1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/DiagnosticInfo.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/InlineAsm.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/Intrinsics.h" 80 #include "llvm/IR/IntrinsicsAArch64.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Module.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Statepoint.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/MC/MCContext.h" 92 #include "llvm/MC/MCSymbol.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Target/TargetIntrinsicInfo.h" 101 #include "llvm/Target/TargetMachine.h" 102 #include "llvm/Target/TargetOptions.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <cstddef> 105 #include <cstring> 106 #include <iterator> 107 #include <limits> 108 #include <numeric> 109 #include <tuple> 110 111 using namespace llvm; 112 using namespace PatternMatch; 113 using namespace SwitchCG; 114 115 #define DEBUG_TYPE "isel" 116 117 /// LimitFloatPrecision - Generate low-precision inline sequences for 118 /// some float libcalls (6, 8 or 12 bits). 119 static unsigned LimitFloatPrecision; 120 121 static cl::opt<bool> 122 InsertAssertAlign("insert-assert-align", cl::init(true), 123 cl::desc("Insert the experimental `assertalign` node."), 124 cl::ReallyHidden); 125 126 static cl::opt<unsigned, true> 127 LimitFPPrecision("limit-float-precision", 128 cl::desc("Generate low-precision inline sequences " 129 "for some float libcalls"), 130 cl::location(LimitFloatPrecision), cl::Hidden, 131 cl::init(0)); 132 133 static cl::opt<unsigned> SwitchPeelThreshold( 134 "switch-peel-threshold", cl::Hidden, cl::init(66), 135 cl::desc("Set the case probability threshold for peeling the case from a " 136 "switch statement. A value greater than 100 will void this " 137 "optimization")); 138 139 // Limit the width of DAG chains. This is important in general to prevent 140 // DAG-based analysis from blowing up. For example, alias analysis and 141 // load clustering may not complete in reasonable time. It is difficult to 142 // recognize and avoid this situation within each individual analysis, and 143 // future analyses are likely to have the same behavior. Limiting DAG width is 144 // the safe approach and will be especially important with global DAGs. 145 // 146 // MaxParallelChains default is arbitrarily high to avoid affecting 147 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 148 // sequence over this should have been converted to llvm.memcpy by the 149 // frontend. It is easy to induce this behavior with .ll code such as: 150 // %buffer = alloca [4096 x i8] 151 // %data = load [4096 x i8]* %argPtr 152 // store [4096 x i8] %data, [4096 x i8]* %buffer 153 static const unsigned MaxParallelChains = 64; 154 155 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 156 const SDValue *Parts, unsigned NumParts, 157 MVT PartVT, EVT ValueVT, const Value *V, 158 Optional<CallingConv::ID> CC); 159 160 /// getCopyFromParts - Create a value that contains the specified legal parts 161 /// combined into the value they represent. If the parts combine to a type 162 /// larger than ValueVT then AssertOp can be used to specify whether the extra 163 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 164 /// (ISD::AssertSext). 165 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 166 const SDValue *Parts, unsigned NumParts, 167 MVT PartVT, EVT ValueVT, const Value *V, 168 Optional<CallingConv::ID> CC = None, 169 Optional<ISD::NodeType> AssertOp = None) { 170 // Let the target assemble the parts if it wants to 171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 172 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 173 PartVT, ValueVT, CC)) 174 return Val; 175 176 if (ValueVT.isVector()) 177 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 178 CC); 179 180 assert(NumParts > 0 && "No parts to assemble!"); 181 SDValue Val = Parts[0]; 182 183 if (NumParts > 1) { 184 // Assemble the value from multiple parts. 185 if (ValueVT.isInteger()) { 186 unsigned PartBits = PartVT.getSizeInBits(); 187 unsigned ValueBits = ValueVT.getSizeInBits(); 188 189 // Assemble the power of 2 part. 190 unsigned RoundParts = 191 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 192 unsigned RoundBits = PartBits * RoundParts; 193 EVT RoundVT = RoundBits == ValueBits ? 194 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 195 SDValue Lo, Hi; 196 197 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 198 199 if (RoundParts > 2) { 200 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 201 PartVT, HalfVT, V); 202 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 203 RoundParts / 2, PartVT, HalfVT, V); 204 } else { 205 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 206 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 207 } 208 209 if (DAG.getDataLayout().isBigEndian()) 210 std::swap(Lo, Hi); 211 212 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 213 214 if (RoundParts < NumParts) { 215 // Assemble the trailing non-power-of-2 part. 216 unsigned OddParts = NumParts - RoundParts; 217 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 218 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 219 OddVT, V, CC); 220 221 // Combine the round and odd parts. 222 Lo = Val; 223 if (DAG.getDataLayout().isBigEndian()) 224 std::swap(Lo, Hi); 225 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 226 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 227 Hi = 228 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 229 DAG.getConstant(Lo.getValueSizeInBits(), DL, 230 TLI.getPointerTy(DAG.getDataLayout()))); 231 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 232 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 233 } 234 } else if (PartVT.isFloatingPoint()) { 235 // FP split into multiple FP parts (for ppcf128) 236 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 237 "Unexpected split"); 238 SDValue Lo, Hi; 239 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 241 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 242 std::swap(Lo, Hi); 243 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 244 } else { 245 // FP split into integer parts (soft fp) 246 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 247 !PartVT.isVector() && "Unexpected split"); 248 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 249 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 250 } 251 } 252 253 // There is now one part, held in Val. Correct it to match ValueVT. 254 // PartEVT is the type of the register class that holds the value. 255 // ValueVT is the type of the inline asm operation. 256 EVT PartEVT = Val.getValueType(); 257 258 if (PartEVT == ValueVT) 259 return Val; 260 261 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 262 ValueVT.bitsLT(PartEVT)) { 263 // For an FP value in an integer part, we need to truncate to the right 264 // width first. 265 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 266 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 267 } 268 269 // Handle types that have the same size. 270 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 271 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 272 273 // Handle types with different sizes. 274 if (PartEVT.isInteger() && ValueVT.isInteger()) { 275 if (ValueVT.bitsLT(PartEVT)) { 276 // For a truncate, see if we have any information to 277 // indicate whether the truncated bits will always be 278 // zero or sign-extension. 279 if (AssertOp.hasValue()) 280 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 281 DAG.getValueType(ValueVT)); 282 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 283 } 284 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 285 } 286 287 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 288 // FP_ROUND's are always exact here. 289 if (ValueVT.bitsLT(Val.getValueType())) 290 return DAG.getNode( 291 ISD::FP_ROUND, DL, ValueVT, Val, 292 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 293 294 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 295 } 296 297 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 298 // then truncating. 299 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 300 ValueVT.bitsLT(PartEVT)) { 301 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 302 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 303 } 304 305 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 306 } 307 308 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 309 const Twine &ErrMsg) { 310 const Instruction *I = dyn_cast_or_null<Instruction>(V); 311 if (!V) 312 return Ctx.emitError(ErrMsg); 313 314 const char *AsmError = ", possible invalid constraint for vector type"; 315 if (const CallInst *CI = dyn_cast<CallInst>(I)) 316 if (CI->isInlineAsm()) 317 return Ctx.emitError(I, ErrMsg + AsmError); 318 319 return Ctx.emitError(I, ErrMsg); 320 } 321 322 /// getCopyFromPartsVector - Create a value that contains the specified legal 323 /// parts combined into the value they represent. If the parts combine to a 324 /// type larger than ValueVT then AssertOp can be used to specify whether the 325 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 326 /// ValueVT (ISD::AssertSext). 327 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 328 const SDValue *Parts, unsigned NumParts, 329 MVT PartVT, EVT ValueVT, const Value *V, 330 Optional<CallingConv::ID> CallConv) { 331 assert(ValueVT.isVector() && "Not a vector value"); 332 assert(NumParts > 0 && "No parts to assemble!"); 333 const bool IsABIRegCopy = CallConv.hasValue(); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 SDValue Val = Parts[0]; 337 338 // Handle a multi-element vector. 339 if (NumParts > 1) { 340 EVT IntermediateVT; 341 MVT RegisterVT; 342 unsigned NumIntermediates; 343 unsigned NumRegs; 344 345 if (IsABIRegCopy) { 346 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 347 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 348 NumIntermediates, RegisterVT); 349 } else { 350 NumRegs = 351 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 352 NumIntermediates, RegisterVT); 353 } 354 355 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 356 NumParts = NumRegs; // Silence a compiler warning. 357 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 358 assert(RegisterVT.getSizeInBits() == 359 Parts[0].getSimpleValueType().getSizeInBits() && 360 "Part type sizes don't match!"); 361 362 // Assemble the parts into intermediate operands. 363 SmallVector<SDValue, 8> Ops(NumIntermediates); 364 if (NumIntermediates == NumParts) { 365 // If the register was not expanded, truncate or copy the value, 366 // as appropriate. 367 for (unsigned i = 0; i != NumParts; ++i) 368 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 369 PartVT, IntermediateVT, V, CallConv); 370 } else if (NumParts > 0) { 371 // If the intermediate type was expanded, build the intermediate 372 // operands from the parts. 373 assert(NumParts % NumIntermediates == 0 && 374 "Must expand into a divisible number of parts!"); 375 unsigned Factor = NumParts / NumIntermediates; 376 for (unsigned i = 0; i != NumIntermediates; ++i) 377 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 378 PartVT, IntermediateVT, V, CallConv); 379 } 380 381 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 382 // intermediate operands. 383 EVT BuiltVectorTy = 384 IntermediateVT.isVector() 385 ? EVT::getVectorVT( 386 *DAG.getContext(), IntermediateVT.getScalarType(), 387 IntermediateVT.getVectorElementCount() * NumParts) 388 : EVT::getVectorVT(*DAG.getContext(), 389 IntermediateVT.getScalarType(), 390 NumIntermediates); 391 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 392 : ISD::BUILD_VECTOR, 393 DL, BuiltVectorTy, Ops); 394 } 395 396 // There is now one part, held in Val. Correct it to match ValueVT. 397 EVT PartEVT = Val.getValueType(); 398 399 if (PartEVT == ValueVT) 400 return Val; 401 402 if (PartEVT.isVector()) { 403 // Vector/Vector bitcast. 404 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 405 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 406 407 // If the element type of the source/dest vectors are the same, but the 408 // parts vector has more elements than the value vector, then we have a 409 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 410 // elements we want. 411 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 412 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 413 ValueVT.getVectorElementCount().getKnownMinValue()) && 414 (PartEVT.getVectorElementCount().isScalable() == 415 ValueVT.getVectorElementCount().isScalable()) && 416 "Cannot narrow, it would be a lossy transformation"); 417 PartEVT = 418 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 419 ValueVT.getVectorElementCount()); 420 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 421 DAG.getVectorIdxConstant(0, DL)); 422 if (PartEVT == ValueVT) 423 return Val; 424 } 425 426 // Promoted vector extract 427 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 428 } 429 430 // Trivial bitcast if the types are the same size and the destination 431 // vector type is legal. 432 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 433 TLI.isTypeLegal(ValueVT)) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 if (ValueVT.getVectorNumElements() != 1) { 437 // Certain ABIs require that vectors are passed as integers. For vectors 438 // are the same size, this is an obvious bitcast. 439 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 440 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 441 } else if (ValueVT.bitsLT(PartEVT)) { 442 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 443 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 444 // Drop the extra bits. 445 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 446 return DAG.getBitcast(ValueVT, Val); 447 } 448 449 diagnosePossiblyInvalidConstraint( 450 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 451 return DAG.getUNDEF(ValueVT); 452 } 453 454 // Handle cases such as i8 -> <1 x i1> 455 EVT ValueSVT = ValueVT.getVectorElementType(); 456 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 457 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 458 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 459 else 460 Val = ValueVT.isFloatingPoint() 461 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 462 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 463 } 464 465 return DAG.getBuildVector(ValueVT, DL, Val); 466 } 467 468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 469 SDValue Val, SDValue *Parts, unsigned NumParts, 470 MVT PartVT, const Value *V, 471 Optional<CallingConv::ID> CallConv); 472 473 /// getCopyToParts - Create a series of nodes that contain the specified value 474 /// split into legal parts. If the parts contain more bits than Val, then, for 475 /// integers, ExtendKind can be used to specify how to generate the extra bits. 476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 477 SDValue *Parts, unsigned NumParts, MVT PartVT, 478 const Value *V, 479 Optional<CallingConv::ID> CallConv = None, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 481 // Let the target split the parts if it wants to 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 484 CallConv)) 485 return; 486 EVT ValueVT = Val.getValueType(); 487 488 // Handle the vector case separately. 489 if (ValueVT.isVector()) 490 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 491 CallConv); 492 493 unsigned PartBits = PartVT.getSizeInBits(); 494 unsigned OrigNumParts = NumParts; 495 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 496 "Copying to an illegal type!"); 497 498 if (NumParts == 0) 499 return; 500 501 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 502 EVT PartEVT = PartVT; 503 if (PartEVT == ValueVT) { 504 assert(NumParts == 1 && "No-op copy with multiple parts!"); 505 Parts[0] = Val; 506 return; 507 } 508 509 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 510 // If the parts cover more bits than the value has, promote the value. 511 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 512 assert(NumParts == 1 && "Do not know what to promote to!"); 513 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 514 } else { 515 if (ValueVT.isFloatingPoint()) { 516 // FP values need to be bitcast, then extended if they are being put 517 // into a larger container. 518 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 519 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 520 } 521 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 522 ValueVT.isInteger() && 523 "Unknown mismatch!"); 524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 525 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 526 if (PartVT == MVT::x86mmx) 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } 529 } else if (PartBits == ValueVT.getSizeInBits()) { 530 // Different types of the same size. 531 assert(NumParts == 1 && PartEVT != ValueVT); 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 534 // If the parts cover less bits than value has, truncate the value. 535 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 536 ValueVT.isInteger() && 537 "Unknown mismatch!"); 538 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 539 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 540 if (PartVT == MVT::x86mmx) 541 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 542 } 543 544 // The value may have changed - recompute ValueVT. 545 ValueVT = Val.getValueType(); 546 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 547 "Failed to tile the value with PartVT!"); 548 549 if (NumParts == 1) { 550 if (PartEVT != ValueVT) { 551 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 552 "scalar-to-vector conversion failed"); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 556 Parts[0] = Val; 557 return; 558 } 559 560 // Expand the value into multiple parts. 561 if (NumParts & (NumParts - 1)) { 562 // The number of parts is not a power of 2. Split off and copy the tail. 563 assert(PartVT.isInteger() && ValueVT.isInteger() && 564 "Do not know what to expand to!"); 565 unsigned RoundParts = 1 << Log2_32(NumParts); 566 unsigned RoundBits = RoundParts * PartBits; 567 unsigned OddParts = NumParts - RoundParts; 568 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 569 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 570 571 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 572 CallConv); 573 574 if (DAG.getDataLayout().isBigEndian()) 575 // The odd parts were reversed by getCopyToParts - unreverse them. 576 std::reverse(Parts + RoundParts, Parts + NumParts); 577 578 NumParts = RoundParts; 579 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 580 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 581 } 582 583 // The number of parts is a power of 2. Repeatedly bisect the value using 584 // EXTRACT_ELEMENT. 585 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 586 EVT::getIntegerVT(*DAG.getContext(), 587 ValueVT.getSizeInBits()), 588 Val); 589 590 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 591 for (unsigned i = 0; i < NumParts; i += StepSize) { 592 unsigned ThisBits = StepSize * PartBits / 2; 593 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 594 SDValue &Part0 = Parts[i]; 595 SDValue &Part1 = Parts[i+StepSize/2]; 596 597 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 598 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 599 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 600 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 601 602 if (ThisBits == PartBits && ThisVT != PartVT) { 603 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 604 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 605 } 606 } 607 } 608 609 if (DAG.getDataLayout().isBigEndian()) 610 std::reverse(Parts, Parts + OrigNumParts); 611 } 612 613 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 614 const SDLoc &DL, EVT PartVT) { 615 if (!PartVT.isVector()) 616 return SDValue(); 617 618 EVT ValueVT = Val.getValueType(); 619 ElementCount PartNumElts = PartVT.getVectorElementCount(); 620 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 621 622 // We only support widening vectors with equivalent element types and 623 // fixed/scalable properties. If a target needs to widen a fixed-length type 624 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 625 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 626 PartNumElts.isScalable() != ValueNumElts.isScalable() || 627 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 628 return SDValue(); 629 630 // Widening a scalable vector to another scalable vector is done by inserting 631 // the vector into a larger undef one. 632 if (PartNumElts.isScalable()) 633 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 634 Val, DAG.getVectorIdxConstant(0, DL)); 635 636 EVT ElementVT = PartVT.getVectorElementType(); 637 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 638 // undef elements. 639 SmallVector<SDValue, 16> Ops; 640 DAG.ExtractVectorElements(Val, Ops); 641 SDValue EltUndef = DAG.getUNDEF(ElementVT); 642 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 643 644 // FIXME: Use CONCAT for 2x -> 4x. 645 return DAG.getBuildVector(PartVT, DL, Ops); 646 } 647 648 /// getCopyToPartsVector - Create a series of nodes that contain the specified 649 /// value split into legal parts. 650 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 651 SDValue Val, SDValue *Parts, unsigned NumParts, 652 MVT PartVT, const Value *V, 653 Optional<CallingConv::ID> CallConv) { 654 EVT ValueVT = Val.getValueType(); 655 assert(ValueVT.isVector() && "Not a vector"); 656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 657 const bool IsABIRegCopy = CallConv.hasValue(); 658 659 if (NumParts == 1) { 660 EVT PartEVT = PartVT; 661 if (PartEVT == ValueVT) { 662 // Nothing to do. 663 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 664 // Bitconvert vector->vector case. 665 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 666 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 667 Val = Widened; 668 } else if (PartVT.isVector() && 669 PartEVT.getVectorElementType().bitsGE( 670 ValueVT.getVectorElementType()) && 671 PartEVT.getVectorElementCount() == 672 ValueVT.getVectorElementCount()) { 673 674 // Promoted vector extract 675 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 676 } else if (PartEVT.isVector() && 677 PartEVT.getVectorElementType() != 678 ValueVT.getVectorElementType() && 679 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 680 TargetLowering::TypeWidenVector) { 681 // Combination of widening and promotion. 682 EVT WidenVT = 683 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 684 PartVT.getVectorElementCount()); 685 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 686 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 687 } else { 688 if (ValueVT.getVectorElementCount().isScalar()) { 689 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 690 DAG.getVectorIdxConstant(0, DL)); 691 } else { 692 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 693 assert(PartVT.getFixedSizeInBits() > ValueSize && 694 "lossy conversion of vector to scalar type"); 695 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 696 Val = DAG.getBitcast(IntermediateType, Val); 697 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 698 } 699 } 700 701 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 702 Parts[0] = Val; 703 return; 704 } 705 706 // Handle a multi-element vector. 707 EVT IntermediateVT; 708 MVT RegisterVT; 709 unsigned NumIntermediates; 710 unsigned NumRegs; 711 if (IsABIRegCopy) { 712 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 713 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 714 NumIntermediates, RegisterVT); 715 } else { 716 NumRegs = 717 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 718 NumIntermediates, RegisterVT); 719 } 720 721 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 722 NumParts = NumRegs; // Silence a compiler warning. 723 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 724 725 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 726 "Mixing scalable and fixed vectors when copying in parts"); 727 728 Optional<ElementCount> DestEltCnt; 729 730 if (IntermediateVT.isVector()) 731 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 732 else 733 DestEltCnt = ElementCount::getFixed(NumIntermediates); 734 735 EVT BuiltVectorTy = EVT::getVectorVT( 736 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 737 738 if (ValueVT == BuiltVectorTy) { 739 // Nothing to do. 740 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 741 // Bitconvert vector->vector case. 742 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 743 } else { 744 if (BuiltVectorTy.getVectorElementType().bitsGT( 745 ValueVT.getVectorElementType())) { 746 // Integer promotion. 747 ValueVT = EVT::getVectorVT(*DAG.getContext(), 748 BuiltVectorTy.getVectorElementType(), 749 ValueVT.getVectorElementCount()); 750 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 751 } 752 753 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 754 Val = Widened; 755 } 756 } 757 758 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 759 760 // Split the vector into intermediate operands. 761 SmallVector<SDValue, 8> Ops(NumIntermediates); 762 for (unsigned i = 0; i != NumIntermediates; ++i) { 763 if (IntermediateVT.isVector()) { 764 // This does something sensible for scalable vectors - see the 765 // definition of EXTRACT_SUBVECTOR for further details. 766 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 767 Ops[i] = 768 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 769 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 770 } else { 771 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 772 DAG.getVectorIdxConstant(i, DL)); 773 } 774 } 775 776 // Split the intermediate operands into legal parts. 777 if (NumParts == NumIntermediates) { 778 // If the register was not expanded, promote or copy the value, 779 // as appropriate. 780 for (unsigned i = 0; i != NumParts; ++i) 781 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 782 } else if (NumParts > 0) { 783 // If the intermediate type was expanded, split each the value into 784 // legal parts. 785 assert(NumIntermediates != 0 && "division by zero"); 786 assert(NumParts % NumIntermediates == 0 && 787 "Must expand into a divisible number of parts!"); 788 unsigned Factor = NumParts / NumIntermediates; 789 for (unsigned i = 0; i != NumIntermediates; ++i) 790 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 791 CallConv); 792 } 793 } 794 795 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 796 EVT valuevt, Optional<CallingConv::ID> CC) 797 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 798 RegCount(1, regs.size()), CallConv(CC) {} 799 800 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 801 const DataLayout &DL, unsigned Reg, Type *Ty, 802 Optional<CallingConv::ID> CC) { 803 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 804 805 CallConv = CC; 806 807 for (EVT ValueVT : ValueVTs) { 808 unsigned NumRegs = 809 isABIMangled() 810 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 811 : TLI.getNumRegisters(Context, ValueVT); 812 MVT RegisterVT = 813 isABIMangled() 814 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 815 : TLI.getRegisterType(Context, ValueVT); 816 for (unsigned i = 0; i != NumRegs; ++i) 817 Regs.push_back(Reg + i); 818 RegVTs.push_back(RegisterVT); 819 RegCount.push_back(NumRegs); 820 Reg += NumRegs; 821 } 822 } 823 824 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 825 FunctionLoweringInfo &FuncInfo, 826 const SDLoc &dl, SDValue &Chain, 827 SDValue *Flag, const Value *V) const { 828 // A Value with type {} or [0 x %t] needs no registers. 829 if (ValueVTs.empty()) 830 return SDValue(); 831 832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 833 834 // Assemble the legal parts into the final values. 835 SmallVector<SDValue, 4> Values(ValueVTs.size()); 836 SmallVector<SDValue, 8> Parts; 837 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 838 // Copy the legal parts from the registers. 839 EVT ValueVT = ValueVTs[Value]; 840 unsigned NumRegs = RegCount[Value]; 841 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 842 *DAG.getContext(), 843 CallConv.getValue(), RegVTs[Value]) 844 : RegVTs[Value]; 845 846 Parts.resize(NumRegs); 847 for (unsigned i = 0; i != NumRegs; ++i) { 848 SDValue P; 849 if (!Flag) { 850 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 851 } else { 852 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 853 *Flag = P.getValue(2); 854 } 855 856 Chain = P.getValue(1); 857 Parts[i] = P; 858 859 // If the source register was virtual and if we know something about it, 860 // add an assert node. 861 if (!Register::isVirtualRegister(Regs[Part + i]) || 862 !RegisterVT.isInteger()) 863 continue; 864 865 const FunctionLoweringInfo::LiveOutInfo *LOI = 866 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 867 if (!LOI) 868 continue; 869 870 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 871 unsigned NumSignBits = LOI->NumSignBits; 872 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 873 874 if (NumZeroBits == RegSize) { 875 // The current value is a zero. 876 // Explicitly express that as it would be easier for 877 // optimizations to kick in. 878 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 879 continue; 880 } 881 882 // FIXME: We capture more information than the dag can represent. For 883 // now, just use the tightest assertzext/assertsext possible. 884 bool isSExt; 885 EVT FromVT(MVT::Other); 886 if (NumZeroBits) { 887 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 888 isSExt = false; 889 } else if (NumSignBits > 1) { 890 FromVT = 891 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 892 isSExt = true; 893 } else { 894 continue; 895 } 896 // Add an assertion node. 897 assert(FromVT != MVT::Other); 898 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 899 RegisterVT, P, DAG.getValueType(FromVT)); 900 } 901 902 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 903 RegisterVT, ValueVT, V, CallConv); 904 Part += NumRegs; 905 Parts.clear(); 906 } 907 908 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 909 } 910 911 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 912 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 913 const Value *V, 914 ISD::NodeType PreferredExtendType) const { 915 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 916 ISD::NodeType ExtendKind = PreferredExtendType; 917 918 // Get the list of the values's legal parts. 919 unsigned NumRegs = Regs.size(); 920 SmallVector<SDValue, 8> Parts(NumRegs); 921 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 922 unsigned NumParts = RegCount[Value]; 923 924 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 925 *DAG.getContext(), 926 CallConv.getValue(), RegVTs[Value]) 927 : RegVTs[Value]; 928 929 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 930 ExtendKind = ISD::ZERO_EXTEND; 931 932 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 933 NumParts, RegisterVT, V, CallConv, ExtendKind); 934 Part += NumParts; 935 } 936 937 // Copy the parts into the registers. 938 SmallVector<SDValue, 8> Chains(NumRegs); 939 for (unsigned i = 0; i != NumRegs; ++i) { 940 SDValue Part; 941 if (!Flag) { 942 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 943 } else { 944 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 945 *Flag = Part.getValue(1); 946 } 947 948 Chains[i] = Part.getValue(0); 949 } 950 951 if (NumRegs == 1 || Flag) 952 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 953 // flagged to it. That is the CopyToReg nodes and the user are considered 954 // a single scheduling unit. If we create a TokenFactor and return it as 955 // chain, then the TokenFactor is both a predecessor (operand) of the 956 // user as well as a successor (the TF operands are flagged to the user). 957 // c1, f1 = CopyToReg 958 // c2, f2 = CopyToReg 959 // c3 = TokenFactor c1, c2 960 // ... 961 // = op c3, ..., f2 962 Chain = Chains[NumRegs-1]; 963 else 964 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 965 } 966 967 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 968 unsigned MatchingIdx, const SDLoc &dl, 969 SelectionDAG &DAG, 970 std::vector<SDValue> &Ops) const { 971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 972 973 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 974 if (HasMatching) 975 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 976 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 977 // Put the register class of the virtual registers in the flag word. That 978 // way, later passes can recompute register class constraints for inline 979 // assembly as well as normal instructions. 980 // Don't do this for tied operands that can use the regclass information 981 // from the def. 982 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 983 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 984 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 985 } 986 987 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 988 Ops.push_back(Res); 989 990 if (Code == InlineAsm::Kind_Clobber) { 991 // Clobbers should always have a 1:1 mapping with registers, and may 992 // reference registers that have illegal (e.g. vector) types. Hence, we 993 // shouldn't try to apply any sort of splitting logic to them. 994 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 995 "No 1:1 mapping from clobbers to regs?"); 996 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 997 (void)SP; 998 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 999 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1000 assert( 1001 (Regs[I] != SP || 1002 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1003 "If we clobbered the stack pointer, MFI should know about it."); 1004 } 1005 return; 1006 } 1007 1008 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1009 MVT RegisterVT = RegVTs[Value]; 1010 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1011 RegisterVT); 1012 for (unsigned i = 0; i != NumRegs; ++i) { 1013 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1014 unsigned TheReg = Regs[Reg++]; 1015 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1016 } 1017 } 1018 } 1019 1020 SmallVector<std::pair<unsigned, TypeSize>, 4> 1021 RegsForValue::getRegsAndSizes() const { 1022 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1023 unsigned I = 0; 1024 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1025 unsigned RegCount = std::get<0>(CountAndVT); 1026 MVT RegisterVT = std::get<1>(CountAndVT); 1027 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1028 for (unsigned E = I + RegCount; I != E; ++I) 1029 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1030 } 1031 return OutVec; 1032 } 1033 1034 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1035 const TargetLibraryInfo *li) { 1036 AA = aa; 1037 GFI = gfi; 1038 LibInfo = li; 1039 DL = &DAG.getDataLayout(); 1040 Context = DAG.getContext(); 1041 LPadToCallSiteMap.clear(); 1042 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1043 } 1044 1045 void SelectionDAGBuilder::clear() { 1046 NodeMap.clear(); 1047 UnusedArgNodeMap.clear(); 1048 PendingLoads.clear(); 1049 PendingExports.clear(); 1050 PendingConstrainedFP.clear(); 1051 PendingConstrainedFPStrict.clear(); 1052 CurInst = nullptr; 1053 HasTailCall = false; 1054 SDNodeOrder = LowestSDNodeOrder; 1055 StatepointLowering.clear(); 1056 } 1057 1058 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1059 DanglingDebugInfoMap.clear(); 1060 } 1061 1062 // Update DAG root to include dependencies on Pending chains. 1063 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1064 SDValue Root = DAG.getRoot(); 1065 1066 if (Pending.empty()) 1067 return Root; 1068 1069 // Add current root to PendingChains, unless we already indirectly 1070 // depend on it. 1071 if (Root.getOpcode() != ISD::EntryToken) { 1072 unsigned i = 0, e = Pending.size(); 1073 for (; i != e; ++i) { 1074 assert(Pending[i].getNode()->getNumOperands() > 1); 1075 if (Pending[i].getNode()->getOperand(0) == Root) 1076 break; // Don't add the root if we already indirectly depend on it. 1077 } 1078 1079 if (i == e) 1080 Pending.push_back(Root); 1081 } 1082 1083 if (Pending.size() == 1) 1084 Root = Pending[0]; 1085 else 1086 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1087 1088 DAG.setRoot(Root); 1089 Pending.clear(); 1090 return Root; 1091 } 1092 1093 SDValue SelectionDAGBuilder::getMemoryRoot() { 1094 return updateRoot(PendingLoads); 1095 } 1096 1097 SDValue SelectionDAGBuilder::getRoot() { 1098 // Chain up all pending constrained intrinsics together with all 1099 // pending loads, by simply appending them to PendingLoads and 1100 // then calling getMemoryRoot(). 1101 PendingLoads.reserve(PendingLoads.size() + 1102 PendingConstrainedFP.size() + 1103 PendingConstrainedFPStrict.size()); 1104 PendingLoads.append(PendingConstrainedFP.begin(), 1105 PendingConstrainedFP.end()); 1106 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1107 PendingConstrainedFPStrict.end()); 1108 PendingConstrainedFP.clear(); 1109 PendingConstrainedFPStrict.clear(); 1110 return getMemoryRoot(); 1111 } 1112 1113 SDValue SelectionDAGBuilder::getControlRoot() { 1114 // We need to emit pending fpexcept.strict constrained intrinsics, 1115 // so append them to the PendingExports list. 1116 PendingExports.append(PendingConstrainedFPStrict.begin(), 1117 PendingConstrainedFPStrict.end()); 1118 PendingConstrainedFPStrict.clear(); 1119 return updateRoot(PendingExports); 1120 } 1121 1122 void SelectionDAGBuilder::visit(const Instruction &I) { 1123 // Set up outgoing PHI node register values before emitting the terminator. 1124 if (I.isTerminator()) { 1125 HandlePHINodesInSuccessorBlocks(I.getParent()); 1126 } 1127 1128 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1129 if (!isa<DbgInfoIntrinsic>(I)) 1130 ++SDNodeOrder; 1131 1132 CurInst = &I; 1133 1134 visit(I.getOpcode(), I); 1135 1136 if (!I.isTerminator() && !HasTailCall && 1137 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1138 CopyToExportRegsIfNeeded(&I); 1139 1140 CurInst = nullptr; 1141 } 1142 1143 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1144 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1145 } 1146 1147 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1148 // Note: this doesn't use InstVisitor, because it has to work with 1149 // ConstantExpr's in addition to instructions. 1150 switch (Opcode) { 1151 default: llvm_unreachable("Unknown instruction type encountered!"); 1152 // Build the switch statement using the Instruction.def file. 1153 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1154 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1155 #include "llvm/IR/Instruction.def" 1156 } 1157 } 1158 1159 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1160 DebugLoc DL, unsigned Order) { 1161 // We treat variadic dbg_values differently at this stage. 1162 if (DI->hasArgList()) { 1163 // For variadic dbg_values we will now insert an undef. 1164 // FIXME: We can potentially recover these! 1165 SmallVector<SDDbgOperand, 2> Locs; 1166 for (const Value *V : DI->getValues()) { 1167 auto Undef = UndefValue::get(V->getType()); 1168 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1169 } 1170 SDDbgValue *SDV = DAG.getDbgValueList( 1171 DI->getVariable(), DI->getExpression(), Locs, {}, 1172 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1173 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1174 } else { 1175 // TODO: Dangling debug info will eventually either be resolved or produce 1176 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1177 // between the original dbg.value location and its resolved DBG_VALUE, 1178 // which we should ideally fill with an extra Undef DBG_VALUE. 1179 assert(DI->getNumVariableLocationOps() == 1 && 1180 "DbgValueInst without an ArgList should have a single location " 1181 "operand."); 1182 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1183 } 1184 } 1185 1186 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1187 const DIExpression *Expr) { 1188 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1189 const DbgValueInst *DI = DDI.getDI(); 1190 DIVariable *DanglingVariable = DI->getVariable(); 1191 DIExpression *DanglingExpr = DI->getExpression(); 1192 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1193 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1194 return true; 1195 } 1196 return false; 1197 }; 1198 1199 for (auto &DDIMI : DanglingDebugInfoMap) { 1200 DanglingDebugInfoVector &DDIV = DDIMI.second; 1201 1202 // If debug info is to be dropped, run it through final checks to see 1203 // whether it can be salvaged. 1204 for (auto &DDI : DDIV) 1205 if (isMatchingDbgValue(DDI)) 1206 salvageUnresolvedDbgValue(DDI); 1207 1208 erase_if(DDIV, isMatchingDbgValue); 1209 } 1210 } 1211 1212 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1213 // generate the debug data structures now that we've seen its definition. 1214 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1215 SDValue Val) { 1216 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1217 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1218 return; 1219 1220 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1221 for (auto &DDI : DDIV) { 1222 const DbgValueInst *DI = DDI.getDI(); 1223 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1224 assert(DI && "Ill-formed DanglingDebugInfo"); 1225 DebugLoc dl = DDI.getdl(); 1226 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1227 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1228 DILocalVariable *Variable = DI->getVariable(); 1229 DIExpression *Expr = DI->getExpression(); 1230 assert(Variable->isValidLocationForIntrinsic(dl) && 1231 "Expected inlined-at fields to agree"); 1232 SDDbgValue *SDV; 1233 if (Val.getNode()) { 1234 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1235 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1236 // we couldn't resolve it directly when examining the DbgValue intrinsic 1237 // in the first place we should not be more successful here). Unless we 1238 // have some test case that prove this to be correct we should avoid 1239 // calling EmitFuncArgumentDbgValue here. 1240 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1241 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1242 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1243 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1244 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1245 // inserted after the definition of Val when emitting the instructions 1246 // after ISel. An alternative could be to teach 1247 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1248 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1249 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1250 << ValSDNodeOrder << "\n"); 1251 SDV = getDbgValue(Val, Variable, Expr, dl, 1252 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1253 DAG.AddDbgValue(SDV, false); 1254 } else 1255 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1256 << "in EmitFuncArgumentDbgValue\n"); 1257 } else { 1258 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1259 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1260 auto SDV = 1261 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1262 DAG.AddDbgValue(SDV, false); 1263 } 1264 } 1265 DDIV.clear(); 1266 } 1267 1268 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1269 // TODO: For the variadic implementation, instead of only checking the fail 1270 // state of `handleDebugValue`, we need know specifically which values were 1271 // invalid, so that we attempt to salvage only those values when processing 1272 // a DIArgList. 1273 assert(!DDI.getDI()->hasArgList() && 1274 "Not implemented for variadic dbg_values"); 1275 Value *V = DDI.getDI()->getValue(0); 1276 DILocalVariable *Var = DDI.getDI()->getVariable(); 1277 DIExpression *Expr = DDI.getDI()->getExpression(); 1278 DebugLoc DL = DDI.getdl(); 1279 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1280 unsigned SDOrder = DDI.getSDNodeOrder(); 1281 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1282 // that DW_OP_stack_value is desired. 1283 assert(isa<DbgValueInst>(DDI.getDI())); 1284 bool StackValue = true; 1285 1286 // Can this Value can be encoded without any further work? 1287 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1288 return; 1289 1290 // Attempt to salvage back through as many instructions as possible. Bail if 1291 // a non-instruction is seen, such as a constant expression or global 1292 // variable. FIXME: Further work could recover those too. 1293 while (isa<Instruction>(V)) { 1294 Instruction &VAsInst = *cast<Instruction>(V); 1295 // Temporary "0", awaiting real implementation. 1296 SmallVector<uint64_t, 16> Ops; 1297 SmallVector<Value *, 4> AdditionalValues; 1298 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1299 AdditionalValues); 1300 // If we cannot salvage any further, and haven't yet found a suitable debug 1301 // expression, bail out. 1302 if (!V) 1303 break; 1304 1305 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1306 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1307 // here for variadic dbg_values, remove that condition. 1308 if (!AdditionalValues.empty()) 1309 break; 1310 1311 // New value and expr now represent this debuginfo. 1312 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1313 1314 // Some kind of simplification occurred: check whether the operand of the 1315 // salvaged debug expression can be encoded in this DAG. 1316 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1317 /*IsVariadic=*/false)) { 1318 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1319 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1320 return; 1321 } 1322 } 1323 1324 // This was the final opportunity to salvage this debug information, and it 1325 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1326 // any earlier variable location. 1327 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1328 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1329 DAG.AddDbgValue(SDV, false); 1330 1331 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1332 << "\n"); 1333 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1334 << "\n"); 1335 } 1336 1337 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1338 DILocalVariable *Var, 1339 DIExpression *Expr, DebugLoc dl, 1340 DebugLoc InstDL, unsigned Order, 1341 bool IsVariadic) { 1342 if (Values.empty()) 1343 return true; 1344 SmallVector<SDDbgOperand> LocationOps; 1345 SmallVector<SDNode *> Dependencies; 1346 for (const Value *V : Values) { 1347 // Constant value. 1348 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1349 isa<ConstantPointerNull>(V)) { 1350 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1351 continue; 1352 } 1353 1354 // If the Value is a frame index, we can create a FrameIndex debug value 1355 // without relying on the DAG at all. 1356 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1357 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1358 if (SI != FuncInfo.StaticAllocaMap.end()) { 1359 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1360 continue; 1361 } 1362 } 1363 1364 // Do not use getValue() in here; we don't want to generate code at 1365 // this point if it hasn't been done yet. 1366 SDValue N = NodeMap[V]; 1367 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1368 N = UnusedArgNodeMap[V]; 1369 if (N.getNode()) { 1370 // Only emit func arg dbg value for non-variadic dbg.values for now. 1371 if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1372 return true; 1373 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1374 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1375 // describe stack slot locations. 1376 // 1377 // Consider "int x = 0; int *px = &x;". There are two kinds of 1378 // interesting debug values here after optimization: 1379 // 1380 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1381 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1382 // 1383 // Both describe the direct values of their associated variables. 1384 Dependencies.push_back(N.getNode()); 1385 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1386 continue; 1387 } 1388 LocationOps.emplace_back( 1389 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1390 continue; 1391 } 1392 1393 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1394 // Special rules apply for the first dbg.values of parameter variables in a 1395 // function. Identify them by the fact they reference Argument Values, that 1396 // they're parameters, and they are parameters of the current function. We 1397 // need to let them dangle until they get an SDNode. 1398 bool IsParamOfFunc = 1399 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1400 if (IsParamOfFunc) 1401 return false; 1402 1403 // The value is not used in this block yet (or it would have an SDNode). 1404 // We still want the value to appear for the user if possible -- if it has 1405 // an associated VReg, we can refer to that instead. 1406 auto VMI = FuncInfo.ValueMap.find(V); 1407 if (VMI != FuncInfo.ValueMap.end()) { 1408 unsigned Reg = VMI->second; 1409 // If this is a PHI node, it may be split up into several MI PHI nodes 1410 // (in FunctionLoweringInfo::set). 1411 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1412 V->getType(), None); 1413 if (RFV.occupiesMultipleRegs()) { 1414 // FIXME: We could potentially support variadic dbg_values here. 1415 if (IsVariadic) 1416 return false; 1417 unsigned Offset = 0; 1418 unsigned BitsToDescribe = 0; 1419 if (auto VarSize = Var->getSizeInBits()) 1420 BitsToDescribe = *VarSize; 1421 if (auto Fragment = Expr->getFragmentInfo()) 1422 BitsToDescribe = Fragment->SizeInBits; 1423 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1424 // Bail out if all bits are described already. 1425 if (Offset >= BitsToDescribe) 1426 break; 1427 // TODO: handle scalable vectors. 1428 unsigned RegisterSize = RegAndSize.second; 1429 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1430 ? BitsToDescribe - Offset 1431 : RegisterSize; 1432 auto FragmentExpr = DIExpression::createFragmentExpression( 1433 Expr, Offset, FragmentSize); 1434 if (!FragmentExpr) 1435 continue; 1436 SDDbgValue *SDV = DAG.getVRegDbgValue( 1437 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1438 DAG.AddDbgValue(SDV, false); 1439 Offset += RegisterSize; 1440 } 1441 return true; 1442 } 1443 // We can use simple vreg locations for variadic dbg_values as well. 1444 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1445 continue; 1446 } 1447 // We failed to create a SDDbgOperand for V. 1448 return false; 1449 } 1450 1451 // We have created a SDDbgOperand for each Value in Values. 1452 // Should use Order instead of SDNodeOrder? 1453 assert(!LocationOps.empty()); 1454 SDDbgValue *SDV = 1455 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1456 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1457 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1458 return true; 1459 } 1460 1461 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1462 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1463 for (auto &Pair : DanglingDebugInfoMap) 1464 for (auto &DDI : Pair.second) 1465 salvageUnresolvedDbgValue(DDI); 1466 clearDanglingDebugInfo(); 1467 } 1468 1469 /// getCopyFromRegs - If there was virtual register allocated for the value V 1470 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1471 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1472 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1473 SDValue Result; 1474 1475 if (It != FuncInfo.ValueMap.end()) { 1476 Register InReg = It->second; 1477 1478 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1479 DAG.getDataLayout(), InReg, Ty, 1480 None); // This is not an ABI copy. 1481 SDValue Chain = DAG.getEntryNode(); 1482 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1483 V); 1484 resolveDanglingDebugInfo(V, Result); 1485 } 1486 1487 return Result; 1488 } 1489 1490 /// getValue - Return an SDValue for the given Value. 