1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsAMDGPU.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Module.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Statepoint.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/MC/MCContext.h" 92 #include "llvm/Support/AtomicOrdering.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/InstructionCost.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Target/TargetIntrinsicInfo.h" 101 #include "llvm/Target/TargetMachine.h" 102 #include "llvm/Target/TargetOptions.h" 103 #include "llvm/TargetParser/Triple.h" 104 #include "llvm/Transforms/Utils/Local.h" 105 #include <cstddef> 106 #include <limits> 107 #include <optional> 108 #include <tuple> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 using namespace SwitchCG; 113 114 #define DEBUG_TYPE "isel" 115 116 /// LimitFloatPrecision - Generate low-precision inline sequences for 117 /// some float libcalls (6, 8 or 12 bits). 118 static unsigned LimitFloatPrecision; 119 120 static cl::opt<bool> 121 InsertAssertAlign("insert-assert-align", cl::init(true), 122 cl::desc("Insert the experimental `assertalign` node."), 123 cl::ReallyHidden); 124 125 static cl::opt<unsigned, true> 126 LimitFPPrecision("limit-float-precision", 127 cl::desc("Generate low-precision inline sequences " 128 "for some float libcalls"), 129 cl::location(LimitFloatPrecision), cl::Hidden, 130 cl::init(0)); 131 132 static cl::opt<unsigned> SwitchPeelThreshold( 133 "switch-peel-threshold", cl::Hidden, cl::init(66), 134 cl::desc("Set the case probability threshold for peeling the case from a " 135 "switch statement. A value greater than 100 will void this " 136 "optimization")); 137 138 // Limit the width of DAG chains. This is important in general to prevent 139 // DAG-based analysis from blowing up. For example, alias analysis and 140 // load clustering may not complete in reasonable time. It is difficult to 141 // recognize and avoid this situation within each individual analysis, and 142 // future analyses are likely to have the same behavior. Limiting DAG width is 143 // the safe approach and will be especially important with global DAGs. 144 // 145 // MaxParallelChains default is arbitrarily high to avoid affecting 146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 147 // sequence over this should have been converted to llvm.memcpy by the 148 // frontend. It is easy to induce this behavior with .ll code such as: 149 // %buffer = alloca [4096 x i8] 150 // %data = load [4096 x i8]* %argPtr 151 // store [4096 x i8] %data, [4096 x i8]* %buffer 152 static const unsigned MaxParallelChains = 64; 153 154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 155 const SDValue *Parts, unsigned NumParts, 156 MVT PartVT, EVT ValueVT, const Value *V, 157 SDValue InChain, 158 std::optional<CallingConv::ID> CC); 159 160 /// getCopyFromParts - Create a value that contains the specified legal parts 161 /// combined into the value they represent. If the parts combine to a type 162 /// larger than ValueVT then AssertOp can be used to specify whether the extra 163 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 164 /// (ISD::AssertSext). 165 static SDValue 166 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 167 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 168 SDValue InChain, 169 std::optional<CallingConv::ID> CC = std::nullopt, 170 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 171 // Let the target assemble the parts if it wants to 172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 173 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 174 PartVT, ValueVT, CC)) 175 return Val; 176 177 if (ValueVT.isVector()) 178 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 179 InChain, CC); 180 181 assert(NumParts > 0 && "No parts to assemble!"); 182 SDValue Val = Parts[0]; 183 184 if (NumParts > 1) { 185 // Assemble the value from multiple parts. 186 if (ValueVT.isInteger()) { 187 unsigned PartBits = PartVT.getSizeInBits(); 188 unsigned ValueBits = ValueVT.getSizeInBits(); 189 190 // Assemble the power of 2 part. 191 unsigned RoundParts = llvm::bit_floor(NumParts); 192 unsigned RoundBits = PartBits * RoundParts; 193 EVT RoundVT = RoundBits == ValueBits ? 194 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 195 SDValue Lo, Hi; 196 197 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 198 199 if (RoundParts > 2) { 200 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 201 InChain); 202 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 203 PartVT, HalfVT, V, InChain); 204 } else { 205 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 206 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 207 } 208 209 if (DAG.getDataLayout().isBigEndian()) 210 std::swap(Lo, Hi); 211 212 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 213 214 if (RoundParts < NumParts) { 215 // Assemble the trailing non-power-of-2 part. 216 unsigned OddParts = NumParts - RoundParts; 217 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 218 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 219 OddVT, V, InChain, CC); 220 221 // Combine the round and odd parts. 222 Lo = Val; 223 if (DAG.getDataLayout().isBigEndian()) 224 std::swap(Lo, Hi); 225 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 226 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 227 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 228 DAG.getConstant(Lo.getValueSizeInBits(), DL, 229 TLI.getShiftAmountTy( 230 TotalVT, DAG.getDataLayout()))); 231 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 232 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 233 } 234 } else if (PartVT.isFloatingPoint()) { 235 // FP split into multiple FP parts (for ppcf128) 236 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 237 "Unexpected split"); 238 SDValue Lo, Hi; 239 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 241 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 242 std::swap(Lo, Hi); 243 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 244 } else { 245 // FP split into integer parts (soft fp) 246 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 247 !PartVT.isVector() && "Unexpected split"); 248 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 249 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 250 InChain, CC); 251 } 252 } 253 254 // There is now one part, held in Val. Correct it to match ValueVT. 255 // PartEVT is the type of the register class that holds the value. 256 // ValueVT is the type of the inline asm operation. 257 EVT PartEVT = Val.getValueType(); 258 259 if (PartEVT == ValueVT) 260 return Val; 261 262 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 263 ValueVT.bitsLT(PartEVT)) { 264 // For an FP value in an integer part, we need to truncate to the right 265 // width first. 266 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 267 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 268 } 269 270 // Handle types that have the same size. 271 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 272 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 273 274 // Handle types with different sizes. 275 if (PartEVT.isInteger() && ValueVT.isInteger()) { 276 if (ValueVT.bitsLT(PartEVT)) { 277 // For a truncate, see if we have any information to 278 // indicate whether the truncated bits will always be 279 // zero or sign-extension. 280 if (AssertOp) 281 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 282 DAG.getValueType(ValueVT)); 283 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 284 } 285 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 286 } 287 288 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 289 // FP_ROUND's are always exact here. 290 if (ValueVT.bitsLT(Val.getValueType())) { 291 292 SDValue NoChange = 293 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 294 295 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 296 llvm::Attribute::StrictFP)) { 297 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 298 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 299 NoChange); 300 } 301 302 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 303 } 304 305 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 306 } 307 308 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 309 // then truncating. 310 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 311 ValueVT.bitsLT(PartEVT)) { 312 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 313 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 314 } 315 316 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 317 } 318 319 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 320 const Twine &ErrMsg) { 321 const Instruction *I = dyn_cast_or_null<Instruction>(V); 322 if (!V) 323 return Ctx.emitError(ErrMsg); 324 325 const char *AsmError = ", possible invalid constraint for vector type"; 326 if (const CallInst *CI = dyn_cast<CallInst>(I)) 327 if (CI->isInlineAsm()) 328 return Ctx.emitError(I, ErrMsg + AsmError); 329 330 return Ctx.emitError(I, ErrMsg); 331 } 332 333 /// getCopyFromPartsVector - Create a value that contains the specified legal 334 /// parts combined into the value they represent. If the parts combine to a 335 /// type larger than ValueVT then AssertOp can be used to specify whether the 336 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 337 /// ValueVT (ISD::AssertSext). 338 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 339 const SDValue *Parts, unsigned NumParts, 340 MVT PartVT, EVT ValueVT, const Value *V, 341 SDValue InChain, 342 std::optional<CallingConv::ID> CallConv) { 343 assert(ValueVT.isVector() && "Not a vector value"); 344 assert(NumParts > 0 && "No parts to assemble!"); 345 const bool IsABIRegCopy = CallConv.has_value(); 346 347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 348 SDValue Val = Parts[0]; 349 350 // Handle a multi-element vector. 351 if (NumParts > 1) { 352 EVT IntermediateVT; 353 MVT RegisterVT; 354 unsigned NumIntermediates; 355 unsigned NumRegs; 356 357 if (IsABIRegCopy) { 358 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 359 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 360 NumIntermediates, RegisterVT); 361 } else { 362 NumRegs = 363 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 364 NumIntermediates, RegisterVT); 365 } 366 367 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 368 NumParts = NumRegs; // Silence a compiler warning. 369 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 370 assert(RegisterVT.getSizeInBits() == 371 Parts[0].getSimpleValueType().getSizeInBits() && 372 "Part type sizes don't match!"); 373 374 // Assemble the parts into intermediate operands. 375 SmallVector<SDValue, 8> Ops(NumIntermediates); 376 if (NumIntermediates == NumParts) { 377 // If the register was not expanded, truncate or copy the value, 378 // as appropriate. 379 for (unsigned i = 0; i != NumParts; ++i) 380 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 381 V, InChain, CallConv); 382 } else if (NumParts > 0) { 383 // If the intermediate type was expanded, build the intermediate 384 // operands from the parts. 385 assert(NumParts % NumIntermediates == 0 && 386 "Must expand into a divisible number of parts!"); 387 unsigned Factor = NumParts / NumIntermediates; 388 for (unsigned i = 0; i != NumIntermediates; ++i) 389 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 390 IntermediateVT, V, InChain, CallConv); 391 } 392 393 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 394 // intermediate operands. 395 EVT BuiltVectorTy = 396 IntermediateVT.isVector() 397 ? EVT::getVectorVT( 398 *DAG.getContext(), IntermediateVT.getScalarType(), 399 IntermediateVT.getVectorElementCount() * NumParts) 400 : EVT::getVectorVT(*DAG.getContext(), 401 IntermediateVT.getScalarType(), 402 NumIntermediates); 403 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 404 : ISD::BUILD_VECTOR, 405 DL, BuiltVectorTy, Ops); 406 } 407 408 // There is now one part, held in Val. Correct it to match ValueVT. 409 EVT PartEVT = Val.getValueType(); 410 411 if (PartEVT == ValueVT) 412 return Val; 413 414 if (PartEVT.isVector()) { 415 // Vector/Vector bitcast. 416 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 417 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 418 419 // If the parts vector has more elements than the value vector, then we 420 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 421 // Extract the elements we want. 422 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 423 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 424 ValueVT.getVectorElementCount().getKnownMinValue()) && 425 (PartEVT.getVectorElementCount().isScalable() == 426 ValueVT.getVectorElementCount().isScalable()) && 427 "Cannot narrow, it would be a lossy transformation"); 428 PartEVT = 429 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 430 ValueVT.getVectorElementCount()); 431 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 432 DAG.getVectorIdxConstant(0, DL)); 433 if (PartEVT == ValueVT) 434 return Val; 435 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 436 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 437 438 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 439 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 440 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 441 } 442 443 // Promoted vector extract 444 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 445 } 446 447 // Trivial bitcast if the types are the same size and the destination 448 // vector type is legal. 449 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 450 TLI.isTypeLegal(ValueVT)) 451 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 452 453 if (ValueVT.getVectorNumElements() != 1) { 454 // Certain ABIs require that vectors are passed as integers. For vectors 455 // are the same size, this is an obvious bitcast. 456 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 458 } else if (ValueVT.bitsLT(PartEVT)) { 459 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 460 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 461 // Drop the extra bits. 462 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 463 return DAG.getBitcast(ValueVT, Val); 464 } 465 466 diagnosePossiblyInvalidConstraint( 467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 468 return DAG.getUNDEF(ValueVT); 469 } 470 471 // Handle cases such as i8 -> <1 x i1> 472 EVT ValueSVT = ValueVT.getVectorElementType(); 473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 474 unsigned ValueSize = ValueSVT.getSizeInBits(); 475 if (ValueSize == PartEVT.getSizeInBits()) { 476 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 477 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 478 // It's possible a scalar floating point type gets softened to integer and 479 // then promoted to a larger integer. If PartEVT is the larger integer 480 // we need to truncate it and then bitcast to the FP type. 481 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 482 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 483 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 484 Val = DAG.getBitcast(ValueSVT, Val); 485 } else { 486 Val = ValueVT.isFloatingPoint() 487 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 488 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 489 } 490 } 491 492 return DAG.getBuildVector(ValueVT, DL, Val); 493 } 494 495 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 496 SDValue Val, SDValue *Parts, unsigned NumParts, 497 MVT PartVT, const Value *V, 498 std::optional<CallingConv::ID> CallConv); 499 500 /// getCopyToParts - Create a series of nodes that contain the specified value 501 /// split into legal parts. If the parts contain more bits than Val, then, for 502 /// integers, ExtendKind can be used to specify how to generate the extra bits. 503 static void 504 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 505 unsigned NumParts, MVT PartVT, const Value *V, 506 std::optional<CallingConv::ID> CallConv = std::nullopt, 507 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 508 // Let the target split the parts if it wants to 509 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 510 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 511 CallConv)) 512 return; 513 EVT ValueVT = Val.getValueType(); 514 515 // Handle the vector case separately. 516 if (ValueVT.isVector()) 517 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 518 CallConv); 519 520 unsigned OrigNumParts = NumParts; 521 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 522 "Copying to an illegal type!"); 523 524 if (NumParts == 0) 525 return; 526 527 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 528 EVT PartEVT = PartVT; 529 if (PartEVT == ValueVT) { 530 assert(NumParts == 1 && "No-op copy with multiple parts!"); 531 Parts[0] = Val; 532 return; 533 } 534 535 unsigned PartBits = PartVT.getSizeInBits(); 536 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 537 // If the parts cover more bits than the value has, promote the value. 538 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 539 assert(NumParts == 1 && "Do not know what to promote to!"); 540 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 541 } else { 542 if (ValueVT.isFloatingPoint()) { 543 // FP values need to be bitcast, then extended if they are being put 544 // into a larger container. 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 546 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 547 } 548 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 549 ValueVT.isInteger() && 550 "Unknown mismatch!"); 551 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 552 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 553 if (PartVT == MVT::x86mmx) 554 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 555 } 556 } else if (PartBits == ValueVT.getSizeInBits()) { 557 // Different types of the same size. 558 assert(NumParts == 1 && PartEVT != ValueVT); 559 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 560 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 561 // If the parts cover less bits than value has, truncate the value. 562 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 563 ValueVT.isInteger() && 564 "Unknown mismatch!"); 565 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 566 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 567 if (PartVT == MVT::x86mmx) 568 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 569 } 570 571 // The value may have changed - recompute ValueVT. 572 ValueVT = Val.getValueType(); 573 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 574 "Failed to tile the value with PartVT!"); 575 576 if (NumParts == 1) { 577 if (PartEVT != ValueVT) { 578 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 579 "scalar-to-vector conversion failed"); 580 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 581 } 582 583 Parts[0] = Val; 584 return; 585 } 586 587 // Expand the value into multiple parts. 