1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/FastISel.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/GCMetadata.h" 31 #include "llvm/CodeGen/GCStrategy.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineJumpTableInfo.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SelectionDAG.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/StackMaps.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GetElementPtrTypeIterator.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Statepoint.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetFrameLowering.h" 65 #include "llvm/Target/TargetInstrInfo.h" 66 #include "llvm/Target/TargetIntrinsicInfo.h" 67 #include "llvm/Target/TargetLowering.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Target/TargetSubtargetInfo.h" 70 #include <algorithm> 71 #include <utility> 72 using namespace llvm; 73 74 #define DEBUG_TYPE "isel" 75 76 /// LimitFloatPrecision - Generate low-precision inline sequences for 77 /// some float libcalls (6, 8 or 12 bits). 78 static unsigned LimitFloatPrecision; 79 80 static cl::opt<unsigned, true> 81 LimitFPPrecision("limit-float-precision", 82 cl::desc("Generate low-precision inline sequences " 83 "for some float libcalls"), 84 cl::location(LimitFloatPrecision), 85 cl::init(0)); 86 // Limit the width of DAG chains. This is important in general to prevent 87 // DAG-based analysis from blowing up. For example, alias analysis and 88 // load clustering may not complete in reasonable time. It is difficult to 89 // recognize and avoid this situation within each individual analysis, and 90 // future analyses are likely to have the same behavior. Limiting DAG width is 91 // the safe approach and will be especially important with global DAGs. 92 // 93 // MaxParallelChains default is arbitrarily high to avoid affecting 94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 95 // sequence over this should have been converted to llvm.memcpy by the 96 // frontend. It is easy to induce this behavior with .ll code such as: 97 // %buffer = alloca [4096 x i8] 98 // %data = load [4096 x i8]* %argPtr 99 // store [4096 x i8] %data, [4096 x i8]* %buffer 100 static const unsigned MaxParallelChains = 64; 101 102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 103 const SDValue *Parts, unsigned NumParts, 104 MVT PartVT, EVT ValueVT, const Value *V); 105 106 /// getCopyFromParts - Create a value that contains the specified legal parts 107 /// combined into the value they represent. If the parts combine to a type 108 /// larger than ValueVT then AssertOp can be used to specify whether the extra 109 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 110 /// (ISD::AssertSext). 111 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 112 const SDValue *Parts, unsigned NumParts, 113 MVT PartVT, EVT ValueVT, const Value *V, 114 Optional<ISD::NodeType> AssertOp = None) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (DAG.getDataLayout().isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (DAG.getDataLayout().isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = 168 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 169 DAG.getConstant(Lo.getValueSizeInBits(), DL, 170 TLI.getPointerTy(DAG.getDataLayout()))); 171 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 172 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 173 } 174 } else if (PartVT.isFloatingPoint()) { 175 // FP split into multiple FP parts (for ppcf128) 176 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 177 "Unexpected split"); 178 SDValue Lo, Hi; 179 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 180 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 181 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 182 std::swap(Lo, Hi); 183 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 184 } else { 185 // FP split into integer parts (soft fp) 186 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 187 !PartVT.isVector() && "Unexpected split"); 188 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 189 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 190 } 191 } 192 193 // There is now one part, held in Val. Correct it to match ValueVT. 194 // PartEVT is the type of the register class that holds the value. 195 // ValueVT is the type of the inline asm operation. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 // Handle types that have the same size. 210 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 211 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 212 213 // Handle types with different sizes. 214 if (PartEVT.isInteger() && ValueVT.isInteger()) { 215 if (ValueVT.bitsLT(PartEVT)) { 216 // For a truncate, see if we have any information to 217 // indicate whether the truncated bits will always be 218 // zero or sign-extension. 219 if (AssertOp.hasValue()) 220 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 221 DAG.getValueType(ValueVT)); 222 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 223 } 224 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 225 } 226 227 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 228 // FP_ROUND's are always exact here. 229 if (ValueVT.bitsLT(Val.getValueType())) 230 return DAG.getNode( 231 ISD::FP_ROUND, DL, ValueVT, Val, 232 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 233 234 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 235 } 236 237 llvm_unreachable("Unknown mismatch!"); 238 } 239 240 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 241 const Twine &ErrMsg) { 242 const Instruction *I = dyn_cast_or_null<Instruction>(V); 243 if (!V) 244 return Ctx.emitError(ErrMsg); 245 246 const char *AsmError = ", possible invalid constraint for vector type"; 247 if (const CallInst *CI = dyn_cast<CallInst>(I)) 248 if (isa<InlineAsm>(CI->getCalledValue())) 249 return Ctx.emitError(I, ErrMsg + AsmError); 250 251 return Ctx.emitError(I, ErrMsg); 252 } 253 254 /// getCopyFromPartsVector - Create a value that contains the specified legal 255 /// parts combined into the value they represent. If the parts combine to a 256 /// type larger than ValueVT then AssertOp can be used to specify whether the 257 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 258 /// ValueVT (ISD::AssertSext). 259 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 260 const SDValue *Parts, unsigned NumParts, 261 MVT PartVT, EVT ValueVT, const Value *V) { 262 assert(ValueVT.isVector() && "Not a vector value"); 263 assert(NumParts > 0 && "No parts to assemble!"); 264 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 265 SDValue Val = Parts[0]; 266 267 // Handle a multi-element vector. 268 if (NumParts > 1) { 269 EVT IntermediateVT; 270 MVT RegisterVT; 271 unsigned NumIntermediates; 272 unsigned NumRegs = 273 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 274 NumIntermediates, RegisterVT); 275 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 276 NumParts = NumRegs; // Silence a compiler warning. 277 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 278 assert(RegisterVT.getSizeInBits() == 279 Parts[0].getSimpleValueType().getSizeInBits() && 280 "Part type sizes don't match!"); 281 282 // Assemble the parts into intermediate operands. 283 SmallVector<SDValue, 8> Ops(NumIntermediates); 284 if (NumIntermediates == NumParts) { 285 // If the register was not expanded, truncate or copy the value, 286 // as appropriate. 287 for (unsigned i = 0; i != NumParts; ++i) 288 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 289 PartVT, IntermediateVT, V); 290 } else if (NumParts > 0) { 291 // If the intermediate type was expanded, build the intermediate 292 // operands from the parts. 293 assert(NumParts % NumIntermediates == 0 && 294 "Must expand into a divisible number of parts!"); 295 unsigned Factor = NumParts / NumIntermediates; 296 for (unsigned i = 0; i != NumIntermediates; ++i) 297 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 298 PartVT, IntermediateVT, V); 299 } 300 301 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 302 // intermediate operands. 303 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 304 : ISD::BUILD_VECTOR, 305 DL, ValueVT, Ops); 306 } 307 308 // There is now one part, held in Val. Correct it to match ValueVT. 309 EVT PartEVT = Val.getValueType(); 310 311 if (PartEVT == ValueVT) 312 return Val; 313 314 if (PartEVT.isVector()) { 315 // If the element type of the source/dest vectors are the same, but the 316 // parts vector has more elements than the value vector, then we have a 317 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 318 // elements we want. 319 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 320 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 321 "Cannot narrow, it would be a lossy transformation"); 322 return DAG.getNode( 323 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 324 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 325 } 326 327 // Vector/Vector bitcast. 328 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 329 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 330 331 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 332 "Cannot handle this kind of promotion"); 333 // Promoted vector extract 334 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 335 336 } 337 338 // Trivial bitcast if the types are the same size and the destination 339 // vector type is legal. 340 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 341 TLI.isTypeLegal(ValueVT)) 342 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 343 344 // Handle cases such as i8 -> <1 x i1> 345 if (ValueVT.getVectorNumElements() != 1) { 346 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 347 "non-trivial scalar-to-vector conversion"); 348 return DAG.getUNDEF(ValueVT); 349 } 350 351 EVT ValueSVT = ValueVT.getVectorElementType(); 352 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 353 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 354 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 355 356 return DAG.getBuildVector(ValueVT, DL, Val); 357 } 358 359 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 360 SDValue Val, SDValue *Parts, unsigned NumParts, 361 MVT PartVT, const Value *V); 362 363 /// getCopyToParts - Create a series of nodes that contain the specified value 364 /// split into legal parts. If the parts contain more bits than Val, then, for 365 /// integers, ExtendKind can be used to specify how to generate the extra bits. 366 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 367 SDValue *Parts, unsigned NumParts, MVT PartVT, 368 const Value *V, 369 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 370 EVT ValueVT = Val.getValueType(); 371 372 // Handle the vector case separately. 373 if (ValueVT.isVector()) 374 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 375 376 unsigned PartBits = PartVT.getSizeInBits(); 377 unsigned OrigNumParts = NumParts; 378 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 379 "Copying to an illegal type!"); 380 381 if (NumParts == 0) 382 return; 383 384 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 385 EVT PartEVT = PartVT; 386 if (PartEVT == ValueVT) { 387 assert(NumParts == 1 && "No-op copy with multiple parts!"); 388 Parts[0] = Val; 389 return; 390 } 391 392 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 393 // If the parts cover more bits than the value has, promote the value. 394 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 395 assert(NumParts == 1 && "Do not know what to promote to!"); 396 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 397 } else { 398 if (ValueVT.isFloatingPoint()) { 399 // FP values need to be bitcast, then extended if they are being put 400 // into a larger container. 401 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 402 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 403 } 404 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 405 ValueVT.isInteger() && 406 "Unknown mismatch!"); 407 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 408 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 409 if (PartVT == MVT::x86mmx) 410 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 411 } 412 } else if (PartBits == ValueVT.getSizeInBits()) { 413 // Different types of the same size. 414 assert(NumParts == 1 && PartEVT != ValueVT); 415 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 416 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 417 // If the parts cover less bits than value has, truncate the value. 418 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 419 ValueVT.isInteger() && 420 "Unknown mismatch!"); 421 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 422 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 423 if (PartVT == MVT::x86mmx) 424 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 425 } 426 427 // The value may have changed - recompute ValueVT. 428 ValueVT = Val.getValueType(); 429 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 430 "Failed to tile the value with PartVT!"); 431 432 if (NumParts == 1) { 433 if (PartEVT != ValueVT) { 434 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 435 "scalar-to-vector conversion failed"); 436 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 437 } 438 439 Parts[0] = Val; 440 return; 441 } 442 443 // Expand the value into multiple parts. 444 if (NumParts & (NumParts - 1)) { 445 // The number of parts is not a power of 2. Split off and copy the tail. 446 assert(PartVT.isInteger() && ValueVT.isInteger() && 447 "Do not know what to expand to!"); 448 unsigned RoundParts = 1 << Log2_32(NumParts); 449 unsigned RoundBits = RoundParts * PartBits; 450 unsigned OddParts = NumParts - RoundParts; 451 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 452 DAG.getIntPtrConstant(RoundBits, DL)); 453 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 454 455 if (DAG.getDataLayout().isBigEndian()) 456 // The odd parts were reversed by getCopyToParts - unreverse them. 457 std::reverse(Parts + RoundParts, Parts + NumParts); 458 459 NumParts = RoundParts; 460 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 461 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 462 } 463 464 // The number of parts is a power of 2. Repeatedly bisect the value using 465 // EXTRACT_ELEMENT. 466 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 467 EVT::getIntegerVT(*DAG.getContext(), 468 ValueVT.getSizeInBits()), 469 Val); 470 471 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 472 for (unsigned i = 0; i < NumParts; i += StepSize) { 473 unsigned ThisBits = StepSize * PartBits / 2; 474 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 475 SDValue &Part0 = Parts[i]; 476 SDValue &Part1 = Parts[i+StepSize/2]; 477 478 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 479 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 480 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 481 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 482 483 if (ThisBits == PartBits && ThisVT != PartVT) { 484 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 485 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 486 } 487 } 488 } 489 490 if (DAG.getDataLayout().isBigEndian()) 491 std::reverse(Parts, Parts + OrigNumParts); 492 } 493 494 495 /// getCopyToPartsVector - Create a series of nodes that contain the specified 496 /// value split into legal parts. 497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 498 SDValue Val, SDValue *Parts, unsigned NumParts, 499 MVT PartVT, const Value *V) { 500 EVT ValueVT = Val.getValueType(); 501 assert(ValueVT.isVector() && "Not a vector"); 502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 503 504 if (NumParts == 1) { 505 EVT PartEVT = PartVT; 506 if (PartEVT == ValueVT) { 507 // Nothing to do. 508 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 509 // Bitconvert vector->vector case. 510 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 511 } else if (PartVT.isVector() && 512 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 513 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 514 EVT ElementVT = PartVT.getVectorElementType(); 515 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 516 // undef elements. 517 SmallVector<SDValue, 16> Ops; 518 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 519 Ops.push_back(DAG.getNode( 520 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 521 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 522 523 for (unsigned i = ValueVT.getVectorNumElements(), 524 e = PartVT.getVectorNumElements(); i != e; ++i) 525 Ops.push_back(DAG.getUNDEF(ElementVT)); 526 527 Val = DAG.getBuildVector(PartVT, DL, Ops); 528 529 // FIXME: Use CONCAT for 2x -> 4x. 530 531 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 532 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 533 } else if (PartVT.isVector() && 534 PartEVT.getVectorElementType().bitsGE( 535 ValueVT.getVectorElementType()) && 536 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 537 538 // Promoted vector extract 539 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 540 } else{ 541 // Vector -> scalar conversion. 542 assert(ValueVT.getVectorNumElements() == 1 && 543 "Only trivial vector-to-scalar conversions should get here!"); 544 Val = DAG.getNode( 545 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 546 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 547 } 548 549 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 550 Parts[0] = Val; 551 return; 552 } 553 554 // Handle a multi-element vector. 555 EVT IntermediateVT; 556 MVT RegisterVT; 557 unsigned NumIntermediates; 558 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 559 IntermediateVT, 560 NumIntermediates, RegisterVT); 561 unsigned NumElements = ValueVT.getVectorNumElements(); 562 563 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 564 NumParts = NumRegs; // Silence a compiler warning. 565 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 566 567 // Split the vector into intermediate operands. 568 SmallVector<SDValue, 8> Ops(NumIntermediates); 569 for (unsigned i = 0; i != NumIntermediates; ++i) { 570 if (IntermediateVT.isVector()) 571 Ops[i] = 572 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 573 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 574 TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 else 576 Ops[i] = DAG.getNode( 577 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 578 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 579 } 580 581 // Split the intermediate operands into legal parts. 582 if (NumParts == NumIntermediates) { 583 // If the register was not expanded, promote or copy the value, 584 // as appropriate. 585 for (unsigned i = 0; i != NumParts; ++i) 586 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 587 } else if (NumParts > 0) { 588 // If the intermediate type was expanded, split each the value into 589 // legal parts. 590 assert(NumIntermediates != 0 && "division by zero"); 591 assert(NumParts % NumIntermediates == 0 && 592 "Must expand into a divisible number of parts!"); 593 unsigned Factor = NumParts / NumIntermediates; 594 for (unsigned i = 0; i != NumIntermediates; ++i) 595 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 596 } 597 } 598 599 RegsForValue::RegsForValue() {} 600 601 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 602 EVT valuevt) 603 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 604 605 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 606 const DataLayout &DL, unsigned Reg, Type *Ty) { 607 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 608 609 for (EVT ValueVT : ValueVTs) { 610 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 611 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 612 for (unsigned i = 0; i != NumRegs; ++i) 613 Regs.push_back(Reg + i); 614 RegVTs.push_back(RegisterVT); 615 Reg += NumRegs; 616 } 617 } 618 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 const SDLoc &dl, SDValue &Chain, 622 SDValue *Flag, const Value *V) const { 623 // A Value with type {} or [0 x %t] needs no registers. 624 if (ValueVTs.empty()) 625 return SDValue(); 626 627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 628 629 // Assemble the legal parts into the final values. 630 SmallVector<SDValue, 4> Values(ValueVTs.size()); 631 SmallVector<SDValue, 8> Parts; 632 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 633 // Copy the legal parts from the registers. 634 EVT ValueVT = ValueVTs[Value]; 635 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 636 MVT RegisterVT = RegVTs[Value]; 637 638 Parts.resize(NumRegs); 639 for (unsigned i = 0; i != NumRegs; ++i) { 640 SDValue P; 641 if (!Flag) { 642 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 643 } else { 644 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 645 *Flag = P.getValue(2); 646 } 647 648 Chain = P.getValue(1); 649 Parts[i] = P; 650 651 // If the source register was virtual and if we know something about it, 652 // add an assert node. 653 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 654 !RegisterVT.isInteger() || RegisterVT.isVector()) 655 continue; 656 657 const FunctionLoweringInfo::LiveOutInfo *LOI = 658 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 659 if (!LOI) 660 continue; 661 662 unsigned RegSize = RegisterVT.getSizeInBits(); 663 unsigned NumSignBits = LOI->NumSignBits; 664 unsigned NumZeroBits = LOI->Known.Zero.countLeadingOnes(); 665 666 if (NumZeroBits == RegSize) { 667 // The current value is a zero. 668 // Explicitly express that as it would be easier for 669 // optimizations to kick in. 670 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 671 continue; 672 } 673 674 // FIXME: We capture more information than the dag can represent. For 675 // now, just use the tightest assertzext/assertsext possible. 676 bool isSExt = true; 677 EVT FromVT(MVT::Other); 678 if (NumSignBits == RegSize) { 679 isSExt = true; // ASSERT SEXT 1 680 FromVT = MVT::i1; 681 } else if (NumZeroBits >= RegSize - 1) { 682 isSExt = false; // ASSERT ZEXT 1 683 FromVT = MVT::i1; 684 } else if (NumSignBits > RegSize - 8) { 685 isSExt = true; // ASSERT SEXT 8 686 FromVT = MVT::i8; 687 } else if (NumZeroBits >= RegSize - 8) { 688 isSExt = false; // ASSERT ZEXT 8 689 FromVT = MVT::i8; 690 } else if (NumSignBits > RegSize - 16) { 691 isSExt = true; // ASSERT SEXT 16 692 FromVT = MVT::i16; 693 } else if (NumZeroBits >= RegSize - 16) { 694 isSExt = false; // ASSERT ZEXT 16 695 FromVT = MVT::i16; 696 } else if (NumSignBits > RegSize - 32) { 697 isSExt = true; // ASSERT SEXT 32 698 FromVT = MVT::i32; 699 } else if (NumZeroBits >= RegSize - 32) { 700 isSExt = false; // ASSERT ZEXT 32 701 FromVT = MVT::i32; 702 } else { 703 continue; 704 } 705 // Add an assertion node. 706 assert(FromVT != MVT::Other); 707 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 708 RegisterVT, P, DAG.getValueType(FromVT)); 709 } 710 711 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 712 NumRegs, RegisterVT, ValueVT, V); 713 Part += NumRegs; 714 Parts.clear(); 715 } 716 717 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 718 } 719 720 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 721 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 722 const Value *V, 723 ISD::NodeType PreferredExtendType) const { 724 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 725 ISD::NodeType ExtendKind = PreferredExtendType; 726 727 // Get the list of the values's legal parts. 728 unsigned NumRegs = Regs.size(); 729 SmallVector<SDValue, 8> Parts(NumRegs); 730 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 731 EVT ValueVT = ValueVTs[Value]; 732 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 733 MVT RegisterVT = RegVTs[Value]; 734 735 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 736 ExtendKind = ISD::ZERO_EXTEND; 737 738 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 739 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 740 Part += NumParts; 741 } 742 743 // Copy the parts into the registers. 744 SmallVector<SDValue, 8> Chains(NumRegs); 745 for (unsigned i = 0; i != NumRegs; ++i) { 746 SDValue Part; 747 if (!Flag) { 748 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 749 } else { 750 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 751 *Flag = Part.getValue(1); 752 } 753 754 Chains[i] = Part.getValue(0); 755 } 756 757 if (NumRegs == 1 || Flag) 758 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 759 // flagged to it. That is the CopyToReg nodes and the user are considered 760 // a single scheduling unit. If we create a TokenFactor and return it as 761 // chain, then the TokenFactor is both a predecessor (operand) of the 762 // user as well as a successor (the TF operands are flagged to the user). 763 // c1, f1 = CopyToReg 764 // c2, f2 = CopyToReg 765 // c3 = TokenFactor c1, c2 766 // ... 767 // = op c3, ..., f2 768 Chain = Chains[NumRegs-1]; 769 else 770 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 771 } 772 773 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 774 unsigned MatchingIdx, const SDLoc &dl, 775 SelectionDAG &DAG, 776 std::vector<SDValue> &Ops) const { 777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 778 779 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 780 if (HasMatching) 781 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 782 else if (!Regs.empty() && 783 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 784 // Put the register class of the virtual registers in the flag word. That 785 // way, later passes can recompute register class constraints for inline 786 // assembly as well as normal instructions. 787 // Don't do this for tied operands that can use the regclass information 788 // from the def. 789 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 790 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 791 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 792 } 793 794 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 795 Ops.push_back(Res); 796 797 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 798 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 799 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 800 MVT RegisterVT = RegVTs[Value]; 801 for (unsigned i = 0; i != NumRegs; ++i) { 802 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 803 unsigned TheReg = Regs[Reg++]; 804 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 805 806 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 807 // If we clobbered the stack pointer, MFI should know about it. 808 assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 void SelectionDAGBuilder::clear() { 825 NodeMap.clear(); 826 UnusedArgNodeMap.clear(); 827 PendingLoads.clear(); 828 PendingExports.clear(); 829 CurInst = nullptr; 830 HasTailCall = false; 831 SDNodeOrder = LowestSDNodeOrder; 832 StatepointLowering.clear(); 833 } 834 835 void SelectionDAGBuilder::clearDanglingDebugInfo() { 836 DanglingDebugInfoMap.clear(); 837 } 838 839 SDValue SelectionDAGBuilder::getRoot() { 840 if (PendingLoads.empty()) 841 return DAG.getRoot(); 842 843 if (PendingLoads.size() == 1) { 844 SDValue Root = PendingLoads[0]; 845 DAG.setRoot(Root); 846 PendingLoads.clear(); 847 return Root; 848 } 849 850 // Otherwise, we have to make a token factor node. 851 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 852 PendingLoads); 853 PendingLoads.clear(); 854 DAG.setRoot(Root); 855 return Root; 856 } 857 858 SDValue SelectionDAGBuilder::getControlRoot() { 859 SDValue Root = DAG.getRoot(); 860 861 if (PendingExports.empty()) 862 return Root; 863 864 // Turn all of the CopyToReg chains into one factored node. 865 if (Root.getOpcode() != ISD::EntryToken) { 866 unsigned i = 0, e = PendingExports.size(); 867 for (; i != e; ++i) { 868 assert(PendingExports[i].getNode()->getNumOperands() > 1); 869 if (PendingExports[i].getNode()->getOperand(0) == Root) 870 break; // Don't add the root if we already indirectly depend on it. 871 } 872 873 if (i == e) 874 PendingExports.push_back(Root); 875 } 876 877 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 878 PendingExports); 879 PendingExports.clear(); 880 DAG.setRoot(Root); 881 return Root; 882 } 883 884 void SelectionDAGBuilder::visit(const Instruction &I) { 885 // Set up outgoing PHI node register values before emitting the terminator. 886 if (isa<TerminatorInst>(&I)) { 887 HandlePHINodesInSuccessorBlocks(I.getParent()); 888 } 889 890 // Increase the SDNodeOrder if dealing with a non-debug instruction. 891 if (!isa<DbgInfoIntrinsic>(I)) 892 ++SDNodeOrder; 893 894 CurInst = &I; 895 896 visit(I.getOpcode(), I); 897 898 if (!isa<TerminatorInst>(&I) && !HasTailCall && 899 !isStatepoint(&I)) // statepoints handle their exports internally 900 CopyToExportRegsIfNeeded(&I); 901 902 CurInst = nullptr; 903 } 904 905 void SelectionDAGBuilder::visitPHI(const PHINode &) { 906 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 907 } 908 909 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 910 // Note: this doesn't use InstVisitor, because it has to work with 911 // ConstantExpr's in addition to instructions. 912 switch (Opcode) { 913 default: llvm_unreachable("Unknown instruction type encountered!"); 914 // Build the switch statement using the Instruction.def file. 915 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 916 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 917 #include "llvm/IR/Instruction.def" 918 } 919 } 920 921 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 922 // generate the debug data structures now that we've seen its definition. 923 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 924 SDValue Val) { 925 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 926 if (DDI.getDI()) { 927 const DbgValueInst *DI = DDI.getDI(); 928 DebugLoc dl = DDI.getdl(); 929 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 930 DILocalVariable *Variable = DI->getVariable(); 931 DIExpression *Expr = DI->getExpression(); 932 assert(Variable->isValidLocationForIntrinsic(dl) && 933 "Expected inlined-at fields to agree"); 934 uint64_t Offset = DI->getOffset(); 935 SDDbgValue *SDV; 936 if (Val.getNode()) { 937 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 938 Val)) { 939 SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder); 940 DAG.AddDbgValue(SDV, Val.getNode(), false); 941 } 942 } else 943 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 944 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 945 } 946 } 947 948 /// getCopyFromRegs - If there was virtual register allocated for the value V 949 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 950 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 951 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 952 SDValue Result; 953 954 if (It != FuncInfo.ValueMap.end()) { 955 unsigned InReg = It->second; 956 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 957 DAG.getDataLayout(), InReg, Ty); 958 SDValue Chain = DAG.getEntryNode(); 959 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 960 resolveDanglingDebugInfo(V, Result); 961 } 962 963 return Result; 964 } 965 966 /// getValue - Return an SDValue for the given Value. 967 SDValue SelectionDAGBuilder::getValue(const Value *V) { 968 // If we already have an SDValue for this value, use it. It's important 969 // to do this first, so that we don't create a CopyFromReg if we already 970 // have a regular SDValue. 971 SDValue &N = NodeMap[V]; 972 if (N.getNode()) return N; 973 974 // If there's a virtual register allocated and initialized for this 975 // value, use it. 976 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 977 return copyFromReg; 978 979 // Otherwise create a new SDValue and remember it. 980 SDValue Val = getValueImpl(V); 981 NodeMap[V] = Val; 982 resolveDanglingDebugInfo(V, Val); 983 return Val; 984 } 985 986 // Return true if SDValue exists for the given Value 987 bool SelectionDAGBuilder::findValue(const Value *V) const { 988 return (NodeMap.find(V) != NodeMap.end()) || 989 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 990 } 991 992 /// getNonRegisterValue - Return an SDValue for the given Value, but 993 /// don't look in FuncInfo.ValueMap for a virtual register. 994 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 995 // If we already have an SDValue for this value, use it. 996 SDValue &N = NodeMap[V]; 997 if (N.getNode()) { 998 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 999 // Remove the debug location from the node as the node is about to be used 1000 // in a location which may differ from the original debug location. This 1001 // is relevant to Constant and ConstantFP nodes because they can appear 1002 // as constant expressions inside PHI nodes. 1003 N->setDebugLoc(DebugLoc()); 1004 } 1005 return N; 1006 } 1007 1008 // Otherwise create a new SDValue and remember it. 1009 SDValue Val = getValueImpl(V); 1010 NodeMap[V] = Val; 1011 resolveDanglingDebugInfo(V, Val); 1012 return Val; 1013 } 1014 1015 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1016 /// Create an SDValue for the given value. 1017 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1018 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1019 1020 if (const Constant *C = dyn_cast<Constant>(V)) { 1021 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1022 1023 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1024 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1025 1026 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1027 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1028 1029 if (isa<ConstantPointerNull>(C)) { 1030 unsigned AS = V->getType()->getPointerAddressSpace(); 1031 return DAG.getConstant(0, getCurSDLoc(), 1032 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1033 } 1034 1035 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1036 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1037 1038 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1039 return DAG.getUNDEF(VT); 1040 1041 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1042 visit(CE->getOpcode(), *CE); 1043 SDValue N1 = NodeMap[V]; 1044 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1045 return N1; 1046 } 1047 1048 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1049 SmallVector<SDValue, 4> Constants; 1050 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1051 OI != OE; ++OI) { 1052 SDNode *Val = getValue(*OI).getNode(); 1053 // If the operand is an empty aggregate, there are no values. 1054 if (!Val) continue; 1055 // Add each leaf value from the operand to the Constants list 1056 // to form a flattened list of all the values. 1057 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1058 Constants.push_back(SDValue(Val, i)); 1059 } 1060 1061 return DAG.getMergeValues(Constants, getCurSDLoc()); 1062 } 1063 1064 if (const ConstantDataSequential *CDS = 1065 dyn_cast<ConstantDataSequential>(C)) { 1066 SmallVector<SDValue, 4> Ops; 1067 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1068 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1069 // Add each leaf value from the operand to the Constants list 1070 // to form a flattened list of all the values. 1071 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1072 Ops.push_back(SDValue(Val, i)); 1073 } 1074 1075 if (isa<ArrayType>(CDS->getType())) 1076 return DAG.getMergeValues(Ops, getCurSDLoc()); 1077 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1078 } 1079 1080 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1081 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1082 "Unknown struct or array constant!"); 1083 1084 SmallVector<EVT, 4> ValueVTs; 1085 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1086 unsigned NumElts = ValueVTs.size(); 1087 if (NumElts == 0) 1088 return SDValue(); // empty struct 1089 SmallVector<SDValue, 4> Constants(NumElts); 1090 for (unsigned i = 0; i != NumElts; ++i) { 1091 EVT EltVT = ValueVTs[i]; 1092 if (isa<UndefValue>(C)) 1093 Constants[i] = DAG.getUNDEF(EltVT); 1094 else if (EltVT.isFloatingPoint()) 1095 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1096 else 1097 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1098 } 1099 1100 return DAG.getMergeValues(Constants, getCurSDLoc()); 1101 } 1102 1103 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1104 return DAG.getBlockAddress(BA, VT); 1105 1106 VectorType *VecTy = cast<VectorType>(V->getType()); 1107 unsigned NumElements = VecTy->getNumElements(); 1108 1109 // Now that we know the number and type of the elements, get that number of 1110 // elements into the Ops array based on what kind of constant it is. 1111 SmallVector<SDValue, 16> Ops; 1112 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1113 for (unsigned i = 0; i != NumElements; ++i) 1114 Ops.push_back(getValue(CV->getOperand(i))); 1115 } else { 1116 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1117 EVT EltVT = 1118 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1119 1120 SDValue Op; 1121 if (EltVT.isFloatingPoint()) 1122 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1123 else 1124 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1125 Ops.assign(NumElements, Op); 1126 } 1127 1128 // Create a BUILD_VECTOR node. 1129 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1130 } 1131 1132 // If this is a static alloca, generate it as the frameindex instead of 1133 // computation. 1134 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1135 DenseMap<const AllocaInst*, int>::iterator SI = 1136 FuncInfo.StaticAllocaMap.find(AI); 1137 if (SI != FuncInfo.StaticAllocaMap.end()) 1138 return DAG.getFrameIndex(SI->second, 1139 TLI.getFrameIndexTy(DAG.getDataLayout())); 1140 } 1141 1142 // If this is an instruction which fast-isel has deferred, select it now. 1143 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1144 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1145 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1146 Inst->getType()); 1147 SDValue Chain = DAG.getEntryNode(); 1148 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1149 } 1150 1151 llvm_unreachable("Can't get register for value!"); 1152 } 1153 1154 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1155 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1156 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1157 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1158 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1159 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1160 if (IsMSVCCXX || IsCoreCLR) 1161 CatchPadMBB->setIsEHFuncletEntry(); 1162 1163 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1164 } 1165 1166 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1167 // Update machine-CFG edge. 1168 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1169 FuncInfo.MBB->addSuccessor(TargetMBB); 1170 1171 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1172 bool IsSEH = isAsynchronousEHPersonality(Pers); 1173 if (IsSEH) { 1174 // If this is not a fall-through branch or optimizations are switched off, 1175 // emit the branch. 1176 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1177 TM.getOptLevel() == CodeGenOpt::None) 1178 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1179 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1180 return; 1181 } 1182 1183 // Figure out the funclet membership for the catchret's successor. 1184 // This will be used by the FuncletLayout pass to determine how to order the 1185 // BB's. 1186 // A 'catchret' returns to the outer scope's color. 1187 Value *ParentPad = I.getCatchSwitchParentPad(); 1188 const BasicBlock *SuccessorColor; 1189 if (isa<ConstantTokenNone>(ParentPad)) 1190 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1191 else 1192 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1193 assert(SuccessorColor && "No parent funclet for catchret!"); 1194 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1195 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1196 1197 // Create the terminator node. 1198 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1199 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1200 DAG.getBasicBlock(SuccessorColorMBB)); 1201 DAG.setRoot(Ret); 1202 } 1203 1204 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1205 // Don't emit any special code for the cleanuppad instruction. It just marks 1206 // the start of a funclet. 1207 FuncInfo.MBB->setIsEHFuncletEntry(); 1208 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1209 } 1210 1211 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1212 /// many places it could ultimately go. In the IR, we have a single unwind 1213 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1214 /// This function skips over imaginary basic blocks that hold catchswitch 1215 /// instructions, and finds all the "real" machine 1216 /// basic block destinations. As those destinations may not be successors of 1217 /// EHPadBB, here we also calculate the edge probability to those destinations. 1218 /// The passed-in Prob is the edge probability to EHPadBB. 1219 static void findUnwindDestinations( 1220 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1221 BranchProbability Prob, 1222 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1223 &UnwindDests) { 1224 EHPersonality Personality = 1225 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1226 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1227 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1228 1229 while (EHPadBB) { 1230 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1231 BasicBlock *NewEHPadBB = nullptr; 1232 if (isa<LandingPadInst>(Pad)) { 1233 // Stop on landingpads. They are not funclets. 1234 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1235 break; 1236 } else if (isa<CleanupPadInst>(Pad)) { 1237 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1238 // personalities. 1239 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1240 UnwindDests.back().first->setIsEHFuncletEntry(); 1241 break; 1242 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1243 // Add the catchpad handlers to the possible destinations. 1244 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1245 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1246 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1247 if (IsMSVCCXX || IsCoreCLR) 1248 UnwindDests.back().first->setIsEHFuncletEntry(); 1249 } 1250 NewEHPadBB = CatchSwitch->getUnwindDest(); 1251 } else { 1252 continue; 1253 } 1254 1255 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1256 if (BPI && NewEHPadBB) 1257 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1258 EHPadBB = NewEHPadBB; 1259 } 1260 } 1261 1262 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1263 // Update successor info. 1264 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1265 auto UnwindDest = I.getUnwindDest(); 1266 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1267 BranchProbability UnwindDestProb = 1268 (BPI && UnwindDest) 1269 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1270 : BranchProbability::getZero(); 1271 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1272 for (auto &UnwindDest : UnwindDests) { 1273 UnwindDest.first->setIsEHPad(); 1274 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1275 } 1276 FuncInfo.MBB->normalizeSuccProbs(); 1277 1278 // Create the terminator node. 1279 SDValue Ret = 1280 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1281 DAG.setRoot(Ret); 1282 } 1283 1284 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1285 report_fatal_error("visitCatchSwitch not yet implemented!"); 1286 } 1287 1288 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1289 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1290 auto &DL = DAG.getDataLayout(); 1291 SDValue Chain = getControlRoot(); 1292 SmallVector<ISD::OutputArg, 8> Outs; 1293 SmallVector<SDValue, 8> OutVals; 1294 1295 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1296 // lower 1297 // 1298 // %val = call <ty> @llvm.experimental.deoptimize() 1299 // ret <ty> %val 1300 // 1301 // differently. 