1491 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1492 // If we already have an SDValue for this value, use it. It's important 1493 // to do this first, so that we don't create a CopyFromReg if we already 1494 // have a regular SDValue. 1495 SDValue &N = NodeMap[V]; 1496 if (N.getNode()) return N; 1497 1498 // If there's a virtual register allocated and initialized for this 1499 // value, use it. 1500 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1501 return copyFromReg; 1502 1503 // Otherwise create a new SDValue and remember it. 1504 SDValue Val = getValueImpl(V); 1505 NodeMap[V] = Val; 1506 resolveDanglingDebugInfo(V, Val); 1507 return Val; 1508 } 1509 1510 /// getNonRegisterValue - Return an SDValue for the given Value, but 1511 /// don't look in FuncInfo.ValueMap for a virtual register. 1512 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1513 // If we already have an SDValue for this value, use it. 1514 SDValue &N = NodeMap[V]; 1515 if (N.getNode()) { 1516 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1517 // Remove the debug location from the node as the node is about to be used 1518 // in a location which may differ from the original debug location. This 1519 // is relevant to Constant and ConstantFP nodes because they can appear 1520 // as constant expressions inside PHI nodes. 1521 N->setDebugLoc(DebugLoc()); 1522 } 1523 return N; 1524 } 1525 1526 // Otherwise create a new SDValue and remember it. 1527 SDValue Val = getValueImpl(V); 1528 NodeMap[V] = Val; 1529 resolveDanglingDebugInfo(V, Val); 1530 return Val; 1531 } 1532 1533 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1534 /// Create an SDValue for the given value. 1535 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1537 1538 if (const Constant *C = dyn_cast<Constant>(V)) { 1539 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1540 1541 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1542 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1543 1544 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1545 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1546 1547 if (isa<ConstantPointerNull>(C)) { 1548 unsigned AS = V->getType()->getPointerAddressSpace(); 1549 return DAG.getConstant(0, getCurSDLoc(), 1550 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1551 } 1552 1553 if (match(C, m_VScale(DAG.getDataLayout()))) 1554 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1555 1556 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1557 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1558 1559 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1560 return DAG.getUNDEF(VT); 1561 1562 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1563 visit(CE->getOpcode(), *CE); 1564 SDValue N1 = NodeMap[V]; 1565 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1566 return N1; 1567 } 1568 1569 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1570 SmallVector<SDValue, 4> Constants; 1571 for (const Use &U : C->operands()) { 1572 SDNode *Val = getValue(U).getNode(); 1573 // If the operand is an empty aggregate, there are no values. 1574 if (!Val) continue; 1575 // Add each leaf value from the operand to the Constants list 1576 // to form a flattened list of all the values. 1577 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1578 Constants.push_back(SDValue(Val, i)); 1579 } 1580 1581 return DAG.getMergeValues(Constants, getCurSDLoc()); 1582 } 1583 1584 if (const ConstantDataSequential *CDS = 1585 dyn_cast<ConstantDataSequential>(C)) { 1586 SmallVector<SDValue, 4> Ops; 1587 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1588 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1589 // Add each leaf value from the operand to the Constants list 1590 // to form a flattened list of all the values. 1591 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1592 Ops.push_back(SDValue(Val, i)); 1593 } 1594 1595 if (isa<ArrayType>(CDS->getType())) 1596 return DAG.getMergeValues(Ops, getCurSDLoc()); 1597 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1598 } 1599 1600 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1601 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1602 "Unknown struct or array constant!"); 1603 1604 SmallVector<EVT, 4> ValueVTs; 1605 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1606 unsigned NumElts = ValueVTs.size(); 1607 if (NumElts == 0) 1608 return SDValue(); // empty struct 1609 SmallVector<SDValue, 4> Constants(NumElts); 1610 for (unsigned i = 0; i != NumElts; ++i) { 1611 EVT EltVT = ValueVTs[i]; 1612 if (isa<UndefValue>(C)) 1613 Constants[i] = DAG.getUNDEF(EltVT); 1614 else if (EltVT.isFloatingPoint()) 1615 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1616 else 1617 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1618 } 1619 1620 return DAG.getMergeValues(Constants, getCurSDLoc()); 1621 } 1622 1623 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1624 return DAG.getBlockAddress(BA, VT); 1625 1626 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1627 return getValue(Equiv->getGlobalValue()); 1628 1629 VectorType *VecTy = cast<VectorType>(V->getType()); 1630 1631 // Now that we know the number and type of the elements, get that number of 1632 // elements into the Ops array based on what kind of constant it is. 1633 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1634 SmallVector<SDValue, 16> Ops; 1635 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1636 for (unsigned i = 0; i != NumElements; ++i) 1637 Ops.push_back(getValue(CV->getOperand(i))); 1638 1639 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1640 } else if (isa<ConstantAggregateZero>(C)) { 1641 EVT EltVT = 1642 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1643 1644 SDValue Op; 1645 if (EltVT.isFloatingPoint()) 1646 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1647 else 1648 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1649 1650 if (isa<ScalableVectorType>(VecTy)) 1651 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1652 else { 1653 SmallVector<SDValue, 16> Ops; 1654 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1655 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1656 } 1657 } 1658 llvm_unreachable("Unknown vector constant"); 1659 } 1660 1661 // If this is a static alloca, generate it as the frameindex instead of 1662 // computation. 1663 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1664 DenseMap<const AllocaInst*, int>::iterator SI = 1665 FuncInfo.StaticAllocaMap.find(AI); 1666 if (SI != FuncInfo.StaticAllocaMap.end()) 1667 return DAG.getFrameIndex(SI->second, 1668 TLI.getFrameIndexTy(DAG.getDataLayout())); 1669 } 1670 1671 // If this is an instruction which fast-isel has deferred, select it now. 1672 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1673 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1674 1675 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1676 Inst->getType(), None); 1677 SDValue Chain = DAG.getEntryNode(); 1678 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1679 } 1680 1681 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1682 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1683 } 1684 llvm_unreachable("Can't get register for value!"); 1685 } 1686 1687 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1688 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1689 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1690 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1691 bool IsSEH = isAsynchronousEHPersonality(Pers); 1692 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1693 if (!IsSEH) 1694 CatchPadMBB->setIsEHScopeEntry(); 1695 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1696 if (IsMSVCCXX || IsCoreCLR) 1697 CatchPadMBB->setIsEHFuncletEntry(); 1698 } 1699 1700 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1701 // Update machine-CFG edge. 1702 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1703 FuncInfo.MBB->addSuccessor(TargetMBB); 1704 TargetMBB->setIsEHCatchretTarget(true); 1705 DAG.getMachineFunction().setHasEHCatchret(true); 1706 1707 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1708 bool IsSEH = isAsynchronousEHPersonality(Pers); 1709 if (IsSEH) { 1710 // If this is not a fall-through branch or optimizations are switched off, 1711 // emit the branch. 1712 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1713 TM.getOptLevel() == CodeGenOpt::None) 1714 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1715 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1716 return; 1717 } 1718 1719 // Figure out the funclet membership for the catchret's successor. 1720 // This will be used by the FuncletLayout pass to determine how to order the 1721 // BB's. 1722 // A 'catchret' returns to the outer scope's color. 1723 Value *ParentPad = I.getCatchSwitchParentPad(); 1724 const BasicBlock *SuccessorColor; 1725 if (isa<ConstantTokenNone>(ParentPad)) 1726 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1727 else 1728 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1729 assert(SuccessorColor && "No parent funclet for catchret!"); 1730 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1731 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1732 1733 // Create the terminator node. 1734 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1735 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1736 DAG.getBasicBlock(SuccessorColorMBB)); 1737 DAG.setRoot(Ret); 1738 } 1739 1740 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1741 // Don't emit any special code for the cleanuppad instruction. It just marks 1742 // the start of an EH scope/funclet. 1743 FuncInfo.MBB->setIsEHScopeEntry(); 1744 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1745 if (Pers != EHPersonality::Wasm_CXX) { 1746 FuncInfo.MBB->setIsEHFuncletEntry(); 1747 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1748 } 1749 } 1750 1751 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1752 // not match, it is OK to add only the first unwind destination catchpad to the 1753 // successors, because there will be at least one invoke instruction within the 1754 // catch scope that points to the next unwind destination, if one exists, so 1755 // CFGSort cannot mess up with BB sorting order. 1756 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1757 // call within them, and catchpads only consisting of 'catch (...)' have a 1758 // '__cxa_end_catch' call within them, both of which generate invokes in case 1759 // the next unwind destination exists, i.e., the next unwind destination is not 1760 // the caller.) 1761 // 1762 // Having at most one EH pad successor is also simpler and helps later 1763 // transformations. 1764 // 1765 // For example, 1766 // current: 1767 // invoke void @foo to ... unwind label %catch.dispatch 1768 // catch.dispatch: 1769 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1770 // catch.start: 1771 // ... 1772 // ... in this BB or some other child BB dominated by this BB there will be an 1773 // invoke that points to 'next' BB as an unwind destination 1774 // 1775 // next: ; We don't need to add this to 'current' BB's successor 1776 // ... 1777 static void findWasmUnwindDestinations( 1778 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1779 BranchProbability Prob, 1780 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1781 &UnwindDests) { 1782 while (EHPadBB) { 1783 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1784 if (isa<CleanupPadInst>(Pad)) { 1785 // Stop on cleanup pads. 1786 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1787 UnwindDests.back().first->setIsEHScopeEntry(); 1788 break; 1789 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1790 // Add the catchpad handlers to the possible destinations. We don't 1791 // continue to the unwind destination of the catchswitch for wasm. 1792 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1793 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1794 UnwindDests.back().first->setIsEHScopeEntry(); 1795 } 1796 break; 1797 } else { 1798 continue; 1799 } 1800 } 1801 } 1802 1803 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1804 /// many places it could ultimately go. In the IR, we have a single unwind 1805 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1806 /// This function skips over imaginary basic blocks that hold catchswitch 1807 /// instructions, and finds all the "real" machine 1808 /// basic block destinations. As those destinations may not be successors of 1809 /// EHPadBB, here we also calculate the edge probability to those destinations. 1810 /// The passed-in Prob is the edge probability to EHPadBB. 1811 static void findUnwindDestinations( 1812 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1813 BranchProbability Prob, 1814 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1815 &UnwindDests) { 1816 EHPersonality Personality = 1817 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1818 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1819 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1820 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1821 bool IsSEH = isAsynchronousEHPersonality(Personality); 1822 1823 if (IsWasmCXX) { 1824 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1825 assert(UnwindDests.size() <= 1 && 1826 "There should be at most one unwind destination for wasm"); 1827 return; 1828 } 1829 1830 while (EHPadBB) { 1831 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1832 BasicBlock *NewEHPadBB = nullptr; 1833 if (isa<LandingPadInst>(Pad)) { 1834 // Stop on landingpads. They are not funclets. 1835 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1836 break; 1837 } else if (isa<CleanupPadInst>(Pad)) { 1838 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1839 // personalities. 1840 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1841 UnwindDests.back().first->setIsEHScopeEntry(); 1842 UnwindDests.back().first->setIsEHFuncletEntry(); 1843 break; 1844 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1845 // Add the catchpad handlers to the possible destinations. 1846 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1847 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1848 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1849 if (IsMSVCCXX || IsCoreCLR) 1850 UnwindDests.back().first->setIsEHFuncletEntry(); 1851 if (!IsSEH) 1852 UnwindDests.back().first->setIsEHScopeEntry(); 1853 } 1854 NewEHPadBB = CatchSwitch->getUnwindDest(); 1855 } else { 1856 continue; 1857 } 1858 1859 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1860 if (BPI && NewEHPadBB) 1861 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1862 EHPadBB = NewEHPadBB; 1863 } 1864 } 1865 1866 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1867 // Update successor info. 1868 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1869 auto UnwindDest = I.getUnwindDest(); 1870 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1871 BranchProbability UnwindDestProb = 1872 (BPI && UnwindDest) 1873 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1874 : BranchProbability::getZero(); 1875 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1876 for (auto &UnwindDest : UnwindDests) { 1877 UnwindDest.first->setIsEHPad(); 1878 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1879 } 1880 FuncInfo.MBB->normalizeSuccProbs(); 1881 1882 // Create the terminator node. 1883 SDValue Ret = 1884 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1885 DAG.setRoot(Ret); 1886 } 1887 1888 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1889 report_fatal_error("visitCatchSwitch not yet implemented!"); 1890 } 1891 1892 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1894 auto &DL = DAG.getDataLayout(); 1895 SDValue Chain = getControlRoot(); 1896 SmallVector<ISD::OutputArg, 8> Outs; 1897 SmallVector<SDValue, 8> OutVals; 1898 1899 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1900 // lower 1901 // 1902 // %val = call <ty> @llvm.experimental.deoptimize() 1903 // ret <ty> %val 1904 // 1905 // differently. 1906 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1907 LowerDeoptimizingReturn(); 1908 return; 1909 } 1910 1911 if (!FuncInfo.CanLowerReturn) { 1912 unsigned DemoteReg = FuncInfo.DemoteRegister; 1913 const Function *F = I.getParent()->getParent(); 1914 1915 // Emit a store of the return value through the virtual register. 1916 // Leave Outs empty so that LowerReturn won't try to load return 1917 // registers the usual way. 1918 SmallVector<EVT, 1> PtrValueVTs; 1919 ComputeValueVTs(TLI, DL, 1920 F->getReturnType()->getPointerTo( 1921 DAG.getDataLayout().getAllocaAddrSpace()), 1922 PtrValueVTs); 1923 1924 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1925 DemoteReg, PtrValueVTs[0]); 1926 SDValue RetOp = getValue(I.getOperand(0)); 1927 1928 SmallVector<EVT, 4> ValueVTs, MemVTs; 1929 SmallVector<uint64_t, 4> Offsets; 1930 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1931 &Offsets); 1932 unsigned NumValues = ValueVTs.size(); 1933 1934 SmallVector<SDValue, 4> Chains(NumValues); 1935 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1936 for (unsigned i = 0; i != NumValues; ++i) { 1937 // An aggregate return value cannot wrap around the address space, so 1938 // offsets to its parts don't wrap either. 1939 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1940 TypeSize::Fixed(Offsets[i])); 1941 1942 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1943 if (MemVTs[i] != ValueVTs[i]) 1944 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1945 Chains[i] = DAG.getStore( 1946 Chain, getCurSDLoc(), Val, 1947 // FIXME: better loc info would be nice. 1948 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1949 commonAlignment(BaseAlign, Offsets[i])); 1950 } 1951 1952 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1953 MVT::Other, Chains); 1954 } else if (I.getNumOperands() != 0) { 1955 SmallVector<EVT, 4> ValueVTs; 1956 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1957 unsigned NumValues = ValueVTs.size(); 1958 if (NumValues) { 1959 SDValue RetOp = getValue(I.getOperand(0)); 1960 1961 const Function *F = I.getParent()->getParent(); 1962 1963 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1964 I.getOperand(0)->getType(), F->getCallingConv(), 1965 /*IsVarArg*/ false, DL); 1966 1967 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1968 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 1969 ExtendKind = ISD::SIGN_EXTEND; 1970 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 1971 ExtendKind = ISD::ZERO_EXTEND; 1972 1973 LLVMContext &Context = F->getContext(); 1974 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 1975 1976 for (unsigned j = 0; j != NumValues; ++j) { 1977 EVT VT = ValueVTs[j]; 1978 1979 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1980 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1981 1982 CallingConv::ID CC = F->getCallingConv(); 1983 1984 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1985 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1986 SmallVector<SDValue, 4> Parts(NumParts); 1987 getCopyToParts(DAG, getCurSDLoc(), 1988 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1989 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1990 1991 // 'inreg' on function refers to return value 1992 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1993 if (RetInReg) 1994 Flags.setInReg(); 1995 1996 if (I.getOperand(0)->getType()->isPointerTy()) { 1997 Flags.setPointer(); 1998 Flags.setPointerAddrSpace( 1999 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2000 } 2001 2002 if (NeedsRegBlock) { 2003 Flags.setInConsecutiveRegs(); 2004 if (j == NumValues - 1) 2005 Flags.setInConsecutiveRegsLast(); 2006 } 2007 2008 // Propagate extension type if any 2009 if (ExtendKind == ISD::SIGN_EXTEND) 2010 Flags.setSExt(); 2011 else if (ExtendKind == ISD::ZERO_EXTEND) 2012 Flags.setZExt(); 2013 2014 for (unsigned i = 0; i < NumParts; ++i) { 2015 Outs.push_back(ISD::OutputArg(Flags, 2016 Parts[i].getValueType().getSimpleVT(), 2017 VT, /*isfixed=*/true, 0, 0)); 2018 OutVals.push_back(Parts[i]); 2019 } 2020 } 2021 } 2022 } 2023 2024 // Push in swifterror virtual register as the last element of Outs. This makes 2025 // sure swifterror virtual register will be returned in the swifterror 2026 // physical register. 2027 const Function *F = I.getParent()->getParent(); 2028 if (TLI.supportSwiftError() && 2029 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2030 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2031 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2032 Flags.setSwiftError(); 2033 Outs.push_back(ISD::OutputArg( 2034 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2035 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2036 // Create SDNode for the swifterror virtual register. 2037 OutVals.push_back( 2038 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2039 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2040 EVT(TLI.getPointerTy(DL)))); 2041 } 2042 2043 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2044 CallingConv::ID CallConv = 2045 DAG.getMachineFunction().getFunction().getCallingConv(); 2046 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2047 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2048 2049 // Verify that the target's LowerReturn behaved as expected. 2050 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2051 "LowerReturn didn't return a valid chain!"); 2052 2053 // Update the DAG with the new chain value resulting from return lowering. 2054 DAG.setRoot(Chain); 2055 } 2056 2057 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2058 /// created for it, emit nodes to copy the value into the virtual 2059 /// registers. 2060 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2061 // Skip empty types 2062 if (V->getType()->isEmptyTy()) 2063 return; 2064 2065 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2066 if (VMI != FuncInfo.ValueMap.end()) { 2067 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2068 CopyValueToVirtualRegister(V, VMI->second); 2069 } 2070 } 2071 2072 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2073 /// the current basic block, add it to ValueMap now so that we'll get a 2074 /// CopyTo/FromReg. 2075 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2076 // No need to export constants. 2077 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2078 2079 // Already exported? 2080 if (FuncInfo.isExportedInst(V)) return; 2081 2082 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2083 CopyValueToVirtualRegister(V, Reg); 2084 } 2085 2086 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2087 const BasicBlock *FromBB) { 2088 // The operands of the setcc have to be in this block. We don't know 2089 // how to export them from some other block. 2090 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2091 // Can export from current BB. 2092 if (VI->getParent() == FromBB) 2093 return true; 2094 2095 // Is already exported, noop. 2096 return FuncInfo.isExportedInst(V); 2097 } 2098 2099 // If this is an argument, we can export it if the BB is the entry block or 2100 // if it is already exported. 2101 if (isa<Argument>(V)) { 2102 if (FromBB->isEntryBlock()) 2103 return true; 2104 2105 // Otherwise, can only export this if it is already exported. 2106 return FuncInfo.isExportedInst(V); 2107 } 2108 2109 // Otherwise, constants can always be exported. 2110 return true; 2111 } 2112 2113 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2114 BranchProbability 2115 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2116 const MachineBasicBlock *Dst) const { 2117 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2118 const BasicBlock *SrcBB = Src->getBasicBlock(); 2119 const BasicBlock *DstBB = Dst->getBasicBlock(); 2120 if (!BPI) { 2121 // If BPI is not available, set the default probability as 1 / N, where N is 2122 // the number of successors. 2123 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2124 return BranchProbability(1, SuccSize); 2125 } 2126 return BPI->getEdgeProbability(SrcBB, DstBB); 2127 } 2128 2129 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2130 MachineBasicBlock *Dst, 2131 BranchProbability Prob) { 2132 if (!FuncInfo.BPI) 2133 Src->addSuccessorWithoutProb(Dst); 2134 else { 2135 if (Prob.isUnknown()) 2136 Prob = getEdgeProbability(Src, Dst); 2137 Src->addSuccessor(Dst, Prob); 2138 } 2139 } 2140 2141 static bool InBlock(const Value *V, const BasicBlock *BB) { 2142 if (const Instruction *I = dyn_cast<Instruction>(V)) 2143 return I->getParent() == BB; 2144 return true; 2145 } 2146 2147 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2148 /// This function emits a branch and is used at the leaves of an OR or an 2149 /// AND operator tree. 2150 void 2151 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2152 MachineBasicBlock *TBB, 2153 MachineBasicBlock *FBB, 2154 MachineBasicBlock *CurBB, 2155 MachineBasicBlock *SwitchBB, 2156 BranchProbability TProb, 2157 BranchProbability FProb, 2158 bool InvertCond) { 2159 const BasicBlock *BB = CurBB->getBasicBlock(); 2160 2161 // If the leaf of the tree is a comparison, merge the condition into 2162 // the caseblock. 2163 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2164 // The operands of the cmp have to be in this block. We don't know 2165 // how to export them from some other block. If this is the first block 2166 // of the sequence, no exporting is needed. 2167 if (CurBB == SwitchBB || 2168 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2169 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2170 ISD::CondCode Condition; 2171 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2172 ICmpInst::Predicate Pred = 2173 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2174 Condition = getICmpCondCode(Pred); 2175 } else { 2176 const FCmpInst *FC = cast<FCmpInst>(Cond); 2177 FCmpInst::Predicate Pred = 2178 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2179 Condition = getFCmpCondCode(Pred); 2180 if (TM.Options.NoNaNsFPMath) 2181 Condition = getFCmpCodeWithoutNaN(Condition); 2182 } 2183 2184 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2185 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2186 SL->SwitchCases.push_back(CB); 2187 return; 2188 } 2189 } 2190 2191 // Create a CaseBlock record representing this branch. 2192 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2193 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2194 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2195 SL->SwitchCases.push_back(CB); 2196 } 2197 2198 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2199 MachineBasicBlock *TBB, 2200 MachineBasicBlock *FBB, 2201 MachineBasicBlock *CurBB, 2202 MachineBasicBlock *SwitchBB, 2203 Instruction::BinaryOps Opc, 2204 BranchProbability TProb, 2205 BranchProbability FProb, 2206 bool InvertCond) { 2207 // Skip over not part of the tree and remember to invert op and operands at 2208 // next level. 2209 Value *NotCond; 2210 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2211 InBlock(NotCond, CurBB->getBasicBlock())) { 2212 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2213 !InvertCond); 2214 return; 2215 } 2216 2217 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2218 const Value *BOpOp0, *BOpOp1; 2219 // Compute the effective opcode for Cond, taking into account whether it needs 2220 // to be inverted, e.g. 2221 // and (not (or A, B)), C 2222 // gets lowered as 2223 // and (and (not A, not B), C) 2224 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2225 if (BOp) { 2226 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2227 ? Instruction::And 2228 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2229 ? Instruction::Or 2230 : (Instruction::BinaryOps)0); 2231 if (InvertCond) { 2232 if (BOpc == Instruction::And) 2233 BOpc = Instruction::Or; 2234 else if (BOpc == Instruction::Or) 2235 BOpc = Instruction::And; 2236 } 2237 } 2238 2239 // If this node is not part of the or/and tree, emit it as a branch. 2240 // Note that all nodes in the tree should have same opcode. 2241 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2242 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2243 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2244 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2245 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2246 TProb, FProb, InvertCond); 2247 return; 2248 } 2249 2250 // Create TmpBB after CurBB. 2251 MachineFunction::iterator BBI(CurBB); 2252 MachineFunction &MF = DAG.getMachineFunction(); 2253 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2254 CurBB->getParent()->insert(++BBI, TmpBB); 2255 2256 if (Opc == Instruction::Or) { 2257 // Codegen X | Y as: 2258 // BB1: 2259 // jmp_if_X TBB 2260 // jmp TmpBB 2261 // TmpBB: 2262 // jmp_if_Y TBB 2263 // jmp FBB 2264 // 2265 2266 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2267 // The requirement is that 2268 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2269 // = TrueProb for original BB. 2270 // Assuming the original probabilities are A and B, one choice is to set 2271 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2272 // A/(1+B) and 2B/(1+B). This choice assumes that 2273 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2274 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2275 // TmpBB, but the math is more complicated. 2276 2277 auto NewTrueProb = TProb / 2; 2278 auto NewFalseProb = TProb / 2 + FProb; 2279 // Emit the LHS condition. 2280 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2281 NewFalseProb, InvertCond); 2282 2283 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2284 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2285 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2286 // Emit the RHS condition into TmpBB. 2287 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2288 Probs[1], InvertCond); 2289 } else { 2290 assert(Opc == Instruction::And && "Unknown merge op!"); 2291 // Codegen X & Y as: 2292 // BB1: 2293 // jmp_if_X TmpBB 2294 // jmp FBB 2295 // TmpBB: 2296 // jmp_if_Y TBB 2297 // jmp FBB 2298 // 2299 // This requires creation of TmpBB after CurBB. 2300 2301 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2302 // The requirement is that 2303 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2304 // = FalseProb for original BB. 2305 // Assuming the original probabilities are A and B, one choice is to set 2306 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2307 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2308 // TrueProb for BB1 * FalseProb for TmpBB. 2309 2310 auto NewTrueProb = TProb + FProb / 2; 2311 auto NewFalseProb = FProb / 2; 2312 // Emit the LHS condition. 2313 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2314 NewFalseProb, InvertCond); 2315 2316 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2317 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2318 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2319 // Emit the RHS condition into TmpBB. 2320 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2321 Probs[1], InvertCond); 2322 } 2323 } 2324 2325 /// If the set of cases should be emitted as a series of branches, return true. 2326 /// If we should emit this as a bunch of and/or'd together conditions, return 2327 /// false. 2328 bool 2329 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2330 if (Cases.size() != 2) return true; 2331 2332 // If this is two comparisons of the same values or'd or and'd together, they 2333 // will get folded into a single comparison, so don't emit two blocks. 2334 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2335 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2336 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2337 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2338 return false; 2339 } 2340 2341 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2342 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2343 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2344 Cases[0].CC == Cases[1].CC && 2345 isa<Constant>(Cases[0].CmpRHS) && 2346 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2347 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2348 return false; 2349 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2350 return false; 2351 } 2352 2353 return true; 2354 } 2355 2356 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2357 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2358 2359 // Update machine-CFG edges. 2360 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2361 2362 if (I.isUnconditional()) { 2363 // Update machine-CFG edges. 2364 BrMBB->addSuccessor(Succ0MBB); 2365 2366 // If this is not a fall-through branch or optimizations are switched off, 2367 // emit the branch. 2368 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2369 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2370 MVT::Other, getControlRoot(), 2371 DAG.getBasicBlock(Succ0MBB))); 2372 2373 return; 2374 } 2375 2376 // If this condition is one of the special cases we handle, do special stuff 2377 // now. 2378 const Value *CondVal = I.getCondition(); 2379 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2380 2381 // If this is a series of conditions that are or'd or and'd together, emit 2382 // this as a sequence of branches instead of setcc's with and/or operations. 2383 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2384 // unpredictable branches, and vector extracts because those jumps are likely 2385 // expensive for any target), this should improve performance. 2386 // For example, instead of something like: 2387 // cmp A, B 2388 // C = seteq 2389 // cmp D, E 2390 // F = setle 2391 // or C, F 2392 // jnz foo 2393 // Emit: 2394 // cmp A, B 2395 // je foo 2396 // cmp D, E 2397 // jle foo 2398 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2399 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2400 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2401 Value *Vec; 2402 const Value *BOp0, *BOp1; 2403 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2404 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2405 Opcode = Instruction::And; 2406 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2407 Opcode = Instruction::Or; 2408 2409 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2410 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2411 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2412 getEdgeProbability(BrMBB, Succ0MBB), 2413 getEdgeProbability(BrMBB, Succ1MBB), 2414 /*InvertCond=*/false); 2415 // If the compares in later blocks need to use values not currently 2416 // exported from this block, export them now. This block should always 2417 // be the first entry. 2418 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2419 2420 // Allow some cases to be rejected. 2421 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2422 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2423 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2424 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2425 } 2426 2427 // Emit the branch for this block. 2428 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2429 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2430 return; 2431 } 2432 2433 // Okay, we decided not to do this, remove any inserted MBB's and clear 2434 // SwitchCases. 2435 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2436 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2437 2438 SL->SwitchCases.clear(); 2439 } 2440 } 2441 2442 // Create a CaseBlock record representing this branch. 2443 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2444 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2445 2446 // Use visitSwitchCase to actually insert the fast branch sequence for this 2447 // cond branch. 2448 visitSwitchCase(CB, BrMBB); 2449 } 2450 2451 /// visitSwitchCase - Emits the necessary code to represent a single node in 2452 /// the binary search tree resulting from lowering a switch instruction. 2453 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2454 MachineBasicBlock *SwitchBB) { 2455 SDValue Cond; 2456 SDValue CondLHS = getValue(CB.CmpLHS); 2457 SDLoc dl = CB.DL; 2458 2459 if (CB.CC == ISD::SETTRUE) { 2460 // Branch or fall through to TrueBB. 2461 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2462 SwitchBB->normalizeSuccProbs(); 2463 if (CB.TrueBB != NextBlock(SwitchBB)) { 2464 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2465 DAG.getBasicBlock(CB.TrueBB))); 2466 } 2467 return; 2468 } 2469 2470 auto &TLI = DAG.getTargetLoweringInfo(); 2471 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2472 2473 // Build the setcc now. 2474 if (!CB.CmpMHS) { 2475 // Fold "(X == true)" to X and "(X == false)" to !X to 2476 // handle common cases produced by branch lowering. 2477 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2478 CB.CC == ISD::SETEQ) 2479 Cond = CondLHS; 2480 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2481 CB.CC == ISD::SETEQ) { 2482 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2483 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2484 } else { 2485 SDValue CondRHS = getValue(CB.CmpRHS); 2486 2487 // If a pointer's DAG type is larger than its memory type then the DAG 2488 // values are zero-extended. This breaks signed comparisons so truncate 2489 // back to the underlying type before doing the compare. 2490 if (CondLHS.getValueType() != MemVT) { 2491 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2492 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2493 } 2494 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2495 } 2496 } else { 2497 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2498 2499 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2500 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2501 2502 SDValue CmpOp = getValue(CB.CmpMHS); 2503 EVT VT = CmpOp.getValueType(); 2504 2505 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2506 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2507 ISD::SETLE); 2508 } else { 2509 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2510 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2511 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2512 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2513 } 2514 } 2515 2516 // Update successor info 2517 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2518 // TrueBB and FalseBB are always different unless the incoming IR is 2519 // degenerate. This only happens when running llc on weird IR. 2520 if (CB.TrueBB != CB.FalseBB) 2521 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2522 SwitchBB->normalizeSuccProbs(); 2523 2524 // If the lhs block is the next block, invert the condition so that we can 2525 // fall through to the lhs instead of the rhs block. 2526 if (CB.TrueBB == NextBlock(SwitchBB)) { 2527 std::swap(CB.TrueBB, CB.FalseBB); 2528 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2529 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2530 } 2531 2532 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2533 MVT::Other, getControlRoot(), Cond, 2534 DAG.getBasicBlock(CB.TrueBB)); 2535 2536 // Insert the false branch. Do this even if it's a fall through branch, 2537 // this makes it easier to do DAG optimizations which require inverting 2538 // the branch condition. 2539 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2540 DAG.getBasicBlock(CB.FalseBB)); 2541 2542 DAG.setRoot(BrCond); 2543 } 2544 2545 /// visitJumpTable - Emit JumpTable node in the current MBB 2546 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2547 // Emit the code for the jump table 2548 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2549 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2550 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2551 JT.Reg, PTy); 2552 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2553 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2554 MVT::Other, Index.getValue(1), 2555 Table, Index); 2556 DAG.setRoot(BrJumpTable); 2557 } 2558 2559 /// visitJumpTableHeader - This function emits necessary code to produce index 2560 /// in the JumpTable from switch case. 2561 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2562 JumpTableHeader &JTH, 2563 MachineBasicBlock *SwitchBB) { 2564 SDLoc dl = getCurSDLoc(); 2565 2566 // Subtract the lowest switch case value from the value being switched on. 2567 SDValue SwitchOp = getValue(JTH.SValue); 2568 EVT VT = SwitchOp.getValueType(); 2569 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2570 DAG.getConstant(JTH.First, dl, VT)); 2571 2572 // The SDNode we just created, which holds the value being switched on minus 2573 // the smallest case value, needs to be copied to a virtual register so it 2574 // can be used as an index into the jump table in a subsequent basic block. 2575 // This value may be smaller or larger than the target's pointer type, and 2576 // therefore require extension or truncating. 2577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2578 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2579 2580 unsigned JumpTableReg = 2581 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2582 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2583 JumpTableReg, SwitchOp); 2584 JT.Reg = JumpTableReg; 2585 2586 if (!JTH.FallthroughUnreachable) { 2587 // Emit the range check for the jump table, and branch to the default block 2588 // for the switch statement if the value being switched on exceeds the 2589 // largest case in the switch. 2590 SDValue CMP = DAG.getSetCC( 2591 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2592 Sub.getValueType()), 2593 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2594 2595 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2596 MVT::Other, CopyTo, CMP, 2597 DAG.getBasicBlock(JT.Default)); 2598 2599 // Avoid emitting unnecessary branches to the next block. 2600 if (JT.MBB != NextBlock(SwitchBB)) 2601 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2602 DAG.getBasicBlock(JT.MBB)); 2603 2604 DAG.setRoot(BrCond); 2605 } else { 2606 // Avoid emitting unnecessary branches to the next block. 2607 if (JT.MBB != NextBlock(SwitchBB)) 2608 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2609 DAG.getBasicBlock(JT.MBB))); 2610 else 2611 DAG.setRoot(CopyTo); 2612 } 2613 } 2614 2615 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2616 /// variable if there exists one. 2617 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2618 SDValue &Chain) { 2619 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2620 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2621 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2622 MachineFunction &MF = DAG.getMachineFunction(); 2623 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2624 MachineSDNode *Node = 2625 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2626 if (Global) { 2627 MachinePointerInfo MPInfo(Global); 2628 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2629 MachineMemOperand::MODereferenceable; 2630 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2631 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2632 DAG.setNodeMemRefs(Node, {MemRef}); 2633 } 2634 if (PtrTy != PtrMemTy) 2635 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2636 return SDValue(Node, 0); 2637 } 2638 2639 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2640 /// tail spliced into a stack protector check success bb. 2641 /// 2642 /// For a high level explanation of how this fits into the stack protector 2643 /// generation see the comment on the declaration of class 2644 /// StackProtectorDescriptor. 2645 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2646 MachineBasicBlock *ParentBB) { 2647 2648 // First create the loads to the guard/stack slot for the comparison. 2649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2650 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2651 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2652 2653 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2654 int FI = MFI.getStackProtectorIndex(); 2655 2656 SDValue Guard; 2657 SDLoc dl = getCurSDLoc(); 2658 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2659 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2660 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2661 2662 // Generate code to load the content of the guard slot. 2663 SDValue GuardVal = DAG.getLoad( 2664 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2665 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2666 MachineMemOperand::MOVolatile); 2667 2668 if (TLI.useStackGuardXorFP()) 2669 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2670 2671 // Retrieve guard check function, nullptr if instrumentation is inlined. 2672 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2673 // The target provides a guard check function to validate the guard value. 2674 // Generate a call to that function with the content of the guard slot as 2675 // argument. 2676 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2677 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2678 2679 TargetLowering::ArgListTy Args; 2680 TargetLowering::ArgListEntry Entry; 2681 Entry.Node = GuardVal; 2682 Entry.Ty = FnTy->getParamType(0); 2683 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2684 Entry.IsInReg = true; 2685 Args.push_back(Entry); 2686 2687 TargetLowering::CallLoweringInfo CLI(DAG); 2688 CLI.setDebugLoc(getCurSDLoc()) 2689 .setChain(DAG.getEntryNode()) 2690 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2691 getValue(GuardCheckFn), std::move(Args)); 2692 2693 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2694 DAG.setRoot(Result.second); 2695 return; 2696 } 2697 2698 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2699 // Otherwise, emit a volatile load to retrieve the stack guard value. 2700 SDValue Chain = DAG.getEntryNode(); 2701 if (TLI.useLoadStackGuardNode()) { 2702 Guard = getLoadStackGuard(DAG, dl, Chain); 2703 } else { 2704 const Value *IRGuard = TLI.getSDagStackGuard(M); 2705 SDValue GuardPtr = getValue(IRGuard); 2706 2707 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2708 MachinePointerInfo(IRGuard, 0), Align, 2709 MachineMemOperand::MOVolatile); 2710 } 2711 2712 // Perform the comparison via a getsetcc. 2713 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2714 *DAG.getContext(), 2715 Guard.getValueType()), 2716 Guard, GuardVal, ISD::SETNE); 2717 2718 // If the guard/stackslot do not equal, branch to failure MBB. 2719 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2720 MVT::Other, GuardVal.getOperand(0), 2721 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2722 // Otherwise branch to success MBB. 2723 SDValue Br = DAG.getNode(ISD::BR, dl, 2724 MVT::Other, BrCond, 2725 DAG.getBasicBlock(SPD.getSuccessMBB())); 2726 2727 DAG.setRoot(Br); 2728 } 2729 2730 /// Codegen the failure basic block for a stack protector check. 2731 /// 2732 /// A failure stack protector machine basic block consists simply of a call to 2733 /// __stack_chk_fail(). 2734 /// 2735 /// For a high level explanation of how this fits into the stack protector 2736 /// generation see the comment on the declaration of class 2737 /// StackProtectorDescriptor. 2738 void 2739 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2740 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2741 TargetLowering::MakeLibCallOptions CallOptions; 2742 CallOptions.setDiscardResult(true); 2743 SDValue Chain = 2744 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2745 None, CallOptions, getCurSDLoc()).second; 2746 // On PS4, the "return address" must still be within the calling function, 2747 // even if it's at the very end, so emit an explicit TRAP here. 2748 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2749 if (TM.getTargetTriple().isPS4CPU()) 2750 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2751 // WebAssembly needs an unreachable instruction after a non-returning call, 2752 // because the function return type can be different from __stack_chk_fail's 2753 // return type (void). 2754 if (TM.getTargetTriple().isWasm()) 2755 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2756 2757 DAG.setRoot(Chain); 2758 } 2759 2760 /// visitBitTestHeader - This function emits necessary code to produce value 2761 /// suitable for "bit tests" 2762 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2763 MachineBasicBlock *SwitchBB) { 2764 SDLoc dl = getCurSDLoc(); 2765 2766 // Subtract the minimum value. 2767 SDValue SwitchOp = getValue(B.SValue); 2768 EVT VT = SwitchOp.getValueType(); 2769 SDValue RangeSub = 2770 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2771 2772 // Determine the type of the test operands. 2773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2774 bool UsePtrType = false; 2775 if (!TLI.isTypeLegal(VT)) { 2776 UsePtrType = true; 2777 } else { 2778 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2779 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2780 // Switch table case range are encoded into series of masks. 2781 // Just use pointer type, it's guaranteed to fit. 2782 UsePtrType = true; 2783 break; 2784 } 2785 } 2786 SDValue Sub = RangeSub; 2787 if (UsePtrType) { 2788 VT = TLI.getPointerTy(DAG.getDataLayout()); 2789 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2790 } 2791 2792 B.RegVT = VT.getSimpleVT(); 2793 B.Reg = FuncInfo.CreateReg(B.RegVT); 2794 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2795 2796 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2797 2798 if (!B.FallthroughUnreachable) 2799 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2800 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2801 SwitchBB->normalizeSuccProbs(); 2802 2803 SDValue Root = CopyTo; 2804 if (!B.FallthroughUnreachable) { 2805 // Conditional branch to the default block. 2806 SDValue RangeCmp = DAG.getSetCC(dl, 2807 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2808 RangeSub.getValueType()), 2809 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2810 ISD::SETUGT); 2811 2812 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2813 DAG.getBasicBlock(B.Default)); 2814 } 2815 2816 // Avoid emitting unnecessary branches to the next block. 2817 if (MBB != NextBlock(SwitchBB)) 2818 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2819 2820 DAG.setRoot(Root); 2821 } 2822 2823 /// visitBitTestCase - this function produces one "bit test" 2824 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2825 MachineBasicBlock* NextMBB, 2826 BranchProbability BranchProbToNext, 2827 unsigned Reg, 2828 BitTestCase &B, 2829 MachineBasicBlock *SwitchBB) { 2830 SDLoc dl = getCurSDLoc(); 2831 MVT VT = BB.RegVT; 2832 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2833 SDValue Cmp; 2834 unsigned PopCount = countPopulation(B.Mask); 2835 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2836 if (PopCount == 1) { 2837 // Testing for a single bit; just compare the shift count with what it 2838 // would need to be to shift a 1 bit in that position. 2839 Cmp = DAG.getSetCC( 2840 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2841 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2842 ISD::SETEQ); 2843 } else if (PopCount == BB.Range) { 2844 // There is only one zero bit in the range, test for it directly. 2845 Cmp = DAG.getSetCC( 2846 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2847 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2848 ISD::SETNE); 2849 } else { 2850 // Make desired shift 2851 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2852 DAG.getConstant(1, dl, VT), ShiftOp); 2853 2854 // Emit bit tests and jumps 2855 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2856 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2857 Cmp = DAG.getSetCC( 2858 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2859 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2860 } 2861 2862 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2863 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2864 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2865 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2866 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2867 // one as they are relative probabilities (and thus work more like weights), 2868 // and hence we need to normalize them to let the sum of them become one. 2869 SwitchBB->normalizeSuccProbs(); 2870 2871 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2872 MVT::Other, getControlRoot(), 2873 Cmp, DAG.getBasicBlock(B.TargetBB)); 2874 2875 // Avoid emitting unnecessary branches to the next block. 