588 if (NumParts & (NumParts - 1)) { 589 // The number of parts is not a power of 2. Split off and copy the tail. 590 assert(PartVT.isInteger() && ValueVT.isInteger() && 591 "Do not know what to expand to!"); 592 unsigned RoundParts = llvm::bit_floor(NumParts); 593 unsigned RoundBits = RoundParts * PartBits; 594 unsigned OddParts = NumParts - RoundParts; 595 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 596 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 597 598 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 599 CallConv); 600 601 if (DAG.getDataLayout().isBigEndian()) 602 // The odd parts were reversed by getCopyToParts - unreverse them. 603 std::reverse(Parts + RoundParts, Parts + NumParts); 604 605 NumParts = RoundParts; 606 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 607 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 608 } 609 610 // The number of parts is a power of 2. Repeatedly bisect the value using 611 // EXTRACT_ELEMENT. 612 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 613 EVT::getIntegerVT(*DAG.getContext(), 614 ValueVT.getSizeInBits()), 615 Val); 616 617 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 618 for (unsigned i = 0; i < NumParts; i += StepSize) { 619 unsigned ThisBits = StepSize * PartBits / 2; 620 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 621 SDValue &Part0 = Parts[i]; 622 SDValue &Part1 = Parts[i+StepSize/2]; 623 624 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 625 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 626 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 627 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 628 629 if (ThisBits == PartBits && ThisVT != PartVT) { 630 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 631 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 632 } 633 } 634 } 635 636 if (DAG.getDataLayout().isBigEndian()) 637 std::reverse(Parts, Parts + OrigNumParts); 638 } 639 640 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 641 const SDLoc &DL, EVT PartVT) { 642 if (!PartVT.isVector()) 643 return SDValue(); 644 645 EVT ValueVT = Val.getValueType(); 646 EVT PartEVT = PartVT.getVectorElementType(); 647 EVT ValueEVT = ValueVT.getVectorElementType(); 648 ElementCount PartNumElts = PartVT.getVectorElementCount(); 649 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 650 651 // We only support widening vectors with equivalent element types and 652 // fixed/scalable properties. If a target needs to widen a fixed-length type 653 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 654 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 655 PartNumElts.isScalable() != ValueNumElts.isScalable()) 656 return SDValue(); 657 658 // Have a try for bf16 because some targets share its ABI with fp16. 659 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 660 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 661 "Cannot widen to illegal type"); 662 Val = DAG.getNode(ISD::BITCAST, DL, 663 ValueVT.changeVectorElementType(MVT::f16), Val); 664 } else if (PartEVT != ValueEVT) { 665 return SDValue(); 666 } 667 668 // Widening a scalable vector to another scalable vector is done by inserting 669 // the vector into a larger undef one. 670 if (PartNumElts.isScalable()) 671 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 672 Val, DAG.getVectorIdxConstant(0, DL)); 673 674 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 675 // undef elements. 676 SmallVector<SDValue, 16> Ops; 677 DAG.ExtractVectorElements(Val, Ops); 678 SDValue EltUndef = DAG.getUNDEF(PartEVT); 679 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 680 681 // FIXME: Use CONCAT for 2x -> 4x. 682 return DAG.getBuildVector(PartVT, DL, Ops); 683 } 684 685 /// getCopyToPartsVector - Create a series of nodes that contain the specified 686 /// value split into legal parts. 687 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 688 SDValue Val, SDValue *Parts, unsigned NumParts, 689 MVT PartVT, const Value *V, 690 std::optional<CallingConv::ID> CallConv) { 691 EVT ValueVT = Val.getValueType(); 692 assert(ValueVT.isVector() && "Not a vector"); 693 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 694 const bool IsABIRegCopy = CallConv.has_value(); 695 696 if (NumParts == 1) { 697 EVT PartEVT = PartVT; 698 if (PartEVT == ValueVT) { 699 // Nothing to do. 700 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 701 // Bitconvert vector->vector case. 702 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 703 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 704 Val = Widened; 705 } else if (PartVT.isVector() && 706 PartEVT.getVectorElementType().bitsGE( 707 ValueVT.getVectorElementType()) && 708 PartEVT.getVectorElementCount() == 709 ValueVT.getVectorElementCount()) { 710 711 // Promoted vector extract 712 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 713 } else if (PartEVT.isVector() && 714 PartEVT.getVectorElementType() != 715 ValueVT.getVectorElementType() && 716 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 717 TargetLowering::TypeWidenVector) { 718 // Combination of widening and promotion. 719 EVT WidenVT = 720 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 721 PartVT.getVectorElementCount()); 722 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 723 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 724 } else { 725 // Don't extract an integer from a float vector. This can happen if the 726 // FP type gets softened to integer and then promoted. The promotion 727 // prevents it from being picked up by the earlier bitcast case. 728 if (ValueVT.getVectorElementCount().isScalar() && 729 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 730 // If we reach this condition and PartVT is FP, this means that 731 // ValueVT is also FP and both have a different size, otherwise we 732 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here 733 // would be invalid since that would mean the smaller FP type has to 734 // be extended to the larger one. 735 if (PartVT.isFloatingPoint()) { 736 Val = DAG.getBitcast(ValueVT.getScalarType(), Val); 737 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 738 } else 739 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 740 DAG.getVectorIdxConstant(0, DL)); 741 } else { 742 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 743 assert(PartVT.getFixedSizeInBits() > ValueSize && 744 "lossy conversion of vector to scalar type"); 745 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 746 Val = DAG.getBitcast(IntermediateType, Val); 747 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 748 } 749 } 750 751 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 752 Parts[0] = Val; 753 return; 754 } 755 756 // Handle a multi-element vector. 757 EVT IntermediateVT; 758 MVT RegisterVT; 759 unsigned NumIntermediates; 760 unsigned NumRegs; 761 if (IsABIRegCopy) { 762 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 763 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 764 RegisterVT); 765 } else { 766 NumRegs = 767 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 768 NumIntermediates, RegisterVT); 769 } 770 771 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 772 NumParts = NumRegs; // Silence a compiler warning. 773 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 774 775 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 776 "Mixing scalable and fixed vectors when copying in parts"); 777 778 std::optional<ElementCount> DestEltCnt; 779 780 if (IntermediateVT.isVector()) 781 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 782 else 783 DestEltCnt = ElementCount::getFixed(NumIntermediates); 784 785 EVT BuiltVectorTy = EVT::getVectorVT( 786 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 787 788 if (ValueVT == BuiltVectorTy) { 789 // Nothing to do. 790 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 791 // Bitconvert vector->vector case. 792 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 793 } else { 794 if (BuiltVectorTy.getVectorElementType().bitsGT( 795 ValueVT.getVectorElementType())) { 796 // Integer promotion. 797 ValueVT = EVT::getVectorVT(*DAG.getContext(), 798 BuiltVectorTy.getVectorElementType(), 799 ValueVT.getVectorElementCount()); 800 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 801 } 802 803 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 804 Val = Widened; 805 } 806 } 807 808 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 809 810 // Split the vector into intermediate operands. 811 SmallVector<SDValue, 8> Ops(NumIntermediates); 812 for (unsigned i = 0; i != NumIntermediates; ++i) { 813 if (IntermediateVT.isVector()) { 814 // This does something sensible for scalable vectors - see the 815 // definition of EXTRACT_SUBVECTOR for further details. 816 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 817 Ops[i] = 818 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 819 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 820 } else { 821 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 822 DAG.getVectorIdxConstant(i, DL)); 823 } 824 } 825 826 // Split the intermediate operands into legal parts. 827 if (NumParts == NumIntermediates) { 828 // If the register was not expanded, promote or copy the value, 829 // as appropriate. 830 for (unsigned i = 0; i != NumParts; ++i) 831 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 832 } else if (NumParts > 0) { 833 // If the intermediate type was expanded, split each the value into 834 // legal parts. 835 assert(NumIntermediates != 0 && "division by zero"); 836 assert(NumParts % NumIntermediates == 0 && 837 "Must expand into a divisible number of parts!"); 838 unsigned Factor = NumParts / NumIntermediates; 839 for (unsigned i = 0; i != NumIntermediates; ++i) 840 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 841 CallConv); 842 } 843 } 844 845 RegsForValue::RegsForValue(const SmallVector<Register, 4> ®s, MVT regvt, 846 EVT valuevt, std::optional<CallingConv::ID> CC) 847 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 848 RegCount(1, regs.size()), CallConv(CC) {} 849 850 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 851 const DataLayout &DL, Register Reg, Type *Ty, 852 std::optional<CallingConv::ID> CC) { 853 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 854 855 CallConv = CC; 856 857 for (EVT ValueVT : ValueVTs) { 858 unsigned NumRegs = 859 isABIMangled() 860 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 861 : TLI.getNumRegisters(Context, ValueVT); 862 MVT RegisterVT = 863 isABIMangled() 864 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 865 : TLI.getRegisterType(Context, ValueVT); 866 for (unsigned i = 0; i != NumRegs; ++i) 867 Regs.push_back(Reg + i); 868 RegVTs.push_back(RegisterVT); 869 RegCount.push_back(NumRegs); 870 Reg = Reg.id() + NumRegs; 871 } 872 } 873 874 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 875 FunctionLoweringInfo &FuncInfo, 876 const SDLoc &dl, SDValue &Chain, 877 SDValue *Glue, const Value *V) const { 878 // A Value with type {} or [0 x %t] needs no registers. 879 if (ValueVTs.empty()) 880 return SDValue(); 881 882 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 883 884 // Assemble the legal parts into the final values. 885 SmallVector<SDValue, 4> Values(ValueVTs.size()); 886 SmallVector<SDValue, 8> Parts; 887 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 888 // Copy the legal parts from the registers. 889 EVT ValueVT = ValueVTs[Value]; 890 unsigned NumRegs = RegCount[Value]; 891 MVT RegisterVT = isABIMangled() 892 ? TLI.getRegisterTypeForCallingConv( 893 *DAG.getContext(), *CallConv, RegVTs[Value]) 894 : RegVTs[Value]; 895 896 Parts.resize(NumRegs); 897 for (unsigned i = 0; i != NumRegs; ++i) { 898 SDValue P; 899 if (!Glue) { 900 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 901 } else { 902 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 903 *Glue = P.getValue(2); 904 } 905 906 Chain = P.getValue(1); 907 Parts[i] = P; 908 909 // If the source register was virtual and if we know something about it, 910 // add an assert node. 911 if (!Register::isVirtualRegister(Regs[Part + i]) || 912 !RegisterVT.isInteger()) 913 continue; 914 915 const FunctionLoweringInfo::LiveOutInfo *LOI = 916 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 917 if (!LOI) 918 continue; 919 920 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 921 unsigned NumSignBits = LOI->NumSignBits; 922 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 923 924 if (NumZeroBits == RegSize) { 925 // The current value is a zero. 926 // Explicitly express that as it would be easier for 927 // optimizations to kick in. 928 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 929 continue; 930 } 931 932 // FIXME: We capture more information than the dag can represent. For 933 // now, just use the tightest assertzext/assertsext possible. 934 bool isSExt; 935 EVT FromVT(MVT::Other); 936 if (NumZeroBits) { 937 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 938 isSExt = false; 939 } else if (NumSignBits > 1) { 940 FromVT = 941 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 942 isSExt = true; 943 } else { 944 continue; 945 } 946 // Add an assertion node. 947 assert(FromVT != MVT::Other); 948 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 949 RegisterVT, P, DAG.getValueType(FromVT)); 950 } 951 952 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 953 RegisterVT, ValueVT, V, Chain, CallConv); 954 Part += NumRegs; 955 Parts.clear(); 956 } 957 958 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 959 } 960 961 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 962 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 963 const Value *V, 964 ISD::NodeType PreferredExtendType) const { 965 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 966 ISD::NodeType ExtendKind = PreferredExtendType; 967 968 // Get the list of the values's legal parts. 969 unsigned NumRegs = Regs.size(); 970 SmallVector<SDValue, 8> Parts(NumRegs); 971 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 972 unsigned NumParts = RegCount[Value]; 973 974 MVT RegisterVT = isABIMangled() 975 ? TLI.getRegisterTypeForCallingConv( 976 *DAG.getContext(), *CallConv, RegVTs[Value]) 977 : RegVTs[Value]; 978 979 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 980 ExtendKind = ISD::ZERO_EXTEND; 981 982 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 983 NumParts, RegisterVT, V, CallConv, ExtendKind); 984 Part += NumParts; 985 } 986 987 // Copy the parts into the registers. 988 SmallVector<SDValue, 8> Chains(NumRegs); 989 for (unsigned i = 0; i != NumRegs; ++i) { 990 SDValue Part; 991 if (!Glue) { 992 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 993 } else { 994 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 995 *Glue = Part.getValue(1); 996 } 997 998 Chains[i] = Part.getValue(0); 999 } 1000 1001 if (NumRegs == 1 || Glue) 1002 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 1003 // flagged to it. That is the CopyToReg nodes and the user are considered 1004 // a single scheduling unit. If we create a TokenFactor and return it as 1005 // chain, then the TokenFactor is both a predecessor (operand) of the 1006 // user as well as a successor (the TF operands are flagged to the user). 1007 // c1, f1 = CopyToReg 1008 // c2, f2 = CopyToReg 1009 // c3 = TokenFactor c1, c2 1010 // ... 1011 // = op c3, ..., f2 1012 Chain = Chains[NumRegs-1]; 1013 else 1014 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1015 } 1016 1017 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1018 unsigned MatchingIdx, const SDLoc &dl, 1019 SelectionDAG &DAG, 1020 std::vector<SDValue> &Ops) const { 1021 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1022 1023 InlineAsm::Flag Flag(Code, Regs.size()); 1024 if (HasMatching) 1025 Flag.setMatchingOp(MatchingIdx); 1026 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1027 // Put the register class of the virtual registers in the flag word. That 1028 // way, later passes can recompute register class constraints for inline 1029 // assembly as well as normal instructions. 1030 // Don't do this for tied operands that can use the regclass information 1031 // from the def. 1032 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1033 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1034 Flag.setRegClass(RC->getID()); 1035 } 1036 1037 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1038 Ops.push_back(Res); 1039 1040 if (Code == InlineAsm::Kind::Clobber) { 1041 // Clobbers should always have a 1:1 mapping with registers, and may 1042 // reference registers that have illegal (e.g. vector) types. Hence, we 1043 // shouldn't try to apply any sort of splitting logic to them. 1044 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1045 "No 1:1 mapping from clobbers to regs?"); 1046 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1047 (void)SP; 1048 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1049 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1050 assert( 1051 (Regs[I] != SP || 1052 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1053 "If we clobbered the stack pointer, MFI should know about it."); 1054 } 1055 return; 1056 } 1057 1058 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1059 MVT RegisterVT = RegVTs[Value]; 1060 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1061 RegisterVT); 1062 for (unsigned i = 0; i != NumRegs; ++i) { 1063 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1064 unsigned TheReg = Regs[Reg++]; 1065 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1066 } 1067 } 1068 } 1069 1070 SmallVector<std::pair<Register, TypeSize>, 4> 1071 RegsForValue::getRegsAndSizes() const { 1072 SmallVector<std::pair<Register, TypeSize>, 4> OutVec; 1073 unsigned I = 0; 1074 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1075 unsigned RegCount = std::get<0>(CountAndVT); 1076 MVT RegisterVT = std::get<1>(CountAndVT); 1077 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1078 for (unsigned E = I + RegCount; I != E; ++I) 1079 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1080 } 1081 return OutVec; 1082 } 1083 1084 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1085 AssumptionCache *ac, 1086 const TargetLibraryInfo *li) { 1087 AA = aa; 1088 AC = ac; 1089 GFI = gfi; 1090 LibInfo = li; 1091 Context = DAG.getContext(); 1092 LPadToCallSiteMap.clear(); 1093 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1094 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1095 *DAG.getMachineFunction().getFunction().getParent()); 1096 } 1097 1098 void SelectionDAGBuilder::clear() { 1099 NodeMap.clear(); 1100 UnusedArgNodeMap.clear(); 1101 PendingLoads.clear(); 1102 PendingExports.clear(); 1103 PendingConstrainedFP.clear(); 1104 PendingConstrainedFPStrict.clear(); 1105 CurInst = nullptr; 1106 HasTailCall = false; 1107 SDNodeOrder = LowestSDNodeOrder; 1108 StatepointLowering.clear(); 1109 } 1110 1111 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1112 DanglingDebugInfoMap.clear(); 1113 } 1114 1115 // Update DAG root to include dependencies on Pending chains. 1116 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1117 SDValue Root = DAG.getRoot(); 1118 1119 if (Pending.empty()) 1120 return Root; 1121 1122 // Add current root to PendingChains, unless we already indirectly 1123 // depend on it. 1124 if (Root.getOpcode() != ISD::EntryToken) { 1125 unsigned i = 0, e = Pending.size(); 1126 for (; i != e; ++i) { 1127 assert(Pending[i].getNode()->getNumOperands() > 1); 1128 if (Pending[i].getNode()->getOperand(0) == Root) 1129 break; // Don't add the root if we already indirectly depend on it. 1130 } 1131 1132 if (i == e) 1133 Pending.push_back(Root); 1134 } 1135 1136 if (Pending.size() == 1) 1137 Root = Pending[0]; 1138 else 1139 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1140 1141 DAG.setRoot(Root); 1142 Pending.clear(); 1143 return Root; 1144 } 1145 1146 SDValue SelectionDAGBuilder::getMemoryRoot() { 1147 return updateRoot(PendingLoads); 1148 } 1149 1150 SDValue SelectionDAGBuilder::getRoot() { 1151 // Chain up all pending constrained intrinsics together with all 1152 // pending loads, by simply appending them to PendingLoads and 1153 // then calling getMemoryRoot(). 