1302 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1303 LowerDeoptimizingReturn(); 1304 return; 1305 } 1306 1307 if (!FuncInfo.CanLowerReturn) { 1308 unsigned DemoteReg = FuncInfo.DemoteRegister; 1309 const Function *F = I.getParent()->getParent(); 1310 1311 // Emit a store of the return value through the virtual register. 1312 // Leave Outs empty so that LowerReturn won't try to load return 1313 // registers the usual way. 1314 SmallVector<EVT, 1> PtrValueVTs; 1315 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1316 PtrValueVTs); 1317 1318 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1319 DemoteReg, PtrValueVTs[0]); 1320 SDValue RetOp = getValue(I.getOperand(0)); 1321 1322 SmallVector<EVT, 4> ValueVTs; 1323 SmallVector<uint64_t, 4> Offsets; 1324 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1325 unsigned NumValues = ValueVTs.size(); 1326 1327 // An aggregate return value cannot wrap around the address space, so 1328 // offsets to its parts don't wrap either. 1329 SDNodeFlags Flags; 1330 Flags.setNoUnsignedWrap(true); 1331 1332 SmallVector<SDValue, 4> Chains(NumValues); 1333 for (unsigned i = 0; i != NumValues; ++i) { 1334 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1335 RetPtr.getValueType(), RetPtr, 1336 DAG.getIntPtrConstant(Offsets[i], 1337 getCurSDLoc()), 1338 Flags); 1339 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), 1340 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1341 // FIXME: better loc info would be nice. 1342 Add, MachinePointerInfo()); 1343 } 1344 1345 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1346 MVT::Other, Chains); 1347 } else if (I.getNumOperands() != 0) { 1348 SmallVector<EVT, 4> ValueVTs; 1349 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1350 unsigned NumValues = ValueVTs.size(); 1351 if (NumValues) { 1352 SDValue RetOp = getValue(I.getOperand(0)); 1353 1354 const Function *F = I.getParent()->getParent(); 1355 1356 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1357 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1358 Attribute::SExt)) 1359 ExtendKind = ISD::SIGN_EXTEND; 1360 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1361 Attribute::ZExt)) 1362 ExtendKind = ISD::ZERO_EXTEND; 1363 1364 LLVMContext &Context = F->getContext(); 1365 bool RetInReg = F->getAttributes().hasAttribute( 1366 AttributeList::ReturnIndex, Attribute::InReg); 1367 1368 for (unsigned j = 0; j != NumValues; ++j) { 1369 EVT VT = ValueVTs[j]; 1370 1371 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1372 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1373 1374 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1375 MVT PartVT = TLI.getRegisterType(Context, VT); 1376 SmallVector<SDValue, 4> Parts(NumParts); 1377 getCopyToParts(DAG, getCurSDLoc(), 1378 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1379 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1380 1381 // 'inreg' on function refers to return value 1382 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1383 if (RetInReg) 1384 Flags.setInReg(); 1385 1386 // Propagate extension type if any 1387 if (ExtendKind == ISD::SIGN_EXTEND) 1388 Flags.setSExt(); 1389 else if (ExtendKind == ISD::ZERO_EXTEND) 1390 Flags.setZExt(); 1391 1392 for (unsigned i = 0; i < NumParts; ++i) { 1393 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1394 VT, /*isfixed=*/true, 0, 0)); 1395 OutVals.push_back(Parts[i]); 1396 } 1397 } 1398 } 1399 } 1400 1401 // Push in swifterror virtual register as the last element of Outs. This makes 1402 // sure swifterror virtual register will be returned in the swifterror 1403 // physical register. 1404 const Function *F = I.getParent()->getParent(); 1405 if (TLI.supportSwiftError() && 1406 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1407 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1408 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1409 Flags.setSwiftError(); 1410 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1411 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1412 true /*isfixed*/, 1 /*origidx*/, 1413 0 /*partOffs*/)); 1414 // Create SDNode for the swifterror virtual register. 1415 OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg( 1416 FuncInfo.MBB, FuncInfo.SwiftErrorArg), 1417 EVT(TLI.getPointerTy(DL)))); 1418 } 1419 1420 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1421 CallingConv::ID CallConv = 1422 DAG.getMachineFunction().getFunction()->getCallingConv(); 1423 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1424 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1425 1426 // Verify that the target's LowerReturn behaved as expected. 1427 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1428 "LowerReturn didn't return a valid chain!"); 1429 1430 // Update the DAG with the new chain value resulting from return lowering. 1431 DAG.setRoot(Chain); 1432 } 1433 1434 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1435 /// created for it, emit nodes to copy the value into the virtual 1436 /// registers. 1437 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1438 // Skip empty types 1439 if (V->getType()->isEmptyTy()) 1440 return; 1441 1442 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1443 if (VMI != FuncInfo.ValueMap.end()) { 1444 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1445 CopyValueToVirtualRegister(V, VMI->second); 1446 } 1447 } 1448 1449 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1450 /// the current basic block, add it to ValueMap now so that we'll get a 1451 /// CopyTo/FromReg. 1452 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1453 // No need to export constants. 1454 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1455 1456 // Already exported? 1457 if (FuncInfo.isExportedInst(V)) return; 1458 1459 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1460 CopyValueToVirtualRegister(V, Reg); 1461 } 1462 1463 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1464 const BasicBlock *FromBB) { 1465 // The operands of the setcc have to be in this block. We don't know 1466 // how to export them from some other block. 1467 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1468 // Can export from current BB. 1469 if (VI->getParent() == FromBB) 1470 return true; 1471 1472 // Is already exported, noop. 1473 return FuncInfo.isExportedInst(V); 1474 } 1475 1476 // If this is an argument, we can export it if the BB is the entry block or 1477 // if it is already exported. 1478 if (isa<Argument>(V)) { 1479 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1480 return true; 1481 1482 // Otherwise, can only export this if it is already exported. 1483 return FuncInfo.isExportedInst(V); 1484 } 1485 1486 // Otherwise, constants can always be exported. 1487 return true; 1488 } 1489 1490 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1491 BranchProbability 1492 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1493 const MachineBasicBlock *Dst) const { 1494 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1495 const BasicBlock *SrcBB = Src->getBasicBlock(); 1496 const BasicBlock *DstBB = Dst->getBasicBlock(); 1497 if (!BPI) { 1498 // If BPI is not available, set the default probability as 1 / N, where N is 1499 // the number of successors. 1500 auto SuccSize = std::max<uint32_t>( 1501 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1502 return BranchProbability(1, SuccSize); 1503 } 1504 return BPI->getEdgeProbability(SrcBB, DstBB); 1505 } 1506 1507 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1508 MachineBasicBlock *Dst, 1509 BranchProbability Prob) { 1510 if (!FuncInfo.BPI) 1511 Src->addSuccessorWithoutProb(Dst); 1512 else { 1513 if (Prob.isUnknown()) 1514 Prob = getEdgeProbability(Src, Dst); 1515 Src->addSuccessor(Dst, Prob); 1516 } 1517 } 1518 1519 static bool InBlock(const Value *V, const BasicBlock *BB) { 1520 if (const Instruction *I = dyn_cast<Instruction>(V)) 1521 return I->getParent() == BB; 1522 return true; 1523 } 1524 1525 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1526 /// This function emits a branch and is used at the leaves of an OR or an 1527 /// AND operator tree. 1528 /// 1529 void 1530 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1531 MachineBasicBlock *TBB, 1532 MachineBasicBlock *FBB, 1533 MachineBasicBlock *CurBB, 1534 MachineBasicBlock *SwitchBB, 1535 BranchProbability TProb, 1536 BranchProbability FProb, 1537 bool InvertCond) { 1538 const BasicBlock *BB = CurBB->getBasicBlock(); 1539 1540 // If the leaf of the tree is a comparison, merge the condition into 1541 // the caseblock. 1542 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1543 // The operands of the cmp have to be in this block. We don't know 1544 // how to export them from some other block. If this is the first block 1545 // of the sequence, no exporting is needed. 1546 if (CurBB == SwitchBB || 1547 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1548 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1549 ISD::CondCode Condition; 1550 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1551 ICmpInst::Predicate Pred = 1552 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1553 Condition = getICmpCondCode(Pred); 1554 } else { 1555 const FCmpInst *FC = cast<FCmpInst>(Cond); 1556 FCmpInst::Predicate Pred = 1557 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1558 Condition = getFCmpCondCode(Pred); 1559 if (TM.Options.NoNaNsFPMath) 1560 Condition = getFCmpCodeWithoutNaN(Condition); 1561 } 1562 1563 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1564 TBB, FBB, CurBB, TProb, FProb); 1565 SwitchCases.push_back(CB); 1566 return; 1567 } 1568 } 1569 1570 // Create a CaseBlock record representing this branch. 1571 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1572 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1573 nullptr, TBB, FBB, CurBB, TProb, FProb); 1574 SwitchCases.push_back(CB); 1575 } 1576 1577 /// FindMergedConditions - If Cond is an expression like 1578 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1579 MachineBasicBlock *TBB, 1580 MachineBasicBlock *FBB, 1581 MachineBasicBlock *CurBB, 1582 MachineBasicBlock *SwitchBB, 1583 Instruction::BinaryOps Opc, 1584 BranchProbability TProb, 1585 BranchProbability FProb, 1586 bool InvertCond) { 1587 // Skip over not part of the tree and remember to invert op and operands at 1588 // next level. 1589 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1590 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1591 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1592 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1593 !InvertCond); 1594 return; 1595 } 1596 } 1597 1598 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1599 // Compute the effective opcode for Cond, taking into account whether it needs 1600 // to be inverted, e.g. 1601 // and (not (or A, B)), C 1602 // gets lowered as 1603 // and (and (not A, not B), C) 1604 unsigned BOpc = 0; 1605 if (BOp) { 1606 BOpc = BOp->getOpcode(); 1607 if (InvertCond) { 1608 if (BOpc == Instruction::And) 1609 BOpc = Instruction::Or; 1610 else if (BOpc == Instruction::Or) 1611 BOpc = Instruction::And; 1612 } 1613 } 1614 1615 // If this node is not part of the or/and tree, emit it as a branch. 1616 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1617 BOpc != Opc || !BOp->hasOneUse() || 1618 BOp->getParent() != CurBB->getBasicBlock() || 1619 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1620 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1621 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1622 TProb, FProb, InvertCond); 1623 return; 1624 } 1625 1626 // Create TmpBB after CurBB. 1627 MachineFunction::iterator BBI(CurBB); 1628 MachineFunction &MF = DAG.getMachineFunction(); 1629 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1630 CurBB->getParent()->insert(++BBI, TmpBB); 1631 1632 if (Opc == Instruction::Or) { 1633 // Codegen X | Y as: 1634 // BB1: 1635 // jmp_if_X TBB 1636 // jmp TmpBB 1637 // TmpBB: 1638 // jmp_if_Y TBB 1639 // jmp FBB 1640 // 1641 1642 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1643 // The requirement is that 1644 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1645 // = TrueProb for original BB. 1646 // Assuming the original probabilities are A and B, one choice is to set 1647 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1648 // A/(1+B) and 2B/(1+B). This choice assumes that 1649 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1650 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1651 // TmpBB, but the math is more complicated. 1652 1653 auto NewTrueProb = TProb / 2; 1654 auto NewFalseProb = TProb / 2 + FProb; 1655 // Emit the LHS condition. 1656 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1657 NewTrueProb, NewFalseProb, InvertCond); 1658 1659 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1660 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1661 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1662 // Emit the RHS condition into TmpBB. 1663 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1664 Probs[0], Probs[1], InvertCond); 1665 } else { 1666 assert(Opc == Instruction::And && "Unknown merge op!"); 1667 // Codegen X & Y as: 1668 // BB1: 1669 // jmp_if_X TmpBB 1670 // jmp FBB 1671 // TmpBB: 1672 // jmp_if_Y TBB 1673 // jmp FBB 1674 // 1675 // This requires creation of TmpBB after CurBB. 1676 1677 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1678 // The requirement is that 1679 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1680 // = FalseProb for original BB. 1681 // Assuming the original probabilities are A and B, one choice is to set 1682 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1683 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1684 // TrueProb for BB1 * FalseProb for TmpBB. 1685 1686 auto NewTrueProb = TProb + FProb / 2; 1687 auto NewFalseProb = FProb / 2; 1688 // Emit the LHS condition. 1689 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1690 NewTrueProb, NewFalseProb, InvertCond); 1691 1692 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1693 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1694 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1695 // Emit the RHS condition into TmpBB. 1696 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1697 Probs[0], Probs[1], InvertCond); 1698 } 1699 } 1700 1701 /// If the set of cases should be emitted as a series of branches, return true. 1702 /// If we should emit this as a bunch of and/or'd together conditions, return 1703 /// false. 1704 bool 1705 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1706 if (Cases.size() != 2) return true; 1707 1708 // If this is two comparisons of the same values or'd or and'd together, they 1709 // will get folded into a single comparison, so don't emit two blocks. 1710 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1711 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1712 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1713 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1714 return false; 1715 } 1716 1717 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1718 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1719 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1720 Cases[0].CC == Cases[1].CC && 1721 isa<Constant>(Cases[0].CmpRHS) && 1722 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1723 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1724 return false; 1725 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1726 return false; 1727 } 1728 1729 return true; 1730 } 1731 1732 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1733 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1734 1735 // Update machine-CFG edges. 1736 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1737 1738 if (I.isUnconditional()) { 1739 // Update machine-CFG edges. 1740 BrMBB->addSuccessor(Succ0MBB); 1741 1742 // If this is not a fall-through branch or optimizations are switched off, 1743 // emit the branch. 1744 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1745 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1746 MVT::Other, getControlRoot(), 1747 DAG.getBasicBlock(Succ0MBB))); 1748 1749 return; 1750 } 1751 1752 // If this condition is one of the special cases we handle, do special stuff 1753 // now. 1754 const Value *CondVal = I.getCondition(); 1755 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1756 1757 // If this is a series of conditions that are or'd or and'd together, emit 1758 // this as a sequence of branches instead of setcc's with and/or operations. 1759 // As long as jumps are not expensive, this should improve performance. 1760 // For example, instead of something like: 1761 // cmp A, B 1762 // C = seteq 1763 // cmp D, E 1764 // F = setle 1765 // or C, F 1766 // jnz foo 1767 // Emit: 1768 // cmp A, B 1769 // je foo 1770 // cmp D, E 1771 // jle foo 1772 // 1773 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1774 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1775 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1776 !I.getMetadata(LLVMContext::MD_unpredictable) && 1777 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1778 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1779 Opcode, 1780 getEdgeProbability(BrMBB, Succ0MBB), 1781 getEdgeProbability(BrMBB, Succ1MBB), 1782 /*InvertCond=*/false); 1783 // If the compares in later blocks need to use values not currently 1784 // exported from this block, export them now. This block should always 1785 // be the first entry. 1786 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1787 1788 // Allow some cases to be rejected. 1789 if (ShouldEmitAsBranches(SwitchCases)) { 1790 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1791 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1792 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1793 } 1794 1795 // Emit the branch for this block. 1796 visitSwitchCase(SwitchCases[0], BrMBB); 1797 SwitchCases.erase(SwitchCases.begin()); 1798 return; 1799 } 1800 1801 // Okay, we decided not to do this, remove any inserted MBB's and clear 1802 // SwitchCases. 1803 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1804 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1805 1806 SwitchCases.clear(); 1807 } 1808 } 1809 1810 // Create a CaseBlock record representing this branch. 1811 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1812 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1813 1814 // Use visitSwitchCase to actually insert the fast branch sequence for this 1815 // cond branch. 1816 visitSwitchCase(CB, BrMBB); 1817 } 1818 1819 /// visitSwitchCase - Emits the necessary code to represent a single node in 1820 /// the binary search tree resulting from lowering a switch instruction. 1821 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1822 MachineBasicBlock *SwitchBB) { 1823 SDValue Cond; 1824 SDValue CondLHS = getValue(CB.CmpLHS); 1825 SDLoc dl = getCurSDLoc(); 1826 1827 // Build the setcc now. 1828 if (!CB.CmpMHS) { 1829 // Fold "(X == true)" to X and "(X == false)" to !X to 1830 // handle common cases produced by branch lowering. 1831 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1832 CB.CC == ISD::SETEQ) 1833 Cond = CondLHS; 1834 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1835 CB.CC == ISD::SETEQ) { 1836 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1837 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1838 } else 1839 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1840 } else { 1841 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1842 1843 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1844 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1845 1846 SDValue CmpOp = getValue(CB.CmpMHS); 1847 EVT VT = CmpOp.getValueType(); 1848 1849 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1850 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1851 ISD::SETLE); 1852 } else { 1853 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1854 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1855 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1856 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1857 } 1858 } 1859 1860 // Update successor info 1861 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1862 // TrueBB and FalseBB are always different unless the incoming IR is 1863 // degenerate. This only happens when running llc on weird IR. 1864 if (CB.TrueBB != CB.FalseBB) 1865 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1866 SwitchBB->normalizeSuccProbs(); 1867 1868 // If the lhs block is the next block, invert the condition so that we can 1869 // fall through to the lhs instead of the rhs block. 1870 if (CB.TrueBB == NextBlock(SwitchBB)) { 1871 std::swap(CB.TrueBB, CB.FalseBB); 1872 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1873 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1874 } 1875 1876 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1877 MVT::Other, getControlRoot(), Cond, 1878 DAG.getBasicBlock(CB.TrueBB)); 1879 1880 // Insert the false branch. Do this even if it's a fall through branch, 1881 // this makes it easier to do DAG optimizations which require inverting 1882 // the branch condition. 1883 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1884 DAG.getBasicBlock(CB.FalseBB)); 1885 1886 DAG.setRoot(BrCond); 1887 } 1888 1889 /// visitJumpTable - Emit JumpTable node in the current MBB 1890 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1891 // Emit the code for the jump table 1892 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1893 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1894 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1895 JT.Reg, PTy); 1896 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1897 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1898 MVT::Other, Index.getValue(1), 1899 Table, Index); 1900 DAG.setRoot(BrJumpTable); 1901 } 1902 1903 /// visitJumpTableHeader - This function emits necessary code to produce index 1904 /// in the JumpTable from switch case. 1905 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1906 JumpTableHeader &JTH, 1907 MachineBasicBlock *SwitchBB) { 1908 SDLoc dl = getCurSDLoc(); 1909 1910 // Subtract the lowest switch case value from the value being switched on and 1911 // conditional branch to default mbb if the result is greater than the 1912 // difference between smallest and largest cases. 1913 SDValue SwitchOp = getValue(JTH.SValue); 1914 EVT VT = SwitchOp.getValueType(); 1915 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1916 DAG.getConstant(JTH.First, dl, VT)); 1917 1918 // The SDNode we just created, which holds the value being switched on minus 1919 // the smallest case value, needs to be copied to a virtual register so it 1920 // can be used as an index into the jump table in a subsequent basic block. 1921 // This value may be smaller or larger than the target's pointer type, and 1922 // therefore require extension or truncating. 1923 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1924 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1925 1926 unsigned JumpTableReg = 1927 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1928 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1929 JumpTableReg, SwitchOp); 1930 JT.Reg = JumpTableReg; 1931 1932 // Emit the range check for the jump table, and branch to the default block 1933 // for the switch statement if the value being switched on exceeds the largest 1934 // case in the switch. 1935 SDValue CMP = DAG.getSetCC( 1936 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1937 Sub.getValueType()), 1938 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1939 1940 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1941 MVT::Other, CopyTo, CMP, 1942 DAG.getBasicBlock(JT.Default)); 1943 1944 // Avoid emitting unnecessary branches to the next block. 1945 if (JT.MBB != NextBlock(SwitchBB)) 1946 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1947 DAG.getBasicBlock(JT.MBB)); 1948 1949 DAG.setRoot(BrCond); 1950 } 1951 1952 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 1953 /// variable if there exists one. 1954 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 1955 SDValue &Chain) { 1956 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1957 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1958 MachineFunction &MF = DAG.getMachineFunction(); 1959 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 1960 MachineSDNode *Node = 1961 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 1962 if (Global) { 1963 MachinePointerInfo MPInfo(Global); 1964 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 1965 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1966 MachineMemOperand::MODereferenceable; 1967 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 1968 DAG.getEVTAlignment(PtrTy)); 1969 Node->setMemRefs(MemRefs, MemRefs + 1); 1970 } 1971 return SDValue(Node, 0); 1972 } 1973 1974 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1975 /// tail spliced into a stack protector check success bb. 1976 /// 1977 /// For a high level explanation of how this fits into the stack protector 1978 /// generation see the comment on the declaration of class 1979 /// StackProtectorDescriptor. 1980 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1981 MachineBasicBlock *ParentBB) { 1982 1983 // First create the loads to the guard/stack slot for the comparison. 1984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1985 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1986 1987 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 1988 int FI = MFI.getStackProtectorIndex(); 1989 1990 SDValue Guard; 1991 SDLoc dl = getCurSDLoc(); 1992 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1993 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 1994 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 1995 1996 // Generate code to load the content of the guard slot. 1997 SDValue StackSlot = DAG.getLoad( 1998 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1999 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2000 MachineMemOperand::MOVolatile); 2001 2002 // Retrieve guard check function, nullptr if instrumentation is inlined. 2003 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2004 // The target provides a guard check function to validate the guard value. 2005 // Generate a call to that function with the content of the guard slot as 2006 // argument. 2007 auto *Fn = cast<Function>(GuardCheck); 2008 FunctionType *FnTy = Fn->getFunctionType(); 2009 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2010 2011 TargetLowering::ArgListTy Args; 2012 TargetLowering::ArgListEntry Entry; 2013 Entry.Node = StackSlot; 2014 Entry.Ty = FnTy->getParamType(0); 2015 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2016 Entry.IsInReg = true; 2017 Args.push_back(Entry); 2018 2019 TargetLowering::CallLoweringInfo CLI(DAG); 2020 CLI.setDebugLoc(getCurSDLoc()) 2021 .setChain(DAG.getEntryNode()) 2022 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2023 getValue(GuardCheck), std::move(Args)); 2024 2025 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2026 DAG.setRoot(Result.second); 2027 return; 2028 } 2029 2030 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2031 // Otherwise, emit a volatile load to retrieve the stack guard value. 2032 SDValue Chain = DAG.getEntryNode(); 2033 if (TLI.useLoadStackGuardNode()) { 2034 Guard = getLoadStackGuard(DAG, dl, Chain); 2035 } else { 2036 const Value *IRGuard = TLI.getSDagStackGuard(M); 2037 SDValue GuardPtr = getValue(IRGuard); 2038 2039 Guard = 2040 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2041 Align, MachineMemOperand::MOVolatile); 2042 } 2043 2044 // Perform the comparison via a subtract/getsetcc. 2045 EVT VT = Guard.getValueType(); 2046 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2047 2048 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2049 *DAG.getContext(), 2050 Sub.getValueType()), 2051 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2052 2053 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2054 // branch to failure MBB. 2055 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2056 MVT::Other, StackSlot.getOperand(0), 2057 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2058 // Otherwise branch to success MBB. 2059 SDValue Br = DAG.getNode(ISD::BR, dl, 2060 MVT::Other, BrCond, 2061 DAG.getBasicBlock(SPD.getSuccessMBB())); 2062 2063 DAG.setRoot(Br); 2064 } 2065 2066 /// Codegen the failure basic block for a stack protector check. 2067 /// 2068 /// A failure stack protector machine basic block consists simply of a call to 2069 /// __stack_chk_fail(). 2070 /// 2071 /// For a high level explanation of how this fits into the stack protector 2072 /// generation see the comment on the declaration of class 2073 /// StackProtectorDescriptor. 2074 void 2075 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2077 SDValue Chain = 2078 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2079 None, false, getCurSDLoc(), false, false).second; 2080 DAG.setRoot(Chain); 2081 } 2082 2083 /// visitBitTestHeader - This function emits necessary code to produce value 2084 /// suitable for "bit tests" 2085 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2086 MachineBasicBlock *SwitchBB) { 2087 SDLoc dl = getCurSDLoc(); 2088 2089 // Subtract the minimum value 2090 SDValue SwitchOp = getValue(B.SValue); 2091 EVT VT = SwitchOp.getValueType(); 2092 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2093 DAG.getConstant(B.First, dl, VT)); 2094 2095 // Check range 2096 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2097 SDValue RangeCmp = DAG.getSetCC( 2098 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2099 Sub.getValueType()), 2100 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2101 2102 // Determine the type of the test operands. 2103 bool UsePtrType = false; 2104 if (!TLI.isTypeLegal(VT)) 2105 UsePtrType = true; 2106 else { 2107 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2108 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2109 // Switch table case range are encoded into series of masks. 2110 // Just use pointer type, it's guaranteed to fit. 2111 UsePtrType = true; 2112 break; 2113 } 2114 } 2115 if (UsePtrType) { 2116 VT = TLI.getPointerTy(DAG.getDataLayout()); 2117 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2118 } 2119 2120 B.RegVT = VT.getSimpleVT(); 2121 B.Reg = FuncInfo.CreateReg(B.RegVT); 2122 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2123 2124 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2125 2126 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2127 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2128 SwitchBB->normalizeSuccProbs(); 2129 2130 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2131 MVT::Other, CopyTo, RangeCmp, 2132 DAG.getBasicBlock(B.Default)); 2133 2134 // Avoid emitting unnecessary branches to the next block. 2135 if (MBB != NextBlock(SwitchBB)) 2136 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2137 DAG.getBasicBlock(MBB)); 2138 2139 DAG.setRoot(BrRange); 2140 } 2141 2142 /// visitBitTestCase - this function produces one "bit test" 2143 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2144 MachineBasicBlock* NextMBB, 2145 BranchProbability BranchProbToNext, 2146 unsigned Reg, 2147 BitTestCase &B, 2148 MachineBasicBlock *SwitchBB) { 2149 SDLoc dl = getCurSDLoc(); 2150 MVT VT = BB.RegVT; 2151 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2152 SDValue Cmp; 2153 unsigned PopCount = countPopulation(B.Mask); 2154 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2155 if (PopCount == 1) { 2156 // Testing for a single bit; just compare the shift count with what it 2157 // would need to be to shift a 1 bit in that position. 2158 Cmp = DAG.getSetCC( 2159 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2160 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2161 ISD::SETEQ); 2162 } else if (PopCount == BB.Range) { 2163 // There is only one zero bit in the range, test for it directly. 2164 Cmp = DAG.getSetCC( 2165 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2166 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2167 ISD::SETNE); 2168 } else { 2169 // Make desired shift 2170 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2171 DAG.getConstant(1, dl, VT), ShiftOp); 2172 2173 // Emit bit tests and jumps 2174 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2175 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2176 Cmp = DAG.getSetCC( 2177 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2178 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2179 } 2180 2181 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2182 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2183 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2184 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2185 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2186 // one as they are relative probabilities (and thus work more like weights), 2187 // and hence we need to normalize them to let the sum of them become one. 2188 SwitchBB->normalizeSuccProbs(); 2189 2190 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2191 MVT::Other, getControlRoot(), 2192 Cmp, DAG.getBasicBlock(B.TargetBB)); 2193 2194 // Avoid emitting unnecessary branches to the next block. 2195 if (NextMBB != NextBlock(SwitchBB)) 2196 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2197 DAG.getBasicBlock(NextMBB)); 2198 2199 DAG.setRoot(BrAnd); 2200 } 2201 2202 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2203 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2204 2205 // Retrieve successors. Look through artificial IR level blocks like 2206 // catchswitch for successors. 2207 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2208 const BasicBlock *EHPadBB = I.getSuccessor(1); 2209 2210 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2211 // have to do anything here to lower funclet bundles. 2212 assert(!I.hasOperandBundlesOtherThan( 2213 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2214 "Cannot lower invokes with arbitrary operand bundles yet!"); 2215 2216 const Value *Callee(I.getCalledValue()); 2217 const Function *Fn = dyn_cast<Function>(Callee); 2218 if (isa<InlineAsm>(Callee)) 2219 visitInlineAsm(&I); 2220 else if (Fn && Fn->isIntrinsic()) { 2221 switch (Fn->getIntrinsicID()) { 2222 default: 2223 llvm_unreachable("Cannot invoke this intrinsic"); 2224 case Intrinsic::donothing: 2225 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2226 break; 2227 case Intrinsic::experimental_patchpoint_void: 2228 case Intrinsic::experimental_patchpoint_i64: 2229 visitPatchpoint(&I, EHPadBB); 2230 break; 2231 case Intrinsic::experimental_gc_statepoint: 2232 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2233 break; 2234 } 2235 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2236 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2237 // Eventually we will support lowering the @llvm.experimental.deoptimize 2238 // intrinsic, and right now there are no plans to support other intrinsics 2239 // with deopt state. 2240 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2241 } else { 2242 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2243 } 2244 2245 // If the value of the invoke is used outside of its defining block, make it 2246 // available as a virtual register. 2247 // We already took care of the exported value for the statepoint instruction 2248 // during call to the LowerStatepoint. 2249 if (!isStatepoint(I)) { 2250 CopyToExportRegsIfNeeded(&I); 2251 } 2252 2253 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2254 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2255 BranchProbability EHPadBBProb = 2256 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2257 : BranchProbability::getZero(); 2258 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2259 2260 // Update successor info. 2261 addSuccessorWithProb(InvokeMBB, Return); 2262 for (auto &UnwindDest : UnwindDests) { 2263 UnwindDest.first->setIsEHPad(); 2264 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2265 } 2266 InvokeMBB->normalizeSuccProbs(); 2267 2268 // Drop into normal successor. 2269 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2270 MVT::Other, getControlRoot(), 2271 DAG.getBasicBlock(Return))); 2272 } 2273 2274 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2275 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2276 } 2277 2278 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2279 assert(FuncInfo.MBB->isEHPad() && 2280 "Call to landingpad not in landing pad!"); 2281 2282 MachineBasicBlock *MBB = FuncInfo.MBB; 2283 addLandingPadInfo(LP, *MBB); 2284 2285 // If there aren't registers to copy the values into (e.g., during SjLj 2286 // exceptions), then don't bother to create these DAG nodes. 2287 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2288 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2289 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2290 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2291 return; 2292 2293 // If landingpad's return type is token type, we don't create DAG nodes 2294 // for its exception pointer and selector value. The extraction of exception 2295 // pointer or selector value from token type landingpads is not currently 2296 // supported. 2297 if (LP.getType()->isTokenTy()) 2298 return; 2299 2300 SmallVector<EVT, 2> ValueVTs; 2301 SDLoc dl = getCurSDLoc(); 2302 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2303 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2304 2305 // Get the two live-in registers as SDValues. The physregs have already been 2306 // copied into virtual registers. 2307 SDValue Ops[2]; 2308 if (FuncInfo.ExceptionPointerVirtReg) { 2309 Ops[0] = DAG.getZExtOrTrunc( 2310 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2311 FuncInfo.ExceptionPointerVirtReg, 2312 TLI.getPointerTy(DAG.getDataLayout())), 2313 dl, ValueVTs[0]); 2314 } else { 2315 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2316 } 2317 Ops[1] = DAG.getZExtOrTrunc( 2318 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2319 FuncInfo.ExceptionSelectorVirtReg, 2320 TLI.getPointerTy(DAG.getDataLayout())), 2321 dl, ValueVTs[1]); 2322 2323 // Merge into one. 2324 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2325 DAG.getVTList(ValueVTs), Ops); 2326 setValue(&LP, Res); 2327 } 2328 2329 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2330 #ifndef NDEBUG 2331 for (const CaseCluster &CC : Clusters) 2332 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2333 #endif 2334 2335 std::sort(Clusters.begin(), Clusters.end(), 2336 [](const CaseCluster &a, const CaseCluster &b) { 2337 return a.Low->getValue().slt(b.Low->getValue()); 2338 }); 2339 2340 // Merge adjacent clusters with the same destination. 2341 const unsigned N = Clusters.size(); 2342 unsigned DstIndex = 0; 2343 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2344 CaseCluster &CC = Clusters[SrcIndex]; 2345 const ConstantInt *CaseVal = CC.Low; 2346 MachineBasicBlock *Succ = CC.MBB; 2347 2348 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2349 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2350 // If this case has the same successor and is a neighbour, merge it into 2351 // the previous cluster. 2352 Clusters[DstIndex - 1].High = CaseVal; 2353 Clusters[DstIndex - 1].Prob += CC.Prob; 2354 } else { 2355 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2356 sizeof(Clusters[SrcIndex])); 2357 } 2358 } 2359 Clusters.resize(DstIndex); 2360 } 2361 2362 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2363 MachineBasicBlock *Last) { 2364 // Update JTCases. 2365 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2366 if (JTCases[i].first.HeaderBB == First) 2367 JTCases[i].first.HeaderBB = Last; 2368 2369 // Update BitTestCases. 2370 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2371 if (BitTestCases[i].Parent == First) 2372 BitTestCases[i].Parent = Last; 2373 } 2374 2375 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2376 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2377 2378 // Update machine-CFG edges with unique successors. 2379 SmallSet<BasicBlock*, 32> Done; 2380 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2381 BasicBlock *BB = I.getSuccessor(i); 2382 bool Inserted = Done.insert(BB).second; 2383 if (!Inserted) 2384 continue; 2385 2386 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2387 addSuccessorWithProb(IndirectBrMBB, Succ); 2388 } 2389 IndirectBrMBB->normalizeSuccProbs(); 2390 2391 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2392 MVT::Other, getControlRoot(), 2393 getValue(I.getAddress()))); 2394 } 2395 2396 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2397 if (DAG.getTarget().Options.TrapUnreachable) 2398 DAG.setRoot( 2399 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2400 } 2401 2402 void SelectionDAGBuilder::visitFSub(const User &I) { 2403 // -0.0 - X --> fneg 2404 Type *Ty = I.getType(); 2405 if (isa<Constant>(I.getOperand(0)) && 2406 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2407 SDValue Op2 = getValue(I.getOperand(1)); 2408 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2409 Op2.getValueType(), Op2)); 2410 return; 2411 } 2412 2413 visitBinary(I, ISD::FSUB); 2414 } 2415 2416 /// Checks if the given instruction performs a vector reduction, in which case 2417 /// we have the freedom to alter the elements in the result as long as the 2418 /// reduction of them stays unchanged. 2419 static bool isVectorReductionOp(const User *I) { 2420 const Instruction *Inst = dyn_cast<Instruction>(I); 2421 if (!Inst || !Inst->getType()->isVectorTy()) 2422 return false; 2423 2424 auto OpCode = Inst->getOpcode(); 2425 switch (OpCode) { 2426 case Instruction::Add: 2427 case Instruction::Mul: 2428 case Instruction::And: 2429 case Instruction::Or: 2430 case Instruction::Xor: 2431 break; 2432 case Instruction::FAdd: 2433 case Instruction::FMul: 2434 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2435 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2436 break; 2437 LLVM_FALLTHROUGH; 2438 default: 2439 return false; 2440 } 2441 2442 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2443 unsigned ElemNumToReduce = ElemNum; 2444 2445 // Do DFS search on the def-use chain from the given instruction. We only 2446 // allow four kinds of operations during the search until we reach the 2447 // instruction that extracts the first element from the vector: 2448 // 2449 // 1. The reduction operation of the same opcode as the given instruction. 