2876 if (NextMBB != NextBlock(SwitchBB)) 2877 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2878 DAG.getBasicBlock(NextMBB)); 2879 2880 DAG.setRoot(BrAnd); 2881 } 2882 2883 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2884 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2885 2886 // Retrieve successors. Look through artificial IR level blocks like 2887 // catchswitch for successors. 2888 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2889 const BasicBlock *EHPadBB = I.getSuccessor(1); 2890 2891 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2892 // have to do anything here to lower funclet bundles. 2893 assert(!I.hasOperandBundlesOtherThan( 2894 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2895 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2896 LLVMContext::OB_cfguardtarget, 2897 LLVMContext::OB_clang_arc_attachedcall}) && 2898 "Cannot lower invokes with arbitrary operand bundles yet!"); 2899 2900 const Value *Callee(I.getCalledOperand()); 2901 const Function *Fn = dyn_cast<Function>(Callee); 2902 if (isa<InlineAsm>(Callee)) 2903 visitInlineAsm(I, EHPadBB); 2904 else if (Fn && Fn->isIntrinsic()) { 2905 switch (Fn->getIntrinsicID()) { 2906 default: 2907 llvm_unreachable("Cannot invoke this intrinsic"); 2908 case Intrinsic::donothing: 2909 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2910 case Intrinsic::seh_try_begin: 2911 case Intrinsic::seh_scope_begin: 2912 case Intrinsic::seh_try_end: 2913 case Intrinsic::seh_scope_end: 2914 break; 2915 case Intrinsic::experimental_patchpoint_void: 2916 case Intrinsic::experimental_patchpoint_i64: 2917 visitPatchpoint(I, EHPadBB); 2918 break; 2919 case Intrinsic::experimental_gc_statepoint: 2920 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2921 break; 2922 case Intrinsic::wasm_rethrow: { 2923 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2924 // special because it can be invoked, so we manually lower it to a DAG 2925 // node here. 2926 SmallVector<SDValue, 8> Ops; 2927 Ops.push_back(getRoot()); // inchain 2928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2929 Ops.push_back( 2930 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2931 TLI.getPointerTy(DAG.getDataLayout()))); 2932 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2933 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2934 break; 2935 } 2936 } 2937 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2938 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2939 // Eventually we will support lowering the @llvm.experimental.deoptimize 2940 // intrinsic, and right now there are no plans to support other intrinsics 2941 // with deopt state. 2942 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2943 } else { 2944 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2945 } 2946 2947 // If the value of the invoke is used outside of its defining block, make it 2948 // available as a virtual register. 2949 // We already took care of the exported value for the statepoint instruction 2950 // during call to the LowerStatepoint. 2951 if (!isa<GCStatepointInst>(I)) { 2952 CopyToExportRegsIfNeeded(&I); 2953 } 2954 2955 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2956 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2957 BranchProbability EHPadBBProb = 2958 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2959 : BranchProbability::getZero(); 2960 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2961 2962 // Update successor info. 2963 addSuccessorWithProb(InvokeMBB, Return); 2964 for (auto &UnwindDest : UnwindDests) { 2965 UnwindDest.first->setIsEHPad(); 2966 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2967 } 2968 InvokeMBB->normalizeSuccProbs(); 2969 2970 // Drop into normal successor. 2971 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2972 DAG.getBasicBlock(Return))); 2973 } 2974 2975 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2976 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2977 2978 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2979 // have to do anything here to lower funclet bundles. 2980 assert(!I.hasOperandBundlesOtherThan( 2981 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2982 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2983 2984 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2985 visitInlineAsm(I); 2986 CopyToExportRegsIfNeeded(&I); 2987 2988 // Retrieve successors. 2989 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2990 2991 // Update successor info. 2992 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2993 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2994 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2995 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2996 Target->setIsInlineAsmBrIndirectTarget(); 2997 } 2998 CallBrMBB->normalizeSuccProbs(); 2999 3000 // Drop into default successor. 3001 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3002 MVT::Other, getControlRoot(), 3003 DAG.getBasicBlock(Return))); 3004 } 3005 3006 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3007 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3008 } 3009 3010 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3011 assert(FuncInfo.MBB->isEHPad() && 3012 "Call to landingpad not in landing pad!"); 3013 3014 // If there aren't registers to copy the values into (e.g., during SjLj 3015 // exceptions), then don't bother to create these DAG nodes. 3016 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3017 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3018 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3019 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3020 return; 3021 3022 // If landingpad's return type is token type, we don't create DAG nodes 3023 // for its exception pointer and selector value. The extraction of exception 3024 // pointer or selector value from token type landingpads is not currently 3025 // supported. 3026 if (LP.getType()->isTokenTy()) 3027 return; 3028 3029 SmallVector<EVT, 2> ValueVTs; 3030 SDLoc dl = getCurSDLoc(); 3031 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3032 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3033 3034 // Get the two live-in registers as SDValues. The physregs have already been 3035 // copied into virtual registers. 3036 SDValue Ops[2]; 3037 if (FuncInfo.ExceptionPointerVirtReg) { 3038 Ops[0] = DAG.getZExtOrTrunc( 3039 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3040 FuncInfo.ExceptionPointerVirtReg, 3041 TLI.getPointerTy(DAG.getDataLayout())), 3042 dl, ValueVTs[0]); 3043 } else { 3044 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3045 } 3046 Ops[1] = DAG.getZExtOrTrunc( 3047 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3048 FuncInfo.ExceptionSelectorVirtReg, 3049 TLI.getPointerTy(DAG.getDataLayout())), 3050 dl, ValueVTs[1]); 3051 3052 // Merge into one. 3053 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3054 DAG.getVTList(ValueVTs), Ops); 3055 setValue(&LP, Res); 3056 } 3057 3058 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3059 MachineBasicBlock *Last) { 3060 // Update JTCases. 3061 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 3062 if (SL->JTCases[i].first.HeaderBB == First) 3063 SL->JTCases[i].first.HeaderBB = Last; 3064 3065 // Update BitTestCases. 3066 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 3067 if (SL->BitTestCases[i].Parent == First) 3068 SL->BitTestCases[i].Parent = Last; 3069 } 3070 3071 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3072 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3073 3074 // Update machine-CFG edges with unique successors. 3075 SmallSet<BasicBlock*, 32> Done; 3076 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3077 BasicBlock *BB = I.getSuccessor(i); 3078 bool Inserted = Done.insert(BB).second; 3079 if (!Inserted) 3080 continue; 3081 3082 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3083 addSuccessorWithProb(IndirectBrMBB, Succ); 3084 } 3085 IndirectBrMBB->normalizeSuccProbs(); 3086 3087 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3088 MVT::Other, getControlRoot(), 3089 getValue(I.getAddress()))); 3090 } 3091 3092 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3093 if (!DAG.getTarget().Options.TrapUnreachable) 3094 return; 3095 3096 // We may be able to ignore unreachable behind a noreturn call. 3097 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3098 const BasicBlock &BB = *I.getParent(); 3099 if (&I != &BB.front()) { 3100 BasicBlock::const_iterator PredI = 3101 std::prev(BasicBlock::const_iterator(&I)); 3102 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3103 if (Call->doesNotReturn()) 3104 return; 3105 } 3106 } 3107 } 3108 3109 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3110 } 3111 3112 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3113 SDNodeFlags Flags; 3114 3115 SDValue Op = getValue(I.getOperand(0)); 3116 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3117 Op, Flags); 3118 setValue(&I, UnNodeValue); 3119 } 3120 3121 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3122 SDNodeFlags Flags; 3123 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3124 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3125 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3126 } 3127 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3128 Flags.setExact(ExactOp->isExact()); 3129 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3130 Flags.copyFMF(*FPOp); 3131 3132 SDValue Op1 = getValue(I.getOperand(0)); 3133 SDValue Op2 = getValue(I.getOperand(1)); 3134 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3135 Op1, Op2, Flags); 3136 setValue(&I, BinNodeValue); 3137 } 3138 3139 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3140 SDValue Op1 = getValue(I.getOperand(0)); 3141 SDValue Op2 = getValue(I.getOperand(1)); 3142 3143 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3144 Op1.getValueType(), DAG.getDataLayout()); 3145 3146 // Coerce the shift amount to the right type if we can. 3147 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3148 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3149 unsigned Op2Size = Op2.getValueSizeInBits(); 3150 SDLoc DL = getCurSDLoc(); 3151 3152 // If the operand is smaller than the shift count type, promote it. 3153 if (ShiftSize > Op2Size) 3154 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3155 3156 // If the operand is larger than the shift count type but the shift 3157 // count type has enough bits to represent any shift value, truncate 3158 // it now. This is a common case and it exposes the truncate to 3159 // optimization early. 3160 else if (ShiftSize >= Log2_32_Ceil(Op1.getValueSizeInBits())) 3161 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3162 // Otherwise we'll need to temporarily settle for some other convenient 3163 // type. Type legalization will make adjustments once the shiftee is split. 3164 else 3165 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3166 } 3167 3168 bool nuw = false; 3169 bool nsw = false; 3170 bool exact = false; 3171 3172 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3173 3174 if (const OverflowingBinaryOperator *OFBinOp = 3175 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3176 nuw = OFBinOp->hasNoUnsignedWrap(); 3177 nsw = OFBinOp->hasNoSignedWrap(); 3178 } 3179 if (const PossiblyExactOperator *ExactOp = 3180 dyn_cast<const PossiblyExactOperator>(&I)) 3181 exact = ExactOp->isExact(); 3182 } 3183 SDNodeFlags Flags; 3184 Flags.setExact(exact); 3185 Flags.setNoSignedWrap(nsw); 3186 Flags.setNoUnsignedWrap(nuw); 3187 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3188 Flags); 3189 setValue(&I, Res); 3190 } 3191 3192 void SelectionDAGBuilder::visitSDiv(const User &I) { 3193 SDValue Op1 = getValue(I.getOperand(0)); 3194 SDValue Op2 = getValue(I.getOperand(1)); 3195 3196 SDNodeFlags Flags; 3197 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3198 cast<PossiblyExactOperator>(&I)->isExact()); 3199 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3200 Op2, Flags)); 3201 } 3202 3203 void SelectionDAGBuilder::visitICmp(const User &I) { 3204 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3205 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3206 predicate = IC->getPredicate(); 3207 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3208 predicate = ICmpInst::Predicate(IC->getPredicate()); 3209 SDValue Op1 = getValue(I.getOperand(0)); 3210 SDValue Op2 = getValue(I.getOperand(1)); 3211 ISD::CondCode Opcode = getICmpCondCode(predicate); 3212 3213 auto &TLI = DAG.getTargetLoweringInfo(); 3214 EVT MemVT = 3215 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3216 3217 // If a pointer's DAG type is larger than its memory type then the DAG values 3218 // are zero-extended. This breaks signed comparisons so truncate back to the 3219 // underlying type before doing the compare. 3220 if (Op1.getValueType() != MemVT) { 3221 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3222 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3223 } 3224 3225 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3226 I.getType()); 3227 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3228 } 3229 3230 void SelectionDAGBuilder::visitFCmp(const User &I) { 3231 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3232 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3233 predicate = FC->getPredicate(); 3234 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3235 predicate = FCmpInst::Predicate(FC->getPredicate()); 3236 SDValue Op1 = getValue(I.getOperand(0)); 3237 SDValue Op2 = getValue(I.getOperand(1)); 3238 3239 ISD::CondCode Condition = getFCmpCondCode(predicate); 3240 auto *FPMO = cast<FPMathOperator>(&I); 3241 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3242 Condition = getFCmpCodeWithoutNaN(Condition); 3243 3244 SDNodeFlags Flags; 3245 Flags.copyFMF(*FPMO); 3246 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3247 3248 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3249 I.getType()); 3250 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3251 } 3252 3253 // Check if the condition of the select has one use or two users that are both 3254 // selects with the same condition. 3255 static bool hasOnlySelectUsers(const Value *Cond) { 3256 return llvm::all_of(Cond->users(), [](const Value *V) { 3257 return isa<SelectInst>(V); 3258 }); 3259 } 3260 3261 void SelectionDAGBuilder::visitSelect(const User &I) { 3262 SmallVector<EVT, 4> ValueVTs; 3263 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3264 ValueVTs); 3265 unsigned NumValues = ValueVTs.size(); 3266 if (NumValues == 0) return; 3267 3268 SmallVector<SDValue, 4> Values(NumValues); 3269 SDValue Cond = getValue(I.getOperand(0)); 3270 SDValue LHSVal = getValue(I.getOperand(1)); 3271 SDValue RHSVal = getValue(I.getOperand(2)); 3272 SmallVector<SDValue, 1> BaseOps(1, Cond); 3273 ISD::NodeType OpCode = 3274 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3275 3276 bool IsUnaryAbs = false; 3277 bool Negate = false; 3278 3279 SDNodeFlags Flags; 3280 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3281 Flags.copyFMF(*FPOp); 3282 3283 // Min/max matching is only viable if all output VTs are the same. 3284 if (is_splat(ValueVTs)) { 3285 EVT VT = ValueVTs[0]; 3286 LLVMContext &Ctx = *DAG.getContext(); 3287 auto &TLI = DAG.getTargetLoweringInfo(); 3288 3289 // We care about the legality of the operation after it has been type 3290 // legalized. 3291 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3292 VT = TLI.getTypeToTransformTo(Ctx, VT); 3293 3294 // If the vselect is legal, assume we want to leave this as a vector setcc + 3295 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3296 // min/max is legal on the scalar type. 3297 bool UseScalarMinMax = VT.isVector() && 3298 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3299 3300 Value *LHS, *RHS; 3301 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3302 ISD::NodeType Opc = ISD::DELETED_NODE; 3303 switch (SPR.Flavor) { 3304 case SPF_UMAX: Opc = ISD::UMAX; break; 3305 case SPF_UMIN: Opc = ISD::UMIN; break; 3306 case SPF_SMAX: Opc = ISD::SMAX; break; 3307 case SPF_SMIN: Opc = ISD::SMIN; break; 3308 case SPF_FMINNUM: 3309 switch (SPR.NaNBehavior) { 3310 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3311 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3312 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3313 case SPNB_RETURNS_ANY: { 3314 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3315 Opc = ISD::FMINNUM; 3316 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3317 Opc = ISD::FMINIMUM; 3318 else if (UseScalarMinMax) 3319 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3320 ISD::FMINNUM : ISD::FMINIMUM; 3321 break; 3322 } 3323 } 3324 break; 3325 case SPF_FMAXNUM: 3326 switch (SPR.NaNBehavior) { 3327 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3328 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3329 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3330 case SPNB_RETURNS_ANY: 3331 3332 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3333 Opc = ISD::FMAXNUM; 3334 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3335 Opc = ISD::FMAXIMUM; 3336 else if (UseScalarMinMax) 3337 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3338 ISD::FMAXNUM : ISD::FMAXIMUM; 3339 break; 3340 } 3341 break; 3342 case SPF_NABS: 3343 Negate = true; 3344 LLVM_FALLTHROUGH; 3345 case SPF_ABS: 3346 IsUnaryAbs = true; 3347 Opc = ISD::ABS; 3348 break; 3349 default: break; 3350 } 3351 3352 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3353 (TLI.isOperationLegalOrCustom(Opc, VT) || 3354 (UseScalarMinMax && 3355 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3356 // If the underlying comparison instruction is used by any other 3357 // instruction, the consumed instructions won't be destroyed, so it is 3358 // not profitable to convert to a min/max. 3359 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3360 OpCode = Opc; 3361 LHSVal = getValue(LHS); 3362 RHSVal = getValue(RHS); 3363 BaseOps.clear(); 3364 } 3365 3366 if (IsUnaryAbs) { 3367 OpCode = Opc; 3368 LHSVal = getValue(LHS); 3369 BaseOps.clear(); 3370 } 3371 } 3372 3373 if (IsUnaryAbs) { 3374 for (unsigned i = 0; i != NumValues; ++i) { 3375 SDLoc dl = getCurSDLoc(); 3376 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3377 Values[i] = 3378 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3379 if (Negate) 3380 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3381 Values[i]); 3382 } 3383 } else { 3384 for (unsigned i = 0; i != NumValues; ++i) { 3385 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3386 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3387 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3388 Values[i] = DAG.getNode( 3389 OpCode, getCurSDLoc(), 3390 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3391 } 3392 } 3393 3394 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3395 DAG.getVTList(ValueVTs), Values)); 3396 } 3397 3398 void SelectionDAGBuilder::visitTrunc(const User &I) { 3399 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3400 SDValue N = getValue(I.getOperand(0)); 3401 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3402 I.getType()); 3403 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3404 } 3405 3406 void SelectionDAGBuilder::visitZExt(const User &I) { 3407 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3408 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3409 SDValue N = getValue(I.getOperand(0)); 3410 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3411 I.getType()); 3412 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3413 } 3414 3415 void SelectionDAGBuilder::visitSExt(const User &I) { 3416 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3417 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3418 SDValue N = getValue(I.getOperand(0)); 3419 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3420 I.getType()); 3421 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3422 } 3423 3424 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3425 // FPTrunc is never a no-op cast, no need to check 3426 SDValue N = getValue(I.getOperand(0)); 3427 SDLoc dl = getCurSDLoc(); 3428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3429 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3430 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3431 DAG.getTargetConstant( 3432 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3433 } 3434 3435 void SelectionDAGBuilder::visitFPExt(const User &I) { 3436 // FPExt is never a no-op cast, no need to check 3437 SDValue N = getValue(I.getOperand(0)); 3438 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3439 I.getType()); 3440 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3441 } 3442 3443 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3444 // FPToUI is never a no-op cast, no need to check 3445 SDValue N = getValue(I.getOperand(0)); 3446 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3447 I.getType()); 3448 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3449 } 3450 3451 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3452 // FPToSI is never a no-op cast, no need to check 3453 SDValue N = getValue(I.getOperand(0)); 3454 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3455 I.getType()); 3456 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3457 } 3458 3459 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3460 // UIToFP is never a no-op cast, no need to check 3461 SDValue N = getValue(I.getOperand(0)); 3462 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3463 I.getType()); 3464 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3465 } 3466 3467 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3468 // SIToFP is never a no-op cast, no need to check 3469 SDValue N = getValue(I.getOperand(0)); 3470 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3471 I.getType()); 3472 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3473 } 3474 3475 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3476 // What to do depends on the size of the integer and the size of the pointer. 3477 // We can either truncate, zero extend, or no-op, accordingly. 3478 SDValue N = getValue(I.getOperand(0)); 3479 auto &TLI = DAG.getTargetLoweringInfo(); 3480 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3481 I.getType()); 3482 EVT PtrMemVT = 3483 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3484 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3485 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3486 setValue(&I, N); 3487 } 3488 3489 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3490 // What to do depends on the size of the integer and the size of the pointer. 3491 // We can either truncate, zero extend, or no-op, accordingly. 3492 SDValue N = getValue(I.getOperand(0)); 3493 auto &TLI = DAG.getTargetLoweringInfo(); 3494 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3495 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3496 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3497 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3498 setValue(&I, N); 3499 } 3500 3501 void SelectionDAGBuilder::visitBitCast(const User &I) { 3502 SDValue N = getValue(I.getOperand(0)); 3503 SDLoc dl = getCurSDLoc(); 3504 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3505 I.getType()); 3506 3507 // BitCast assures us that source and destination are the same size so this is 3508 // either a BITCAST or a no-op. 3509 if (DestVT != N.getValueType()) 3510 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3511 DestVT, N)); // convert types. 3512 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3513 // might fold any kind of constant expression to an integer constant and that 3514 // is not what we are looking for. Only recognize a bitcast of a genuine 3515 // constant integer as an opaque constant. 3516 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3517 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3518 /*isOpaque*/true)); 3519 else 3520 setValue(&I, N); // noop cast. 3521 } 3522 3523 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3524 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3525 const Value *SV = I.getOperand(0); 3526 SDValue N = getValue(SV); 3527 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3528 3529 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3530 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3531 3532 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3533 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3534 3535 setValue(&I, N); 3536 } 3537 3538 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3539 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3540 SDValue InVec = getValue(I.getOperand(0)); 3541 SDValue InVal = getValue(I.getOperand(1)); 3542 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3543 TLI.getVectorIdxTy(DAG.getDataLayout())); 3544 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3545 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3546 InVec, InVal, InIdx)); 3547 } 3548 3549 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3551 SDValue InVec = getValue(I.getOperand(0)); 3552 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3553 TLI.getVectorIdxTy(DAG.getDataLayout())); 3554 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3555 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3556 InVec, InIdx)); 3557 } 3558 3559 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3560 SDValue Src1 = getValue(I.getOperand(0)); 3561 SDValue Src2 = getValue(I.getOperand(1)); 3562 ArrayRef<int> Mask; 3563 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3564 Mask = SVI->getShuffleMask(); 3565 else 3566 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3567 SDLoc DL = getCurSDLoc(); 3568 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3569 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3570 EVT SrcVT = Src1.getValueType(); 3571 3572 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3573 VT.isScalableVector()) { 3574 // Canonical splat form of first element of first input vector. 3575 SDValue FirstElt = 3576 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3577 DAG.getVectorIdxConstant(0, DL)); 3578 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3579 return; 3580 } 3581 3582 // For now, we only handle splats for scalable vectors. 3583 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3584 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3585 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3586 3587 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3588 unsigned MaskNumElts = Mask.size(); 3589 3590 if (SrcNumElts == MaskNumElts) { 3591 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3592 return; 3593 } 3594 3595 // Normalize the shuffle vector since mask and vector length don't match. 3596 if (SrcNumElts < MaskNumElts) { 3597 // Mask is longer than the source vectors. We can use concatenate vector to 3598 // make the mask and vectors lengths match. 3599 3600 if (MaskNumElts % SrcNumElts == 0) { 3601 // Mask length is a multiple of the source vector length. 3602 // Check if the shuffle is some kind of concatenation of the input 3603 // vectors. 3604 unsigned NumConcat = MaskNumElts / SrcNumElts; 3605 bool IsConcat = true; 3606 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3607 for (unsigned i = 0; i != MaskNumElts; ++i) { 3608 int Idx = Mask[i]; 3609 if (Idx < 0) 3610 continue; 3611 // Ensure the indices in each SrcVT sized piece are sequential and that 3612 // the same source is used for the whole piece. 3613 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3614 (ConcatSrcs[i / SrcNumElts] >= 0 && 3615 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3616 IsConcat = false; 3617 break; 3618 } 3619 // Remember which source this index came from. 3620 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3621 } 3622 3623 // The shuffle is concatenating multiple vectors together. Just emit 3624 // a CONCAT_VECTORS operation. 3625 if (IsConcat) { 3626 SmallVector<SDValue, 8> ConcatOps; 3627 for (auto Src : ConcatSrcs) { 3628 if (Src < 0) 3629 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3630 else if (Src == 0) 3631 ConcatOps.push_back(Src1); 3632 else 3633 ConcatOps.push_back(Src2); 3634 } 3635 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3636 return; 3637 } 3638 } 3639 3640 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3641 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3642 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3643 PaddedMaskNumElts); 3644 3645 // Pad both vectors with undefs to make them the same length as the mask. 3646 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3647 3648 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3649 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3650 MOps1[0] = Src1; 3651 MOps2[0] = Src2; 3652 3653 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3654 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3655 3656 // Readjust mask for new input vector length. 3657 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3658 for (unsigned i = 0; i != MaskNumElts; ++i) { 3659 int Idx = Mask[i]; 3660 if (Idx >= (int)SrcNumElts) 3661 Idx -= SrcNumElts - PaddedMaskNumElts; 3662 MappedOps[i] = Idx; 3663 } 3664 3665 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3666 3667 // If the concatenated vector was padded, extract a subvector with the 3668 // correct number of elements. 3669 if (MaskNumElts != PaddedMaskNumElts) 3670 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3671 DAG.getVectorIdxConstant(0, DL)); 3672 3673 setValue(&I, Result); 3674 return; 3675 } 3676 3677 if (SrcNumElts > MaskNumElts) { 3678 // Analyze the access pattern of the vector to see if we can extract 3679 // two subvectors and do the shuffle. 3680 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3681 bool CanExtract = true; 3682 for (int Idx : Mask) { 3683 unsigned Input = 0; 3684 if (Idx < 0) 3685 continue; 3686 3687 if (Idx >= (int)SrcNumElts) { 3688 Input = 1; 3689 Idx -= SrcNumElts; 3690 } 3691 3692 // If all the indices come from the same MaskNumElts sized portion of 3693 // the sources we can use extract. Also make sure the extract wouldn't 3694 // extract past the end of the source. 3695 int NewStartIdx = alignDown(Idx, MaskNumElts); 3696 if (NewStartIdx + MaskNumElts > SrcNumElts || 3697 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3698 CanExtract = false; 3699 // Make sure we always update StartIdx as we use it to track if all 3700 // elements are undef. 3701 StartIdx[Input] = NewStartIdx; 3702 } 3703 3704 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3705 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3706 return; 3707 } 3708 if (CanExtract) { 3709 // Extract appropriate subvector and generate a vector shuffle 3710 for (unsigned Input = 0; Input < 2; ++Input) { 3711 SDValue &Src = Input == 0 ? Src1 : Src2; 3712 if (StartIdx[Input] < 0) 3713 Src = DAG.getUNDEF(VT); 3714 else { 3715 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3716 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3717 } 3718 } 3719 3720 // Calculate new mask. 3721 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3722 for (int &Idx : MappedOps) { 3723 if (Idx >= (int)SrcNumElts) 3724 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3725 else if (Idx >= 0) 3726 Idx -= StartIdx[0]; 3727 } 3728 3729 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3730 return; 3731 } 3732 } 3733 3734 // We can't use either concat vectors or extract subvectors so fall back to 3735 // replacing the shuffle with extract and build vector. 3736 // to insert and build vector. 3737 EVT EltVT = VT.getVectorElementType(); 3738 SmallVector<SDValue,8> Ops; 3739 for (int Idx : Mask) { 3740 SDValue Res; 3741 3742 if (Idx < 0) { 3743 Res = DAG.getUNDEF(EltVT); 3744 } else { 3745 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3746 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3747 3748 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3749 DAG.getVectorIdxConstant(Idx, DL)); 3750 } 3751 3752 Ops.push_back(Res); 3753 } 3754 3755 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3756 } 3757 3758 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3759 ArrayRef<unsigned> Indices; 3760 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3761 Indices = IV->getIndices(); 3762 else 3763 Indices = cast<ConstantExpr>(&I)->getIndices(); 3764 3765 const Value *Op0 = I.getOperand(0); 3766 const Value *Op1 = I.getOperand(1); 3767 Type *AggTy = I.getType(); 3768 Type *ValTy = Op1->getType(); 3769 bool IntoUndef = isa<UndefValue>(Op0); 3770 bool FromUndef = isa<UndefValue>(Op1); 3771 3772 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3773 3774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3775 SmallVector<EVT, 4> AggValueVTs; 3776 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3777 SmallVector<EVT, 4> ValValueVTs; 3778 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3779 3780 unsigned NumAggValues = AggValueVTs.size(); 3781 unsigned NumValValues = ValValueVTs.size(); 3782 SmallVector<SDValue, 4> Values(NumAggValues); 3783 3784 // Ignore an insertvalue that produces an empty object 3785 if (!NumAggValues) { 3786 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3787 return; 3788 } 3789 3790 SDValue Agg = getValue(Op0); 3791 unsigned i = 0; 3792 // Copy the beginning value(s) from the original aggregate. 3793 for (; i != LinearIndex; ++i) 3794 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3795 SDValue(Agg.getNode(), Agg.getResNo() + i); 3796 // Copy values from the inserted value(s). 3797 if (NumValValues) { 3798 SDValue Val = getValue(Op1); 3799 for (; i != LinearIndex + NumValValues; ++i) 3800 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3801 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3802 } 3803 // Copy remaining value(s) from the original aggregate. 3804 for (; i != NumAggValues; ++i) 3805 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3806 SDValue(Agg.getNode(), Agg.getResNo() + i); 3807 3808 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3809 DAG.getVTList(AggValueVTs), Values)); 3810 } 3811 3812 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3813 ArrayRef<unsigned> Indices; 3814 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3815 Indices = EV->getIndices(); 3816 else 3817 Indices = cast<ConstantExpr>(&I)->getIndices(); 3818 3819 const Value *Op0 = I.getOperand(0); 3820 Type *AggTy = Op0->getType(); 3821 Type *ValTy = I.getType(); 3822 bool OutOfUndef = isa<UndefValue>(Op0); 3823 3824 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3825 3826 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3827 SmallVector<EVT, 4> ValValueVTs; 3828 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3829 3830 unsigned NumValValues = ValValueVTs.size(); 3831 3832 // Ignore a extractvalue that produces an empty object 3833 if (!NumValValues) { 3834 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3835 return; 3836 } 3837 3838 SmallVector<SDValue, 4> Values(NumValValues); 3839 3840 SDValue Agg = getValue(Op0); 3841 // Copy out the selected value(s). 3842 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3843 Values[i - LinearIndex] = 3844 OutOfUndef ? 3845 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3846 SDValue(Agg.getNode(), Agg.getResNo() + i); 3847 3848 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3849 DAG.getVTList(ValValueVTs), Values)); 3850 } 3851 3852 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3853 Value *Op0 = I.getOperand(0); 3854 // Note that the pointer operand may be a vector of pointers. Take the scalar 3855 // element which holds a pointer. 3856 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3857 SDValue N = getValue(Op0); 3858 SDLoc dl = getCurSDLoc(); 3859 auto &TLI = DAG.getTargetLoweringInfo(); 3860 3861 // Normalize Vector GEP - all scalar operands should be converted to the 3862 // splat vector. 3863 bool IsVectorGEP = I.getType()->isVectorTy(); 3864 ElementCount VectorElementCount = 3865 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3866 : ElementCount::getFixed(0); 3867 3868 if (IsVectorGEP && !N.getValueType().isVector()) { 3869 LLVMContext &Context = *DAG.getContext(); 3870 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3871 if (VectorElementCount.isScalable()) 3872 N = DAG.getSplatVector(VT, dl, N); 3873 else 3874 N = DAG.getSplatBuildVector(VT, dl, N); 3875 } 3876 3877 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3878 GTI != E; ++GTI) { 3879 const Value *Idx = GTI.getOperand(); 3880 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3881 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3882 if (Field) { 3883 // N = N + Offset 3884 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3885 3886 // In an inbounds GEP with an offset that is nonnegative even when 3887 // interpreted as signed, assume there is no unsigned overflow. 3888 SDNodeFlags Flags; 3889 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3890 Flags.setNoUnsignedWrap(true); 3891 3892 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3893 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3894 } 3895 } else { 3896 // IdxSize is the width of the arithmetic according to IR semantics. 3897 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3898 // (and fix up the result later). 3899 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3900 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3901 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3902 // We intentionally mask away the high bits here; ElementSize may not 3903 // fit in IdxTy. 3904 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3905 bool ElementScalable = ElementSize.isScalable(); 3906 3907 // If this is a scalar constant or a splat vector of constants, 3908 // handle it quickly. 3909 const auto *C = dyn_cast<Constant>(Idx); 3910 if (C && isa<VectorType>(C->getType())) 3911 C = C->getSplatValue(); 3912 3913 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3914 if (CI && CI->isZero()) 3915 continue; 3916 if (CI && !ElementScalable) { 3917 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3918 LLVMContext &Context = *DAG.getContext(); 3919 SDValue OffsVal; 3920 if (IsVectorGEP) 3921 OffsVal = DAG.getConstant( 3922 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3923 else 3924 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3925 3926 // In an inbounds GEP with an offset that is nonnegative even when 3927 // interpreted as signed, assume there is no unsigned overflow. 3928 SDNodeFlags Flags; 3929 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3930 Flags.setNoUnsignedWrap(true); 3931 3932 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3933 3934 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3935 continue; 3936 } 3937 3938 // N = N + Idx * ElementMul; 3939 SDValue IdxN = getValue(Idx); 3940 3941 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3942 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3943 VectorElementCount); 3944 if (VectorElementCount.isScalable()) 3945 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3946 else 3947 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3948 } 3949 3950 // If the index is smaller or larger than intptr_t, truncate or extend 3951 // it. 3952 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3953 3954 if (ElementScalable) { 3955 EVT VScaleTy = N.getValueType().getScalarType(); 3956 SDValue VScale = DAG.getNode( 3957 ISD::VSCALE, dl, VScaleTy, 3958 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3959 if (IsVectorGEP) 3960 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3961 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3962 } else { 3963 // If this is a multiply by a power of two, turn it into a shl 3964 // immediately. This is a very common case. 3965 if (ElementMul != 1) { 3966 if (ElementMul.isPowerOf2()) { 3967 unsigned Amt = ElementMul.logBase2(); 3968 IdxN = DAG.getNode(ISD::SHL, dl, 3969 N.getValueType(), IdxN, 3970 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3971 } else { 3972 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3973 IdxN.getValueType()); 3974 IdxN = DAG.getNode(ISD::MUL, dl, 3975 N.getValueType(), IdxN, Scale); 3976 } 3977 } 3978 } 3979 3980 N = DAG.getNode(ISD::ADD, dl, 3981 N.getValueType(), N, IdxN); 3982 } 3983 } 3984 3985 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3986 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3987 if (IsVectorGEP) { 3988 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3989 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3990 } 3991 3992 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3993 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3994 3995 setValue(&I, N); 3996 } 3997 3998 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3999 // If this is a fixed sized alloca in the entry block of the function, 4000 // allocate it statically on the stack. 4001 if (FuncInfo.StaticAllocaMap.count(&I)) 4002 return; // getValue will auto-populate this. 4003 4004 SDLoc dl = getCurSDLoc(); 4005 Type *Ty = I.getAllocatedType(); 4006 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4007 auto &DL = DAG.getDataLayout(); 4008 uint64_t TySize = DL.getTypeAllocSize(Ty); 4009 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4010 4011 SDValue AllocSize = getValue(I.getArraySize()); 4012 4013 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4014 if (AllocSize.getValueType() != IntPtr) 4015 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4016 4017 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 4018 AllocSize, 4019 DAG.getConstant(TySize, dl, IntPtr)); 4020 4021 // Handle alignment. If the requested alignment is less than or equal to 4022 // the stack alignment, ignore it. If the size is greater than or equal to 4023 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4024 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4025 if (*Alignment <= StackAlign) 4026 Alignment = None; 4027 4028 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4029 // Round the size of the allocation up to the stack alignment size 4030 // by add SA-1 to the size. This doesn't overflow because we're computing 4031 // an address inside an alloca. 4032 SDNodeFlags Flags; 4033 Flags.setNoUnsignedWrap(true); 4034 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4035 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4036 4037 // Mask out the low bits for alignment purposes. 4038 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4039 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4040 4041 SDValue Ops[] = { 4042 getRoot(), AllocSize, 4043 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4044 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4045 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4046 setValue(&I, DSA); 4047 DAG.setRoot(DSA.getValue(1)); 4048 4049 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4050 } 4051 4052 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4053 if (I.isAtomic()) 4054 return visitAtomicLoad(I); 4055 4056 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4057 const Value *SV = I.getOperand(0); 4058 if (TLI.supportSwiftError()) { 4059 // Swifterror values can come from either a function parameter with 4060 // swifterror attribute or an alloca with swifterror attribute. 4061 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4062 if (Arg->hasSwiftErrorAttr()) 4063 return visitLoadFromSwiftError(I); 4064 } 4065 4066 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4067 if (Alloca->isSwiftError()) 4068 return visitLoadFromSwiftError(I); 4069 } 4070 } 4071 4072 SDValue Ptr = getValue(SV); 4073 4074 Type *Ty = I.getType(); 4075 Align Alignment = I.getAlign(); 4076 4077 AAMDNodes AAInfo = I.getAAMetadata(); 4078 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4079 4080 SmallVector<EVT, 4> ValueVTs, MemVTs; 4081 SmallVector<uint64_t, 4> Offsets; 4082 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4083 unsigned NumValues = ValueVTs.size(); 4084 if (NumValues == 0) 4085 return; 4086 4087 bool isVolatile = I.isVolatile(); 4088 4089 SDValue Root; 4090 bool ConstantMemory = false; 4091 if (isVolatile) 4092 // Serialize volatile loads with other side effects. 4093 Root = getRoot(); 4094 else if (NumValues > MaxParallelChains) 4095 Root = getMemoryRoot(); 4096 else if (AA && 4097 AA->pointsToConstantMemory(MemoryLocation( 4098 SV, 4099 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4100 AAInfo))) { 4101 // Do not serialize (non-volatile) loads of constant memory with anything. 4102 Root = DAG.getEntryNode(); 4103 ConstantMemory = true; 4104 } else { 4105 // Do not serialize non-volatile loads against each other. 4106 Root = DAG.getRoot(); 4107 } 4108 4109 SDLoc dl = getCurSDLoc(); 4110 4111 if (isVolatile) 4112 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4113 4114 // An aggregate load cannot wrap around the address space, so offsets to its 4115 // parts don't wrap either. 4116 SDNodeFlags Flags; 4117 Flags.setNoUnsignedWrap(true); 4118 4119 SmallVector<SDValue, 4> Values(NumValues); 4120 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4121 EVT PtrVT = Ptr.getValueType(); 4122 4123 MachineMemOperand::Flags MMOFlags 4124 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4125 4126 unsigned ChainI = 0; 4127 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4128 // Serializing loads here may result in excessive register pressure, and 4129 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4130 // could recover a bit by hoisting nodes upward in the chain by recognizing 4131 // they are side-effect free or do not alias. The optimizer should really 4132 // avoid this case by converting large object/array copies to llvm.memcpy 4133 // (MaxParallelChains should always remain as failsafe). 4134 if (ChainI == MaxParallelChains) { 4135 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4136 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4137 makeArrayRef(Chains.data(), ChainI)); 4138 Root = Chain; 4139 ChainI = 0; 4140 } 4141 SDValue A = DAG.getNode(ISD::ADD, dl, 4142 PtrVT, Ptr, 4143 DAG.getConstant(Offsets[i], dl, PtrVT), 4144 Flags); 4145 4146 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4147 MachinePointerInfo(SV, Offsets[i]), Alignment, 4148 MMOFlags, AAInfo, Ranges); 4149 Chains[ChainI] = L.getValue(1); 4150 4151 if (MemVTs[i] != ValueVTs[i]) 4152 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4153 4154 Values[i] = L; 4155 } 4156 4157 if (!ConstantMemory) { 4158 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4159 makeArrayRef(Chains.data(), ChainI)); 4160 if (isVolatile) 4161 DAG.setRoot(Chain); 4162 else 4163 PendingLoads.push_back(Chain); 4164 } 4165 4166 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4167 DAG.getVTList(ValueVTs), Values)); 4168 } 4169 4170 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4171 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4172 "call visitStoreToSwiftError when backend supports swifterror"); 4173 4174 SmallVector<EVT, 4> ValueVTs; 4175 SmallVector<uint64_t, 4> Offsets; 4176 const Value *SrcV = I.getOperand(0); 4177 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4178 SrcV->getType(), ValueVTs, &Offsets); 4179 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4180 "expect a single EVT for swifterror"); 4181 4182 SDValue Src = getValue(SrcV); 4183 // Create a virtual register, then update the virtual register. 4184 Register VReg = 4185 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4186 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4187 // Chain can be getRoot or getControlRoot. 4188 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4189 SDValue(Src.getNode(), Src.getResNo())); 4190 DAG.setRoot(CopyNode); 4191 } 4192 4193 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4194 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4195 "call visitLoadFromSwiftError when backend supports swifterror"); 4196 4197 assert(!I.isVolatile() && 4198 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4199 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4200 "Support volatile, non temporal, invariant for load_from_swift_error"); 4201 4202 const Value *SV = I.getOperand(0); 4203 Type *Ty = I.getType(); 4204 assert( 4205 (!AA || 4206 !AA->pointsToConstantMemory(MemoryLocation( 4207 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4208 I.getAAMetadata()))) && 4209 "load_from_swift_error should not be constant memory"); 4210 4211 SmallVector<EVT, 4> ValueVTs; 4212 SmallVector<uint64_t, 4> Offsets; 4213 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4214 ValueVTs, &Offsets); 4215 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4216 "expect a single EVT for swifterror"); 4217 4218 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4219 SDValue L = DAG.getCopyFromReg( 4220 getRoot(), getCurSDLoc(), 4221 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4222 4223 setValue(&I, L); 4224 } 4225 4226 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4227 if (I.isAtomic()) 4228 return visitAtomicStore(I); 4229 4230 const Value *SrcV = I.getOperand(0); 4231 const Value *PtrV = I.getOperand(1); 4232 4233 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4234 if (TLI.supportSwiftError()) { 4235 // Swifterror values can come from either a function parameter with 4236 // swifterror attribute or an alloca with swifterror attribute. 4237 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4238 if (Arg->hasSwiftErrorAttr()) 4239 return visitStoreToSwiftError(I); 4240 } 4241 4242 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4243 if (Alloca->isSwiftError()) 4244 return visitStoreToSwiftError(I); 4245 } 4246 } 4247 4248 SmallVector<EVT, 4> ValueVTs, MemVTs; 4249 SmallVector<uint64_t, 4> Offsets; 4250 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4251 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4252 unsigned NumValues = ValueVTs.size(); 4253 if (NumValues == 0) 4254 return; 4255 4256 // Get the lowered operands. Note that we do this after 4257 // checking if NumResults is zero, because with zero results 4258 // the operands won't have values in the map. 4259 SDValue Src = getValue(SrcV); 4260 SDValue Ptr = getValue(PtrV); 4261 4262 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4263 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4264 SDLoc dl = getCurSDLoc(); 4265 Align Alignment = I.getAlign(); 4266 AAMDNodes AAInfo = I.getAAMetadata(); 4267 4268 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4269 4270 // An aggregate load cannot wrap around the address space, so offsets to its 4271 // parts don't wrap either. 4272 SDNodeFlags Flags; 4273 Flags.setNoUnsignedWrap(true); 4274 4275 unsigned ChainI = 0; 4276 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4277 // See visitLoad comments. 