1154 PendingLoads.reserve(PendingLoads.size() + 1155 PendingConstrainedFP.size() + 1156 PendingConstrainedFPStrict.size()); 1157 PendingLoads.append(PendingConstrainedFP.begin(), 1158 PendingConstrainedFP.end()); 1159 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1160 PendingConstrainedFPStrict.end()); 1161 PendingConstrainedFP.clear(); 1162 PendingConstrainedFPStrict.clear(); 1163 return getMemoryRoot(); 1164 } 1165 1166 SDValue SelectionDAGBuilder::getControlRoot() { 1167 // We need to emit pending fpexcept.strict constrained intrinsics, 1168 // so append them to the PendingExports list. 1169 PendingExports.append(PendingConstrainedFPStrict.begin(), 1170 PendingConstrainedFPStrict.end()); 1171 PendingConstrainedFPStrict.clear(); 1172 return updateRoot(PendingExports); 1173 } 1174 1175 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1176 DILocalVariable *Variable, 1177 DIExpression *Expression, 1178 DebugLoc DL) { 1179 assert(Variable && "Missing variable"); 1180 1181 // Check if address has undef value. 1182 if (!Address || isa<UndefValue>(Address) || 1183 (Address->use_empty() && !isa<Argument>(Address))) { 1184 LLVM_DEBUG( 1185 dbgs() 1186 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1187 return; 1188 } 1189 1190 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1191 1192 SDValue &N = NodeMap[Address]; 1193 if (!N.getNode() && isa<Argument>(Address)) 1194 // Check unused arguments map. 1195 N = UnusedArgNodeMap[Address]; 1196 SDDbgValue *SDV; 1197 if (N.getNode()) { 1198 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1199 Address = BCI->getOperand(0); 1200 // Parameters are handled specially. 1201 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1202 if (IsParameter && FINode) { 1203 // Byval parameter. We have a frame index at this point. 1204 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1205 /*IsIndirect*/ true, DL, SDNodeOrder); 1206 } else if (isa<Argument>(Address)) { 1207 // Address is an argument, so try to emit its dbg value using 1208 // virtual register info from the FuncInfo.ValueMap. 1209 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1210 FuncArgumentDbgValueKind::Declare, N); 1211 return; 1212 } else { 1213 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1214 true, DL, SDNodeOrder); 1215 } 1216 DAG.AddDbgValue(SDV, IsParameter); 1217 } else { 1218 // If Address is an argument then try to emit its dbg value using 1219 // virtual register info from the FuncInfo.ValueMap. 1220 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1221 FuncArgumentDbgValueKind::Declare, N)) { 1222 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1223 << " (could not emit func-arg dbg_value)\n"); 1224 } 1225 } 1226 } 1227 1228 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1229 // Add SDDbgValue nodes for any var locs here. Do so before updating 1230 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1231 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1232 // Add SDDbgValue nodes for any var locs here. Do so before updating 1233 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1234 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1235 It != End; ++It) { 1236 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1237 dropDanglingDebugInfo(Var, It->Expr); 1238 if (It->Values.isKillLocation(It->Expr)) { 1239 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1240 continue; 1241 } 1242 SmallVector<Value *> Values(It->Values.location_ops()); 1243 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1244 It->Values.hasArgList())) { 1245 SmallVector<Value *, 4> Vals(It->Values.location_ops()); 1246 addDanglingDebugInfo(Vals, 1247 FnVarLocs->getDILocalVariable(It->VariableID), 1248 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1249 } 1250 } 1251 } 1252 1253 // We must skip DbgVariableRecords if they've already been processed above as 1254 // we have just emitted the debug values resulting from assignment tracking 1255 // analysis, making any existing DbgVariableRecords redundant (and probably 1256 // less correct). We still need to process DbgLabelRecords. This does sink 1257 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1258 // be important as it does so deterministcally and ordering between 1259 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1260 // printing). 1261 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1262 // Is there is any debug-info attached to this instruction, in the form of 1263 // DbgRecord non-instruction debug-info records. 1264 for (DbgRecord &DR : I.getDbgRecordRange()) { 1265 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1266 assert(DLR->getLabel() && "Missing label"); 1267 SDDbgLabel *SDV = 1268 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1269 DAG.AddDbgLabel(SDV); 1270 continue; 1271 } 1272 1273 if (SkipDbgVariableRecords) 1274 continue; 1275 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1276 DILocalVariable *Variable = DVR.getVariable(); 1277 DIExpression *Expression = DVR.getExpression(); 1278 dropDanglingDebugInfo(Variable, Expression); 1279 1280 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1281 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1282 continue; 1283 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1284 << "\n"); 1285 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1286 DVR.getDebugLoc()); 1287 continue; 1288 } 1289 1290 // A DbgVariableRecord with no locations is a kill location. 1291 SmallVector<Value *, 4> Values(DVR.location_ops()); 1292 if (Values.empty()) { 1293 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1294 SDNodeOrder); 1295 continue; 1296 } 1297 1298 // A DbgVariableRecord with an undef or absent location is also a kill 1299 // location. 1300 if (llvm::any_of(Values, 1301 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1302 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1303 SDNodeOrder); 1304 continue; 1305 } 1306 1307 bool IsVariadic = DVR.hasArgList(); 1308 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1309 SDNodeOrder, IsVariadic)) { 1310 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1311 DVR.getDebugLoc(), SDNodeOrder); 1312 } 1313 } 1314 } 1315 1316 void SelectionDAGBuilder::visit(const Instruction &I) { 1317 visitDbgInfo(I); 1318 1319 // Set up outgoing PHI node register values before emitting the terminator. 1320 if (I.isTerminator()) { 1321 HandlePHINodesInSuccessorBlocks(I.getParent()); 1322 } 1323 1324 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1325 if (!isa<DbgInfoIntrinsic>(I)) 1326 ++SDNodeOrder; 1327 1328 CurInst = &I; 1329 1330 // Set inserted listener only if required. 1331 bool NodeInserted = false; 1332 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1333 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1334 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1335 if (PCSectionsMD || MMRA) { 1336 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1337 DAG, [&](SDNode *) { NodeInserted = true; }); 1338 } 1339 1340 visit(I.getOpcode(), I); 1341 1342 if (!I.isTerminator() && !HasTailCall && 1343 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1344 CopyToExportRegsIfNeeded(&I); 1345 1346 // Handle metadata. 1347 if (PCSectionsMD || MMRA) { 1348 auto It = NodeMap.find(&I); 1349 if (It != NodeMap.end()) { 1350 if (PCSectionsMD) 1351 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1352 if (MMRA) 1353 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1354 } else if (NodeInserted) { 1355 // This should not happen; if it does, don't let it go unnoticed so we can 1356 // fix it. Relevant visit*() function is probably missing a setValue(). 1357 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1358 << I.getModule()->getName() << "]\n"; 1359 LLVM_DEBUG(I.dump()); 1360 assert(false); 1361 } 1362 } 1363 1364 CurInst = nullptr; 1365 } 1366 1367 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1368 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1369 } 1370 1371 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1372 // Note: this doesn't use InstVisitor, because it has to work with 1373 // ConstantExpr's in addition to instructions. 1374 switch (Opcode) { 1375 default: llvm_unreachable("Unknown instruction type encountered!"); 1376 // Build the switch statement using the Instruction.def file. 1377 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1378 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1379 #include "llvm/IR/Instruction.def" 1380 } 1381 } 1382 1383 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1384 DILocalVariable *Variable, 1385 DebugLoc DL, unsigned Order, 1386 SmallVectorImpl<Value *> &Values, 1387 DIExpression *Expression) { 1388 // For variadic dbg_values we will now insert an undef. 1389 // FIXME: We can potentially recover these! 1390 SmallVector<SDDbgOperand, 2> Locs; 1391 for (const Value *V : Values) { 1392 auto *Undef = UndefValue::get(V->getType()); 1393 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1394 } 1395 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1396 /*IsIndirect=*/false, DL, Order, 1397 /*IsVariadic=*/true); 1398 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1399 return true; 1400 } 1401 1402 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1403 DILocalVariable *Var, 1404 DIExpression *Expr, 1405 bool IsVariadic, DebugLoc DL, 1406 unsigned Order) { 1407 if (IsVariadic) { 1408 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1409 return; 1410 } 1411 // TODO: Dangling debug info will eventually either be resolved or produce 1412 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1413 // between the original dbg.value location and its resolved DBG_VALUE, 1414 // which we should ideally fill with an extra Undef DBG_VALUE. 1415 assert(Values.size() == 1); 1416 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1417 } 1418 1419 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1420 const DIExpression *Expr) { 1421 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1422 DIVariable *DanglingVariable = DDI.getVariable(); 1423 DIExpression *DanglingExpr = DDI.getExpression(); 1424 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1425 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1426 << printDDI(nullptr, DDI) << "\n"); 1427 return true; 1428 } 1429 return false; 1430 }; 1431 1432 for (auto &DDIMI : DanglingDebugInfoMap) { 1433 DanglingDebugInfoVector &DDIV = DDIMI.second; 1434 1435 // If debug info is to be dropped, run it through final checks to see 1436 // whether it can be salvaged. 1437 for (auto &DDI : DDIV) 1438 if (isMatchingDbgValue(DDI)) 1439 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1440 1441 erase_if(DDIV, isMatchingDbgValue); 1442 } 1443 } 1444 1445 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1446 // generate the debug data structures now that we've seen its definition. 1447 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1448 SDValue Val) { 1449 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1450 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1451 return; 1452 1453 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1454 for (auto &DDI : DDIV) { 1455 DebugLoc DL = DDI.getDebugLoc(); 1456 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1457 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1458 DILocalVariable *Variable = DDI.getVariable(); 1459 DIExpression *Expr = DDI.getExpression(); 1460 assert(Variable->isValidLocationForIntrinsic(DL) && 1461 "Expected inlined-at fields to agree"); 1462 SDDbgValue *SDV; 1463 if (Val.getNode()) { 1464 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1465 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1466 // we couldn't resolve it directly when examining the DbgValue intrinsic 1467 // in the first place we should not be more successful here). Unless we 1468 // have some test case that prove this to be correct we should avoid 1469 // calling EmitFuncArgumentDbgValue here. 1470 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1471 FuncArgumentDbgValueKind::Value, Val)) { 1472 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1473 << printDDI(V, DDI) << "\n"); 1474 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1475 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1476 // inserted after the definition of Val when emitting the instructions 1477 // after ISel. An alternative could be to teach 1478 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1479 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1480 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1481 << ValSDNodeOrder << "\n"); 1482 SDV = getDbgValue(Val, Variable, Expr, DL, 1483 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1484 DAG.AddDbgValue(SDV, false); 1485 } else 1486 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1487 << printDDI(V, DDI) 1488 << " in EmitFuncArgumentDbgValue\n"); 1489 } else { 1490 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1491 << "\n"); 1492 auto Undef = UndefValue::get(V->getType()); 1493 auto SDV = 1494 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1495 DAG.AddDbgValue(SDV, false); 1496 } 1497 } 1498 DDIV.clear(); 1499 } 1500 1501 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1502 DanglingDebugInfo &DDI) { 1503 // TODO: For the variadic implementation, instead of only checking the fail 1504 // state of `handleDebugValue`, we need know specifically which values were 1505 // invalid, so that we attempt to salvage only those values when processing 1506 // a DIArgList. 1507 const Value *OrigV = V; 1508 DILocalVariable *Var = DDI.getVariable(); 1509 DIExpression *Expr = DDI.getExpression(); 1510 DebugLoc DL = DDI.getDebugLoc(); 1511 unsigned SDOrder = DDI.getSDNodeOrder(); 1512 1513 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1514 // that DW_OP_stack_value is desired. 1515 bool StackValue = true; 1516 1517 // Can this Value can be encoded without any further work? 1518 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1519 return; 1520 1521 // Attempt to salvage back through as many instructions as possible. Bail if 1522 // a non-instruction is seen, such as a constant expression or global 1523 // variable. FIXME: Further work could recover those too. 1524 while (isa<Instruction>(V)) { 1525 const Instruction &VAsInst = *cast<const Instruction>(V); 1526 // Temporary "0", awaiting real implementation. 1527 SmallVector<uint64_t, 16> Ops; 1528 SmallVector<Value *, 4> AdditionalValues; 1529 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1530 Expr->getNumLocationOperands(), Ops, 1531 AdditionalValues); 1532 // If we cannot salvage any further, and haven't yet found a suitable debug 1533 // expression, bail out. 1534 if (!V) 1535 break; 1536 1537 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1538 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1539 // here for variadic dbg_values, remove that condition. 1540 if (!AdditionalValues.empty()) 1541 break; 1542 1543 // New value and expr now represent this debuginfo. 1544 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1545 1546 // Some kind of simplification occurred: check whether the operand of the 1547 // salvaged debug expression can be encoded in this DAG. 1548 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1549 LLVM_DEBUG( 1550 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1551 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1552 return; 1553 } 1554 } 1555 1556 // This was the final opportunity to salvage this debug information, and it 1557 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1558 // any earlier variable location. 1559 assert(OrigV && "V shouldn't be null"); 1560 auto *Undef = UndefValue::get(OrigV->getType()); 1561 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1562 DAG.AddDbgValue(SDV, false); 1563 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1564 << printDDI(OrigV, DDI) << "\n"); 1565 } 1566 1567 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1568 DIExpression *Expr, 1569 DebugLoc DbgLoc, 1570 unsigned Order) { 1571 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1572 DIExpression *NewExpr = 1573 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1574 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1575 /*IsVariadic*/ false); 1576 } 1577 1578 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1579 DILocalVariable *Var, 1580 DIExpression *Expr, DebugLoc DbgLoc, 1581 unsigned Order, bool IsVariadic) { 1582 if (Values.empty()) 1583 return true; 1584 1585 // Filter EntryValue locations out early. 1586 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1587 return true; 1588 1589 SmallVector<SDDbgOperand> LocationOps; 1590 SmallVector<SDNode *> Dependencies; 1591 for (const Value *V : Values) { 1592 // Constant value. 1593 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1594 isa<ConstantPointerNull>(V)) { 1595 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1596 continue; 1597 } 1598 1599 // Look through IntToPtr constants. 1600 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1601 if (CE->getOpcode() == Instruction::IntToPtr) { 1602 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1603 continue; 1604 } 1605 1606 // If the Value is a frame index, we can create a FrameIndex debug value 1607 // without relying on the DAG at all. 1608 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1609 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1610 if (SI != FuncInfo.StaticAllocaMap.end()) { 1611 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1612 continue; 1613 } 1614 } 1615 1616 // Do not use getValue() in here; we don't want to generate code at 1617 // this point if it hasn't been done yet. 1618 SDValue N = NodeMap[V]; 1619 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1620 N = UnusedArgNodeMap[V]; 1621 1622 if (N.getNode()) { 1623 // Only emit func arg dbg value for non-variadic dbg.values for now. 1624 if (!IsVariadic && 1625 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1626 FuncArgumentDbgValueKind::Value, N)) 1627 return true; 1628 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1629 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1630 // describe stack slot locations. 1631 // 1632 // Consider "int x = 0; int *px = &x;". There are two kinds of 1633 // interesting debug values here after optimization: 1634 // 1635 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1636 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1637 // 1638 // Both describe the direct values of their associated variables. 1639 Dependencies.push_back(N.getNode()); 1640 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1641 continue; 1642 } 1643 LocationOps.emplace_back( 1644 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1645 continue; 1646 } 1647 1648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1649 // Special rules apply for the first dbg.values of parameter variables in a 1650 // function. Identify them by the fact they reference Argument Values, that 1651 // they're parameters, and they are parameters of the current function. We 1652 // need to let them dangle until they get an SDNode. 