2450 // 2451 // 2. PHI node. 2452 // 2453 // 3. ShuffleVector instruction together with a reduction operation that 2454 // does a partial reduction. 2455 // 2456 // 4. ExtractElement that extracts the first element from the vector, and we 2457 // stop searching the def-use chain here. 2458 // 2459 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2460 // from 1-3 to the stack to continue the DFS. The given instruction is not 2461 // a reduction operation if we meet any other instructions other than those 2462 // listed above. 2463 2464 SmallVector<const User *, 16> UsersToVisit{Inst}; 2465 SmallPtrSet<const User *, 16> Visited; 2466 bool ReduxExtracted = false; 2467 2468 while (!UsersToVisit.empty()) { 2469 auto User = UsersToVisit.back(); 2470 UsersToVisit.pop_back(); 2471 if (!Visited.insert(User).second) 2472 continue; 2473 2474 for (const auto &U : User->users()) { 2475 auto Inst = dyn_cast<Instruction>(U); 2476 if (!Inst) 2477 return false; 2478 2479 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2480 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2481 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2482 return false; 2483 UsersToVisit.push_back(U); 2484 } else if (const ShuffleVectorInst *ShufInst = 2485 dyn_cast<ShuffleVectorInst>(U)) { 2486 // Detect the following pattern: A ShuffleVector instruction together 2487 // with a reduction that do partial reduction on the first and second 2488 // ElemNumToReduce / 2 elements, and store the result in 2489 // ElemNumToReduce / 2 elements in another vector. 2490 2491 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2492 if (ResultElements < ElemNum) 2493 return false; 2494 2495 if (ElemNumToReduce == 1) 2496 return false; 2497 if (!isa<UndefValue>(U->getOperand(1))) 2498 return false; 2499 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2500 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2501 return false; 2502 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2503 if (ShufInst->getMaskValue(i) != -1) 2504 return false; 2505 2506 // There is only one user of this ShuffleVector instruction, which 2507 // must be a reduction operation. 2508 if (!U->hasOneUse()) 2509 return false; 2510 2511 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2512 if (!U2 || U2->getOpcode() != OpCode) 2513 return false; 2514 2515 // Check operands of the reduction operation. 2516 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2517 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2518 UsersToVisit.push_back(U2); 2519 ElemNumToReduce /= 2; 2520 } else 2521 return false; 2522 } else if (isa<ExtractElementInst>(U)) { 2523 // At this moment we should have reduced all elements in the vector. 2524 if (ElemNumToReduce != 1) 2525 return false; 2526 2527 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2528 if (!Val || Val->getZExtValue() != 0) 2529 return false; 2530 2531 ReduxExtracted = true; 2532 } else 2533 return false; 2534 } 2535 } 2536 return ReduxExtracted; 2537 } 2538 2539 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2540 SDValue Op1 = getValue(I.getOperand(0)); 2541 SDValue Op2 = getValue(I.getOperand(1)); 2542 2543 bool nuw = false; 2544 bool nsw = false; 2545 bool exact = false; 2546 bool vec_redux = false; 2547 FastMathFlags FMF; 2548 2549 if (const OverflowingBinaryOperator *OFBinOp = 2550 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2551 nuw = OFBinOp->hasNoUnsignedWrap(); 2552 nsw = OFBinOp->hasNoSignedWrap(); 2553 } 2554 if (const PossiblyExactOperator *ExactOp = 2555 dyn_cast<const PossiblyExactOperator>(&I)) 2556 exact = ExactOp->isExact(); 2557 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2558 FMF = FPOp->getFastMathFlags(); 2559 2560 if (isVectorReductionOp(&I)) { 2561 vec_redux = true; 2562 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2563 } 2564 2565 SDNodeFlags Flags; 2566 Flags.setExact(exact); 2567 Flags.setNoSignedWrap(nsw); 2568 Flags.setNoUnsignedWrap(nuw); 2569 Flags.setVectorReduction(vec_redux); 2570 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2571 Flags.setAllowContract(FMF.allowContract()); 2572 Flags.setNoInfs(FMF.noInfs()); 2573 Flags.setNoNaNs(FMF.noNaNs()); 2574 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2575 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2576 2577 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2578 Op1, Op2, Flags); 2579 setValue(&I, BinNodeValue); 2580 } 2581 2582 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2583 SDValue Op1 = getValue(I.getOperand(0)); 2584 SDValue Op2 = getValue(I.getOperand(1)); 2585 2586 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2587 Op2.getValueType(), DAG.getDataLayout()); 2588 2589 // Coerce the shift amount to the right type if we can. 2590 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2591 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2592 unsigned Op2Size = Op2.getValueSizeInBits(); 2593 SDLoc DL = getCurSDLoc(); 2594 2595 // If the operand is smaller than the shift count type, promote it. 2596 if (ShiftSize > Op2Size) 2597 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2598 2599 // If the operand is larger than the shift count type but the shift 2600 // count type has enough bits to represent any shift value, truncate 2601 // it now. This is a common case and it exposes the truncate to 2602 // optimization early. 2603 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2604 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2605 // Otherwise we'll need to temporarily settle for some other convenient 2606 // type. Type legalization will make adjustments once the shiftee is split. 2607 else 2608 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2609 } 2610 2611 bool nuw = false; 2612 bool nsw = false; 2613 bool exact = false; 2614 2615 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2616 2617 if (const OverflowingBinaryOperator *OFBinOp = 2618 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2619 nuw = OFBinOp->hasNoUnsignedWrap(); 2620 nsw = OFBinOp->hasNoSignedWrap(); 2621 } 2622 if (const PossiblyExactOperator *ExactOp = 2623 dyn_cast<const PossiblyExactOperator>(&I)) 2624 exact = ExactOp->isExact(); 2625 } 2626 SDNodeFlags Flags; 2627 Flags.setExact(exact); 2628 Flags.setNoSignedWrap(nsw); 2629 Flags.setNoUnsignedWrap(nuw); 2630 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2631 Flags); 2632 setValue(&I, Res); 2633 } 2634 2635 void SelectionDAGBuilder::visitSDiv(const User &I) { 2636 SDValue Op1 = getValue(I.getOperand(0)); 2637 SDValue Op2 = getValue(I.getOperand(1)); 2638 2639 SDNodeFlags Flags; 2640 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2641 cast<PossiblyExactOperator>(&I)->isExact()); 2642 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2643 Op2, Flags)); 2644 } 2645 2646 void SelectionDAGBuilder::visitICmp(const User &I) { 2647 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2648 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2649 predicate = IC->getPredicate(); 2650 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2651 predicate = ICmpInst::Predicate(IC->getPredicate()); 2652 SDValue Op1 = getValue(I.getOperand(0)); 2653 SDValue Op2 = getValue(I.getOperand(1)); 2654 ISD::CondCode Opcode = getICmpCondCode(predicate); 2655 2656 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2657 I.getType()); 2658 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2659 } 2660 2661 void SelectionDAGBuilder::visitFCmp(const User &I) { 2662 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2663 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2664 predicate = FC->getPredicate(); 2665 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2666 predicate = FCmpInst::Predicate(FC->getPredicate()); 2667 SDValue Op1 = getValue(I.getOperand(0)); 2668 SDValue Op2 = getValue(I.getOperand(1)); 2669 ISD::CondCode Condition = getFCmpCondCode(predicate); 2670 2671 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2672 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2673 // further optimization, but currently FMF is only applicable to binary nodes. 2674 if (TM.Options.NoNaNsFPMath) 2675 Condition = getFCmpCodeWithoutNaN(Condition); 2676 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2677 I.getType()); 2678 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2679 } 2680 2681 // Check if the condition of the select has one use or two users that are both 2682 // selects with the same condition. 2683 static bool hasOnlySelectUsers(const Value *Cond) { 2684 return all_of(Cond->users(), [](const Value *V) { 2685 return isa<SelectInst>(V); 2686 }); 2687 } 2688 2689 void SelectionDAGBuilder::visitSelect(const User &I) { 2690 SmallVector<EVT, 4> ValueVTs; 2691 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2692 ValueVTs); 2693 unsigned NumValues = ValueVTs.size(); 2694 if (NumValues == 0) return; 2695 2696 SmallVector<SDValue, 4> Values(NumValues); 2697 SDValue Cond = getValue(I.getOperand(0)); 2698 SDValue LHSVal = getValue(I.getOperand(1)); 2699 SDValue RHSVal = getValue(I.getOperand(2)); 2700 auto BaseOps = {Cond}; 2701 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2702 ISD::VSELECT : ISD::SELECT; 2703 2704 // Min/max matching is only viable if all output VTs are the same. 2705 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2706 EVT VT = ValueVTs[0]; 2707 LLVMContext &Ctx = *DAG.getContext(); 2708 auto &TLI = DAG.getTargetLoweringInfo(); 2709 2710 // We care about the legality of the operation after it has been type 2711 // legalized. 2712 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2713 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2714 VT = TLI.getTypeToTransformTo(Ctx, VT); 2715 2716 // If the vselect is legal, assume we want to leave this as a vector setcc + 2717 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2718 // min/max is legal on the scalar type. 2719 bool UseScalarMinMax = VT.isVector() && 2720 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2721 2722 Value *LHS, *RHS; 2723 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2724 ISD::NodeType Opc = ISD::DELETED_NODE; 2725 switch (SPR.Flavor) { 2726 case SPF_UMAX: Opc = ISD::UMAX; break; 2727 case SPF_UMIN: Opc = ISD::UMIN; break; 2728 case SPF_SMAX: Opc = ISD::SMAX; break; 2729 case SPF_SMIN: Opc = ISD::SMIN; break; 2730 case SPF_FMINNUM: 2731 switch (SPR.NaNBehavior) { 2732 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2733 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2734 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2735 case SPNB_RETURNS_ANY: { 2736 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2737 Opc = ISD::FMINNUM; 2738 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2739 Opc = ISD::FMINNAN; 2740 else if (UseScalarMinMax) 2741 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2742 ISD::FMINNUM : ISD::FMINNAN; 2743 break; 2744 } 2745 } 2746 break; 2747 case SPF_FMAXNUM: 2748 switch (SPR.NaNBehavior) { 2749 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2750 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2751 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2752 case SPNB_RETURNS_ANY: 2753 2754 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2755 Opc = ISD::FMAXNUM; 2756 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2757 Opc = ISD::FMAXNAN; 2758 else if (UseScalarMinMax) 2759 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2760 ISD::FMAXNUM : ISD::FMAXNAN; 2761 break; 2762 } 2763 break; 2764 default: break; 2765 } 2766 2767 if (Opc != ISD::DELETED_NODE && 2768 (TLI.isOperationLegalOrCustom(Opc, VT) || 2769 (UseScalarMinMax && 2770 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2771 // If the underlying comparison instruction is used by any other 2772 // instruction, the consumed instructions won't be destroyed, so it is 2773 // not profitable to convert to a min/max. 2774 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2775 OpCode = Opc; 2776 LHSVal = getValue(LHS); 2777 RHSVal = getValue(RHS); 2778 BaseOps = {}; 2779 } 2780 } 2781 2782 for (unsigned i = 0; i != NumValues; ++i) { 2783 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2784 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2785 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2786 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2787 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2788 Ops); 2789 } 2790 2791 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2792 DAG.getVTList(ValueVTs), Values)); 2793 } 2794 2795 void SelectionDAGBuilder::visitTrunc(const User &I) { 2796 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2797 SDValue N = getValue(I.getOperand(0)); 2798 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2799 I.getType()); 2800 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2801 } 2802 2803 void SelectionDAGBuilder::visitZExt(const User &I) { 2804 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2805 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2806 SDValue N = getValue(I.getOperand(0)); 2807 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2808 I.getType()); 2809 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2810 } 2811 2812 void SelectionDAGBuilder::visitSExt(const User &I) { 2813 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2814 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2815 SDValue N = getValue(I.getOperand(0)); 2816 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2817 I.getType()); 2818 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2819 } 2820 2821 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2822 // FPTrunc is never a no-op cast, no need to check 2823 SDValue N = getValue(I.getOperand(0)); 2824 SDLoc dl = getCurSDLoc(); 2825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2826 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2827 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2828 DAG.getTargetConstant( 2829 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2830 } 2831 2832 void SelectionDAGBuilder::visitFPExt(const User &I) { 2833 // FPExt is never a no-op cast, no need to check 2834 SDValue N = getValue(I.getOperand(0)); 2835 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2836 I.getType()); 2837 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2838 } 2839 2840 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2841 // FPToUI is never a no-op cast, no need to check 2842 SDValue N = getValue(I.getOperand(0)); 2843 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2844 I.getType()); 2845 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2846 } 2847 2848 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2849 // FPToSI is never a no-op cast, no need to check 2850 SDValue N = getValue(I.getOperand(0)); 2851 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2852 I.getType()); 2853 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2854 } 2855 2856 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2857 // UIToFP is never a no-op cast, no need to check 2858 SDValue N = getValue(I.getOperand(0)); 2859 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2860 I.getType()); 2861 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2862 } 2863 2864 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2865 // SIToFP is never a no-op cast, no need to check 2866 SDValue N = getValue(I.getOperand(0)); 2867 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2868 I.getType()); 2869 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2870 } 2871 2872 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2873 // What to do depends on the size of the integer and the size of the pointer. 2874 // We can either truncate, zero extend, or no-op, accordingly. 2875 SDValue N = getValue(I.getOperand(0)); 2876 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2877 I.getType()); 2878 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2879 } 2880 2881 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2882 // What to do depends on the size of the integer and the size of the pointer. 2883 // We can either truncate, zero extend, or no-op, accordingly. 2884 SDValue N = getValue(I.getOperand(0)); 2885 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2886 I.getType()); 2887 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2888 } 2889 2890 void SelectionDAGBuilder::visitBitCast(const User &I) { 2891 SDValue N = getValue(I.getOperand(0)); 2892 SDLoc dl = getCurSDLoc(); 2893 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2894 I.getType()); 2895 2896 // BitCast assures us that source and destination are the same size so this is 2897 // either a BITCAST or a no-op. 2898 if (DestVT != N.getValueType()) 2899 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2900 DestVT, N)); // convert types. 2901 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2902 // might fold any kind of constant expression to an integer constant and that 2903 // is not what we are looking for. Only recognize a bitcast of a genuine 2904 // constant integer as an opaque constant. 2905 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2906 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2907 /*isOpaque*/true)); 2908 else 2909 setValue(&I, N); // noop cast. 2910 } 2911 2912 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2913 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2914 const Value *SV = I.getOperand(0); 2915 SDValue N = getValue(SV); 2916 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2917 2918 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2919 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2920 2921 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2922 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2923 2924 setValue(&I, N); 2925 } 2926 2927 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2929 SDValue InVec = getValue(I.getOperand(0)); 2930 SDValue InVal = getValue(I.getOperand(1)); 2931 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2932 TLI.getVectorIdxTy(DAG.getDataLayout())); 2933 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2934 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2935 InVec, InVal, InIdx)); 2936 } 2937 2938 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2939 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2940 SDValue InVec = getValue(I.getOperand(0)); 2941 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2942 TLI.getVectorIdxTy(DAG.getDataLayout())); 2943 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2944 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2945 InVec, InIdx)); 2946 } 2947 2948 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2949 SDValue Src1 = getValue(I.getOperand(0)); 2950 SDValue Src2 = getValue(I.getOperand(1)); 2951 SDLoc DL = getCurSDLoc(); 2952 2953 SmallVector<int, 8> Mask; 2954 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2955 unsigned MaskNumElts = Mask.size(); 2956 2957 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2958 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2959 EVT SrcVT = Src1.getValueType(); 2960 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2961 2962 if (SrcNumElts == MaskNumElts) { 2963 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 2964 return; 2965 } 2966 2967 // Normalize the shuffle vector since mask and vector length don't match. 2968 if (SrcNumElts < MaskNumElts) { 2969 // Mask is longer than the source vectors. We can use concatenate vector to 2970 // make the mask and vectors lengths match. 2971 2972 if (MaskNumElts % SrcNumElts == 0) { 2973 // Mask length is a multiple of the source vector length. 2974 // Check if the shuffle is some kind of concatenation of the input 2975 // vectors. 2976 unsigned NumConcat = MaskNumElts / SrcNumElts; 2977 bool IsConcat = true; 2978 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 2979 for (unsigned i = 0; i != MaskNumElts; ++i) { 2980 int Idx = Mask[i]; 2981 if (Idx < 0) 2982 continue; 2983 // Ensure the indices in each SrcVT sized piece are sequential and that 2984 // the same source is used for the whole piece. 2985 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 2986 (ConcatSrcs[i / SrcNumElts] >= 0 && 2987 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 2988 IsConcat = false; 2989 break; 2990 } 2991 // Remember which source this index came from. 2992 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 2993 } 2994 2995 // The shuffle is concatenating multiple vectors together. Just emit 2996 // a CONCAT_VECTORS operation. 2997 if (IsConcat) { 2998 SmallVector<SDValue, 8> ConcatOps; 2999 for (auto Src : ConcatSrcs) { 3000 if (Src < 0) 3001 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3002 else if (Src == 0) 3003 ConcatOps.push_back(Src1); 3004 else 3005 ConcatOps.push_back(Src2); 3006 } 3007 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3008 return; 3009 } 3010 } 3011 3012 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3013 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3014 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3015 PaddedMaskNumElts); 3016 3017 // Pad both vectors with undefs to make them the same length as the mask. 3018 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3019 3020 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3021 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3022 MOps1[0] = Src1; 3023 MOps2[0] = Src2; 3024 3025 Src1 = Src1.isUndef() 3026 ? DAG.getUNDEF(PaddedVT) 3027 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3028 Src2 = Src2.isUndef() 3029 ? DAG.getUNDEF(PaddedVT) 3030 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3031 3032 // Readjust mask for new input vector length. 3033 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3034 for (unsigned i = 0; i != MaskNumElts; ++i) { 3035 int Idx = Mask[i]; 3036 if (Idx >= (int)SrcNumElts) 3037 Idx -= SrcNumElts - PaddedMaskNumElts; 3038 MappedOps[i] = Idx; 3039 } 3040 3041 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3042 3043 // If the concatenated vector was padded, extract a subvector with the 3044 // correct number of elements. 3045 if (MaskNumElts != PaddedMaskNumElts) 3046 Result = DAG.getNode( 3047 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3048 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3049 3050 setValue(&I, Result); 3051 return; 3052 } 3053 3054 if (SrcNumElts > MaskNumElts) { 3055 // Analyze the access pattern of the vector to see if we can extract 3056 // two subvectors and do the shuffle. 3057 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3058 bool CanExtract = true; 3059 for (int Idx : Mask) { 3060 unsigned Input = 0; 3061 if (Idx < 0) 3062 continue; 3063 3064 if (Idx >= (int)SrcNumElts) { 3065 Input = 1; 3066 Idx -= SrcNumElts; 3067 } 3068 3069 // If all the indices come from the same MaskNumElts sized portion of 3070 // the sources we can use extract. Also make sure the extract wouldn't 3071 // extract past the end of the source. 3072 int NewStartIdx = alignDown(Idx, MaskNumElts); 3073 if (NewStartIdx + MaskNumElts > SrcNumElts || 3074 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3075 CanExtract = false; 3076 // Make sure we always update StartIdx as we use it to track if all 3077 // elements are undef. 3078 StartIdx[Input] = NewStartIdx; 3079 } 3080 3081 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3082 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3083 return; 3084 } 3085 if (CanExtract) { 3086 // Extract appropriate subvector and generate a vector shuffle 3087 for (unsigned Input = 0; Input < 2; ++Input) { 3088 SDValue &Src = Input == 0 ? Src1 : Src2; 3089 if (StartIdx[Input] < 0) 3090 Src = DAG.getUNDEF(VT); 3091 else { 3092 Src = DAG.getNode( 3093 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3094 DAG.getConstant(StartIdx[Input], DL, 3095 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3096 } 3097 } 3098 3099 // Calculate new mask. 3100 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3101 for (int &Idx : MappedOps) { 3102 if (Idx >= (int)SrcNumElts) 3103 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3104 else if (Idx >= 0) 3105 Idx -= StartIdx[0]; 3106 } 3107 3108 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3109 return; 3110 } 3111 } 3112 3113 // We can't use either concat vectors or extract subvectors so fall back to 3114 // replacing the shuffle with extract and build vector. 3115 // to insert and build vector. 3116 EVT EltVT = VT.getVectorElementType(); 3117 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3118 SmallVector<SDValue,8> Ops; 3119 for (int Idx : Mask) { 3120 SDValue Res; 3121 3122 if (Idx < 0) { 3123 Res = DAG.getUNDEF(EltVT); 3124 } else { 3125 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3126 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3127 3128 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3129 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3130 } 3131 3132 Ops.push_back(Res); 3133 } 3134 3135 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3136 } 3137 3138 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3139 const Value *Op0 = I.getOperand(0); 3140 const Value *Op1 = I.getOperand(1); 3141 Type *AggTy = I.getType(); 3142 Type *ValTy = Op1->getType(); 3143 bool IntoUndef = isa<UndefValue>(Op0); 3144 bool FromUndef = isa<UndefValue>(Op1); 3145 3146 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3147 3148 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3149 SmallVector<EVT, 4> AggValueVTs; 3150 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3151 SmallVector<EVT, 4> ValValueVTs; 3152 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3153 3154 unsigned NumAggValues = AggValueVTs.size(); 3155 unsigned NumValValues = ValValueVTs.size(); 3156 SmallVector<SDValue, 4> Values(NumAggValues); 3157 3158 // Ignore an insertvalue that produces an empty object 3159 if (!NumAggValues) { 3160 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3161 return; 3162 } 3163 3164 SDValue Agg = getValue(Op0); 3165 unsigned i = 0; 3166 // Copy the beginning value(s) from the original aggregate. 3167 for (; i != LinearIndex; ++i) 3168 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3169 SDValue(Agg.getNode(), Agg.getResNo() + i); 3170 // Copy values from the inserted value(s). 3171 if (NumValValues) { 3172 SDValue Val = getValue(Op1); 3173 for (; i != LinearIndex + NumValValues; ++i) 3174 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3175 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3176 } 3177 // Copy remaining value(s) from the original aggregate. 3178 for (; i != NumAggValues; ++i) 3179 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3180 SDValue(Agg.getNode(), Agg.getResNo() + i); 3181 3182 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3183 DAG.getVTList(AggValueVTs), Values)); 3184 } 3185 3186 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3187 const Value *Op0 = I.getOperand(0); 3188 Type *AggTy = Op0->getType(); 3189 Type *ValTy = I.getType(); 3190 bool OutOfUndef = isa<UndefValue>(Op0); 3191 3192 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3193 3194 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3195 SmallVector<EVT, 4> ValValueVTs; 3196 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3197 3198 unsigned NumValValues = ValValueVTs.size(); 3199 3200 // Ignore a extractvalue that produces an empty object 3201 if (!NumValValues) { 3202 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3203 return; 3204 } 3205 3206 SmallVector<SDValue, 4> Values(NumValValues); 3207 3208 SDValue Agg = getValue(Op0); 3209 // Copy out the selected value(s). 3210 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3211 Values[i - LinearIndex] = 3212 OutOfUndef ? 3213 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3214 SDValue(Agg.getNode(), Agg.getResNo() + i); 3215 3216 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3217 DAG.getVTList(ValValueVTs), Values)); 3218 } 3219 3220 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3221 Value *Op0 = I.getOperand(0); 3222 // Note that the pointer operand may be a vector of pointers. Take the scalar 3223 // element which holds a pointer. 3224 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3225 SDValue N = getValue(Op0); 3226 SDLoc dl = getCurSDLoc(); 3227 3228 // Normalize Vector GEP - all scalar operands should be converted to the 3229 // splat vector. 3230 unsigned VectorWidth = I.getType()->isVectorTy() ? 3231 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3232 3233 if (VectorWidth && !N.getValueType().isVector()) { 3234 LLVMContext &Context = *DAG.getContext(); 3235 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3236 N = DAG.getSplatBuildVector(VT, dl, N); 3237 } 3238 3239 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3240 GTI != E; ++GTI) { 3241 const Value *Idx = GTI.getOperand(); 3242 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3243 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3244 if (Field) { 3245 // N = N + Offset 3246 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3247 3248 // In an inbounds GEP with an offset that is nonnegative even when 3249 // interpreted as signed, assume there is no unsigned overflow. 3250 SDNodeFlags Flags; 3251 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3252 Flags.setNoUnsignedWrap(true); 3253 3254 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3255 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3256 } 3257 } else { 3258 MVT PtrTy = 3259 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3260 unsigned PtrSize = PtrTy.getSizeInBits(); 3261 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3262 3263 // If this is a scalar constant or a splat vector of constants, 3264 // handle it quickly. 3265 const auto *CI = dyn_cast<ConstantInt>(Idx); 3266 if (!CI && isa<ConstantDataVector>(Idx) && 3267 cast<ConstantDataVector>(Idx)->getSplatValue()) 3268 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3269 3270 if (CI) { 3271 if (CI->isZero()) 3272 continue; 3273 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3274 LLVMContext &Context = *DAG.getContext(); 3275 SDValue OffsVal = VectorWidth ? 3276 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3277 DAG.getConstant(Offs, dl, PtrTy); 3278 3279 // In an inbouds GEP with an offset that is nonnegative even when 3280 // interpreted as signed, assume there is no unsigned overflow. 3281 SDNodeFlags Flags; 3282 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3283 Flags.setNoUnsignedWrap(true); 3284 3285 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3286 continue; 3287 } 3288 3289 // N = N + Idx * ElementSize; 3290 SDValue IdxN = getValue(Idx); 3291 3292 if (!IdxN.getValueType().isVector() && VectorWidth) { 3293 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3294 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3295 } 3296 3297 // If the index is smaller or larger than intptr_t, truncate or extend 3298 // it. 3299 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3300 3301 // If this is a multiply by a power of two, turn it into a shl 3302 // immediately. This is a very common case. 3303 if (ElementSize != 1) { 3304 if (ElementSize.isPowerOf2()) { 3305 unsigned Amt = ElementSize.logBase2(); 3306 IdxN = DAG.getNode(ISD::SHL, dl, 3307 N.getValueType(), IdxN, 3308 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3309 } else { 3310 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3311 IdxN = DAG.getNode(ISD::MUL, dl, 3312 N.getValueType(), IdxN, Scale); 3313 } 3314 } 3315 3316 N = DAG.getNode(ISD::ADD, dl, 3317 N.getValueType(), N, IdxN); 3318 } 3319 } 3320 3321 setValue(&I, N); 3322 } 3323 3324 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3325 // If this is a fixed sized alloca in the entry block of the function, 3326 // allocate it statically on the stack. 3327 if (FuncInfo.StaticAllocaMap.count(&I)) 3328 return; // getValue will auto-populate this. 3329 3330 SDLoc dl = getCurSDLoc(); 3331 Type *Ty = I.getAllocatedType(); 3332 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3333 auto &DL = DAG.getDataLayout(); 3334 uint64_t TySize = DL.getTypeAllocSize(Ty); 3335 unsigned Align = 3336 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3337 3338 SDValue AllocSize = getValue(I.getArraySize()); 3339 3340 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3341 if (AllocSize.getValueType() != IntPtr) 3342 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3343 3344 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3345 AllocSize, 3346 DAG.getConstant(TySize, dl, IntPtr)); 3347 3348 // Handle alignment. If the requested alignment is less than or equal to 3349 // the stack alignment, ignore it. If the size is greater than or equal to 3350 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3351 unsigned StackAlign = 3352 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3353 if (Align <= StackAlign) 3354 Align = 0; 3355 3356 // Round the size of the allocation up to the stack alignment size 3357 // by add SA-1 to the size. This doesn't overflow because we're computing 3358 // an address inside an alloca. 3359 SDNodeFlags Flags; 3360 Flags.setNoUnsignedWrap(true); 3361 AllocSize = DAG.getNode(ISD::ADD, dl, 3362 AllocSize.getValueType(), AllocSize, 3363 DAG.getIntPtrConstant(StackAlign - 1, dl), Flags); 3364 3365 // Mask out the low bits for alignment purposes. 3366 AllocSize = DAG.getNode(ISD::AND, dl, 3367 AllocSize.getValueType(), AllocSize, 3368 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3369 dl)); 3370 3371 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3372 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3373 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3374 setValue(&I, DSA); 3375 DAG.setRoot(DSA.getValue(1)); 3376 3377 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3378 } 3379 3380 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3381 if (I.isAtomic()) 3382 return visitAtomicLoad(I); 3383 3384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3385 const Value *SV = I.getOperand(0); 3386 if (TLI.supportSwiftError()) { 3387 // Swifterror values can come from either a function parameter with 3388 // swifterror attribute or an alloca with swifterror attribute. 3389 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3390 if (Arg->hasSwiftErrorAttr()) 3391 return visitLoadFromSwiftError(I); 3392 } 3393 3394 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3395 if (Alloca->isSwiftError()) 3396 return visitLoadFromSwiftError(I); 3397 } 3398 } 3399 3400 SDValue Ptr = getValue(SV); 3401 3402 Type *Ty = I.getType(); 3403 3404 bool isVolatile = I.isVolatile(); 3405 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3406 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3407 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3408 unsigned Alignment = I.getAlignment(); 3409 3410 AAMDNodes AAInfo; 3411 I.getAAMetadata(AAInfo); 3412 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3413 3414 SmallVector<EVT, 4> ValueVTs; 3415 SmallVector<uint64_t, 4> Offsets; 3416 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3417 unsigned NumValues = ValueVTs.size(); 3418 if (NumValues == 0) 3419 return; 3420 3421 SDValue Root; 3422 bool ConstantMemory = false; 3423 if (isVolatile || NumValues > MaxParallelChains) 3424 // Serialize volatile loads with other side effects. 3425 Root = getRoot(); 3426 else if (AA->pointsToConstantMemory(MemoryLocation( 3427 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3428 // Do not serialize (non-volatile) loads of constant memory with anything. 3429 Root = DAG.getEntryNode(); 3430 ConstantMemory = true; 3431 } else { 3432 // Do not serialize non-volatile loads against each other. 3433 Root = DAG.getRoot(); 3434 } 3435 3436 SDLoc dl = getCurSDLoc(); 3437 3438 if (isVolatile) 3439 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3440 3441 // An aggregate load cannot wrap around the address space, so offsets to its 3442 // parts don't wrap either. 3443 SDNodeFlags Flags; 3444 Flags.setNoUnsignedWrap(true); 3445 3446 SmallVector<SDValue, 4> Values(NumValues); 3447 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3448 EVT PtrVT = Ptr.getValueType(); 3449 unsigned ChainI = 0; 3450 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3451 // Serializing loads here may result in excessive register pressure, and 3452 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3453 // could recover a bit by hoisting nodes upward in the chain by recognizing 3454 // they are side-effect free or do not alias. The optimizer should really 3455 // avoid this case by converting large object/array copies to llvm.memcpy 3456 // (MaxParallelChains should always remain as failsafe). 3457 if (ChainI == MaxParallelChains) { 3458 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3459 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3460 makeArrayRef(Chains.data(), ChainI)); 3461 Root = Chain; 3462 ChainI = 0; 3463 } 3464 SDValue A = DAG.getNode(ISD::ADD, dl, 3465 PtrVT, Ptr, 3466 DAG.getConstant(Offsets[i], dl, PtrVT), 3467 Flags); 3468 auto MMOFlags = MachineMemOperand::MONone; 3469 if (isVolatile) 3470 MMOFlags |= MachineMemOperand::MOVolatile; 3471 if (isNonTemporal) 3472 MMOFlags |= MachineMemOperand::MONonTemporal; 3473 if (isInvariant) 3474 MMOFlags |= MachineMemOperand::MOInvariant; 3475 if (isDereferenceable) 3476 MMOFlags |= MachineMemOperand::MODereferenceable; 3477 3478 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3479 MachinePointerInfo(SV, Offsets[i]), Alignment, 3480 MMOFlags, AAInfo, Ranges); 3481 3482 Values[i] = L; 3483 Chains[ChainI] = L.getValue(1); 3484 } 3485 3486 if (!ConstantMemory) { 3487 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3488 makeArrayRef(Chains.data(), ChainI)); 3489 if (isVolatile) 3490 DAG.setRoot(Chain); 3491 else 3492 PendingLoads.push_back(Chain); 3493 } 3494 3495 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3496 DAG.getVTList(ValueVTs), Values)); 3497 } 3498 3499 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3500 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3501 assert(TLI.supportSwiftError() && 3502 "call visitStoreToSwiftError when backend supports swifterror"); 3503 3504 SmallVector<EVT, 4> ValueVTs; 3505 SmallVector<uint64_t, 4> Offsets; 3506 const Value *SrcV = I.getOperand(0); 3507 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3508 SrcV->getType(), ValueVTs, &Offsets); 3509 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3510 "expect a single EVT for swifterror"); 3511 3512 SDValue Src = getValue(SrcV); 3513 // Create a virtual register, then update the virtual register. 3514 auto &DL = DAG.getDataLayout(); 3515 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3516 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3517 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3518 // Chain can be getRoot or getControlRoot. 3519 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3520 SDValue(Src.getNode(), Src.getResNo())); 3521 DAG.setRoot(CopyNode); 3522 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3523 } 3524 3525 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3526 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3527 "call visitLoadFromSwiftError when backend supports swifterror"); 3528 3529 assert(!I.isVolatile() && 3530 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3531 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3532 "Support volatile, non temporal, invariant for load_from_swift_error"); 3533 3534 const Value *SV = I.getOperand(0); 3535 Type *Ty = I.getType(); 3536 AAMDNodes AAInfo; 3537 I.getAAMetadata(AAInfo); 3538 assert(!AA->pointsToConstantMemory(MemoryLocation( 3539 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3540 "load_from_swift_error should not be constant memory"); 3541 3542 SmallVector<EVT, 4> ValueVTs; 3543 SmallVector<uint64_t, 4> Offsets; 3544 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3545 ValueVTs, &Offsets); 3546 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3547 "expect a single EVT for swifterror"); 3548 3549 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3550 SDValue L = DAG.getCopyFromReg( 3551 getRoot(), getCurSDLoc(), 3552 FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]); 3553 3554 setValue(&I, L); 3555 } 3556 3557 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3558 if (I.isAtomic()) 3559 return visitAtomicStore(I); 3560 3561 const Value *SrcV = I.getOperand(0); 3562 const Value *PtrV = I.getOperand(1); 3563 3564 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3565 if (TLI.supportSwiftError()) { 3566 // Swifterror values can come from either a function parameter with 3567 // swifterror attribute or an alloca with swifterror attribute. 3568 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3569 if (Arg->hasSwiftErrorAttr()) 3570 return visitStoreToSwiftError(I); 3571 } 3572 3573 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3574 if (Alloca->isSwiftError()) 3575 return visitStoreToSwiftError(I); 3576 } 3577 } 3578 3579 SmallVector<EVT, 4> ValueVTs; 3580 SmallVector<uint64_t, 4> Offsets; 3581 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3582 SrcV->getType(), ValueVTs, &Offsets); 3583 unsigned NumValues = ValueVTs.size(); 3584 if (NumValues == 0) 3585 return; 3586 3587 // Get the lowered operands. Note that we do this after 3588 // checking if NumResults is zero, because with zero results 3589 // the operands won't have values in the map. 3590 SDValue Src = getValue(SrcV); 3591 SDValue Ptr = getValue(PtrV); 3592 3593 SDValue Root = getRoot(); 3594 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3595 SDLoc dl = getCurSDLoc(); 3596 EVT PtrVT = Ptr.getValueType(); 3597 unsigned Alignment = I.getAlignment(); 3598 AAMDNodes AAInfo; 3599 I.getAAMetadata(AAInfo); 3600 3601 auto MMOFlags = MachineMemOperand::MONone; 3602 if (I.isVolatile()) 3603 MMOFlags |= MachineMemOperand::MOVolatile; 3604 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3605 MMOFlags |= MachineMemOperand::MONonTemporal; 3606 3607 // An aggregate load cannot wrap around the address space, so offsets to its 3608 // parts don't wrap either. 3609 SDNodeFlags Flags; 3610 Flags.setNoUnsignedWrap(true); 3611 3612 unsigned ChainI = 0; 3613 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3614 // See visitLoad comments. 