfo.MF->insert(BBI, LeftMBB);
10194     WorkList.push_back(
10195         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10196     // Put Cond in a virtual register to make it available from the new blocks.
10197     ExportFromCurrentBlock(Cond);
10198   }
10199 
10200   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10201   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10202   // directly if RHS.High equals the current upper bound.
10203   MachineBasicBlock *RightMBB;
10204   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10205       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10206     RightMBB = FirstRight->MBB;
10207   } else {
10208     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10209     FuncInfo.MF->insert(BBI, RightMBB);
10210     WorkList.push_back(
10211         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10212     // Put Cond in a virtual register to make it available from the new blocks.
10213     ExportFromCurrentBlock(Cond);
10214   }
10215 
10216   // Create the CaseBlock record that will be used to lower the branch.
10217   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10218                getCurSDLoc(), LeftProb, RightProb);
10219 
10220   if (W.MBB == SwitchMBB)
10221     visitSwitchCase(CB, SwitchMBB);
10222   else
10223     SwitchCases.push_back(CB);
10224 }
10225 
10226 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10227 // from the swith statement.
10228 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10229                                             BranchProbability PeeledCaseProb) {
10230   if (PeeledCaseProb == BranchProbability::getOne())
10231     return BranchProbability::getZero();
10232   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10233 
10234   uint32_t Numerator = CaseProb.getNumerator();
10235   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10236   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10237 }
10238 
10239 // Try to peel the top probability case if it exceeds the threshold.
10240 // Return current MachineBasicBlock for the switch statement if the peeling
10241 // does not occur.
10242 // If the peeling is performed, return the newly created MachineBasicBlock
10243 // for the peeled switch statement. Also update Clusters to remove the peeled
10244 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10245 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10246     const SwitchInst &SI, CaseClusterVector &Clusters,
10247     BranchProbability &PeeledCaseProb) {
10248   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10249   // Don't perform if there is only one cluster or optimizing for size.
10250   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10251       TM.getOptLevel() == CodeGenOpt::None ||
10252       SwitchMBB->getParent()->getFunction().optForMinSize())
10253     return SwitchMBB;
10254 
10255   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10256   unsigned PeeledCaseIndex = 0;
10257   bool SwitchPeeled = false;
10258   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10259     CaseCluster &CC = Clusters[Index];
10260     if (CC.Prob < TopCaseProb)
10261       continue;
10262     TopCaseProb = CC.Prob;
10263     PeeledCaseIndex = Index;
10264     SwitchPeeled = true;
10265   }
10266   if (!SwitchPeeled)
10267     return SwitchMBB;
10268 
10269   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10270                     << TopCaseProb << "\n");
10271 
10272   // Record the MBB for the peeled switch statement.
10273   MachineFunction::iterator BBI(SwitchMBB);
10274   ++BBI;
10275   MachineBasicBlock *PeeledSwitchMBB =
10276       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10277   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10278 
10279   ExportFromCurrentBlock(SI.getCondition());
10280   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10281   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10282                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10283   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10284 
10285   Clusters.erase(PeeledCaseIt);
10286   for (CaseCluster &CC : Clusters) {
10287     LLVM_DEBUG(
10288         dbgs() << "Scale the probablity for one cluster, before scaling: "
10289                << CC.Prob << "\n");
10290     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10291     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10292   }
10293   PeeledCaseProb = TopCaseProb;
10294   return PeeledSwitchMBB;
10295 }
10296 
10297 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10298   // Extract cases from the switch.
10299   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10300   CaseClusterVector Clusters;
10301   Clusters.reserve(SI.getNumCases());
10302   for (auto I : SI.cases()) {
10303     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10304     const ConstantInt *CaseVal = I.getCaseValue();
10305     BranchProbability Prob =
10306         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10307             : BranchProbability(1, SI.getNumCases() + 1);
10308     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10309   }
10310 
10311   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10312 
10313   // Cluster adjacent cases with the same destination. We do this at all
10314   // optimization levels because it's cheap to do and will make codegen faster
10315   // if there are many clusters.
10316   sortAndRangeify(Clusters);
10317 
10318   // The branch probablity of the peeled case.
10319   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10320   MachineBasicBlock *PeeledSwitchMBB =
10321       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10322 
10323   // If there is only the default destination, jump there directly.
10324   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10325   if (Clusters.empty()) {
10326     assert(PeeledSwitchMBB == SwitchMBB);
10327     SwitchMBB->addSuccessor(DefaultMBB);
10328     if (DefaultMBB != NextBlock(SwitchMBB)) {
10329       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10330                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10331     }
10332     return;
10333   }
10334 
10335   findJumpTables(Clusters, &SI, DefaultMBB);
10336   findBitTestClusters(Clusters, &SI);
10337 
10338   LLVM_DEBUG({
10339     dbgs() << "Case clusters: ";
10340     for (const CaseCluster &C : Clusters) {
10341       if (C.Kind == CC_JumpTable)
10342         dbgs() << "JT:";
10343       if (C.Kind == CC_BitTests)
10344         dbgs() << "BT:";
10345 
10346       C.Low->getValue().print(dbgs(), true);
10347       if (C.Low != C.High) {
10348         dbgs() << '-';
10349         C.High->getValue().print(dbgs(), true);
10350       }
10351       dbgs() << ' ';
10352     }
10353     dbgs() << '\n';
10354   });
10355 
10356   assert(!Clusters.empty());
10357   SwitchWorkList WorkList;
10358   CaseClusterIt First = Clusters.begin();
10359   CaseClusterIt Last = Clusters.end() - 1;
10360   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10361   // Scale the branchprobability for DefaultMBB if the peel occurs and
10362   // DefaultMBB is not replaced.
10363   if (PeeledCaseProb != BranchProbability::getZero() &&
10364       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10365     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10366   WorkList.push_back(
10367       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10368 
10369   while (!WorkList.empty()) {
10370     SwitchWorkListItem W = WorkList.back();
10371     WorkList.pop_back();
10372     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10373 
10374     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10375         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10376       // For optimized builds, lower large range as a balanced binary tree.
10377       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10378       continue;
10379     }
10380 
10381     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10382   }
10383 }
10384