1653 bool IsParamOfFunc = 1654 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1655 if (IsParamOfFunc) 1656 return false; 1657 1658 // The value is not used in this block yet (or it would have an SDNode). 1659 // We still want the value to appear for the user if possible -- if it has 1660 // an associated VReg, we can refer to that instead. 1661 auto VMI = FuncInfo.ValueMap.find(V); 1662 if (VMI != FuncInfo.ValueMap.end()) { 1663 unsigned Reg = VMI->second; 1664 // If this is a PHI node, it may be split up into several MI PHI nodes 1665 // (in FunctionLoweringInfo::set). 1666 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1667 V->getType(), std::nullopt); 1668 if (RFV.occupiesMultipleRegs()) { 1669 // FIXME: We could potentially support variadic dbg_values here. 1670 if (IsVariadic) 1671 return false; 1672 unsigned Offset = 0; 1673 unsigned BitsToDescribe = 0; 1674 if (auto VarSize = Var->getSizeInBits()) 1675 BitsToDescribe = *VarSize; 1676 if (auto Fragment = Expr->getFragmentInfo()) 1677 BitsToDescribe = Fragment->SizeInBits; 1678 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1679 // Bail out if all bits are described already. 1680 if (Offset >= BitsToDescribe) 1681 break; 1682 // TODO: handle scalable vectors. 1683 unsigned RegisterSize = RegAndSize.second; 1684 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1685 ? BitsToDescribe - Offset 1686 : RegisterSize; 1687 auto FragmentExpr = DIExpression::createFragmentExpression( 1688 Expr, Offset, FragmentSize); 1689 if (!FragmentExpr) 1690 continue; 1691 SDDbgValue *SDV = DAG.getVRegDbgValue( 1692 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1693 DAG.AddDbgValue(SDV, false); 1694 Offset += RegisterSize; 1695 } 1696 return true; 1697 } 1698 // We can use simple vreg locations for variadic dbg_values as well. 1699 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1700 continue; 1701 } 1702 // We failed to create a SDDbgOperand for V. 1703 return false; 1704 } 1705 1706 // We have created a SDDbgOperand for each Value in Values. 1707 assert(!LocationOps.empty()); 1708 SDDbgValue *SDV = 1709 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1710 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1711 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1712 return true; 1713 } 1714 1715 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1716 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1717 for (auto &Pair : DanglingDebugInfoMap) 1718 for (auto &DDI : Pair.second) 1719 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1720 clearDanglingDebugInfo(); 1721 } 1722 1723 /// getCopyFromRegs - If there was virtual register allocated for the value V 1724 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1725 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1726 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1727 SDValue Result; 1728 1729 if (It != FuncInfo.ValueMap.end()) { 1730 Register InReg = It->second; 1731 1732 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1733 DAG.getDataLayout(), InReg, Ty, 1734 std::nullopt); // This is not an ABI copy. 1735 SDValue Chain = DAG.getEntryNode(); 1736 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1737 V); 1738 resolveDanglingDebugInfo(V, Result); 1739 } 1740 1741 return Result; 1742 } 1743 1744 /// getValue - Return an SDValue for the given Value. 1745 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1746 // If we already have an SDValue for this value, use it. It's important 1747 // to do this first, so that we don't create a CopyFromReg if we already 1748 // have a regular SDValue. 1749 SDValue &N = NodeMap[V]; 1750 if (N.getNode()) return N; 1751 1752 // If there's a virtual register allocated and initialized for this 1753 // value, use it. 1754 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1755 return copyFromReg; 1756 1757 // Otherwise create a new SDValue and remember it. 1758 SDValue Val = getValueImpl(V); 1759 NodeMap[V] = Val; 1760 resolveDanglingDebugInfo(V, Val); 1761 return Val; 1762 } 1763 1764 /// getNonRegisterValue - Return an SDValue for the given Value, but 1765 /// don't look in FuncInfo.ValueMap for a virtual register. 1766 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1767 // If we already have an SDValue for this value, use it. 1768 SDValue &N = NodeMap[V]; 1769 if (N.getNode()) { 1770 if (isIntOrFPConstant(N)) { 1771 // Remove the debug location from the node as the node is about to be used 1772 // in a location which may differ from the original debug location. This 1773 // is relevant to Constant and ConstantFP nodes because they can appear 1774 // as constant expressions inside PHI nodes. 1775 N->setDebugLoc(DebugLoc()); 1776 } 1777 return N; 1778 } 1779 1780 // Otherwise create a new SDValue and remember it. 1781 SDValue Val = getValueImpl(V); 1782 NodeMap[V] = Val; 1783 resolveDanglingDebugInfo(V, Val); 1784 return Val; 1785 } 1786 1787 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1788 /// Create an SDValue for the given value. 1789 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1791 1792 if (const Constant *C = dyn_cast<Constant>(V)) { 1793 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1794 1795 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1796 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1797 1798 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1799 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1800 1801 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) { 1802 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT, 1803 getValue(CPA->getPointer()), getValue(CPA->getKey()), 1804 getValue(CPA->getAddrDiscriminator()), 1805 getValue(CPA->getDiscriminator())); 1806 } 1807 1808 if (isa<ConstantPointerNull>(C)) { 1809 unsigned AS = V->getType()->getPointerAddressSpace(); 1810 return DAG.getConstant(0, getCurSDLoc(), 1811 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1812 } 1813 1814 if (match(C, m_VScale())) 1815 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1816 1817 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1818 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1819 1820 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1821 return DAG.getUNDEF(VT); 1822 1823 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1824 visit(CE->getOpcode(), *CE); 1825 SDValue N1 = NodeMap[V]; 1826 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1827 return N1; 1828 } 1829 1830 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1831 SmallVector<SDValue, 4> Constants; 1832 for (const Use &U : C->operands()) { 1833 SDNode *Val = getValue(U).getNode(); 1834 // If the operand is an empty aggregate, there are no values. 1835 if (!Val) continue; 1836 // Add each leaf value from the operand to the Constants list 1837 // to form a flattened list of all the values. 1838 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1839 Constants.push_back(SDValue(Val, i)); 1840 } 1841 1842 return DAG.getMergeValues(Constants, getCurSDLoc()); 1843 } 1844 1845 if (const ConstantDataSequential *CDS = 1846 dyn_cast<ConstantDataSequential>(C)) { 1847 SmallVector<SDValue, 4> Ops; 1848 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1849 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1850 // Add each leaf value from the operand to the Constants list 1851 // to form a flattened list of all the values. 1852 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1853 Ops.push_back(SDValue(Val, i)); 1854 } 1855 1856 if (isa<ArrayType>(CDS->getType())) 1857 return DAG.getMergeValues(Ops, getCurSDLoc()); 1858 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1859 } 1860 1861 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1862 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1863 "Unknown struct or array constant!"); 1864 1865 SmallVector<EVT, 4> ValueVTs; 1866 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1867 unsigned NumElts = ValueVTs.size(); 1868 if (NumElts == 0) 1869 return SDValue(); // empty struct 1870 SmallVector<SDValue, 4> Constants(NumElts); 1871 for (unsigned i = 0; i != NumElts; ++i) { 1872 EVT EltVT = ValueVTs[i]; 1873 if (isa<UndefValue>(C)) 1874 Constants[i] = DAG.getUNDEF(EltVT); 1875 else if (EltVT.isFloatingPoint()) 1876 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1877 else 1878 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1879 } 1880 1881 return DAG.getMergeValues(Constants, getCurSDLoc()); 1882 } 1883 1884 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1885 return DAG.getBlockAddress(BA, VT); 1886 1887 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1888 return getValue(Equiv->getGlobalValue()); 1889 1890 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1891 return getValue(NC->getGlobalValue()); 1892 1893 if (VT == MVT::aarch64svcount) { 1894 assert(C->isNullValue() && "Can only zero this target type!"); 1895 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1896 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1897 } 1898 1899 if (VT.isRISCVVectorTuple()) { 1900 assert(C->isNullValue() && "Can only zero this target type!"); 1901 return NodeMap[V] = DAG.getNode( 1902 ISD::BITCAST, getCurSDLoc(), VT, 1903 DAG.getNode( 1904 ISD::SPLAT_VECTOR, getCurSDLoc(), 1905 EVT::getVectorVT(*DAG.getContext(), MVT::i8, 1906 VT.getSizeInBits().getKnownMinValue() / 8, 1907 true), 1908 DAG.getConstant(0, getCurSDLoc(), MVT::getIntegerVT(8)))); 1909 } 1910 1911 VectorType *VecTy = cast<VectorType>(V->getType()); 1912 1913 // Now that we know the number and type of the elements, get that number of 1914 // elements into the Ops array based on what kind of constant it is. 1915 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1916 SmallVector<SDValue, 16> Ops; 1917 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1918 for (unsigned i = 0; i != NumElements; ++i) 1919 Ops.push_back(getValue(CV->getOperand(i))); 1920 1921 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1922 } 1923 1924 if (isa<ConstantAggregateZero>(C)) { 1925 EVT EltVT = 1926 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1927 1928 SDValue Op; 1929 if (EltVT.isFloatingPoint()) 1930 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1931 else 1932 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1933 1934 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1935 } 1936 1937 llvm_unreachable("Unknown vector constant"); 1938 } 1939 1940 // If this is a static alloca, generate it as the frameindex instead of 1941 // computation. 1942 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1943 DenseMap<const AllocaInst*, int>::iterator SI = 1944 FuncInfo.StaticAllocaMap.find(AI); 1945 if (SI != FuncInfo.StaticAllocaMap.end()) 1946 return DAG.getFrameIndex( 1947 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1948 } 1949 1950 // If this is an instruction which fast-isel has deferred, select it now. 1951 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1952 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1953 1954 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1955 Inst->getType(), std::nullopt); 1956 SDValue Chain = DAG.getEntryNode(); 1957 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1958 } 1959 1960 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1961 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1962 1963 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1964 return DAG.getBasicBlock(FuncInfo.getMBB(BB)); 1965 1966 llvm_unreachable("Can't get register for value!"); 1967 } 1968 1969 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1970 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1971 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1972 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1973 bool IsSEH = isAsynchronousEHPersonality(Pers); 1974 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1975 if (!IsSEH) 1976 CatchPadMBB->setIsEHScopeEntry(); 1977 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1978 if (IsMSVCCXX || IsCoreCLR) 1979 CatchPadMBB->setIsEHFuncletEntry(); 1980 } 1981 1982 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1983 // Update machine-CFG edge. 1984 MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor()); 1985 FuncInfo.MBB->addSuccessor(TargetMBB); 1986 TargetMBB->setIsEHCatchretTarget(true); 1987 DAG.getMachineFunction().setHasEHCatchret(true); 1988 1989 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1990 bool IsSEH = isAsynchronousEHPersonality(Pers); 1991 if (IsSEH) { 1992 // If this is not a fall-through branch or optimizations are switched off, 1993 // emit the branch. 1994 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1995 TM.getOptLevel() == CodeGenOptLevel::None) 1996 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1997 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1998 return; 1999 } 2000 2001 // Figure out the funclet membership for the catchret's successor. 2002 // This will be used by the FuncletLayout pass to determine how to order the 2003 // BB's. 2004 // A 'catchret' returns to the outer scope's color. 2005 Value *ParentPad = I.getCatchSwitchParentPad(); 2006 const BasicBlock *SuccessorColor; 2007 if (isa<ConstantTokenNone>(ParentPad)) 2008 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 2009 else 2010 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 2011 assert(SuccessorColor && "No parent funclet for catchret!"); 2012 MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor); 2013 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 2014 2015 // Create the terminator node. 2016 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 2017 getControlRoot(), DAG.getBasicBlock(TargetMBB), 2018 DAG.getBasicBlock(SuccessorColorMBB)); 2019 DAG.setRoot(Ret); 2020 } 2021 2022 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 2023 // Don't emit any special code for the cleanuppad instruction. It just marks 2024 // the start of an EH scope/funclet. 2025 FuncInfo.MBB->setIsEHScopeEntry(); 2026 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2027 if (Pers != EHPersonality::Wasm_CXX) { 2028 FuncInfo.MBB->setIsEHFuncletEntry(); 2029 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2030 } 2031 } 2032 2033 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2034 // not match, it is OK to add only the first unwind destination catchpad to the 2035 // successors, because there will be at least one invoke instruction within the 2036 // catch scope that points to the next unwind destination, if one exists, so 2037 // CFGSort cannot mess up with BB sorting order. 2038 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2039 // call within them, and catchpads only consisting of 'catch (...)' have a 2040 // '__cxa_end_catch' call within them, both of which generate invokes in case 2041 // the next unwind destination exists, i.e., the next unwind destination is not 2042 // the caller.) 2043 // 2044 // Having at most one EH pad successor is also simpler and helps later 2045 // transformations. 2046 // 2047 // For example, 2048 // current: 2049 // invoke void @foo to ... unwind label %catch.dispatch 2050 // catch.dispatch: 2051 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2052 // catch.start: 2053 // ... 2054 // ... in this BB or some other child BB dominated by this BB there will be an 2055 // invoke that points to 'next' BB as an unwind destination 2056 // 2057 // next: ; We don't need to add this to 'current' BB's successor 2058 // ... 2059 static void findWasmUnwindDestinations( 2060 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2061 BranchProbability Prob, 2062 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2063 &UnwindDests) { 2064 while (EHPadBB) { 2065 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2066 if (isa<CleanupPadInst>(Pad)) { 2067 // Stop on cleanup pads. 2068 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2069 UnwindDests.back().first->setIsEHScopeEntry(); 2070 break; 2071 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2072 // Add the catchpad handlers to the possible destinations. We don't 2073 // continue to the unwind destination of the catchswitch for wasm. 2074 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2075 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob); 2076 UnwindDests.back().first->setIsEHScopeEntry(); 2077 } 2078 break; 2079 } else { 2080 continue; 2081 } 2082 } 2083 } 2084 2085 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2086 /// many places it could ultimately go. In the IR, we have a single unwind 2087 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2088 /// This function skips over imaginary basic blocks that hold catchswitch 2089 /// instructions, and finds all the "real" machine 2090 /// basic block destinations. As those destinations may not be successors of 2091 /// EHPadBB, here we also calculate the edge probability to those destinations. 2092 /// The passed-in Prob is the edge probability to EHPadBB. 2093 static void findUnwindDestinations( 2094 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2095 BranchProbability Prob, 2096 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2097 &UnwindDests) { 2098 EHPersonality Personality = 2099 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2100 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2101 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2102 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2103 bool IsSEH = isAsynchronousEHPersonality(Personality); 2104 2105 if (IsWasmCXX) { 2106 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2107 assert(UnwindDests.size() <= 1 && 2108 "There should be at most one unwind destination for wasm"); 2109 return; 2110 } 2111 2112 while (EHPadBB) { 2113 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2114 BasicBlock *NewEHPadBB = nullptr; 2115 if (isa<LandingPadInst>(Pad)) { 2116 // Stop on landingpads. They are not funclets. 2117 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2118 break; 2119 } else if (isa<CleanupPadInst>(Pad)) { 2120 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2121 // personalities. 2122 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2123 UnwindDests.back().first->setIsEHScopeEntry(); 2124 UnwindDests.back().first->setIsEHFuncletEntry(); 2125 break; 2126 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2127 // Add the catchpad handlers to the possible destinations. 