3615 if (ChainI == MaxParallelChains) { 3616 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3617 makeArrayRef(Chains.data(), ChainI)); 3618 Root = Chain; 3619 ChainI = 0; 3620 } 3621 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3622 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3623 SDValue St = DAG.getStore( 3624 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3625 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3626 Chains[ChainI] = St; 3627 } 3628 3629 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3630 makeArrayRef(Chains.data(), ChainI)); 3631 DAG.setRoot(StoreNode); 3632 } 3633 3634 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3635 bool IsCompressing) { 3636 SDLoc sdl = getCurSDLoc(); 3637 3638 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3639 unsigned& Alignment) { 3640 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3641 Src0 = I.getArgOperand(0); 3642 Ptr = I.getArgOperand(1); 3643 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3644 Mask = I.getArgOperand(3); 3645 }; 3646 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3647 unsigned& Alignment) { 3648 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3649 Src0 = I.getArgOperand(0); 3650 Ptr = I.getArgOperand(1); 3651 Mask = I.getArgOperand(2); 3652 Alignment = 0; 3653 }; 3654 3655 Value *PtrOperand, *MaskOperand, *Src0Operand; 3656 unsigned Alignment; 3657 if (IsCompressing) 3658 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3659 else 3660 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3661 3662 SDValue Ptr = getValue(PtrOperand); 3663 SDValue Src0 = getValue(Src0Operand); 3664 SDValue Mask = getValue(MaskOperand); 3665 3666 EVT VT = Src0.getValueType(); 3667 if (!Alignment) 3668 Alignment = DAG.getEVTAlignment(VT); 3669 3670 AAMDNodes AAInfo; 3671 I.getAAMetadata(AAInfo); 3672 3673 MachineMemOperand *MMO = 3674 DAG.getMachineFunction(). 3675 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3676 MachineMemOperand::MOStore, VT.getStoreSize(), 3677 Alignment, AAInfo); 3678 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3679 MMO, false /* Truncating */, 3680 IsCompressing); 3681 DAG.setRoot(StoreNode); 3682 setValue(&I, StoreNode); 3683 } 3684 3685 // Get a uniform base for the Gather/Scatter intrinsic. 3686 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3687 // We try to represent it as a base pointer + vector of indices. 3688 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3689 // The first operand of the GEP may be a single pointer or a vector of pointers 3690 // Example: 3691 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3692 // or 3693 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3694 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3695 // 3696 // When the first GEP operand is a single pointer - it is the uniform base we 3697 // are looking for. If first operand of the GEP is a splat vector - we 3698 // extract the spalt value and use it as a uniform base. 3699 // In all other cases the function returns 'false'. 3700 // 3701 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3702 SelectionDAGBuilder* SDB) { 3703 3704 SelectionDAG& DAG = SDB->DAG; 3705 LLVMContext &Context = *DAG.getContext(); 3706 3707 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3708 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3709 if (!GEP || GEP->getNumOperands() > 2) 3710 return false; 3711 3712 const Value *GEPPtr = GEP->getPointerOperand(); 3713 if (!GEPPtr->getType()->isVectorTy()) 3714 Ptr = GEPPtr; 3715 else if (!(Ptr = getSplatValue(GEPPtr))) 3716 return false; 3717 3718 Value *IndexVal = GEP->getOperand(1); 3719 3720 // The operands of the GEP may be defined in another basic block. 3721 // In this case we'll not find nodes for the operands. 3722 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3723 return false; 3724 3725 Base = SDB->getValue(Ptr); 3726 Index = SDB->getValue(IndexVal); 3727 3728 // Suppress sign extension. 3729 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3730 if (SDB->findValue(Sext->getOperand(0))) { 3731 IndexVal = Sext->getOperand(0); 3732 Index = SDB->getValue(IndexVal); 3733 } 3734 } 3735 if (!Index.getValueType().isVector()) { 3736 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3737 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3738 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3739 } 3740 return true; 3741 } 3742 3743 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3744 SDLoc sdl = getCurSDLoc(); 3745 3746 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3747 const Value *Ptr = I.getArgOperand(1); 3748 SDValue Src0 = getValue(I.getArgOperand(0)); 3749 SDValue Mask = getValue(I.getArgOperand(3)); 3750 EVT VT = Src0.getValueType(); 3751 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3752 if (!Alignment) 3753 Alignment = DAG.getEVTAlignment(VT); 3754 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3755 3756 AAMDNodes AAInfo; 3757 I.getAAMetadata(AAInfo); 3758 3759 SDValue Base; 3760 SDValue Index; 3761 const Value *BasePtr = Ptr; 3762 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3763 3764 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3765 MachineMemOperand *MMO = DAG.getMachineFunction(). 3766 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3767 MachineMemOperand::MOStore, VT.getStoreSize(), 3768 Alignment, AAInfo); 3769 if (!UniformBase) { 3770 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3771 Index = getValue(Ptr); 3772 } 3773 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3774 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3775 Ops, MMO); 3776 DAG.setRoot(Scatter); 3777 setValue(&I, Scatter); 3778 } 3779 3780 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3781 SDLoc sdl = getCurSDLoc(); 3782 3783 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3784 unsigned& Alignment) { 3785 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3786 Ptr = I.getArgOperand(0); 3787 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3788 Mask = I.getArgOperand(2); 3789 Src0 = I.getArgOperand(3); 3790 }; 3791 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3792 unsigned& Alignment) { 3793 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3794 Ptr = I.getArgOperand(0); 3795 Alignment = 0; 3796 Mask = I.getArgOperand(1); 3797 Src0 = I.getArgOperand(2); 3798 }; 3799 3800 Value *PtrOperand, *MaskOperand, *Src0Operand; 3801 unsigned Alignment; 3802 if (IsExpanding) 3803 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3804 else 3805 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3806 3807 SDValue Ptr = getValue(PtrOperand); 3808 SDValue Src0 = getValue(Src0Operand); 3809 SDValue Mask = getValue(MaskOperand); 3810 3811 EVT VT = Src0.getValueType(); 3812 if (!Alignment) 3813 Alignment = DAG.getEVTAlignment(VT); 3814 3815 AAMDNodes AAInfo; 3816 I.getAAMetadata(AAInfo); 3817 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3818 3819 // Do not serialize masked loads of constant memory with anything. 3820 bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation( 3821 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3822 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3823 3824 MachineMemOperand *MMO = 3825 DAG.getMachineFunction(). 3826 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3827 MachineMemOperand::MOLoad, VT.getStoreSize(), 3828 Alignment, AAInfo, Ranges); 3829 3830 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3831 ISD::NON_EXTLOAD, IsExpanding); 3832 if (AddToChain) { 3833 SDValue OutChain = Load.getValue(1); 3834 DAG.setRoot(OutChain); 3835 } 3836 setValue(&I, Load); 3837 } 3838 3839 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3840 SDLoc sdl = getCurSDLoc(); 3841 3842 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3843 const Value *Ptr = I.getArgOperand(0); 3844 SDValue Src0 = getValue(I.getArgOperand(3)); 3845 SDValue Mask = getValue(I.getArgOperand(2)); 3846 3847 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3848 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3849 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3850 if (!Alignment) 3851 Alignment = DAG.getEVTAlignment(VT); 3852 3853 AAMDNodes AAInfo; 3854 I.getAAMetadata(AAInfo); 3855 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3856 3857 SDValue Root = DAG.getRoot(); 3858 SDValue Base; 3859 SDValue Index; 3860 const Value *BasePtr = Ptr; 3861 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3862 bool ConstantMemory = false; 3863 if (UniformBase && 3864 AA->pointsToConstantMemory(MemoryLocation( 3865 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3866 AAInfo))) { 3867 // Do not serialize (non-volatile) loads of constant memory with anything. 3868 Root = DAG.getEntryNode(); 3869 ConstantMemory = true; 3870 } 3871 3872 MachineMemOperand *MMO = 3873 DAG.getMachineFunction(). 3874 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3875 MachineMemOperand::MOLoad, VT.getStoreSize(), 3876 Alignment, AAInfo, Ranges); 3877 3878 if (!UniformBase) { 3879 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3880 Index = getValue(Ptr); 3881 } 3882 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3883 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3884 Ops, MMO); 3885 3886 SDValue OutChain = Gather.getValue(1); 3887 if (!ConstantMemory) 3888 PendingLoads.push_back(OutChain); 3889 setValue(&I, Gather); 3890 } 3891 3892 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3893 SDLoc dl = getCurSDLoc(); 3894 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3895 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3896 SynchronizationScope Scope = I.getSynchScope(); 3897 3898 SDValue InChain = getRoot(); 3899 3900 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3901 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3902 SDValue L = DAG.getAtomicCmpSwap( 3903 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3904 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3905 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3906 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3907 3908 SDValue OutChain = L.getValue(2); 3909 3910 setValue(&I, L); 3911 DAG.setRoot(OutChain); 3912 } 3913 3914 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3915 SDLoc dl = getCurSDLoc(); 3916 ISD::NodeType NT; 3917 switch (I.getOperation()) { 3918 default: llvm_unreachable("Unknown atomicrmw operation"); 3919 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3920 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3921 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3922 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3923 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3924 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3925 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3926 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3927 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3928 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3929 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3930 } 3931 AtomicOrdering Order = I.getOrdering(); 3932 SynchronizationScope Scope = I.getSynchScope(); 3933 3934 SDValue InChain = getRoot(); 3935 3936 SDValue L = 3937 DAG.getAtomic(NT, dl, 3938 getValue(I.getValOperand()).getSimpleValueType(), 3939 InChain, 3940 getValue(I.getPointerOperand()), 3941 getValue(I.getValOperand()), 3942 I.getPointerOperand(), 3943 /* Alignment=*/ 0, Order, Scope); 3944 3945 SDValue OutChain = L.getValue(1); 3946 3947 setValue(&I, L); 3948 DAG.setRoot(OutChain); 3949 } 3950 3951 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3952 SDLoc dl = getCurSDLoc(); 3953 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3954 SDValue Ops[3]; 3955 Ops[0] = getRoot(); 3956 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 3957 TLI.getFenceOperandTy(DAG.getDataLayout())); 3958 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3959 TLI.getFenceOperandTy(DAG.getDataLayout())); 3960 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3961 } 3962 3963 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3964 SDLoc dl = getCurSDLoc(); 3965 AtomicOrdering Order = I.getOrdering(); 3966 SynchronizationScope Scope = I.getSynchScope(); 3967 3968 SDValue InChain = getRoot(); 3969 3970 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3971 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3972 3973 if (I.getAlignment() < VT.getSizeInBits() / 8) 3974 report_fatal_error("Cannot generate unaligned atomic load"); 3975 3976 MachineMemOperand *MMO = 3977 DAG.getMachineFunction(). 3978 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3979 MachineMemOperand::MOVolatile | 3980 MachineMemOperand::MOLoad, 3981 VT.getStoreSize(), 3982 I.getAlignment() ? I.getAlignment() : 3983 DAG.getEVTAlignment(VT), 3984 AAMDNodes(), nullptr, Scope, Order); 3985 3986 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3987 SDValue L = 3988 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3989 getValue(I.getPointerOperand()), MMO); 3990 3991 SDValue OutChain = L.getValue(1); 3992 3993 setValue(&I, L); 3994 DAG.setRoot(OutChain); 3995 } 3996 3997 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3998 SDLoc dl = getCurSDLoc(); 3999 4000 AtomicOrdering Order = I.getOrdering(); 4001 SynchronizationScope Scope = I.getSynchScope(); 4002 4003 SDValue InChain = getRoot(); 4004 4005 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4006 EVT VT = 4007 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4008 4009 if (I.getAlignment() < VT.getSizeInBits() / 8) 4010 report_fatal_error("Cannot generate unaligned atomic store"); 4011 4012 SDValue OutChain = 4013 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4014 InChain, 4015 getValue(I.getPointerOperand()), 4016 getValue(I.getValueOperand()), 4017 I.getPointerOperand(), I.getAlignment(), 4018 Order, Scope); 4019 4020 DAG.setRoot(OutChain); 4021 } 4022 4023 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4024 /// node. 4025 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4026 unsigned Intrinsic) { 4027 // Ignore the callsite's attributes. A specific call site may be marked with 4028 // readnone, but the lowering code will expect the chain based on the 4029 // definition. 4030 const Function *F = I.getCalledFunction(); 4031 bool HasChain = !F->doesNotAccessMemory(); 4032 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4033 4034 // Build the operand list. 4035 SmallVector<SDValue, 8> Ops; 4036 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4037 if (OnlyLoad) { 4038 // We don't need to serialize loads against other loads. 4039 Ops.push_back(DAG.getRoot()); 4040 } else { 4041 Ops.push_back(getRoot()); 4042 } 4043 } 4044 4045 // Info is set by getTgtMemInstrinsic 4046 TargetLowering::IntrinsicInfo Info; 4047 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4048 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4049 4050 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4051 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4052 Info.opc == ISD::INTRINSIC_W_CHAIN) 4053 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4054 TLI.getPointerTy(DAG.getDataLayout()))); 4055 4056 // Add all operands of the call to the operand list. 4057 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4058 SDValue Op = getValue(I.getArgOperand(i)); 4059 Ops.push_back(Op); 4060 } 4061 4062 SmallVector<EVT, 4> ValueVTs; 4063 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4064 4065 if (HasChain) 4066 ValueVTs.push_back(MVT::Other); 4067 4068 SDVTList VTs = DAG.getVTList(ValueVTs); 4069 4070 // Create the node. 4071 SDValue Result; 4072 if (IsTgtIntrinsic) { 4073 // This is target intrinsic that touches memory 4074 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4075 VTs, Ops, Info.memVT, 4076 MachinePointerInfo(Info.ptrVal, Info.offset), 4077 Info.align, Info.vol, 4078 Info.readMem, Info.writeMem, Info.size); 4079 } else if (!HasChain) { 4080 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4081 } else if (!I.getType()->isVoidTy()) { 4082 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4083 } else { 4084 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4085 } 4086 4087 if (HasChain) { 4088 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4089 if (OnlyLoad) 4090 PendingLoads.push_back(Chain); 4091 else 4092 DAG.setRoot(Chain); 4093 } 4094 4095 if (!I.getType()->isVoidTy()) { 4096 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4097 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4098 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4099 } else 4100 Result = lowerRangeToAssertZExt(DAG, I, Result); 4101 4102 setValue(&I, Result); 4103 } 4104 } 4105 4106 /// GetSignificand - Get the significand and build it into a floating-point 4107 /// number with exponent of 1: 4108 /// 4109 /// Op = (Op & 0x007fffff) | 0x3f800000; 4110 /// 4111 /// where Op is the hexadecimal representation of floating point value. 4112 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4113 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4114 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4115 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4116 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4117 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4118 } 4119 4120 /// GetExponent - Get the exponent: 4121 /// 4122 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4123 /// 4124 /// where Op is the hexadecimal representation of floating point value. 4125 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4126 const TargetLowering &TLI, const SDLoc &dl) { 4127 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4128 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4129 SDValue t1 = DAG.getNode( 4130 ISD::SRL, dl, MVT::i32, t0, 4131 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4132 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4133 DAG.getConstant(127, dl, MVT::i32)); 4134 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4135 } 4136 4137 /// getF32Constant - Get 32-bit floating point constant. 4138 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4139 const SDLoc &dl) { 4140 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4141 MVT::f32); 4142 } 4143 4144 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4145 SelectionDAG &DAG) { 4146 // TODO: What fast-math-flags should be set on the floating-point nodes? 4147 4148 // IntegerPartOfX = ((int32_t)(t0); 4149 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4150 4151 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4152 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4153 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4154 4155 // IntegerPartOfX <<= 23; 4156 IntegerPartOfX = DAG.getNode( 4157 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4158 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4159 DAG.getDataLayout()))); 4160 4161 SDValue TwoToFractionalPartOfX; 4162 if (LimitFloatPrecision <= 6) { 4163 // For floating-point precision of 6: 4164 // 4165 // TwoToFractionalPartOfX = 4166 // 0.997535578f + 4167 // (0.735607626f + 0.252464424f * x) * x; 4168 // 4169 // error 0.0144103317, which is 6 bits 4170 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4171 getF32Constant(DAG, 0x3e814304, dl)); 4172 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4173 getF32Constant(DAG, 0x3f3c50c8, dl)); 4174 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4175 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4176 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4177 } else if (LimitFloatPrecision <= 12) { 4178 // For floating-point precision of 12: 4179 // 4180 // TwoToFractionalPartOfX = 4181 // 0.999892986f + 4182 // (0.696457318f + 4183 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4184 // 4185 // error 0.000107046256, which is 13 to 14 bits 4186 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4187 getF32Constant(DAG, 0x3da235e3, dl)); 4188 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4189 getF32Constant(DAG, 0x3e65b8f3, dl)); 4190 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4191 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4192 getF32Constant(DAG, 0x3f324b07, dl)); 4193 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4194 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4195 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4196 } else { // LimitFloatPrecision <= 18 4197 // For floating-point precision of 18: 4198 // 4199 // TwoToFractionalPartOfX = 4200 // 0.999999982f + 4201 // (0.693148872f + 4202 // (0.240227044f + 4203 // (0.554906021e-1f + 4204 // (0.961591928e-2f + 4205 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4206 // error 2.47208000*10^(-7), which is better than 18 bits 4207 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4208 getF32Constant(DAG, 0x3924b03e, dl)); 4209 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4210 getF32Constant(DAG, 0x3ab24b87, dl)); 4211 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4212 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4213 getF32Constant(DAG, 0x3c1d8c17, dl)); 4214 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4215 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4216 getF32Constant(DAG, 0x3d634a1d, dl)); 4217 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4218 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4219 getF32Constant(DAG, 0x3e75fe14, dl)); 4220 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4221 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4222 getF32Constant(DAG, 0x3f317234, dl)); 4223 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4224 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4225 getF32Constant(DAG, 0x3f800000, dl)); 4226 } 4227 4228 // Add the exponent into the result in integer domain. 4229 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4230 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4231 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4232 } 4233 4234 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4235 /// limited-precision mode. 4236 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4237 const TargetLowering &TLI) { 4238 if (Op.getValueType() == MVT::f32 && 4239 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4240 4241 // Put the exponent in the right bit position for later addition to the 4242 // final result: 4243 // 4244 // #define LOG2OFe 1.4426950f 4245 // t0 = Op * LOG2OFe 4246 4247 // TODO: What fast-math-flags should be set here? 4248 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4249 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4250 return getLimitedPrecisionExp2(t0, dl, DAG); 4251 } 4252 4253 // No special expansion. 4254 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4255 } 4256 4257 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4258 /// limited-precision mode. 4259 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4260 const TargetLowering &TLI) { 4261 4262 // TODO: What fast-math-flags should be set on the floating-point nodes? 4263 4264 if (Op.getValueType() == MVT::f32 && 4265 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4266 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4267 4268 // Scale the exponent by log(2) [0.69314718f]. 4269 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4270 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4271 getF32Constant(DAG, 0x3f317218, dl)); 4272 4273 // Get the significand and build it into a floating-point number with 4274 // exponent of 1. 4275 SDValue X = GetSignificand(DAG, Op1, dl); 4276 4277 SDValue LogOfMantissa; 4278 if (LimitFloatPrecision <= 6) { 4279 // For floating-point precision of 6: 4280 // 4281 // LogofMantissa = 4282 // -1.1609546f + 4283 // (1.4034025f - 0.23903021f * x) * x; 4284 // 4285 // error 0.0034276066, which is better than 8 bits 4286 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4287 getF32Constant(DAG, 0xbe74c456, dl)); 4288 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4289 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4290 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4291 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4292 getF32Constant(DAG, 0x3f949a29, dl)); 4293 } else if (LimitFloatPrecision <= 12) { 4294 // For floating-point precision of 12: 4295 // 4296 // LogOfMantissa = 4297 // -1.7417939f + 4298 // (2.8212026f + 4299 // (-1.4699568f + 4300 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4301 // 4302 // error 0.000061011436, which is 14 bits 4303 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4304 getF32Constant(DAG, 0xbd67b6d6, dl)); 4305 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4306 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4307 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4308 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4309 getF32Constant(DAG, 0x3fbc278b, dl)); 4310 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4311 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4312 getF32Constant(DAG, 0x40348e95, dl)); 4313 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4314 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4315 getF32Constant(DAG, 0x3fdef31a, dl)); 4316 } else { // LimitFloatPrecision <= 18 4317 // For floating-point precision of 18: 4318 // 4319 // LogOfMantissa = 4320 // -2.1072184f + 4321 // (4.2372794f + 4322 // (-3.7029485f + 4323 // (2.2781945f + 4324 // (-0.87823314f + 4325 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4326 // 4327 // error 0.0000023660568, which is better than 18 bits 4328 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4329 getF32Constant(DAG, 0xbc91e5ac, dl)); 4330 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4331 getF32Constant(DAG, 0x3e4350aa, dl)); 4332 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4333 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4334 getF32Constant(DAG, 0x3f60d3e3, dl)); 4335 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4336 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4337 getF32Constant(DAG, 0x4011cdf0, dl)); 4338 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4339 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4340 getF32Constant(DAG, 0x406cfd1c, dl)); 4341 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4342 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4343 getF32Constant(DAG, 0x408797cb, dl)); 4344 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4345 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4346 getF32Constant(DAG, 0x4006dcab, dl)); 4347 } 4348 4349 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4350 } 4351 4352 // No special expansion. 4353 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4354 } 4355 4356 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4357 /// limited-precision mode. 4358 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4359 const TargetLowering &TLI) { 4360 4361 // TODO: What fast-math-flags should be set on the floating-point nodes? 4362 4363 if (Op.getValueType() == MVT::f32 && 4364 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4365 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4366 4367 // Get the exponent. 4368 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4369 4370 // Get the significand and build it into a floating-point number with 4371 // exponent of 1. 4372 SDValue X = GetSignificand(DAG, Op1, dl); 4373 4374 // Different possible minimax approximations of significand in 4375 // floating-point for various degrees of accuracy over [1,2]. 4376 SDValue Log2ofMantissa; 4377 if (LimitFloatPrecision <= 6) { 4378 // For floating-point precision of 6: 4379 // 4380 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4381 // 4382 // error 0.0049451742, which is more than 7 bits 4383 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4384 getF32Constant(DAG, 0xbeb08fe0, dl)); 4385 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4386 getF32Constant(DAG, 0x40019463, dl)); 4387 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4388 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4389 getF32Constant(DAG, 0x3fd6633d, dl)); 4390 } else if (LimitFloatPrecision <= 12) { 4391 // For floating-point precision of 12: 4392 // 4393 // Log2ofMantissa = 4394 // -2.51285454f + 4395 // (4.07009056f + 4396 // (-2.12067489f + 4397 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4398 // 4399 // error 0.0000876136000, which is better than 13 bits 4400 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4401 getF32Constant(DAG, 0xbda7262e, dl)); 4402 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4403 getF32Constant(DAG, 0x3f25280b, dl)); 4404 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4405 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4406 getF32Constant(DAG, 0x4007b923, dl)); 4407 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4408 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4409 getF32Constant(DAG, 0x40823e2f, dl)); 4410 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4411 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4412 getF32Constant(DAG, 0x4020d29c, dl)); 4413 } else { // LimitFloatPrecision <= 18 4414 // For floating-point precision of 18: 4415 // 4416 // Log2ofMantissa = 4417 // -3.0400495f + 4418 // (6.1129976f + 4419 // (-5.3420409f + 4420 // (3.2865683f + 4421 // (-1.2669343f + 4422 // (0.27515199f - 4423 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4424 // 4425 // error 0.0000018516, which is better than 18 bits 4426 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4427 getF32Constant(DAG, 0xbcd2769e, dl)); 4428 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4429 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4430 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4431 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4432 getF32Constant(DAG, 0x3fa22ae7, dl)); 4433 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4434 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4435 getF32Constant(DAG, 0x40525723, dl)); 4436 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4437 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4438 getF32Constant(DAG, 0x40aaf200, dl)); 4439 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4440 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4441 getF32Constant(DAG, 0x40c39dad, dl)); 4442 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4443 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4444 getF32Constant(DAG, 0x4042902c, dl)); 4445 } 4446 4447 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4448 } 4449 4450 // No special expansion. 4451 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4452 } 4453 4454 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4455 /// limited-precision mode. 4456 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4457 const TargetLowering &TLI) { 4458 4459 // TODO: What fast-math-flags should be set on the floating-point nodes? 4460 4461 if (Op.getValueType() == MVT::f32 && 4462 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4463 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4464 4465 // Scale the exponent by log10(2) [0.30102999f]. 4466 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4467 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4468 getF32Constant(DAG, 0x3e9a209a, dl)); 4469 4470 // Get the significand and build it into a floating-point number with 4471 // exponent of 1. 4472 SDValue X = GetSignificand(DAG, Op1, dl); 4473 4474 SDValue Log10ofMantissa; 4475 if (LimitFloatPrecision <= 6) { 4476 // For floating-point precision of 6: 4477 // 4478 // Log10ofMantissa = 4479 // -0.50419619f + 4480 // (0.60948995f - 0.10380950f * x) * x; 4481 // 4482 // error 0.0014886165, which is 6 bits 4483 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4484 getF32Constant(DAG, 0xbdd49a13, dl)); 4485 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4486 getF32Constant(DAG, 0x3f1c0789, dl)); 4487 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4488 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4489 getF32Constant(DAG, 0x3f011300, dl)); 4490 } else if (LimitFloatPrecision <= 12) { 4491 // For floating-point precision of 12: 4492 // 4493 // Log10ofMantissa = 4494 // -0.64831180f + 4495 // (0.91751397f + 4496 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4497 // 4498 // error 0.00019228036, which is better than 12 bits 4499 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4500 getF32Constant(DAG, 0x3d431f31, dl)); 4501 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4502 getF32Constant(DAG, 0x3ea21fb2, dl)); 4503 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4504 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4505 getF32Constant(DAG, 0x3f6ae232, dl)); 4506 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4507 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4508 getF32Constant(DAG, 0x3f25f7c3, dl)); 4509 } else { // LimitFloatPrecision <= 18 4510 // For floating-point precision of 18: 4511 // 4512 // Log10ofMantissa = 4513 // -0.84299375f + 4514 // (1.5327582f + 4515 // (-1.0688956f + 4516 // (0.49102474f + 4517 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4518 // 4519 // error 0.0000037995730, which is better than 18 bits 4520 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4521 getF32Constant(DAG, 0x3c5d51ce, dl)); 4522 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4523 getF32Constant(DAG, 0x3e00685a, dl)); 4524 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4525 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4526 getF32Constant(DAG, 0x3efb6798, dl)); 4527 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4528 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4529 getF32Constant(DAG, 0x3f88d192, dl)); 4530 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4531 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4532 getF32Constant(DAG, 0x3fc4316c, dl)); 4533 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4534 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4535 getF32Constant(DAG, 0x3f57ce70, dl)); 4536 } 4537 4538 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4539 } 4540 4541 // No special expansion. 4542 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4543 } 4544 4545 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4546 /// limited-precision mode. 4547 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4548 const TargetLowering &TLI) { 4549 if (Op.getValueType() == MVT::f32 && 4550 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4551 return getLimitedPrecisionExp2(Op, dl, DAG); 4552 4553 // No special expansion. 4554 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4555 } 4556 4557 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4558 /// limited-precision mode with x == 10.0f. 4559 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4560 SelectionDAG &DAG, const TargetLowering &TLI) { 4561 bool IsExp10 = false; 4562 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4563 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4564 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4565 APFloat Ten(10.0f); 4566 IsExp10 = LHSC->isExactlyValue(Ten); 4567 } 4568 } 4569 4570 // TODO: What fast-math-flags should be set on the FMUL node? 4571 if (IsExp10) { 4572 // Put the exponent in the right bit position for later addition to the 4573 // final result: 4574 // 4575 // #define LOG2OF10 3.3219281f 4576 // t0 = Op * LOG2OF10; 4577 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4578 getF32Constant(DAG, 0x40549a78, dl)); 4579 return getLimitedPrecisionExp2(t0, dl, DAG); 4580 } 4581 4582 // No special expansion. 4583 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4584 } 4585 4586 4587 /// ExpandPowI - Expand a llvm.powi intrinsic. 4588 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4589 SelectionDAG &DAG) { 4590 // If RHS is a constant, we can expand this out to a multiplication tree, 4591 // otherwise we end up lowering to a call to __powidf2 (for example). When 4592 // optimizing for size, we only want to do this if the expansion would produce 4593 // a small number of multiplies, otherwise we do the full expansion. 4594 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4595 // Get the exponent as a positive value. 4596 unsigned Val = RHSC->getSExtValue(); 4597 if ((int)Val < 0) Val = -Val; 4598 4599 // powi(x, 0) -> 1.0 4600 if (Val == 0) 4601 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4602 4603 const Function *F = DAG.getMachineFunction().getFunction(); 4604 if (!F->optForSize() || 4605 // If optimizing for size, don't insert too many multiplies. 4606 // This inserts up to 5 multiplies. 4607 countPopulation(Val) + Log2_32(Val) < 7) { 4608 // We use the simple binary decomposition method to generate the multiply 4609 // sequence. There are more optimal ways to do this (for example, 4610 // powi(x,15) generates one more multiply than it should), but this has 4611 // the benefit of being both really simple and much better than a libcall. 4612 SDValue Res; // Logically starts equal to 1.0 4613 SDValue CurSquare = LHS; 4614 // TODO: Intrinsics should have fast-math-flags that propagate to these 4615 // nodes. 4616 while (Val) { 4617 if (Val & 1) { 4618 if (Res.getNode()) 4619 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4620 else 4621 Res = CurSquare; // 1.0*CurSquare. 4622 } 4623 4624 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4625 CurSquare, CurSquare); 4626 Val >>= 1; 4627 } 4628 4629 // If the original was negative, invert the result, producing 1/(x*x*x). 4630 if (RHSC->getSExtValue() < 0) 4631 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4632 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4633 return Res; 4634 } 4635 } 4636 4637 // Otherwise, expand to a libcall. 4638 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4639 } 4640 4641 // getUnderlyingArgReg - Find underlying register used for a truncated or 4642 // bitcasted argument. 4643 static unsigned getUnderlyingArgReg(const SDValue &N) { 4644 switch (N.getOpcode()) { 4645 case ISD::CopyFromReg: 4646 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4647 case ISD::BITCAST: 4648 case ISD::AssertZext: 4649 case ISD::AssertSext: 4650 case ISD::TRUNCATE: 4651 return getUnderlyingArgReg(N.getOperand(0)); 4652 default: 4653 return 0; 4654 } 4655 } 4656 4657 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4658 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4659 /// At the end of instruction selection, they will be inserted to the entry BB. 4660 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4661 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4662 DILocation *DL, int64_t Offset, bool IsDbgDeclare, const SDValue &N) { 4663 const Argument *Arg = dyn_cast<Argument>(V); 4664 if (!Arg) 4665 return false; 4666 4667 MachineFunction &MF = DAG.getMachineFunction(); 4668 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4669 4670 // Ignore inlined function arguments here. 4671 // 4672 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4673 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4674 return false; 4675 4676 bool IsIndirect = false; 4677 Optional<MachineOperand> Op; 4678 // Some arguments' frame index is recorded during argument lowering. 4679 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4680 Op = MachineOperand::CreateFI(FI); 4681 4682 if (!Op && N.getNode()) { 4683 unsigned Reg = getUnderlyingArgReg(N); 4684 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4685 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4686 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4687 if (PR) 4688 Reg = PR; 4689 } 4690 if (Reg) { 4691 Op = MachineOperand::CreateReg(Reg, false); 4692 IsIndirect = IsDbgDeclare; 4693 } 4694 } 4695 4696 if (!Op) { 4697 // Check if ValueMap has reg number. 4698 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4699 if (VMI != FuncInfo.ValueMap.end()) { 4700 Op = MachineOperand::CreateReg(VMI->second, false); 4701 IsIndirect = IsDbgDeclare; 4702 } 4703 } 4704 4705 if (!Op && N.getNode()) 4706 // Check if frame index is available. 4707 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4708 if (FrameIndexSDNode *FINode = 4709 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4710 Op = MachineOperand::CreateFI(FINode->getIndex()); 4711 4712 if (!Op) 4713 return false; 4714 4715 assert(Variable->isValidLocationForIntrinsic(DL) && 4716 "Expected inlined-at fields to agree"); 4717 if (Op->isReg()) 4718 FuncInfo.ArgDbgValues.push_back( 4719 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4720 Op->getReg(), Offset, Variable, Expr)); 4721 else 4722 FuncInfo.ArgDbgValues.push_back( 4723 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4724 .add(*Op) 4725 .addImm(Offset) 4726 .addMetadata(Variable) 4727 .addMetadata(Expr)); 4728 4729 return true; 4730 } 4731 4732 /// Return the appropriate SDDbgValue based on N. 4733 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4734 DILocalVariable *Variable, 4735 DIExpression *Expr, int64_t Offset, 4736 const DebugLoc &dl, 4737 unsigned DbgSDNodeOrder) { 4738 SDDbgValue *SDV; 4739 auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode()); 4740 if (FISDN && Expr->startsWithDeref()) { 4741 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4742 // stack slot locations as such instead of as indirectly addressed 4743 // locations. 