4278 if (ChainI == MaxParallelChains) { 4279 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4280 makeArrayRef(Chains.data(), ChainI)); 4281 Root = Chain; 4282 ChainI = 0; 4283 } 4284 SDValue Add = 4285 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4286 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4287 if (MemVTs[i] != ValueVTs[i]) 4288 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4289 SDValue St = 4290 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4291 Alignment, MMOFlags, AAInfo); 4292 Chains[ChainI] = St; 4293 } 4294 4295 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4296 makeArrayRef(Chains.data(), ChainI)); 4297 DAG.setRoot(StoreNode); 4298 } 4299 4300 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4301 bool IsCompressing) { 4302 SDLoc sdl = getCurSDLoc(); 4303 4304 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4305 MaybeAlign &Alignment) { 4306 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4307 Src0 = I.getArgOperand(0); 4308 Ptr = I.getArgOperand(1); 4309 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4310 Mask = I.getArgOperand(3); 4311 }; 4312 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4313 MaybeAlign &Alignment) { 4314 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4315 Src0 = I.getArgOperand(0); 4316 Ptr = I.getArgOperand(1); 4317 Mask = I.getArgOperand(2); 4318 Alignment = None; 4319 }; 4320 4321 Value *PtrOperand, *MaskOperand, *Src0Operand; 4322 MaybeAlign Alignment; 4323 if (IsCompressing) 4324 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4325 else 4326 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4327 4328 SDValue Ptr = getValue(PtrOperand); 4329 SDValue Src0 = getValue(Src0Operand); 4330 SDValue Mask = getValue(MaskOperand); 4331 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4332 4333 EVT VT = Src0.getValueType(); 4334 if (!Alignment) 4335 Alignment = DAG.getEVTAlign(VT); 4336 4337 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4338 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4339 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4340 SDValue StoreNode = 4341 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4342 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4343 DAG.setRoot(StoreNode); 4344 setValue(&I, StoreNode); 4345 } 4346 4347 // Get a uniform base for the Gather/Scatter intrinsic. 4348 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4349 // We try to represent it as a base pointer + vector of indices. 4350 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4351 // The first operand of the GEP may be a single pointer or a vector of pointers 4352 // Example: 4353 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4354 // or 4355 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4356 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4357 // 4358 // When the first GEP operand is a single pointer - it is the uniform base we 4359 // are looking for. If first operand of the GEP is a splat vector - we 4360 // extract the splat value and use it as a uniform base. 4361 // In all other cases the function returns 'false'. 4362 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4363 ISD::MemIndexType &IndexType, SDValue &Scale, 4364 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4365 SelectionDAG& DAG = SDB->DAG; 4366 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4367 const DataLayout &DL = DAG.getDataLayout(); 4368 4369 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4370 4371 // Handle splat constant pointer. 4372 if (auto *C = dyn_cast<Constant>(Ptr)) { 4373 C = C->getSplatValue(); 4374 if (!C) 4375 return false; 4376 4377 Base = SDB->getValue(C); 4378 4379 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4380 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4381 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4382 IndexType = ISD::SIGNED_SCALED; 4383 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4384 return true; 4385 } 4386 4387 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4388 if (!GEP || GEP->getParent() != CurBB) 4389 return false; 4390 4391 if (GEP->getNumOperands() != 2) 4392 return false; 4393 4394 const Value *BasePtr = GEP->getPointerOperand(); 4395 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4396 4397 // Make sure the base is scalar and the index is a vector. 4398 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4399 return false; 4400 4401 Base = SDB->getValue(BasePtr); 4402 Index = SDB->getValue(IndexVal); 4403 IndexType = ISD::SIGNED_SCALED; 4404 Scale = DAG.getTargetConstant( 4405 DL.getTypeAllocSize(GEP->getResultElementType()), 4406 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4407 return true; 4408 } 4409 4410 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4411 SDLoc sdl = getCurSDLoc(); 4412 4413 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4414 const Value *Ptr = I.getArgOperand(1); 4415 SDValue Src0 = getValue(I.getArgOperand(0)); 4416 SDValue Mask = getValue(I.getArgOperand(3)); 4417 EVT VT = Src0.getValueType(); 4418 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4419 ->getMaybeAlignValue() 4420 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4421 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4422 4423 SDValue Base; 4424 SDValue Index; 4425 ISD::MemIndexType IndexType; 4426 SDValue Scale; 4427 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4428 I.getParent()); 4429 4430 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4431 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4432 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4433 // TODO: Make MachineMemOperands aware of scalable 4434 // vectors. 4435 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4436 if (!UniformBase) { 4437 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4438 Index = getValue(Ptr); 4439 IndexType = ISD::SIGNED_UNSCALED; 4440 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4441 } 4442 4443 EVT IdxVT = Index.getValueType(); 4444 EVT EltTy = IdxVT.getVectorElementType(); 4445 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4446 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4447 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4448 } 4449 4450 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4451 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4452 Ops, MMO, IndexType, false); 4453 DAG.setRoot(Scatter); 4454 setValue(&I, Scatter); 4455 } 4456 4457 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4458 SDLoc sdl = getCurSDLoc(); 4459 4460 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4461 MaybeAlign &Alignment) { 4462 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4463 Ptr = I.getArgOperand(0); 4464 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4465 Mask = I.getArgOperand(2); 4466 Src0 = I.getArgOperand(3); 4467 }; 4468 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4469 MaybeAlign &Alignment) { 4470 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4471 Ptr = I.getArgOperand(0); 4472 Alignment = None; 4473 Mask = I.getArgOperand(1); 4474 Src0 = I.getArgOperand(2); 4475 }; 4476 4477 Value *PtrOperand, *MaskOperand, *Src0Operand; 4478 MaybeAlign Alignment; 4479 if (IsExpanding) 4480 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4481 else 4482 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4483 4484 SDValue Ptr = getValue(PtrOperand); 4485 SDValue Src0 = getValue(Src0Operand); 4486 SDValue Mask = getValue(MaskOperand); 4487 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4488 4489 EVT VT = Src0.getValueType(); 4490 if (!Alignment) 4491 Alignment = DAG.getEVTAlign(VT); 4492 4493 AAMDNodes AAInfo = I.getAAMetadata(); 4494 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4495 4496 // Do not serialize masked loads of constant memory with anything. 4497 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4498 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4499 4500 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4501 4502 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4503 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4504 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4505 4506 SDValue Load = 4507 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4508 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4509 if (AddToChain) 4510 PendingLoads.push_back(Load.getValue(1)); 4511 setValue(&I, Load); 4512 } 4513 4514 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4515 SDLoc sdl = getCurSDLoc(); 4516 4517 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4518 const Value *Ptr = I.getArgOperand(0); 4519 SDValue Src0 = getValue(I.getArgOperand(3)); 4520 SDValue Mask = getValue(I.getArgOperand(2)); 4521 4522 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4523 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4524 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4525 ->getMaybeAlignValue() 4526 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4527 4528 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4529 4530 SDValue Root = DAG.getRoot(); 4531 SDValue Base; 4532 SDValue Index; 4533 ISD::MemIndexType IndexType; 4534 SDValue Scale; 4535 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4536 I.getParent()); 4537 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4538 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4539 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4540 // TODO: Make MachineMemOperands aware of scalable 4541 // vectors. 4542 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4543 4544 if (!UniformBase) { 4545 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4546 Index = getValue(Ptr); 4547 IndexType = ISD::SIGNED_UNSCALED; 4548 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4549 } 4550 4551 EVT IdxVT = Index.getValueType(); 4552 EVT EltTy = IdxVT.getVectorElementType(); 4553 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4554 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4555 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4556 } 4557 4558 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4559 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4560 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4561 4562 PendingLoads.push_back(Gather.getValue(1)); 4563 setValue(&I, Gather); 4564 } 4565 4566 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4567 SDLoc dl = getCurSDLoc(); 4568 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4569 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4570 SyncScope::ID SSID = I.getSyncScopeID(); 4571 4572 SDValue InChain = getRoot(); 4573 4574 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4575 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4576 4577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4578 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4579 4580 MachineFunction &MF = DAG.getMachineFunction(); 4581 MachineMemOperand *MMO = MF.getMachineMemOperand( 4582 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4583 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4584 FailureOrdering); 4585 4586 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4587 dl, MemVT, VTs, InChain, 4588 getValue(I.getPointerOperand()), 4589 getValue(I.getCompareOperand()), 4590 getValue(I.getNewValOperand()), MMO); 4591 4592 SDValue OutChain = L.getValue(2); 4593 4594 setValue(&I, L); 4595 DAG.setRoot(OutChain); 4596 } 4597 4598 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4599 SDLoc dl = getCurSDLoc(); 4600 ISD::NodeType NT; 4601 switch (I.getOperation()) { 4602 default: llvm_unreachable("Unknown atomicrmw operation"); 4603 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4604 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4605 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4606 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4607 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4608 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4609 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4610 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4611 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4612 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4613 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4614 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4615 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4616 } 4617 AtomicOrdering Ordering = I.getOrdering(); 4618 SyncScope::ID SSID = I.getSyncScopeID(); 4619 4620 SDValue InChain = getRoot(); 4621 4622 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4623 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4624 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4625 4626 MachineFunction &MF = DAG.getMachineFunction(); 4627 MachineMemOperand *MMO = MF.getMachineMemOperand( 4628 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4629 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4630 4631 SDValue L = 4632 DAG.getAtomic(NT, dl, MemVT, InChain, 4633 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4634 MMO); 4635 4636 SDValue OutChain = L.getValue(1); 4637 4638 setValue(&I, L); 4639 DAG.setRoot(OutChain); 4640 } 4641 4642 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4643 SDLoc dl = getCurSDLoc(); 4644 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4645 SDValue Ops[3]; 4646 Ops[0] = getRoot(); 4647 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4648 TLI.getFenceOperandTy(DAG.getDataLayout())); 4649 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4650 TLI.getFenceOperandTy(DAG.getDataLayout())); 4651 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4652 } 4653 4654 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4655 SDLoc dl = getCurSDLoc(); 4656 AtomicOrdering Order = I.getOrdering(); 4657 SyncScope::ID SSID = I.getSyncScopeID(); 4658 4659 SDValue InChain = getRoot(); 4660 4661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4662 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4663 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4664 4665 if (!TLI.supportsUnalignedAtomics() && 4666 I.getAlignment() < MemVT.getSizeInBits() / 8) 4667 report_fatal_error("Cannot generate unaligned atomic load"); 4668 4669 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4670 4671 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4672 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4673 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4674 4675 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4676 4677 SDValue Ptr = getValue(I.getPointerOperand()); 4678 4679 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4680 // TODO: Once this is better exercised by tests, it should be merged with 4681 // the normal path for loads to prevent future divergence. 4682 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4683 if (MemVT != VT) 4684 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4685 4686 setValue(&I, L); 4687 SDValue OutChain = L.getValue(1); 4688 if (!I.isUnordered()) 4689 DAG.setRoot(OutChain); 4690 else 4691 PendingLoads.push_back(OutChain); 4692 return; 4693 } 4694 4695 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4696 Ptr, MMO); 4697 4698 SDValue OutChain = L.getValue(1); 4699 if (MemVT != VT) 4700 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4701 4702 setValue(&I, L); 4703 DAG.setRoot(OutChain); 4704 } 4705 4706 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4707 SDLoc dl = getCurSDLoc(); 4708 4709 AtomicOrdering Ordering = I.getOrdering(); 4710 SyncScope::ID SSID = I.getSyncScopeID(); 4711 4712 SDValue InChain = getRoot(); 4713 4714 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4715 EVT MemVT = 4716 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4717 4718 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4719 report_fatal_error("Cannot generate unaligned atomic store"); 4720 4721 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4722 4723 MachineFunction &MF = DAG.getMachineFunction(); 4724 MachineMemOperand *MMO = MF.getMachineMemOperand( 4725 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4726 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4727 4728 SDValue Val = getValue(I.getValueOperand()); 4729 if (Val.getValueType() != MemVT) 4730 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4731 SDValue Ptr = getValue(I.getPointerOperand()); 4732 4733 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4734 // TODO: Once this is better exercised by tests, it should be merged with 4735 // the normal path for stores to prevent future divergence. 4736 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4737 DAG.setRoot(S); 4738 return; 4739 } 4740 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4741 Ptr, Val, MMO); 4742 4743 4744 DAG.setRoot(OutChain); 4745 } 4746 4747 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4748 /// node. 4749 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4750 unsigned Intrinsic) { 4751 // Ignore the callsite's attributes. A specific call site may be marked with 4752 // readnone, but the lowering code will expect the chain based on the 4753 // definition. 4754 const Function *F = I.getCalledFunction(); 4755 bool HasChain = !F->doesNotAccessMemory(); 4756 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4757 4758 // Build the operand list. 4759 SmallVector<SDValue, 8> Ops; 4760 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4761 if (OnlyLoad) { 4762 // We don't need to serialize loads against other loads. 4763 Ops.push_back(DAG.getRoot()); 4764 } else { 4765 Ops.push_back(getRoot()); 4766 } 4767 } 4768 4769 // Info is set by getTgtMemInstrinsic 4770 TargetLowering::IntrinsicInfo Info; 4771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4772 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4773 DAG.getMachineFunction(), 4774 Intrinsic); 4775 4776 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4777 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4778 Info.opc == ISD::INTRINSIC_W_CHAIN) 4779 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4780 TLI.getPointerTy(DAG.getDataLayout()))); 4781 4782 // Add all operands of the call to the operand list. 4783 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4784 const Value *Arg = I.getArgOperand(i); 4785 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4786 Ops.push_back(getValue(Arg)); 4787 continue; 4788 } 4789 4790 // Use TargetConstant instead of a regular constant for immarg. 4791 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4792 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4793 assert(CI->getBitWidth() <= 64 && 4794 "large intrinsic immediates not handled"); 4795 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4796 } else { 4797 Ops.push_back( 4798 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4799 } 4800 } 4801 4802 SmallVector<EVT, 4> ValueVTs; 4803 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4804 4805 if (HasChain) 4806 ValueVTs.push_back(MVT::Other); 4807 4808 SDVTList VTs = DAG.getVTList(ValueVTs); 4809 4810 // Propagate fast-math-flags from IR to node(s). 4811 SDNodeFlags Flags; 4812 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4813 Flags.copyFMF(*FPMO); 4814 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4815 4816 // Create the node. 4817 SDValue Result; 4818 if (IsTgtIntrinsic) { 4819 // This is target intrinsic that touches memory 4820 Result = 4821 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4822 MachinePointerInfo(Info.ptrVal, Info.offset), 4823 Info.align, Info.flags, Info.size, 4824 I.getAAMetadata()); 4825 } else if (!HasChain) { 4826 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4827 } else if (!I.getType()->isVoidTy()) { 4828 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4829 } else { 4830 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4831 } 4832 4833 if (HasChain) { 4834 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4835 if (OnlyLoad) 4836 PendingLoads.push_back(Chain); 4837 else 4838 DAG.setRoot(Chain); 4839 } 4840 4841 if (!I.getType()->isVoidTy()) { 4842 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4843 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4844 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4845 } else 4846 Result = lowerRangeToAssertZExt(DAG, I, Result); 4847 4848 MaybeAlign Alignment = I.getRetAlign(); 4849 if (!Alignment) 4850 Alignment = F->getAttributes().getRetAlignment(); 4851 // Insert `assertalign` node if there's an alignment. 4852 if (InsertAssertAlign && Alignment) { 4853 Result = 4854 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4855 } 4856 4857 setValue(&I, Result); 4858 } 4859 } 4860 4861 /// GetSignificand - Get the significand and build it into a floating-point 4862 /// number with exponent of 1: 4863 /// 4864 /// Op = (Op & 0x007fffff) | 0x3f800000; 4865 /// 4866 /// where Op is the hexadecimal representation of floating point value. 4867 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4868 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4869 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4870 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4871 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4872 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4873 } 4874 4875 /// GetExponent - Get the exponent: 4876 /// 4877 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4878 /// 4879 /// where Op is the hexadecimal representation of floating point value. 4880 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4881 const TargetLowering &TLI, const SDLoc &dl) { 4882 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4883 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4884 SDValue t1 = DAG.getNode( 4885 ISD::SRL, dl, MVT::i32, t0, 4886 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4887 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4888 DAG.getConstant(127, dl, MVT::i32)); 4889 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4890 } 4891 4892 /// getF32Constant - Get 32-bit floating point constant. 4893 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4894 const SDLoc &dl) { 4895 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4896 MVT::f32); 4897 } 4898 4899 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4900 SelectionDAG &DAG) { 4901 // TODO: What fast-math-flags should be set on the floating-point nodes? 4902 4903 // IntegerPartOfX = ((int32_t)(t0); 4904 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4905 4906 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4907 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4908 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4909 4910 // IntegerPartOfX <<= 23; 4911 IntegerPartOfX = DAG.getNode( 4912 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4913 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4914 DAG.getDataLayout()))); 4915 4916 SDValue TwoToFractionalPartOfX; 4917 if (LimitFloatPrecision <= 6) { 4918 // For floating-point precision of 6: 4919 // 4920 // TwoToFractionalPartOfX = 4921 // 0.997535578f + 4922 // (0.735607626f + 0.252464424f * x) * x; 4923 // 4924 // error 0.0144103317, which is 6 bits 4925 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4926 getF32Constant(DAG, 0x3e814304, dl)); 4927 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4928 getF32Constant(DAG, 0x3f3c50c8, dl)); 4929 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4930 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4931 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4932 } else if (LimitFloatPrecision <= 12) { 4933 // For floating-point precision of 12: 4934 // 4935 // TwoToFractionalPartOfX = 4936 // 0.999892986f + 4937 // (0.696457318f + 4938 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4939 // 4940 // error 0.000107046256, which is 13 to 14 bits 4941 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4942 getF32Constant(DAG, 0x3da235e3, dl)); 4943 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4944 getF32Constant(DAG, 0x3e65b8f3, dl)); 4945 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4946 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4947 getF32Constant(DAG, 0x3f324b07, dl)); 4948 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4949 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4950 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4951 } else { // LimitFloatPrecision <= 18 4952 // For floating-point precision of 18: 4953 // 4954 // TwoToFractionalPartOfX = 4955 // 0.999999982f + 4956 // (0.693148872f + 4957 // (0.240227044f + 4958 // (0.554906021e-1f + 4959 // (0.961591928e-2f + 4960 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4961 // error 2.47208000*10^(-7), which is better than 18 bits 4962 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4963 getF32Constant(DAG, 0x3924b03e, dl)); 4964 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4965 getF32Constant(DAG, 0x3ab24b87, dl)); 4966 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4967 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4968 getF32Constant(DAG, 0x3c1d8c17, dl)); 4969 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4970 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4971 getF32Constant(DAG, 0x3d634a1d, dl)); 4972 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4973 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4974 getF32Constant(DAG, 0x3e75fe14, dl)); 4975 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4976 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4977 getF32Constant(DAG, 0x3f317234, dl)); 4978 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4979 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4980 getF32Constant(DAG, 0x3f800000, dl)); 4981 } 4982 4983 // Add the exponent into the result in integer domain. 4984 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4985 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4986 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4987 } 4988 4989 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4990 /// limited-precision mode. 4991 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4992 const TargetLowering &TLI, SDNodeFlags Flags) { 4993 if (Op.getValueType() == MVT::f32 && 4994 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4995 4996 // Put the exponent in the right bit position for later addition to the 4997 // final result: 4998 // 4999 // t0 = Op * log2(e) 5000 5001 // TODO: What fast-math-flags should be set here? 5002 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5003 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5004 return getLimitedPrecisionExp2(t0, dl, DAG); 5005 } 5006 5007 // No special expansion. 5008 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5009 } 5010 5011 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5012 /// limited-precision mode. 5013 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5014 const TargetLowering &TLI, SDNodeFlags Flags) { 5015 // TODO: What fast-math-flags should be set on the floating-point nodes? 5016 5017 if (Op.getValueType() == MVT::f32 && 5018 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5019 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5020 5021 // Scale the exponent by log(2). 5022 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5023 SDValue LogOfExponent = 5024 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5025 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5026 5027 // Get the significand and build it into a floating-point number with 5028 // exponent of 1. 5029 SDValue X = GetSignificand(DAG, Op1, dl); 5030 5031 SDValue LogOfMantissa; 5032 if (LimitFloatPrecision <= 6) { 5033 // For floating-point precision of 6: 5034 // 5035 // LogofMantissa = 5036 // -1.1609546f + 5037 // (1.4034025f - 0.23903021f * x) * x; 5038 // 5039 // error 0.0034276066, which is better than 8 bits 5040 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5041 getF32Constant(DAG, 0xbe74c456, dl)); 5042 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5043 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5044 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5045 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5046 getF32Constant(DAG, 0x3f949a29, dl)); 5047 } else if (LimitFloatPrecision <= 12) { 5048 // For floating-point precision of 12: 5049 // 5050 // LogOfMantissa = 5051 // -1.7417939f + 5052 // (2.8212026f + 5053 // (-1.4699568f + 5054 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5055 // 5056 // error 0.000061011436, which is 14 bits 5057 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5058 getF32Constant(DAG, 0xbd67b6d6, dl)); 5059 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5060 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5061 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5062 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5063 getF32Constant(DAG, 0x3fbc278b, dl)); 5064 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5065 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5066 getF32Constant(DAG, 0x40348e95, dl)); 5067 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5068 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5069 getF32Constant(DAG, 0x3fdef31a, dl)); 5070 } else { // LimitFloatPrecision <= 18 5071 // For floating-point precision of 18: 5072 // 5073 // LogOfMantissa = 5074 // -2.1072184f + 5075 // (4.2372794f + 5076 // (-3.7029485f + 5077 // (2.2781945f + 5078 // (-0.87823314f + 5079 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5080 // 5081 // error 0.0000023660568, which is better than 18 bits 5082 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5083 getF32Constant(DAG, 0xbc91e5ac, dl)); 5084 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5085 getF32Constant(DAG, 0x3e4350aa, dl)); 5086 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5087 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5088 getF32Constant(DAG, 0x3f60d3e3, dl)); 5089 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5090 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5091 getF32Constant(DAG, 0x4011cdf0, dl)); 5092 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5093 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5094 getF32Constant(DAG, 0x406cfd1c, dl)); 5095 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5096 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5097 getF32Constant(DAG, 0x408797cb, dl)); 5098 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5099 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5100 getF32Constant(DAG, 0x4006dcab, dl)); 5101 } 5102 5103 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5104 } 5105 5106 // No special expansion. 5107 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5108 } 5109 5110 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5111 /// limited-precision mode. 5112 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5113 const TargetLowering &TLI, SDNodeFlags Flags) { 5114 // TODO: What fast-math-flags should be set on the floating-point nodes? 5115 5116 if (Op.getValueType() == MVT::f32 && 5117 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5118 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5119 5120 // Get the exponent. 5121 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5122 5123 // Get the significand and build it into a floating-point number with 5124 // exponent of 1. 5125 SDValue X = GetSignificand(DAG, Op1, dl); 5126 5127 // Different possible minimax approximations of significand in 5128 // floating-point for various degrees of accuracy over [1,2]. 5129 SDValue Log2ofMantissa; 5130 if (LimitFloatPrecision <= 6) { 5131 // For floating-point precision of 6: 5132 // 5133 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5134 // 5135 // error 0.0049451742, which is more than 7 bits 5136 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5137 getF32Constant(DAG, 0xbeb08fe0, dl)); 5138 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5139 getF32Constant(DAG, 0x40019463, dl)); 5140 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5141 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5142 getF32Constant(DAG, 0x3fd6633d, dl)); 5143 } else if (LimitFloatPrecision <= 12) { 5144 // For floating-point precision of 12: 5145 // 5146 // Log2ofMantissa = 5147 // -2.51285454f + 5148 // (4.07009056f + 5149 // (-2.12067489f + 5150 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5151 // 5152 // error 0.0000876136000, which is better than 13 bits 5153 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5154 getF32Constant(DAG, 0xbda7262e, dl)); 5155 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5156 getF32Constant(DAG, 0x3f25280b, dl)); 5157 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5158 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5159 getF32Constant(DAG, 0x4007b923, dl)); 5160 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5161 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5162 getF32Constant(DAG, 0x40823e2f, dl)); 5163 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5164 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5165 getF32Constant(DAG, 0x4020d29c, dl)); 5166 } else { // LimitFloatPrecision <= 18 5167 // For floating-point precision of 18: 5168 // 5169 // Log2ofMantissa = 5170 // -3.0400495f + 5171 // (6.1129976f + 5172 // (-5.3420409f + 5173 // (3.2865683f + 5174 // (-1.2669343f + 5175 // (0.27515199f - 5176 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5177 // 5178 // error 0.0000018516, which is better than 18 bits 5179 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5180 getF32Constant(DAG, 0xbcd2769e, dl)); 5181 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5182 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5183 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5184 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5185 getF32Constant(DAG, 0x3fa22ae7, dl)); 5186 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5187 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5188 getF32Constant(DAG, 0x40525723, dl)); 5189 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5190 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5191 getF32Constant(DAG, 0x40aaf200, dl)); 5192 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5193 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5194 getF32Constant(DAG, 0x40c39dad, dl)); 5195 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5196 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5197 getF32Constant(DAG, 0x4042902c, dl)); 5198 } 5199 5200 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5201 } 5202 5203 // No special expansion. 5204 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5205 } 5206 5207 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5208 /// limited-precision mode. 5209 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5210 const TargetLowering &TLI, SDNodeFlags Flags) { 5211 // TODO: What fast-math-flags should be set on the floating-point nodes? 5212 5213 if (Op.getValueType() == MVT::f32 && 5214 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5215 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5216 5217 // Scale the exponent by log10(2) [0.30102999f]. 5218 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5219 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5220 getF32Constant(DAG, 0x3e9a209a, dl)); 5221 5222 // Get the significand and build it into a floating-point number with 5223 // exponent of 1. 5224 SDValue X = GetSignificand(DAG, Op1, dl); 5225 5226 SDValue Log10ofMantissa; 5227 if (LimitFloatPrecision <= 6) { 5228 // For floating-point precision of 6: 5229 // 5230 // Log10ofMantissa = 5231 // -0.50419619f + 5232 // (0.60948995f - 0.10380950f * x) * x; 5233 // 5234 // error 0.0014886165, which is 6 bits 5235 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5236 getF32Constant(DAG, 0xbdd49a13, dl)); 5237 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5238 getF32Constant(DAG, 0x3f1c0789, dl)); 5239 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5240 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5241 getF32Constant(DAG, 0x3f011300, dl)); 5242 } else if (LimitFloatPrecision <= 12) { 5243 // For floating-point precision of 12: 5244 // 5245 // Log10ofMantissa = 5246 // -0.64831180f + 5247 // (0.91751397f + 5248 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5249 // 5250 // error 0.00019228036, which is better than 12 bits 5251 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5252 getF32Constant(DAG, 0x3d431f31, dl)); 5253 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5254 getF32Constant(DAG, 0x3ea21fb2, dl)); 5255 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5256 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5257 getF32Constant(DAG, 0x3f6ae232, dl)); 5258 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5259 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5260 getF32Constant(DAG, 0x3f25f7c3, dl)); 5261 } else { // LimitFloatPrecision <= 18 5262 // For floating-point precision of 18: 5263 // 5264 // Log10ofMantissa = 5265 // -0.84299375f + 5266 // (1.5327582f + 5267 // (-1.0688956f + 5268 // (0.49102474f + 5269 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5270 // 5271 // error 0.0000037995730, which is better than 18 bits 5272 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5273 getF32Constant(DAG, 0x3c5d51ce, dl)); 5274 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5275 getF32Constant(DAG, 0x3e00685a, dl)); 5276 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5277 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5278 getF32Constant(DAG, 0x3efb6798, dl)); 5279 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5280 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5281 getF32Constant(DAG, 0x3f88d192, dl)); 5282 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5283 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5284 getF32Constant(DAG, 0x3fc4316c, dl)); 5285 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5286 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5287 getF32Constant(DAG, 0x3f57ce70, dl)); 5288 } 5289 5290 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5291 } 5292 5293 // No special expansion. 5294 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5295 } 5296 5297 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5298 /// limited-precision mode. 5299 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5300 const TargetLowering &TLI, SDNodeFlags Flags) { 5301 if (Op.getValueType() == MVT::f32 && 5302 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5303 return getLimitedPrecisionExp2(Op, dl, DAG); 5304 5305 // No special expansion. 5306 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5307 } 5308 5309 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5310 /// limited-precision mode with x == 10.0f. 5311 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5312 SelectionDAG &DAG, const TargetLowering &TLI, 5313 SDNodeFlags Flags) { 5314 bool IsExp10 = false; 5315 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5316 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5317 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5318 APFloat Ten(10.0f); 5319 IsExp10 = LHSC->isExactlyValue(Ten); 5320 } 5321 } 5322 5323 // TODO: What fast-math-flags should be set on the FMUL node? 5324 if (IsExp10) { 5325 // Put the exponent in the right bit position for later addition to the 5326 // final result: 5327 // 5328 // #define LOG2OF10 3.3219281f 5329 // t0 = Op * LOG2OF10; 5330 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5331 getF32Constant(DAG, 0x40549a78, dl)); 5332 return getLimitedPrecisionExp2(t0, dl, DAG); 5333 } 5334 5335 // No special expansion. 5336 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5337 } 5338 5339 /// ExpandPowI - Expand a llvm.powi intrinsic. 5340 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5341 SelectionDAG &DAG) { 5342 // If RHS is a constant, we can expand this out to a multiplication tree, 5343 // otherwise we end up lowering to a call to __powidf2 (for example). When 5344 // optimizing for size, we only want to do this if the expansion would produce 5345 // a small number of multiplies, otherwise we do the full expansion. 5346 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5347 // Get the exponent as a positive value. 5348 unsigned Val = RHSC->getSExtValue(); 5349 if ((int)Val < 0) Val = -Val; 5350 5351 // powi(x, 0) -> 1.0 5352 if (Val == 0) 5353 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5354 5355 bool OptForSize = DAG.shouldOptForSize(); 5356 if (!OptForSize || 5357 // If optimizing for size, don't insert too many multiplies. 5358 // This inserts up to 5 multiplies. 5359 countPopulation(Val) + Log2_32(Val) < 7) { 5360 // We use the simple binary decomposition method to generate the multiply 5361 // sequence. There are more optimal ways to do this (for example, 5362 // powi(x,15) generates one more multiply than it should), but this has 5363 // the benefit of being both really simple and much better than a libcall. 5364 SDValue Res; // Logically starts equal to 1.0 5365 SDValue CurSquare = LHS; 5366 // TODO: Intrinsics should have fast-math-flags that propagate to these 5367 // nodes. 5368 while (Val) { 5369 if (Val & 1) { 5370 if (Res.getNode()) 5371 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5372 else 5373 Res = CurSquare; // 1.0*CurSquare. 5374 } 5375 5376 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5377 CurSquare, CurSquare); 5378 Val >>= 1; 5379 } 5380 5381 // If the original was negative, invert the result, producing 1/(x*x*x). 5382 if (RHSC->getSExtValue() < 0) 5383 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5384 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5385 return Res; 5386 } 5387 } 5388 5389 // Otherwise, expand to a libcall. 5390 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5391 } 5392 5393 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5394 SDValue LHS, SDValue RHS, SDValue Scale, 5395 SelectionDAG &DAG, const TargetLowering &TLI) { 5396 EVT VT = LHS.getValueType(); 5397 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5398 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5399 LLVMContext &Ctx = *DAG.getContext(); 5400 5401 // If the type is legal but the operation isn't, this node might survive all 5402 // the way to operation legalization. If we end up there and we do not have 5403 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5404 // node. 5405 5406 // Coax the legalizer into expanding the node during type legalization instead 5407 // by bumping the size by one bit. This will force it to Promote, enabling the 5408 // early expansion and avoiding the need to expand later. 5409 5410 // We don't have to do this if Scale is 0; that can always be expanded, unless 5411 // it's a saturating signed operation. Those can experience true integer 5412 // division overflow, a case which we must avoid. 5413 5414 // FIXME: We wouldn't have to do this (or any of the early 5415 // expansion/promotion) if it was possible to expand a libcall of an 5416 // illegal type during operation legalization. But it's not, so things 5417 // get a bit hacky. 5418 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5419 if ((ScaleInt > 0 || (Saturating && Signed)) && 5420 (TLI.isTypeLegal(VT) || 5421 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5422 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5423 Opcode, VT, ScaleInt); 5424 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5425 EVT PromVT; 5426 if (VT.isScalarInteger()) 5427 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5428 else if (VT.isVector()) { 5429 PromVT = VT.getVectorElementType(); 5430 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5431 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5432 } else 5433 llvm_unreachable("Wrong VT for DIVFIX?"); 5434 if (Signed) { 5435 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5436 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5437 } else { 5438 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5439 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5440 } 5441 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5442 // For saturating operations, we need to shift up the LHS to get the 5443 // proper saturation width, and then shift down again afterwards. 5444 if (Saturating) 5445 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5446 DAG.getConstant(1, DL, ShiftTy)); 5447 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5448 if (Saturating) 5449 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5450 DAG.getConstant(1, DL, ShiftTy)); 5451 return DAG.getZExtOrTrunc(Res, DL, VT); 5452 } 5453 } 5454 5455 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5456 } 5457 5458 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5459 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5460 static void 5461 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5462 const SDValue &N) { 5463 switch (N.getOpcode()) { 5464 case ISD::CopyFromReg: { 5465 SDValue Op = N.getOperand(1); 5466 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5467 Op.getValueType().getSizeInBits()); 5468 return; 5469 } 5470 case ISD::BITCAST: 5471 case ISD::AssertZext: 5472 case ISD::AssertSext: 5473 case ISD::TRUNCATE: 5474 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5475 return; 5476 case ISD::BUILD_PAIR: 5477 case ISD::BUILD_VECTOR: 5478 case ISD::CONCAT_VECTORS: 5479 for (SDValue Op : N->op_values()) 5480 getUnderlyingArgRegs(Regs, Op); 5481 return; 5482 default: 5483 return; 5484 } 5485 } 5486 5487 /// If the DbgValueInst is a dbg_value of a function argument, create the 5488 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5489 /// instruction selection, they will be inserted to the entry BB. 5490 /// We don't currently support this for variadic dbg_values, as they shouldn't 5491 /// appear for function arguments or in the prologue. 5492 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5493 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5494 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5495 const Argument *Arg = dyn_cast<Argument>(V); 5496 if (!Arg) 5497 return false; 5498 5499 MachineFunction &MF = DAG.getMachineFunction(); 5500 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5501 5502 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5503 // we've been asked to pursue. 5504 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5505 bool Indirect) { 5506 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5507 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5508 // pointing at the VReg, which will be patched up later. 5509 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5510 auto MIB = BuildMI(MF, DL, Inst); 5511 MIB.addReg(Reg); 5512 MIB.addImm(0); 5513 MIB.addMetadata(Variable); 5514 auto *NewDIExpr = FragExpr; 5515 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5516 // the DIExpression. 5517 if (Indirect) 5518 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5519 MIB.addMetadata(NewDIExpr); 5520 return MIB; 5521 } else { 5522 // Create a completely standard DBG_VALUE. 5523 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5524 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5525 } 5526 }; 5527 5528 if (!IsDbgDeclare) { 5529 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5530 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5531 // the entry block. 5532 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5533 if (!IsInEntryBlock) 5534 return false; 5535 5536 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5537 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5538 // variable that also is a param. 5539 // 5540 // Although, if we are at the top of the entry block already, we can still 5541 // emit using ArgDbgValue. This might catch some situations when the 5542 // dbg.value refers to an argument that isn't used in the entry block, so 5543 // any CopyToReg node would be optimized out and the only way to express 5544 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5545 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5546 // we should only emit as ArgDbgValue if the Variable is an argument to the 5547 // current function, and the dbg.value intrinsic is found in the entry 5548 // block. 5549 bool VariableIsFunctionInputArg = Variable->isParameter() && 5550 !DL->getInlinedAt(); 5551 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5552 if (!IsInPrologue && !VariableIsFunctionInputArg) 5553 return false; 5554 5555 // Here we assume that a function argument on IR level only can be used to 5556 // describe one input parameter on source level. If we for example have 5557 // source code like this 5558 // 5559 // struct A { long x, y; }; 5560 // void foo(struct A a, long b) { 5561 // ... 5562 // b = a.x; 5563 // ... 5564 // } 5565 // 5566 // and IR like this 5567 // 5568 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5569 // entry: 5570 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5571 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5572 // call void @llvm.dbg.value(metadata i32 %b, "b", 5573 // ... 5574 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5575 // ... 5576 // 5577 // then the last dbg.value is describing a parameter "b" using a value that 5578 // is an argument. But since we already has used %a1 to describe a parameter 5579 // we should not handle that last dbg.value here (that would result in an 5580 // incorrect hoisting of the DBG_VALUE to the function entry). 5581 // Notice that we allow one dbg.value per IR level argument, to accommodate 5582 // for the situation with fragments above. 5583 if (VariableIsFunctionInputArg) { 5584 unsigned ArgNo = Arg->getArgNo(); 5585 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5586 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5587 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5588 return false; 5589 FuncInfo.DescribedArgs.set(ArgNo); 5590 } 5591 } 5592 5593 bool IsIndirect = false; 5594 Optional<MachineOperand> Op; 5595 // Some arguments' frame index is recorded during argument lowering. 5596 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5597 if (FI != std::numeric_limits<int>::max()) 5598 Op = MachineOperand::CreateFI(FI); 5599 5600 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5601 if (!Op && N.getNode()) { 5602 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5603 Register Reg; 5604 if (ArgRegsAndSizes.size() == 1) 5605 Reg = ArgRegsAndSizes.front().first; 5606 5607 if (Reg && Reg.isVirtual()) { 5608 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5609 Register PR = RegInfo.getLiveInPhysReg(Reg); 5610 if (PR) 5611 Reg = PR; 5612 } 5613 if (Reg) { 5614 Op = MachineOperand::CreateReg(Reg, false); 5615 IsIndirect = IsDbgDeclare; 5616 } 5617 } 5618 5619 if (!Op && N.getNode()) { 5620 // Check if frame index is available. 5621 SDValue LCandidate = peekThroughBitcasts(N); 5622 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5623 if (FrameIndexSDNode *FINode = 5624 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5625 Op = MachineOperand::CreateFI(FINode->getIndex()); 5626 } 5627 5628 if (!Op) { 5629 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5630 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5631 SplitRegs) { 5632 unsigned Offset = 0; 5633 for (const auto &RegAndSize : SplitRegs) { 5634 // If the expression is already a fragment, the current register 5635 // offset+size might extend beyond the fragment. In this case, only 5636 // the register bits that are inside the fragment are relevant. 5637 int RegFragmentSizeInBits = RegAndSize.second; 5638 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5639 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5640 // The register is entirely outside the expression fragment, 5641 // so is irrelevant for debug info. 5642 if (Offset >= ExprFragmentSizeInBits) 5643 break; 5644 // The register is partially outside the expression fragment, only 5645 // the low bits within the fragment are relevant for debug info. 5646 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5647 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5648 } 5649 } 5650 5651 auto FragmentExpr = DIExpression::createFragmentExpression( 5652 Expr, Offset, RegFragmentSizeInBits); 5653 Offset += RegAndSize.second; 5654 // If a valid fragment expression cannot be created, the variable's 5655 // correct value cannot be determined and so it is set as Undef. 