2128 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2129 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob); 2130 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2131 if (IsMSVCCXX || IsCoreCLR) 2132 UnwindDests.back().first->setIsEHFuncletEntry(); 2133 if (!IsSEH) 2134 UnwindDests.back().first->setIsEHScopeEntry(); 2135 } 2136 NewEHPadBB = CatchSwitch->getUnwindDest(); 2137 } else { 2138 continue; 2139 } 2140 2141 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2142 if (BPI && NewEHPadBB) 2143 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2144 EHPadBB = NewEHPadBB; 2145 } 2146 } 2147 2148 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2149 // Update successor info. 2150 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2151 auto UnwindDest = I.getUnwindDest(); 2152 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2153 BranchProbability UnwindDestProb = 2154 (BPI && UnwindDest) 2155 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2156 : BranchProbability::getZero(); 2157 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2158 for (auto &UnwindDest : UnwindDests) { 2159 UnwindDest.first->setIsEHPad(); 2160 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2161 } 2162 FuncInfo.MBB->normalizeSuccProbs(); 2163 2164 // Create the terminator node. 2165 MachineBasicBlock *CleanupPadMBB = 2166 FuncInfo.getMBB(I.getCleanupPad()->getParent()); 2167 SDValue Ret = DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, 2168 getControlRoot(), DAG.getBasicBlock(CleanupPadMBB)); 2169 DAG.setRoot(Ret); 2170 } 2171 2172 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2173 report_fatal_error("visitCatchSwitch not yet implemented!"); 2174 } 2175 2176 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2177 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2178 auto &DL = DAG.getDataLayout(); 2179 SDValue Chain = getControlRoot(); 2180 SmallVector<ISD::OutputArg, 8> Outs; 2181 SmallVector<SDValue, 8> OutVals; 2182 2183 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2184 // lower 2185 // 2186 // %val = call <ty> @llvm.experimental.deoptimize() 2187 // ret <ty> %val 2188 // 2189 // differently. 2190 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2191 LowerDeoptimizingReturn(); 2192 return; 2193 } 2194 2195 if (!FuncInfo.CanLowerReturn) { 2196 Register DemoteReg = FuncInfo.DemoteRegister; 2197 2198 // Emit a store of the return value through the virtual register. 2199 // Leave Outs empty so that LowerReturn won't try to load return 2200 // registers the usual way. 2201 MVT PtrValueVT = TLI.getPointerTy(DL, DL.getAllocaAddrSpace()); 2202 SDValue RetPtr = 2203 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVT); 2204 SDValue RetOp = getValue(I.getOperand(0)); 2205 2206 SmallVector<EVT, 4> ValueVTs, MemVTs; 2207 SmallVector<uint64_t, 4> Offsets; 2208 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2209 &Offsets, 0); 2210 unsigned NumValues = ValueVTs.size(); 2211 2212 SmallVector<SDValue, 4> Chains(NumValues); 2213 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2214 for (unsigned i = 0; i != NumValues; ++i) { 2215 // An aggregate return value cannot wrap around the address space, so 2216 // offsets to its parts don't wrap either. 2217 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2218 TypeSize::getFixed(Offsets[i])); 2219 2220 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2221 if (MemVTs[i] != ValueVTs[i]) 2222 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2223 Chains[i] = DAG.getStore( 2224 Chain, getCurSDLoc(), Val, 2225 // FIXME: better loc info would be nice. 2226 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2227 commonAlignment(BaseAlign, Offsets[i])); 2228 } 2229 2230 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2231 MVT::Other, Chains); 2232 } else if (I.getNumOperands() != 0) { 2233 SmallVector<EVT, 4> ValueVTs; 2234 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2235 unsigned NumValues = ValueVTs.size(); 2236 if (NumValues) { 2237 SDValue RetOp = getValue(I.getOperand(0)); 2238 2239 const Function *F = I.getParent()->getParent(); 2240 2241 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2242 I.getOperand(0)->getType(), F->getCallingConv(), 2243 /*IsVarArg*/ false, DL); 2244 2245 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2246 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2247 ExtendKind = ISD::SIGN_EXTEND; 2248 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2249 ExtendKind = ISD::ZERO_EXTEND; 2250 2251 LLVMContext &Context = F->getContext(); 2252 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2253 2254 for (unsigned j = 0; j != NumValues; ++j) { 2255 EVT VT = ValueVTs[j]; 2256 2257 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2258 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2259 2260 CallingConv::ID CC = F->getCallingConv(); 2261 2262 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2263 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2264 SmallVector<SDValue, 4> Parts(NumParts); 2265 getCopyToParts(DAG, getCurSDLoc(), 2266 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2267 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2268 2269 // 'inreg' on function refers to return value 2270 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2271 if (RetInReg) 2272 Flags.setInReg(); 2273 2274 if (I.getOperand(0)->getType()->isPointerTy()) { 2275 Flags.setPointer(); 2276 Flags.setPointerAddrSpace( 2277 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2278 } 2279 2280 if (NeedsRegBlock) { 2281 Flags.setInConsecutiveRegs(); 2282 if (j == NumValues - 1) 2283 Flags.setInConsecutiveRegsLast(); 2284 } 2285 2286 // Propagate extension type if any 2287 if (ExtendKind == ISD::SIGN_EXTEND) 2288 Flags.setSExt(); 2289 else if (ExtendKind == ISD::ZERO_EXTEND) 2290 Flags.setZExt(); 2291 else if (F->getAttributes().hasRetAttr(Attribute::NoExt)) 2292 Flags.setNoExt(); 2293 2294 for (unsigned i = 0; i < NumParts; ++i) { 2295 Outs.push_back(ISD::OutputArg(Flags, 2296 Parts[i].getValueType().getSimpleVT(), 2297 VT, /*isfixed=*/true, 0, 0)); 2298 OutVals.push_back(Parts[i]); 2299 } 2300 } 2301 } 2302 } 2303 2304 // Push in swifterror virtual register as the last element of Outs. This makes 2305 // sure swifterror virtual register will be returned in the swifterror 2306 // physical register. 2307 const Function *F = I.getParent()->getParent(); 2308 if (TLI.supportSwiftError() && 2309 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2310 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2311 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2312 Flags.setSwiftError(); 2313 Outs.push_back(ISD::OutputArg( 2314 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2315 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2316 // Create SDNode for the swifterror virtual register. 2317 OutVals.push_back( 2318 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2319 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2320 EVT(TLI.getPointerTy(DL)))); 2321 } 2322 2323 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2324 CallingConv::ID CallConv = 2325 DAG.getMachineFunction().getFunction().getCallingConv(); 2326 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2327 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2328 2329 // Verify that the target's LowerReturn behaved as expected. 2330 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2331 "LowerReturn didn't return a valid chain!"); 2332 2333 // Update the DAG with the new chain value resulting from return lowering. 2334 DAG.setRoot(Chain); 2335 } 2336 2337 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2338 /// created for it, emit nodes to copy the value into the virtual 2339 /// registers. 2340 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2341 // Skip empty types 2342 if (V->getType()->isEmptyTy()) 2343 return; 2344 2345 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2346 if (VMI != FuncInfo.ValueMap.end()) { 2347 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2348 "Unused value assigned virtual registers!"); 2349 CopyValueToVirtualRegister(V, VMI->second); 2350 } 2351 } 2352 2353 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2354 /// the current basic block, add it to ValueMap now so that we'll get a 2355 /// CopyTo/FromReg. 2356 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2357 // No need to export constants. 2358 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2359 2360 // Already exported? 2361 if (FuncInfo.isExportedInst(V)) return; 2362 2363 Register Reg = FuncInfo.InitializeRegForValue(V); 2364 CopyValueToVirtualRegister(V, Reg); 2365 } 2366 2367 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2368 const BasicBlock *FromBB) { 2369 // The operands of the setcc have to be in this block. We don't know 2370 // how to export them from some other block. 2371 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2372 // Can export from current BB. 2373 if (VI->getParent() == FromBB) 2374 return true; 2375 2376 // Is already exported, noop. 2377 return FuncInfo.isExportedInst(V); 2378 } 2379 2380 // If this is an argument, we can export it if the BB is the entry block or 2381 // if it is already exported. 2382 if (isa<Argument>(V)) { 2383 if (FromBB->isEntryBlock()) 2384 return true; 2385 2386 // Otherwise, can only export this if it is already exported. 2387 return FuncInfo.isExportedInst(V); 2388 } 2389 2390 // Otherwise, constants can always be exported. 2391 return true; 2392 } 2393 2394 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2395 BranchProbability 2396 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2397 const MachineBasicBlock *Dst) const { 2398 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2399 const BasicBlock *SrcBB = Src->getBasicBlock(); 2400 const BasicBlock *DstBB = Dst->getBasicBlock(); 2401 if (!BPI) { 2402 // If BPI is not available, set the default probability as 1 / N, where N is 2403 // the number of successors. 2404 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2405 return BranchProbability(1, SuccSize); 2406 } 2407 return BPI->getEdgeProbability(SrcBB, DstBB); 2408 } 2409 2410 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2411 MachineBasicBlock *Dst, 2412 BranchProbability Prob) { 2413 if (!FuncInfo.BPI) 2414 Src->addSuccessorWithoutProb(Dst); 2415 else { 2416 if (Prob.isUnknown()) 2417 Prob = getEdgeProbability(Src, Dst); 2418 Src->addSuccessor(Dst, Prob); 2419 } 2420 } 2421 2422 static bool InBlock(const Value *V, const BasicBlock *BB) { 2423 if (const Instruction *I = dyn_cast<Instruction>(V)) 2424 return I->getParent() == BB; 2425 return true; 2426 } 2427 2428 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2429 /// This function emits a branch and is used at the leaves of an OR or an 2430 /// AND operator tree. 2431 void 2432 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2433 MachineBasicBlock *TBB, 2434 MachineBasicBlock *FBB, 2435 MachineBasicBlock *CurBB, 2436 MachineBasicBlock *SwitchBB, 2437 BranchProbability TProb, 2438 BranchProbability FProb, 2439 bool InvertCond) { 2440 const BasicBlock *BB = CurBB->getBasicBlock(); 2441 2442 // If the leaf of the tree is a comparison, merge the condition into 2443 // the caseblock. 2444 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2445 // The operands of the cmp have to be in this block. We don't know 2446 // how to export them from some other block. If this is the first block 2447 // of the sequence, no exporting is needed. 2448 if (CurBB == SwitchBB || 2449 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2450 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2451 ISD::CondCode Condition; 2452 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2453 ICmpInst::Predicate Pred = 2454 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2455 Condition = getICmpCondCode(Pred); 2456 } else { 2457 const FCmpInst *FC = cast<FCmpInst>(Cond); 2458 FCmpInst::Predicate Pred = 2459 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2460 Condition = getFCmpCondCode(Pred); 2461 if (TM.Options.NoNaNsFPMath) 2462 Condition = getFCmpCodeWithoutNaN(Condition); 2463 } 2464 2465 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2466 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2467 SL->SwitchCases.push_back(CB); 2468 return; 2469 } 2470 } 2471 2472 // Create a CaseBlock record representing this branch. 2473 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2474 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2475 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2476 SL->SwitchCases.push_back(CB); 2477 } 2478 2479 // Collect dependencies on V recursively. This is used for the cost analysis in 2480 // `shouldKeepJumpConditionsTogether`. 2481 static bool collectInstructionDeps( 2482 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2483 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2484 unsigned Depth = 0) { 2485 // Return false if we have an incomplete count. 2486 if (Depth >= SelectionDAG::MaxRecursionDepth) 2487 return false; 2488 2489 auto *I = dyn_cast<Instruction>(V); 2490 if (I == nullptr) 2491 return true; 2492 2493 if (Necessary != nullptr) { 2494 // This instruction is necessary for the other side of the condition so 2495 // don't count it. 2496 if (Necessary->contains(I)) 2497 return true; 2498 } 2499 2500 // Already added this dep. 2501 if (!Deps->try_emplace(I, false).second) 2502 return true; 2503 2504 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2505 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2506 Depth + 1)) 2507 return false; 2508 return true; 2509 } 2510 2511 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2512 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2513 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2514 TargetLoweringBase::CondMergingParams Params) const { 2515 if (I.getNumSuccessors() != 2) 2516 return false; 2517 2518 if (!I.isConditional()) 2519 return false; 2520 2521 if (Params.BaseCost < 0) 2522 return false; 2523 2524 // Baseline cost. 2525 InstructionCost CostThresh = Params.BaseCost; 2526 2527 BranchProbabilityInfo *BPI = nullptr; 2528 if (Params.LikelyBias || Params.UnlikelyBias) 2529 BPI = FuncInfo.BPI; 2530 if (BPI != nullptr) { 2531 // See if we are either likely to get an early out or compute both lhs/rhs 2532 // of the condition. 2533 BasicBlock *IfFalse = I.getSuccessor(0); 2534 BasicBlock *IfTrue = I.getSuccessor(1); 2535 2536 std::optional<bool> Likely; 2537 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2538 Likely = true; 2539 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2540 Likely = false; 2541 2542 if (Likely) { 2543 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2544 // Its likely we will have to compute both lhs and rhs of condition 2545 CostThresh += Params.LikelyBias; 2546 else { 2547 if (Params.UnlikelyBias < 0) 2548 return false; 2549 // Its likely we will get an early out. 2550 CostThresh -= Params.UnlikelyBias; 2551 } 2552 } 2553 } 2554 2555 if (CostThresh <= 0) 2556 return false; 2557 2558 // Collect "all" instructions that lhs condition is dependent on. 2559 // Use map for stable iteration (to avoid non-determanism of iteration of 2560 // SmallPtrSet). The `bool` value is just a dummy. 2561 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2562 collectInstructionDeps(&LhsDeps, Lhs); 2563 // Collect "all" instructions that rhs condition is dependent on AND are 2564 // dependencies of lhs. This gives us an estimate on which instructions we 2565 // stand to save by splitting the condition. 2566 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2567 return false; 2568 // Add the compare instruction itself unless its a dependency on the LHS. 2569 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2570 if (!LhsDeps.contains(RhsI)) 2571 RhsDeps.try_emplace(RhsI, false); 2572 2573 const auto &TLI = DAG.getTargetLoweringInfo(); 2574 const auto &TTI = 2575 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2576 2577 InstructionCost CostOfIncluding = 0; 2578 // See if this instruction will need to computed independently of whether RHS 2579 // is. 2580 Value *BrCond = I.getCondition(); 2581 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2582 for (const auto *U : Ins->users()) { 2583 // If user is independent of RHS calculation we don't need to count it. 2584 if (auto *UIns = dyn_cast<Instruction>(U)) 2585 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2586 return false; 2587 } 2588 return true; 2589 }; 2590 2591 // Prune instructions from RHS Deps that are dependencies of unrelated 2592 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2593 // arbitrary and just meant to cap the how much time we spend in the pruning 2594 // loop. Its highly unlikely to come into affect. 2595 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2596 // Stop after a certain point. No incorrectness from including too many 2597 // instructions. 2598 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2599 const Instruction *ToDrop = nullptr; 2600 for (const auto &InsPair : RhsDeps) { 2601 if (!ShouldCountInsn(InsPair.first)) { 2602 ToDrop = InsPair.first; 2603 break; 2604 } 2605 } 2606 if (ToDrop == nullptr) 2607 break; 2608 RhsDeps.erase(ToDrop); 2609 } 2610 2611 for (const auto &InsPair : RhsDeps) { 2612 // Finally accumulate latency that we can only attribute to computing the 2613 // RHS condition. Use latency because we are essentially trying to calculate 2614 // the cost of the dependency chain. 2615 // Possible TODO: We could try to estimate ILP and make this more precise. 2616 CostOfIncluding += 2617 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2618 2619 if (CostOfIncluding > CostThresh) 2620 return false; 2621 } 2622 return true; 2623 } 2624 2625 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2626 MachineBasicBlock *TBB, 2627 MachineBasicBlock *FBB, 2628 MachineBasicBlock *CurBB, 2629 MachineBasicBlock *SwitchBB, 2630 Instruction::BinaryOps Opc, 2631 BranchProbability TProb, 2632 BranchProbability FProb, 2633 bool InvertCond) { 2634 // Skip over not part of the tree and remember to invert op and operands at 2635 // next level. 2636 Value *NotCond; 2637 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2638 InBlock(NotCond, CurBB->getBasicBlock())) { 2639 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2640 !InvertCond); 2641 return; 2642 } 2643 2644 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2645 const Value *BOpOp0, *BOpOp1; 2646 // Compute the effective opcode for Cond, taking into account whether it needs 2647 // to be inverted, e.g. 2648 // and (not (or A, B)), C 2649 // gets lowered as 2650 // and (and (not A, not B), C) 2651 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2652 if (BOp) { 2653 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2654 ? Instruction::And 2655 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2656 ? Instruction::Or 2657 : (Instruction::BinaryOps)0); 2658 if (InvertCond) { 2659 if (BOpc == Instruction::And) 2660 BOpc = Instruction::Or; 2661 else if (BOpc == Instruction::Or) 2662 BOpc = Instruction::And; 2663 } 2664 } 2665 2666 // If this node is not part of the or/and tree, emit it as a branch. 2667 // Note that all nodes in the tree should have same opcode. 2668 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2669 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2670 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2671 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2672 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2673 TProb, FProb, InvertCond); 2674 return; 2675 } 2676 2677 // Create TmpBB after CurBB. 