4744 ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1, 4745 Expr->elements_end()); 4746 DIExpression *DerefedDIExpr = 4747 DIExpression::get(*DAG.getContext(), TrailingElements); 4748 int FI = FISDN->getIndex(); 4749 SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl, 4750 DbgSDNodeOrder); 4751 } else { 4752 SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, 4753 Offset, dl, DbgSDNodeOrder); 4754 } 4755 return SDV; 4756 } 4757 4758 // VisualStudio defines setjmp as _setjmp 4759 #if defined(_MSC_VER) && defined(setjmp) && \ 4760 !defined(setjmp_undefined_for_msvc) 4761 # pragma push_macro("setjmp") 4762 # undef setjmp 4763 # define setjmp_undefined_for_msvc 4764 #endif 4765 4766 /// Lower the call to the specified intrinsic function. If we want to emit this 4767 /// as a call to a named external function, return the name. Otherwise, lower it 4768 /// and return null. 4769 const char * 4770 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4772 SDLoc sdl = getCurSDLoc(); 4773 DebugLoc dl = getCurDebugLoc(); 4774 SDValue Res; 4775 4776 switch (Intrinsic) { 4777 default: 4778 // By default, turn this into a target intrinsic node. 4779 visitTargetIntrinsic(I, Intrinsic); 4780 return nullptr; 4781 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4782 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4783 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4784 case Intrinsic::returnaddress: 4785 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4786 TLI.getPointerTy(DAG.getDataLayout()), 4787 getValue(I.getArgOperand(0)))); 4788 return nullptr; 4789 case Intrinsic::addressofreturnaddress: 4790 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4791 TLI.getPointerTy(DAG.getDataLayout()))); 4792 return nullptr; 4793 case Intrinsic::frameaddress: 4794 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4795 TLI.getPointerTy(DAG.getDataLayout()), 4796 getValue(I.getArgOperand(0)))); 4797 return nullptr; 4798 case Intrinsic::read_register: { 4799 Value *Reg = I.getArgOperand(0); 4800 SDValue Chain = getRoot(); 4801 SDValue RegName = 4802 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4803 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4804 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4805 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4806 setValue(&I, Res); 4807 DAG.setRoot(Res.getValue(1)); 4808 return nullptr; 4809 } 4810 case Intrinsic::write_register: { 4811 Value *Reg = I.getArgOperand(0); 4812 Value *RegValue = I.getArgOperand(1); 4813 SDValue Chain = getRoot(); 4814 SDValue RegName = 4815 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4816 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4817 RegName, getValue(RegValue))); 4818 return nullptr; 4819 } 4820 case Intrinsic::setjmp: 4821 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4822 case Intrinsic::longjmp: 4823 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4824 case Intrinsic::memcpy: { 4825 SDValue Op1 = getValue(I.getArgOperand(0)); 4826 SDValue Op2 = getValue(I.getArgOperand(1)); 4827 SDValue Op3 = getValue(I.getArgOperand(2)); 4828 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4829 if (!Align) 4830 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4831 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4832 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4833 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4834 false, isTC, 4835 MachinePointerInfo(I.getArgOperand(0)), 4836 MachinePointerInfo(I.getArgOperand(1))); 4837 updateDAGForMaybeTailCall(MC); 4838 return nullptr; 4839 } 4840 case Intrinsic::memset: { 4841 SDValue Op1 = getValue(I.getArgOperand(0)); 4842 SDValue Op2 = getValue(I.getArgOperand(1)); 4843 SDValue Op3 = getValue(I.getArgOperand(2)); 4844 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4845 if (!Align) 4846 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4847 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4848 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4849 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4850 isTC, MachinePointerInfo(I.getArgOperand(0))); 4851 updateDAGForMaybeTailCall(MS); 4852 return nullptr; 4853 } 4854 case Intrinsic::memmove: { 4855 SDValue Op1 = getValue(I.getArgOperand(0)); 4856 SDValue Op2 = getValue(I.getArgOperand(1)); 4857 SDValue Op3 = getValue(I.getArgOperand(2)); 4858 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4859 if (!Align) 4860 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4861 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4862 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4863 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4864 isTC, MachinePointerInfo(I.getArgOperand(0)), 4865 MachinePointerInfo(I.getArgOperand(1))); 4866 updateDAGForMaybeTailCall(MM); 4867 return nullptr; 4868 } 4869 case Intrinsic::memcpy_element_atomic: { 4870 SDValue Dst = getValue(I.getArgOperand(0)); 4871 SDValue Src = getValue(I.getArgOperand(1)); 4872 SDValue NumElements = getValue(I.getArgOperand(2)); 4873 SDValue ElementSize = getValue(I.getArgOperand(3)); 4874 4875 // Emit a library call. 4876 TargetLowering::ArgListTy Args; 4877 TargetLowering::ArgListEntry Entry; 4878 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 4879 Entry.Node = Dst; 4880 Args.push_back(Entry); 4881 4882 Entry.Node = Src; 4883 Args.push_back(Entry); 4884 4885 Entry.Ty = I.getArgOperand(2)->getType(); 4886 Entry.Node = NumElements; 4887 Args.push_back(Entry); 4888 4889 Entry.Ty = Type::getInt32Ty(*DAG.getContext()); 4890 Entry.Node = ElementSize; 4891 Args.push_back(Entry); 4892 4893 uint64_t ElementSizeConstant = 4894 cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4895 RTLIB::Libcall LibraryCall = 4896 RTLIB::getMEMCPY_ELEMENT_ATOMIC(ElementSizeConstant); 4897 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 4898 report_fatal_error("Unsupported element size"); 4899 4900 TargetLowering::CallLoweringInfo CLI(DAG); 4901 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 4902 TLI.getLibcallCallingConv(LibraryCall), 4903 Type::getVoidTy(*DAG.getContext()), 4904 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 4905 TLI.getPointerTy(DAG.getDataLayout())), 4906 std::move(Args)); 4907 4908 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4909 DAG.setRoot(CallResult.second); 4910 return nullptr; 4911 } 4912 case Intrinsic::dbg_declare: { 4913 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4914 DILocalVariable *Variable = DI.getVariable(); 4915 DIExpression *Expression = DI.getExpression(); 4916 const Value *Address = DI.getAddress(); 4917 assert(Variable && "Missing variable"); 4918 if (!Address) { 4919 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4920 return nullptr; 4921 } 4922 4923 // Check if address has undef value. 4924 if (isa<UndefValue>(Address) || 4925 (Address->use_empty() && !isa<Argument>(Address))) { 4926 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4927 return nullptr; 4928 } 4929 4930 SDValue &N = NodeMap[Address]; 4931 if (!N.getNode() && isa<Argument>(Address)) 4932 // Check unused arguments map. 4933 N = UnusedArgNodeMap[Address]; 4934 SDDbgValue *SDV; 4935 if (N.getNode()) { 4936 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4937 Address = BCI->getOperand(0); 4938 // Parameters are handled specially. 4939 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4940 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4941 if (isParameter && FINode) { 4942 // Byval parameter. We have a frame index at this point. 4943 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4944 FINode->getIndex(), 0, dl, SDNodeOrder); 4945 } else if (isa<Argument>(Address)) { 4946 // Address is an argument, so try to emit its dbg value using 4947 // virtual register info from the FuncInfo.ValueMap. 4948 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, true, N); 4949 return nullptr; 4950 } else { 4951 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4952 true, 0, dl, SDNodeOrder); 4953 } 4954 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4955 } else { 4956 // If Address is an argument then try to emit its dbg value using 4957 // virtual register info from the FuncInfo.ValueMap. 4958 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, true, 4959 N)) { 4960 // If variable is pinned by a alloca in dominating bb then 4961 // use StaticAllocaMap. 4962 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4963 if (AI->getParent() != DI.getParent()) { 4964 DenseMap<const AllocaInst*, int>::iterator SI = 4965 FuncInfo.StaticAllocaMap.find(AI); 4966 if (SI != FuncInfo.StaticAllocaMap.end()) { 4967 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4968 0, dl, SDNodeOrder); 4969 DAG.AddDbgValue(SDV, nullptr, false); 4970 return nullptr; 4971 } 4972 } 4973 } 4974 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4975 } 4976 } 4977 return nullptr; 4978 } 4979 case Intrinsic::dbg_value: { 4980 const DbgValueInst &DI = cast<DbgValueInst>(I); 4981 assert(DI.getVariable() && "Missing variable"); 4982 4983 DILocalVariable *Variable = DI.getVariable(); 4984 DIExpression *Expression = DI.getExpression(); 4985 uint64_t Offset = DI.getOffset(); 4986 const Value *V = DI.getValue(); 4987 if (!V) 4988 return nullptr; 4989 4990 SDDbgValue *SDV; 4991 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4992 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4993 SDNodeOrder); 4994 DAG.AddDbgValue(SDV, nullptr, false); 4995 return nullptr; 4996 } 4997 4998 // Do not use getValue() in here; we don't want to generate code at 4999 // this point if it hasn't been done yet. 5000 SDValue N = NodeMap[V]; 5001 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5002 N = UnusedArgNodeMap[V]; 5003 if (N.getNode()) { 5004 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, false, 5005 N)) 5006 return nullptr; 5007 SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder); 5008 DAG.AddDbgValue(SDV, N.getNode(), false); 5009 return nullptr; 5010 } 5011 5012 if (!V->use_empty() ) { 5013 // Do not call getValue(V) yet, as we don't want to generate code. 5014 // Remember it for later. 5015 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5016 DanglingDebugInfoMap[V] = DDI; 5017 return nullptr; 5018 } 5019 5020 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5021 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5022 return nullptr; 5023 } 5024 5025 case Intrinsic::eh_typeid_for: { 5026 // Find the type id for the given typeinfo. 5027 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5028 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5029 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5030 setValue(&I, Res); 5031 return nullptr; 5032 } 5033 5034 case Intrinsic::eh_return_i32: 5035 case Intrinsic::eh_return_i64: 5036 DAG.getMachineFunction().setCallsEHReturn(true); 5037 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5038 MVT::Other, 5039 getControlRoot(), 5040 getValue(I.getArgOperand(0)), 5041 getValue(I.getArgOperand(1)))); 5042 return nullptr; 5043 case Intrinsic::eh_unwind_init: 5044 DAG.getMachineFunction().setCallsUnwindInit(true); 5045 return nullptr; 5046 case Intrinsic::eh_dwarf_cfa: { 5047 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5048 TLI.getPointerTy(DAG.getDataLayout()), 5049 getValue(I.getArgOperand(0)))); 5050 return nullptr; 5051 } 5052 case Intrinsic::eh_sjlj_callsite: { 5053 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5054 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5055 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5056 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5057 5058 MMI.setCurrentCallSite(CI->getZExtValue()); 5059 return nullptr; 5060 } 5061 case Intrinsic::eh_sjlj_functioncontext: { 5062 // Get and store the index of the function context. 5063 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5064 AllocaInst *FnCtx = 5065 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5066 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5067 MFI.setFunctionContextIndex(FI); 5068 return nullptr; 5069 } 5070 case Intrinsic::eh_sjlj_setjmp: { 5071 SDValue Ops[2]; 5072 Ops[0] = getRoot(); 5073 Ops[1] = getValue(I.getArgOperand(0)); 5074 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5075 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5076 setValue(&I, Op.getValue(0)); 5077 DAG.setRoot(Op.getValue(1)); 5078 return nullptr; 5079 } 5080 case Intrinsic::eh_sjlj_longjmp: { 5081 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5082 getRoot(), getValue(I.getArgOperand(0)))); 5083 return nullptr; 5084 } 5085 case Intrinsic::eh_sjlj_setup_dispatch: { 5086 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5087 getRoot())); 5088 return nullptr; 5089 } 5090 5091 case Intrinsic::masked_gather: 5092 visitMaskedGather(I); 5093 return nullptr; 5094 case Intrinsic::masked_load: 5095 visitMaskedLoad(I); 5096 return nullptr; 5097 case Intrinsic::masked_scatter: 5098 visitMaskedScatter(I); 5099 return nullptr; 5100 case Intrinsic::masked_store: 5101 visitMaskedStore(I); 5102 return nullptr; 5103 case Intrinsic::masked_expandload: 5104 visitMaskedLoad(I, true /* IsExpanding */); 5105 return nullptr; 5106 case Intrinsic::masked_compressstore: 5107 visitMaskedStore(I, true /* IsCompressing */); 5108 return nullptr; 5109 case Intrinsic::x86_mmx_pslli_w: 5110 case Intrinsic::x86_mmx_pslli_d: 5111 case Intrinsic::x86_mmx_pslli_q: 5112 case Intrinsic::x86_mmx_psrli_w: 5113 case Intrinsic::x86_mmx_psrli_d: 5114 case Intrinsic::x86_mmx_psrli_q: 5115 case Intrinsic::x86_mmx_psrai_w: 5116 case Intrinsic::x86_mmx_psrai_d: { 5117 SDValue ShAmt = getValue(I.getArgOperand(1)); 5118 if (isa<ConstantSDNode>(ShAmt)) { 5119 visitTargetIntrinsic(I, Intrinsic); 5120 return nullptr; 5121 } 5122 unsigned NewIntrinsic = 0; 5123 EVT ShAmtVT = MVT::v2i32; 5124 switch (Intrinsic) { 5125 case Intrinsic::x86_mmx_pslli_w: 5126 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5127 break; 5128 case Intrinsic::x86_mmx_pslli_d: 5129 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5130 break; 5131 case Intrinsic::x86_mmx_pslli_q: 5132 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5133 break; 5134 case Intrinsic::x86_mmx_psrli_w: 5135 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5136 break; 5137 case Intrinsic::x86_mmx_psrli_d: 5138 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5139 break; 5140 case Intrinsic::x86_mmx_psrli_q: 5141 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5142 break; 5143 case Intrinsic::x86_mmx_psrai_w: 5144 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5145 break; 5146 case Intrinsic::x86_mmx_psrai_d: 5147 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5148 break; 5149 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5150 } 5151 5152 // The vector shift intrinsics with scalars uses 32b shift amounts but 5153 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5154 // to be zero. 5155 // We must do this early because v2i32 is not a legal type. 5156 SDValue ShOps[2]; 5157 ShOps[0] = ShAmt; 5158 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5159 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5160 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5161 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5162 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5163 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5164 getValue(I.getArgOperand(0)), ShAmt); 5165 setValue(&I, Res); 5166 return nullptr; 5167 } 5168 case Intrinsic::powi: 5169 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5170 getValue(I.getArgOperand(1)), DAG)); 5171 return nullptr; 5172 case Intrinsic::log: 5173 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5174 return nullptr; 5175 case Intrinsic::log2: 5176 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5177 return nullptr; 5178 case Intrinsic::log10: 5179 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5180 return nullptr; 5181 case Intrinsic::exp: 5182 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5183 return nullptr; 5184 case Intrinsic::exp2: 5185 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5186 return nullptr; 5187 case Intrinsic::pow: 5188 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5189 getValue(I.getArgOperand(1)), DAG, TLI)); 5190 return nullptr; 5191 case Intrinsic::sqrt: 5192 case Intrinsic::fabs: 5193 case Intrinsic::sin: 5194 case Intrinsic::cos: 5195 case Intrinsic::floor: 5196 case Intrinsic::ceil: 5197 case Intrinsic::trunc: 5198 case Intrinsic::rint: 5199 case Intrinsic::nearbyint: 5200 case Intrinsic::round: 5201 case Intrinsic::canonicalize: { 5202 unsigned Opcode; 5203 switch (Intrinsic) { 5204 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5205 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5206 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5207 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5208 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5209 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5210 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5211 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5212 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5213 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5214 case Intrinsic::round: Opcode = ISD::FROUND; break; 5215 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5216 } 5217 5218 setValue(&I, DAG.getNode(Opcode, sdl, 5219 getValue(I.getArgOperand(0)).getValueType(), 5220 getValue(I.getArgOperand(0)))); 5221 return nullptr; 5222 } 5223 case Intrinsic::minnum: { 5224 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5225 unsigned Opc = 5226 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5227 ? ISD::FMINNAN 5228 : ISD::FMINNUM; 5229 setValue(&I, DAG.getNode(Opc, sdl, VT, 5230 getValue(I.getArgOperand(0)), 5231 getValue(I.getArgOperand(1)))); 5232 return nullptr; 5233 } 5234 case Intrinsic::maxnum: { 5235 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5236 unsigned Opc = 5237 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5238 ? ISD::FMAXNAN 5239 : ISD::FMAXNUM; 5240 setValue(&I, DAG.getNode(Opc, sdl, VT, 5241 getValue(I.getArgOperand(0)), 5242 getValue(I.getArgOperand(1)))); 5243 return nullptr; 5244 } 5245 case Intrinsic::copysign: 5246 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5247 getValue(I.getArgOperand(0)).getValueType(), 5248 getValue(I.getArgOperand(0)), 5249 getValue(I.getArgOperand(1)))); 5250 return nullptr; 5251 case Intrinsic::fma: 5252 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5253 getValue(I.getArgOperand(0)).getValueType(), 5254 getValue(I.getArgOperand(0)), 5255 getValue(I.getArgOperand(1)), 5256 getValue(I.getArgOperand(2)))); 5257 return nullptr; 5258 case Intrinsic::experimental_constrained_fadd: 5259 case Intrinsic::experimental_constrained_fsub: 5260 case Intrinsic::experimental_constrained_fmul: 5261 case Intrinsic::experimental_constrained_fdiv: 5262 case Intrinsic::experimental_constrained_frem: 5263 visitConstrainedFPIntrinsic(I, Intrinsic); 5264 return nullptr; 5265 case Intrinsic::fmuladd: { 5266 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5267 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5268 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5269 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5270 getValue(I.getArgOperand(0)).getValueType(), 5271 getValue(I.getArgOperand(0)), 5272 getValue(I.getArgOperand(1)), 5273 getValue(I.getArgOperand(2)))); 5274 } else { 5275 // TODO: Intrinsic calls should have fast-math-flags. 5276 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5277 getValue(I.getArgOperand(0)).getValueType(), 5278 getValue(I.getArgOperand(0)), 5279 getValue(I.getArgOperand(1))); 5280 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5281 getValue(I.getArgOperand(0)).getValueType(), 5282 Mul, 5283 getValue(I.getArgOperand(2))); 5284 setValue(&I, Add); 5285 } 5286 return nullptr; 5287 } 5288 case Intrinsic::convert_to_fp16: 5289 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5290 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5291 getValue(I.getArgOperand(0)), 5292 DAG.getTargetConstant(0, sdl, 5293 MVT::i32)))); 5294 return nullptr; 5295 case Intrinsic::convert_from_fp16: 5296 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5297 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5298 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5299 getValue(I.getArgOperand(0))))); 5300 return nullptr; 5301 case Intrinsic::pcmarker: { 5302 SDValue Tmp = getValue(I.getArgOperand(0)); 5303 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5304 return nullptr; 5305 } 5306 case Intrinsic::readcyclecounter: { 5307 SDValue Op = getRoot(); 5308 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5309 DAG.getVTList(MVT::i64, MVT::Other), Op); 5310 setValue(&I, Res); 5311 DAG.setRoot(Res.getValue(1)); 5312 return nullptr; 5313 } 5314 case Intrinsic::bitreverse: 5315 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5316 getValue(I.getArgOperand(0)).getValueType(), 5317 getValue(I.getArgOperand(0)))); 5318 return nullptr; 5319 case Intrinsic::bswap: 5320 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5321 getValue(I.getArgOperand(0)).getValueType(), 5322 getValue(I.getArgOperand(0)))); 5323 return nullptr; 5324 case Intrinsic::cttz: { 5325 SDValue Arg = getValue(I.getArgOperand(0)); 5326 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5327 EVT Ty = Arg.getValueType(); 5328 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5329 sdl, Ty, Arg)); 5330 return nullptr; 5331 } 5332 case Intrinsic::ctlz: { 5333 SDValue Arg = getValue(I.getArgOperand(0)); 5334 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5335 EVT Ty = Arg.getValueType(); 5336 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5337 sdl, Ty, Arg)); 5338 return nullptr; 5339 } 5340 case Intrinsic::ctpop: { 5341 SDValue Arg = getValue(I.getArgOperand(0)); 5342 EVT Ty = Arg.getValueType(); 5343 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5344 return nullptr; 5345 } 5346 case Intrinsic::stacksave: { 5347 SDValue Op = getRoot(); 5348 Res = DAG.getNode( 5349 ISD::STACKSAVE, sdl, 5350 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5351 setValue(&I, Res); 5352 DAG.setRoot(Res.getValue(1)); 5353 return nullptr; 5354 } 5355 case Intrinsic::stackrestore: { 5356 Res = getValue(I.getArgOperand(0)); 5357 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5358 return nullptr; 5359 } 5360 case Intrinsic::get_dynamic_area_offset: { 5361 SDValue Op = getRoot(); 5362 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5363 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5364 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5365 // target. 5366 if (PtrTy != ResTy) 5367 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5368 " intrinsic!"); 5369 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5370 Op); 5371 DAG.setRoot(Op); 5372 setValue(&I, Res); 5373 return nullptr; 5374 } 5375 case Intrinsic::stackguard: { 5376 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5377 MachineFunction &MF = DAG.getMachineFunction(); 5378 const Module &M = *MF.getFunction()->getParent(); 5379 SDValue Chain = getRoot(); 5380 if (TLI.useLoadStackGuardNode()) { 5381 Res = getLoadStackGuard(DAG, sdl, Chain); 5382 } else { 5383 const Value *Global = TLI.getSDagStackGuard(M); 5384 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5385 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5386 MachinePointerInfo(Global, 0), Align, 5387 MachineMemOperand::MOVolatile); 5388 } 5389 DAG.setRoot(Chain); 5390 setValue(&I, Res); 5391 return nullptr; 5392 } 5393 case Intrinsic::stackprotector: { 5394 // Emit code into the DAG to store the stack guard onto the stack. 5395 MachineFunction &MF = DAG.getMachineFunction(); 5396 MachineFrameInfo &MFI = MF.getFrameInfo(); 5397 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5398 SDValue Src, Chain = getRoot(); 5399 5400 if (TLI.useLoadStackGuardNode()) 5401 Src = getLoadStackGuard(DAG, sdl, Chain); 5402 else 5403 Src = getValue(I.getArgOperand(0)); // The guard's value. 5404 5405 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5406 5407 int FI = FuncInfo.StaticAllocaMap[Slot]; 5408 MFI.setStackProtectorIndex(FI); 5409 5410 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5411 5412 // Store the stack protector onto the stack. 5413 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5414 DAG.getMachineFunction(), FI), 5415 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5416 setValue(&I, Res); 5417 DAG.setRoot(Res); 5418 return nullptr; 5419 } 5420 case Intrinsic::objectsize: { 5421 // If we don't know by now, we're never going to know. 5422 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5423 5424 assert(CI && "Non-constant type in __builtin_object_size?"); 5425 5426 SDValue Arg = getValue(I.getCalledValue()); 5427 EVT Ty = Arg.getValueType(); 5428 5429 if (CI->isZero()) 5430 Res = DAG.getConstant(-1ULL, sdl, Ty); 5431 else 5432 Res = DAG.getConstant(0, sdl, Ty); 5433 5434 setValue(&I, Res); 5435 return nullptr; 5436 } 5437 case Intrinsic::annotation: 5438 case Intrinsic::ptr_annotation: 5439 case Intrinsic::invariant_group_barrier: 5440 // Drop the intrinsic, but forward the value 5441 setValue(&I, getValue(I.getOperand(0))); 5442 return nullptr; 5443 case Intrinsic::assume: 5444 case Intrinsic::var_annotation: 5445 // Discard annotate attributes and assumptions 5446 return nullptr; 5447 5448 case Intrinsic::init_trampoline: { 5449 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5450 5451 SDValue Ops[6]; 5452 Ops[0] = getRoot(); 5453 Ops[1] = getValue(I.getArgOperand(0)); 5454 Ops[2] = getValue(I.getArgOperand(1)); 5455 Ops[3] = getValue(I.getArgOperand(2)); 5456 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5457 Ops[5] = DAG.getSrcValue(F); 5458 5459 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5460 5461 DAG.setRoot(Res); 5462 return nullptr; 5463 } 5464 case Intrinsic::adjust_trampoline: { 5465 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5466 TLI.getPointerTy(DAG.getDataLayout()), 5467 getValue(I.getArgOperand(0)))); 5468 return nullptr; 5469 } 5470 case Intrinsic::gcroot: { 5471 MachineFunction &MF = DAG.getMachineFunction(); 5472 const Function *F = MF.getFunction(); 5473 (void)F; 5474 assert(F->hasGC() && 5475 "only valid in functions with gc specified, enforced by Verifier"); 5476 assert(GFI && "implied by previous"); 5477 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5478 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5479 5480 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5481 GFI->addStackRoot(FI->getIndex(), TypeMap); 5482 return nullptr; 5483 } 5484 case Intrinsic::gcread: 5485 case Intrinsic::gcwrite: 5486 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5487 case Intrinsic::flt_rounds: 5488 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5489 return nullptr; 5490 5491 case Intrinsic::expect: { 5492 // Just replace __builtin_expect(exp, c) with EXP. 5493 setValue(&I, getValue(I.getArgOperand(0))); 5494 return nullptr; 5495 } 5496 5497 case Intrinsic::debugtrap: 5498 case Intrinsic::trap: { 5499 StringRef TrapFuncName = 5500 I.getAttributes() 5501 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5502 .getValueAsString(); 5503 if (TrapFuncName.empty()) { 5504 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5505 ISD::TRAP : ISD::DEBUGTRAP; 5506 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5507 return nullptr; 5508 } 5509 TargetLowering::ArgListTy Args; 5510 5511 TargetLowering::CallLoweringInfo CLI(DAG); 5512 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5513 CallingConv::C, I.getType(), 5514 DAG.getExternalSymbol(TrapFuncName.data(), 5515 TLI.getPointerTy(DAG.getDataLayout())), 5516 std::move(Args)); 5517 5518 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5519 DAG.setRoot(Result.second); 5520 return nullptr; 5521 } 5522 5523 case Intrinsic::uadd_with_overflow: 5524 case Intrinsic::sadd_with_overflow: 5525 case Intrinsic::usub_with_overflow: 5526 case Intrinsic::ssub_with_overflow: 5527 case Intrinsic::umul_with_overflow: 5528 case Intrinsic::smul_with_overflow: { 5529 ISD::NodeType Op; 5530 switch (Intrinsic) { 5531 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5532 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5533 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5534 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5535 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5536 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5537 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5538 } 5539 SDValue Op1 = getValue(I.getArgOperand(0)); 5540 SDValue Op2 = getValue(I.getArgOperand(1)); 5541 5542 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5543 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5544 return nullptr; 5545 } 5546 case Intrinsic::prefetch: { 5547 SDValue Ops[5]; 5548 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5549 Ops[0] = getRoot(); 5550 Ops[1] = getValue(I.getArgOperand(0)); 5551 Ops[2] = getValue(I.getArgOperand(1)); 5552 Ops[3] = getValue(I.getArgOperand(2)); 5553 Ops[4] = getValue(I.getArgOperand(3)); 5554 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5555 DAG.getVTList(MVT::Other), Ops, 5556 EVT::getIntegerVT(*Context, 8), 5557 MachinePointerInfo(I.getArgOperand(0)), 5558 0, /* align */ 5559 false, /* volatile */ 5560 rw==0, /* read */ 5561 rw==1)); /* write */ 5562 return nullptr; 5563 } 5564 case Intrinsic::lifetime_start: 5565 case Intrinsic::lifetime_end: { 5566 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5567 // Stack coloring is not enabled in O0, discard region information. 5568 if (TM.getOptLevel() == CodeGenOpt::None) 5569 return nullptr; 5570 5571 SmallVector<Value *, 4> Allocas; 5572 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5573 5574 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5575 E = Allocas.end(); Object != E; ++Object) { 5576 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5577 5578 // Could not find an Alloca. 5579 if (!LifetimeObject) 5580 continue; 5581 5582 // First check that the Alloca is static, otherwise it won't have a 5583 // valid frame index. 5584 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5585 if (SI == FuncInfo.StaticAllocaMap.end()) 5586 return nullptr; 5587 5588 int FI = SI->second; 5589 5590 SDValue Ops[2]; 5591 Ops[0] = getRoot(); 5592 Ops[1] = 5593 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5594 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5595 5596 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5597 DAG.setRoot(Res); 5598 } 5599 return nullptr; 5600 } 5601 case Intrinsic::invariant_start: 5602 // Discard region information. 5603 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5604 return nullptr; 5605 case Intrinsic::invariant_end: 5606 // Discard region information. 5607 return nullptr; 5608 case Intrinsic::clear_cache: 5609 return TLI.getClearCacheBuiltinName(); 5610 case Intrinsic::donothing: 5611 // ignore 5612 return nullptr; 5613 case Intrinsic::experimental_stackmap: { 5614 visitStackmap(I); 5615 return nullptr; 5616 } 5617 case Intrinsic::experimental_patchpoint_void: 5618 case Intrinsic::experimental_patchpoint_i64: { 5619 visitPatchpoint(&I); 5620 return nullptr; 5621 } 5622 case Intrinsic::experimental_gc_statepoint: { 5623 LowerStatepoint(ImmutableStatepoint(&I)); 5624 return nullptr; 5625 } 5626 case Intrinsic::experimental_gc_result: { 5627 visitGCResult(cast<GCResultInst>(I)); 5628 return nullptr; 5629 } 5630 case Intrinsic::experimental_gc_relocate: { 5631 visitGCRelocate(cast<GCRelocateInst>(I)); 5632 return nullptr; 5633 } 5634 case Intrinsic::instrprof_increment: 5635 llvm_unreachable("instrprof failed to lower an increment"); 5636 case Intrinsic::instrprof_value_profile: 5637 llvm_unreachable("instrprof failed to lower a value profiling call"); 5638 case Intrinsic::localescape: { 5639 MachineFunction &MF = DAG.getMachineFunction(); 5640 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5641 5642 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5643 // is the same on all targets. 5644 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5645 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5646 if (isa<ConstantPointerNull>(Arg)) 5647 continue; // Skip null pointers. They represent a hole in index space. 5648 AllocaInst *Slot = cast<AllocaInst>(Arg); 5649 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5650 "can only escape static allocas"); 5651 int FI = FuncInfo.StaticAllocaMap[Slot]; 5652 MCSymbol *FrameAllocSym = 5653 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5654 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5655 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5656 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5657 .addSym(FrameAllocSym) 5658 .addFrameIndex(FI); 5659 } 5660 5661 return nullptr; 5662 } 5663 5664 case Intrinsic::localrecover: { 5665 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5666 MachineFunction &MF = DAG.getMachineFunction(); 5667 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5668 5669 // Get the symbol that defines the frame offset. 5670 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5671 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5672 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5673 MCSymbol *FrameAllocSym = 5674 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5675 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5676 5677 // Create a MCSymbol for the label to avoid any target lowering 5678 // that would make this PC relative. 5679 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5680 SDValue OffsetVal = 5681 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5682 5683 // Add the offset to the FP. 5684 Value *FP = I.getArgOperand(1); 5685 SDValue FPVal = getValue(FP); 5686 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5687 setValue(&I, Add); 5688 5689 return nullptr; 5690 } 5691 5692 case Intrinsic::eh_exceptionpointer: 5693 case Intrinsic::eh_exceptioncode: { 5694 // Get the exception pointer vreg, copy from it, and resize it to fit. 5695 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5696 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5697 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5698 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5699 SDValue N = 5700 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5701 if (Intrinsic == Intrinsic::eh_exceptioncode) 5702 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5703 setValue(&I, N); 5704 return nullptr; 5705 } 5706 case Intrinsic::xray_customevent: { 5707 // Here we want to make sure that the intrinsic behaves as if it has a 5708 // specific calling convention, and only for x86_64. 5709 // FIXME: Support other platforms later. 5710 const auto &Triple = DAG.getTarget().getTargetTriple(); 5711 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 5712 return nullptr; 5713 5714 SDLoc DL = getCurSDLoc(); 5715 SmallVector<SDValue, 8> Ops; 5716 5717 // We want to say that we always want the arguments in registers. 5718 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 5719 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 5720 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 5721 SDValue Chain = getRoot(); 5722 Ops.push_back(LogEntryVal); 5723 Ops.push_back(StrSizeVal); 5724 Ops.push_back(Chain); 5725 5726 // We need to enforce the calling convention for the callsite, so that 5727 // argument ordering is enforced correctly, and that register allocation can 5728 // see that some registers may be assumed clobbered and have to preserve 5729 // them across calls to the intrinsic. 5730 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 5731 DL, NodeTys, Ops); 5732 SDValue patchableNode = SDValue(MN, 0); 5733 DAG.setRoot(patchableNode); 5734 setValue(&I, patchableNode); 5735 return nullptr; 5736 } 5737 case Intrinsic::experimental_deoptimize: 5738 LowerDeoptimizeCall(&I); 5739 return nullptr; 5740 } 5741 } 5742 5743 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(const CallInst &I, 5744 unsigned Intrinsic) { 5745 SDLoc sdl = getCurSDLoc(); 5746 unsigned Opcode; 5747 switch (Intrinsic) { 5748 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5749 case Intrinsic::experimental_constrained_fadd: 5750 Opcode = ISD::STRICT_FADD; 5751 break; 5752 case Intrinsic::experimental_constrained_fsub: 5753 Opcode = ISD::STRICT_FSUB; 5754 break; 5755 case Intrinsic::experimental_constrained_fmul: 5756 Opcode = ISD::STRICT_FMUL; 5757 break; 5758 case Intrinsic::experimental_constrained_fdiv: 5759 Opcode = ISD::STRICT_FDIV; 5760 break; 5761 case Intrinsic::experimental_constrained_frem: 5762 Opcode = ISD::STRICT_FREM; 5763 break; 5764 } 5765 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5766 SDValue Chain = getRoot(); 5767 SDValue Ops[3] = { Chain, getValue(I.getArgOperand(0)), 5768 getValue(I.getArgOperand(1)) }; 5769 SmallVector<EVT, 4> ValueVTs; 5770 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5771 ValueVTs.push_back(MVT::Other); // Out chain 5772 5773 SDVTList VTs = DAG.getVTList(ValueVTs); 5774 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Ops); 5775 5776 assert(Result.getNode()->getNumValues() == 2); 5777 SDValue OutChain = Result.getValue(1); 5778 DAG.setRoot(OutChain); 5779 SDValue FPResult = Result.getValue(0); 5780 setValue(&I, FPResult); 5781 } 5782 5783 std::pair<SDValue, SDValue> 5784 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5785 const BasicBlock *EHPadBB) { 5786 MachineFunction &MF = DAG.getMachineFunction(); 5787 MachineModuleInfo &MMI = MF.getMMI(); 5788 MCSymbol *BeginLabel = nullptr; 5789 5790 if (EHPadBB) { 5791 // Insert a label before the invoke call to mark the try range. This can be 5792 // used to detect deletion of the invoke via the MachineModuleInfo. 5793 BeginLabel = MMI.getContext().createTempSymbol(); 5794 5795 // For SjLj, keep track of which landing pads go with which invokes 5796 // so as to maintain the ordering of pads in the LSDA. 5797 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5798 if (CallSiteIndex) { 5799 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5800 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5801 5802 // Now that the call site is handled, stop tracking it. 5803 MMI.setCurrentCallSite(0); 5804 } 5805 5806 // Both PendingLoads and PendingExports must be flushed here; 5807 // this call might not return. 5808 (void)getRoot(); 5809 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5810 5811 CLI.setChain(getRoot()); 5812 } 5813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5814 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5815 5816 assert((CLI.IsTailCall || Result.second.getNode()) && 5817 "Non-null chain expected with non-tail call!"); 5818 assert((Result.second.getNode() || !Result.first.getNode()) && 5819 "Null value expected with tail call!"); 5820 5821 if (!Result.second.getNode()) { 5822 // As a special case, a null chain means that a tail call has been emitted 5823 // and the DAG root is already updated. 5824 HasTailCall = true; 5825 5826 // Since there's no actual continuation from this block, nothing can be 5827 // relying on us setting vregs for them. 5828 PendingExports.clear(); 5829 } else { 5830 DAG.setRoot(Result.second); 5831 } 5832 5833 if (EHPadBB) { 5834 // Insert a label at the end of the invoke call to mark the try range. This 5835 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5836 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5837 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5838 5839 // Inform MachineModuleInfo of range. 5840 if (MF.hasEHFunclets()) { 5841 assert(CLI.CS); 5842 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5843 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5844 BeginLabel, EndLabel); 5845 } else { 5846 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5847 } 5848 } 5849 5850 return Result; 5851 } 5852 5853 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5854 bool isTailCall, 5855 const BasicBlock *EHPadBB) { 5856 auto &DL = DAG.getDataLayout(); 5857 FunctionType *FTy = CS.getFunctionType(); 5858 Type *RetTy = CS.getType(); 5859 5860 TargetLowering::ArgListTy Args; 5861 Args.reserve(CS.arg_size()); 5862 5863 const Value *SwiftErrorVal = nullptr; 5864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5865 5866 // We can't tail call inside a function with a swifterror argument. Lowering 5867 // does not support this yet. It would have to move into the swifterror 5868 // register before the call. 5869 auto *Caller = CS.getInstruction()->getParent()->getParent(); 5870 if (TLI.supportSwiftError() && 5871 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 5872 isTailCall = false; 5873 5874 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5875 i != e; ++i) { 5876 TargetLowering::ArgListEntry Entry; 5877 const Value *V = *i; 5878 5879 // Skip empty types 5880 if (V->getType()->isEmptyTy()) 5881 continue; 5882 5883 SDValue ArgNode = getValue(V); 5884 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5885 5886 Entry.setAttributes(&CS, i - CS.arg_begin()); 5887 5888 // Use swifterror virtual register as input to the call. 5889 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 5890 SwiftErrorVal = V; 5891 // We find the virtual register for the actual swifterror argument. 5892 // Instead of using the Value, we use the virtual register instead. 5893 Entry.Node = 5894 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V), 5895 EVT(TLI.getPointerTy(DL))); 5896 } 5897 5898 Args.push_back(Entry); 5899 5900 // If we have an explicit sret argument that is an Instruction, (i.e., it 5901 // might point to function-local memory), we can't meaningfully tail-call. 5902 if (Entry.IsSRet && isa<Instruction>(V)) 5903 isTailCall = false; 5904 } 5905 5906 // Check if target-independent constraints permit a tail call here. 5907 // Target-dependent constraints are checked within TLI->LowerCallTo. 5908 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5909 isTailCall = false; 5910 5911 // Disable tail calls if there is an swifterror argument. Targets have not 5912 // been updated to support tail calls. 5913 if (TLI.supportSwiftError() && SwiftErrorVal) 5914 isTailCall = false; 5915 5916 TargetLowering::CallLoweringInfo CLI(DAG); 5917 CLI.setDebugLoc(getCurSDLoc()) 5918 .setChain(getRoot()) 5919 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5920 .setTailCall(isTailCall) 5921 .setConvergent(CS.isConvergent()); 5922 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5923 5924 if (Result.first.getNode()) { 5925 const Instruction *Inst = CS.getInstruction(); 5926 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5927 setValue(Inst, Result.first); 5928 } 5929 5930 // The last element of CLI.InVals has the SDValue for swifterror return. 5931 // Here we copy it to a virtual register and update SwiftErrorMap for 5932 // book-keeping. 5933 if (SwiftErrorVal && TLI.supportSwiftError()) { 5934 // Get the last element of InVals. 5935 SDValue Src = CLI.InVals.back(); 5936 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 5937 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 5938 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 5939 // We update the virtual register for the actual swifterror argument. 5940 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 5941 DAG.setRoot(CopyNode); 5942 } 5943 } 5944 5945 /// Return true if it only matters that the value is equal or not-equal to zero. 5946 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5947 for (const User *U : V->users()) { 5948 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5949 if (IC->isEquality()) 5950 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5951 if (C->isNullValue()) 5952 continue; 5953 // Unknown instruction. 5954 return false; 5955 } 5956 return true; 5957 } 5958 5959 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5960 SelectionDAGBuilder &Builder) { 5961 5962 // Check to see if this load can be trivially constant folded, e.g. if the 5963 // input is from a string literal. 5964 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5965 // Cast pointer to the type we really want to load. 5966 Type *LoadTy = 5967 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 5968 if (LoadVT.isVector()) 5969 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 5970 5971 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5972 PointerType::getUnqual(LoadTy)); 5973 5974 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5975 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5976 return Builder.getValue(LoadCst); 5977 } 5978 5979 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5980 // still constant memory, the input chain can be the entry node. 5981 SDValue Root; 5982 bool ConstantMemory = false; 5983 5984 // Do not serialize (non-volatile) loads of constant memory with anything. 