5656 if (!FragmentExpr) { 5657 SDDbgValue *SDV = DAG.getConstantDbgValue( 5658 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5659 DAG.AddDbgValue(SDV, false); 5660 continue; 5661 } 5662 MachineInstr *NewMI = 5663 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare); 5664 FuncInfo.ArgDbgValues.push_back(NewMI); 5665 } 5666 }; 5667 5668 // Check if ValueMap has reg number. 5669 DenseMap<const Value *, Register>::const_iterator 5670 VMI = FuncInfo.ValueMap.find(V); 5671 if (VMI != FuncInfo.ValueMap.end()) { 5672 const auto &TLI = DAG.getTargetLoweringInfo(); 5673 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5674 V->getType(), None); 5675 if (RFV.occupiesMultipleRegs()) { 5676 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5677 return true; 5678 } 5679 5680 Op = MachineOperand::CreateReg(VMI->second, false); 5681 IsIndirect = IsDbgDeclare; 5682 } else if (ArgRegsAndSizes.size() > 1) { 5683 // This was split due to the calling convention, and no virtual register 5684 // mapping exists for the value. 5685 splitMultiRegDbgValue(ArgRegsAndSizes); 5686 return true; 5687 } 5688 } 5689 5690 if (!Op) 5691 return false; 5692 5693 assert(Variable->isValidLocationForIntrinsic(DL) && 5694 "Expected inlined-at fields to agree"); 5695 MachineInstr *NewMI = nullptr; 5696 5697 if (Op->isReg()) 5698 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5699 else 5700 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5701 Variable, Expr); 5702 5703 FuncInfo.ArgDbgValues.push_back(NewMI); 5704 return true; 5705 } 5706 5707 /// Return the appropriate SDDbgValue based on N. 5708 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5709 DILocalVariable *Variable, 5710 DIExpression *Expr, 5711 const DebugLoc &dl, 5712 unsigned DbgSDNodeOrder) { 5713 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5714 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5715 // stack slot locations. 5716 // 5717 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5718 // debug values here after optimization: 5719 // 5720 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5721 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5722 // 5723 // Both describe the direct values of their associated variables. 5724 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5725 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5726 } 5727 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5728 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5729 } 5730 5731 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5732 switch (Intrinsic) { 5733 case Intrinsic::smul_fix: 5734 return ISD::SMULFIX; 5735 case Intrinsic::umul_fix: 5736 return ISD::UMULFIX; 5737 case Intrinsic::smul_fix_sat: 5738 return ISD::SMULFIXSAT; 5739 case Intrinsic::umul_fix_sat: 5740 return ISD::UMULFIXSAT; 5741 case Intrinsic::sdiv_fix: 5742 return ISD::SDIVFIX; 5743 case Intrinsic::udiv_fix: 5744 return ISD::UDIVFIX; 5745 case Intrinsic::sdiv_fix_sat: 5746 return ISD::SDIVFIXSAT; 5747 case Intrinsic::udiv_fix_sat: 5748 return ISD::UDIVFIXSAT; 5749 default: 5750 llvm_unreachable("Unhandled fixed point intrinsic"); 5751 } 5752 } 5753 5754 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5755 const char *FunctionName) { 5756 assert(FunctionName && "FunctionName must not be nullptr"); 5757 SDValue Callee = DAG.getExternalSymbol( 5758 FunctionName, 5759 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5760 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5761 } 5762 5763 /// Given a @llvm.call.preallocated.setup, return the corresponding 5764 /// preallocated call. 5765 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5766 assert(cast<CallBase>(PreallocatedSetup) 5767 ->getCalledFunction() 5768 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5769 "expected call_preallocated_setup Value"); 5770 for (auto *U : PreallocatedSetup->users()) { 5771 auto *UseCall = cast<CallBase>(U); 5772 const Function *Fn = UseCall->getCalledFunction(); 5773 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5774 return UseCall; 5775 } 5776 } 5777 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5778 } 5779 5780 /// Lower the call to the specified intrinsic function. 5781 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5782 unsigned Intrinsic) { 5783 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5784 SDLoc sdl = getCurSDLoc(); 5785 DebugLoc dl = getCurDebugLoc(); 5786 SDValue Res; 5787 5788 SDNodeFlags Flags; 5789 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5790 Flags.copyFMF(*FPOp); 5791 5792 switch (Intrinsic) { 5793 default: 5794 // By default, turn this into a target intrinsic node. 5795 visitTargetIntrinsic(I, Intrinsic); 5796 return; 5797 case Intrinsic::vscale: { 5798 match(&I, m_VScale(DAG.getDataLayout())); 5799 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5800 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5801 return; 5802 } 5803 case Intrinsic::vastart: visitVAStart(I); return; 5804 case Intrinsic::vaend: visitVAEnd(I); return; 5805 case Intrinsic::vacopy: visitVACopy(I); return; 5806 case Intrinsic::returnaddress: 5807 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5808 TLI.getPointerTy(DAG.getDataLayout()), 5809 getValue(I.getArgOperand(0)))); 5810 return; 5811 case Intrinsic::addressofreturnaddress: 5812 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5813 TLI.getPointerTy(DAG.getDataLayout()))); 5814 return; 5815 case Intrinsic::sponentry: 5816 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5817 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5818 return; 5819 case Intrinsic::frameaddress: 5820 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5821 TLI.getFrameIndexTy(DAG.getDataLayout()), 5822 getValue(I.getArgOperand(0)))); 5823 return; 5824 case Intrinsic::read_volatile_register: 5825 case Intrinsic::read_register: { 5826 Value *Reg = I.getArgOperand(0); 5827 SDValue Chain = getRoot(); 5828 SDValue RegName = 5829 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5830 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5831 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5832 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5833 setValue(&I, Res); 5834 DAG.setRoot(Res.getValue(1)); 5835 return; 5836 } 5837 case Intrinsic::write_register: { 5838 Value *Reg = I.getArgOperand(0); 5839 Value *RegValue = I.getArgOperand(1); 5840 SDValue Chain = getRoot(); 5841 SDValue RegName = 5842 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5843 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5844 RegName, getValue(RegValue))); 5845 return; 5846 } 5847 case Intrinsic::memcpy: { 5848 const auto &MCI = cast<MemCpyInst>(I); 5849 SDValue Op1 = getValue(I.getArgOperand(0)); 5850 SDValue Op2 = getValue(I.getArgOperand(1)); 5851 SDValue Op3 = getValue(I.getArgOperand(2)); 5852 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5853 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5854 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5855 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5856 bool isVol = MCI.isVolatile(); 5857 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5858 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5859 // node. 5860 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5861 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5862 /* AlwaysInline */ false, isTC, 5863 MachinePointerInfo(I.getArgOperand(0)), 5864 MachinePointerInfo(I.getArgOperand(1)), 5865 I.getAAMetadata()); 5866 updateDAGForMaybeTailCall(MC); 5867 return; 5868 } 5869 case Intrinsic::memcpy_inline: { 5870 const auto &MCI = cast<MemCpyInlineInst>(I); 5871 SDValue Dst = getValue(I.getArgOperand(0)); 5872 SDValue Src = getValue(I.getArgOperand(1)); 5873 SDValue Size = getValue(I.getArgOperand(2)); 5874 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5875 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5876 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5877 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5878 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5879 bool isVol = MCI.isVolatile(); 5880 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5881 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5882 // node. 5883 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5884 /* AlwaysInline */ true, isTC, 5885 MachinePointerInfo(I.getArgOperand(0)), 5886 MachinePointerInfo(I.getArgOperand(1)), 5887 I.getAAMetadata()); 5888 updateDAGForMaybeTailCall(MC); 5889 return; 5890 } 5891 case Intrinsic::memset: { 5892 const auto &MSI = cast<MemSetInst>(I); 5893 SDValue Op1 = getValue(I.getArgOperand(0)); 5894 SDValue Op2 = getValue(I.getArgOperand(1)); 5895 SDValue Op3 = getValue(I.getArgOperand(2)); 5896 // @llvm.memset defines 0 and 1 to both mean no alignment. 5897 Align Alignment = MSI.getDestAlign().valueOrOne(); 5898 bool isVol = MSI.isVolatile(); 5899 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5900 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5901 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5902 MachinePointerInfo(I.getArgOperand(0)), 5903 I.getAAMetadata()); 5904 updateDAGForMaybeTailCall(MS); 5905 return; 5906 } 5907 case Intrinsic::memmove: { 5908 const auto &MMI = cast<MemMoveInst>(I); 5909 SDValue Op1 = getValue(I.getArgOperand(0)); 5910 SDValue Op2 = getValue(I.getArgOperand(1)); 5911 SDValue Op3 = getValue(I.getArgOperand(2)); 5912 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5913 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5914 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5915 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5916 bool isVol = MMI.isVolatile(); 5917 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5918 // FIXME: Support passing different dest/src alignments to the memmove DAG 5919 // node. 5920 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5921 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5922 isTC, MachinePointerInfo(I.getArgOperand(0)), 5923 MachinePointerInfo(I.getArgOperand(1)), 5924 I.getAAMetadata()); 5925 updateDAGForMaybeTailCall(MM); 5926 return; 5927 } 5928 case Intrinsic::memcpy_element_unordered_atomic: { 5929 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5930 SDValue Dst = getValue(MI.getRawDest()); 5931 SDValue Src = getValue(MI.getRawSource()); 5932 SDValue Length = getValue(MI.getLength()); 5933 5934 unsigned DstAlign = MI.getDestAlignment(); 5935 unsigned SrcAlign = MI.getSourceAlignment(); 5936 Type *LengthTy = MI.getLength()->getType(); 5937 unsigned ElemSz = MI.getElementSizeInBytes(); 5938 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5939 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5940 SrcAlign, Length, LengthTy, ElemSz, isTC, 5941 MachinePointerInfo(MI.getRawDest()), 5942 MachinePointerInfo(MI.getRawSource())); 5943 updateDAGForMaybeTailCall(MC); 5944 return; 5945 } 5946 case Intrinsic::memmove_element_unordered_atomic: { 5947 auto &MI = cast<AtomicMemMoveInst>(I); 5948 SDValue Dst = getValue(MI.getRawDest()); 5949 SDValue Src = getValue(MI.getRawSource()); 5950 SDValue Length = getValue(MI.getLength()); 5951 5952 unsigned DstAlign = MI.getDestAlignment(); 5953 unsigned SrcAlign = MI.getSourceAlignment(); 5954 Type *LengthTy = MI.getLength()->getType(); 5955 unsigned ElemSz = MI.getElementSizeInBytes(); 5956 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5957 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5958 SrcAlign, Length, LengthTy, ElemSz, isTC, 5959 MachinePointerInfo(MI.getRawDest()), 5960 MachinePointerInfo(MI.getRawSource())); 5961 updateDAGForMaybeTailCall(MC); 5962 return; 5963 } 5964 case Intrinsic::memset_element_unordered_atomic: { 5965 auto &MI = cast<AtomicMemSetInst>(I); 5966 SDValue Dst = getValue(MI.getRawDest()); 5967 SDValue Val = getValue(MI.getValue()); 5968 SDValue Length = getValue(MI.getLength()); 5969 5970 unsigned DstAlign = MI.getDestAlignment(); 5971 Type *LengthTy = MI.getLength()->getType(); 5972 unsigned ElemSz = MI.getElementSizeInBytes(); 5973 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5974 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5975 LengthTy, ElemSz, isTC, 5976 MachinePointerInfo(MI.getRawDest())); 5977 updateDAGForMaybeTailCall(MC); 5978 return; 5979 } 5980 case Intrinsic::call_preallocated_setup: { 5981 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5982 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5983 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5984 getRoot(), SrcValue); 5985 setValue(&I, Res); 5986 DAG.setRoot(Res); 5987 return; 5988 } 5989 case Intrinsic::call_preallocated_arg: { 5990 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5991 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5992 SDValue Ops[3]; 5993 Ops[0] = getRoot(); 5994 Ops[1] = SrcValue; 5995 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5996 MVT::i32); // arg index 5997 SDValue Res = DAG.getNode( 5998 ISD::PREALLOCATED_ARG, sdl, 5999 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6000 setValue(&I, Res); 6001 DAG.setRoot(Res.getValue(1)); 6002 return; 6003 } 6004 case Intrinsic::dbg_addr: 6005 case Intrinsic::dbg_declare: { 6006 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6007 // they are non-variadic. 6008 const auto &DI = cast<DbgVariableIntrinsic>(I); 6009 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6010 DILocalVariable *Variable = DI.getVariable(); 6011 DIExpression *Expression = DI.getExpression(); 6012 dropDanglingDebugInfo(Variable, Expression); 6013 assert(Variable && "Missing variable"); 6014 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6015 << "\n"); 6016 // Check if address has undef value. 6017 const Value *Address = DI.getVariableLocationOp(0); 6018 if (!Address || isa<UndefValue>(Address) || 6019 (Address->use_empty() && !isa<Argument>(Address))) { 6020 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6021 << " (bad/undef/unused-arg address)\n"); 6022 return; 6023 } 6024 6025 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6026 6027 // Check if this variable can be described by a frame index, typically 6028 // either as a static alloca or a byval parameter. 6029 int FI = std::numeric_limits<int>::max(); 6030 if (const auto *AI = 6031 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6032 if (AI->isStaticAlloca()) { 6033 auto I = FuncInfo.StaticAllocaMap.find(AI); 6034 if (I != FuncInfo.StaticAllocaMap.end()) 6035 FI = I->second; 6036 } 6037 } else if (const auto *Arg = dyn_cast<Argument>( 6038 Address->stripInBoundsConstantOffsets())) { 6039 FI = FuncInfo.getArgumentFrameIndex(Arg); 6040 } 6041 6042 // llvm.dbg.addr is control dependent and always generates indirect 6043 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6044 // the MachineFunction variable table. 6045 if (FI != std::numeric_limits<int>::max()) { 6046 if (Intrinsic == Intrinsic::dbg_addr) { 6047 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6048 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6049 dl, SDNodeOrder); 6050 DAG.AddDbgValue(SDV, isParameter); 6051 } else { 6052 LLVM_DEBUG(dbgs() << "Skipping " << DI 6053 << " (variable info stashed in MF side table)\n"); 6054 } 6055 return; 6056 } 6057 6058 SDValue &N = NodeMap[Address]; 6059 if (!N.getNode() && isa<Argument>(Address)) 6060 // Check unused arguments map. 6061 N = UnusedArgNodeMap[Address]; 6062 SDDbgValue *SDV; 6063 if (N.getNode()) { 6064 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6065 Address = BCI->getOperand(0); 6066 // Parameters are handled specially. 6067 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6068 if (isParameter && FINode) { 6069 // Byval parameter. We have a frame index at this point. 6070 SDV = 6071 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6072 /*IsIndirect*/ true, dl, SDNodeOrder); 6073 } else if (isa<Argument>(Address)) { 6074 // Address is an argument, so try to emit its dbg value using 6075 // virtual register info from the FuncInfo.ValueMap. 6076 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6077 return; 6078 } else { 6079 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6080 true, dl, SDNodeOrder); 6081 } 6082 DAG.AddDbgValue(SDV, isParameter); 6083 } else { 6084 // If Address is an argument then try to emit its dbg value using 6085 // virtual register info from the FuncInfo.ValueMap. 6086 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6087 N)) { 6088 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6089 << " (could not emit func-arg dbg_value)\n"); 6090 } 6091 } 6092 return; 6093 } 6094 case Intrinsic::dbg_label: { 6095 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6096 DILabel *Label = DI.getLabel(); 6097 assert(Label && "Missing label"); 6098 6099 SDDbgLabel *SDV; 6100 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6101 DAG.AddDbgLabel(SDV); 6102 return; 6103 } 6104 case Intrinsic::dbg_value: { 6105 const DbgValueInst &DI = cast<DbgValueInst>(I); 6106 assert(DI.getVariable() && "Missing variable"); 6107 6108 DILocalVariable *Variable = DI.getVariable(); 6109 DIExpression *Expression = DI.getExpression(); 6110 dropDanglingDebugInfo(Variable, Expression); 6111 SmallVector<Value *, 4> Values(DI.getValues()); 6112 if (Values.empty()) 6113 return; 6114 6115 if (llvm::is_contained(Values, nullptr)) 6116 return; 6117 6118 bool IsVariadic = DI.hasArgList(); 6119 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6120 SDNodeOrder, IsVariadic)) 6121 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6122 return; 6123 } 6124 6125 case Intrinsic::eh_typeid_for: { 6126 // Find the type id for the given typeinfo. 6127 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6128 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6129 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6130 setValue(&I, Res); 6131 return; 6132 } 6133 6134 case Intrinsic::eh_return_i32: 6135 case Intrinsic::eh_return_i64: 6136 DAG.getMachineFunction().setCallsEHReturn(true); 6137 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6138 MVT::Other, 6139 getControlRoot(), 6140 getValue(I.getArgOperand(0)), 6141 getValue(I.getArgOperand(1)))); 6142 return; 6143 case Intrinsic::eh_unwind_init: 6144 DAG.getMachineFunction().setCallsUnwindInit(true); 6145 return; 6146 case Intrinsic::eh_dwarf_cfa: 6147 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6148 TLI.getPointerTy(DAG.getDataLayout()), 6149 getValue(I.getArgOperand(0)))); 6150 return; 6151 case Intrinsic::eh_sjlj_callsite: { 6152 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6153 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6154 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6155 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6156 6157 MMI.setCurrentCallSite(CI->getZExtValue()); 6158 return; 6159 } 6160 case Intrinsic::eh_sjlj_functioncontext: { 6161 // Get and store the index of the function context. 6162 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6163 AllocaInst *FnCtx = 6164 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6165 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6166 MFI.setFunctionContextIndex(FI); 6167 return; 6168 } 6169 case Intrinsic::eh_sjlj_setjmp: { 6170 SDValue Ops[2]; 6171 Ops[0] = getRoot(); 6172 Ops[1] = getValue(I.getArgOperand(0)); 6173 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6174 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6175 setValue(&I, Op.getValue(0)); 6176 DAG.setRoot(Op.getValue(1)); 6177 return; 6178 } 6179 case Intrinsic::eh_sjlj_longjmp: 6180 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6181 getRoot(), getValue(I.getArgOperand(0)))); 6182 return; 6183 case Intrinsic::eh_sjlj_setup_dispatch: 6184 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6185 getRoot())); 6186 return; 6187 case Intrinsic::masked_gather: 6188 visitMaskedGather(I); 6189 return; 6190 case Intrinsic::masked_load: 6191 visitMaskedLoad(I); 6192 return; 6193 case Intrinsic::masked_scatter: 6194 visitMaskedScatter(I); 6195 return; 6196 case Intrinsic::masked_store: 6197 visitMaskedStore(I); 6198 return; 6199 case Intrinsic::masked_expandload: 6200 visitMaskedLoad(I, true /* IsExpanding */); 6201 return; 6202 case Intrinsic::masked_compressstore: 6203 visitMaskedStore(I, true /* IsCompressing */); 6204 return; 6205 case Intrinsic::powi: 6206 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6207 getValue(I.getArgOperand(1)), DAG)); 6208 return; 6209 case Intrinsic::log: 6210 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6211 return; 6212 case Intrinsic::log2: 6213 setValue(&I, 6214 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6215 return; 6216 case Intrinsic::log10: 6217 setValue(&I, 6218 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6219 return; 6220 case Intrinsic::exp: 6221 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6222 return; 6223 case Intrinsic::exp2: 6224 setValue(&I, 6225 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6226 return; 6227 case Intrinsic::pow: 6228 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6229 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6230 return; 6231 case Intrinsic::sqrt: 6232 case Intrinsic::fabs: 6233 case Intrinsic::sin: 6234 case Intrinsic::cos: 6235 case Intrinsic::floor: 6236 case Intrinsic::ceil: 6237 case Intrinsic::trunc: 6238 case Intrinsic::rint: 6239 case Intrinsic::nearbyint: 6240 case Intrinsic::round: 6241 case Intrinsic::roundeven: 6242 case Intrinsic::canonicalize: { 6243 unsigned Opcode; 6244 switch (Intrinsic) { 6245 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6246 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6247 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6248 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6249 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6250 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6251 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6252 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6253 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6254 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6255 case Intrinsic::round: Opcode = ISD::FROUND; break; 6256 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6257 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6258 } 6259 6260 setValue(&I, DAG.getNode(Opcode, sdl, 6261 getValue(I.getArgOperand(0)).getValueType(), 6262 getValue(I.getArgOperand(0)), Flags)); 6263 return; 6264 } 6265 case Intrinsic::lround: 6266 case Intrinsic::llround: 6267 case Intrinsic::lrint: 6268 case Intrinsic::llrint: { 6269 unsigned Opcode; 6270 switch (Intrinsic) { 6271 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6272 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6273 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6274 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6275 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6276 } 6277 6278 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6279 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6280 getValue(I.getArgOperand(0)))); 6281 return; 6282 } 6283 case Intrinsic::minnum: 6284 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6285 getValue(I.getArgOperand(0)).getValueType(), 6286 getValue(I.getArgOperand(0)), 6287 getValue(I.getArgOperand(1)), Flags)); 6288 return; 6289 case Intrinsic::maxnum: 6290 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6291 getValue(I.getArgOperand(0)).getValueType(), 6292 getValue(I.getArgOperand(0)), 6293 getValue(I.getArgOperand(1)), Flags)); 6294 return; 6295 case Intrinsic::minimum: 6296 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6297 getValue(I.getArgOperand(0)).getValueType(), 6298 getValue(I.getArgOperand(0)), 6299 getValue(I.getArgOperand(1)), Flags)); 6300 return; 6301 case Intrinsic::maximum: 6302 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6303 getValue(I.getArgOperand(0)).getValueType(), 6304 getValue(I.getArgOperand(0)), 6305 getValue(I.getArgOperand(1)), Flags)); 6306 return; 6307 case Intrinsic::copysign: 6308 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6309 getValue(I.getArgOperand(0)).getValueType(), 6310 getValue(I.getArgOperand(0)), 6311 getValue(I.getArgOperand(1)), Flags)); 6312 return; 6313 case Intrinsic::arithmetic_fence: { 6314 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6315 getValue(I.getArgOperand(0)).getValueType(), 6316 getValue(I.getArgOperand(0)), Flags)); 6317 return; 6318 } 6319 case Intrinsic::fma: 6320 setValue(&I, DAG.getNode( 6321 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6322 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6323 getValue(I.getArgOperand(2)), Flags)); 6324 return; 6325 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6326 case Intrinsic::INTRINSIC: 6327 #include "llvm/IR/ConstrainedOps.def" 6328 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6329 return; 6330 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6331 #include "llvm/IR/VPIntrinsics.def" 6332 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6333 return; 6334 case Intrinsic::fmuladd: { 6335 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6336 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6337 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6338 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6339 getValue(I.getArgOperand(0)).getValueType(), 6340 getValue(I.getArgOperand(0)), 6341 getValue(I.getArgOperand(1)), 6342 getValue(I.getArgOperand(2)), Flags)); 6343 } else { 6344 // TODO: Intrinsic calls should have fast-math-flags. 6345 SDValue Mul = DAG.getNode( 6346 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6347 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6348 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6349 getValue(I.getArgOperand(0)).getValueType(), 6350 Mul, getValue(I.getArgOperand(2)), Flags); 6351 setValue(&I, Add); 6352 } 6353 return; 6354 } 6355 case Intrinsic::convert_to_fp16: 6356 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6357 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6358 getValue(I.getArgOperand(0)), 6359 DAG.getTargetConstant(0, sdl, 6360 MVT::i32)))); 6361 return; 6362 case Intrinsic::convert_from_fp16: 6363 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6364 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6365 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6366 getValue(I.getArgOperand(0))))); 6367 return; 6368 case Intrinsic::fptosi_sat: { 6369 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6370 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6371 getValue(I.getArgOperand(0)), 6372 DAG.getValueType(VT.getScalarType()))); 6373 return; 6374 } 6375 case Intrinsic::fptoui_sat: { 6376 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6377 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6378 getValue(I.getArgOperand(0)), 6379 DAG.getValueType(VT.getScalarType()))); 6380 return; 6381 } 6382 case Intrinsic::set_rounding: 6383 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6384 {getRoot(), getValue(I.getArgOperand(0))}); 6385 setValue(&I, Res); 6386 DAG.setRoot(Res.getValue(0)); 6387 return; 6388 case Intrinsic::pcmarker: { 6389 SDValue Tmp = getValue(I.getArgOperand(0)); 6390 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6391 return; 6392 } 6393 case Intrinsic::readcyclecounter: { 6394 SDValue Op = getRoot(); 6395 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6396 DAG.getVTList(MVT::i64, MVT::Other), Op); 6397 setValue(&I, Res); 6398 DAG.setRoot(Res.getValue(1)); 6399 return; 6400 } 6401 case Intrinsic::bitreverse: 6402 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6403 getValue(I.getArgOperand(0)).getValueType(), 6404 getValue(I.getArgOperand(0)))); 6405 return; 6406 case Intrinsic::bswap: 6407 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6408 getValue(I.getArgOperand(0)).getValueType(), 6409 getValue(I.getArgOperand(0)))); 6410 return; 6411 case Intrinsic::cttz: { 6412 SDValue Arg = getValue(I.getArgOperand(0)); 6413 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6414 EVT Ty = Arg.getValueType(); 6415 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6416 sdl, Ty, Arg)); 6417 return; 6418 } 6419 case Intrinsic::ctlz: { 6420 SDValue Arg = getValue(I.getArgOperand(0)); 6421 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6422 EVT Ty = Arg.getValueType(); 6423 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6424 sdl, Ty, Arg)); 6425 return; 6426 } 6427 case Intrinsic::ctpop: { 6428 SDValue Arg = getValue(I.getArgOperand(0)); 6429 EVT Ty = Arg.getValueType(); 6430 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6431 return; 6432 } 6433 case Intrinsic::fshl: 6434 case Intrinsic::fshr: { 6435 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6436 SDValue X = getValue(I.getArgOperand(0)); 6437 SDValue Y = getValue(I.getArgOperand(1)); 6438 SDValue Z = getValue(I.getArgOperand(2)); 6439 EVT VT = X.getValueType(); 6440 6441 if (X == Y) { 6442 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6443 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6444 } else { 6445 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6446 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6447 } 6448 return; 6449 } 6450 case Intrinsic::sadd_sat: { 6451 SDValue Op1 = getValue(I.getArgOperand(0)); 6452 SDValue Op2 = getValue(I.getArgOperand(1)); 6453 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6454 return; 6455 } 6456 case Intrinsic::uadd_sat: { 6457 SDValue Op1 = getValue(I.getArgOperand(0)); 6458 SDValue Op2 = getValue(I.getArgOperand(1)); 6459 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6460 return; 6461 } 6462 case Intrinsic::ssub_sat: { 6463 SDValue Op1 = getValue(I.getArgOperand(0)); 6464 SDValue Op2 = getValue(I.getArgOperand(1)); 6465 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6466 return; 6467 } 6468 case Intrinsic::usub_sat: { 6469 SDValue Op1 = getValue(I.getArgOperand(0)); 6470 SDValue Op2 = getValue(I.getArgOperand(1)); 6471 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6472 return; 6473 } 6474 case Intrinsic::sshl_sat: { 6475 SDValue Op1 = getValue(I.getArgOperand(0)); 6476 SDValue Op2 = getValue(I.getArgOperand(1)); 6477 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6478 return; 6479 } 6480 case Intrinsic::ushl_sat: { 6481 SDValue Op1 = getValue(I.getArgOperand(0)); 6482 SDValue Op2 = getValue(I.getArgOperand(1)); 6483 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6484 return; 6485 } 6486 case Intrinsic::smul_fix: 6487 case Intrinsic::umul_fix: 6488 case Intrinsic::smul_fix_sat: 6489 case Intrinsic::umul_fix_sat: { 6490 SDValue Op1 = getValue(I.getArgOperand(0)); 6491 SDValue Op2 = getValue(I.getArgOperand(1)); 6492 SDValue Op3 = getValue(I.getArgOperand(2)); 6493 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6494 Op1.getValueType(), Op1, Op2, Op3)); 6495 return; 6496 } 6497 case Intrinsic::sdiv_fix: 6498 case Intrinsic::udiv_fix: 6499 case Intrinsic::sdiv_fix_sat: 6500 case Intrinsic::udiv_fix_sat: { 6501 SDValue Op1 = getValue(I.getArgOperand(0)); 6502 SDValue Op2 = getValue(I.getArgOperand(1)); 6503 SDValue Op3 = getValue(I.getArgOperand(2)); 6504 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6505 Op1, Op2, Op3, DAG, TLI)); 6506 return; 6507 } 6508 case Intrinsic::smax: { 6509 SDValue Op1 = getValue(I.getArgOperand(0)); 6510 SDValue Op2 = getValue(I.getArgOperand(1)); 6511 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6512 return; 6513 } 6514 case Intrinsic::smin: { 6515 SDValue Op1 = getValue(I.getArgOperand(0)); 6516 SDValue Op2 = getValue(I.getArgOperand(1)); 6517 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6518 return; 6519 } 6520 case Intrinsic::umax: { 6521 SDValue Op1 = getValue(I.getArgOperand(0)); 6522 SDValue Op2 = getValue(I.getArgOperand(1)); 6523 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6524 return; 6525 } 6526 case Intrinsic::umin: { 6527 SDValue Op1 = getValue(I.getArgOperand(0)); 6528 SDValue Op2 = getValue(I.getArgOperand(1)); 6529 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6530 return; 6531 } 6532 case Intrinsic::abs: { 6533 // TODO: Preserve "int min is poison" arg in SDAG? 6534 SDValue Op1 = getValue(I.getArgOperand(0)); 6535 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6536 return; 6537 } 6538 case Intrinsic::stacksave: { 6539 SDValue Op = getRoot(); 6540 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6541 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6542 setValue(&I, Res); 6543 DAG.setRoot(Res.getValue(1)); 6544 return; 6545 } 6546 case Intrinsic::stackrestore: 6547 Res = getValue(I.getArgOperand(0)); 6548 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6549 return; 6550 case Intrinsic::get_dynamic_area_offset: { 6551 SDValue Op = getRoot(); 6552 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6553 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6554 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6555 // target. 6556 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6557 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6558 " intrinsic!"); 6559 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6560 Op); 6561 DAG.setRoot(Op); 6562 setValue(&I, Res); 6563 return; 6564 } 6565 case Intrinsic::stackguard: { 6566 MachineFunction &MF = DAG.getMachineFunction(); 6567 const Module &M = *MF.getFunction().getParent(); 6568 SDValue Chain = getRoot(); 6569 if (TLI.useLoadStackGuardNode()) { 6570 Res = getLoadStackGuard(DAG, sdl, Chain); 6571 } else { 6572 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6573 const Value *Global = TLI.getSDagStackGuard(M); 6574 Align Align = DL->getPrefTypeAlign(Global->getType()); 6575 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6576 MachinePointerInfo(Global, 0), Align, 6577 MachineMemOperand::MOVolatile); 6578 } 6579 if (TLI.useStackGuardXorFP()) 6580 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6581 DAG.setRoot(Chain); 6582 setValue(&I, Res); 6583 return; 6584 } 6585 case Intrinsic::stackprotector: { 6586 // Emit code into the DAG to store the stack guard onto the stack. 6587 MachineFunction &MF = DAG.getMachineFunction(); 6588 MachineFrameInfo &MFI = MF.getFrameInfo(); 6589 SDValue Src, Chain = getRoot(); 6590 6591 if (TLI.useLoadStackGuardNode()) 6592 Src = getLoadStackGuard(DAG, sdl, Chain); 6593 else 6594 Src = getValue(I.getArgOperand(0)); // The guard's value. 6595 6596 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6597 6598 int FI = FuncInfo.StaticAllocaMap[Slot]; 6599 MFI.setStackProtectorIndex(FI); 6600 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6601 6602 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6603 6604 // Store the stack protector onto the stack. 6605 Res = DAG.getStore( 6606 Chain, sdl, Src, FIN, 6607 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6608 MaybeAlign(), MachineMemOperand::MOVolatile); 6609 setValue(&I, Res); 6610 DAG.setRoot(Res); 6611 return; 6612 } 6613 case Intrinsic::objectsize: 6614 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6615 6616 case Intrinsic::is_constant: 6617 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6618 6619 case Intrinsic::annotation: 6620 case Intrinsic::ptr_annotation: 6621 case Intrinsic::launder_invariant_group: 6622 case Intrinsic::strip_invariant_group: 6623 // Drop the intrinsic, but forward the value 6624 setValue(&I, getValue(I.getOperand(0))); 6625 return; 6626 6627 case Intrinsic::assume: 6628 case Intrinsic::experimental_noalias_scope_decl: 6629 case Intrinsic::var_annotation: 6630 case Intrinsic::sideeffect: 6631 // Discard annotate attributes, noalias scope declarations, assumptions, and 6632 // artificial side-effects. 6633 return; 6634 6635 case Intrinsic::codeview_annotation: { 6636 // Emit a label associated with this metadata. 6637 MachineFunction &MF = DAG.getMachineFunction(); 6638 MCSymbol *Label = 6639 MF.getMMI().getContext().createTempSymbol("annotation", true); 6640 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6641 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6642 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6643 DAG.setRoot(Res); 6644 return; 6645 } 6646 6647 case Intrinsic::init_trampoline: { 6648 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6649 6650 SDValue Ops[6]; 6651 Ops[0] = getRoot(); 6652 Ops[1] = getValue(I.getArgOperand(0)); 6653 Ops[2] = getValue(I.getArgOperand(1)); 6654 Ops[3] = getValue(I.getArgOperand(2)); 6655 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6656 Ops[5] = DAG.getSrcValue(F); 6657 6658 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6659 6660 DAG.setRoot(Res); 6661 return; 6662 } 6663 case Intrinsic::adjust_trampoline: 6664 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6665 TLI.getPointerTy(DAG.getDataLayout()), 6666 getValue(I.getArgOperand(0)))); 6667 return; 6668 case Intrinsic::gcroot: { 6669 assert(DAG.getMachineFunction().getFunction().hasGC() && 6670 "only valid in functions with gc specified, enforced by Verifier"); 6671 assert(GFI && "implied by previous"); 6672 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6673 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6674 6675 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6676 GFI->addStackRoot(FI->getIndex(), TypeMap); 6677 return; 6678 } 6679 case Intrinsic::gcread: 6680 case Intrinsic::gcwrite: 6681 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6682 case Intrinsic::flt_rounds: 6683 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6684 setValue(&I, Res); 6685 DAG.setRoot(Res.getValue(1)); 6686 return; 6687 6688 case Intrinsic::expect: 6689 // Just replace __builtin_expect(exp, c) with EXP. 6690 setValue(&I, getValue(I.getArgOperand(0))); 6691 return; 6692 6693 case Intrinsic::ubsantrap: 6694 case Intrinsic::debugtrap: 6695 case Intrinsic::trap: { 6696 StringRef TrapFuncName = 6697 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6698 if (TrapFuncName.empty()) { 6699 switch (Intrinsic) { 6700 case Intrinsic::trap: 6701 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6702 break; 6703 case Intrinsic::debugtrap: 6704 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6705 break; 6706 case Intrinsic::ubsantrap: 6707 DAG.setRoot(DAG.getNode( 6708 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6709 DAG.getTargetConstant( 6710 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6711 MVT::i32))); 6712 break; 6713 default: llvm_unreachable("unknown trap intrinsic"); 6714 } 6715 return; 6716 } 6717 TargetLowering::ArgListTy Args; 6718 if (Intrinsic == Intrinsic::ubsantrap) { 6719 Args.push_back(TargetLoweringBase::ArgListEntry()); 6720 Args[0].Val = I.getArgOperand(0); 6721 Args[0].Node = getValue(Args[0].Val); 6722 Args[0].Ty = Args[0].Val->getType(); 6723 } 6724 6725 TargetLowering::CallLoweringInfo CLI(DAG); 6726 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6727 CallingConv::C, I.getType(), 6728 DAG.getExternalSymbol(TrapFuncName.data(), 6729 TLI.getPointerTy(DAG.getDataLayout())), 6730 std::move(Args)); 6731 6732 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6733 DAG.setRoot(Result.second); 6734 return; 6735 } 6736 6737 case Intrinsic::uadd_with_overflow: 6738 case Intrinsic::sadd_with_overflow: 6739 case Intrinsic::usub_with_overflow: 6740 case Intrinsic::ssub_with_overflow: 6741 case Intrinsic::umul_with_overflow: 6742 case Intrinsic::smul_with_overflow: { 6743 ISD::NodeType Op; 6744 switch (Intrinsic) { 6745 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6746 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6747 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6748 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6749 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6750 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6751 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6752 } 6753 SDValue Op1 = getValue(I.getArgOperand(0)); 6754 SDValue Op2 = getValue(I.getArgOperand(1)); 6755 6756 EVT ResultVT = Op1.getValueType(); 6757 EVT OverflowVT = MVT::i1; 6758 if (ResultVT.isVector()) 6759 OverflowVT = EVT::getVectorVT( 6760 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6761 6762 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6763 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6764 return; 6765 } 6766 case Intrinsic::prefetch: { 6767 SDValue Ops[5]; 6768 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6769 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6770 Ops[0] = DAG.getRoot(); 6771 Ops[1] = getValue(I.getArgOperand(0)); 6772 Ops[2] = getValue(I.getArgOperand(1)); 6773 Ops[3] = getValue(I.getArgOperand(2)); 6774 Ops[4] = getValue(I.getArgOperand(3)); 6775 SDValue Result = DAG.getMemIntrinsicNode( 6776 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6777 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6778 /* align */ None, Flags); 6779 6780 // Chain the prefetch in parallell with any pending loads, to stay out of 6781 // the way of later optimizations. 6782 PendingLoads.push_back(Result); 6783 Result = getRoot(); 6784 DAG.setRoot(Result); 6785 return; 6786 } 6787 case Intrinsic::lifetime_start: 6788 case Intrinsic::lifetime_end: { 6789 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6790 // Stack coloring is not enabled in O0, discard region information. 6791 if (TM.getOptLevel() == CodeGenOpt::None) 6792 return; 6793 6794 const int64_t ObjectSize = 6795 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6796 Value *const ObjectPtr = I.getArgOperand(1); 6797 SmallVector<const Value *, 4> Allocas; 6798 getUnderlyingObjects(ObjectPtr, Allocas); 6799 6800 for (const Value *Alloca : Allocas) { 6801 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6802 6803 // Could not find an Alloca. 6804 if (!LifetimeObject) 6805 continue; 6806 6807 // First check that the Alloca is static, otherwise it won't have a 6808 // valid frame index. 6809 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6810 if (SI == FuncInfo.StaticAllocaMap.end()) 6811 return; 6812 6813 const int FrameIndex = SI->second; 6814 int64_t Offset; 6815 if (GetPointerBaseWithConstantOffset( 6816 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6817 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6818 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6819 Offset); 6820 DAG.setRoot(Res); 6821 } 6822 return; 6823 } 6824 case Intrinsic::pseudoprobe: { 6825 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6826 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6827 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6828 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6829 DAG.setRoot(Res); 6830 return; 6831 } 6832 case Intrinsic::invariant_start: 6833 // Discard region information. 6834 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6835 return; 6836 case Intrinsic::invariant_end: 6837 // Discard region information. 6838 return; 6839 case Intrinsic::clear_cache: 6840 /// FunctionName may be null. 6841 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6842 lowerCallToExternalSymbol(I, FunctionName); 6843 return; 6844 case Intrinsic::donothing: 6845 case Intrinsic::seh_try_begin: 6846 case Intrinsic::seh_scope_begin: 6847 case Intrinsic::seh_try_end: 6848 case Intrinsic::seh_scope_end: 6849 // ignore 6850 return; 6851 case Intrinsic::experimental_stackmap: 6852 visitStackmap(I); 6853 return; 6854 case Intrinsic::experimental_patchpoint_void: 6855 case Intrinsic::experimental_patchpoint_i64: 6856 visitPatchpoint(I); 6857 return; 6858 case Intrinsic::experimental_gc_statepoint: 6859 LowerStatepoint(cast<GCStatepointInst>(I)); 6860 return; 6861 case Intrinsic::experimental_gc_result: 6862 visitGCResult(cast<GCResultInst>(I)); 6863 return; 6864 case Intrinsic::experimental_gc_relocate: 6865 visitGCRelocate(cast<GCRelocateInst>(I)); 6866 return; 6867 case Intrinsic::instrprof_increment: 6868 llvm_unreachable("instrprof failed to lower an increment"); 6869 case Intrinsic::instrprof_value_profile: 6870 llvm_unreachable("instrprof failed to lower a value profiling call"); 6871 case Intrinsic::localescape: { 6872 MachineFunction &MF = DAG.getMachineFunction(); 6873 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6874 6875 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6876 // is the same on all targets. 6877 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6878 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6879 if (isa<ConstantPointerNull>(Arg)) 6880 continue; // Skip null pointers. They represent a hole in index space. 6881 AllocaInst *Slot = cast<AllocaInst>(Arg); 6882 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6883 "can only escape static allocas"); 6884 int FI = FuncInfo.StaticAllocaMap[Slot]; 6885 MCSymbol *FrameAllocSym = 6886 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6887 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6888 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6889 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6890 .addSym(FrameAllocSym) 6891 .addFrameIndex(FI); 6892 } 6893 6894 return; 6895 } 6896 6897 case Intrinsic::localrecover: { 6898 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6899 MachineFunction &MF = DAG.getMachineFunction(); 6900 6901 // Get the symbol that defines the frame offset. 6902 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6903 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6904 unsigned IdxVal = 6905 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6906 MCSymbol *FrameAllocSym = 6907 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6908 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6909 6910 Value *FP = I.getArgOperand(1); 6911 SDValue FPVal = getValue(FP); 6912 EVT PtrVT = FPVal.getValueType(); 6913 6914 // Create a MCSymbol for the label to avoid any target lowering 6915 // that would make this PC relative. 6916 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6917 SDValue OffsetVal = 6918 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6919 6920 // Add the offset to the FP. 6921 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6922 setValue(&I, Add); 6923 6924 return; 6925 } 6926 6927 case Intrinsic::eh_exceptionpointer: 6928 case Intrinsic::eh_exceptioncode: { 6929 // Get the exception pointer vreg, copy from it, and resize it to fit. 6930 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6931 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6932 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6933 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6934 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 6935 if (Intrinsic == Intrinsic::eh_exceptioncode) 6936 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 6937 setValue(&I, N); 6938 return; 6939 } 6940 case Intrinsic::xray_customevent: { 6941 // Here we want to make sure that the intrinsic behaves as if it has a 6942 // specific calling convention, and only for x86_64. 6943 // FIXME: Support other platforms later. 6944 const auto &Triple = DAG.getTarget().getTargetTriple(); 6945 if (Triple.getArch() != Triple::x86_64) 6946 return; 6947 6948 SmallVector<SDValue, 8> Ops; 6949 6950 // We want to say that we always want the arguments in registers. 6951 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6952 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6953 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6954 SDValue Chain = getRoot(); 6955 Ops.push_back(LogEntryVal); 6956 Ops.push_back(StrSizeVal); 6957 Ops.push_back(Chain); 6958 6959 // We need to enforce the calling convention for the callsite, so that 6960 // argument ordering is enforced correctly, and that register allocation can 6961 // see that some registers may be assumed clobbered and have to preserve 6962 // them across calls to the intrinsic. 6963 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6964 sdl, NodeTys, Ops); 6965 SDValue patchableNode = SDValue(MN, 0); 6966 DAG.setRoot(patchableNode); 6967 setValue(&I, patchableNode); 6968 return; 6969 } 6970 case Intrinsic::xray_typedevent: { 6971 // Here we want to make sure that the intrinsic behaves as if it has a 6972 // specific calling convention, and only for x86_64. 6973 // FIXME: Support other platforms later. 6974 const auto &Triple = DAG.getTarget().getTargetTriple(); 6975 if (Triple.getArch() != Triple::x86_64) 6976 return; 6977 6978 SmallVector<SDValue, 8> Ops; 6979 6980 // We want to say that we always want the arguments in registers. 6981 // It's unclear to me how manipulating the selection DAG here forces callers 6982 // to provide arguments in registers instead of on the stack. 6983 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6984 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6985 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6986 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6987 SDValue Chain = getRoot(); 6988 Ops.push_back(LogTypeId); 6989 Ops.push_back(LogEntryVal); 6990 Ops.push_back(StrSizeVal); 6991 Ops.push_back(Chain); 6992 6993 // We need to enforce the calling convention for the callsite, so that 6994 // argument ordering is enforced correctly, and that register allocation can 6995 // see that some registers may be assumed clobbered and have to preserve 6996 // them across calls to the intrinsic. 