2678 MachineFunction::iterator BBI(CurBB); 2679 MachineFunction &MF = DAG.getMachineFunction(); 2680 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2681 CurBB->getParent()->insert(++BBI, TmpBB); 2682 2683 if (Opc == Instruction::Or) { 2684 // Codegen X | Y as: 2685 // BB1: 2686 // jmp_if_X TBB 2687 // jmp TmpBB 2688 // TmpBB: 2689 // jmp_if_Y TBB 2690 // jmp FBB 2691 // 2692 2693 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2694 // The requirement is that 2695 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2696 // = TrueProb for original BB. 2697 // Assuming the original probabilities are A and B, one choice is to set 2698 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2699 // A/(1+B) and 2B/(1+B). This choice assumes that 2700 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2701 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2702 // TmpBB, but the math is more complicated. 2703 2704 auto NewTrueProb = TProb / 2; 2705 auto NewFalseProb = TProb / 2 + FProb; 2706 // Emit the LHS condition. 2707 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2708 NewFalseProb, InvertCond); 2709 2710 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2711 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2712 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2713 // Emit the RHS condition into TmpBB. 2714 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2715 Probs[1], InvertCond); 2716 } else { 2717 assert(Opc == Instruction::And && "Unknown merge op!"); 2718 // Codegen X & Y as: 2719 // BB1: 2720 // jmp_if_X TmpBB 2721 // jmp FBB 2722 // TmpBB: 2723 // jmp_if_Y TBB 2724 // jmp FBB 2725 // 2726 // This requires creation of TmpBB after CurBB. 2727 2728 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2729 // The requirement is that 2730 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2731 // = FalseProb for original BB. 2732 // Assuming the original probabilities are A and B, one choice is to set 2733 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2734 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2735 // TrueProb for BB1 * FalseProb for TmpBB. 2736 2737 auto NewTrueProb = TProb + FProb / 2; 2738 auto NewFalseProb = FProb / 2; 2739 // Emit the LHS condition. 2740 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2741 NewFalseProb, InvertCond); 2742 2743 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2744 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2745 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2746 // Emit the RHS condition into TmpBB. 2747 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2748 Probs[1], InvertCond); 2749 } 2750 } 2751 2752 /// If the set of cases should be emitted as a series of branches, return true. 2753 /// If we should emit this as a bunch of and/or'd together conditions, return 2754 /// false. 2755 bool 2756 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2757 if (Cases.size() != 2) return true; 2758 2759 // If this is two comparisons of the same values or'd or and'd together, they 2760 // will get folded into a single comparison, so don't emit two blocks. 2761 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2762 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2763 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2764 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2765 return false; 2766 } 2767 2768 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2769 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2770 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2771 Cases[0].CC == Cases[1].CC && 2772 isa<Constant>(Cases[0].CmpRHS) && 2773 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2774 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2775 return false; 2776 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2777 return false; 2778 } 2779 2780 return true; 2781 } 2782 2783 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2784 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2785 2786 // Update machine-CFG edges. 2787 MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0)); 2788 2789 if (I.isUnconditional()) { 2790 // Update machine-CFG edges. 2791 BrMBB->addSuccessor(Succ0MBB); 2792 2793 // If this is not a fall-through branch or optimizations are switched off, 2794 // emit the branch. 2795 if (Succ0MBB != NextBlock(BrMBB) || 2796 TM.getOptLevel() == CodeGenOptLevel::None) { 2797 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2798 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2799 setValue(&I, Br); 2800 DAG.setRoot(Br); 2801 } 2802 2803 return; 2804 } 2805 2806 // If this condition is one of the special cases we handle, do special stuff 2807 // now. 2808 const Value *CondVal = I.getCondition(); 2809 MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1)); 2810 2811 // If this is a series of conditions that are or'd or and'd together, emit 2812 // this as a sequence of branches instead of setcc's with and/or operations. 2813 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2814 // unpredictable branches, and vector extracts because those jumps are likely 2815 // expensive for any target), this should improve performance. 2816 // For example, instead of something like: 2817 // cmp A, B 2818 // C = seteq 2819 // cmp D, E 2820 // F = setle 2821 // or C, F 2822 // jnz foo 2823 // Emit: 2824 // cmp A, B 2825 // je foo 2826 // cmp D, E 2827 // jle foo 2828 bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable); 2829 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2830 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2831 BOp->hasOneUse() && !IsUnpredictable) { 2832 Value *Vec; 2833 const Value *BOp0, *BOp1; 2834 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2835 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2836 Opcode = Instruction::And; 2837 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2838 Opcode = Instruction::Or; 2839 2840 if (Opcode && 2841 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2842 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2843 !shouldKeepJumpConditionsTogether( 2844 FuncInfo, I, Opcode, BOp0, BOp1, 2845 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2846 Opcode, BOp0, BOp1))) { 2847 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2848 getEdgeProbability(BrMBB, Succ0MBB), 2849 getEdgeProbability(BrMBB, Succ1MBB), 2850 /*InvertCond=*/false); 2851 // If the compares in later blocks need to use values not currently 2852 // exported from this block, export them now. This block should always 2853 // be the first entry. 2854 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2855 2856 // Allow some cases to be rejected. 2857 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2858 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2859 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2860 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2861 } 2862 2863 // Emit the branch for this block. 2864 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2865 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2866 return; 2867 } 2868 2869 // Okay, we decided not to do this, remove any inserted MBB's and clear 2870 // SwitchCases. 2871 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2872 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2873 2874 SL->SwitchCases.clear(); 2875 } 2876 } 2877 2878 // Create a CaseBlock record representing this branch. 2879 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2880 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(), 2881 BranchProbability::getUnknown(), BranchProbability::getUnknown(), 2882 IsUnpredictable); 2883 2884 // Use visitSwitchCase to actually insert the fast branch sequence for this 2885 // cond branch. 2886 visitSwitchCase(CB, BrMBB); 2887 } 2888 2889 /// visitSwitchCase - Emits the necessary code to represent a single node in 2890 /// the binary search tree resulting from lowering a switch instruction. 2891 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2892 MachineBasicBlock *SwitchBB) { 2893 SDValue Cond; 2894 SDValue CondLHS = getValue(CB.CmpLHS); 2895 SDLoc dl = CB.DL; 2896 2897 if (CB.CC == ISD::SETTRUE) { 2898 // Branch or fall through to TrueBB. 2899 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2900 SwitchBB->normalizeSuccProbs(); 2901 if (CB.TrueBB != NextBlock(SwitchBB)) { 2902 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2903 DAG.getBasicBlock(CB.TrueBB))); 2904 } 2905 return; 2906 } 2907 2908 auto &TLI = DAG.getTargetLoweringInfo(); 2909 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2910 2911 // Build the setcc now. 2912 if (!CB.CmpMHS) { 2913 // Fold "(X == true)" to X and "(X == false)" to !X to 2914 // handle common cases produced by branch lowering. 2915 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2916 CB.CC == ISD::SETEQ) 2917 Cond = CondLHS; 2918 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2919 CB.CC == ISD::SETEQ) { 2920 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2921 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2922 } else { 2923 SDValue CondRHS = getValue(CB.CmpRHS); 2924 2925 // If a pointer's DAG type is larger than its memory type then the DAG 2926 // values are zero-extended. This breaks signed comparisons so truncate 2927 // back to the underlying type before doing the compare. 2928 if (CondLHS.getValueType() != MemVT) { 2929 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2930 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2931 } 2932 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2933 } 2934 } else { 2935 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2936 2937 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2938 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2939 2940 SDValue CmpOp = getValue(CB.CmpMHS); 2941 EVT VT = CmpOp.getValueType(); 2942 2943 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2944 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2945 ISD::SETLE); 2946 } else { 2947 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2948 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2949 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2950 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2951 } 2952 } 2953 2954 // Update successor info 2955 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2956 // TrueBB and FalseBB are always different unless the incoming IR is 2957 // degenerate. This only happens when running llc on weird IR. 2958 if (CB.TrueBB != CB.FalseBB) 2959 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2960 SwitchBB->normalizeSuccProbs(); 2961 2962 // If the lhs block is the next block, invert the condition so that we can 2963 // fall through to the lhs instead of the rhs block. 2964 if (CB.TrueBB == NextBlock(SwitchBB)) { 2965 std::swap(CB.TrueBB, CB.FalseBB); 2966 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2967 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2968 } 2969 2970 SDNodeFlags Flags; 2971 Flags.setUnpredictable(CB.IsUnpredictable); 2972 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(), 2973 Cond, DAG.getBasicBlock(CB.TrueBB), Flags); 2974 2975 setValue(CurInst, BrCond); 2976 2977 // Insert the false branch. Do this even if it's a fall through branch, 2978 // this makes it easier to do DAG optimizations which require inverting 2979 // the branch condition. 2980 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2981 DAG.getBasicBlock(CB.FalseBB)); 2982 2983 DAG.setRoot(BrCond); 2984 } 2985 2986 /// visitJumpTable - Emit JumpTable node in the current MBB 2987 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2988 // Emit the code for the jump table 2989 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2990 assert(JT.Reg && "Should lower JT Header first!"); 2991 EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout()); 2992 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2993 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2994 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2995 Index.getValue(1), Table, Index); 2996 DAG.setRoot(BrJumpTable); 2997 } 2998 2999 /// visitJumpTableHeader - This function emits necessary code to produce index 3000 /// in the JumpTable from switch case. 3001 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 3002 JumpTableHeader &JTH, 3003 MachineBasicBlock *SwitchBB) { 3004 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 3005 const SDLoc &dl = *JT.SL; 3006 3007 // Subtract the lowest switch case value from the value being switched on. 3008 SDValue SwitchOp = getValue(JTH.SValue); 3009 EVT VT = SwitchOp.getValueType(); 3010 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 3011 DAG.getConstant(JTH.First, dl, VT)); 3012 3013 // The SDNode we just created, which holds the value being switched on minus 3014 // the smallest case value, needs to be copied to a virtual register so it 3015 // can be used as an index into the jump table in a subsequent basic block. 3016 // This value may be smaller or larger than the target's pointer type, and 3017 // therefore require extension or truncating. 3018 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3019 SwitchOp = 3020 DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout())); 3021 3022 Register JumpTableReg = 3023 FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout())); 3024 SDValue CopyTo = 3025 DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp); 3026 JT.Reg = JumpTableReg; 3027 3028 if (!JTH.FallthroughUnreachable) { 3029 // Emit the range check for the jump table, and branch to the default block 3030 // for the switch statement if the value being switched on exceeds the 3031 // largest case in the switch. 3032 SDValue CMP = DAG.getSetCC( 3033 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3034 Sub.getValueType()), 3035 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3036 3037 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3038 MVT::Other, CopyTo, CMP, 3039 DAG.getBasicBlock(JT.Default)); 3040 3041 // Avoid emitting unnecessary branches to the next block. 3042 if (JT.MBB != NextBlock(SwitchBB)) 3043 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3044 DAG.getBasicBlock(JT.MBB)); 3045 3046 DAG.setRoot(BrCond); 3047 } else { 3048 // Avoid emitting unnecessary branches to the next block. 3049 if (JT.MBB != NextBlock(SwitchBB)) 3050 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3051 DAG.getBasicBlock(JT.MBB))); 3052 else 3053 DAG.setRoot(CopyTo); 3054 } 3055 } 3056 3057 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3058 /// variable if there exists one. 3059 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3060 SDValue &Chain) { 3061 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3062 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3063 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3064 MachineFunction &MF = DAG.getMachineFunction(); 3065 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3066 MachineSDNode *Node = 3067 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3068 if (Global) { 3069 MachinePointerInfo MPInfo(Global); 3070 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3071 MachineMemOperand::MODereferenceable; 3072 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3073 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3074 DAG.getEVTAlign(PtrTy)); 3075 DAG.setNodeMemRefs(Node, {MemRef}); 3076 } 3077 if (PtrTy != PtrMemTy) 3078 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3079 return SDValue(Node, 0); 3080 } 3081 3082 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3083 /// tail spliced into a stack protector check success bb. 3084 /// 3085 /// For a high level explanation of how this fits into the stack protector 3086 /// generation see the comment on the declaration of class 3087 /// StackProtectorDescriptor. 3088 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3089 MachineBasicBlock *ParentBB) { 3090 3091 // First create the loads to the guard/stack slot for the comparison. 3092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3093 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3094 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3095 3096 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3097 int FI = MFI.getStackProtectorIndex(); 3098 3099 SDValue Guard; 3100 SDLoc dl = getCurSDLoc(); 3101 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3102 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3103 Align Align = 3104 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3105 3106 // Generate code to load the content of the guard slot. 3107 SDValue GuardVal = DAG.getLoad( 3108 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3109 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3110 MachineMemOperand::MOVolatile); 3111 3112 if (TLI.useStackGuardXorFP()) 3113 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3114 3115 // Retrieve guard check function, nullptr if instrumentation is inlined. 3116 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3117 // The target provides a guard check function to validate the guard value. 3118 // Generate a call to that function with the content of the guard slot as 3119 // argument. 3120 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3121 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3122 3123 TargetLowering::ArgListTy Args; 3124 TargetLowering::ArgListEntry Entry; 3125 Entry.Node = GuardVal; 3126 Entry.Ty = FnTy->getParamType(0); 3127 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3128 Entry.IsInReg = true; 3129 Args.push_back(Entry); 3130 3131 TargetLowering::CallLoweringInfo CLI(DAG); 3132 CLI.setDebugLoc(getCurSDLoc()) 3133 .setChain(DAG.getEntryNode()) 3134 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3135 getValue(GuardCheckFn), std::move(Args)); 3136 3137 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3138 DAG.setRoot(Result.second); 3139 return; 3140 } 3141 3142 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3143 // Otherwise, emit a volatile load to retrieve the stack guard value. 3144 SDValue Chain = DAG.getEntryNode(); 3145 if (TLI.useLoadStackGuardNode(M)) { 3146 Guard = getLoadStackGuard(DAG, dl, Chain); 3147 } else { 3148 const Value *IRGuard = TLI.getSDagStackGuard(M); 3149 SDValue GuardPtr = getValue(IRGuard); 3150 3151 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3152 MachinePointerInfo(IRGuard, 0), Align, 3153 MachineMemOperand::MOVolatile); 3154 } 3155 3156 // Perform the comparison via a getsetcc. 3157 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3158 *DAG.getContext(), 3159 Guard.getValueType()), 3160 Guard, GuardVal, ISD::SETNE); 3161 3162 // If the guard/stackslot do not equal, branch to failure MBB. 3163 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3164 MVT::Other, GuardVal.getOperand(0), 3165 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3166 // Otherwise branch to success MBB. 3167 SDValue Br = DAG.getNode(ISD::BR, dl, 3168 MVT::Other, BrCond, 3169 DAG.getBasicBlock(SPD.getSuccessMBB())); 3170 3171 DAG.setRoot(Br); 3172 } 3173 3174 /// Codegen the failure basic block for a stack protector check. 3175 /// 3176 /// A failure stack protector machine basic block consists simply of a call to 3177 /// __stack_chk_fail(). 3178 /// 3179 /// For a high level explanation of how this fits into the stack protector 3180 /// generation see the comment on the declaration of class 3181 /// StackProtectorDescriptor. 