5985 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5986 Root = Builder.DAG.getEntryNode(); 5987 ConstantMemory = true; 5988 } else { 5989 // Do not serialize non-volatile loads against each other. 5990 Root = Builder.DAG.getRoot(); 5991 } 5992 5993 SDValue Ptr = Builder.getValue(PtrVal); 5994 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5995 Ptr, MachinePointerInfo(PtrVal), 5996 /* Alignment = */ 1); 5997 5998 if (!ConstantMemory) 5999 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6000 return LoadVal; 6001 } 6002 6003 /// Record the value for an instruction that produces an integer result, 6004 /// converting the type where necessary. 6005 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6006 SDValue Value, 6007 bool IsSigned) { 6008 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6009 I.getType(), true); 6010 if (IsSigned) 6011 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6012 else 6013 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6014 setValue(&I, Value); 6015 } 6016 6017 /// See if we can lower a memcmp call into an optimized form. If so, return 6018 /// true and lower it. Otherwise return false, and it will be lowered like a 6019 /// normal call. 6020 /// The caller already checked that \p I calls the appropriate LibFunc with a 6021 /// correct prototype. 6022 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6023 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6024 const Value *Size = I.getArgOperand(2); 6025 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6026 if (CSize && CSize->getZExtValue() == 0) { 6027 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6028 I.getType(), true); 6029 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6030 return true; 6031 } 6032 6033 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6034 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6035 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6036 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6037 if (Res.first.getNode()) { 6038 processIntegerCallValue(I, Res.first, true); 6039 PendingLoads.push_back(Res.second); 6040 return true; 6041 } 6042 6043 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6044 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6045 if (!CSize || !IsOnlyUsedInZeroEqualityComparison(&I)) 6046 return false; 6047 6048 // If the target has a fast compare for the given size, it will return a 6049 // preferred load type for that size. Require that the load VT is legal and 6050 // that the target supports unaligned loads of that type. Otherwise, return 6051 // INVALID. 6052 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6054 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6055 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6056 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6057 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6058 // TODO: Check alignment of src and dest ptrs. 6059 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6060 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6061 if (!TLI.isTypeLegal(LVT) || 6062 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6063 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6064 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6065 } 6066 6067 return LVT; 6068 }; 6069 6070 // This turns into unaligned loads. We only do this if the target natively 6071 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6072 // we'll only produce a small number of byte loads. 6073 MVT LoadVT; 6074 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6075 switch (NumBitsToCompare) { 6076 default: 6077 return false; 6078 case 16: 6079 LoadVT = MVT::i16; 6080 break; 6081 case 32: 6082 LoadVT = MVT::i32; 6083 break; 6084 case 64: 6085 case 128: 6086 case 256: 6087 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6088 break; 6089 } 6090 6091 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6092 return false; 6093 6094 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6095 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6096 6097 // Bitcast to a wide integer type if the loads are vectors. 6098 if (LoadVT.isVector()) { 6099 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6100 LoadL = DAG.getBitcast(CmpVT, LoadL); 6101 LoadR = DAG.getBitcast(CmpVT, LoadR); 6102 } 6103 6104 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6105 processIntegerCallValue(I, Cmp, false); 6106 return true; 6107 } 6108 6109 /// See if we can lower a memchr call into an optimized form. If so, return 6110 /// true and lower it. Otherwise return false, and it will be lowered like a 6111 /// normal call. 6112 /// The caller already checked that \p I calls the appropriate LibFunc with a 6113 /// correct prototype. 6114 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6115 const Value *Src = I.getArgOperand(0); 6116 const Value *Char = I.getArgOperand(1); 6117 const Value *Length = I.getArgOperand(2); 6118 6119 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6120 std::pair<SDValue, SDValue> Res = 6121 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6122 getValue(Src), getValue(Char), getValue(Length), 6123 MachinePointerInfo(Src)); 6124 if (Res.first.getNode()) { 6125 setValue(&I, Res.first); 6126 PendingLoads.push_back(Res.second); 6127 return true; 6128 } 6129 6130 return false; 6131 } 6132 6133 /// See if we can lower a mempcpy call into an optimized form. If so, return 6134 /// true and lower it. Otherwise return false, and it will be lowered like a 6135 /// normal call. 6136 /// The caller already checked that \p I calls the appropriate LibFunc with a 6137 /// correct prototype. 6138 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6139 SDValue Dst = getValue(I.getArgOperand(0)); 6140 SDValue Src = getValue(I.getArgOperand(1)); 6141 SDValue Size = getValue(I.getArgOperand(2)); 6142 6143 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6144 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6145 unsigned Align = std::min(DstAlign, SrcAlign); 6146 if (Align == 0) // Alignment of one or both could not be inferred. 6147 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6148 6149 bool isVol = false; 6150 SDLoc sdl = getCurSDLoc(); 6151 6152 // In the mempcpy context we need to pass in a false value for isTailCall 6153 // because the return pointer needs to be adjusted by the size of 6154 // the copied memory. 6155 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6156 false, /*isTailCall=*/false, 6157 MachinePointerInfo(I.getArgOperand(0)), 6158 MachinePointerInfo(I.getArgOperand(1))); 6159 assert(MC.getNode() != nullptr && 6160 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6161 DAG.setRoot(MC); 6162 6163 // Check if Size needs to be truncated or extended. 6164 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6165 6166 // Adjust return pointer to point just past the last dst byte. 6167 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6168 Dst, Size); 6169 setValue(&I, DstPlusSize); 6170 return true; 6171 } 6172 6173 /// See if we can lower a strcpy call into an optimized form. If so, return 6174 /// true and lower it, otherwise return false and it will be lowered like a 6175 /// normal call. 6176 /// The caller already checked that \p I calls the appropriate LibFunc with a 6177 /// correct prototype. 6178 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6179 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6180 6181 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6182 std::pair<SDValue, SDValue> Res = 6183 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6184 getValue(Arg0), getValue(Arg1), 6185 MachinePointerInfo(Arg0), 6186 MachinePointerInfo(Arg1), isStpcpy); 6187 if (Res.first.getNode()) { 6188 setValue(&I, Res.first); 6189 DAG.setRoot(Res.second); 6190 return true; 6191 } 6192 6193 return false; 6194 } 6195 6196 /// See if we can lower a strcmp call into an optimized form. If so, return 6197 /// true and lower it, otherwise return false and it will be lowered like a 6198 /// normal call. 6199 /// The caller already checked that \p I calls the appropriate LibFunc with a 6200 /// correct prototype. 6201 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6202 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6203 6204 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6205 std::pair<SDValue, SDValue> Res = 6206 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6207 getValue(Arg0), getValue(Arg1), 6208 MachinePointerInfo(Arg0), 6209 MachinePointerInfo(Arg1)); 6210 if (Res.first.getNode()) { 6211 processIntegerCallValue(I, Res.first, true); 6212 PendingLoads.push_back(Res.second); 6213 return true; 6214 } 6215 6216 return false; 6217 } 6218 6219 /// See if we can lower a strlen call into an optimized form. If so, return 6220 /// true and lower it, otherwise return false and it will be lowered like a 6221 /// normal call. 6222 /// The caller already checked that \p I calls the appropriate LibFunc with a 6223 /// correct prototype. 6224 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6225 const Value *Arg0 = I.getArgOperand(0); 6226 6227 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6228 std::pair<SDValue, SDValue> Res = 6229 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6230 getValue(Arg0), MachinePointerInfo(Arg0)); 6231 if (Res.first.getNode()) { 6232 processIntegerCallValue(I, Res.first, false); 6233 PendingLoads.push_back(Res.second); 6234 return true; 6235 } 6236 6237 return false; 6238 } 6239 6240 /// See if we can lower a strnlen call into an optimized form. If so, return 6241 /// true and lower it, otherwise return false and it will be lowered like a 6242 /// normal call. 6243 /// The caller already checked that \p I calls the appropriate LibFunc with a 6244 /// correct prototype. 6245 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6246 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6247 6248 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6249 std::pair<SDValue, SDValue> Res = 6250 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6251 getValue(Arg0), getValue(Arg1), 6252 MachinePointerInfo(Arg0)); 6253 if (Res.first.getNode()) { 6254 processIntegerCallValue(I, Res.first, false); 6255 PendingLoads.push_back(Res.second); 6256 return true; 6257 } 6258 6259 return false; 6260 } 6261 6262 /// See if we can lower a unary floating-point operation into an SDNode with 6263 /// the specified Opcode. If so, return true and lower it, otherwise return 6264 /// false and it will be lowered like a normal call. 6265 /// The caller already checked that \p I calls the appropriate LibFunc with a 6266 /// correct prototype. 6267 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6268 unsigned Opcode) { 6269 // We already checked this call's prototype; verify it doesn't modify errno. 6270 if (!I.onlyReadsMemory()) 6271 return false; 6272 6273 SDValue Tmp = getValue(I.getArgOperand(0)); 6274 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6275 return true; 6276 } 6277 6278 /// See if we can lower a binary floating-point operation into an SDNode with 6279 /// the specified Opcode. If so, return true and lower it. Otherwise return 6280 /// false, and it will be lowered like a normal call. 6281 /// The caller already checked that \p I calls the appropriate LibFunc with a 6282 /// correct prototype. 6283 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6284 unsigned Opcode) { 6285 // We already checked this call's prototype; verify it doesn't modify errno. 6286 if (!I.onlyReadsMemory()) 6287 return false; 6288 6289 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6290 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6291 EVT VT = Tmp0.getValueType(); 6292 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6293 return true; 6294 } 6295 6296 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6297 // Handle inline assembly differently. 6298 if (isa<InlineAsm>(I.getCalledValue())) { 6299 visitInlineAsm(&I); 6300 return; 6301 } 6302 6303 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6304 computeUsesVAFloatArgument(I, MMI); 6305 6306 const char *RenameFn = nullptr; 6307 if (Function *F = I.getCalledFunction()) { 6308 if (F->isDeclaration()) { 6309 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6310 if (unsigned IID = II->getIntrinsicID(F)) { 6311 RenameFn = visitIntrinsicCall(I, IID); 6312 if (!RenameFn) 6313 return; 6314 } 6315 } 6316 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6317 RenameFn = visitIntrinsicCall(I, IID); 6318 if (!RenameFn) 6319 return; 6320 } 6321 } 6322 6323 // Check for well-known libc/libm calls. If the function is internal, it 6324 // can't be a library call. Don't do the check if marked as nobuiltin for 6325 // some reason. 6326 LibFunc Func; 6327 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() && 6328 LibInfo->getLibFunc(*F, Func) && 6329 LibInfo->hasOptimizedCodeGen(Func)) { 6330 switch (Func) { 6331 default: break; 6332 case LibFunc_copysign: 6333 case LibFunc_copysignf: 6334 case LibFunc_copysignl: 6335 // We already checked this call's prototype; verify it doesn't modify 6336 // errno. 6337 if (I.onlyReadsMemory()) { 6338 SDValue LHS = getValue(I.getArgOperand(0)); 6339 SDValue RHS = getValue(I.getArgOperand(1)); 6340 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6341 LHS.getValueType(), LHS, RHS)); 6342 return; 6343 } 6344 break; 6345 case LibFunc_fabs: 6346 case LibFunc_fabsf: 6347 case LibFunc_fabsl: 6348 if (visitUnaryFloatCall(I, ISD::FABS)) 6349 return; 6350 break; 6351 case LibFunc_fmin: 6352 case LibFunc_fminf: 6353 case LibFunc_fminl: 6354 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6355 return; 6356 break; 6357 case LibFunc_fmax: 6358 case LibFunc_fmaxf: 6359 case LibFunc_fmaxl: 6360 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6361 return; 6362 break; 6363 case LibFunc_sin: 6364 case LibFunc_sinf: 6365 case LibFunc_sinl: 6366 if (visitUnaryFloatCall(I, ISD::FSIN)) 6367 return; 6368 break; 6369 case LibFunc_cos: 6370 case LibFunc_cosf: 6371 case LibFunc_cosl: 6372 if (visitUnaryFloatCall(I, ISD::FCOS)) 6373 return; 6374 break; 6375 case LibFunc_sqrt: 6376 case LibFunc_sqrtf: 6377 case LibFunc_sqrtl: 6378 case LibFunc_sqrt_finite: 6379 case LibFunc_sqrtf_finite: 6380 case LibFunc_sqrtl_finite: 6381 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6382 return; 6383 break; 6384 case LibFunc_floor: 6385 case LibFunc_floorf: 6386 case LibFunc_floorl: 6387 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6388 return; 6389 break; 6390 case LibFunc_nearbyint: 6391 case LibFunc_nearbyintf: 6392 case LibFunc_nearbyintl: 6393 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6394 return; 6395 break; 6396 case LibFunc_ceil: 6397 case LibFunc_ceilf: 6398 case LibFunc_ceill: 6399 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6400 return; 6401 break; 6402 case LibFunc_rint: 6403 case LibFunc_rintf: 6404 case LibFunc_rintl: 6405 if (visitUnaryFloatCall(I, ISD::FRINT)) 6406 return; 6407 break; 6408 case LibFunc_round: 6409 case LibFunc_roundf: 6410 case LibFunc_roundl: 6411 if (visitUnaryFloatCall(I, ISD::FROUND)) 6412 return; 6413 break; 6414 case LibFunc_trunc: 6415 case LibFunc_truncf: 6416 case LibFunc_truncl: 6417 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6418 return; 6419 break; 6420 case LibFunc_log2: 6421 case LibFunc_log2f: 6422 case LibFunc_log2l: 6423 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6424 return; 6425 break; 6426 case LibFunc_exp2: 6427 case LibFunc_exp2f: 6428 case LibFunc_exp2l: 6429 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6430 return; 6431 break; 6432 case LibFunc_memcmp: 6433 if (visitMemCmpCall(I)) 6434 return; 6435 break; 6436 case LibFunc_mempcpy: 6437 if (visitMemPCpyCall(I)) 6438 return; 6439 break; 6440 case LibFunc_memchr: 6441 if (visitMemChrCall(I)) 6442 return; 6443 break; 6444 case LibFunc_strcpy: 6445 if (visitStrCpyCall(I, false)) 6446 return; 6447 break; 6448 case LibFunc_stpcpy: 6449 if (visitStrCpyCall(I, true)) 6450 return; 6451 break; 6452 case LibFunc_strcmp: 6453 if (visitStrCmpCall(I)) 6454 return; 6455 break; 6456 case LibFunc_strlen: 6457 if (visitStrLenCall(I)) 6458 return; 6459 break; 6460 case LibFunc_strnlen: 6461 if (visitStrNLenCall(I)) 6462 return; 6463 break; 6464 } 6465 } 6466 } 6467 6468 SDValue Callee; 6469 if (!RenameFn) 6470 Callee = getValue(I.getCalledValue()); 6471 else 6472 Callee = DAG.getExternalSymbol( 6473 RenameFn, 6474 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6475 6476 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6477 // have to do anything here to lower funclet bundles. 6478 assert(!I.hasOperandBundlesOtherThan( 6479 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6480 "Cannot lower calls with arbitrary operand bundles!"); 6481 6482 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6483 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6484 else 6485 // Check if we can potentially perform a tail call. More detailed checking 6486 // is be done within LowerCallTo, after more information about the call is 6487 // known. 6488 LowerCallTo(&I, Callee, I.isTailCall()); 6489 } 6490 6491 namespace { 6492 6493 /// AsmOperandInfo - This contains information for each constraint that we are 6494 /// lowering. 6495 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6496 public: 6497 /// CallOperand - If this is the result output operand or a clobber 6498 /// this is null, otherwise it is the incoming operand to the CallInst. 6499 /// This gets modified as the asm is processed. 6500 SDValue CallOperand; 6501 6502 /// AssignedRegs - If this is a register or register class operand, this 6503 /// contains the set of register corresponding to the operand. 6504 RegsForValue AssignedRegs; 6505 6506 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6507 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6508 } 6509 6510 /// Whether or not this operand accesses memory 6511 bool hasMemory(const TargetLowering &TLI) const { 6512 // Indirect operand accesses access memory. 6513 if (isIndirect) 6514 return true; 6515 6516 for (const auto &Code : Codes) 6517 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6518 return true; 6519 6520 return false; 6521 } 6522 6523 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6524 /// corresponds to. If there is no Value* for this operand, it returns 6525 /// MVT::Other. 6526 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6527 const DataLayout &DL) const { 6528 if (!CallOperandVal) return MVT::Other; 6529 6530 if (isa<BasicBlock>(CallOperandVal)) 6531 return TLI.getPointerTy(DL); 6532 6533 llvm::Type *OpTy = CallOperandVal->getType(); 6534 6535 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6536 // If this is an indirect operand, the operand is a pointer to the 6537 // accessed type. 6538 if (isIndirect) { 6539 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6540 if (!PtrTy) 6541 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6542 OpTy = PtrTy->getElementType(); 6543 } 6544 6545 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6546 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6547 if (STy->getNumElements() == 1) 6548 OpTy = STy->getElementType(0); 6549 6550 // If OpTy is not a single value, it may be a struct/union that we 6551 // can tile with integers. 6552 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6553 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6554 switch (BitSize) { 6555 default: break; 6556 case 1: 6557 case 8: 6558 case 16: 6559 case 32: 6560 case 64: 6561 case 128: 6562 OpTy = IntegerType::get(Context, BitSize); 6563 break; 6564 } 6565 } 6566 6567 return TLI.getValueType(DL, OpTy, true); 6568 } 6569 }; 6570 6571 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6572 6573 } // end anonymous namespace 6574 6575 /// Make sure that the output operand \p OpInfo and its corresponding input 6576 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6577 /// out). 6578 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6579 SDISelAsmOperandInfo &MatchingOpInfo, 6580 SelectionDAG &DAG) { 6581 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6582 return; 6583 6584 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6585 const auto &TLI = DAG.getTargetLoweringInfo(); 6586 6587 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6588 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6589 OpInfo.ConstraintVT); 6590 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6591 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6592 MatchingOpInfo.ConstraintVT); 6593 if ((OpInfo.ConstraintVT.isInteger() != 6594 MatchingOpInfo.ConstraintVT.isInteger()) || 6595 (MatchRC.second != InputRC.second)) { 6596 // FIXME: error out in a more elegant fashion 6597 report_fatal_error("Unsupported asm: input constraint" 6598 " with a matching output constraint of" 6599 " incompatible type!"); 6600 } 6601 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6602 } 6603 6604 /// Get a direct memory input to behave well as an indirect operand. 6605 /// This may introduce stores, hence the need for a \p Chain. 6606 /// \return The (possibly updated) chain. 6607 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6608 SDISelAsmOperandInfo &OpInfo, 6609 SelectionDAG &DAG) { 6610 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6611 6612 // If we don't have an indirect input, put it in the constpool if we can, 6613 // otherwise spill it to a stack slot. 6614 // TODO: This isn't quite right. We need to handle these according to 6615 // the addressing mode that the constraint wants. Also, this may take 6616 // an additional register for the computation and we don't want that 6617 // either. 6618 6619 // If the operand is a float, integer, or vector constant, spill to a 6620 // constant pool entry to get its address. 6621 const Value *OpVal = OpInfo.CallOperandVal; 6622 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6623 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6624 OpInfo.CallOperand = DAG.getConstantPool( 6625 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6626 return Chain; 6627 } 6628 6629 // Otherwise, create a stack slot and emit a store to it before the asm. 6630 Type *Ty = OpVal->getType(); 6631 auto &DL = DAG.getDataLayout(); 6632 uint64_t TySize = DL.getTypeAllocSize(Ty); 6633 unsigned Align = DL.getPrefTypeAlignment(Ty); 6634 MachineFunction &MF = DAG.getMachineFunction(); 6635 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6636 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 6637 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6638 MachinePointerInfo::getFixedStack(MF, SSFI)); 6639 OpInfo.CallOperand = StackSlot; 6640 6641 return Chain; 6642 } 6643 6644 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6645 /// specified operand. We prefer to assign virtual registers, to allow the 6646 /// register allocator to handle the assignment process. However, if the asm 6647 /// uses features that we can't model on machineinstrs, we have SDISel do the 6648 /// allocation. This produces generally horrible, but correct, code. 6649 /// 6650 /// OpInfo describes the operand. 6651 /// 6652 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6653 const SDLoc &DL, 6654 SDISelAsmOperandInfo &OpInfo) { 6655 LLVMContext &Context = *DAG.getContext(); 6656 6657 MachineFunction &MF = DAG.getMachineFunction(); 6658 SmallVector<unsigned, 4> Regs; 6659 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6660 6661 // If this is a constraint for a single physreg, or a constraint for a 6662 // register class, find it. 6663 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6664 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 6665 OpInfo.ConstraintVT); 6666 6667 unsigned NumRegs = 1; 6668 if (OpInfo.ConstraintVT != MVT::Other) { 6669 // If this is a FP input in an integer register (or visa versa) insert a bit 6670 // cast of the input value. More generally, handle any case where the input 6671 // value disagrees with the register class we plan to stick this in. 6672 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 6673 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 6674 // Try to convert to the first EVT that the reg class contains. If the 6675 // types are identical size, use a bitcast to convert (e.g. two differing 6676 // vector types). 6677 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 6678 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6679 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6680 RegVT, OpInfo.CallOperand); 6681 OpInfo.ConstraintVT = RegVT; 6682 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6683 // If the input is a FP value and we want it in FP registers, do a 6684 // bitcast to the corresponding integer type. This turns an f64 value 6685 // into i64, which can be passed with two i32 values on a 32-bit 6686 // machine. 6687 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6688 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6689 RegVT, OpInfo.CallOperand); 6690 OpInfo.ConstraintVT = RegVT; 6691 } 6692 } 6693 6694 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6695 } 6696 6697 MVT RegVT; 6698 EVT ValueVT = OpInfo.ConstraintVT; 6699 6700 // If this is a constraint for a specific physical register, like {r17}, 6701 // assign it now. 6702 if (unsigned AssignedReg = PhysReg.first) { 6703 const TargetRegisterClass *RC = PhysReg.second; 6704 if (OpInfo.ConstraintVT == MVT::Other) 6705 ValueVT = *TRI.legalclasstypes_begin(*RC); 6706 6707 // Get the actual register value type. This is important, because the user 6708 // may have asked for (e.g.) the AX register in i32 type. We need to 6709 // remember that AX is actually i16 to get the right extension. 6710 RegVT = *TRI.legalclasstypes_begin(*RC); 6711 6712 // This is a explicit reference to a physical register. 6713 Regs.push_back(AssignedReg); 6714 6715 // If this is an expanded reference, add the rest of the regs to Regs. 6716 if (NumRegs != 1) { 6717 TargetRegisterClass::iterator I = RC->begin(); 6718 for (; *I != AssignedReg; ++I) 6719 assert(I != RC->end() && "Didn't find reg!"); 6720 6721 // Already added the first reg. 6722 --NumRegs; ++I; 6723 for (; NumRegs; --NumRegs, ++I) { 6724 assert(I != RC->end() && "Ran out of registers to allocate!"); 6725 Regs.push_back(*I); 6726 } 6727 } 6728 6729 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6730 return; 6731 } 6732 6733 // Otherwise, if this was a reference to an LLVM register class, create vregs 6734 // for this reference. 6735 if (const TargetRegisterClass *RC = PhysReg.second) { 6736 RegVT = *TRI.legalclasstypes_begin(*RC); 6737 if (OpInfo.ConstraintVT == MVT::Other) 6738 ValueVT = RegVT; 6739 6740 // Create the appropriate number of virtual registers. 6741 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6742 for (; NumRegs; --NumRegs) 6743 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6744 6745 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6746 return; 6747 } 6748 6749 // Otherwise, we couldn't allocate enough registers for this. 6750 } 6751 6752 static unsigned 6753 findMatchingInlineAsmOperand(unsigned OperandNo, 6754 const std::vector<SDValue> &AsmNodeOperands) { 6755 // Scan until we find the definition we already emitted of this operand. 6756 unsigned CurOp = InlineAsm::Op_FirstOperand; 6757 for (; OperandNo; --OperandNo) { 6758 // Advance to the next operand. 6759 unsigned OpFlag = 6760 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6761 assert((InlineAsm::isRegDefKind(OpFlag) || 6762 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6763 InlineAsm::isMemKind(OpFlag)) && 6764 "Skipped past definitions?"); 6765 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 6766 } 6767 return CurOp; 6768 } 6769 6770 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 6771 /// \return true if it has succeeded, false otherwise 6772 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 6773 MVT RegVT, SelectionDAG &DAG) { 6774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6775 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6776 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 6777 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6778 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6779 else 6780 return false; 6781 } 6782 return true; 6783 } 6784 6785 class ExtraFlags { 6786 unsigned Flags = 0; 6787 6788 public: 6789 explicit ExtraFlags(ImmutableCallSite CS) { 6790 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6791 if (IA->hasSideEffects()) 6792 Flags |= InlineAsm::Extra_HasSideEffects; 6793 if (IA->isAlignStack()) 6794 Flags |= InlineAsm::Extra_IsAlignStack; 6795 if (CS.isConvergent()) 6796 Flags |= InlineAsm::Extra_IsConvergent; 6797 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6798 } 6799 6800 void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) { 6801 // Ideally, we would only check against memory constraints. However, the 6802 // meaning of an Other constraint can be target-specific and we can't easily 6803 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6804 // for Other constraints as well. 6805 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6806 OpInfo.ConstraintType == TargetLowering::C_Other) { 6807 if (OpInfo.Type == InlineAsm::isInput) 6808 Flags |= InlineAsm::Extra_MayLoad; 6809 else if (OpInfo.Type == InlineAsm::isOutput) 6810 Flags |= InlineAsm::Extra_MayStore; 6811 else if (OpInfo.Type == InlineAsm::isClobber) 6812 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6813 } 6814 } 6815 6816 unsigned get() const { return Flags; } 6817 }; 6818 6819 /// visitInlineAsm - Handle a call to an InlineAsm object. 6820 /// 6821 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6822 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6823 6824 /// ConstraintOperands - Information about all of the constraints. 6825 SDISelAsmOperandInfoVector ConstraintOperands; 6826 6827 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6828 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6829 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6830 6831 bool hasMemory = false; 6832 6833 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6834 ExtraFlags ExtraInfo(CS); 6835 6836 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6837 unsigned ResNo = 0; // ResNo - The result number of the next output. 6838 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6839 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6840 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6841 6842 MVT OpVT = MVT::Other; 6843 6844 // Compute the value type for each operand. 6845 if (OpInfo.Type == InlineAsm::isInput || 6846 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 6847 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6848 6849 // Process the call argument. BasicBlocks are labels, currently appearing 6850 // only in asm's. 6851 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6852 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6853 } else { 6854 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6855 } 6856 6857 OpVT = 6858 OpInfo 6859 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 6860 .getSimpleVT(); 6861 } 6862 6863 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 6864 // The return value of the call is this value. As such, there is no 6865 // corresponding argument. 6866 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6867 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6868 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6869 STy->getElementType(ResNo)); 6870 } else { 6871 assert(ResNo == 0 && "Asm only has one result!"); 6872 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6873 } 6874 ++ResNo; 6875 } 6876 6877 OpInfo.ConstraintVT = OpVT; 6878 6879 if (!hasMemory) 6880 hasMemory = OpInfo.hasMemory(TLI); 6881 6882 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6883 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 6884 auto TargetConstraint = TargetConstraints[i]; 6885 6886 // Compute the constraint code and ConstraintType to use. 6887 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 6888 6889 ExtraInfo.update(TargetConstraint); 6890 } 6891 6892 SDValue Chain, Flag; 6893 6894 // We won't need to flush pending loads if this asm doesn't touch 6895 // memory and is nonvolatile. 6896 if (hasMemory || IA->hasSideEffects()) 6897 Chain = getRoot(); 6898 else 6899 Chain = DAG.getRoot(); 6900 6901 // Second pass over the constraints: compute which constraint option to use 6902 // and assign registers to constraints that want a specific physreg. 6903 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6904 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6905 6906 // If this is an output operand with a matching input operand, look up the 6907 // matching input. If their types mismatch, e.g. one is an integer, the 6908 // other is floating point, or their sizes are different, flag it as an 6909 // error. 6910 if (OpInfo.hasMatchingInput()) { 6911 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6912 patchMatchingInput(OpInfo, Input, DAG); 6913 } 6914 6915 // Compute the constraint code and ConstraintType to use. 6916 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6917 6918 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6919 OpInfo.Type == InlineAsm::isClobber) 6920 continue; 6921 6922 // If this is a memory input, and if the operand is not indirect, do what we 6923 // need to to provide an address for the memory input. 6924 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6925 !OpInfo.isIndirect) { 6926 assert((OpInfo.isMultipleAlternative || 6927 (OpInfo.Type == InlineAsm::isInput)) && 6928 "Can only indirectify direct input operands!"); 6929 6930 // Memory operands really want the address of the value. 6931 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 6932 6933 // There is no longer a Value* corresponding to this operand. 6934 OpInfo.CallOperandVal = nullptr; 6935 6936 // It is now an indirect operand. 6937 OpInfo.isIndirect = true; 6938 } 6939 6940 // If this constraint is for a specific register, allocate it before 6941 // anything else. 6942 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6943 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6944 } 6945 6946 // Third pass - Loop over all of the operands, assigning virtual or physregs 6947 // to register class operands. 6948 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6949 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6950 6951 // C_Register operands have already been allocated, Other/Memory don't need 6952 // to be. 6953 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6954 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6955 } 6956 6957 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6958 std::vector<SDValue> AsmNodeOperands; 6959 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6960 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6961 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6962 6963 // If we have a !srcloc metadata node associated with it, we want to attach 6964 // this to the ultimately generated inline asm machineinstr. To do this, we 6965 // pass in the third operand as this (potentially null) inline asm MDNode. 6966 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6967 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6968 6969 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6970 // bits as operand 3. 6971 AsmNodeOperands.push_back(DAG.getTargetConstant( 6972 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6973 6974 // Loop over all of the inputs, copying the operand values into the 6975 // appropriate registers and processing the output regs. 6976 RegsForValue RetValRegs; 6977 6978 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6979 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6980 6981 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6982 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6983 6984 switch (OpInfo.Type) { 6985 case InlineAsm::isOutput: { 6986 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6987 OpInfo.ConstraintType != TargetLowering::C_Register) { 6988 // Memory output, or 'other' output (e.g. 'X' constraint). 6989 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6990 6991 unsigned ConstraintID = 6992 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6993 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6994 "Failed to convert memory constraint code to constraint id."); 6995 6996 // Add information to the INLINEASM node to know about this output. 6997 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6998 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6999 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7000 MVT::i32)); 7001 AsmNodeOperands.push_back(OpInfo.CallOperand); 7002 break; 7003 } 7004 7005 // Otherwise, this is a register or register class output. 7006 7007 // Copy the output from the appropriate register. Find a register that 7008 // we can use. 7009 if (OpInfo.AssignedRegs.Regs.empty()) { 7010 emitInlineAsmError( 7011 CS, "couldn't allocate output register for constraint '" + 7012 Twine(OpInfo.ConstraintCode) + "'"); 7013 return; 7014 } 7015 7016 // If this is an indirect operand, store through the pointer after the 7017 // asm. 7018 if (OpInfo.isIndirect) { 7019 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7020 OpInfo.CallOperandVal)); 7021 } else { 7022 // This is the result value of the call. 7023 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7024 // Concatenate this output onto the outputs list. 7025 RetValRegs.append(OpInfo.AssignedRegs); 7026 } 7027 7028 // Add information to the INLINEASM node to know that this register is 7029 // set. 7030 OpInfo.AssignedRegs 7031 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7032 ? InlineAsm::Kind_RegDefEarlyClobber 7033 : InlineAsm::Kind_RegDef, 7034 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7035 break; 7036 } 7037 case InlineAsm::isInput: { 7038 SDValue InOperandVal = OpInfo.CallOperand; 7039 7040 if (OpInfo.isMatchingInputConstraint()) { 7041 // If this is required to match an output register we have already set, 7042 // just use its register. 7043 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7044 AsmNodeOperands); 7045 unsigned OpFlag = 7046 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7047 if (InlineAsm::isRegDefKind(OpFlag) || 7048 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7049 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7050 if (OpInfo.isIndirect) { 7051 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7052 emitInlineAsmError(CS, "inline asm not supported yet:" 7053 " don't know how to handle tied " 7054 "indirect register inputs"); 7055 return; 7056 } 7057 7058 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7059 SmallVector<unsigned, 4> Regs; 7060 7061 if (!createVirtualRegs(Regs, 7062 InlineAsm::getNumOperandRegisters(OpFlag), 7063 RegVT, DAG)) { 7064 emitInlineAsmError(CS, "inline asm error: This value type register " 7065 "class is not natively supported!"); 7066 return; 7067 } 7068 7069 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7070 7071 SDLoc dl = getCurSDLoc(); 7072 // Use the produced MatchedRegs object to 7073 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7074 Chain, &Flag, CS.getInstruction()); 7075 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7076 true, OpInfo.getMatchedOperand(), dl, 7077 DAG, AsmNodeOperands); 7078 break; 7079 } 7080 7081 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7082 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7083 "Unexpected number of operands"); 7084 // Add information to the INLINEASM node to know about this input. 7085 // See InlineAsm.h isUseOperandTiedToDef. 7086 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7087 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7088 OpInfo.getMatchedOperand()); 7089 AsmNodeOperands.push_back(DAG.getTargetConstant( 7090 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7091 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7092 break; 7093 } 7094 7095 // Treat indirect 'X' constraint as memory. 7096 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7097 OpInfo.isIndirect) 7098 OpInfo.ConstraintType = TargetLowering::C_Memory; 7099 7100 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7101 std::vector<SDValue> Ops; 7102 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7103 Ops, DAG); 7104 if (Ops.empty()) { 7105 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7106 Twine(OpInfo.ConstraintCode) + "'"); 7107 return; 7108 } 7109 7110 // Add information to the INLINEASM node to know about this input. 7111 unsigned ResOpType = 7112 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7113 AsmNodeOperands.push_back(DAG.getTargetConstant( 7114 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7115 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7116 break; 7117 } 7118 7119 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7120 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7121 assert(InOperandVal.getValueType() == 7122 TLI.getPointerTy(DAG.getDataLayout()) && 7123 "Memory operands expect pointer values"); 7124 7125 unsigned ConstraintID = 7126 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7127 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7128 "Failed to convert memory constraint code to constraint id."); 7129 7130 // Add information to the INLINEASM node to know about this input. 7131 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7132 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7133 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7134 getCurSDLoc(), 7135 MVT::i32)); 7136 AsmNodeOperands.push_back(InOperandVal); 7137 break; 7138 } 7139 7140 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7141 OpInfo.ConstraintType == TargetLowering::C_Register) && 7142 "Unknown constraint type!"); 7143 7144 // TODO: Support this. 7145 if (OpInfo.isIndirect) { 7146 emitInlineAsmError( 7147 CS, "Don't know how to handle indirect register inputs yet " 7148 "for constraint '" + 7149 Twine(OpInfo.ConstraintCode) + "'"); 7150 return; 7151 } 7152 7153 // Copy the input into the appropriate registers. 7154 if (OpInfo.AssignedRegs.Regs.empty()) { 7155 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7156 Twine(OpInfo.ConstraintCode) + "'"); 7157 return; 7158 } 7159 7160 SDLoc dl = getCurSDLoc(); 7161 7162 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7163 Chain, &Flag, CS.getInstruction()); 7164 7165 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7166 dl, DAG, AsmNodeOperands); 7167 break; 7168 } 7169 case InlineAsm::isClobber: { 7170 // Add the clobbered value to the operand list, so that the register 7171 // allocator is aware that the physreg got clobbered. 