6997 MachineSDNode *MN = DAG.getMachineNode( 6998 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 6999 SDValue patchableNode = SDValue(MN, 0); 7000 DAG.setRoot(patchableNode); 7001 setValue(&I, patchableNode); 7002 return; 7003 } 7004 case Intrinsic::experimental_deoptimize: 7005 LowerDeoptimizeCall(&I); 7006 return; 7007 case Intrinsic::experimental_stepvector: 7008 visitStepVector(I); 7009 return; 7010 case Intrinsic::vector_reduce_fadd: 7011 case Intrinsic::vector_reduce_fmul: 7012 case Intrinsic::vector_reduce_add: 7013 case Intrinsic::vector_reduce_mul: 7014 case Intrinsic::vector_reduce_and: 7015 case Intrinsic::vector_reduce_or: 7016 case Intrinsic::vector_reduce_xor: 7017 case Intrinsic::vector_reduce_smax: 7018 case Intrinsic::vector_reduce_smin: 7019 case Intrinsic::vector_reduce_umax: 7020 case Intrinsic::vector_reduce_umin: 7021 case Intrinsic::vector_reduce_fmax: 7022 case Intrinsic::vector_reduce_fmin: 7023 visitVectorReduce(I, Intrinsic); 7024 return; 7025 7026 case Intrinsic::icall_branch_funnel: { 7027 SmallVector<SDValue, 16> Ops; 7028 Ops.push_back(getValue(I.getArgOperand(0))); 7029 7030 int64_t Offset; 7031 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7032 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7033 if (!Base) 7034 report_fatal_error( 7035 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7036 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7037 7038 struct BranchFunnelTarget { 7039 int64_t Offset; 7040 SDValue Target; 7041 }; 7042 SmallVector<BranchFunnelTarget, 8> Targets; 7043 7044 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7045 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7046 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7047 if (ElemBase != Base) 7048 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7049 "to the same GlobalValue"); 7050 7051 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7052 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7053 if (!GA) 7054 report_fatal_error( 7055 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7056 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7057 GA->getGlobal(), sdl, Val.getValueType(), 7058 GA->getOffset())}); 7059 } 7060 llvm::sort(Targets, 7061 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7062 return T1.Offset < T2.Offset; 7063 }); 7064 7065 for (auto &T : Targets) { 7066 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7067 Ops.push_back(T.Target); 7068 } 7069 7070 Ops.push_back(DAG.getRoot()); // Chain 7071 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7072 MVT::Other, Ops), 7073 0); 7074 DAG.setRoot(N); 7075 setValue(&I, N); 7076 HasTailCall = true; 7077 return; 7078 } 7079 7080 case Intrinsic::wasm_landingpad_index: 7081 // Information this intrinsic contained has been transferred to 7082 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7083 // delete it now. 7084 return; 7085 7086 case Intrinsic::aarch64_settag: 7087 case Intrinsic::aarch64_settag_zero: { 7088 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7089 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7090 SDValue Val = TSI.EmitTargetCodeForSetTag( 7091 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7092 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7093 ZeroMemory); 7094 DAG.setRoot(Val); 7095 setValue(&I, Val); 7096 return; 7097 } 7098 case Intrinsic::ptrmask: { 7099 SDValue Ptr = getValue(I.getOperand(0)); 7100 SDValue Const = getValue(I.getOperand(1)); 7101 7102 EVT PtrVT = Ptr.getValueType(); 7103 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7104 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7105 return; 7106 } 7107 case Intrinsic::get_active_lane_mask: { 7108 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7109 SDValue Index = getValue(I.getOperand(0)); 7110 EVT ElementVT = Index.getValueType(); 7111 7112 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7113 visitTargetIntrinsic(I, Intrinsic); 7114 return; 7115 } 7116 7117 SDValue TripCount = getValue(I.getOperand(1)); 7118 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7119 7120 SDValue VectorIndex, VectorTripCount; 7121 if (VecTy.isScalableVector()) { 7122 VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); 7123 VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); 7124 } else { 7125 VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); 7126 VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); 7127 } 7128 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7129 SDValue VectorInduction = DAG.getNode( 7130 ISD::UADDO, sdl, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 7131 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction.getValue(0), 7132 VectorTripCount, ISD::CondCode::SETULT); 7133 setValue(&I, DAG.getNode(ISD::AND, sdl, CCVT, 7134 DAG.getNOT(sdl, VectorInduction.getValue(1), CCVT), 7135 SetCC)); 7136 return; 7137 } 7138 case Intrinsic::experimental_vector_insert: { 7139 SDValue Vec = getValue(I.getOperand(0)); 7140 SDValue SubVec = getValue(I.getOperand(1)); 7141 SDValue Index = getValue(I.getOperand(2)); 7142 7143 // The intrinsic's index type is i64, but the SDNode requires an index type 7144 // suitable for the target. Convert the index as required. 7145 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7146 if (Index.getValueType() != VectorIdxTy) 7147 Index = DAG.getVectorIdxConstant( 7148 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7149 7150 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7151 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7152 Index)); 7153 return; 7154 } 7155 case Intrinsic::experimental_vector_extract: { 7156 SDValue Vec = getValue(I.getOperand(0)); 7157 SDValue Index = getValue(I.getOperand(1)); 7158 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7159 7160 // The intrinsic's index type is i64, but the SDNode requires an index type 7161 // suitable for the target. Convert the index as required. 7162 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7163 if (Index.getValueType() != VectorIdxTy) 7164 Index = DAG.getVectorIdxConstant( 7165 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7166 7167 setValue(&I, 7168 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7169 return; 7170 } 7171 case Intrinsic::experimental_vector_reverse: 7172 visitVectorReverse(I); 7173 return; 7174 case Intrinsic::experimental_vector_splice: 7175 visitVectorSplice(I); 7176 return; 7177 } 7178 } 7179 7180 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7181 const ConstrainedFPIntrinsic &FPI) { 7182 SDLoc sdl = getCurSDLoc(); 7183 7184 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7185 SmallVector<EVT, 4> ValueVTs; 7186 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7187 ValueVTs.push_back(MVT::Other); // Out chain 7188 7189 // We do not need to serialize constrained FP intrinsics against 7190 // each other or against (nonvolatile) loads, so they can be 7191 // chained like loads. 7192 SDValue Chain = DAG.getRoot(); 7193 SmallVector<SDValue, 4> Opers; 7194 Opers.push_back(Chain); 7195 if (FPI.isUnaryOp()) { 7196 Opers.push_back(getValue(FPI.getArgOperand(0))); 7197 } else if (FPI.isTernaryOp()) { 7198 Opers.push_back(getValue(FPI.getArgOperand(0))); 7199 Opers.push_back(getValue(FPI.getArgOperand(1))); 7200 Opers.push_back(getValue(FPI.getArgOperand(2))); 7201 } else { 7202 Opers.push_back(getValue(FPI.getArgOperand(0))); 7203 Opers.push_back(getValue(FPI.getArgOperand(1))); 7204 } 7205 7206 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7207 assert(Result.getNode()->getNumValues() == 2); 7208 7209 // Push node to the appropriate list so that future instructions can be 7210 // chained up correctly. 7211 SDValue OutChain = Result.getValue(1); 7212 switch (EB) { 7213 case fp::ExceptionBehavior::ebIgnore: 7214 // The only reason why ebIgnore nodes still need to be chained is that 7215 // they might depend on the current rounding mode, and therefore must 7216 // not be moved across instruction that may change that mode. 7217 LLVM_FALLTHROUGH; 7218 case fp::ExceptionBehavior::ebMayTrap: 7219 // These must not be moved across calls or instructions that may change 7220 // floating-point exception masks. 7221 PendingConstrainedFP.push_back(OutChain); 7222 break; 7223 case fp::ExceptionBehavior::ebStrict: 7224 // These must not be moved across calls or instructions that may change 7225 // floating-point exception masks or read floating-point exception flags. 7226 // In addition, they cannot be optimized out even if unused. 7227 PendingConstrainedFPStrict.push_back(OutChain); 7228 break; 7229 } 7230 }; 7231 7232 SDVTList VTs = DAG.getVTList(ValueVTs); 7233 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7234 7235 SDNodeFlags Flags; 7236 if (EB == fp::ExceptionBehavior::ebIgnore) 7237 Flags.setNoFPExcept(true); 7238 7239 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7240 Flags.copyFMF(*FPOp); 7241 7242 unsigned Opcode; 7243 switch (FPI.getIntrinsicID()) { 7244 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7245 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7246 case Intrinsic::INTRINSIC: \ 7247 Opcode = ISD::STRICT_##DAGN; \ 7248 break; 7249 #include "llvm/IR/ConstrainedOps.def" 7250 case Intrinsic::experimental_constrained_fmuladd: { 7251 Opcode = ISD::STRICT_FMA; 7252 // Break fmuladd into fmul and fadd. 7253 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7254 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7255 ValueVTs[0])) { 7256 Opers.pop_back(); 7257 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7258 pushOutChain(Mul, EB); 7259 Opcode = ISD::STRICT_FADD; 7260 Opers.clear(); 7261 Opers.push_back(Mul.getValue(1)); 7262 Opers.push_back(Mul.getValue(0)); 7263 Opers.push_back(getValue(FPI.getArgOperand(2))); 7264 } 7265 break; 7266 } 7267 } 7268 7269 // A few strict DAG nodes carry additional operands that are not 7270 // set up by the default code above. 7271 switch (Opcode) { 7272 default: break; 7273 case ISD::STRICT_FP_ROUND: 7274 Opers.push_back( 7275 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7276 break; 7277 case ISD::STRICT_FSETCC: 7278 case ISD::STRICT_FSETCCS: { 7279 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7280 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7281 if (TM.Options.NoNaNsFPMath) 7282 Condition = getFCmpCodeWithoutNaN(Condition); 7283 Opers.push_back(DAG.getCondCode(Condition)); 7284 break; 7285 } 7286 } 7287 7288 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7289 pushOutChain(Result, EB); 7290 7291 SDValue FPResult = Result.getValue(0); 7292 setValue(&FPI, FPResult); 7293 } 7294 7295 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7296 Optional<unsigned> ResOPC; 7297 switch (VPIntrin.getIntrinsicID()) { 7298 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 7299 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) ResOPC = ISD::VPSD; 7300 #define END_REGISTER_VP_INTRINSIC(VPID) break; 7301 #include "llvm/IR/VPIntrinsics.def" 7302 } 7303 7304 if (!ResOPC.hasValue()) 7305 llvm_unreachable( 7306 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7307 7308 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7309 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7310 if (VPIntrin.getFastMathFlags().allowReassoc()) 7311 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7312 : ISD::VP_REDUCE_FMUL; 7313 } 7314 7315 return ResOPC.getValue(); 7316 } 7317 7318 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT, 7319 SmallVector<SDValue, 7> &OpValues, 7320 bool IsGather) { 7321 SDLoc DL = getCurSDLoc(); 7322 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7323 Value *PtrOperand = VPIntrin.getArgOperand(0); 7324 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7325 if (!Alignment) 7326 Alignment = DAG.getEVTAlign(VT); 7327 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7328 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7329 SDValue LD; 7330 bool AddToChain = true; 7331 if (!IsGather) { 7332 // Do not serialize variable-length loads of constant memory with 7333 // anything. 7334 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7335 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7336 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7337 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7338 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7339 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7340 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7341 MMO, false /*IsExpanding */); 7342 } else { 7343 unsigned AS = 7344 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7345 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7346 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7347 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7348 SDValue Base, Index, Scale; 7349 ISD::MemIndexType IndexType; 7350 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7351 this, VPIntrin.getParent()); 7352 if (!UniformBase) { 7353 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7354 Index = getValue(PtrOperand); 7355 IndexType = ISD::SIGNED_UNSCALED; 7356 Scale = 7357 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7358 } 7359 EVT IdxVT = Index.getValueType(); 7360 EVT EltTy = IdxVT.getVectorElementType(); 7361 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7362 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7363 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7364 } 7365 LD = DAG.getGatherVP( 7366 DAG.getVTList(VT, MVT::Other), VT, DL, 7367 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7368 IndexType); 7369 } 7370 if (AddToChain) 7371 PendingLoads.push_back(LD.getValue(1)); 7372 setValue(&VPIntrin, LD); 7373 } 7374 7375 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin, 7376 SmallVector<SDValue, 7> &OpValues, 7377 bool IsScatter) { 7378 SDLoc DL = getCurSDLoc(); 7379 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7380 Value *PtrOperand = VPIntrin.getArgOperand(1); 7381 EVT VT = OpValues[0].getValueType(); 7382 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7383 if (!Alignment) 7384 Alignment = DAG.getEVTAlign(VT); 7385 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7386 SDValue ST; 7387 if (!IsScatter) { 7388 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7389 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7390 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7391 ST = 7392 DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], OpValues[1], 7393 OpValues[2], OpValues[3], MMO, false /* IsTruncating */); 7394 } else { 7395 unsigned AS = 7396 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7397 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7398 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7399 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7400 SDValue Base, Index, Scale; 7401 ISD::MemIndexType IndexType; 7402 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7403 this, VPIntrin.getParent()); 7404 if (!UniformBase) { 7405 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7406 Index = getValue(PtrOperand); 7407 IndexType = ISD::SIGNED_UNSCALED; 7408 Scale = 7409 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7410 } 7411 EVT IdxVT = Index.getValueType(); 7412 EVT EltTy = IdxVT.getVectorElementType(); 7413 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7414 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7415 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7416 } 7417 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7418 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7419 OpValues[2], OpValues[3]}, 7420 MMO, IndexType); 7421 } 7422 DAG.setRoot(ST); 7423 setValue(&VPIntrin, ST); 7424 } 7425 7426 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7427 const VPIntrinsic &VPIntrin) { 7428 SDLoc DL = getCurSDLoc(); 7429 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7430 7431 SmallVector<EVT, 4> ValueVTs; 7432 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7433 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7434 SDVTList VTs = DAG.getVTList(ValueVTs); 7435 7436 auto EVLParamPos = 7437 VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID()); 7438 7439 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7440 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7441 "Unexpected target EVL type"); 7442 7443 // Request operands. 7444 SmallVector<SDValue, 7> OpValues; 7445 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7446 auto Op = getValue(VPIntrin.getArgOperand(I)); 7447 if (I == EVLParamPos) 7448 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7449 OpValues.push_back(Op); 7450 } 7451 7452 switch (Opcode) { 7453 default: { 7454 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7455 setValue(&VPIntrin, Result); 7456 break; 7457 } 7458 case ISD::VP_LOAD: 7459 case ISD::VP_GATHER: 7460 visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues, 7461 Opcode == ISD::VP_GATHER); 7462 break; 7463 case ISD::VP_STORE: 7464 case ISD::VP_SCATTER: 7465 visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER); 7466 break; 7467 } 7468 } 7469 7470 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7471 const BasicBlock *EHPadBB, 7472 MCSymbol *&BeginLabel) { 7473 MachineFunction &MF = DAG.getMachineFunction(); 7474 MachineModuleInfo &MMI = MF.getMMI(); 7475 7476 // Insert a label before the invoke call to mark the try range. This can be 7477 // used to detect deletion of the invoke via the MachineModuleInfo. 7478 BeginLabel = MMI.getContext().createTempSymbol(); 7479 7480 // For SjLj, keep track of which landing pads go with which invokes 7481 // so as to maintain the ordering of pads in the LSDA. 7482 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7483 if (CallSiteIndex) { 7484 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7485 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7486 7487 // Now that the call site is handled, stop tracking it. 7488 MMI.setCurrentCallSite(0); 7489 } 7490 7491 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7492 } 7493 7494 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7495 const BasicBlock *EHPadBB, 7496 MCSymbol *BeginLabel) { 7497 assert(BeginLabel && "BeginLabel should've been set"); 7498 7499 MachineFunction &MF = DAG.getMachineFunction(); 7500 MachineModuleInfo &MMI = MF.getMMI(); 7501 7502 // Insert a label at the end of the invoke call to mark the try range. This 7503 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7504 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7505 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7506 7507 // Inform MachineModuleInfo of range. 7508 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7509 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7510 // actually use outlined funclets and their LSDA info style. 7511 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7512 assert(II && "II should've been set"); 7513 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7514 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7515 } else if (!isScopedEHPersonality(Pers)) { 7516 assert(EHPadBB); 7517 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7518 } 7519 7520 return Chain; 7521 } 7522 7523 std::pair<SDValue, SDValue> 7524 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7525 const BasicBlock *EHPadBB) { 7526 MCSymbol *BeginLabel = nullptr; 7527 7528 if (EHPadBB) { 7529 // Both PendingLoads and PendingExports must be flushed here; 7530 // this call might not return. 7531 (void)getRoot(); 7532 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7533 CLI.setChain(getRoot()); 7534 } 7535 7536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7537 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7538 7539 assert((CLI.IsTailCall || Result.second.getNode()) && 7540 "Non-null chain expected with non-tail call!"); 7541 assert((Result.second.getNode() || !Result.first.getNode()) && 7542 "Null value expected with tail call!"); 7543 7544 if (!Result.second.getNode()) { 7545 // As a special case, a null chain means that a tail call has been emitted 7546 // and the DAG root is already updated. 7547 HasTailCall = true; 7548 7549 // Since there's no actual continuation from this block, nothing can be 7550 // relying on us setting vregs for them. 7551 PendingExports.clear(); 7552 } else { 7553 DAG.setRoot(Result.second); 7554 } 7555 7556 if (EHPadBB) { 7557 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7558 BeginLabel)); 7559 } 7560 7561 return Result; 7562 } 7563 7564 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7565 bool isTailCall, 7566 bool isMustTailCall, 7567 const BasicBlock *EHPadBB) { 7568 auto &DL = DAG.getDataLayout(); 7569 FunctionType *FTy = CB.getFunctionType(); 7570 Type *RetTy = CB.getType(); 7571 7572 TargetLowering::ArgListTy Args; 7573 Args.reserve(CB.arg_size()); 7574 7575 const Value *SwiftErrorVal = nullptr; 7576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7577 7578 if (isTailCall) { 7579 // Avoid emitting tail calls in functions with the disable-tail-calls 7580 // attribute. 7581 auto *Caller = CB.getParent()->getParent(); 7582 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7583 "true" && !isMustTailCall) 7584 isTailCall = false; 7585 7586 // We can't tail call inside a function with a swifterror argument. Lowering 7587 // does not support this yet. It would have to move into the swifterror 7588 // register before the call. 7589 if (TLI.supportSwiftError() && 7590 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7591 isTailCall = false; 7592 } 7593 7594 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7595 TargetLowering::ArgListEntry Entry; 7596 const Value *V = *I; 7597 7598 // Skip empty types 7599 if (V->getType()->isEmptyTy()) 7600 continue; 7601 7602 SDValue ArgNode = getValue(V); 7603 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7604 7605 Entry.setAttributes(&CB, I - CB.arg_begin()); 7606 7607 // Use swifterror virtual register as input to the call. 7608 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7609 SwiftErrorVal = V; 7610 // We find the virtual register for the actual swifterror argument. 7611 // Instead of using the Value, we use the virtual register instead. 7612 Entry.Node = 7613 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7614 EVT(TLI.getPointerTy(DL))); 7615 } 7616 7617 Args.push_back(Entry); 7618 7619 // If we have an explicit sret argument that is an Instruction, (i.e., it 7620 // might point to function-local memory), we can't meaningfully tail-call. 7621 if (Entry.IsSRet && isa<Instruction>(V)) 7622 isTailCall = false; 7623 } 7624 7625 // If call site has a cfguardtarget operand bundle, create and add an 7626 // additional ArgListEntry. 7627 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7628 TargetLowering::ArgListEntry Entry; 7629 Value *V = Bundle->Inputs[0]; 7630 SDValue ArgNode = getValue(V); 7631 Entry.Node = ArgNode; 7632 Entry.Ty = V->getType(); 7633 Entry.IsCFGuardTarget = true; 7634 Args.push_back(Entry); 7635 } 7636 7637 // Check if target-independent constraints permit a tail call here. 7638 // Target-dependent constraints are checked within TLI->LowerCallTo. 7639 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7640 isTailCall = false; 7641 7642 // Disable tail calls if there is an swifterror argument. Targets have not 7643 // been updated to support tail calls. 7644 if (TLI.supportSwiftError() && SwiftErrorVal) 7645 isTailCall = false; 7646 7647 TargetLowering::CallLoweringInfo CLI(DAG); 7648 CLI.setDebugLoc(getCurSDLoc()) 7649 .setChain(getRoot()) 7650 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7651 .setTailCall(isTailCall) 7652 .setConvergent(CB.isConvergent()) 7653 .setIsPreallocated( 7654 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7655 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7656 7657 if (Result.first.getNode()) { 7658 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7659 setValue(&CB, Result.first); 7660 } 7661 7662 // The last element of CLI.InVals has the SDValue for swifterror return. 7663 // Here we copy it to a virtual register and update SwiftErrorMap for 7664 // book-keeping. 7665 if (SwiftErrorVal && TLI.supportSwiftError()) { 7666 // Get the last element of InVals. 7667 SDValue Src = CLI.InVals.back(); 7668 Register VReg = 7669 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7670 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7671 DAG.setRoot(CopyNode); 7672 } 7673 } 7674 7675 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7676 SelectionDAGBuilder &Builder) { 7677 // Check to see if this load can be trivially constant folded, e.g. if the 7678 // input is from a string literal. 7679 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7680 // Cast pointer to the type we really want to load. 7681 Type *LoadTy = 7682 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7683 if (LoadVT.isVector()) 7684 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7685 7686 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7687 PointerType::getUnqual(LoadTy)); 7688 7689 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7690 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7691 return Builder.getValue(LoadCst); 7692 } 7693 7694 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7695 // still constant memory, the input chain can be the entry node. 7696 SDValue Root; 7697 bool ConstantMemory = false; 7698 7699 // Do not serialize (non-volatile) loads of constant memory with anything. 7700 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7701 Root = Builder.DAG.getEntryNode(); 7702 ConstantMemory = true; 7703 } else { 7704 // Do not serialize non-volatile loads against each other. 7705 Root = Builder.DAG.getRoot(); 7706 } 7707 7708 SDValue Ptr = Builder.getValue(PtrVal); 7709 SDValue LoadVal = 7710 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7711 MachinePointerInfo(PtrVal), Align(1)); 7712 7713 if (!ConstantMemory) 7714 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7715 return LoadVal; 7716 } 7717 7718 /// Record the value for an instruction that produces an integer result, 7719 /// converting the type where necessary. 7720 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7721 SDValue Value, 7722 bool IsSigned) { 7723 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7724 I.getType(), true); 7725 if (IsSigned) 7726 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7727 else 7728 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7729 setValue(&I, Value); 7730 } 7731 7732 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7733 /// true and lower it. Otherwise return false, and it will be lowered like a 7734 /// normal call. 7735 /// The caller already checked that \p I calls the appropriate LibFunc with a 7736 /// correct prototype. 7737 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7738 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7739 const Value *Size = I.getArgOperand(2); 7740 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7741 if (CSize && CSize->getZExtValue() == 0) { 7742 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7743 I.getType(), true); 7744 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7745 return true; 7746 } 7747 7748 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7749 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7750 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7751 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7752 if (Res.first.getNode()) { 7753 processIntegerCallValue(I, Res.first, true); 7754 PendingLoads.push_back(Res.second); 7755 return true; 7756 } 7757 7758 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7759 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7760 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7761 return false; 7762 7763 // If the target has a fast compare for the given size, it will return a 7764 // preferred load type for that size. Require that the load VT is legal and 7765 // that the target supports unaligned loads of that type. Otherwise, return 7766 // INVALID. 7767 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7768 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7769 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7770 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7771 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7772 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7773 // TODO: Check alignment of src and dest ptrs. 7774 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7775 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7776 if (!TLI.isTypeLegal(LVT) || 7777 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7778 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7779 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7780 } 7781 7782 return LVT; 7783 }; 7784 7785 // This turns into unaligned loads. We only do this if the target natively 7786 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7787 // we'll only produce a small number of byte loads. 7788 MVT LoadVT; 7789 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7790 switch (NumBitsToCompare) { 7791 default: 7792 return false; 7793 case 16: 7794 LoadVT = MVT::i16; 7795 break; 7796 case 32: 7797 LoadVT = MVT::i32; 7798 break; 7799 case 64: 7800 case 128: 7801 case 256: 7802 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7803 break; 7804 } 7805 7806 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7807 return false; 7808 7809 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7810 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7811 7812 // Bitcast to a wide integer type if the loads are vectors. 7813 if (LoadVT.isVector()) { 7814 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7815 LoadL = DAG.getBitcast(CmpVT, LoadL); 7816 LoadR = DAG.getBitcast(CmpVT, LoadR); 7817 } 7818 7819 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7820 processIntegerCallValue(I, Cmp, false); 7821 return true; 7822 } 7823 7824 /// See if we can lower a memchr call into an optimized form. If so, return 7825 /// true and lower it. Otherwise return false, and it will be lowered like a 7826 /// normal call. 7827 /// The caller already checked that \p I calls the appropriate LibFunc with a 7828 /// correct prototype. 7829 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7830 const Value *Src = I.getArgOperand(0); 7831 const Value *Char = I.getArgOperand(1); 7832 const Value *Length = I.getArgOperand(2); 7833 7834 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7835 std::pair<SDValue, SDValue> Res = 7836 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7837 getValue(Src), getValue(Char), getValue(Length), 7838 MachinePointerInfo(Src)); 7839 if (Res.first.getNode()) { 7840 setValue(&I, Res.first); 7841 PendingLoads.push_back(Res.second); 7842 return true; 7843 } 7844 7845 return false; 7846 } 7847 7848 /// See if we can lower a mempcpy call into an optimized form. If so, return 7849 /// true and lower it. Otherwise return false, and it will be lowered like a 7850 /// normal call. 7851 /// The caller already checked that \p I calls the appropriate LibFunc with a 7852 /// correct prototype. 7853 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7854 SDValue Dst = getValue(I.getArgOperand(0)); 7855 SDValue Src = getValue(I.getArgOperand(1)); 7856 SDValue Size = getValue(I.getArgOperand(2)); 7857 7858 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7859 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7860 // DAG::getMemcpy needs Alignment to be defined. 7861 Align Alignment = std::min(DstAlign, SrcAlign); 7862 7863 bool isVol = false; 7864 SDLoc sdl = getCurSDLoc(); 7865 7866 // In the mempcpy context we need to pass in a false value for isTailCall 7867 // because the return pointer needs to be adjusted by the size of 7868 // the copied memory. 7869 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7870 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7871 /*isTailCall=*/false, 7872 MachinePointerInfo(I.getArgOperand(0)), 7873 MachinePointerInfo(I.getArgOperand(1)), 7874 I.getAAMetadata()); 7875 assert(MC.getNode() != nullptr && 7876 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7877 DAG.setRoot(MC); 7878 7879 // Check if Size needs to be truncated or extended. 7880 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7881 7882 // Adjust return pointer to point just past the last dst byte. 7883 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7884 Dst, Size); 7885 setValue(&I, DstPlusSize); 7886 return true; 7887 } 7888 7889 /// See if we can lower a strcpy call into an optimized form. If so, return 7890 /// true and lower it, otherwise return false and it will be lowered like a 7891 /// normal call. 7892 /// The caller already checked that \p I calls the appropriate LibFunc with a 7893 /// correct prototype. 7894 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7895 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7896 7897 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7898 std::pair<SDValue, SDValue> Res = 7899 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7900 getValue(Arg0), getValue(Arg1), 7901 MachinePointerInfo(Arg0), 7902 MachinePointerInfo(Arg1), isStpcpy); 7903 if (Res.first.getNode()) { 7904 setValue(&I, Res.first); 7905 DAG.setRoot(Res.second); 7906 return true; 7907 } 7908 7909 return false; 7910 } 7911 7912 /// See if we can lower a strcmp call into an optimized form. If so, return 7913 /// true and lower it, otherwise return false and it will be lowered like a 7914 /// normal call. 7915 /// The caller already checked that \p I calls the appropriate LibFunc with a 7916 /// correct prototype. 7917 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7918 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7919 7920 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7921 std::pair<SDValue, SDValue> Res = 7922 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7923 getValue(Arg0), getValue(Arg1), 7924 MachinePointerInfo(Arg0), 7925 MachinePointerInfo(Arg1)); 7926 if (Res.first.getNode()) { 7927 processIntegerCallValue(I, Res.first, true); 7928 PendingLoads.push_back(Res.second); 7929 return true; 7930 } 7931 7932 return false; 7933 } 7934 7935 /// See if we can lower a strlen call into an optimized form. If so, return 7936 /// true and lower it, otherwise return false and it will be lowered like a 7937 /// normal call. 7938 /// The caller already checked that \p I calls the appropriate LibFunc with a 7939 /// correct prototype. 7940 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7941 const Value *Arg0 = I.getArgOperand(0); 7942 7943 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7944 std::pair<SDValue, SDValue> Res = 7945 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7946 getValue(Arg0), MachinePointerInfo(Arg0)); 7947 if (Res.first.getNode()) { 7948 processIntegerCallValue(I, Res.first, false); 7949 PendingLoads.push_back(Res.second); 7950 return true; 7951 } 7952 7953 return false; 7954 } 7955 7956 /// See if we can lower a strnlen call into an optimized form. If so, return 7957 /// true and lower it, otherwise return false and it will be lowered like a 7958 /// normal call. 7959 /// The caller already checked that \p I calls the appropriate LibFunc with a 7960 /// correct prototype. 7961 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7962 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7963 7964 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7965 std::pair<SDValue, SDValue> Res = 7966 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7967 getValue(Arg0), getValue(Arg1), 7968 MachinePointerInfo(Arg0)); 7969 if (Res.first.getNode()) { 7970 processIntegerCallValue(I, Res.first, false); 7971 PendingLoads.push_back(Res.second); 7972 return true; 7973 } 7974 7975 return false; 7976 } 7977 7978 /// See if we can lower a unary floating-point operation into an SDNode with 7979 /// the specified Opcode. If so, return true and lower it, otherwise return 7980 /// false and it will be lowered like a normal call. 7981 /// The caller already checked that \p I calls the appropriate LibFunc with a 7982 /// correct prototype. 7983 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7984 unsigned Opcode) { 7985 // We already checked this call's prototype; verify it doesn't modify errno. 7986 if (!I.onlyReadsMemory()) 7987 return false; 7988 7989 SDNodeFlags Flags; 7990 Flags.copyFMF(cast<FPMathOperator>(I)); 7991 7992 SDValue Tmp = getValue(I.getArgOperand(0)); 7993 setValue(&I, 7994 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 7995 return true; 7996 } 7997 7998 /// See if we can lower a binary floating-point operation into an SDNode with 7999 /// the specified Opcode. If so, return true and lower it. Otherwise return 8000 /// false, and it will be lowered like a normal call. 8001 /// The caller already checked that \p I calls the appropriate LibFunc with a 8002 /// correct prototype. 8003 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8004 unsigned Opcode) { 8005 // We already checked this call's prototype; verify it doesn't modify errno. 8006 if (!I.onlyReadsMemory()) 8007 return false; 8008 8009 SDNodeFlags Flags; 8010 Flags.copyFMF(cast<FPMathOperator>(I)); 8011 8012 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8013 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8014 EVT VT = Tmp0.getValueType(); 8015 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8016 return true; 8017 } 8018 8019 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8020 // Handle inline assembly differently. 8021 if (I.isInlineAsm()) { 8022 visitInlineAsm(I); 8023 return; 8024 } 8025 8026 if (Function *F = I.getCalledFunction()) { 8027 diagnoseDontCall(I); 8028 8029 if (F->isDeclaration()) { 8030 // Is this an LLVM intrinsic or a target-specific intrinsic? 8031 unsigned IID = F->getIntrinsicID(); 8032 if (!IID) 8033 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8034 IID = II->getIntrinsicID(F); 8035 8036 if (IID) { 8037 visitIntrinsicCall(I, IID); 8038 return; 8039 } 8040 } 8041 8042 // Check for well-known libc/libm calls. If the function is internal, it 8043 // can't be a library call. Don't do the check if marked as nobuiltin for 8044 // some reason or the call site requires strict floating point semantics. 8045 LibFunc Func; 8046 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8047 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8048 LibInfo->hasOptimizedCodeGen(Func)) { 8049 switch (Func) { 8050 default: break; 8051 case LibFunc_bcmp: 8052 if (visitMemCmpBCmpCall(I)) 8053 return; 8054 break; 8055 case LibFunc_copysign: 8056 case LibFunc_copysignf: 8057 case LibFunc_copysignl: 8058 // We already checked this call's prototype; verify it doesn't modify 8059 // errno. 8060 if (I.onlyReadsMemory()) { 8061 SDValue LHS = getValue(I.getArgOperand(0)); 8062 SDValue RHS = getValue(I.getArgOperand(1)); 8063 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8064 LHS.getValueType(), LHS, RHS)); 8065 return; 8066 } 8067 break; 8068 case LibFunc_fabs: 8069 case LibFunc_fabsf: 8070 case LibFunc_fabsl: 8071 if (visitUnaryFloatCall(I, ISD::FABS)) 8072 return; 8073 break; 8074 case LibFunc_fmin: 8075 case LibFunc_fminf: 8076 case LibFunc_fminl: 8077 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8078 return; 8079 break; 8080 case LibFunc_fmax: 8081 case LibFunc_fmaxf: 8082 case LibFunc_fmaxl: 8083 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8084 return; 8085 break; 8086 case LibFunc_sin: 8087 case LibFunc_sinf: 8088 case LibFunc_sinl: 8089 if (visitUnaryFloatCall(I, ISD::FSIN)) 8090 return; 8091 break; 8092 case LibFunc_cos: 8093 case LibFunc_cosf: 8094 case LibFunc_cosl: 8095 if (visitUnaryFloatCall(I, ISD::FCOS)) 8096 return; 8097 break; 8098 case LibFunc_sqrt: 8099 case LibFunc_sqrtf: 8100 case LibFunc_sqrtl: 8101 case LibFunc_sqrt_finite: 8102 case LibFunc_sqrtf_finite: 8103 case LibFunc_sqrtl_finite: 8104 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8105 return; 8106 break; 8107 case LibFunc_floor: 8108 case LibFunc_floorf: 8109 case LibFunc_floorl: 8110 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8111 return; 8112 break; 8113 case LibFunc_nearbyint: 8114 case LibFunc_nearbyintf: 8115 case LibFunc_nearbyintl: 8116 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8117 return; 8118 break; 8119 case LibFunc_ceil: 8120 case LibFunc_ceilf: 8121 case LibFunc_ceill: 8122 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8123 return; 8124 break; 8125 case LibFunc_rint: 8126 case LibFunc_rintf: 8127 case LibFunc_rintl: 8128 if (visitUnaryFloatCall(I, ISD::FRINT)) 8129 return; 8130 break; 8131 case LibFunc_round: 8132 case LibFunc_roundf: 8133 case LibFunc_roundl: 8134 if (visitUnaryFloatCall(I, ISD::FROUND)) 8135 return; 8136 break; 8137 case LibFunc_trunc: 8138 case LibFunc_truncf: 8139 case LibFunc_truncl: 8140 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8141 return; 8142 break; 8143 case LibFunc_log2: 8144 case LibFunc_log2f: 8145 case LibFunc_log2l: 8146 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8147 return; 8148 break; 8149 case LibFunc_exp2: 8150 case LibFunc_exp2f: 8151 case LibFunc_exp2l: 8152 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8153 return; 8154 break; 8155 case LibFunc_memcmp: 8156 if (visitMemCmpBCmpCall(I)) 8157 return; 8158 break; 8159 case LibFunc_mempcpy: 8160 if (visitMemPCpyCall(I)) 8161 return; 8162 break; 8163 case LibFunc_memchr: 8164 if (visitMemChrCall(I)) 8165 return; 8166 break; 8167 case LibFunc_strcpy: 8168 if (visitStrCpyCall(I, false)) 8169 return; 8170 break; 8171 case LibFunc_stpcpy: 8172 if (visitStrCpyCall(I, true)) 8173 return; 8174 break; 8175 case LibFunc_strcmp: 8176 if (visitStrCmpCall(I)) 8177 return; 8178 break; 8179 case LibFunc_strlen: 8180 if (visitStrLenCall(I)) 8181 return; 8182 break; 8183 case LibFunc_strnlen: 8184 if (visitStrNLenCall(I)) 8185 return; 8186 break; 8187 } 8188 } 8189 } 8190 8191 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8192 // have to do anything here to lower funclet bundles. 8193 // CFGuardTarget bundles are lowered in LowerCallTo. 8194 assert(!I.hasOperandBundlesOtherThan( 8195 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8196 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8197 LLVMContext::OB_clang_arc_attachedcall}) && 8198 "Cannot lower calls with arbitrary operand bundles!"); 8199 8200 SDValue Callee = getValue(I.getCalledOperand()); 8201 8202 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8203 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8204 else 8205 // Check if we can potentially perform a tail call. More detailed checking 8206 // is be done within LowerCallTo, after more information about the call is 8207 // known. 8208 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8209 } 8210 8211 namespace { 8212 8213 /// AsmOperandInfo - This contains information for each constraint that we are 8214 /// lowering. 8215 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8216 public: 8217 /// CallOperand - If this is the result output operand or a clobber 8218 /// this is null, otherwise it is the incoming operand to the CallInst. 8219 /// This gets modified as the asm is processed. 8220 SDValue CallOperand; 8221 8222 /// AssignedRegs - If this is a register or register class operand, this 8223 /// contains the set of register corresponding to the operand. 8224 RegsForValue AssignedRegs; 8225 8226 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8227 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8228 } 8229 8230 /// Whether or not this operand accesses memory 8231 bool hasMemory(const TargetLowering &TLI) const { 8232 // Indirect operand accesses access memory. 8233 if (isIndirect) 8234 return true; 8235 8236 for (const auto &Code : Codes) 8237 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8238 return true; 8239 8240 return false; 8241 } 8242 8243 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 8244 /// corresponds to. If there is no Value* for this operand, it returns 8245 /// MVT::Other. 8246 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 8247 const DataLayout &DL) const { 8248 if (!CallOperandVal) return MVT::Other; 8249 8250 if (isa<BasicBlock>(CallOperandVal)) 8251 return TLI.getProgramPointerTy(DL); 8252 8253 llvm::Type *OpTy = CallOperandVal->getType(); 8254 8255 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 8256 // If this is an indirect operand, the operand is a pointer to the 8257 // accessed type. 8258 if (isIndirect) { 8259 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 8260 if (!PtrTy) 8261 report_fatal_error("Indirect operand for inline asm not a pointer!"); 8262 OpTy = PtrTy->getElementType(); 8263 } 8264 8265 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 8266 if (StructType *STy = dyn_cast<StructType>(OpTy)) 8267 if (STy->getNumElements() == 1) 8268 OpTy = STy->getElementType(0); 8269 8270 // If OpTy is not a single value, it may be a struct/union that we 8271 // can tile with integers. 8272 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 8273 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 8274 switch (BitSize) { 8275 default: break; 8276 case 1: 8277 case 8: 8278 case 16: 8279 case 32: 8280 case 64: 8281 case 128: 8282 OpTy = IntegerType::get(Context, BitSize); 8283 break; 8284 } 8285 } 8286 8287 return TLI.getAsmOperandValueType(DL, OpTy, true); 8288 } 8289 }; 8290 8291 8292 } // end anonymous namespace 8293 8294 /// Make sure that the output operand \p OpInfo and its corresponding input 8295 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8296 /// out). 8297 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8298 SDISelAsmOperandInfo &MatchingOpInfo, 8299 SelectionDAG &DAG) { 8300 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8301 return; 8302 8303 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8304 const auto &TLI = DAG.getTargetLoweringInfo(); 8305 8306 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8307 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8308 OpInfo.ConstraintVT); 8309 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8310 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8311 MatchingOpInfo.ConstraintVT); 8312 if ((OpInfo.ConstraintVT.isInteger() != 8313 MatchingOpInfo.ConstraintVT.isInteger()) || 8314 (MatchRC.second != InputRC.second)) { 8315 // FIXME: error out in a more elegant fashion 8316 report_fatal_error("Unsupported asm: input constraint" 8317 " with a matching output constraint of" 8318 " incompatible type!"); 8319 } 8320 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8321 } 8322 8323 /// Get a direct memory input to behave well as an indirect operand. 8324 /// This may introduce stores, hence the need for a \p Chain. 8325 /// \return The (possibly updated) chain. 8326 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8327 SDISelAsmOperandInfo &OpInfo, 8328 SelectionDAG &DAG) { 8329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8330 8331 // If we don't have an indirect input, put it in the constpool if we can, 8332 // otherwise spill it to a stack slot. 8333 // TODO: This isn't quite right. We need to handle these according to 8334 // the addressing mode that the constraint wants. Also, this may take 8335 // an additional register for the computation and we don't want that 8336 // either. 8337 8338 // If the operand is a float, integer, or vector constant, spill to a 8339 // constant pool entry to get its address. 8340 const Value *OpVal = OpInfo.CallOperandVal; 8341 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8342 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8343 OpInfo.CallOperand = DAG.getConstantPool( 8344 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8345 return Chain; 8346 } 8347 8348 // Otherwise, create a stack slot and emit a store to it before the asm. 8349 Type *Ty = OpVal->getType(); 8350 auto &DL = DAG.getDataLayout(); 8351 uint64_t TySize = DL.getTypeAllocSize(Ty); 8352 MachineFunction &MF = DAG.getMachineFunction(); 8353 int SSFI = MF.getFrameInfo().CreateStackObject( 8354 TySize, DL.getPrefTypeAlign(Ty), false); 8355 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8356 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8357 MachinePointerInfo::getFixedStack(MF, SSFI), 8358 TLI.getMemValueType(DL, Ty)); 8359 OpInfo.CallOperand = StackSlot; 8360 8361 return Chain; 8362 } 8363 8364 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8365 /// specified operand. We prefer to assign virtual registers, to allow the 8366 /// register allocator to handle the assignment process. However, if the asm 8367 /// uses features that we can't model on machineinstrs, we have SDISel do the 8368 /// allocation. This produces generally horrible, but correct, code. 8369 /// 8370 /// OpInfo describes the operand 8371 /// RefOpInfo describes the matching operand if any, the operand otherwise 8372 static llvm::Optional<unsigned> 8373 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8374 SDISelAsmOperandInfo &OpInfo, 8375 SDISelAsmOperandInfo &RefOpInfo) { 8376 LLVMContext &Context = *DAG.getContext(); 8377 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8378 8379 MachineFunction &MF = DAG.getMachineFunction(); 8380 SmallVector<unsigned, 4> Regs; 8381 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8382 8383 // No work to do for memory operations. 8384 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8385 return None; 8386 8387 // If this is a constraint for a single physreg, or a constraint for a 8388 // register class, find it. 8389 unsigned AssignedReg; 8390 const TargetRegisterClass *RC; 8391 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8392 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8393 // RC is unset only on failure. Return immediately. 8394 if (!RC) 8395 return None; 8396 8397 // Get the actual register value type. This is important, because the user 8398 // may have asked for (e.g.) the AX register in i32 type. We need to 8399 // remember that AX is actually i16 to get the right extension. 8400 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8401 8402 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8403 // If this is an FP operand in an integer register (or visa versa), or more 8404 // generally if the operand value disagrees with the register class we plan 8405 // to stick it in, fix the operand type. 8406 // 8407 // If this is an input value, the bitcast to the new type is done now. 8408 // Bitcast for output value is done at the end of visitInlineAsm(). 8409 if ((OpInfo.Type == InlineAsm::isOutput || 8410 OpInfo.Type == InlineAsm::isInput) && 8411 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8412 // Try to convert to the first EVT that the reg class contains. If the 8413 // types are identical size, use a bitcast to convert (e.g. two differing 8414 // vector types). Note: output bitcast is done at the end of 8415 // visitInlineAsm(). 8416 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8417 // Exclude indirect inputs while they are unsupported because the code 8418 // to perform the load is missing and thus OpInfo.CallOperand still 8419 // refers to the input address rather than the pointed-to value. 8420 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8421 OpInfo.CallOperand = 8422 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8423 OpInfo.ConstraintVT = RegVT; 8424 // If the operand is an FP value and we want it in integer registers, 8425 // use the corresponding integer type. This turns an f64 value into 8426 // i64, which can be passed with two i32 values on a 32-bit machine. 8427 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8428 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8429 if (OpInfo.Type == InlineAsm::isInput) 8430 OpInfo.CallOperand = 8431 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8432 OpInfo.ConstraintVT = VT; 8433 } 8434 } 8435 } 8436 8437 // No need to allocate a matching input constraint since the constraint it's 8438 // matching to has already been allocated. 8439 if (OpInfo.isMatchingInputConstraint()) 8440 return None; 8441 8442 EVT ValueVT = OpInfo.ConstraintVT; 8443 if (OpInfo.ConstraintVT == MVT::Other) 8444 ValueVT = RegVT; 8445 8446 // Initialize NumRegs. 8447 unsigned NumRegs = 1; 8448 if (OpInfo.ConstraintVT != MVT::Other) 8449 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8450 8451 // If this is a constraint for a specific physical register, like {r17}, 8452 // assign it now. 8453 8454 // If this associated to a specific register, initialize iterator to correct 8455 // place. If virtual, make sure we have enough registers 8456 8457 // Initialize iterator if necessary 8458 TargetRegisterClass::iterator I = RC->begin(); 8459 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8460 8461 // Do not check for single registers. 8462 if (AssignedReg) { 8463 I = std::find(I, RC->end(), AssignedReg); 8464 if (I == RC->end()) { 8465 // RC does not contain the selected register, which indicates a 8466 // mismatch between the register and the required type/bitwidth. 8467 return {AssignedReg}; 8468 } 8469 } 8470 8471 for (; NumRegs; --NumRegs, ++I) { 8472 assert(I != RC->end() && "Ran out of registers to allocate!"); 8473 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8474 Regs.push_back(R); 8475 } 8476 8477 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8478 return None; 8479 } 8480 8481 static unsigned 8482 findMatchingInlineAsmOperand(unsigned OperandNo, 8483 const std::vector<SDValue> &AsmNodeOperands) { 8484 // Scan until we find the definition we already emitted of this operand. 8485 unsigned CurOp = InlineAsm::Op_FirstOperand; 8486 for (; OperandNo; --OperandNo) { 8487 // Advance to the next operand. 