3182 void 3183 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3184 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3185 TargetLowering::MakeLibCallOptions CallOptions; 3186 CallOptions.setDiscardResult(true); 3187 SDValue Chain = TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 3188 MVT::isVoid, {}, CallOptions, getCurSDLoc()) 3189 .second; 3190 3191 // Emit a trap instruction if we are required to do so. 3192 const TargetOptions &TargetOpts = DAG.getTarget().Options; 3193 if (TargetOpts.TrapUnreachable && !TargetOpts.NoTrapAfterNoreturn) 3194 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3195 3196 DAG.setRoot(Chain); 3197 } 3198 3199 /// visitBitTestHeader - This function emits necessary code to produce value 3200 /// suitable for "bit tests" 3201 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3202 MachineBasicBlock *SwitchBB) { 3203 SDLoc dl = getCurSDLoc(); 3204 3205 // Subtract the minimum value. 3206 SDValue SwitchOp = getValue(B.SValue); 3207 EVT VT = SwitchOp.getValueType(); 3208 SDValue RangeSub = 3209 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3210 3211 // Determine the type of the test operands. 3212 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3213 bool UsePtrType = false; 3214 if (!TLI.isTypeLegal(VT)) { 3215 UsePtrType = true; 3216 } else { 3217 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3218 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3219 // Switch table case range are encoded into series of masks. 3220 // Just use pointer type, it's guaranteed to fit. 3221 UsePtrType = true; 3222 break; 3223 } 3224 } 3225 SDValue Sub = RangeSub; 3226 if (UsePtrType) { 3227 VT = TLI.getPointerTy(DAG.getDataLayout()); 3228 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3229 } 3230 3231 B.RegVT = VT.getSimpleVT(); 3232 B.Reg = FuncInfo.CreateReg(B.RegVT); 3233 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3234 3235 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3236 3237 if (!B.FallthroughUnreachable) 3238 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3239 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3240 SwitchBB->normalizeSuccProbs(); 3241 3242 SDValue Root = CopyTo; 3243 if (!B.FallthroughUnreachable) { 3244 // Conditional branch to the default block. 3245 SDValue RangeCmp = DAG.getSetCC(dl, 3246 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3247 RangeSub.getValueType()), 3248 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3249 ISD::SETUGT); 3250 3251 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3252 DAG.getBasicBlock(B.Default)); 3253 } 3254 3255 // Avoid emitting unnecessary branches to the next block. 3256 if (MBB != NextBlock(SwitchBB)) 3257 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3258 3259 DAG.setRoot(Root); 3260 } 3261 3262 /// visitBitTestCase - this function produces one "bit test" 3263 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3264 MachineBasicBlock *NextMBB, 3265 BranchProbability BranchProbToNext, 3266 Register Reg, BitTestCase &B, 3267 MachineBasicBlock *SwitchBB) { 3268 SDLoc dl = getCurSDLoc(); 3269 MVT VT = BB.RegVT; 3270 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3271 SDValue Cmp; 3272 unsigned PopCount = llvm::popcount(B.Mask); 3273 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3274 if (PopCount == 1) { 3275 // Testing for a single bit; just compare the shift count with what it 3276 // would need to be to shift a 1 bit in that position. 3277 Cmp = DAG.getSetCC( 3278 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3279 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3280 ISD::SETEQ); 3281 } else if (PopCount == BB.Range) { 3282 // There is only one zero bit in the range, test for it directly. 3283 Cmp = DAG.getSetCC( 3284 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3285 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3286 } else { 3287 // Make desired shift 3288 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3289 DAG.getConstant(1, dl, VT), ShiftOp); 3290 3291 // Emit bit tests and jumps 3292 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3293 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3294 Cmp = DAG.getSetCC( 3295 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3296 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3297 } 3298 3299 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3300 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3301 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3302 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3303 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3304 // one as they are relative probabilities (and thus work more like weights), 3305 // and hence we need to normalize them to let the sum of them become one. 3306 SwitchBB->normalizeSuccProbs(); 3307 3308 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3309 MVT::Other, getControlRoot(), 3310 Cmp, DAG.getBasicBlock(B.TargetBB)); 3311 3312 // Avoid emitting unnecessary branches to the next block. 3313 if (NextMBB != NextBlock(SwitchBB)) 3314 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3315 DAG.getBasicBlock(NextMBB)); 3316 3317 DAG.setRoot(BrAnd); 3318 } 3319 3320 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3321 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3322 3323 // Retrieve successors. Look through artificial IR level blocks like 3324 // catchswitch for successors. 3325 MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0)); 3326 const BasicBlock *EHPadBB = I.getSuccessor(1); 3327 MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB); 3328 3329 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3330 // have to do anything here to lower funclet bundles. 3331 assert(!I.hasOperandBundlesOtherThan( 3332 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3333 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3334 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3335 LLVMContext::OB_clang_arc_attachedcall}) && 3336 "Cannot lower invokes with arbitrary operand bundles yet!"); 3337 3338 const Value *Callee(I.getCalledOperand()); 3339 const Function *Fn = dyn_cast<Function>(Callee); 3340 if (isa<InlineAsm>(Callee)) 3341 visitInlineAsm(I, EHPadBB); 3342 else if (Fn && Fn->isIntrinsic()) { 3343 switch (Fn->getIntrinsicID()) { 3344 default: 3345 llvm_unreachable("Cannot invoke this intrinsic"); 3346 case Intrinsic::donothing: 3347 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3348 case Intrinsic::seh_try_begin: 3349 case Intrinsic::seh_scope_begin: 3350 case Intrinsic::seh_try_end: 3351 case Intrinsic::seh_scope_end: 3352 if (EHPadMBB) 3353 // a block referenced by EH table 3354 // so dtor-funclet not removed by opts 3355 EHPadMBB->setMachineBlockAddressTaken(); 3356 break; 3357 case Intrinsic::experimental_patchpoint_void: 3358 case Intrinsic::experimental_patchpoint: 3359 visitPatchpoint(I, EHPadBB); 3360 break; 3361 case Intrinsic::experimental_gc_statepoint: 3362 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3363 break; 3364 case Intrinsic::wasm_rethrow: { 3365 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3366 // special because it can be invoked, so we manually lower it to a DAG 3367 // node here. 3368 SmallVector<SDValue, 8> Ops; 3369 Ops.push_back(getControlRoot()); // inchain for the terminator node 3370 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3371 Ops.push_back( 3372 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3373 TLI.getPointerTy(DAG.getDataLayout()))); 3374 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3375 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3376 break; 3377 } 3378 } 3379 } else if (I.hasDeoptState()) { 3380 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3381 // Eventually we will support lowering the @llvm.experimental.deoptimize 3382 // intrinsic, and right now there are no plans to support other intrinsics 3383 // with deopt state. 3384 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3385 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3386 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3387 } else { 3388 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3389 } 3390 3391 // If the value of the invoke is used outside of its defining block, make it 3392 // available as a virtual register. 3393 // We already took care of the exported value for the statepoint instruction 3394 // during call to the LowerStatepoint. 3395 if (!isa<GCStatepointInst>(I)) { 3396 CopyToExportRegsIfNeeded(&I); 3397 } 3398 3399 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3400 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3401 BranchProbability EHPadBBProb = 3402 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3403 : BranchProbability::getZero(); 3404 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3405 3406 // Update successor info. 3407 addSuccessorWithProb(InvokeMBB, Return); 3408 for (auto &UnwindDest : UnwindDests) { 3409 UnwindDest.first->setIsEHPad(); 3410 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3411 } 3412 InvokeMBB->normalizeSuccProbs(); 3413 3414 // Drop into normal successor. 3415 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3416 DAG.getBasicBlock(Return))); 3417 } 3418 3419 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3420 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3421 3422 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3423 // have to do anything here to lower funclet bundles. 3424 assert(!I.hasOperandBundlesOtherThan( 3425 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3426 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3427 3428 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3429 visitInlineAsm(I); 3430 CopyToExportRegsIfNeeded(&I); 3431 3432 // Retrieve successors. 3433 SmallPtrSet<BasicBlock *, 8> Dests; 3434 Dests.insert(I.getDefaultDest()); 3435 MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest()); 3436 3437 // Update successor info. 3438 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3439 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3440 BasicBlock *Dest = I.getIndirectDest(i); 3441 MachineBasicBlock *Target = FuncInfo.getMBB(Dest); 3442 Target->setIsInlineAsmBrIndirectTarget(); 3443 Target->setMachineBlockAddressTaken(); 3444 Target->setLabelMustBeEmitted(); 3445 // Don't add duplicate machine successors. 3446 if (Dests.insert(Dest).second) 3447 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3448 } 3449 CallBrMBB->normalizeSuccProbs(); 3450 3451 // Drop into default successor. 3452 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3453 MVT::Other, getControlRoot(), 3454 DAG.getBasicBlock(Return))); 3455 } 3456 3457 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3458 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3459 } 3460 3461 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3462 assert(FuncInfo.MBB->isEHPad() && 3463 "Call to landingpad not in landing pad!"); 3464 3465 // If there aren't registers to copy the values into (e.g., during SjLj 3466 // exceptions), then don't bother to create these DAG nodes. 3467 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3468 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3469 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3470 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3471 return; 3472 3473 // If landingpad's return type is token type, we don't create DAG nodes 3474 // for its exception pointer and selector value. The extraction of exception 3475 // pointer or selector value from token type landingpads is not currently 3476 // supported. 3477 if (LP.getType()->isTokenTy()) 3478 return; 3479 3480 SmallVector<EVT, 2> ValueVTs; 3481 SDLoc dl = getCurSDLoc(); 3482 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3483 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3484 3485 // Get the two live-in registers as SDValues. The physregs have already been 3486 // copied into virtual registers. 3487 SDValue Ops[2]; 3488 if (FuncInfo.ExceptionPointerVirtReg) { 3489 Ops[0] = DAG.getZExtOrTrunc( 3490 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3491 FuncInfo.ExceptionPointerVirtReg, 3492 TLI.getPointerTy(DAG.getDataLayout())), 3493 dl, ValueVTs[0]); 3494 } else { 3495 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3496 } 3497 Ops[1] = DAG.getZExtOrTrunc( 3498 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3499 FuncInfo.ExceptionSelectorVirtReg, 3500 TLI.getPointerTy(DAG.getDataLayout())), 3501 dl, ValueVTs[1]); 3502 3503 // Merge into one. 3504 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3505 DAG.getVTList(ValueVTs), Ops); 3506 setValue(&LP, Res); 3507 } 3508 3509 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3510 MachineBasicBlock *Last) { 3511 // Update JTCases. 3512 for (JumpTableBlock &JTB : SL->JTCases) 3513 if (JTB.first.HeaderBB == First) 3514 JTB.first.HeaderBB = Last; 3515 3516 // Update BitTestCases. 3517 for (BitTestBlock &BTB : SL->BitTestCases) 3518 if (BTB.Parent == First) 3519 BTB.Parent = Last; 3520 } 3521 3522 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3523 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3524 3525 // Update machine-CFG edges with unique successors. 3526 SmallSet<BasicBlock*, 32> Done; 3527 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3528 BasicBlock *BB = I.getSuccessor(i); 3529 bool Inserted = Done.insert(BB).second; 3530 if (!Inserted) 3531 continue; 3532 3533 MachineBasicBlock *Succ = FuncInfo.getMBB(BB); 3534 addSuccessorWithProb(IndirectBrMBB, Succ); 3535 } 3536 IndirectBrMBB->normalizeSuccProbs(); 3537 3538 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3539 MVT::Other, getControlRoot(), 3540 getValue(I.getAddress()))); 3541 } 3542 3543 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3544 if (!DAG.getTarget().Options.TrapUnreachable) 3545 return; 3546 3547 // We may be able to ignore unreachable behind a noreturn call. 3548 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode()); 3549 Call && Call->doesNotReturn()) { 3550 if (DAG.getTarget().Options.NoTrapAfterNoreturn) 3551 return; 3552 // Do not emit an additional trap instruction. 3553 if (Call->isNonContinuableTrap()) 3554 return; 3555 } 3556 3557 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3558 } 3559 3560 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3561 SDNodeFlags Flags; 3562 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3563 Flags.copyFMF(*FPOp); 3564 3565 SDValue Op = getValue(I.getOperand(0)); 3566 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3567 Op, Flags); 3568 setValue(&I, UnNodeValue); 3569 } 3570 3571 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3572 SDNodeFlags Flags; 3573 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3574 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3575 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3576 } 3577 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3578 Flags.setExact(ExactOp->isExact()); 3579 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3580 Flags.setDisjoint(DisjointOp->isDisjoint()); 3581 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3582 Flags.copyFMF(*FPOp); 3583 3584 SDValue Op1 = getValue(I.getOperand(0)); 3585 SDValue Op2 = getValue(I.getOperand(1)); 3586 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3587 Op1, Op2, Flags); 3588 setValue(&I, BinNodeValue); 3589 } 3590 3591 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3592 SDValue Op1 = getValue(I.getOperand(0)); 3593 SDValue Op2 = getValue(I.getOperand(1)); 3594 3595 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3596 Op1.getValueType(), DAG.getDataLayout()); 3597 3598 // Coerce the shift amount to the right type if we can. This exposes the 3599 // truncate or zext to optimization early. 3600 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3601 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3602 "Unexpected shift type"); 3603 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3604 } 3605 3606 bool nuw = false; 3607 bool nsw = false; 3608 bool exact = false; 3609 3610 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3611 3612 if (const OverflowingBinaryOperator *OFBinOp = 3613 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3614 nuw = OFBinOp->hasNoUnsignedWrap(); 3615 nsw = OFBinOp->hasNoSignedWrap(); 3616 } 3617 if (const PossiblyExactOperator *ExactOp = 3618 dyn_cast<const PossiblyExactOperator>(&I)) 3619 exact = ExactOp->isExact(); 3620 } 3621 SDNodeFlags Flags; 3622 Flags.setExact(exact); 3623 Flags.setNoSignedWrap(nsw); 3624 Flags.setNoUnsignedWrap(nuw); 3625 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3626 Flags); 3627 setValue(&I, Res); 3628 } 3629 3630 void SelectionDAGBuilder::visitSDiv(const User &I) { 3631 SDValue Op1 = getValue(I.getOperand(0)); 3632 SDValue Op2 = getValue(I.getOperand(1)); 3633 3634 SDNodeFlags Flags; 3635 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3636 cast<PossiblyExactOperator>(&I)->isExact()); 3637 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3638 Op2, Flags)); 3639 } 3640 3641 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3642 ICmpInst::Predicate predicate = I.getPredicate(); 3643 SDValue Op1 = getValue(I.getOperand(0)); 3644 SDValue Op2 = getValue(I.getOperand(1)); 3645 ISD::CondCode Opcode = getICmpCondCode(predicate); 3646 3647 auto &TLI = DAG.getTargetLoweringInfo(); 3648 EVT MemVT = 3649 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3650 3651 // If a pointer's DAG type is larger than its memory type then the DAG values 3652 // are zero-extended. This breaks signed comparisons so truncate back to the 3653 // underlying type before doing the compare. 3654 if (Op1.getValueType() != MemVT) { 3655 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3656 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3657 } 3658 3659 SDNodeFlags Flags; 3660 Flags.setSameSign(I.hasSameSign()); 3661 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3662 3663 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3664 I.getType()); 3665 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3666 } 3667 3668 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3669 FCmpInst::Predicate predicate = I.getPredicate(); 3670 SDValue Op1 = getValue(I.getOperand(0)); 3671 SDValue Op2 = getValue(I.getOperand(1)); 3672 3673 ISD::CondCode Condition = getFCmpCondCode(predicate); 3674 auto *FPMO = cast<FPMathOperator>(&I); 3675 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3676 Condition = getFCmpCodeWithoutNaN(Condition); 3677 3678 SDNodeFlags Flags; 3679 Flags.copyFMF(*FPMO); 3680 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3681 3682 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3683 I.getType()); 3684 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3685 } 3686 3687 // Check if the condition of the select has one use or two users that are both 3688 // selects with the same condition. 