7172 if (!OpInfo.AssignedRegs.Regs.empty()) 7173 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7174 false, 0, getCurSDLoc(), DAG, 7175 AsmNodeOperands); 7176 break; 7177 } 7178 } 7179 } 7180 7181 // Finish up input operands. Set the input chain and add the flag last. 7182 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7183 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7184 7185 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7186 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7187 Flag = Chain.getValue(1); 7188 7189 // If this asm returns a register value, copy the result from that register 7190 // and set it as the value of the call. 7191 if (!RetValRegs.Regs.empty()) { 7192 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7193 Chain, &Flag, CS.getInstruction()); 7194 7195 // FIXME: Why don't we do this for inline asms with MRVs? 7196 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7197 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7198 7199 // If any of the results of the inline asm is a vector, it may have the 7200 // wrong width/num elts. This can happen for register classes that can 7201 // contain multiple different value types. The preg or vreg allocated may 7202 // not have the same VT as was expected. Convert it to the right type 7203 // with bit_convert. 7204 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7205 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7206 ResultType, Val); 7207 7208 } else if (ResultType != Val.getValueType() && 7209 ResultType.isInteger() && Val.getValueType().isInteger()) { 7210 // If a result value was tied to an input value, the computed result may 7211 // have a wider width than the expected result. Extract the relevant 7212 // portion. 7213 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7214 } 7215 7216 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7217 } 7218 7219 setValue(CS.getInstruction(), Val); 7220 // Don't need to use this as a chain in this case. 7221 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7222 return; 7223 } 7224 7225 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7226 7227 // Process indirect outputs, first output all of the flagged copies out of 7228 // physregs. 7229 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7230 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7231 const Value *Ptr = IndirectStoresToEmit[i].second; 7232 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7233 Chain, &Flag, IA); 7234 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7235 } 7236 7237 // Emit the non-flagged stores from the physregs. 7238 SmallVector<SDValue, 8> OutChains; 7239 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7240 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7241 getValue(StoresToEmit[i].second), 7242 MachinePointerInfo(StoresToEmit[i].second)); 7243 OutChains.push_back(Val); 7244 } 7245 7246 if (!OutChains.empty()) 7247 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7248 7249 DAG.setRoot(Chain); 7250 } 7251 7252 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7253 const Twine &Message) { 7254 LLVMContext &Ctx = *DAG.getContext(); 7255 Ctx.emitError(CS.getInstruction(), Message); 7256 7257 // Make sure we leave the DAG in a valid state 7258 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7259 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7260 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7261 } 7262 7263 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7264 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7265 MVT::Other, getRoot(), 7266 getValue(I.getArgOperand(0)), 7267 DAG.getSrcValue(I.getArgOperand(0)))); 7268 } 7269 7270 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7272 const DataLayout &DL = DAG.getDataLayout(); 7273 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7274 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7275 DAG.getSrcValue(I.getOperand(0)), 7276 DL.getABITypeAlignment(I.getType())); 7277 setValue(&I, V); 7278 DAG.setRoot(V.getValue(1)); 7279 } 7280 7281 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7282 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7283 MVT::Other, getRoot(), 7284 getValue(I.getArgOperand(0)), 7285 DAG.getSrcValue(I.getArgOperand(0)))); 7286 } 7287 7288 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7289 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7290 MVT::Other, getRoot(), 7291 getValue(I.getArgOperand(0)), 7292 getValue(I.getArgOperand(1)), 7293 DAG.getSrcValue(I.getArgOperand(0)), 7294 DAG.getSrcValue(I.getArgOperand(1)))); 7295 } 7296 7297 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7298 const Instruction &I, 7299 SDValue Op) { 7300 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7301 if (!Range) 7302 return Op; 7303 7304 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7305 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7306 return Op; 7307 7308 APInt Lo = CR.getUnsignedMin(); 7309 if (!Lo.isMinValue()) 7310 return Op; 7311 7312 APInt Hi = CR.getUnsignedMax(); 7313 unsigned Bits = Hi.getActiveBits(); 7314 7315 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7316 7317 SDLoc SL = getCurSDLoc(); 7318 7319 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7320 DAG.getValueType(SmallVT)); 7321 unsigned NumVals = Op.getNode()->getNumValues(); 7322 if (NumVals == 1) 7323 return ZExt; 7324 7325 SmallVector<SDValue, 4> Ops; 7326 7327 Ops.push_back(ZExt); 7328 for (unsigned I = 1; I != NumVals; ++I) 7329 Ops.push_back(Op.getValue(I)); 7330 7331 return DAG.getMergeValues(Ops, SL); 7332 } 7333 7334 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7335 /// the call being lowered. 7336 /// 7337 /// This is a helper for lowering intrinsics that follow a target calling 7338 /// convention or require stack pointer adjustment. Only a subset of the 7339 /// intrinsic's operands need to participate in the calling convention. 7340 void SelectionDAGBuilder::populateCallLoweringInfo( 7341 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7342 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7343 bool IsPatchPoint) { 7344 TargetLowering::ArgListTy Args; 7345 Args.reserve(NumArgs); 7346 7347 // Populate the argument list. 7348 // Attributes for args start at offset 1, after the return attribute. 7349 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7350 ArgI != ArgE; ++ArgI) { 7351 const Value *V = CS->getOperand(ArgI); 7352 7353 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7354 7355 TargetLowering::ArgListEntry Entry; 7356 Entry.Node = getValue(V); 7357 Entry.Ty = V->getType(); 7358 Entry.setAttributes(&CS, ArgIdx); 7359 Args.push_back(Entry); 7360 } 7361 7362 CLI.setDebugLoc(getCurSDLoc()) 7363 .setChain(getRoot()) 7364 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7365 .setDiscardResult(CS->use_empty()) 7366 .setIsPatchPoint(IsPatchPoint); 7367 } 7368 7369 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7370 /// or patchpoint target node's operand list. 7371 /// 7372 /// Constants are converted to TargetConstants purely as an optimization to 7373 /// avoid constant materialization and register allocation. 7374 /// 7375 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7376 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7377 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7378 /// address materialization and register allocation, but may also be required 7379 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7380 /// alloca in the entry block, then the runtime may assume that the alloca's 7381 /// StackMap location can be read immediately after compilation and that the 7382 /// location is valid at any point during execution (this is similar to the 7383 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7384 /// only available in a register, then the runtime would need to trap when 7385 /// execution reaches the StackMap in order to read the alloca's location. 7386 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7387 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7388 SelectionDAGBuilder &Builder) { 7389 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7390 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7391 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7392 Ops.push_back( 7393 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7394 Ops.push_back( 7395 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7396 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7397 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7398 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7399 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7400 } else 7401 Ops.push_back(OpVal); 7402 } 7403 } 7404 7405 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7406 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7407 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7408 // [live variables...]) 7409 7410 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7411 7412 SDValue Chain, InFlag, Callee, NullPtr; 7413 SmallVector<SDValue, 32> Ops; 7414 7415 SDLoc DL = getCurSDLoc(); 7416 Callee = getValue(CI.getCalledValue()); 7417 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7418 7419 // The stackmap intrinsic only records the live variables (the arguemnts 7420 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7421 // intrinsic, this won't be lowered to a function call. This means we don't 7422 // have to worry about calling conventions and target specific lowering code. 7423 // Instead we perform the call lowering right here. 7424 // 7425 // chain, flag = CALLSEQ_START(chain, 0) 7426 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7427 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7428 // 7429 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7430 InFlag = Chain.getValue(1); 7431 7432 // Add the <id> and <numBytes> constants. 7433 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7434 Ops.push_back(DAG.getTargetConstant( 7435 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7436 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7437 Ops.push_back(DAG.getTargetConstant( 7438 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7439 MVT::i32)); 7440 7441 // Push live variables for the stack map. 7442 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7443 7444 // We are not pushing any register mask info here on the operands list, 7445 // because the stackmap doesn't clobber anything. 7446 7447 // Push the chain and the glue flag. 7448 Ops.push_back(Chain); 7449 Ops.push_back(InFlag); 7450 7451 // Create the STACKMAP node. 7452 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7453 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7454 Chain = SDValue(SM, 0); 7455 InFlag = Chain.getValue(1); 7456 7457 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7458 7459 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7460 7461 // Set the root to the target-lowered call chain. 7462 DAG.setRoot(Chain); 7463 7464 // Inform the Frame Information that we have a stackmap in this function. 7465 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7466 } 7467 7468 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7469 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7470 const BasicBlock *EHPadBB) { 7471 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7472 // i32 <numBytes>, 7473 // i8* <target>, 7474 // i32 <numArgs>, 7475 // [Args...], 7476 // [live variables...]) 7477 7478 CallingConv::ID CC = CS.getCallingConv(); 7479 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7480 bool HasDef = !CS->getType()->isVoidTy(); 7481 SDLoc dl = getCurSDLoc(); 7482 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7483 7484 // Handle immediate and symbolic callees. 7485 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7486 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7487 /*isTarget=*/true); 7488 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7489 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7490 SDLoc(SymbolicCallee), 7491 SymbolicCallee->getValueType(0)); 7492 7493 // Get the real number of arguments participating in the call <numArgs> 7494 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7495 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7496 7497 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7498 // Intrinsics include all meta-operands up to but not including CC. 7499 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7500 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7501 "Not enough arguments provided to the patchpoint intrinsic"); 7502 7503 // For AnyRegCC the arguments are lowered later on manually. 7504 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7505 Type *ReturnTy = 7506 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7507 7508 TargetLowering::CallLoweringInfo CLI(DAG); 7509 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7510 true); 7511 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7512 7513 SDNode *CallEnd = Result.second.getNode(); 7514 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7515 CallEnd = CallEnd->getOperand(0).getNode(); 7516 7517 /// Get a call instruction from the call sequence chain. 7518 /// Tail calls are not allowed. 7519 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7520 "Expected a callseq node."); 7521 SDNode *Call = CallEnd->getOperand(0).getNode(); 7522 bool HasGlue = Call->getGluedNode(); 7523 7524 // Replace the target specific call node with the patchable intrinsic. 7525 SmallVector<SDValue, 8> Ops; 7526 7527 // Add the <id> and <numBytes> constants. 7528 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7529 Ops.push_back(DAG.getTargetConstant( 7530 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7531 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7532 Ops.push_back(DAG.getTargetConstant( 7533 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7534 MVT::i32)); 7535 7536 // Add the callee. 7537 Ops.push_back(Callee); 7538 7539 // Adjust <numArgs> to account for any arguments that have been passed on the 7540 // stack instead. 7541 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7542 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7543 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7544 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7545 7546 // Add the calling convention 7547 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7548 7549 // Add the arguments we omitted previously. The register allocator should 7550 // place these in any free register. 7551 if (IsAnyRegCC) 7552 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7553 Ops.push_back(getValue(CS.getArgument(i))); 7554 7555 // Push the arguments from the call instruction up to the register mask. 7556 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7557 Ops.append(Call->op_begin() + 2, e); 7558 7559 // Push live variables for the stack map. 7560 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7561 7562 // Push the register mask info. 7563 if (HasGlue) 7564 Ops.push_back(*(Call->op_end()-2)); 7565 else 7566 Ops.push_back(*(Call->op_end()-1)); 7567 7568 // Push the chain (this is originally the first operand of the call, but 7569 // becomes now the last or second to last operand). 7570 Ops.push_back(*(Call->op_begin())); 7571 7572 // Push the glue flag (last operand). 7573 if (HasGlue) 7574 Ops.push_back(*(Call->op_end()-1)); 7575 7576 SDVTList NodeTys; 7577 if (IsAnyRegCC && HasDef) { 7578 // Create the return types based on the intrinsic definition 7579 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7580 SmallVector<EVT, 3> ValueVTs; 7581 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7582 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7583 7584 // There is always a chain and a glue type at the end 7585 ValueVTs.push_back(MVT::Other); 7586 ValueVTs.push_back(MVT::Glue); 7587 NodeTys = DAG.getVTList(ValueVTs); 7588 } else 7589 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7590 7591 // Replace the target specific call node with a PATCHPOINT node. 7592 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7593 dl, NodeTys, Ops); 7594 7595 // Update the NodeMap. 7596 if (HasDef) { 7597 if (IsAnyRegCC) 7598 setValue(CS.getInstruction(), SDValue(MN, 0)); 7599 else 7600 setValue(CS.getInstruction(), Result.first); 7601 } 7602 7603 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7604 // call sequence. Furthermore the location of the chain and glue can change 7605 // when the AnyReg calling convention is used and the intrinsic returns a 7606 // value. 7607 if (IsAnyRegCC && HasDef) { 7608 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7609 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7610 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7611 } else 7612 DAG.ReplaceAllUsesWith(Call, MN); 7613 DAG.DeleteNode(Call); 7614 7615 // Inform the Frame Information that we have a patchpoint in this function. 7616 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7617 } 7618 7619 /// Returns an AttributeList representing the attributes applied to the return 7620 /// value of the given call. 7621 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7622 SmallVector<Attribute::AttrKind, 2> Attrs; 7623 if (CLI.RetSExt) 7624 Attrs.push_back(Attribute::SExt); 7625 if (CLI.RetZExt) 7626 Attrs.push_back(Attribute::ZExt); 7627 if (CLI.IsInReg) 7628 Attrs.push_back(Attribute::InReg); 7629 7630 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 7631 Attrs); 7632 } 7633 7634 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7635 /// implementation, which just calls LowerCall. 7636 /// FIXME: When all targets are 7637 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7638 std::pair<SDValue, SDValue> 7639 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7640 // Handle the incoming return values from the call. 7641 CLI.Ins.clear(); 7642 Type *OrigRetTy = CLI.RetTy; 7643 SmallVector<EVT, 4> RetTys; 7644 SmallVector<uint64_t, 4> Offsets; 7645 auto &DL = CLI.DAG.getDataLayout(); 7646 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7647 7648 SmallVector<ISD::OutputArg, 4> Outs; 7649 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7650 7651 bool CanLowerReturn = 7652 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7653 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7654 7655 SDValue DemoteStackSlot; 7656 int DemoteStackIdx = -100; 7657 if (!CanLowerReturn) { 7658 // FIXME: equivalent assert? 7659 // assert(!CS.hasInAllocaArgument() && 7660 // "sret demotion is incompatible with inalloca"); 7661 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7662 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7663 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7664 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7665 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7666 7667 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 7668 ArgListEntry Entry; 7669 Entry.Node = DemoteStackSlot; 7670 Entry.Ty = StackSlotPtrType; 7671 Entry.IsSExt = false; 7672 Entry.IsZExt = false; 7673 Entry.IsInReg = false; 7674 Entry.IsSRet = true; 7675 Entry.IsNest = false; 7676 Entry.IsByVal = false; 7677 Entry.IsReturned = false; 7678 Entry.IsSwiftSelf = false; 7679 Entry.IsSwiftError = false; 7680 Entry.Alignment = Align; 7681 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7682 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7683 7684 // sret demotion isn't compatible with tail-calls, since the sret argument 7685 // points into the callers stack frame. 7686 CLI.IsTailCall = false; 7687 } else { 7688 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7689 EVT VT = RetTys[I]; 7690 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7691 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7692 for (unsigned i = 0; i != NumRegs; ++i) { 7693 ISD::InputArg MyFlags; 7694 MyFlags.VT = RegisterVT; 7695 MyFlags.ArgVT = VT; 7696 MyFlags.Used = CLI.IsReturnValueUsed; 7697 if (CLI.RetSExt) 7698 MyFlags.Flags.setSExt(); 7699 if (CLI.RetZExt) 7700 MyFlags.Flags.setZExt(); 7701 if (CLI.IsInReg) 7702 MyFlags.Flags.setInReg(); 7703 CLI.Ins.push_back(MyFlags); 7704 } 7705 } 7706 } 7707 7708 // We push in swifterror return as the last element of CLI.Ins. 7709 ArgListTy &Args = CLI.getArgs(); 7710 if (supportSwiftError()) { 7711 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7712 if (Args[i].IsSwiftError) { 7713 ISD::InputArg MyFlags; 7714 MyFlags.VT = getPointerTy(DL); 7715 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7716 MyFlags.Flags.setSwiftError(); 7717 CLI.Ins.push_back(MyFlags); 7718 } 7719 } 7720 } 7721 7722 // Handle all of the outgoing arguments. 7723 CLI.Outs.clear(); 7724 CLI.OutVals.clear(); 7725 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7726 SmallVector<EVT, 4> ValueVTs; 7727 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7728 Type *FinalType = Args[i].Ty; 7729 if (Args[i].IsByVal) 7730 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7731 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7732 FinalType, CLI.CallConv, CLI.IsVarArg); 7733 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7734 ++Value) { 7735 EVT VT = ValueVTs[Value]; 7736 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7737 SDValue Op = SDValue(Args[i].Node.getNode(), 7738 Args[i].Node.getResNo() + Value); 7739 ISD::ArgFlagsTy Flags; 7740 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7741 7742 if (Args[i].IsZExt) 7743 Flags.setZExt(); 7744 if (Args[i].IsSExt) 7745 Flags.setSExt(); 7746 if (Args[i].IsInReg) { 7747 // If we are using vectorcall calling convention, a structure that is 7748 // passed InReg - is surely an HVA 7749 if (CLI.CallConv == CallingConv::X86_VectorCall && 7750 isa<StructType>(FinalType)) { 7751 // The first value of a structure is marked 7752 if (0 == Value) 7753 Flags.setHvaStart(); 7754 Flags.setHva(); 7755 } 7756 // Set InReg Flag 7757 Flags.setInReg(); 7758 } 7759 if (Args[i].IsSRet) 7760 Flags.setSRet(); 7761 if (Args[i].IsSwiftSelf) 7762 Flags.setSwiftSelf(); 7763 if (Args[i].IsSwiftError) 7764 Flags.setSwiftError(); 7765 if (Args[i].IsByVal) 7766 Flags.setByVal(); 7767 if (Args[i].IsInAlloca) { 7768 Flags.setInAlloca(); 7769 // Set the byval flag for CCAssignFn callbacks that don't know about 7770 // inalloca. This way we can know how many bytes we should've allocated 7771 // and how many bytes a callee cleanup function will pop. If we port 7772 // inalloca to more targets, we'll have to add custom inalloca handling 7773 // in the various CC lowering callbacks. 7774 Flags.setByVal(); 7775 } 7776 if (Args[i].IsByVal || Args[i].IsInAlloca) { 7777 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7778 Type *ElementTy = Ty->getElementType(); 7779 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7780 // For ByVal, alignment should come from FE. BE will guess if this 7781 // info is not there but there are cases it cannot get right. 7782 unsigned FrameAlign; 7783 if (Args[i].Alignment) 7784 FrameAlign = Args[i].Alignment; 7785 else 7786 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7787 Flags.setByValAlign(FrameAlign); 7788 } 7789 if (Args[i].IsNest) 7790 Flags.setNest(); 7791 if (NeedsRegBlock) 7792 Flags.setInConsecutiveRegs(); 7793 Flags.setOrigAlign(OriginalAlignment); 7794 7795 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7796 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7797 SmallVector<SDValue, 4> Parts(NumParts); 7798 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7799 7800 if (Args[i].IsSExt) 7801 ExtendKind = ISD::SIGN_EXTEND; 7802 else if (Args[i].IsZExt) 7803 ExtendKind = ISD::ZERO_EXTEND; 7804 7805 // Conservatively only handle 'returned' on non-vectors for now 7806 if (Args[i].IsReturned && !Op.getValueType().isVector()) { 7807 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7808 "unexpected use of 'returned'"); 7809 // Before passing 'returned' to the target lowering code, ensure that 7810 // either the register MVT and the actual EVT are the same size or that 7811 // the return value and argument are extended in the same way; in these 7812 // cases it's safe to pass the argument register value unchanged as the 7813 // return register value (although it's at the target's option whether 7814 // to do so) 7815 // TODO: allow code generation to take advantage of partially preserved 7816 // registers rather than clobbering the entire register when the 7817 // parameter extension method is not compatible with the return 7818 // extension method 7819 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7820 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 7821 CLI.RetZExt == Args[i].IsZExt)) 7822 Flags.setReturned(); 7823 } 7824 7825 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7826 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7827 7828 for (unsigned j = 0; j != NumParts; ++j) { 7829 // if it isn't first piece, alignment must be 1 7830 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7831 i < CLI.NumFixedArgs, 7832 i, j*Parts[j].getValueType().getStoreSize()); 7833 if (NumParts > 1 && j == 0) 7834 MyFlags.Flags.setSplit(); 7835 else if (j != 0) { 7836 MyFlags.Flags.setOrigAlign(1); 7837 if (j == NumParts - 1) 7838 MyFlags.Flags.setSplitEnd(); 7839 } 7840 7841 CLI.Outs.push_back(MyFlags); 7842 CLI.OutVals.push_back(Parts[j]); 7843 } 7844 7845 if (NeedsRegBlock && Value == NumValues - 1) 7846 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7847 } 7848 } 7849 7850 SmallVector<SDValue, 4> InVals; 7851 CLI.Chain = LowerCall(CLI, InVals); 7852 7853 // Update CLI.InVals to use outside of this function. 7854 CLI.InVals = InVals; 7855 7856 // Verify that the target's LowerCall behaved as expected. 7857 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7858 "LowerCall didn't return a valid chain!"); 7859 assert((!CLI.IsTailCall || InVals.empty()) && 7860 "LowerCall emitted a return value for a tail call!"); 7861 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7862 "LowerCall didn't emit the correct number of values!"); 7863 7864 // For a tail call, the return value is merely live-out and there aren't 7865 // any nodes in the DAG representing it. Return a special value to 7866 // indicate that a tail call has been emitted and no more Instructions 7867 // should be processed in the current block. 7868 if (CLI.IsTailCall) { 7869 CLI.DAG.setRoot(CLI.Chain); 7870 return std::make_pair(SDValue(), SDValue()); 7871 } 7872 7873 #ifndef NDEBUG 7874 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7875 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7876 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7877 "LowerCall emitted a value with the wrong type!"); 7878 } 7879 #endif 7880 7881 SmallVector<SDValue, 4> ReturnValues; 7882 if (!CanLowerReturn) { 7883 // The instruction result is the result of loading from the 7884 // hidden sret parameter. 7885 SmallVector<EVT, 1> PVTs; 7886 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7887 7888 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7889 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7890 EVT PtrVT = PVTs[0]; 7891 7892 unsigned NumValues = RetTys.size(); 7893 ReturnValues.resize(NumValues); 7894 SmallVector<SDValue, 4> Chains(NumValues); 7895 7896 // An aggregate return value cannot wrap around the address space, so 7897 // offsets to its parts don't wrap either. 7898 SDNodeFlags Flags; 7899 Flags.setNoUnsignedWrap(true); 7900 7901 for (unsigned i = 0; i < NumValues; ++i) { 7902 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7903 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7904 PtrVT), Flags); 7905 SDValue L = CLI.DAG.getLoad( 7906 RetTys[i], CLI.DL, CLI.Chain, Add, 7907 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7908 DemoteStackIdx, Offsets[i]), 7909 /* Alignment = */ 1); 7910 ReturnValues[i] = L; 7911 Chains[i] = L.getValue(1); 7912 } 7913 7914 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7915 } else { 7916 // Collect the legal value parts into potentially illegal values 7917 // that correspond to the original function's return values. 7918 Optional<ISD::NodeType> AssertOp; 7919 if (CLI.RetSExt) 7920 AssertOp = ISD::AssertSext; 7921 else if (CLI.RetZExt) 7922 AssertOp = ISD::AssertZext; 7923 unsigned CurReg = 0; 7924 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7925 EVT VT = RetTys[I]; 7926 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7927 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7928 7929 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7930 NumRegs, RegisterVT, VT, nullptr, 7931 AssertOp)); 7932 CurReg += NumRegs; 7933 } 7934 7935 // For a function returning void, there is no return value. We can't create 7936 // such a node, so we just return a null return value in that case. In 7937 // that case, nothing will actually look at the value. 7938 if (ReturnValues.empty()) 7939 return std::make_pair(SDValue(), CLI.Chain); 7940 } 7941 7942 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7943 CLI.DAG.getVTList(RetTys), ReturnValues); 7944 return std::make_pair(Res, CLI.Chain); 7945 } 7946 7947 void TargetLowering::LowerOperationWrapper(SDNode *N, 7948 SmallVectorImpl<SDValue> &Results, 7949 SelectionDAG &DAG) const { 7950 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7951 Results.push_back(Res); 7952 } 7953 7954 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7955 llvm_unreachable("LowerOperation not implemented for this target!"); 7956 } 7957 7958 void 7959 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7960 SDValue Op = getNonRegisterValue(V); 7961 assert((Op.getOpcode() != ISD::CopyFromReg || 7962 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7963 "Copy from a reg to the same reg!"); 7964 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7965 7966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7967 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7968 V->getType()); 7969 SDValue Chain = DAG.getEntryNode(); 7970 7971 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7972 FuncInfo.PreferredExtendType.end()) 7973 ? ISD::ANY_EXTEND 7974 : FuncInfo.PreferredExtendType[V]; 7975 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7976 PendingExports.push_back(Chain); 7977 } 7978 7979 #include "llvm/CodeGen/SelectionDAGISel.h" 7980 7981 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7982 /// entry block, return true. This includes arguments used by switches, since 7983 /// the switch may expand into multiple basic blocks. 7984 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7985 // With FastISel active, we may be splitting blocks, so force creation 7986 // of virtual registers for all non-dead arguments. 7987 if (FastISel) 7988 return A->use_empty(); 7989 7990 const BasicBlock &Entry = A->getParent()->front(); 7991 for (const User *U : A->users()) 7992 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7993 return false; // Use not in entry block. 7994 7995 return true; 7996 } 7997 7998 typedef DenseMap<const Argument *, 7999 std::pair<const AllocaInst *, const StoreInst *>> 8000 ArgCopyElisionMapTy; 8001 8002 /// Scan the entry block of the function in FuncInfo for arguments that look 8003 /// like copies into a local alloca. Record any copied arguments in 8004 /// ArgCopyElisionCandidates. 8005 static void 8006 findArgumentCopyElisionCandidates(const DataLayout &DL, 8007 FunctionLoweringInfo *FuncInfo, 8008 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8009 // Record the state of every static alloca used in the entry block. Argument 8010 // allocas are all used in the entry block, so we need approximately as many 8011 // entries as we have arguments. 8012 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8013 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8014 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8015 StaticAllocas.reserve(NumArgs * 2); 8016 8017 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8018 if (!V) 8019 return nullptr; 8020 V = V->stripPointerCasts(); 8021 const auto *AI = dyn_cast<AllocaInst>(V); 8022 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8023 return nullptr; 8024 auto Iter = StaticAllocas.insert({AI, Unknown}); 8025 return &Iter.first->second; 8026 }; 8027 8028 // Look for stores of arguments to static allocas. Look through bitcasts and 8029 // GEPs to handle type coercions, as long as the alloca is fully initialized 8030 // by the store. Any non-store use of an alloca escapes it and any subsequent 8031 // unanalyzed store might write it. 8032 // FIXME: Handle structs initialized with multiple stores. 8033 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8034 // Look for stores, and handle non-store uses conservatively. 8035 const auto *SI = dyn_cast<StoreInst>(&I); 8036 if (!SI) { 8037 // We will look through cast uses, so ignore them completely. 8038 if (I.isCast()) 8039 continue; 8040 // Ignore debug info intrinsics, they don't escape or store to allocas. 8041 if (isa<DbgInfoIntrinsic>(I)) 8042 continue; 8043 // This is an unknown instruction. Assume it escapes or writes to all 8044 // static alloca operands. 8045 for (const Use &U : I.operands()) { 8046 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8047 *Info = StaticAllocaInfo::Clobbered; 8048 } 8049 continue; 8050 } 8051 8052 // If the stored value is a static alloca, mark it as escaped. 8053 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8054 *Info = StaticAllocaInfo::Clobbered; 8055 8056 // Check if the destination is a static alloca. 8057 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8058 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8059 if (!Info) 8060 continue; 8061 const AllocaInst *AI = cast<AllocaInst>(Dst); 8062 8063 // Skip allocas that have been initialized or clobbered. 8064 if (*Info != StaticAllocaInfo::Unknown) 8065 continue; 8066 8067 // Check if the stored value is an argument, and that this store fully 8068 // initializes the alloca. Don't elide copies from the same argument twice. 8069 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8070 const auto *Arg = dyn_cast<Argument>(Val); 8071 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8072 Arg->getType()->isEmptyTy() || 8073 DL.getTypeStoreSize(Arg->getType()) != 8074 DL.getTypeAllocSize(AI->getAllocatedType()) || 8075 ArgCopyElisionCandidates.count(Arg)) { 8076 *Info = StaticAllocaInfo::Clobbered; 8077 continue; 8078 } 8079 8080 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8081 8082 // Mark this alloca and store for argument copy elision. 8083 *Info = StaticAllocaInfo::Elidable; 8084 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8085 8086 // Stop scanning if we've seen all arguments. This will happen early in -O0 8087 // builds, which is useful, because -O0 builds have large entry blocks and 8088 // many allocas. 8089 if (ArgCopyElisionCandidates.size() == NumArgs) 8090 break; 8091 } 8092 } 8093 8094 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8095 /// ArgVal is a load from a suitable fixed stack object. 8096 static void tryToElideArgumentCopy( 8097 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8098 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8099 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8100 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8101 SDValue ArgVal, bool &ArgHasUses) { 8102 // Check if this is a load from a fixed stack object. 8103 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8104 if (!LNode) 8105 return; 8106 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8107 if (!FINode) 8108 return; 8109 8110 // Check that the fixed stack object is the right size and alignment. 8111 // Look at the alignment that the user wrote on the alloca instead of looking 8112 // at the stack object. 8113 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8114 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8115 const AllocaInst *AI = ArgCopyIter->second.first; 8116 int FixedIndex = FINode->getIndex(); 8117 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8118 int OldIndex = AllocaIndex; 8119 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8120 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8121 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8122 "object size\n"); 8123 return; 8124 } 8125 unsigned RequiredAlignment = AI->getAlignment(); 8126 if (!RequiredAlignment) { 8127 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8128 AI->getAllocatedType()); 8129 } 8130 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8131 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8132 "greater than stack argument alignment (" 8133 << RequiredAlignment << " vs " 8134 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8135 return; 8136 } 8137 8138 // Perform the elision. Delete the old stack object and replace its only use 8139 // in the variable info map. Mark the stack object as mutable. 8140 DEBUG({ 8141 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8142 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8143 << '\n'; 8144 }); 8145 MFI.RemoveStackObject(OldIndex); 8146 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8147 AllocaIndex = FixedIndex; 8148 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8149 Chains.push_back(ArgVal.getValue(1)); 8150 8151 // Avoid emitting code for the store implementing the copy. 8152 const StoreInst *SI = ArgCopyIter->second.second; 8153 ElidedArgCopyInstrs.insert(SI); 8154 8155 // Check for uses of the argument again so that we can avoid exporting ArgVal 8156 // if it is't used by anything other than the store. 8157 for (const Value *U : Arg.users()) { 8158 if (U != SI) { 8159 ArgHasUses = true; 8160 break; 8161 } 8162 } 8163 } 8164 8165 void SelectionDAGISel::LowerArguments(const Function &F) { 8166 SelectionDAG &DAG = SDB->DAG; 8167 SDLoc dl = SDB->getCurSDLoc(); 8168 const DataLayout &DL = DAG.getDataLayout(); 8169 SmallVector<ISD::InputArg, 16> Ins; 8170 8171 if (!FuncInfo->CanLowerReturn) { 8172 // Put in an sret pointer parameter before all the other parameters. 8173 SmallVector<EVT, 1> ValueVTs; 8174 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8175 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8176 8177 // NOTE: Assuming that a pointer will never break down to more than one VT 8178 // or one register. 8179 ISD::ArgFlagsTy Flags; 8180 Flags.setSRet(); 8181 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8182 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8183 ISD::InputArg::NoArgIndex, 0); 8184 Ins.push_back(RetArg); 8185 } 8186 8187 // Look for stores of arguments to static allocas. Mark such arguments with a 8188 // flag to ask the target to give us the memory location of that argument if 8189 // available. 8190 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8191 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8192 8193 // Set up the incoming argument description vector. 8194 for (const Argument &Arg : F.args()) { 8195 unsigned ArgNo = Arg.getArgNo(); 8196 SmallVector<EVT, 4> ValueVTs; 8197 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8198 bool isArgValueUsed = !Arg.use_empty(); 8199 unsigned PartBase = 0; 8200 Type *FinalType = Arg.getType(); 8201 if (Arg.hasAttribute(Attribute::ByVal)) 8202 FinalType = cast<PointerType>(FinalType)->getElementType(); 8203 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8204 FinalType, F.getCallingConv(), F.isVarArg()); 8205 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8206 Value != NumValues; ++Value) { 8207 EVT VT = ValueVTs[Value]; 8208 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8209 ISD::ArgFlagsTy Flags; 8210 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 8211 8212 if (Arg.hasAttribute(Attribute::ZExt)) 8213 Flags.setZExt(); 8214 if (Arg.hasAttribute(Attribute::SExt)) 8215 Flags.setSExt(); 8216 if (Arg.hasAttribute(Attribute::InReg)) { 8217 // If we are using vectorcall calling convention, a structure that is 8218 // passed InReg - is surely an HVA 8219 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8220 isa<StructType>(Arg.getType())) { 8221 // The first value of a structure is marked 8222 if (0 == Value) 8223 Flags.setHvaStart(); 8224 Flags.setHva(); 8225 } 8226 // Set InReg Flag 8227 Flags.setInReg(); 8228 } 8229 if (Arg.hasAttribute(Attribute::StructRet)) 8230 Flags.setSRet(); 8231 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8232 Flags.setSwiftSelf(); 8233 if (Arg.hasAttribute(Attribute::SwiftError)) 8234 Flags.setSwiftError(); 8235 if (Arg.hasAttribute(Attribute::ByVal)) 8236 Flags.setByVal(); 8237 if (Arg.hasAttribute(Attribute::InAlloca)) { 8238 Flags.setInAlloca(); 8239 // Set the byval flag for CCAssignFn callbacks that don't know about 8240 // inalloca. This way we can know how many bytes we should've allocated 8241 // and how many bytes a callee cleanup function will pop. If we port 8242 // inalloca to more targets, we'll have to add custom inalloca handling 8243 // in the various CC lowering callbacks. 8244 Flags.setByVal(); 8245 } 8246 if (F.getCallingConv() == CallingConv::X86_INTR) { 8247 // IA Interrupt passes frame (1st parameter) by value in the stack. 8248 if (ArgNo == 0) 8249 Flags.setByVal(); 8250 } 8251 if (Flags.isByVal() || Flags.isInAlloca()) { 8252 PointerType *Ty = cast<PointerType>(Arg.getType()); 8253 Type *ElementTy = Ty->getElementType(); 8254 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8255 // For ByVal, alignment should be passed from FE. BE will guess if 8256 // this info is not there but there are cases it cannot get right. 8257 unsigned FrameAlign; 8258 if (Arg.getParamAlignment()) 8259 FrameAlign = Arg.getParamAlignment(); 8260 else 8261 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8262 Flags.setByValAlign(FrameAlign); 8263 } 8264 if (Arg.hasAttribute(Attribute::Nest)) 8265 Flags.setNest(); 8266 if (NeedsRegBlock) 8267 Flags.setInConsecutiveRegs(); 8268 Flags.setOrigAlign(OriginalAlignment); 8269 if (ArgCopyElisionCandidates.count(&Arg)) 8270 Flags.setCopyElisionCandidate(); 8271 8272 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8273 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8274 for (unsigned i = 0; i != NumRegs; ++i) { 8275 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8276 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8277 if (NumRegs > 1 && i == 0) 8278 MyFlags.Flags.setSplit(); 8279 // if it isn't first piece, alignment must be 1 8280 else if (i > 0) { 8281 MyFlags.Flags.setOrigAlign(1); 8282 if (i == NumRegs - 1) 8283 MyFlags.Flags.setSplitEnd(); 8284 } 8285 Ins.push_back(MyFlags); 8286 } 8287 if (NeedsRegBlock && Value == NumValues - 1) 8288 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8289 PartBase += VT.getStoreSize(); 8290 } 8291 } 8292 8293 // Call the target to set up the argument values. 8294 SmallVector<SDValue, 8> InVals; 8295 SDValue NewRoot = TLI->LowerFormalArguments( 8296 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8297 8298 // Verify that the target's LowerFormalArguments behaved as expected. 