8488 unsigned OpFlag = 8489 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8490 assert((InlineAsm::isRegDefKind(OpFlag) || 8491 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8492 InlineAsm::isMemKind(OpFlag)) && 8493 "Skipped past definitions?"); 8494 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8495 } 8496 return CurOp; 8497 } 8498 8499 namespace { 8500 8501 class ExtraFlags { 8502 unsigned Flags = 0; 8503 8504 public: 8505 explicit ExtraFlags(const CallBase &Call) { 8506 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8507 if (IA->hasSideEffects()) 8508 Flags |= InlineAsm::Extra_HasSideEffects; 8509 if (IA->isAlignStack()) 8510 Flags |= InlineAsm::Extra_IsAlignStack; 8511 if (Call.isConvergent()) 8512 Flags |= InlineAsm::Extra_IsConvergent; 8513 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8514 } 8515 8516 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8517 // Ideally, we would only check against memory constraints. However, the 8518 // meaning of an Other constraint can be target-specific and we can't easily 8519 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8520 // for Other constraints as well. 8521 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8522 OpInfo.ConstraintType == TargetLowering::C_Other) { 8523 if (OpInfo.Type == InlineAsm::isInput) 8524 Flags |= InlineAsm::Extra_MayLoad; 8525 else if (OpInfo.Type == InlineAsm::isOutput) 8526 Flags |= InlineAsm::Extra_MayStore; 8527 else if (OpInfo.Type == InlineAsm::isClobber) 8528 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8529 } 8530 } 8531 8532 unsigned get() const { return Flags; } 8533 }; 8534 8535 } // end anonymous namespace 8536 8537 /// visitInlineAsm - Handle a call to an InlineAsm object. 8538 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8539 const BasicBlock *EHPadBB) { 8540 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8541 8542 /// ConstraintOperands - Information about all of the constraints. 8543 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8544 8545 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8546 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8547 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8548 8549 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8550 // AsmDialect, MayLoad, MayStore). 8551 bool HasSideEffect = IA->hasSideEffects(); 8552 ExtraFlags ExtraInfo(Call); 8553 8554 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8555 unsigned ResNo = 0; // ResNo - The result number of the next output. 8556 unsigned NumMatchingOps = 0; 8557 for (auto &T : TargetConstraints) { 8558 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8559 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8560 8561 // Compute the value type for each operand. 8562 if (OpInfo.Type == InlineAsm::isInput || 8563 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8564 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8565 8566 // Process the call argument. BasicBlocks are labels, currently appearing 8567 // only in asm's. 8568 if (isa<CallBrInst>(Call) && 8569 ArgNo - 1 >= (cast<CallBrInst>(&Call)->arg_size() - 8570 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8571 NumMatchingOps) && 8572 (NumMatchingOps == 0 || 8573 ArgNo - 1 < 8574 (cast<CallBrInst>(&Call)->arg_size() - NumMatchingOps))) { 8575 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8576 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8577 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8578 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8579 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8580 } else { 8581 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8582 } 8583 8584 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8585 DAG.getDataLayout()); 8586 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8587 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8588 // The return value of the call is this value. As such, there is no 8589 // corresponding argument. 8590 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8591 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8592 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8593 DAG.getDataLayout(), STy->getElementType(ResNo)); 8594 } else { 8595 assert(ResNo == 0 && "Asm only has one result!"); 8596 OpInfo.ConstraintVT = TLI.getAsmOperandValueType( 8597 DAG.getDataLayout(), Call.getType()).getSimpleVT(); 8598 } 8599 ++ResNo; 8600 } else { 8601 OpInfo.ConstraintVT = MVT::Other; 8602 } 8603 8604 if (OpInfo.hasMatchingInput()) 8605 ++NumMatchingOps; 8606 8607 if (!HasSideEffect) 8608 HasSideEffect = OpInfo.hasMemory(TLI); 8609 8610 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8611 // FIXME: Could we compute this on OpInfo rather than T? 8612 8613 // Compute the constraint code and ConstraintType to use. 8614 TLI.ComputeConstraintToUse(T, SDValue()); 8615 8616 if (T.ConstraintType == TargetLowering::C_Immediate && 8617 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8618 // We've delayed emitting a diagnostic like the "n" constraint because 8619 // inlining could cause an integer showing up. 8620 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8621 "' expects an integer constant " 8622 "expression"); 8623 8624 ExtraInfo.update(T); 8625 } 8626 8627 // We won't need to flush pending loads if this asm doesn't touch 8628 // memory and is nonvolatile. 8629 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8630 8631 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8632 if (EmitEHLabels) { 8633 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8634 } 8635 bool IsCallBr = isa<CallBrInst>(Call); 8636 8637 if (IsCallBr || EmitEHLabels) { 8638 // If this is a callbr or invoke we need to flush pending exports since 8639 // inlineasm_br and invoke are terminators. 8640 // We need to do this before nodes are glued to the inlineasm_br node. 8641 Chain = getControlRoot(); 8642 } 8643 8644 MCSymbol *BeginLabel = nullptr; 8645 if (EmitEHLabels) { 8646 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8647 } 8648 8649 // Second pass over the constraints: compute which constraint option to use. 8650 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8651 // If this is an output operand with a matching input operand, look up the 8652 // matching input. If their types mismatch, e.g. one is an integer, the 8653 // other is floating point, or their sizes are different, flag it as an 8654 // error. 8655 if (OpInfo.hasMatchingInput()) { 8656 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8657 patchMatchingInput(OpInfo, Input, DAG); 8658 } 8659 8660 // Compute the constraint code and ConstraintType to use. 8661 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8662 8663 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8664 OpInfo.Type == InlineAsm::isClobber) 8665 continue; 8666 8667 // If this is a memory input, and if the operand is not indirect, do what we 8668 // need to provide an address for the memory input. 8669 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8670 !OpInfo.isIndirect) { 8671 assert((OpInfo.isMultipleAlternative || 8672 (OpInfo.Type == InlineAsm::isInput)) && 8673 "Can only indirectify direct input operands!"); 8674 8675 // Memory operands really want the address of the value. 8676 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8677 8678 // There is no longer a Value* corresponding to this operand. 8679 OpInfo.CallOperandVal = nullptr; 8680 8681 // It is now an indirect operand. 8682 OpInfo.isIndirect = true; 8683 } 8684 8685 } 8686 8687 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8688 std::vector<SDValue> AsmNodeOperands; 8689 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8690 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8691 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8692 8693 // If we have a !srcloc metadata node associated with it, we want to attach 8694 // this to the ultimately generated inline asm machineinstr. To do this, we 8695 // pass in the third operand as this (potentially null) inline asm MDNode. 8696 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8697 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8698 8699 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8700 // bits as operand 3. 8701 AsmNodeOperands.push_back(DAG.getTargetConstant( 8702 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8703 8704 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8705 // this, assign virtual and physical registers for inputs and otput. 8706 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8707 // Assign Registers. 8708 SDISelAsmOperandInfo &RefOpInfo = 8709 OpInfo.isMatchingInputConstraint() 8710 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8711 : OpInfo; 8712 const auto RegError = 8713 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8714 if (RegError.hasValue()) { 8715 const MachineFunction &MF = DAG.getMachineFunction(); 8716 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8717 const char *RegName = TRI.getName(RegError.getValue()); 8718 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8719 "' allocated for constraint '" + 8720 Twine(OpInfo.ConstraintCode) + 8721 "' does not match required type"); 8722 return; 8723 } 8724 8725 auto DetectWriteToReservedRegister = [&]() { 8726 const MachineFunction &MF = DAG.getMachineFunction(); 8727 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8728 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8729 if (Register::isPhysicalRegister(Reg) && 8730 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8731 const char *RegName = TRI.getName(Reg); 8732 emitInlineAsmError(Call, "write to reserved register '" + 8733 Twine(RegName) + "'"); 8734 return true; 8735 } 8736 } 8737 return false; 8738 }; 8739 8740 switch (OpInfo.Type) { 8741 case InlineAsm::isOutput: 8742 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8743 unsigned ConstraintID = 8744 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8745 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8746 "Failed to convert memory constraint code to constraint id."); 8747 8748 // Add information to the INLINEASM node to know about this output. 8749 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8750 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8751 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8752 MVT::i32)); 8753 AsmNodeOperands.push_back(OpInfo.CallOperand); 8754 } else { 8755 // Otherwise, this outputs to a register (directly for C_Register / 8756 // C_RegisterClass, and a target-defined fashion for 8757 // C_Immediate/C_Other). Find a register that we can use. 8758 if (OpInfo.AssignedRegs.Regs.empty()) { 8759 emitInlineAsmError( 8760 Call, "couldn't allocate output register for constraint '" + 8761 Twine(OpInfo.ConstraintCode) + "'"); 8762 return; 8763 } 8764 8765 if (DetectWriteToReservedRegister()) 8766 return; 8767 8768 // Add information to the INLINEASM node to know that this register is 8769 // set. 8770 OpInfo.AssignedRegs.AddInlineAsmOperands( 8771 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8772 : InlineAsm::Kind_RegDef, 8773 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8774 } 8775 break; 8776 8777 case InlineAsm::isInput: { 8778 SDValue InOperandVal = OpInfo.CallOperand; 8779 8780 if (OpInfo.isMatchingInputConstraint()) { 8781 // If this is required to match an output register we have already set, 8782 // just use its register. 8783 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8784 AsmNodeOperands); 8785 unsigned OpFlag = 8786 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8787 if (InlineAsm::isRegDefKind(OpFlag) || 8788 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8789 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8790 if (OpInfo.isIndirect) { 8791 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8792 emitInlineAsmError(Call, "inline asm not supported yet: " 8793 "don't know how to handle tied " 8794 "indirect register inputs"); 8795 return; 8796 } 8797 8798 SmallVector<unsigned, 4> Regs; 8799 MachineFunction &MF = DAG.getMachineFunction(); 8800 MachineRegisterInfo &MRI = MF.getRegInfo(); 8801 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8802 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8803 Register TiedReg = R->getReg(); 8804 MVT RegVT = R->getSimpleValueType(0); 8805 const TargetRegisterClass *RC = 8806 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8807 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8808 : TRI.getMinimalPhysRegClass(TiedReg); 8809 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8810 for (unsigned i = 0; i != NumRegs; ++i) 8811 Regs.push_back(MRI.createVirtualRegister(RC)); 8812 8813 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8814 8815 SDLoc dl = getCurSDLoc(); 8816 // Use the produced MatchedRegs object to 8817 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8818 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8819 true, OpInfo.getMatchedOperand(), dl, 8820 DAG, AsmNodeOperands); 8821 break; 8822 } 8823 8824 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8825 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8826 "Unexpected number of operands"); 8827 // Add information to the INLINEASM node to know about this input. 8828 // See InlineAsm.h isUseOperandTiedToDef. 8829 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8830 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8831 OpInfo.getMatchedOperand()); 8832 AsmNodeOperands.push_back(DAG.getTargetConstant( 8833 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8834 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8835 break; 8836 } 8837 8838 // Treat indirect 'X' constraint as memory. 8839 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8840 OpInfo.isIndirect) 8841 OpInfo.ConstraintType = TargetLowering::C_Memory; 8842 8843 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8844 OpInfo.ConstraintType == TargetLowering::C_Other) { 8845 std::vector<SDValue> Ops; 8846 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8847 Ops, DAG); 8848 if (Ops.empty()) { 8849 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8850 if (isa<ConstantSDNode>(InOperandVal)) { 8851 emitInlineAsmError(Call, "value out of range for constraint '" + 8852 Twine(OpInfo.ConstraintCode) + "'"); 8853 return; 8854 } 8855 8856 emitInlineAsmError(Call, 8857 "invalid operand for inline asm constraint '" + 8858 Twine(OpInfo.ConstraintCode) + "'"); 8859 return; 8860 } 8861 8862 // Add information to the INLINEASM node to know about this input. 8863 unsigned ResOpType = 8864 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8865 AsmNodeOperands.push_back(DAG.getTargetConstant( 8866 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8867 llvm::append_range(AsmNodeOperands, Ops); 8868 break; 8869 } 8870 8871 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8872 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8873 assert(InOperandVal.getValueType() == 8874 TLI.getPointerTy(DAG.getDataLayout()) && 8875 "Memory operands expect pointer values"); 8876 8877 unsigned ConstraintID = 8878 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8879 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8880 "Failed to convert memory constraint code to constraint id."); 8881 8882 // Add information to the INLINEASM node to know about this input. 8883 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8884 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8885 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8886 getCurSDLoc(), 8887 MVT::i32)); 8888 AsmNodeOperands.push_back(InOperandVal); 8889 break; 8890 } 8891 8892 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8893 OpInfo.ConstraintType == TargetLowering::C_Register) && 8894 "Unknown constraint type!"); 8895 8896 // TODO: Support this. 8897 if (OpInfo.isIndirect) { 8898 emitInlineAsmError( 8899 Call, "Don't know how to handle indirect register inputs yet " 8900 "for constraint '" + 8901 Twine(OpInfo.ConstraintCode) + "'"); 8902 return; 8903 } 8904 8905 // Copy the input into the appropriate registers. 8906 if (OpInfo.AssignedRegs.Regs.empty()) { 8907 emitInlineAsmError(Call, 8908 "couldn't allocate input reg for constraint '" + 8909 Twine(OpInfo.ConstraintCode) + "'"); 8910 return; 8911 } 8912 8913 if (DetectWriteToReservedRegister()) 8914 return; 8915 8916 SDLoc dl = getCurSDLoc(); 8917 8918 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8919 &Call); 8920 8921 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8922 dl, DAG, AsmNodeOperands); 8923 break; 8924 } 8925 case InlineAsm::isClobber: 8926 // Add the clobbered value to the operand list, so that the register 8927 // allocator is aware that the physreg got clobbered. 8928 if (!OpInfo.AssignedRegs.Regs.empty()) 8929 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8930 false, 0, getCurSDLoc(), DAG, 8931 AsmNodeOperands); 8932 break; 8933 } 8934 } 8935 8936 // Finish up input operands. Set the input chain and add the flag last. 8937 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8938 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8939 8940 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8941 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8942 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8943 Flag = Chain.getValue(1); 8944 8945 // Do additional work to generate outputs. 8946 8947 SmallVector<EVT, 1> ResultVTs; 8948 SmallVector<SDValue, 1> ResultValues; 8949 SmallVector<SDValue, 8> OutChains; 8950 8951 llvm::Type *CallResultType = Call.getType(); 8952 ArrayRef<Type *> ResultTypes; 8953 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8954 ResultTypes = StructResult->elements(); 8955 else if (!CallResultType->isVoidTy()) 8956 ResultTypes = makeArrayRef(CallResultType); 8957 8958 auto CurResultType = ResultTypes.begin(); 8959 auto handleRegAssign = [&](SDValue V) { 8960 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8961 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8962 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8963 ++CurResultType; 8964 // If the type of the inline asm call site return value is different but has 8965 // same size as the type of the asm output bitcast it. One example of this 8966 // is for vectors with different width / number of elements. This can 8967 // happen for register classes that can contain multiple different value 8968 // types. The preg or vreg allocated may not have the same VT as was 8969 // expected. 8970 // 8971 // This can also happen for a return value that disagrees with the register 8972 // class it is put in, eg. a double in a general-purpose register on a 8973 // 32-bit machine. 8974 if (ResultVT != V.getValueType() && 8975 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8976 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8977 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8978 V.getValueType().isInteger()) { 8979 // If a result value was tied to an input value, the computed result 8980 // may have a wider width than the expected result. Extract the 8981 // relevant portion. 8982 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8983 } 8984 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8985 ResultVTs.push_back(ResultVT); 8986 ResultValues.push_back(V); 8987 }; 8988 8989 // Deal with output operands. 8990 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8991 if (OpInfo.Type == InlineAsm::isOutput) { 8992 SDValue Val; 8993 // Skip trivial output operands. 8994 if (OpInfo.AssignedRegs.Regs.empty()) 8995 continue; 8996 8997 switch (OpInfo.ConstraintType) { 8998 case TargetLowering::C_Register: 8999 case TargetLowering::C_RegisterClass: 9000 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9001 Chain, &Flag, &Call); 9002 break; 9003 case TargetLowering::C_Immediate: 9004 case TargetLowering::C_Other: 9005 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9006 OpInfo, DAG); 9007 break; 9008 case TargetLowering::C_Memory: 9009 break; // Already handled. 9010 case TargetLowering::C_Unknown: 9011 assert(false && "Unexpected unknown constraint"); 9012 } 9013 9014 // Indirect output manifest as stores. Record output chains. 9015 if (OpInfo.isIndirect) { 9016 const Value *Ptr = OpInfo.CallOperandVal; 9017 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9018 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9019 MachinePointerInfo(Ptr)); 9020 OutChains.push_back(Store); 9021 } else { 9022 // generate CopyFromRegs to associated registers. 9023 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9024 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9025 for (const SDValue &V : Val->op_values()) 9026 handleRegAssign(V); 9027 } else 9028 handleRegAssign(Val); 9029 } 9030 } 9031 } 9032 9033 // Set results. 9034 if (!ResultValues.empty()) { 9035 assert(CurResultType == ResultTypes.end() && 9036 "Mismatch in number of ResultTypes"); 9037 assert(ResultValues.size() == ResultTypes.size() && 9038 "Mismatch in number of output operands in asm result"); 9039 9040 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9041 DAG.getVTList(ResultVTs), ResultValues); 9042 setValue(&Call, V); 9043 } 9044 9045 // Collect store chains. 9046 if (!OutChains.empty()) 9047 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9048 9049 if (EmitEHLabels) { 9050 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9051 } 9052 9053 // Only Update Root if inline assembly has a memory effect. 9054 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9055 EmitEHLabels) 9056 DAG.setRoot(Chain); 9057 } 9058 9059 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9060 const Twine &Message) { 9061 LLVMContext &Ctx = *DAG.getContext(); 9062 Ctx.emitError(&Call, Message); 9063 9064 // Make sure we leave the DAG in a valid state 9065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9066 SmallVector<EVT, 1> ValueVTs; 9067 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9068 9069 if (ValueVTs.empty()) 9070 return; 9071 9072 SmallVector<SDValue, 1> Ops; 9073 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9074 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9075 9076 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9077 } 9078 9079 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9080 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9081 MVT::Other, getRoot(), 9082 getValue(I.getArgOperand(0)), 9083 DAG.getSrcValue(I.getArgOperand(0)))); 9084 } 9085 9086 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9088 const DataLayout &DL = DAG.getDataLayout(); 9089 SDValue V = DAG.getVAArg( 9090 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9091 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9092 DL.getABITypeAlign(I.getType()).value()); 9093 DAG.setRoot(V.getValue(1)); 9094 9095 if (I.getType()->isPointerTy()) 9096 V = DAG.getPtrExtOrTrunc( 9097 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9098 setValue(&I, V); 9099 } 9100 9101 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9102 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9103 MVT::Other, getRoot(), 9104 getValue(I.getArgOperand(0)), 9105 DAG.getSrcValue(I.getArgOperand(0)))); 9106 } 9107 9108 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9109 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9110 MVT::Other, getRoot(), 9111 getValue(I.getArgOperand(0)), 9112 getValue(I.getArgOperand(1)), 9113 DAG.getSrcValue(I.getArgOperand(0)), 9114 DAG.getSrcValue(I.getArgOperand(1)))); 9115 } 9116 9117 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9118 const Instruction &I, 9119 SDValue Op) { 9120 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9121 if (!Range) 9122 return Op; 9123 9124 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9125 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9126 return Op; 9127 9128 APInt Lo = CR.getUnsignedMin(); 9129 if (!Lo.isMinValue()) 9130 return Op; 9131 9132 APInt Hi = CR.getUnsignedMax(); 9133 unsigned Bits = std::max(Hi.getActiveBits(), 9134 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9135 9136 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9137 9138 SDLoc SL = getCurSDLoc(); 9139 9140 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9141 DAG.getValueType(SmallVT)); 9142 unsigned NumVals = Op.getNode()->getNumValues(); 9143 if (NumVals == 1) 9144 return ZExt; 9145 9146 SmallVector<SDValue, 4> Ops; 9147 9148 Ops.push_back(ZExt); 9149 for (unsigned I = 1; I != NumVals; ++I) 9150 Ops.push_back(Op.getValue(I)); 9151 9152 return DAG.getMergeValues(Ops, SL); 9153 } 9154 9155 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9156 /// the call being lowered. 9157 /// 9158 /// This is a helper for lowering intrinsics that follow a target calling 9159 /// convention or require stack pointer adjustment. Only a subset of the 9160 /// intrinsic's operands need to participate in the calling convention. 9161 void SelectionDAGBuilder::populateCallLoweringInfo( 9162 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9163 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9164 bool IsPatchPoint) { 9165 TargetLowering::ArgListTy Args; 9166 Args.reserve(NumArgs); 9167 9168 // Populate the argument list. 9169 // Attributes for args start at offset 1, after the return attribute. 9170 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9171 ArgI != ArgE; ++ArgI) { 9172 const Value *V = Call->getOperand(ArgI); 9173 9174 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9175 9176 TargetLowering::ArgListEntry Entry; 9177 Entry.Node = getValue(V); 9178 Entry.Ty = V->getType(); 9179 Entry.setAttributes(Call, ArgI); 9180 Args.push_back(Entry); 9181 } 9182 9183 CLI.setDebugLoc(getCurSDLoc()) 9184 .setChain(getRoot()) 9185 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9186 .setDiscardResult(Call->use_empty()) 9187 .setIsPatchPoint(IsPatchPoint) 9188 .setIsPreallocated( 9189 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9190 } 9191 9192 /// Add a stack map intrinsic call's live variable operands to a stackmap 9193 /// or patchpoint target node's operand list. 9194 /// 9195 /// Constants are converted to TargetConstants purely as an optimization to 9196 /// avoid constant materialization and register allocation. 9197 /// 9198 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9199 /// generate addess computation nodes, and so FinalizeISel can convert the 9200 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9201 /// address materialization and register allocation, but may also be required 9202 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9203 /// alloca in the entry block, then the runtime may assume that the alloca's 9204 /// StackMap location can be read immediately after compilation and that the 9205 /// location is valid at any point during execution (this is similar to the 9206 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9207 /// only available in a register, then the runtime would need to trap when 9208 /// execution reaches the StackMap in order to read the alloca's location. 9209 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9210 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9211 SelectionDAGBuilder &Builder) { 9212 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 9213 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 9214 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 9215 Ops.push_back( 9216 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 9217 Ops.push_back( 9218 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 9219 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 9220 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 9221 Ops.push_back(Builder.DAG.getTargetFrameIndex( 9222 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 9223 } else 9224 Ops.push_back(OpVal); 9225 } 9226 } 9227 9228 /// Lower llvm.experimental.stackmap directly to its target opcode. 9229 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9230 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 9231 // [live variables...]) 9232 9233 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9234 9235 SDValue Chain, InFlag, Callee, NullPtr; 9236 SmallVector<SDValue, 32> Ops; 9237 9238 SDLoc DL = getCurSDLoc(); 9239 Callee = getValue(CI.getCalledOperand()); 9240 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9241 9242 // The stackmap intrinsic only records the live variables (the arguments 9243 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9244 // intrinsic, this won't be lowered to a function call. This means we don't 9245 // have to worry about calling conventions and target specific lowering code. 9246 // Instead we perform the call lowering right here. 9247 // 9248 // chain, flag = CALLSEQ_START(chain, 0, 0) 9249 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9250 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9251 // 9252 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9253 InFlag = Chain.getValue(1); 9254 9255 // Add the <id> and <numBytes> constants. 9256 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 9257 Ops.push_back(DAG.getTargetConstant( 9258 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 9259 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 9260 Ops.push_back(DAG.getTargetConstant( 9261 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 9262 MVT::i32)); 9263 9264 // Push live variables for the stack map. 9265 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9266 9267 // We are not pushing any register mask info here on the operands list, 9268 // because the stackmap doesn't clobber anything. 9269 9270 // Push the chain and the glue flag. 9271 Ops.push_back(Chain); 9272 Ops.push_back(InFlag); 9273 9274 // Create the STACKMAP node. 9275 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9276 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 9277 Chain = SDValue(SM, 0); 9278 InFlag = Chain.getValue(1); 9279 9280 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9281 9282 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9283 9284 // Set the root to the target-lowered call chain. 9285 DAG.setRoot(Chain); 9286 9287 // Inform the Frame Information that we have a stackmap in this function. 9288 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9289 } 9290 9291 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9292 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9293 const BasicBlock *EHPadBB) { 9294 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9295 // i32 <numBytes>, 9296 // i8* <target>, 9297 // i32 <numArgs>, 9298 // [Args...], 9299 // [live variables...]) 9300 9301 CallingConv::ID CC = CB.getCallingConv(); 9302 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9303 bool HasDef = !CB.getType()->isVoidTy(); 9304 SDLoc dl = getCurSDLoc(); 9305 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9306 9307 // Handle immediate and symbolic callees. 9308 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9309 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9310 /*isTarget=*/true); 9311 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9312 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9313 SDLoc(SymbolicCallee), 9314 SymbolicCallee->getValueType(0)); 9315 9316 // Get the real number of arguments participating in the call <numArgs> 9317 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9318 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9319 9320 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9321 // Intrinsics include all meta-operands up to but not including CC. 9322 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9323 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9324 "Not enough arguments provided to the patchpoint intrinsic"); 9325 9326 // For AnyRegCC the arguments are lowered later on manually. 9327 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9328 Type *ReturnTy = 9329 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9330 9331 TargetLowering::CallLoweringInfo CLI(DAG); 9332 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9333 ReturnTy, true); 9334 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9335 9336 SDNode *CallEnd = Result.second.getNode(); 9337 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9338 CallEnd = CallEnd->getOperand(0).getNode(); 9339 9340 /// Get a call instruction from the call sequence chain. 9341 /// Tail calls are not allowed. 9342 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9343 "Expected a callseq node."); 9344 SDNode *Call = CallEnd->getOperand(0).getNode(); 9345 bool HasGlue = Call->getGluedNode(); 9346 9347 // Replace the target specific call node with the patchable intrinsic. 9348 SmallVector<SDValue, 8> Ops; 9349 9350 // Add the <id> and <numBytes> constants. 9351 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9352 Ops.push_back(DAG.getTargetConstant( 9353 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9354 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9355 Ops.push_back(DAG.getTargetConstant( 9356 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9357 MVT::i32)); 9358 9359 // Add the callee. 9360 Ops.push_back(Callee); 9361 9362 // Adjust <numArgs> to account for any arguments that have been passed on the 9363 // stack instead. 9364 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9365 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9366 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9367 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9368 9369 // Add the calling convention 9370 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9371 9372 // Add the arguments we omitted previously. The register allocator should 9373 // place these in any free register. 9374 if (IsAnyRegCC) 9375 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9376 Ops.push_back(getValue(CB.getArgOperand(i))); 9377 9378 // Push the arguments from the call instruction up to the register mask. 9379 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9380 Ops.append(Call->op_begin() + 2, e); 9381 9382 // Push live variables for the stack map. 9383 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9384 9385 // Push the register mask info. 9386 if (HasGlue) 9387 Ops.push_back(*(Call->op_end()-2)); 9388 else 9389 Ops.push_back(*(Call->op_end()-1)); 9390 9391 // Push the chain (this is originally the first operand of the call, but 9392 // becomes now the last or second to last operand). 9393 Ops.push_back(*(Call->op_begin())); 9394 9395 // Push the glue flag (last operand). 9396 if (HasGlue) 9397 Ops.push_back(*(Call->op_end()-1)); 9398 9399 SDVTList NodeTys; 9400 if (IsAnyRegCC && HasDef) { 9401 // Create the return types based on the intrinsic definition 9402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9403 SmallVector<EVT, 3> ValueVTs; 9404 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9405 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9406 9407 // There is always a chain and a glue type at the end 9408 ValueVTs.push_back(MVT::Other); 9409 ValueVTs.push_back(MVT::Glue); 9410 NodeTys = DAG.getVTList(ValueVTs); 9411 } else 9412 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9413 9414 // Replace the target specific call node with a PATCHPOINT node. 9415 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9416 dl, NodeTys, Ops); 9417 9418 // Update the NodeMap. 9419 if (HasDef) { 9420 if (IsAnyRegCC) 9421 setValue(&CB, SDValue(MN, 0)); 9422 else 9423 setValue(&CB, Result.first); 9424 } 9425 9426 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9427 // call sequence. Furthermore the location of the chain and glue can change 9428 // when the AnyReg calling convention is used and the intrinsic returns a 9429 // value. 9430 if (IsAnyRegCC && HasDef) { 9431 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9432 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9433 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9434 } else 9435 DAG.ReplaceAllUsesWith(Call, MN); 9436 DAG.DeleteNode(Call); 9437 9438 // Inform the Frame Information that we have a patchpoint in this function. 9439 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9440 } 9441 9442 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9443 unsigned Intrinsic) { 9444 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9445 SDValue Op1 = getValue(I.getArgOperand(0)); 9446 SDValue Op2; 9447 if (I.arg_size() > 1) 9448 Op2 = getValue(I.getArgOperand(1)); 9449 SDLoc dl = getCurSDLoc(); 9450 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9451 SDValue Res; 9452 SDNodeFlags SDFlags; 9453 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9454 SDFlags.copyFMF(*FPMO); 9455 9456 switch (Intrinsic) { 9457 case Intrinsic::vector_reduce_fadd: 9458 if (SDFlags.hasAllowReassociation()) 9459 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9460 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9461 SDFlags); 9462 else 9463 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9464 break; 9465 case Intrinsic::vector_reduce_fmul: 9466 if (SDFlags.hasAllowReassociation()) 9467 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9468 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9469 SDFlags); 9470 else 9471 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9472 break; 9473 case Intrinsic::vector_reduce_add: 9474 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9475 break; 9476 case Intrinsic::vector_reduce_mul: 9477 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9478 break; 9479 case Intrinsic::vector_reduce_and: 9480 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9481 break; 9482 case Intrinsic::vector_reduce_or: 9483 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9484 break; 9485 case Intrinsic::vector_reduce_xor: 9486 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9487 break; 9488 case Intrinsic::vector_reduce_smax: 9489 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9490 break; 9491 case Intrinsic::vector_reduce_smin: 9492 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9493 break; 9494 case Intrinsic::vector_reduce_umax: 9495 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9496 break; 9497 case Intrinsic::vector_reduce_umin: 9498 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9499 break; 9500 case Intrinsic::vector_reduce_fmax: 9501 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9502 break; 9503 case Intrinsic::vector_reduce_fmin: 9504 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9505 break; 9506 default: 9507 llvm_unreachable("Unhandled vector reduce intrinsic"); 9508 } 9509 setValue(&I, Res); 9510 } 9511 9512 /// Returns an AttributeList representing the attributes applied to the return 9513 /// value of the given call. 9514 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9515 SmallVector<Attribute::AttrKind, 2> Attrs; 9516 if (CLI.RetSExt) 9517 Attrs.push_back(Attribute::SExt); 9518 if (CLI.RetZExt) 9519 Attrs.push_back(Attribute::ZExt); 9520 if (CLI.IsInReg) 9521 Attrs.push_back(Attribute::InReg); 9522 9523 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9524 Attrs); 9525 } 9526 9527 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9528 /// implementation, which just calls LowerCall. 9529 /// FIXME: When all targets are 9530 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9531 std::pair<SDValue, SDValue> 9532 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9533 // Handle the incoming return values from the call. 9534 CLI.Ins.clear(); 9535 Type *OrigRetTy = CLI.RetTy; 9536 SmallVector<EVT, 4> RetTys; 9537 SmallVector<uint64_t, 4> Offsets; 9538 auto &DL = CLI.DAG.getDataLayout(); 9539 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9540 9541 if (CLI.IsPostTypeLegalization) { 9542 // If we are lowering a libcall after legalization, split the return type. 9543 SmallVector<EVT, 4> OldRetTys; 9544 SmallVector<uint64_t, 4> OldOffsets; 9545 RetTys.swap(OldRetTys); 9546 Offsets.swap(OldOffsets); 9547 9548 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9549 EVT RetVT = OldRetTys[i]; 9550 uint64_t Offset = OldOffsets[i]; 9551 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9552 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9553 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9554 RetTys.append(NumRegs, RegisterVT); 9555 for (unsigned j = 0; j != NumRegs; ++j) 9556 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9557 } 9558 } 9559 9560 SmallVector<ISD::OutputArg, 4> Outs; 9561 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9562 9563 bool CanLowerReturn = 9564 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9565 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9566 9567 SDValue DemoteStackSlot; 9568 int DemoteStackIdx = -100; 9569 if (!CanLowerReturn) { 9570 // FIXME: equivalent assert? 9571 // assert(!CS.hasInAllocaArgument() && 9572 // "sret demotion is incompatible with inalloca"); 9573 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9574 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9575 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9576 DemoteStackIdx = 9577 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9578 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9579 DL.getAllocaAddrSpace()); 9580 9581 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9582 ArgListEntry Entry; 9583 Entry.Node = DemoteStackSlot; 9584 Entry.Ty = StackSlotPtrType; 9585 Entry.IsSExt = false; 9586 Entry.IsZExt = false; 9587 Entry.IsInReg = false; 9588 Entry.IsSRet = true; 9589 Entry.IsNest = false; 9590 Entry.IsByVal = false; 9591 Entry.IsByRef = false; 9592 Entry.IsReturned = false; 9593 Entry.IsSwiftSelf = false; 9594 Entry.IsSwiftAsync = false; 9595 Entry.IsSwiftError = false; 9596 Entry.IsCFGuardTarget = false; 9597 Entry.Alignment = Alignment; 9598 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9599 CLI.NumFixedArgs += 1; 9600 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9601 9602 // sret demotion isn't compatible with tail-calls, since the sret argument 9603 // points into the callers stack frame. 9604 CLI.IsTailCall = false; 9605 } else { 9606 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9607 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9608 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9609 ISD::ArgFlagsTy Flags; 9610 if (NeedsRegBlock) { 9611 Flags.setInConsecutiveRegs(); 9612 if (I == RetTys.size() - 1) 9613 Flags.setInConsecutiveRegsLast(); 9614 } 9615 EVT VT = RetTys[I]; 9616 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9617 CLI.CallConv, VT); 9618 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9619 CLI.CallConv, VT); 9620 for (unsigned i = 0; i != NumRegs; ++i) { 9621 ISD::InputArg MyFlags; 9622 MyFlags.Flags = Flags; 9623 MyFlags.VT = RegisterVT; 9624 MyFlags.ArgVT = VT; 9625 MyFlags.Used = CLI.IsReturnValueUsed; 9626 if (CLI.RetTy->isPointerTy()) { 9627 MyFlags.Flags.setPointer(); 9628 MyFlags.Flags.setPointerAddrSpace( 9629 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9630 } 9631 if (CLI.RetSExt) 9632 MyFlags.Flags.setSExt(); 9633 if (CLI.RetZExt) 9634 MyFlags.Flags.setZExt(); 9635 if (CLI.IsInReg) 9636 MyFlags.Flags.setInReg(); 9637 CLI.Ins.push_back(MyFlags); 9638 } 9639 } 9640 } 9641 9642 // We push in swifterror return as the last element of CLI.Ins. 9643 ArgListTy &Args = CLI.getArgs(); 9644 if (supportSwiftError()) { 9645 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9646 if (Args[i].IsSwiftError) { 9647 ISD::InputArg MyFlags; 9648 MyFlags.VT = getPointerTy(DL); 9649 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9650 MyFlags.Flags.setSwiftError(); 9651 CLI.Ins.push_back(MyFlags); 9652 } 9653 } 9654 } 9655 9656 // Handle all of the outgoing arguments. 9657 CLI.Outs.clear(); 9658 CLI.OutVals.clear(); 9659 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9660 SmallVector<EVT, 4> ValueVTs; 9661 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9662 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9663 Type *FinalType = Args[i].Ty; 9664 if (Args[i].IsByVal) 9665 FinalType = Args[i].IndirectType; 9666 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9667 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9668 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9669 ++Value) { 9670 EVT VT = ValueVTs[Value]; 9671 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9672 SDValue Op = SDValue(Args[i].Node.getNode(), 9673 Args[i].Node.getResNo() + Value); 9674 ISD::ArgFlagsTy Flags; 9675 9676 // Certain targets (such as MIPS), may have a different ABI alignment 9677 // for a type depending on the context. Give the target a chance to 9678 // specify the alignment it wants. 9679 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9680 Flags.setOrigAlign(OriginalAlignment); 9681 9682 if (Args[i].Ty->isPointerTy()) { 9683 Flags.setPointer(); 9684 Flags.setPointerAddrSpace( 9685 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9686 } 9687 if (Args[i].IsZExt) 9688 Flags.setZExt(); 9689 if (Args[i].IsSExt) 9690 Flags.setSExt(); 9691 if (Args[i].IsInReg) { 9692 // If we are using vectorcall calling convention, a structure that is 9693 // passed InReg - is surely an HVA 9694 if (CLI.CallConv == CallingConv::X86_VectorCall && 9695 isa<StructType>(FinalType)) { 9696 // The first value of a structure is marked 9697 if (0 == Value) 9698 Flags.setHvaStart(); 9699 Flags.setHva(); 9700 } 9701 // Set InReg Flag 9702 Flags.setInReg(); 9703 } 9704 if (Args[i].IsSRet) 9705 Flags.setSRet(); 9706 if (Args[i].IsSwiftSelf) 9707 Flags.setSwiftSelf(); 9708 if (Args[i].IsSwiftAsync) 9709 Flags.setSwiftAsync(); 9710 if (Args[i].IsSwiftError) 9711 Flags.setSwiftError(); 9712 if (Args[i].IsCFGuardTarget) 9713 Flags.setCFGuardTarget(); 9714 if (Args[i].IsByVal) 9715 Flags.setByVal(); 9716 if (Args[i].IsByRef) 9717 Flags.setByRef(); 9718 if (Args[i].IsPreallocated) { 9719 Flags.setPreallocated(); 9720 // Set the byval flag for CCAssignFn callbacks that don't know about 9721 // preallocated. This way we can know how many bytes we should've 9722 // allocated and how many bytes a callee cleanup function will pop. If 9723 // we port preallocated to more targets, we'll have to add custom 9724 // preallocated handling in the various CC lowering callbacks. 9725 Flags.setByVal(); 9726 } 9727 if (Args[i].IsInAlloca) { 9728 Flags.setInAlloca(); 9729 // Set the byval flag for CCAssignFn callbacks that don't know about 9730 // inalloca. This way we can know how many bytes we should've allocated 9731 // and how many bytes a callee cleanup function will pop. If we port 9732 // inalloca to more targets, we'll have to add custom inalloca handling 9733 // in the various CC lowering callbacks. 9734 Flags.setByVal(); 9735 } 9736 Align MemAlign; 9737 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9738 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9739 Flags.setByValSize(FrameSize); 9740 9741 // info is not there but there are cases it cannot get right. 9742 if (auto MA = Args[i].Alignment) 9743 MemAlign = *MA; 9744 else 9745 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9746 } else if (auto MA = Args[i].Alignment) { 9747 MemAlign = *MA; 9748 } else { 9749 MemAlign = OriginalAlignment; 9750 } 9751 Flags.setMemAlign(MemAlign); 9752 if (Args[i].IsNest) 9753 Flags.setNest(); 9754 if (NeedsRegBlock) 9755 Flags.setInConsecutiveRegs(); 9756 9757 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9758 CLI.CallConv, VT); 9759 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9760 CLI.CallConv, VT); 9761 SmallVector<SDValue, 4> Parts(NumParts); 9762 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9763 9764 if (Args[i].IsSExt) 9765 ExtendKind = ISD::SIGN_EXTEND; 9766 else if (Args[i].IsZExt) 9767 ExtendKind = ISD::ZERO_EXTEND; 9768 9769 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9770 // for now. 9771 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9772 CanLowerReturn) { 9773 assert((CLI.RetTy == Args[i].Ty || 9774 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9775 CLI.RetTy->getPointerAddressSpace() == 9776 Args[i].Ty->getPointerAddressSpace())) && 9777 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9778 // Before passing 'returned' to the target lowering code, ensure that 9779 // either the register MVT and the actual EVT are the same size or that 9780 // the return value and argument are extended in the same way; in these 9781 // cases it's safe to pass the argument register value unchanged as the 9782 // return register value (although it's at the target's option whether 9783 // to do so) 9784 // TODO: allow code generation to take advantage of partially preserved 9785 // registers rather than clobbering the entire register when the 9786 // parameter extension method is not compatible with the return 9787 // extension method 9788 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9789 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9790 CLI.RetZExt == Args[i].IsZExt)) 9791 Flags.setReturned(); 9792 } 9793 9794 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9795 CLI.CallConv, ExtendKind); 9796 9797 for (unsigned j = 0; j != NumParts; ++j) { 9798 // if it isn't first piece, alignment must be 1 9799 // For scalable vectors the scalable part is currently handled 9800 // by individual targets, so we just use the known minimum size here. 9801 ISD::OutputArg MyFlags( 9802 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9803 i < CLI.NumFixedArgs, i, 9804 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9805 if (NumParts > 1 && j == 0) 9806 MyFlags.Flags.setSplit(); 9807 else if (j != 0) { 9808 MyFlags.Flags.setOrigAlign(Align(1)); 9809 if (j == NumParts - 1) 9810 MyFlags.Flags.setSplitEnd(); 9811 } 9812 9813 CLI.Outs.push_back(MyFlags); 9814 CLI.OutVals.push_back(Parts[j]); 9815 } 9816 9817 if (NeedsRegBlock && Value == NumValues - 1) 9818 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9819 } 9820 } 9821 9822 SmallVector<SDValue, 4> InVals; 9823 CLI.Chain = LowerCall(CLI, InVals); 9824 9825 // Update CLI.InVals to use outside of this function. 9826 CLI.InVals = InVals; 9827 9828 // Verify that the target's LowerCall behaved as expected. 9829 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9830 "LowerCall didn't return a valid chain!"); 9831 assert((!CLI.IsTailCall || InVals.empty()) && 9832 "LowerCall emitted a return value for a tail call!"); 9833 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9834 "LowerCall didn't emit the correct number of values!"); 9835 9836 // For a tail call, the return value is merely live-out and there aren't 9837 // any nodes in the DAG representing it. Return a special value to 9838 // indicate that a tail call has been emitted and no more Instructions 9839 // should be processed in the current block. 9840 if (CLI.IsTailCall) { 9841 CLI.DAG.setRoot(CLI.Chain); 9842 return std::make_pair(SDValue(), SDValue()); 9843 } 9844 9845 #ifndef NDEBUG 9846 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9847 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9848 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9849 "LowerCall emitted a value with the wrong type!"); 9850 } 9851 #endif 9852 9853 SmallVector<SDValue, 4> ReturnValues; 9854 if (!CanLowerReturn) { 9855 // The instruction result is the result of loading from the 9856 // hidden sret parameter. 9857 SmallVector<EVT, 1> PVTs; 9858 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9859 9860 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9861 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9862 EVT PtrVT = PVTs[0]; 9863 9864 unsigned NumValues = RetTys.size(); 9865 ReturnValues.resize(NumValues); 9866 SmallVector<SDValue, 4> Chains(NumValues); 9867 9868 // An aggregate return value cannot wrap around the address space, so 9869 // offsets to its parts don't wrap either. 9870 SDNodeFlags Flags; 9871 Flags.setNoUnsignedWrap(true); 9872 9873 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9874 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9875 for (unsigned i = 0; i < NumValues; ++i) { 9876 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9877 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9878 PtrVT), Flags); 9879 SDValue L = CLI.DAG.getLoad( 9880 RetTys[i], CLI.DL, CLI.Chain, Add, 9881 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9882 DemoteStackIdx, Offsets[i]), 9883 HiddenSRetAlign); 9884 ReturnValues[i] = L; 9885 Chains[i] = L.getValue(1); 9886 } 9887 9888 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9889 } else { 9890 // Collect the legal value parts into potentially illegal values 9891 // that correspond to the original function's return values. 