8299 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8300 "LowerFormalArguments didn't return a valid chain!"); 8301 assert(InVals.size() == Ins.size() && 8302 "LowerFormalArguments didn't emit the correct number of values!"); 8303 DEBUG({ 8304 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8305 assert(InVals[i].getNode() && 8306 "LowerFormalArguments emitted a null value!"); 8307 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8308 "LowerFormalArguments emitted a value with the wrong type!"); 8309 } 8310 }); 8311 8312 // Update the DAG with the new chain value resulting from argument lowering. 8313 DAG.setRoot(NewRoot); 8314 8315 // Set up the argument values. 8316 unsigned i = 0; 8317 if (!FuncInfo->CanLowerReturn) { 8318 // Create a virtual register for the sret pointer, and put in a copy 8319 // from the sret argument into it. 8320 SmallVector<EVT, 1> ValueVTs; 8321 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8322 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8323 MVT VT = ValueVTs[0].getSimpleVT(); 8324 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8325 Optional<ISD::NodeType> AssertOp = None; 8326 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8327 RegVT, VT, nullptr, AssertOp); 8328 8329 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8330 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8331 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8332 FuncInfo->DemoteRegister = SRetReg; 8333 NewRoot = 8334 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8335 DAG.setRoot(NewRoot); 8336 8337 // i indexes lowered arguments. Bump it past the hidden sret argument. 8338 ++i; 8339 } 8340 8341 SmallVector<SDValue, 4> Chains; 8342 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8343 for (const Argument &Arg : F.args()) { 8344 SmallVector<SDValue, 4> ArgValues; 8345 SmallVector<EVT, 4> ValueVTs; 8346 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8347 unsigned NumValues = ValueVTs.size(); 8348 if (NumValues == 0) 8349 continue; 8350 8351 bool ArgHasUses = !Arg.use_empty(); 8352 8353 // Elide the copying store if the target loaded this argument from a 8354 // suitable fixed stack object. 8355 if (Ins[i].Flags.isCopyElisionCandidate()) { 8356 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8357 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8358 InVals[i], ArgHasUses); 8359 } 8360 8361 // If this argument is unused then remember its value. It is used to generate 8362 // debugging information. 8363 bool isSwiftErrorArg = 8364 TLI->supportSwiftError() && 8365 Arg.hasAttribute(Attribute::SwiftError); 8366 if (!ArgHasUses && !isSwiftErrorArg) { 8367 SDB->setUnusedArgValue(&Arg, InVals[i]); 8368 8369 // Also remember any frame index for use in FastISel. 8370 if (FrameIndexSDNode *FI = 8371 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8372 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8373 } 8374 8375 for (unsigned Val = 0; Val != NumValues; ++Val) { 8376 EVT VT = ValueVTs[Val]; 8377 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8378 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8379 8380 // Even an apparant 'unused' swifterror argument needs to be returned. So 8381 // we do generate a copy for it that can be used on return from the 8382 // function. 8383 if (ArgHasUses || isSwiftErrorArg) { 8384 Optional<ISD::NodeType> AssertOp; 8385 if (Arg.hasAttribute(Attribute::SExt)) 8386 AssertOp = ISD::AssertSext; 8387 else if (Arg.hasAttribute(Attribute::ZExt)) 8388 AssertOp = ISD::AssertZext; 8389 8390 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8391 PartVT, VT, nullptr, AssertOp)); 8392 } 8393 8394 i += NumParts; 8395 } 8396 8397 // We don't need to do anything else for unused arguments. 8398 if (ArgValues.empty()) 8399 continue; 8400 8401 // Note down frame index. 8402 if (FrameIndexSDNode *FI = 8403 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8404 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8405 8406 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8407 SDB->getCurSDLoc()); 8408 8409 SDB->setValue(&Arg, Res); 8410 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8411 if (LoadSDNode *LNode = 8412 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 8413 if (FrameIndexSDNode *FI = 8414 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8415 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8416 } 8417 8418 // Update the SwiftErrorVRegDefMap. 8419 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8420 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8421 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8422 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8423 FuncInfo->SwiftErrorArg, Reg); 8424 } 8425 8426 // If this argument is live outside of the entry block, insert a copy from 8427 // wherever we got it to the vreg that other BB's will reference it as. 8428 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8429 // If we can, though, try to skip creating an unnecessary vreg. 8430 // FIXME: This isn't very clean... it would be nice to make this more 8431 // general. It's also subtly incompatible with the hacks FastISel 8432 // uses with vregs. 8433 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8434 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8435 FuncInfo->ValueMap[&Arg] = Reg; 8436 continue; 8437 } 8438 } 8439 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 8440 FuncInfo->InitializeRegForValue(&Arg); 8441 SDB->CopyToExportRegsIfNeeded(&Arg); 8442 } 8443 } 8444 8445 if (!Chains.empty()) { 8446 Chains.push_back(NewRoot); 8447 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 8448 } 8449 8450 DAG.setRoot(NewRoot); 8451 8452 assert(i == InVals.size() && "Argument register count mismatch!"); 8453 8454 // If any argument copy elisions occurred and we have debug info, update the 8455 // stale frame indices used in the dbg.declare variable info table. 8456 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 8457 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 8458 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 8459 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 8460 if (I != ArgCopyElisionFrameIndexMap.end()) 8461 VI.Slot = I->second; 8462 } 8463 } 8464 8465 // Finally, if the target has anything special to do, allow it to do so. 8466 EmitFunctionEntryCode(); 8467 } 8468 8469 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8470 /// ensure constants are generated when needed. Remember the virtual registers 8471 /// that need to be added to the Machine PHI nodes as input. We cannot just 8472 /// directly add them, because expansion might result in multiple MBB's for one 8473 /// BB. As such, the start of the BB might correspond to a different MBB than 8474 /// the end. 8475 /// 8476 void 8477 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8478 const TerminatorInst *TI = LLVMBB->getTerminator(); 8479 8480 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8481 8482 // Check PHI nodes in successors that expect a value to be available from this 8483 // block. 8484 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8485 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8486 if (!isa<PHINode>(SuccBB->begin())) continue; 8487 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8488 8489 // If this terminator has multiple identical successors (common for 8490 // switches), only handle each succ once. 8491 if (!SuccsHandled.insert(SuccMBB).second) 8492 continue; 8493 8494 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8495 8496 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8497 // nodes and Machine PHI nodes, but the incoming operands have not been 8498 // emitted yet. 8499 for (BasicBlock::const_iterator I = SuccBB->begin(); 8500 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8501 // Ignore dead phi's. 8502 if (PN->use_empty()) continue; 8503 8504 // Skip empty types 8505 if (PN->getType()->isEmptyTy()) 8506 continue; 8507 8508 unsigned Reg; 8509 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8510 8511 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8512 unsigned &RegOut = ConstantsOut[C]; 8513 if (RegOut == 0) { 8514 RegOut = FuncInfo.CreateRegs(C->getType()); 8515 CopyValueToVirtualRegister(C, RegOut); 8516 } 8517 Reg = RegOut; 8518 } else { 8519 DenseMap<const Value *, unsigned>::iterator I = 8520 FuncInfo.ValueMap.find(PHIOp); 8521 if (I != FuncInfo.ValueMap.end()) 8522 Reg = I->second; 8523 else { 8524 assert(isa<AllocaInst>(PHIOp) && 8525 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8526 "Didn't codegen value into a register!??"); 8527 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8528 CopyValueToVirtualRegister(PHIOp, Reg); 8529 } 8530 } 8531 8532 // Remember that this register needs to added to the machine PHI node as 8533 // the input for this MBB. 8534 SmallVector<EVT, 4> ValueVTs; 8535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8536 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8537 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8538 EVT VT = ValueVTs[vti]; 8539 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8540 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8541 FuncInfo.PHINodesToUpdate.push_back( 8542 std::make_pair(&*MBBI++, Reg + i)); 8543 Reg += NumRegisters; 8544 } 8545 } 8546 } 8547 8548 ConstantsOut.clear(); 8549 } 8550 8551 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8552 /// is 0. 8553 MachineBasicBlock * 8554 SelectionDAGBuilder::StackProtectorDescriptor:: 8555 AddSuccessorMBB(const BasicBlock *BB, 8556 MachineBasicBlock *ParentMBB, 8557 bool IsLikely, 8558 MachineBasicBlock *SuccMBB) { 8559 // If SuccBB has not been created yet, create it. 8560 if (!SuccMBB) { 8561 MachineFunction *MF = ParentMBB->getParent(); 8562 MachineFunction::iterator BBI(ParentMBB); 8563 SuccMBB = MF->CreateMachineBasicBlock(BB); 8564 MF->insert(++BBI, SuccMBB); 8565 } 8566 // Add it as a successor of ParentMBB. 8567 ParentMBB->addSuccessor( 8568 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8569 return SuccMBB; 8570 } 8571 8572 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8573 MachineFunction::iterator I(MBB); 8574 if (++I == FuncInfo.MF->end()) 8575 return nullptr; 8576 return &*I; 8577 } 8578 8579 /// During lowering new call nodes can be created (such as memset, etc.). 8580 /// Those will become new roots of the current DAG, but complications arise 8581 /// when they are tail calls. In such cases, the call lowering will update 8582 /// the root, but the builder still needs to know that a tail call has been 8583 /// lowered in order to avoid generating an additional return. 8584 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8585 // If the node is null, we do have a tail call. 8586 if (MaybeTC.getNode() != nullptr) 8587 DAG.setRoot(MaybeTC); 8588 else 8589 HasTailCall = true; 8590 } 8591 8592 uint64_t 8593 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 8594 unsigned First, unsigned Last) const { 8595 assert(Last >= First); 8596 const APInt &LowCase = Clusters[First].Low->getValue(); 8597 const APInt &HighCase = Clusters[Last].High->getValue(); 8598 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8599 8600 // FIXME: A range of consecutive cases has 100% density, but only requires one 8601 // comparison to lower. We should discriminate against such consecutive ranges 8602 // in jump tables. 8603 8604 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 8605 } 8606 8607 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 8608 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 8609 unsigned Last) const { 8610 assert(Last >= First); 8611 assert(TotalCases[Last] >= TotalCases[First]); 8612 uint64_t NumCases = 8613 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8614 return NumCases; 8615 } 8616 8617 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 8618 unsigned First, unsigned Last, 8619 const SwitchInst *SI, 8620 MachineBasicBlock *DefaultMBB, 8621 CaseCluster &JTCluster) { 8622 assert(First <= Last); 8623 8624 auto Prob = BranchProbability::getZero(); 8625 unsigned NumCmps = 0; 8626 std::vector<MachineBasicBlock*> Table; 8627 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8628 8629 // Initialize probabilities in JTProbs. 8630 for (unsigned I = First; I <= Last; ++I) 8631 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8632 8633 for (unsigned I = First; I <= Last; ++I) { 8634 assert(Clusters[I].Kind == CC_Range); 8635 Prob += Clusters[I].Prob; 8636 const APInt &Low = Clusters[I].Low->getValue(); 8637 const APInt &High = Clusters[I].High->getValue(); 8638 NumCmps += (Low == High) ? 1 : 2; 8639 if (I != First) { 8640 // Fill the gap between this and the previous cluster. 8641 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 8642 assert(PreviousHigh.slt(Low)); 8643 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8644 for (uint64_t J = 0; J < Gap; J++) 8645 Table.push_back(DefaultMBB); 8646 } 8647 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8648 for (uint64_t J = 0; J < ClusterSize; ++J) 8649 Table.push_back(Clusters[I].MBB); 8650 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8651 } 8652 8653 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8654 unsigned NumDests = JTProbs.size(); 8655 if (TLI.isSuitableForBitTests( 8656 NumDests, NumCmps, Clusters[First].Low->getValue(), 8657 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 8658 // Clusters[First..Last] should be lowered as bit tests instead. 8659 return false; 8660 } 8661 8662 // Create the MBB that will load from and jump through the table. 8663 // Note: We create it here, but it's not inserted into the function yet. 8664 MachineFunction *CurMF = FuncInfo.MF; 8665 MachineBasicBlock *JumpTableMBB = 8666 CurMF->CreateMachineBasicBlock(SI->getParent()); 8667 8668 // Add successors. Note: use table order for determinism. 8669 SmallPtrSet<MachineBasicBlock *, 8> Done; 8670 for (MachineBasicBlock *Succ : Table) { 8671 if (Done.count(Succ)) 8672 continue; 8673 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8674 Done.insert(Succ); 8675 } 8676 JumpTableMBB->normalizeSuccProbs(); 8677 8678 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8679 ->createJumpTableIndex(Table); 8680 8681 // Set up the jump table info. 8682 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8683 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8684 Clusters[Last].High->getValue(), SI->getCondition(), 8685 nullptr, false); 8686 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8687 8688 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8689 JTCases.size() - 1, Prob); 8690 return true; 8691 } 8692 8693 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8694 const SwitchInst *SI, 8695 MachineBasicBlock *DefaultMBB) { 8696 #ifndef NDEBUG 8697 // Clusters must be non-empty, sorted, and only contain Range clusters. 8698 assert(!Clusters.empty()); 8699 for (CaseCluster &C : Clusters) 8700 assert(C.Kind == CC_Range); 8701 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8702 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8703 #endif 8704 8705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8706 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 8707 return; 8708 8709 const int64_t N = Clusters.size(); 8710 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 8711 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 8712 8713 if (N < 2 || N < MinJumpTableEntries) 8714 return; 8715 8716 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8717 SmallVector<unsigned, 8> TotalCases(N); 8718 for (unsigned i = 0; i < N; ++i) { 8719 const APInt &Hi = Clusters[i].High->getValue(); 8720 const APInt &Lo = Clusters[i].Low->getValue(); 8721 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8722 if (i != 0) 8723 TotalCases[i] += TotalCases[i - 1]; 8724 } 8725 8726 // Cheap case: the whole range may be suitable for jump table. 8727 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 8728 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 8729 assert(NumCases < UINT64_MAX / 100); 8730 assert(Range >= NumCases); 8731 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 8732 CaseCluster JTCluster; 8733 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8734 Clusters[0] = JTCluster; 8735 Clusters.resize(1); 8736 return; 8737 } 8738 } 8739 8740 // The algorithm below is not suitable for -O0. 8741 if (TM.getOptLevel() == CodeGenOpt::None) 8742 return; 8743 8744 // Split Clusters into minimum number of dense partitions. The algorithm uses 8745 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8746 // for the Case Statement'" (1994), but builds the MinPartitions array in 8747 // reverse order to make it easier to reconstruct the partitions in ascending 8748 // order. In the choice between two optimal partitionings, it picks the one 8749 // which yields more jump tables. 8750 8751 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8752 SmallVector<unsigned, 8> MinPartitions(N); 8753 // LastElement[i] is the last element of the partition starting at i. 8754 SmallVector<unsigned, 8> LastElement(N); 8755 // PartitionsScore[i] is used to break ties when choosing between two 8756 // partitionings resulting in the same number of partitions. 8757 SmallVector<unsigned, 8> PartitionsScore(N); 8758 // For PartitionsScore, a small number of comparisons is considered as good as 8759 // a jump table and a single comparison is considered better than a jump 8760 // table. 8761 enum PartitionScores : unsigned { 8762 NoTable = 0, 8763 Table = 1, 8764 FewCases = 1, 8765 SingleCase = 2 8766 }; 8767 8768 // Base case: There is only one way to partition Clusters[N-1]. 8769 MinPartitions[N - 1] = 1; 8770 LastElement[N - 1] = N - 1; 8771 PartitionsScore[N - 1] = PartitionScores::SingleCase; 8772 8773 // Note: loop indexes are signed to avoid underflow. 8774 for (int64_t i = N - 2; i >= 0; i--) { 8775 // Find optimal partitioning of Clusters[i..N-1]. 8776 // Baseline: Put Clusters[i] into a partition on its own. 8777 MinPartitions[i] = MinPartitions[i + 1] + 1; 8778 LastElement[i] = i; 8779 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 8780 8781 // Search for a solution that results in fewer partitions. 8782 for (int64_t j = N - 1; j > i; j--) { 8783 // Try building a partition from Clusters[i..j]. 8784 uint64_t Range = getJumpTableRange(Clusters, i, j); 8785 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 8786 assert(NumCases < UINT64_MAX / 100); 8787 assert(Range >= NumCases); 8788 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 8789 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8790 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 8791 int64_t NumEntries = j - i + 1; 8792 8793 if (NumEntries == 1) 8794 Score += PartitionScores::SingleCase; 8795 else if (NumEntries <= SmallNumberOfEntries) 8796 Score += PartitionScores::FewCases; 8797 else if (NumEntries >= MinJumpTableEntries) 8798 Score += PartitionScores::Table; 8799 8800 // If this leads to fewer partitions, or to the same number of 8801 // partitions with better score, it is a better partitioning. 8802 if (NumPartitions < MinPartitions[i] || 8803 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 8804 MinPartitions[i] = NumPartitions; 8805 LastElement[i] = j; 8806 PartitionsScore[i] = Score; 8807 } 8808 } 8809 } 8810 } 8811 8812 // Iterate over the partitions, replacing some with jump tables in-place. 8813 unsigned DstIndex = 0; 8814 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8815 Last = LastElement[First]; 8816 assert(Last >= First); 8817 assert(DstIndex <= First); 8818 unsigned NumClusters = Last - First + 1; 8819 8820 CaseCluster JTCluster; 8821 if (NumClusters >= MinJumpTableEntries && 8822 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8823 Clusters[DstIndex++] = JTCluster; 8824 } else { 8825 for (unsigned I = First; I <= Last; ++I) 8826 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8827 } 8828 } 8829 Clusters.resize(DstIndex); 8830 } 8831 8832 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8833 unsigned First, unsigned Last, 8834 const SwitchInst *SI, 8835 CaseCluster &BTCluster) { 8836 assert(First <= Last); 8837 if (First == Last) 8838 return false; 8839 8840 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8841 unsigned NumCmps = 0; 8842 for (int64_t I = First; I <= Last; ++I) { 8843 assert(Clusters[I].Kind == CC_Range); 8844 Dests.set(Clusters[I].MBB->getNumber()); 8845 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8846 } 8847 unsigned NumDests = Dests.count(); 8848 8849 APInt Low = Clusters[First].Low->getValue(); 8850 APInt High = Clusters[Last].High->getValue(); 8851 assert(Low.slt(High)); 8852 8853 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8854 const DataLayout &DL = DAG.getDataLayout(); 8855 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 8856 return false; 8857 8858 APInt LowBound; 8859 APInt CmpRange; 8860 8861 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 8862 assert(TLI.rangeFitsInWord(Low, High, DL) && 8863 "Case range must fit in bit mask!"); 8864 8865 // Check if the clusters cover a contiguous range such that no value in the 8866 // range will jump to the default statement. 8867 bool ContiguousRange = true; 8868 for (int64_t I = First + 1; I <= Last; ++I) { 8869 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8870 ContiguousRange = false; 8871 break; 8872 } 8873 } 8874 8875 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8876 // Optimize the case where all the case values fit in a word without having 8877 // to subtract minValue. In this case, we can optimize away the subtraction. 8878 LowBound = APInt::getNullValue(Low.getBitWidth()); 8879 CmpRange = High; 8880 ContiguousRange = false; 8881 } else { 8882 LowBound = Low; 8883 CmpRange = High - Low; 8884 } 8885 8886 CaseBitsVector CBV; 8887 auto TotalProb = BranchProbability::getZero(); 8888 for (unsigned i = First; i <= Last; ++i) { 8889 // Find the CaseBits for this destination. 8890 unsigned j; 8891 for (j = 0; j < CBV.size(); ++j) 8892 if (CBV[j].BB == Clusters[i].MBB) 8893 break; 8894 if (j == CBV.size()) 8895 CBV.push_back( 8896 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8897 CaseBits *CB = &CBV[j]; 8898 8899 // Update Mask, Bits and ExtraProb. 8900 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8901 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8902 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8903 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8904 CB->Bits += Hi - Lo + 1; 8905 CB->ExtraProb += Clusters[i].Prob; 8906 TotalProb += Clusters[i].Prob; 8907 } 8908 8909 BitTestInfo BTI; 8910 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8911 // Sort by probability first, number of bits second. 8912 if (a.ExtraProb != b.ExtraProb) 8913 return a.ExtraProb > b.ExtraProb; 8914 return a.Bits > b.Bits; 8915 }); 8916 8917 for (auto &CB : CBV) { 8918 MachineBasicBlock *BitTestBB = 8919 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8920 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8921 } 8922 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8923 SI->getCondition(), -1U, MVT::Other, false, 8924 ContiguousRange, nullptr, nullptr, std::move(BTI), 8925 TotalProb); 8926 8927 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8928 BitTestCases.size() - 1, TotalProb); 8929 return true; 8930 } 8931 8932 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8933 const SwitchInst *SI) { 8934 // Partition Clusters into as few subsets as possible, where each subset has a 8935 // range that fits in a machine word and has <= 3 unique destinations. 8936 8937 #ifndef NDEBUG 8938 // Clusters must be sorted and contain Range or JumpTable clusters. 8939 assert(!Clusters.empty()); 8940 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8941 for (const CaseCluster &C : Clusters) 8942 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8943 for (unsigned i = 1; i < Clusters.size(); ++i) 8944 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8945 #endif 8946 8947 // The algorithm below is not suitable for -O0. 8948 if (TM.getOptLevel() == CodeGenOpt::None) 8949 return; 8950 8951 // If target does not have legal shift left, do not emit bit tests at all. 8952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8953 const DataLayout &DL = DAG.getDataLayout(); 8954 8955 EVT PTy = TLI.getPointerTy(DL); 8956 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8957 return; 8958 8959 int BitWidth = PTy.getSizeInBits(); 8960 const int64_t N = Clusters.size(); 8961 8962 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8963 SmallVector<unsigned, 8> MinPartitions(N); 8964 // LastElement[i] is the last element of the partition starting at i. 8965 SmallVector<unsigned, 8> LastElement(N); 8966 8967 // FIXME: This might not be the best algorithm for finding bit test clusters. 8968 8969 // Base case: There is only one way to partition Clusters[N-1]. 8970 MinPartitions[N - 1] = 1; 8971 LastElement[N - 1] = N - 1; 8972 8973 // Note: loop indexes are signed to avoid underflow. 8974 for (int64_t i = N - 2; i >= 0; --i) { 8975 // Find optimal partitioning of Clusters[i..N-1]. 8976 // Baseline: Put Clusters[i] into a partition on its own. 8977 MinPartitions[i] = MinPartitions[i + 1] + 1; 8978 LastElement[i] = i; 8979 8980 // Search for a solution that results in fewer partitions. 8981 // Note: the search is limited by BitWidth, reducing time complexity. 8982 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8983 // Try building a partition from Clusters[i..j]. 8984 8985 // Check the range. 8986 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 8987 Clusters[j].High->getValue(), DL)) 8988 continue; 8989 8990 // Check nbr of destinations and cluster types. 8991 // FIXME: This works, but doesn't seem very efficient. 8992 bool RangesOnly = true; 8993 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8994 for (int64_t k = i; k <= j; k++) { 8995 if (Clusters[k].Kind != CC_Range) { 8996 RangesOnly = false; 8997 break; 8998 } 8999 Dests.set(Clusters[k].MBB->getNumber()); 9000 } 9001 if (!RangesOnly || Dests.count() > 3) 9002 break; 9003 9004 // Check if it's a better partition. 9005 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9006 if (NumPartitions < MinPartitions[i]) { 9007 // Found a better partition. 9008 MinPartitions[i] = NumPartitions; 9009 LastElement[i] = j; 9010 } 9011 } 9012 } 9013 9014 // Iterate over the partitions, replacing with bit-test clusters in-place. 9015 unsigned DstIndex = 0; 9016 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9017 Last = LastElement[First]; 9018 assert(First <= Last); 9019 assert(DstIndex <= First); 9020 9021 CaseCluster BitTestCluster; 9022 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9023 Clusters[DstIndex++] = BitTestCluster; 9024 } else { 9025 size_t NumClusters = Last - First + 1; 9026 std::memmove(&Clusters[DstIndex], &Clusters[First], 9027 sizeof(Clusters[0]) * NumClusters); 9028 DstIndex += NumClusters; 9029 } 9030 } 9031 Clusters.resize(DstIndex); 9032 } 9033 9034 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9035 MachineBasicBlock *SwitchMBB, 9036 MachineBasicBlock *DefaultMBB) { 9037 MachineFunction *CurMF = FuncInfo.MF; 9038 MachineBasicBlock *NextMBB = nullptr; 9039 MachineFunction::iterator BBI(W.MBB); 9040 if (++BBI != FuncInfo.MF->end()) 9041 NextMBB = &*BBI; 9042 9043 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9044 9045 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9046 9047 if (Size == 2 && W.MBB == SwitchMBB) { 9048 // If any two of the cases has the same destination, and if one value 9049 // is the same as the other, but has one bit unset that the other has set, 9050 // use bit manipulation to do two compares at once. For example: 9051 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9052 // TODO: This could be extended to merge any 2 cases in switches with 3 9053 // cases. 9054 // TODO: Handle cases where W.CaseBB != SwitchBB. 9055 CaseCluster &Small = *W.FirstCluster; 9056 CaseCluster &Big = *W.LastCluster; 9057 9058 if (Small.Low == Small.High && Big.Low == Big.High && 9059 Small.MBB == Big.MBB) { 9060 const APInt &SmallValue = Small.Low->getValue(); 9061 const APInt &BigValue = Big.Low->getValue(); 9062 9063 // Check that there is only one bit different. 9064 APInt CommonBit = BigValue ^ SmallValue; 9065 if (CommonBit.isPowerOf2()) { 9066 SDValue CondLHS = getValue(Cond); 9067 EVT VT = CondLHS.getValueType(); 9068 SDLoc DL = getCurSDLoc(); 9069 9070 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9071 DAG.getConstant(CommonBit, DL, VT)); 9072 SDValue Cond = DAG.getSetCC( 9073 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9074 ISD::SETEQ); 9075 9076 // Update successor info. 9077 // Both Small and Big will jump to Small.BB, so we sum up the 9078 // probabilities. 9079 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9080 if (BPI) 9081 addSuccessorWithProb( 9082 SwitchMBB, DefaultMBB, 9083 // The default destination is the first successor in IR. 9084 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9085 else 9086 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9087 9088 // Insert the true branch. 9089 SDValue BrCond = 9090 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9091 DAG.getBasicBlock(Small.MBB)); 9092 // Insert the false branch. 9093 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9094 DAG.getBasicBlock(DefaultMBB)); 9095 9096 DAG.setRoot(BrCond); 9097 return; 9098 } 9099 } 9100 } 9101 9102 if (TM.getOptLevel() != CodeGenOpt::None) { 9103 // Order cases by probability so the most likely case will be checked first. 9104 std::sort(W.FirstCluster, W.LastCluster + 1, 9105 [](const CaseCluster &a, const CaseCluster &b) { 9106 return a.Prob > b.Prob; 9107 }); 9108 9109 // Rearrange the case blocks so that the last one falls through if possible 9110 // without without changing the order of probabilities. 9111 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9112 --I; 9113 if (I->Prob > W.LastCluster->Prob) 9114 break; 9115 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9116 std::swap(*I, *W.LastCluster); 9117 break; 9118 } 9119 } 9120 } 9121 9122 // Compute total probability. 9123 BranchProbability DefaultProb = W.DefaultProb; 9124 BranchProbability UnhandledProbs = DefaultProb; 9125 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9126 UnhandledProbs += I->Prob; 9127 9128 MachineBasicBlock *CurMBB = W.MBB; 9129 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9130 MachineBasicBlock *Fallthrough; 9131 if (I == W.LastCluster) { 9132 // For the last cluster, fall through to the default destination. 9133 Fallthrough = DefaultMBB; 9134 } else { 9135 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9136 CurMF->insert(BBI, Fallthrough); 9137 // Put Cond in a virtual register to make it available from the new blocks. 9138 ExportFromCurrentBlock(Cond); 9139 } 9140 UnhandledProbs -= I->Prob; 9141 9142 switch (I->Kind) { 9143 case CC_JumpTable: { 9144 // FIXME: Optimize away range check based on pivot comparisons. 9145 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9146 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9147 9148 // The jump block hasn't been inserted yet; insert it here. 9149 MachineBasicBlock *JumpMBB = JT->MBB; 9150 CurMF->insert(BBI, JumpMBB); 9151 9152 auto JumpProb = I->Prob; 9153 auto FallthroughProb = UnhandledProbs; 9154 9155 // If the default statement is a target of the jump table, we evenly 9156 // distribute the default probability to successors of CurMBB. Also 9157 // update the probability on the edge from JumpMBB to Fallthrough. 9158 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9159 SE = JumpMBB->succ_end(); 9160 SI != SE; ++SI) { 9161 if (*SI == DefaultMBB) { 9162 JumpProb += DefaultProb / 2; 9163 FallthroughProb -= DefaultProb / 2; 9164 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9165 JumpMBB->normalizeSuccProbs(); 9166 break; 9167 } 9168 } 9169 9170 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9171 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9172 CurMBB->normalizeSuccProbs(); 9173 9174 // The jump table header will be inserted in our current block, do the 9175 // range check, and fall through to our fallthrough block. 9176 JTH->HeaderBB = CurMBB; 9177 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9178 9179 // If we're in the right place, emit the jump table header right now. 9180 if (CurMBB == SwitchMBB) { 9181 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9182 JTH->Emitted = true; 9183 } 9184 break; 9185 } 9186 case CC_BitTests: { 9187 // FIXME: Optimize away range check based on pivot comparisons. 9188 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9189 9190 // The bit test blocks haven't been inserted yet; insert them here. 9191 for (BitTestCase &BTC : BTB->Cases) 9192 CurMF->insert(BBI, BTC.ThisBB); 9193 9194 // Fill in fields of the BitTestBlock. 9195 BTB->Parent = CurMBB; 9196 BTB->Default = Fallthrough; 9197 9198 BTB->DefaultProb = UnhandledProbs; 9199 // If the cases in bit test don't form a contiguous range, we evenly 9200 // distribute the probability on the edge to Fallthrough to two 9201 // successors of CurMBB. 9202 if (!BTB->ContiguousRange) { 9203 BTB->Prob += DefaultProb / 2; 9204 BTB->DefaultProb -= DefaultProb / 2; 9205 } 9206 9207 // If we're in the right place, emit the bit test header right now. 9208 if (CurMBB == SwitchMBB) { 9209 visitBitTestHeader(*BTB, SwitchMBB); 9210 BTB->Emitted = true; 9211 } 9212 break; 9213 } 9214 case CC_Range: { 9215 const Value *RHS, *LHS, *MHS; 9216 ISD::CondCode CC; 9217 if (I->Low == I->High) { 9218 // Check Cond == I->Low. 9219 CC = ISD::SETEQ; 9220 LHS = Cond; 9221 RHS=I->Low; 9222 MHS = nullptr; 9223 } else { 9224 // Check I->Low <= Cond <= I->High. 9225 CC = ISD::SETLE; 9226 LHS = I->Low; 9227 MHS = Cond; 9228 RHS = I->High; 9229 } 9230 9231 // The false probability is the sum of all unhandled cases. 9232 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 9233 UnhandledProbs); 9234 9235 if (CurMBB == SwitchMBB) 9236 visitSwitchCase(CB, SwitchMBB); 9237 else 9238 SwitchCases.push_back(CB); 9239 9240 break; 9241 } 9242 } 9243 CurMBB = Fallthrough; 9244 } 9245 } 9246 9247 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9248 CaseClusterIt First, 9249 CaseClusterIt Last) { 9250 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9251 if (X.Prob != CC.Prob) 9252 return X.Prob > CC.Prob; 9253 9254 // Ties are broken by comparing the case value. 9255 return X.Low->getValue().slt(CC.Low->getValue()); 9256 }); 9257 } 9258 9259 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9260 const SwitchWorkListItem &W, 9261 Value *Cond, 9262 MachineBasicBlock *SwitchMBB) { 9263 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9264 "Clusters not sorted?"); 9265 9266 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9267 9268 // Balance the tree based on branch probabilities to create a near-optimal (in 9269 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9270 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9271 CaseClusterIt LastLeft = W.FirstCluster; 9272 CaseClusterIt FirstRight = W.LastCluster; 9273 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9274 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9275 9276 // Move LastLeft and FirstRight towards each other from opposite directions to 9277 // find a partitioning of the clusters which balances the probability on both 9278 // sides. If LeftProb and RightProb are equal, alternate which side is 9279 // taken to ensure 0-probability nodes are distributed evenly. 9280 unsigned I = 0; 9281 while (LastLeft + 1 < FirstRight) { 9282 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9283 LeftProb += (++LastLeft)->Prob; 9284 else 9285 RightProb += (--FirstRight)->Prob; 9286 I++; 9287 } 9288 9289 for (;;) { 9290 // Our binary search tree differs from a typical BST in that ours can have up 9291 // to three values in each leaf. The pivot selection above doesn't take that 9292 // into account, which means the tree might require more nodes and be less 9293 // efficient. We compensate for this here. 9294 9295 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9296 unsigned NumRight = W.LastCluster - FirstRight + 1; 9297 9298 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9299 // If one side has less than 3 clusters, and the other has more than 3, 9300 // consider taking a cluster from the other side. 9301 9302 if (NumLeft < NumRight) { 9303 // Consider moving the first cluster on the right to the left side. 9304 CaseCluster &CC = *FirstRight; 9305 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9306 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9307 if (LeftSideRank <= RightSideRank) { 9308 // Moving the cluster to the left does not demote it. 9309 ++LastLeft; 9310 ++FirstRight; 9311 continue; 9312 } 9313 } else { 9314 assert(NumRight < NumLeft); 9315 // Consider moving the last element on the left to the right side. 9316 CaseCluster &CC = *LastLeft; 9317 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9318 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9319 if (RightSideRank <= LeftSideRank) { 9320 // Moving the cluster to the right does not demot it. 9321 --LastLeft; 9322 --FirstRight; 9323 continue; 9324 } 9325 } 9326 } 9327 break; 9328 } 9329 9330 assert(LastLeft + 1 == FirstRight); 9331 assert(LastLeft >= W.FirstCluster); 9332 assert(FirstRight <= W.LastCluster); 9333 9334 // Use the first element on the right as pivot since we will make less-than 9335 // comparisons against it. 9336 CaseClusterIt PivotCluster = FirstRight; 9337 assert(PivotCluster > W.FirstCluster); 9338 assert(PivotCluster <= W.LastCluster); 9339 9340 CaseClusterIt FirstLeft = W.FirstCluster; 9341 CaseClusterIt LastRight = W.LastCluster; 9342 9343 const ConstantInt *Pivot = PivotCluster->Low; 9344 9345 // New blocks will be inserted immediately after the current one. 9346 MachineFunction::iterator BBI(W.MBB); 9347 ++BBI; 9348 9349 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9350 // we can branch to its destination directly if it's squeezed exactly in 9351 // between the known lower bound and Pivot - 1. 9352 MachineBasicBlock *LeftMBB; 9353 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9354 FirstLeft->Low == W.GE && 9355 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9356 LeftMBB = FirstLeft->MBB; 9357 } else { 9358 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9359 FuncInfo.MF->insert(BBI, LeftMBB); 9360 WorkList.push_back( 9361 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9362 // Put Cond in a virtual register to make it available from the new blocks. 9363 ExportFromCurrentBlock(Cond); 9364 } 9365 9366 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9367 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9368 // directly if RHS.High equals the current upper bound. 9369 MachineBasicBlock *RightMBB; 9370 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9371 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9372 RightMBB = FirstRight->MBB; 9373 } else { 9374 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9375 FuncInfo.MF->insert(BBI, RightMBB); 9376 WorkList.push_back( 9377 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9378 // Put Cond in a virtual register to make it available from the new blocks. 9379 ExportFromCurrentBlock(Cond); 9380 } 9381 9382 // Create the CaseBlock record that will be used to lower the branch. 9383 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9384 LeftProb, RightProb); 9385 9386 if (W.MBB == SwitchMBB) 9387 visitSwitchCase(CB, SwitchMBB); 9388 else 9389 SwitchCases.push_back(CB); 9390 } 9391 9392 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9393 // Extract cases from the switch. 9394 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9395 CaseClusterVector Clusters; 9396 Clusters.reserve(SI.getNumCases()); 9397 for (auto I : SI.cases()) { 9398 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9399 const ConstantInt *CaseVal = I.getCaseValue(); 9400 BranchProbability Prob = 9401 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9402 : BranchProbability(1, SI.getNumCases() + 1); 9403 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9404 } 9405 9406 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9407 9408 // Cluster adjacent cases with the same destination. We do this at all 9409 // optimization levels because it's cheap to do and will make codegen faster 9410 // if there are many clusters. 9411 sortAndRangeify(Clusters); 9412 9413 if (TM.getOptLevel() != CodeGenOpt::None) { 9414 // Replace an unreachable default with the most popular destination. 9415 // FIXME: Exploit unreachable default more aggressively. 9416 bool UnreachableDefault = 9417 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9418 if (UnreachableDefault && !Clusters.empty()) { 9419 DenseMap<const BasicBlock *, unsigned> Popularity; 9420 unsigned MaxPop = 0; 9421 const BasicBlock *MaxBB = nullptr; 9422 for (auto I : SI.cases()) { 9423 const BasicBlock *BB = I.getCaseSuccessor(); 9424 if (++Popularity[BB] > MaxPop) { 9425 MaxPop = Popularity[BB]; 9426 MaxBB = BB; 9427 } 9428 } 9429 // Set new default. 9430 assert(MaxPop > 0 && MaxBB); 9431 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9432 9433 // Remove cases that were pointing to the destination that is now the 9434 // default. 9435 CaseClusterVector New; 9436 New.reserve(Clusters.size()); 9437 for (CaseCluster &CC : Clusters) { 9438 if (CC.MBB != DefaultMBB) 9439 New.push_back(CC); 9440 } 9441 Clusters = std::move(New); 9442 } 9443 } 9444 9445 // If there is only the default destination, jump there directly. 9446 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9447 if (Clusters.empty()) { 9448 SwitchMBB->addSuccessor(DefaultMBB); 9449 if (DefaultMBB != NextBlock(SwitchMBB)) { 9450 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9451 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9452 } 9453 return; 9454 } 9455 9456 findJumpTables(Clusters, &SI, DefaultMBB); 9457 findBitTestClusters(Clusters, &SI); 9458 9459 DEBUG({ 9460 dbgs() << "Case clusters: "; 9461 for (const CaseCluster &C : Clusters) { 9462 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9463 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9464 9465 C.Low->getValue().print(dbgs(), true); 9466 if (C.Low != C.High) { 9467 dbgs() << '-'; 9468 C.High->getValue().print(dbgs(), true); 9469 } 9470 dbgs() << ' '; 9471 } 9472 dbgs() << '\n'; 9473 }); 9474 9475 assert(!Clusters.empty()); 9476 SwitchWorkList WorkList; 9477 CaseClusterIt First = Clusters.begin(); 9478 CaseClusterIt Last = Clusters.end() - 1; 9479 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9480 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9481 9482 while (!WorkList.empty()) { 9483 SwitchWorkListItem W = WorkList.back(); 9484 WorkList.pop_back(); 9485 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9486 9487 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 9488 !DefaultMBB->getParent()->getFunction()->optForMinSize()) { 9489 // For optimized builds, lower large range as a balanced binary tree. 9490 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9491 continue; 9492 } 9493 9494 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9495 } 9496 } 9497