9892 Optional<ISD::NodeType> AssertOp; 9893 if (CLI.RetSExt) 9894 AssertOp = ISD::AssertSext; 9895 else if (CLI.RetZExt) 9896 AssertOp = ISD::AssertZext; 9897 unsigned CurReg = 0; 9898 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9899 EVT VT = RetTys[I]; 9900 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9901 CLI.CallConv, VT); 9902 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9903 CLI.CallConv, VT); 9904 9905 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9906 NumRegs, RegisterVT, VT, nullptr, 9907 CLI.CallConv, AssertOp)); 9908 CurReg += NumRegs; 9909 } 9910 9911 // For a function returning void, there is no return value. We can't create 9912 // such a node, so we just return a null return value in that case. In 9913 // that case, nothing will actually look at the value. 9914 if (ReturnValues.empty()) 9915 return std::make_pair(SDValue(), CLI.Chain); 9916 } 9917 9918 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9919 CLI.DAG.getVTList(RetTys), ReturnValues); 9920 return std::make_pair(Res, CLI.Chain); 9921 } 9922 9923 /// Places new result values for the node in Results (their number 9924 /// and types must exactly match those of the original return values of 9925 /// the node), or leaves Results empty, which indicates that the node is not 9926 /// to be custom lowered after all. 9927 void TargetLowering::LowerOperationWrapper(SDNode *N, 9928 SmallVectorImpl<SDValue> &Results, 9929 SelectionDAG &DAG) const { 9930 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9931 9932 if (!Res.getNode()) 9933 return; 9934 9935 // If the original node has one result, take the return value from 9936 // LowerOperation as is. It might not be result number 0. 9937 if (N->getNumValues() == 1) { 9938 Results.push_back(Res); 9939 return; 9940 } 9941 9942 // If the original node has multiple results, then the return node should 9943 // have the same number of results. 9944 assert((N->getNumValues() == Res->getNumValues()) && 9945 "Lowering returned the wrong number of results!"); 9946 9947 // Places new result values base on N result number. 9948 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 9949 Results.push_back(Res.getValue(I)); 9950 } 9951 9952 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9953 llvm_unreachable("LowerOperation not implemented for this target!"); 9954 } 9955 9956 void 9957 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9958 SDValue Op = getNonRegisterValue(V); 9959 assert((Op.getOpcode() != ISD::CopyFromReg || 9960 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9961 "Copy from a reg to the same reg!"); 9962 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9963 9964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9965 // If this is an InlineAsm we have to match the registers required, not the 9966 // notional registers required by the type. 9967 9968 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9969 None); // This is not an ABI copy. 9970 SDValue Chain = DAG.getEntryNode(); 9971 9972 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 9973 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 9974 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 9975 ExtendType = PreferredExtendIt->second; 9976 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9977 PendingExports.push_back(Chain); 9978 } 9979 9980 #include "llvm/CodeGen/SelectionDAGISel.h" 9981 9982 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9983 /// entry block, return true. This includes arguments used by switches, since 9984 /// the switch may expand into multiple basic blocks. 9985 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9986 // With FastISel active, we may be splitting blocks, so force creation 9987 // of virtual registers for all non-dead arguments. 9988 if (FastISel) 9989 return A->use_empty(); 9990 9991 const BasicBlock &Entry = A->getParent()->front(); 9992 for (const User *U : A->users()) 9993 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9994 return false; // Use not in entry block. 9995 9996 return true; 9997 } 9998 9999 using ArgCopyElisionMapTy = 10000 DenseMap<const Argument *, 10001 std::pair<const AllocaInst *, const StoreInst *>>; 10002 10003 /// Scan the entry block of the function in FuncInfo for arguments that look 10004 /// like copies into a local alloca. Record any copied arguments in 10005 /// ArgCopyElisionCandidates. 10006 static void 10007 findArgumentCopyElisionCandidates(const DataLayout &DL, 10008 FunctionLoweringInfo *FuncInfo, 10009 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10010 // Record the state of every static alloca used in the entry block. Argument 10011 // allocas are all used in the entry block, so we need approximately as many 10012 // entries as we have arguments. 10013 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10014 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10015 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10016 StaticAllocas.reserve(NumArgs * 2); 10017 10018 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10019 if (!V) 10020 return nullptr; 10021 V = V->stripPointerCasts(); 10022 const auto *AI = dyn_cast<AllocaInst>(V); 10023 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10024 return nullptr; 10025 auto Iter = StaticAllocas.insert({AI, Unknown}); 10026 return &Iter.first->second; 10027 }; 10028 10029 // Look for stores of arguments to static allocas. Look through bitcasts and 10030 // GEPs to handle type coercions, as long as the alloca is fully initialized 10031 // by the store. Any non-store use of an alloca escapes it and any subsequent 10032 // unanalyzed store might write it. 10033 // FIXME: Handle structs initialized with multiple stores. 10034 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10035 // Look for stores, and handle non-store uses conservatively. 10036 const auto *SI = dyn_cast<StoreInst>(&I); 10037 if (!SI) { 10038 // We will look through cast uses, so ignore them completely. 10039 if (I.isCast()) 10040 continue; 10041 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10042 // to allocas. 10043 if (I.isDebugOrPseudoInst()) 10044 continue; 10045 // This is an unknown instruction. Assume it escapes or writes to all 10046 // static alloca operands. 10047 for (const Use &U : I.operands()) { 10048 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10049 *Info = StaticAllocaInfo::Clobbered; 10050 } 10051 continue; 10052 } 10053 10054 // If the stored value is a static alloca, mark it as escaped. 10055 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10056 *Info = StaticAllocaInfo::Clobbered; 10057 10058 // Check if the destination is a static alloca. 10059 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10060 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10061 if (!Info) 10062 continue; 10063 const AllocaInst *AI = cast<AllocaInst>(Dst); 10064 10065 // Skip allocas that have been initialized or clobbered. 10066 if (*Info != StaticAllocaInfo::Unknown) 10067 continue; 10068 10069 // Check if the stored value is an argument, and that this store fully 10070 // initializes the alloca. 10071 // If the argument type has padding bits we can't directly forward a pointer 10072 // as the upper bits may contain garbage. 10073 // Don't elide copies from the same argument twice. 10074 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10075 const auto *Arg = dyn_cast<Argument>(Val); 10076 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10077 Arg->getType()->isEmptyTy() || 10078 DL.getTypeStoreSize(Arg->getType()) != 10079 DL.getTypeAllocSize(AI->getAllocatedType()) || 10080 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10081 ArgCopyElisionCandidates.count(Arg)) { 10082 *Info = StaticAllocaInfo::Clobbered; 10083 continue; 10084 } 10085 10086 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10087 << '\n'); 10088 10089 // Mark this alloca and store for argument copy elision. 10090 *Info = StaticAllocaInfo::Elidable; 10091 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10092 10093 // Stop scanning if we've seen all arguments. This will happen early in -O0 10094 // builds, which is useful, because -O0 builds have large entry blocks and 10095 // many allocas. 10096 if (ArgCopyElisionCandidates.size() == NumArgs) 10097 break; 10098 } 10099 } 10100 10101 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10102 /// ArgVal is a load from a suitable fixed stack object. 10103 static void tryToElideArgumentCopy( 10104 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10105 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10106 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10107 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10108 SDValue ArgVal, bool &ArgHasUses) { 10109 // Check if this is a load from a fixed stack object. 10110 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10111 if (!LNode) 10112 return; 10113 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10114 if (!FINode) 10115 return; 10116 10117 // Check that the fixed stack object is the right size and alignment. 10118 // Look at the alignment that the user wrote on the alloca instead of looking 10119 // at the stack object. 10120 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10121 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10122 const AllocaInst *AI = ArgCopyIter->second.first; 10123 int FixedIndex = FINode->getIndex(); 10124 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10125 int OldIndex = AllocaIndex; 10126 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10127 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10128 LLVM_DEBUG( 10129 dbgs() << " argument copy elision failed due to bad fixed stack " 10130 "object size\n"); 10131 return; 10132 } 10133 Align RequiredAlignment = AI->getAlign(); 10134 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10135 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10136 "greater than stack argument alignment (" 10137 << DebugStr(RequiredAlignment) << " vs " 10138 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10139 return; 10140 } 10141 10142 // Perform the elision. Delete the old stack object and replace its only use 10143 // in the variable info map. Mark the stack object as mutable. 10144 LLVM_DEBUG({ 10145 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10146 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10147 << '\n'; 10148 }); 10149 MFI.RemoveStackObject(OldIndex); 10150 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10151 AllocaIndex = FixedIndex; 10152 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10153 Chains.push_back(ArgVal.getValue(1)); 10154 10155 // Avoid emitting code for the store implementing the copy. 10156 const StoreInst *SI = ArgCopyIter->second.second; 10157 ElidedArgCopyInstrs.insert(SI); 10158 10159 // Check for uses of the argument again so that we can avoid exporting ArgVal 10160 // if it is't used by anything other than the store. 10161 for (const Value *U : Arg.users()) { 10162 if (U != SI) { 10163 ArgHasUses = true; 10164 break; 10165 } 10166 } 10167 } 10168 10169 void SelectionDAGISel::LowerArguments(const Function &F) { 10170 SelectionDAG &DAG = SDB->DAG; 10171 SDLoc dl = SDB->getCurSDLoc(); 10172 const DataLayout &DL = DAG.getDataLayout(); 10173 SmallVector<ISD::InputArg, 16> Ins; 10174 10175 // In Naked functions we aren't going to save any registers. 10176 if (F.hasFnAttribute(Attribute::Naked)) 10177 return; 10178 10179 if (!FuncInfo->CanLowerReturn) { 10180 // Put in an sret pointer parameter before all the other parameters. 10181 SmallVector<EVT, 1> ValueVTs; 10182 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10183 F.getReturnType()->getPointerTo( 10184 DAG.getDataLayout().getAllocaAddrSpace()), 10185 ValueVTs); 10186 10187 // NOTE: Assuming that a pointer will never break down to more than one VT 10188 // or one register. 10189 ISD::ArgFlagsTy Flags; 10190 Flags.setSRet(); 10191 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10192 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10193 ISD::InputArg::NoArgIndex, 0); 10194 Ins.push_back(RetArg); 10195 } 10196 10197 // Look for stores of arguments to static allocas. Mark such arguments with a 10198 // flag to ask the target to give us the memory location of that argument if 10199 // available. 10200 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10201 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10202 ArgCopyElisionCandidates); 10203 10204 // Set up the incoming argument description vector. 10205 for (const Argument &Arg : F.args()) { 10206 unsigned ArgNo = Arg.getArgNo(); 10207 SmallVector<EVT, 4> ValueVTs; 10208 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10209 bool isArgValueUsed = !Arg.use_empty(); 10210 unsigned PartBase = 0; 10211 Type *FinalType = Arg.getType(); 10212 if (Arg.hasAttribute(Attribute::ByVal)) 10213 FinalType = Arg.getParamByValType(); 10214 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10215 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10216 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10217 Value != NumValues; ++Value) { 10218 EVT VT = ValueVTs[Value]; 10219 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10220 ISD::ArgFlagsTy Flags; 10221 10222 10223 if (Arg.getType()->isPointerTy()) { 10224 Flags.setPointer(); 10225 Flags.setPointerAddrSpace( 10226 cast<PointerType>(Arg.getType())->getAddressSpace()); 10227 } 10228 if (Arg.hasAttribute(Attribute::ZExt)) 10229 Flags.setZExt(); 10230 if (Arg.hasAttribute(Attribute::SExt)) 10231 Flags.setSExt(); 10232 if (Arg.hasAttribute(Attribute::InReg)) { 10233 // If we are using vectorcall calling convention, a structure that is 10234 // passed InReg - is surely an HVA 10235 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10236 isa<StructType>(Arg.getType())) { 10237 // The first value of a structure is marked 10238 if (0 == Value) 10239 Flags.setHvaStart(); 10240 Flags.setHva(); 10241 } 10242 // Set InReg Flag 10243 Flags.setInReg(); 10244 } 10245 if (Arg.hasAttribute(Attribute::StructRet)) 10246 Flags.setSRet(); 10247 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10248 Flags.setSwiftSelf(); 10249 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10250 Flags.setSwiftAsync(); 10251 if (Arg.hasAttribute(Attribute::SwiftError)) 10252 Flags.setSwiftError(); 10253 if (Arg.hasAttribute(Attribute::ByVal)) 10254 Flags.setByVal(); 10255 if (Arg.hasAttribute(Attribute::ByRef)) 10256 Flags.setByRef(); 10257 if (Arg.hasAttribute(Attribute::InAlloca)) { 10258 Flags.setInAlloca(); 10259 // Set the byval flag for CCAssignFn callbacks that don't know about 10260 // inalloca. This way we can know how many bytes we should've allocated 10261 // and how many bytes a callee cleanup function will pop. If we port 10262 // inalloca to more targets, we'll have to add custom inalloca handling 10263 // in the various CC lowering callbacks. 10264 Flags.setByVal(); 10265 } 10266 if (Arg.hasAttribute(Attribute::Preallocated)) { 10267 Flags.setPreallocated(); 10268 // Set the byval flag for CCAssignFn callbacks that don't know about 10269 // preallocated. This way we can know how many bytes we should've 10270 // allocated and how many bytes a callee cleanup function will pop. If 10271 // we port preallocated to more targets, we'll have to add custom 10272 // preallocated handling in the various CC lowering callbacks. 10273 Flags.setByVal(); 10274 } 10275 10276 // Certain targets (such as MIPS), may have a different ABI alignment 10277 // for a type depending on the context. Give the target a chance to 10278 // specify the alignment it wants. 10279 const Align OriginalAlignment( 10280 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10281 Flags.setOrigAlign(OriginalAlignment); 10282 10283 Align MemAlign; 10284 Type *ArgMemTy = nullptr; 10285 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10286 Flags.isByRef()) { 10287 if (!ArgMemTy) 10288 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10289 10290 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10291 10292 // For in-memory arguments, size and alignment should be passed from FE. 10293 // BE will guess if this info is not there but there are cases it cannot 10294 // get right. 10295 if (auto ParamAlign = Arg.getParamStackAlign()) 10296 MemAlign = *ParamAlign; 10297 else if ((ParamAlign = Arg.getParamAlign())) 10298 MemAlign = *ParamAlign; 10299 else 10300 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10301 if (Flags.isByRef()) 10302 Flags.setByRefSize(MemSize); 10303 else 10304 Flags.setByValSize(MemSize); 10305 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10306 MemAlign = *ParamAlign; 10307 } else { 10308 MemAlign = OriginalAlignment; 10309 } 10310 Flags.setMemAlign(MemAlign); 10311 10312 if (Arg.hasAttribute(Attribute::Nest)) 10313 Flags.setNest(); 10314 if (NeedsRegBlock) 10315 Flags.setInConsecutiveRegs(); 10316 if (ArgCopyElisionCandidates.count(&Arg)) 10317 Flags.setCopyElisionCandidate(); 10318 if (Arg.hasAttribute(Attribute::Returned)) 10319 Flags.setReturned(); 10320 10321 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10322 *CurDAG->getContext(), F.getCallingConv(), VT); 10323 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10324 *CurDAG->getContext(), F.getCallingConv(), VT); 10325 for (unsigned i = 0; i != NumRegs; ++i) { 10326 // For scalable vectors, use the minimum size; individual targets 10327 // are responsible for handling scalable vector arguments and 10328 // return values. 10329 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10330 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10331 if (NumRegs > 1 && i == 0) 10332 MyFlags.Flags.setSplit(); 10333 // if it isn't first piece, alignment must be 1 10334 else if (i > 0) { 10335 MyFlags.Flags.setOrigAlign(Align(1)); 10336 if (i == NumRegs - 1) 10337 MyFlags.Flags.setSplitEnd(); 10338 } 10339 Ins.push_back(MyFlags); 10340 } 10341 if (NeedsRegBlock && Value == NumValues - 1) 10342 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10343 PartBase += VT.getStoreSize().getKnownMinSize(); 10344 } 10345 } 10346 10347 // Call the target to set up the argument values. 10348 SmallVector<SDValue, 8> InVals; 10349 SDValue NewRoot = TLI->LowerFormalArguments( 10350 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10351 10352 // Verify that the target's LowerFormalArguments behaved as expected. 10353 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10354 "LowerFormalArguments didn't return a valid chain!"); 10355 assert(InVals.size() == Ins.size() && 10356 "LowerFormalArguments didn't emit the correct number of values!"); 10357 LLVM_DEBUG({ 10358 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10359 assert(InVals[i].getNode() && 10360 "LowerFormalArguments emitted a null value!"); 10361 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10362 "LowerFormalArguments emitted a value with the wrong type!"); 10363 } 10364 }); 10365 10366 // Update the DAG with the new chain value resulting from argument lowering. 10367 DAG.setRoot(NewRoot); 10368 10369 // Set up the argument values. 10370 unsigned i = 0; 10371 if (!FuncInfo->CanLowerReturn) { 10372 // Create a virtual register for the sret pointer, and put in a copy 10373 // from the sret argument into it. 10374 SmallVector<EVT, 1> ValueVTs; 10375 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10376 F.getReturnType()->getPointerTo( 10377 DAG.getDataLayout().getAllocaAddrSpace()), 10378 ValueVTs); 10379 MVT VT = ValueVTs[0].getSimpleVT(); 10380 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10381 Optional<ISD::NodeType> AssertOp = None; 10382 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10383 nullptr, F.getCallingConv(), AssertOp); 10384 10385 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10386 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10387 Register SRetReg = 10388 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10389 FuncInfo->DemoteRegister = SRetReg; 10390 NewRoot = 10391 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10392 DAG.setRoot(NewRoot); 10393 10394 // i indexes lowered arguments. Bump it past the hidden sret argument. 10395 ++i; 10396 } 10397 10398 SmallVector<SDValue, 4> Chains; 10399 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10400 for (const Argument &Arg : F.args()) { 10401 SmallVector<SDValue, 4> ArgValues; 10402 SmallVector<EVT, 4> ValueVTs; 10403 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10404 unsigned NumValues = ValueVTs.size(); 10405 if (NumValues == 0) 10406 continue; 10407 10408 bool ArgHasUses = !Arg.use_empty(); 10409 10410 // Elide the copying store if the target loaded this argument from a 10411 // suitable fixed stack object. 10412 if (Ins[i].Flags.isCopyElisionCandidate()) { 10413 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10414 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10415 InVals[i], ArgHasUses); 10416 } 10417 10418 // If this argument is unused then remember its value. It is used to generate 10419 // debugging information. 10420 bool isSwiftErrorArg = 10421 TLI->supportSwiftError() && 10422 Arg.hasAttribute(Attribute::SwiftError); 10423 if (!ArgHasUses && !isSwiftErrorArg) { 10424 SDB->setUnusedArgValue(&Arg, InVals[i]); 10425 10426 // Also remember any frame index for use in FastISel. 10427 if (FrameIndexSDNode *FI = 10428 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10429 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10430 } 10431 10432 for (unsigned Val = 0; Val != NumValues; ++Val) { 10433 EVT VT = ValueVTs[Val]; 10434 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10435 F.getCallingConv(), VT); 10436 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10437 *CurDAG->getContext(), F.getCallingConv(), VT); 10438 10439 // Even an apparent 'unused' swifterror argument needs to be returned. So 10440 // we do generate a copy for it that can be used on return from the 10441 // function. 10442 if (ArgHasUses || isSwiftErrorArg) { 10443 Optional<ISD::NodeType> AssertOp; 10444 if (Arg.hasAttribute(Attribute::SExt)) 10445 AssertOp = ISD::AssertSext; 10446 else if (Arg.hasAttribute(Attribute::ZExt)) 10447 AssertOp = ISD::AssertZext; 10448 10449 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10450 PartVT, VT, nullptr, 10451 F.getCallingConv(), AssertOp)); 10452 } 10453 10454 i += NumParts; 10455 } 10456 10457 // We don't need to do anything else for unused arguments. 10458 if (ArgValues.empty()) 10459 continue; 10460 10461 // Note down frame index. 10462 if (FrameIndexSDNode *FI = 10463 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10464 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10465 10466 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10467 SDB->getCurSDLoc()); 10468 10469 SDB->setValue(&Arg, Res); 10470 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10471 // We want to associate the argument with the frame index, among 10472 // involved operands, that correspond to the lowest address. The 10473 // getCopyFromParts function, called earlier, is swapping the order of 10474 // the operands to BUILD_PAIR depending on endianness. The result of 10475 // that swapping is that the least significant bits of the argument will 10476 // be in the first operand of the BUILD_PAIR node, and the most 10477 // significant bits will be in the second operand. 10478 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10479 if (LoadSDNode *LNode = 10480 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10481 if (FrameIndexSDNode *FI = 10482 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10483 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10484 } 10485 10486 // Analyses past this point are naive and don't expect an assertion. 10487 if (Res.getOpcode() == ISD::AssertZext) 10488 Res = Res.getOperand(0); 10489 10490 // Update the SwiftErrorVRegDefMap. 10491 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10492 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10493 if (Register::isVirtualRegister(Reg)) 10494 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10495 Reg); 10496 } 10497 10498 // If this argument is live outside of the entry block, insert a copy from 10499 // wherever we got it to the vreg that other BB's will reference it as. 10500 if (Res.getOpcode() == ISD::CopyFromReg) { 10501 // If we can, though, try to skip creating an unnecessary vreg. 10502 // FIXME: This isn't very clean... it would be nice to make this more 10503 // general. 10504 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10505 if (Register::isVirtualRegister(Reg)) { 10506 FuncInfo->ValueMap[&Arg] = Reg; 10507 continue; 10508 } 10509 } 10510 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10511 FuncInfo->InitializeRegForValue(&Arg); 10512 SDB->CopyToExportRegsIfNeeded(&Arg); 10513 } 10514 } 10515 10516 if (!Chains.empty()) { 10517 Chains.push_back(NewRoot); 10518 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10519 } 10520 10521 DAG.setRoot(NewRoot); 10522 10523 assert(i == InVals.size() && "Argument register count mismatch!"); 10524 10525 // If any argument copy elisions occurred and we have debug info, update the 10526 // stale frame indices used in the dbg.declare variable info table. 10527 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10528 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10529 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10530 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10531 if (I != ArgCopyElisionFrameIndexMap.end()) 10532 VI.Slot = I->second; 10533 } 10534 } 10535 10536 // Finally, if the target has anything special to do, allow it to do so. 10537 emitFunctionEntryCode(); 10538 } 10539 10540 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10541 /// ensure constants are generated when needed. Remember the virtual registers 10542 /// that need to be added to the Machine PHI nodes as input. We cannot just 10543 /// directly add them, because expansion might result in multiple MBB's for one 10544 /// BB. As such, the start of the BB might correspond to a different MBB than 10545 /// the end. 10546 void 10547 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10548 const Instruction *TI = LLVMBB->getTerminator(); 10549 10550 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10551 10552 // Check PHI nodes in successors that expect a value to be available from this 10553 // block. 10554 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10555 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10556 if (!isa<PHINode>(SuccBB->begin())) continue; 10557 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10558 10559 // If this terminator has multiple identical successors (common for 10560 // switches), only handle each succ once. 10561 if (!SuccsHandled.insert(SuccMBB).second) 10562 continue; 10563 10564 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10565 10566 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10567 // nodes and Machine PHI nodes, but the incoming operands have not been 10568 // emitted yet. 10569 for (const PHINode &PN : SuccBB->phis()) { 10570 // Ignore dead phi's. 10571 if (PN.use_empty()) 10572 continue; 10573 10574 // Skip empty types 10575 if (PN.getType()->isEmptyTy()) 10576 continue; 10577 10578 unsigned Reg; 10579 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10580 10581 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10582 unsigned &RegOut = ConstantsOut[C]; 10583 if (RegOut == 0) { 10584 RegOut = FuncInfo.CreateRegs(C); 10585 CopyValueToVirtualRegister(C, RegOut); 10586 } 10587 Reg = RegOut; 10588 } else { 10589 DenseMap<const Value *, Register>::iterator I = 10590 FuncInfo.ValueMap.find(PHIOp); 10591 if (I != FuncInfo.ValueMap.end()) 10592 Reg = I->second; 10593 else { 10594 assert(isa<AllocaInst>(PHIOp) && 10595 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10596 "Didn't codegen value into a register!??"); 10597 Reg = FuncInfo.CreateRegs(PHIOp); 10598 CopyValueToVirtualRegister(PHIOp, Reg); 10599 } 10600 } 10601 10602 // Remember that this register needs to added to the machine PHI node as 10603 // the input for this MBB. 10604 SmallVector<EVT, 4> ValueVTs; 10605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10606 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10607 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10608 EVT VT = ValueVTs[vti]; 10609 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10610 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10611 FuncInfo.PHINodesToUpdate.push_back( 10612 std::make_pair(&*MBBI++, Reg + i)); 10613 Reg += NumRegisters; 10614 } 10615 } 10616 } 10617 10618 ConstantsOut.clear(); 10619 } 10620 10621 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10622 MachineFunction::iterator I(MBB); 10623 if (++I == FuncInfo.MF->end()) 10624 return nullptr; 10625 return &*I; 10626 } 10627 10628 /// During lowering new call nodes can be created (such as memset, etc.). 10629 /// Those will become new roots of the current DAG, but complications arise 10630 /// when they are tail calls. In such cases, the call lowering will update 10631 /// the root, but the builder still needs to know that a tail call has been 10632 /// lowered in order to avoid generating an additional return. 10633 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10634 // If the node is null, we do have a tail call. 10635 if (MaybeTC.getNode() != nullptr) 10636 DAG.setRoot(MaybeTC); 10637 else 10638 HasTailCall = true; 10639 } 10640 10641 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10642 MachineBasicBlock *SwitchMBB, 10643 MachineBasicBlock *DefaultMBB) { 10644 MachineFunction *CurMF = FuncInfo.MF; 10645 MachineBasicBlock *NextMBB = nullptr; 10646 MachineFunction::iterator BBI(W.MBB); 10647 if (++BBI != FuncInfo.MF->end()) 10648 NextMBB = &*BBI; 10649 10650 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10651 10652 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10653 10654 if (Size == 2 && W.MBB == SwitchMBB) { 10655 // If any two of the cases has the same destination, and if one value 10656 // is the same as the other, but has one bit unset that the other has set, 10657 // use bit manipulation to do two compares at once. For example: 10658 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10659 // TODO: This could be extended to merge any 2 cases in switches with 3 10660 // cases. 10661 // TODO: Handle cases where W.CaseBB != SwitchBB. 10662 CaseCluster &Small = *W.FirstCluster; 10663 CaseCluster &Big = *W.LastCluster; 10664 10665 if (Small.Low == Small.High && Big.Low == Big.High && 10666 Small.MBB == Big.MBB) { 10667 const APInt &SmallValue = Small.Low->getValue(); 10668 const APInt &BigValue = Big.Low->getValue(); 10669 10670 // Check that there is only one bit different. 10671 APInt CommonBit = BigValue ^ SmallValue; 10672 if (CommonBit.isPowerOf2()) { 10673 SDValue CondLHS = getValue(Cond); 10674 EVT VT = CondLHS.getValueType(); 10675 SDLoc DL = getCurSDLoc(); 10676 10677 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10678 DAG.getConstant(CommonBit, DL, VT)); 10679 SDValue Cond = DAG.getSetCC( 10680 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10681 ISD::SETEQ); 10682 10683 // Update successor info. 10684 // Both Small and Big will jump to Small.BB, so we sum up the 10685 // probabilities. 10686 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10687 if (BPI) 10688 addSuccessorWithProb( 10689 SwitchMBB, DefaultMBB, 10690 // The default destination is the first successor in IR. 10691 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10692 else 10693 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10694 10695 // Insert the true branch. 10696 SDValue BrCond = 10697 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10698 DAG.getBasicBlock(Small.MBB)); 10699 // Insert the false branch. 10700 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10701 DAG.getBasicBlock(DefaultMBB)); 10702 10703 DAG.setRoot(BrCond); 10704 return; 10705 } 10706 } 10707 } 10708 10709 if (TM.getOptLevel() != CodeGenOpt::None) { 10710 // Here, we order cases by probability so the most likely case will be 10711 // checked first. However, two clusters can have the same probability in 10712 // which case their relative ordering is non-deterministic. So we use Low 10713 // as a tie-breaker as clusters are guaranteed to never overlap. 10714 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10715 [](const CaseCluster &a, const CaseCluster &b) { 10716 return a.Prob != b.Prob ? 10717 a.Prob > b.Prob : 10718 a.Low->getValue().slt(b.Low->getValue()); 10719 }); 10720 10721 // Rearrange the case blocks so that the last one falls through if possible 10722 // without changing the order of probabilities. 10723 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10724 --I; 10725 if (I->Prob > W.LastCluster->Prob) 10726 break; 10727 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10728 std::swap(*I, *W.LastCluster); 10729 break; 10730 } 10731 } 10732 } 10733 10734 // Compute total probability. 10735 BranchProbability DefaultProb = W.DefaultProb; 10736 BranchProbability UnhandledProbs = DefaultProb; 10737 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10738 UnhandledProbs += I->Prob; 10739 10740 MachineBasicBlock *CurMBB = W.MBB; 10741 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10742 bool FallthroughUnreachable = false; 10743 MachineBasicBlock *Fallthrough; 10744 if (I == W.LastCluster) { 10745 // For the last cluster, fall through to the default destination. 10746 Fallthrough = DefaultMBB; 10747 FallthroughUnreachable = isa<UnreachableInst>( 10748 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10749 } else { 10750 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10751 CurMF->insert(BBI, Fallthrough); 10752 // Put Cond in a virtual register to make it available from the new blocks. 10753 ExportFromCurrentBlock(Cond); 10754 } 10755 UnhandledProbs -= I->Prob; 10756 10757 switch (I->Kind) { 10758 case CC_JumpTable: { 10759 // FIXME: Optimize away range check based on pivot comparisons. 10760 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10761 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10762 10763 // The jump block hasn't been inserted yet; insert it here. 10764 MachineBasicBlock *JumpMBB = JT->MBB; 10765 CurMF->insert(BBI, JumpMBB); 10766 10767 auto JumpProb = I->Prob; 10768 auto FallthroughProb = UnhandledProbs; 10769 10770 // If the default statement is a target of the jump table, we evenly 10771 // distribute the default probability to successors of CurMBB. Also 10772 // update the probability on the edge from JumpMBB to Fallthrough. 10773 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10774 SE = JumpMBB->succ_end(); 10775 SI != SE; ++SI) { 10776 if (*SI == DefaultMBB) { 10777 JumpProb += DefaultProb / 2; 10778 FallthroughProb -= DefaultProb / 2; 10779 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10780 JumpMBB->normalizeSuccProbs(); 10781 break; 10782 } 10783 } 10784 10785 if (FallthroughUnreachable) 10786 JTH->FallthroughUnreachable = true; 10787 10788 if (!JTH->FallthroughUnreachable) 10789 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10790 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10791 CurMBB->normalizeSuccProbs(); 10792 10793 // The jump table header will be inserted in our current block, do the 10794 // range check, and fall through to our fallthrough block. 10795 JTH->HeaderBB = CurMBB; 10796 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10797 10798 // If we're in the right place, emit the jump table header right now. 10799 if (CurMBB == SwitchMBB) { 10800 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10801 JTH->Emitted = true; 10802 } 10803 break; 10804 } 10805 case CC_BitTests: { 10806 // FIXME: Optimize away range check based on pivot comparisons. 10807 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10808 10809 // The bit test blocks haven't been inserted yet; insert them here. 10810 for (BitTestCase &BTC : BTB->Cases) 10811 CurMF->insert(BBI, BTC.ThisBB); 10812 10813 // Fill in fields of the BitTestBlock. 10814 BTB->Parent = CurMBB; 10815 BTB->Default = Fallthrough; 10816 10817 BTB->DefaultProb = UnhandledProbs; 10818 // If the cases in bit test don't form a contiguous range, we evenly 10819 // distribute the probability on the edge to Fallthrough to two 10820 // successors of CurMBB. 10821 if (!BTB->ContiguousRange) { 10822 BTB->Prob += DefaultProb / 2; 10823 BTB->DefaultProb -= DefaultProb / 2; 10824 } 10825 10826 if (FallthroughUnreachable) 10827 BTB->FallthroughUnreachable = true; 10828 10829 // If we're in the right place, emit the bit test header right now. 10830 if (CurMBB == SwitchMBB) { 10831 visitBitTestHeader(*BTB, SwitchMBB); 10832 BTB->Emitted = true; 10833 } 10834 break; 10835 } 10836 case CC_Range: { 10837 const Value *RHS, *LHS, *MHS; 10838 ISD::CondCode CC; 10839 if (I->Low == I->High) { 10840 // Check Cond == I->Low. 10841 CC = ISD::SETEQ; 10842 LHS = Cond; 10843 RHS=I->Low; 10844 MHS = nullptr; 10845 } else { 10846 // Check I->Low <= Cond <= I->High. 10847 CC = ISD::SETLE; 10848 LHS = I->Low; 10849 MHS = Cond; 10850 RHS = I->High; 10851 } 10852 10853 // If Fallthrough is unreachable, fold away the comparison. 10854 if (FallthroughUnreachable) 10855 CC = ISD::SETTRUE; 10856 10857 // The false probability is the sum of all unhandled cases. 10858 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10859 getCurSDLoc(), I->Prob, UnhandledProbs); 10860 10861 if (CurMBB == SwitchMBB) 10862 visitSwitchCase(CB, SwitchMBB); 10863 else 10864 SL->SwitchCases.push_back(CB); 10865 10866 break; 10867 } 10868 } 10869 CurMBB = Fallthrough; 10870 } 10871 } 10872 10873 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10874 CaseClusterIt First, 10875 CaseClusterIt Last) { 10876 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10877 if (X.Prob != CC.Prob) 10878 return X.Prob > CC.Prob; 10879 10880 // Ties are broken by comparing the case value. 10881 return X.Low->getValue().slt(CC.Low->getValue()); 10882 }); 10883 } 10884 10885 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10886 const SwitchWorkListItem &W, 10887 Value *Cond, 10888 MachineBasicBlock *SwitchMBB) { 10889 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10890 "Clusters not sorted?"); 10891 10892 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10893 10894 // Balance the tree based on branch probabilities to create a near-optimal (in 10895 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10896 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10897 CaseClusterIt LastLeft = W.FirstCluster; 10898 CaseClusterIt FirstRight = W.LastCluster; 10899 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10900 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10901 10902 // Move LastLeft and FirstRight towards each other from opposite directions to 10903 // find a partitioning of the clusters which balances the probability on both 10904 // sides. If LeftProb and RightProb are equal, alternate which side is 10905 // taken to ensure 0-probability nodes are distributed evenly. 10906 unsigned I = 0; 10907 while (LastLeft + 1 < FirstRight) { 10908 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10909 LeftProb += (++LastLeft)->Prob; 10910 else 10911 RightProb += (--FirstRight)->Prob; 10912 I++; 10913 } 10914 10915 while (true) { 10916 // Our binary search tree differs from a typical BST in that ours can have up 10917 // to three values in each leaf. The pivot selection above doesn't take that 10918 // into account, which means the tree might require more nodes and be less 10919 // efficient. We compensate for this here. 10920 10921 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10922 unsigned NumRight = W.LastCluster - FirstRight + 1; 10923 10924 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10925 // If one side has less than 3 clusters, and the other has more than 3, 10926 // consider taking a cluster from the other side. 10927 10928 if (NumLeft < NumRight) { 10929 // Consider moving the first cluster on the right to the left side. 10930 CaseCluster &CC = *FirstRight; 10931 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10932 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10933 if (LeftSideRank <= RightSideRank) { 10934 // Moving the cluster to the left does not demote it. 10935 ++LastLeft; 10936 ++FirstRight; 10937 continue; 10938 } 10939 } else { 10940 assert(NumRight < NumLeft); 10941 // Consider moving the last element on the left to the right side. 10942 CaseCluster &CC = *LastLeft; 10943 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10944 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10945 if (RightSideRank <= LeftSideRank) { 10946 // Moving the cluster to the right does not demot it. 10947 --LastLeft; 10948 --FirstRight; 10949 continue; 10950 } 10951 } 10952 } 10953 break; 10954 } 10955 10956 assert(LastLeft + 1 == FirstRight); 10957 assert(LastLeft >= W.FirstCluster); 10958 assert(FirstRight <= W.LastCluster); 10959 10960 // Use the first element on the right as pivot since we will make less-than 10961 // comparisons against it. 10962 CaseClusterIt PivotCluster = FirstRight; 10963 assert(PivotCluster > W.FirstCluster); 10964 assert(PivotCluster <= W.LastCluster); 10965 10966 CaseClusterIt FirstLeft = W.FirstCluster; 10967 CaseClusterIt LastRight = W.LastCluster; 10968 10969 const ConstantInt *Pivot = PivotCluster->Low; 10970 10971 // New blocks will be inserted immediately after the current one. 10972 MachineFunction::iterator BBI(W.MBB); 10973 ++BBI; 10974 10975 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10976 // we can branch to its destination directly if it's squeezed exactly in 10977 // between the known lower bound and Pivot - 1. 10978 MachineBasicBlock *LeftMBB; 10979 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10980 FirstLeft->Low == W.GE && 10981 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10982 LeftMBB = FirstLeft->MBB; 10983 } else { 10984 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10985 FuncInfo.MF->insert(BBI, LeftMBB); 10986 WorkList.push_back( 10987 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10988 // Put Cond in a virtual register to make it available from the new blocks. 10989 ExportFromCurrentBlock(Cond); 10990 } 10991 10992 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10993 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10994 // directly if RHS.High equals the current upper bound. 10995 MachineBasicBlock *RightMBB; 10996 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10997 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10998 RightMBB = FirstRight->MBB; 10999 } else { 11000 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11001 FuncInfo.MF->insert(BBI, RightMBB); 11002 WorkList.push_back( 11003 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11004 // Put Cond in a virtual register to make it available from the new blocks. 11005 ExportFromCurrentBlock(Cond); 11006 } 11007 11008 // Create the CaseBlock record that will be used to lower the branch. 11009 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11010 getCurSDLoc(), LeftProb, RightProb); 11011 11012 if (W.MBB == SwitchMBB) 11013 visitSwitchCase(CB, SwitchMBB); 11014 else 11015 SL->SwitchCases.push_back(CB); 11016 } 11017 11018 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11019 // from the swith statement. 11020 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11021 BranchProbability PeeledCaseProb) { 11022 if (PeeledCaseProb == BranchProbability::getOne()) 11023 return BranchProbability::getZero(); 11024 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11025 11026 uint32_t Numerator = CaseProb.getNumerator(); 11027 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11028 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11029 } 11030 11031 // Try to peel the top probability case if it exceeds the threshold. 11032 // Return current MachineBasicBlock for the switch statement if the peeling 11033 // does not occur. 11034 // If the peeling is performed, return the newly created MachineBasicBlock 11035 // for the peeled switch statement. Also update Clusters to remove the peeled 11036 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11037 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11038 const SwitchInst &SI, CaseClusterVector &Clusters, 11039 BranchProbability &PeeledCaseProb) { 11040 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11041 // Don't perform if there is only one cluster or optimizing for size. 11042 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11043 TM.getOptLevel() == CodeGenOpt::None || 11044 SwitchMBB->getParent()->getFunction().hasMinSize()) 11045 return SwitchMBB; 11046 11047 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11048 unsigned PeeledCaseIndex = 0; 11049 bool SwitchPeeled = false; 11050 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11051 CaseCluster &CC = Clusters[Index]; 11052 if (CC.Prob < TopCaseProb) 11053 continue; 11054 TopCaseProb = CC.Prob; 11055 PeeledCaseIndex = Index; 11056 SwitchPeeled = true; 11057 } 11058 if (!SwitchPeeled) 11059 return SwitchMBB; 11060 11061 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11062 << TopCaseProb << "\n"); 11063 11064 // Record the MBB for the peeled switch statement. 11065 MachineFunction::iterator BBI(SwitchMBB); 11066 ++BBI; 11067 MachineBasicBlock *PeeledSwitchMBB = 11068 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11069 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11070 11071 ExportFromCurrentBlock(SI.getCondition()); 11072 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11073 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11074 nullptr, nullptr, TopCaseProb.getCompl()}; 11075 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11076 11077 Clusters.erase(PeeledCaseIt); 11078 for (CaseCluster &CC : Clusters) { 11079 LLVM_DEBUG( 11080 dbgs() << "Scale the probablity for one cluster, before scaling: " 11081 << CC.Prob << "\n"); 11082 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11083 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11084 } 11085 PeeledCaseProb = TopCaseProb; 11086 return PeeledSwitchMBB; 11087 } 11088 11089 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11090 // Extract cases from the switch. 11091 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11092 CaseClusterVector Clusters; 11093 Clusters.reserve(SI.getNumCases()); 11094 for (auto I : SI.cases()) { 11095 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11096 const ConstantInt *CaseVal = I.getCaseValue(); 11097 BranchProbability Prob = 11098 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11099 : BranchProbability(1, SI.getNumCases() + 1); 11100 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11101 } 11102 11103 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11104 11105 // Cluster adjacent cases with the same destination. We do this at all 11106 // optimization levels because it's cheap to do and will make codegen faster 11107 // if there are many clusters. 11108 sortAndRangeify(Clusters); 11109 11110 // The branch probablity of the peeled case. 11111 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11112 MachineBasicBlock *PeeledSwitchMBB = 11113 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11114 11115 // If there is only the default destination, jump there directly. 11116 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11117 if (Clusters.empty()) { 11118 assert(PeeledSwitchMBB == SwitchMBB); 11119 SwitchMBB->addSuccessor(DefaultMBB); 11120 if (DefaultMBB != NextBlock(SwitchMBB)) { 11121 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11122 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11123 } 11124 return; 11125 } 11126 11127 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11128 SL->findBitTestClusters(Clusters, &SI); 11129 11130 LLVM_DEBUG({ 11131 dbgs() << "Case clusters: "; 11132 for (const CaseCluster &C : Clusters) { 11133 if (C.Kind == CC_JumpTable) 11134 dbgs() << "JT:"; 11135 if (C.Kind == CC_BitTests) 11136 dbgs() << "BT:"; 11137 11138 C.Low->getValue().print(dbgs(), true); 11139 if (C.Low != C.High) { 11140 dbgs() << '-'; 11141 C.High->getValue().print(dbgs(), true); 11142 } 11143 dbgs() << ' '; 11144 } 11145 dbgs() << '\n'; 11146 }); 11147 11148 assert(!Clusters.empty()); 11149 SwitchWorkList WorkList; 11150 CaseClusterIt First = Clusters.begin(); 11151 CaseClusterIt Last = Clusters.end() - 1; 11152 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11153 // Scale the branchprobability for DefaultMBB if the peel occurs and 11154 // DefaultMBB is not replaced. 11155 if (PeeledCaseProb != BranchProbability::getZero() && 11156 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11157 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11158 WorkList.push_back( 11159 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11160 11161 while (!WorkList.empty()) { 11162 SwitchWorkListItem W = WorkList.pop_back_val(); 11163 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11164 11165 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11166 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11167 // For optimized builds, lower large range as a balanced binary tree. 11168 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11169 continue; 11170 } 11171 11172 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11173 } 11174 } 11175 11176 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11177 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11178 auto DL = getCurSDLoc(); 11179 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11180 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11181 } 11182 11183 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11184 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11185 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11186 11187 SDLoc DL = getCurSDLoc(); 11188 SDValue V = getValue(I.getOperand(0)); 11189 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11190 11191 if (VT.isScalableVector()) { 11192 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11193 return; 11194 } 11195 11196 // Use VECTOR_SHUFFLE for the fixed-length vector 11197 // to maintain existing behavior. 11198 SmallVector<int, 8> Mask; 11199 unsigned NumElts = VT.getVectorMinNumElements(); 11200 for (unsigned i = 0; i != NumElts; ++i) 11201 Mask.push_back(NumElts - 1 - i); 11202 11203 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11204 } 11205 11206 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11207 SmallVector<EVT, 4> ValueVTs; 11208 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11209 ValueVTs); 11210 unsigned NumValues = ValueVTs.size(); 11211 if (NumValues == 0) return; 11212 11213 SmallVector<SDValue, 4> Values(NumValues); 11214 SDValue Op = getValue(I.getOperand(0)); 11215 11216 for (unsigned i = 0; i != NumValues; ++i) 11217 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11218 SDValue(Op.getNode(), Op.getResNo() + i)); 11219 11220 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11221 DAG.getVTList(ValueVTs), Values)); 11222 } 11223 11224 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11225 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11226 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11227 11228 SDLoc DL = getCurSDLoc(); 11229 SDValue V1 = getValue(I.getOperand(0)); 11230 SDValue V2 = getValue(I.getOperand(1)); 11231 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11232 11233 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11234 if (VT.isScalableVector()) { 11235 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11236 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11237 DAG.getConstant(Imm, DL, IdxVT))); 11238 return; 11239 } 11240 11241 unsigned NumElts = VT.getVectorNumElements(); 11242 11243 if ((-Imm > NumElts) || (Imm >= NumElts)) { 11244 // Result is undefined if immediate is out-of-bounds. 11245 setValue(&I, DAG.getUNDEF(VT)); 11246 return; 11247 } 11248 11249 uint64_t Idx = (NumElts + Imm) % NumElts; 11250 11251 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11252 SmallVector<int, 8> Mask; 11253 for (unsigned i = 0; i < NumElts; ++i) 11254 Mask.push_back(Idx + i); 11255 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11256 } 11257