3689 static bool hasOnlySelectUsers(const Value *Cond) { 3690 return llvm::all_of(Cond->users(), [](const Value *V) { 3691 return isa<SelectInst>(V); 3692 }); 3693 } 3694 3695 void SelectionDAGBuilder::visitSelect(const User &I) { 3696 SmallVector<EVT, 4> ValueVTs; 3697 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3698 ValueVTs); 3699 unsigned NumValues = ValueVTs.size(); 3700 if (NumValues == 0) return; 3701 3702 SmallVector<SDValue, 4> Values(NumValues); 3703 SDValue Cond = getValue(I.getOperand(0)); 3704 SDValue LHSVal = getValue(I.getOperand(1)); 3705 SDValue RHSVal = getValue(I.getOperand(2)); 3706 SmallVector<SDValue, 1> BaseOps(1, Cond); 3707 ISD::NodeType OpCode = 3708 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3709 3710 bool IsUnaryAbs = false; 3711 bool Negate = false; 3712 3713 SDNodeFlags Flags; 3714 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3715 Flags.copyFMF(*FPOp); 3716 3717 Flags.setUnpredictable( 3718 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3719 3720 // Min/max matching is only viable if all output VTs are the same. 3721 if (all_equal(ValueVTs)) { 3722 EVT VT = ValueVTs[0]; 3723 LLVMContext &Ctx = *DAG.getContext(); 3724 auto &TLI = DAG.getTargetLoweringInfo(); 3725 3726 // We care about the legality of the operation after it has been type 3727 // legalized. 3728 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3729 VT = TLI.getTypeToTransformTo(Ctx, VT); 3730 3731 // If the vselect is legal, assume we want to leave this as a vector setcc + 3732 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3733 // min/max is legal on the scalar type. 3734 bool UseScalarMinMax = VT.isVector() && 3735 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3736 3737 // ValueTracking's select pattern matching does not account for -0.0, 3738 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3739 // -0.0 is less than +0.0. 3740 const Value *LHS, *RHS; 3741 auto SPR = matchSelectPattern(&I, LHS, RHS); 3742 ISD::NodeType Opc = ISD::DELETED_NODE; 3743 switch (SPR.Flavor) { 3744 case SPF_UMAX: Opc = ISD::UMAX; break; 3745 case SPF_UMIN: Opc = ISD::UMIN; break; 3746 case SPF_SMAX: Opc = ISD::SMAX; break; 3747 case SPF_SMIN: Opc = ISD::SMIN; break; 3748 case SPF_FMINNUM: 3749 switch (SPR.NaNBehavior) { 3750 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3751 case SPNB_RETURNS_NAN: break; 3752 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3753 case SPNB_RETURNS_ANY: 3754 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3755 (UseScalarMinMax && 3756 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3757 Opc = ISD::FMINNUM; 3758 break; 3759 } 3760 break; 3761 case SPF_FMAXNUM: 3762 switch (SPR.NaNBehavior) { 3763 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3764 case SPNB_RETURNS_NAN: break; 3765 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3766 case SPNB_RETURNS_ANY: 3767 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3768 (UseScalarMinMax && 3769 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3770 Opc = ISD::FMAXNUM; 3771 break; 3772 } 3773 break; 3774 case SPF_NABS: 3775 Negate = true; 3776 [[fallthrough]]; 3777 case SPF_ABS: 3778 IsUnaryAbs = true; 3779 Opc = ISD::ABS; 3780 break; 3781 default: break; 3782 } 3783 3784 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3785 (TLI.isOperationLegalOrCustom(Opc, VT) || 3786 (UseScalarMinMax && 3787 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3788 // If the underlying comparison instruction is used by any other 3789 // instruction, the consumed instructions won't be destroyed, so it is 3790 // not profitable to convert to a min/max. 3791 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3792 OpCode = Opc; 3793 LHSVal = getValue(LHS); 3794 RHSVal = getValue(RHS); 3795 BaseOps.clear(); 3796 } 3797 3798 if (IsUnaryAbs) { 3799 OpCode = Opc; 3800 LHSVal = getValue(LHS); 3801 BaseOps.clear(); 3802 } 3803 } 3804 3805 if (IsUnaryAbs) { 3806 for (unsigned i = 0; i != NumValues; ++i) { 3807 SDLoc dl = getCurSDLoc(); 3808 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3809 Values[i] = 3810 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3811 if (Negate) 3812 Values[i] = DAG.getNegative(Values[i], dl, VT); 3813 } 3814 } else { 3815 for (unsigned i = 0; i != NumValues; ++i) { 3816 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3817 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3818 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3819 Values[i] = DAG.getNode( 3820 OpCode, getCurSDLoc(), 3821 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3822 } 3823 } 3824 3825 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3826 DAG.getVTList(ValueVTs), Values)); 3827 } 3828 3829 void SelectionDAGBuilder::visitTrunc(const User &I) { 3830 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3831 SDValue N = getValue(I.getOperand(0)); 3832 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3833 I.getType()); 3834 SDNodeFlags Flags; 3835 if (auto *Trunc = dyn_cast<TruncInst>(&I)) { 3836 Flags.setNoSignedWrap(Trunc->hasNoSignedWrap()); 3837 Flags.setNoUnsignedWrap(Trunc->hasNoUnsignedWrap()); 3838 } 3839 3840 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N, Flags)); 3841 } 3842 3843 void SelectionDAGBuilder::visitZExt(const User &I) { 3844 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3845 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3846 SDValue N = getValue(I.getOperand(0)); 3847 auto &TLI = DAG.getTargetLoweringInfo(); 3848 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3849 3850 SDNodeFlags Flags; 3851 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3852 Flags.setNonNeg(PNI->hasNonNeg()); 3853 3854 // Eagerly use nonneg information to canonicalize towards sign_extend if 3855 // that is the target's preference. 3856 // TODO: Let the target do this later. 3857 if (Flags.hasNonNeg() && 3858 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3859 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3860 return; 3861 } 3862 3863 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3864 } 3865 3866 void SelectionDAGBuilder::visitSExt(const User &I) { 3867 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3868 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3869 SDValue N = getValue(I.getOperand(0)); 3870 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3871 I.getType()); 3872 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3873 } 3874 3875 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3876 // FPTrunc is never a no-op cast, no need to check 3877 SDValue N = getValue(I.getOperand(0)); 3878 SDLoc dl = getCurSDLoc(); 3879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3880 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3881 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3882 DAG.getTargetConstant( 3883 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3884 } 3885 3886 void SelectionDAGBuilder::visitFPExt(const User &I) { 3887 // FPExt is never a no-op cast, no need to check 3888 SDValue N = getValue(I.getOperand(0)); 3889 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3890 I.getType()); 3891 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3892 } 3893 3894 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3895 // FPToUI is never a no-op cast, no need to check 3896 SDValue N = getValue(I.getOperand(0)); 3897 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3898 I.getType()); 3899 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3900 } 3901 3902 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3903 // FPToSI is never a no-op cast, no need to check 3904 SDValue N = getValue(I.getOperand(0)); 3905 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3906 I.getType()); 3907 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3908 } 3909 3910 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3911 // UIToFP is never a no-op cast, no need to check 3912 SDValue N = getValue(I.getOperand(0)); 3913 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3914 I.getType()); 3915 SDNodeFlags Flags; 3916 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3917 Flags.setNonNeg(PNI->hasNonNeg()); 3918 3919 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3920 } 3921 3922 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3923 // SIToFP is never a no-op cast, no need to check 3924 SDValue N = getValue(I.getOperand(0)); 3925 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3926 I.getType()); 3927 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3928 } 3929 3930 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3931 // What to do depends on the size of the integer and the size of the pointer. 3932 // We can either truncate, zero extend, or no-op, accordingly. 3933 SDValue N = getValue(I.getOperand(0)); 3934 auto &TLI = DAG.getTargetLoweringInfo(); 3935 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3936 I.getType()); 3937 EVT PtrMemVT = 3938 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3939 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3940 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3941 setValue(&I, N); 3942 } 3943 3944 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3945 // What to do depends on the size of the integer and the size of the pointer. 3946 // We can either truncate, zero extend, or no-op, accordingly. 3947 SDValue N = getValue(I.getOperand(0)); 3948 auto &TLI = DAG.getTargetLoweringInfo(); 3949 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3950 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3951 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3952 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3953 setValue(&I, N); 3954 } 3955 3956 void SelectionDAGBuilder::visitBitCast(const User &I) { 3957 SDValue N = getValue(I.getOperand(0)); 3958 SDLoc dl = getCurSDLoc(); 3959 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3960 I.getType()); 3961 3962 // BitCast assures us that source and destination are the same size so this is 3963 // either a BITCAST or a no-op. 3964 if (DestVT != N.getValueType()) 3965 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3966 DestVT, N)); // convert types. 3967 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3968 // might fold any kind of constant expression to an integer constant and that 3969 // is not what we are looking for. Only recognize a bitcast of a genuine 3970 // constant integer as an opaque constant. 3971 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3972 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3973 /*isOpaque*/true)); 3974 else 3975 setValue(&I, N); // noop cast. 3976 } 3977 3978 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3979 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3980 const Value *SV = I.getOperand(0); 3981 SDValue N = getValue(SV); 3982 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3983 3984 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3985 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3986 3987 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3988 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3989 3990 setValue(&I, N); 3991 } 3992 3993 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3994 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3995 SDValue InVec = getValue(I.getOperand(0)); 3996 SDValue InVal = getValue(I.getOperand(1)); 3997 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3998 TLI.getVectorIdxTy(DAG.getDataLayout())); 3999 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 4000 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4001 InVec, InVal, InIdx)); 4002 } 4003 4004 void SelectionDAGBuilder::visitExtractElement(const User &I) { 4005 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4006 SDValue InVec = getValue(I.getOperand(0)); 4007 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 4008 TLI.getVectorIdxTy(DAG.getDataLayout())); 4009 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 4010 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4011 InVec, InIdx)); 4012 } 4013 4014 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 4015 SDValue Src1 = getValue(I.getOperand(0)); 4016 SDValue Src2 = getValue(I.getOperand(1)); 4017 ArrayRef<int> Mask; 4018 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 4019 Mask = SVI->getShuffleMask(); 4020 else 4021 Mask = cast<ConstantExpr>(I).getShuffleMask(); 4022 SDLoc DL = getCurSDLoc(); 4023 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4024 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4025 EVT SrcVT = Src1.getValueType(); 4026 4027 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 4028 VT.isScalableVector()) { 4029 // Canonical splat form of first element of first input vector. 4030 SDValue FirstElt = 4031 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4032 DAG.getVectorIdxConstant(0, DL)); 4033 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4034 return; 4035 } 4036 4037 // For now, we only handle splats for scalable vectors. 4038 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4039 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4040 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4041 4042 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4043 unsigned MaskNumElts = Mask.size(); 4044 4045 if (SrcNumElts == MaskNumElts) { 4046 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4047 return; 4048 } 4049 4050 // Normalize the shuffle vector since mask and vector length don't match. 4051 if (SrcNumElts < MaskNumElts) { 4052 // Mask is longer than the source vectors. We can use concatenate vector to 4053 // make the mask and vectors lengths match. 4054 4055 if (MaskNumElts % SrcNumElts == 0) { 4056 // Mask length is a multiple of the source vector length. 4057 // Check if the shuffle is some kind of concatenation of the input 4058 // vectors. 4059 unsigned NumConcat = MaskNumElts / SrcNumElts; 4060 bool IsConcat = true; 4061 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4062 for (unsigned i = 0; i != MaskNumElts; ++i) { 4063 int Idx = Mask[i]; 4064 if (Idx < 0) 4065 continue; 4066 // Ensure the indices in each SrcVT sized piece are sequential and that 4067 // the same source is used for the whole piece. 4068 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4069 (ConcatSrcs[i / SrcNumElts] >= 0 && 4070 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4071 IsConcat = false; 4072 break; 4073 } 4074 // Remember which source this index came from. 4075 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4076 } 4077 4078 // The shuffle is concatenating multiple vectors together. Just emit 4079 // a CONCAT_VECTORS operation. 4080 if (IsConcat) { 4081 SmallVector<SDValue, 8> ConcatOps; 4082 for (auto Src : ConcatSrcs) { 4083 if (Src < 0) 4084 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4085 else if (Src == 0) 4086 ConcatOps.push_back(Src1); 4087 else 4088 ConcatOps.push_back(Src2); 4089 } 4090 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4091 return; 4092 } 4093 } 4094 4095 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4096 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4097 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4098 PaddedMaskNumElts); 4099 4100 // Pad both vectors with undefs to make them the same length as the mask. 4101 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4102 4103 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4104 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4105 MOps1[0] = Src1; 4106 MOps2[0] = Src2; 4107 4108 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4109 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4110 4111 // Readjust mask for new input vector length. 4112 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4113 for (unsigned i = 0; i != MaskNumElts; ++i) { 4114 int Idx = Mask[i]; 4115 if (Idx >= (int)SrcNumElts) 4116 Idx -= SrcNumElts - PaddedMaskNumElts; 4117 MappedOps[i] = Idx; 4118 } 4119 4120 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4121 4122 // If the concatenated vector was padded, extract a subvector with the 4123 // correct number of elements. 4124 if (MaskNumElts != PaddedMaskNumElts) 4125 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4126 DAG.getVectorIdxConstant(0, DL)); 4127 4128 setValue(&I, Result); 4129 return; 4130 } 4131 4132 assert(SrcNumElts > MaskNumElts); 4133 4134 // Analyze the access pattern of the vector to see if we can extract 4135 // two subvectors and do the shuffle. 4136 int StartIdx[2] = {-1, -1}; // StartIdx to extract from 4137 bool CanExtract = true; 4138 for (int Idx : Mask) { 4139 unsigned Input = 0; 4140 if (Idx < 0) 4141 continue; 4142 4143 if (Idx >= (int)SrcNumElts) { 4144 Input = 1; 4145 Idx -= SrcNumElts; 4146 } 4147 4148 // If all the indices come from the same MaskNumElts sized portion of 4149 // the sources we can use extract. Also make sure the extract wouldn't 4150 // extract past the end of the source. 4151 int NewStartIdx = alignDown(Idx, MaskNumElts); 4152 if (NewStartIdx + MaskNumElts > SrcNumElts || 4153 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4154 CanExtract = false; 4155 // Make sure we always update StartIdx as we use it to track if all 4156 // elements are undef. 4157 StartIdx[Input] = NewStartIdx; 4158 } 4159 4160 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4161 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4162 return; 4163 } 4164 if (CanExtract) { 4165 // Extract appropriate subvector and generate a vector shuffle 4166 for (unsigned Input = 0; Input < 2; ++Input) { 4167 SDValue &Src = Input == 0 ? Src1 : Src2; 4168 if (StartIdx[Input] < 0) 4169 Src = DAG.getUNDEF(VT); 4170 else { 4171 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4172 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4173 } 4174 } 4175 4176 // Calculate new mask. 4177 SmallVector<int, 8> MappedOps(Mask); 4178 for (int &Idx : MappedOps) { 4179 if (Idx >= (int)SrcNumElts) 4180 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4181 else if (Idx >= 0) 4182 Idx -= StartIdx[0]; 4183 } 4184 4185 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4186 return; 4187 } 4188 4189 // We can't use either concat vectors or extract subvectors so fall back to 4190 // replacing the shuffle with extract and build vector. 4191 // to insert and build vector. 4192 EVT EltVT = VT.getVectorElementType(); 4193 SmallVector<SDValue,8> Ops; 4194 for (int Idx : Mask) { 4195 SDValue Res; 4196 4197 if (Idx < 0) { 4198 Res = DAG.getUNDEF(EltVT); 4199 } else { 4200 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4201 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4202 4203 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4204 DAG.getVectorIdxConstant(Idx, DL)); 4205 } 4206 4207 Ops.push_back(Res); 4208 } 4209 4210 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4211 } 4212 4213 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4214 ArrayRef<unsigned> Indices = I.getIndices(); 4215 const Value *Op0 = I.getOperand(0); 4216 const Value *Op1 = I.getOperand(1); 4217 Type *AggTy = I.getType(); 4218 Type *ValTy = Op1->getType(); 4219 bool IntoUndef = isa<UndefValue>(Op0); 4220 bool FromUndef = isa<UndefValue>(Op1); 4221 4222 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4223 4224 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4225 SmallVector<EVT, 4> AggValueVTs; 4226 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4227 SmallVector<EVT, 4> ValValueVTs; 4228 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4229 4230 unsigned NumAggValues = AggValueVTs.size(); 4231 unsigned NumValValues = ValValueVTs.size(); 4232 SmallVector<SDValue, 4> Values(NumAggValues); 4233 4234 // Ignore an insertvalue that produces an empty object 4235 if (!NumAggValues) { 4236 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4237 return; 4238 } 4239 4240 SDValue Agg = getValue(Op0); 4241 unsigned i = 0; 4242 // Copy the beginning value(s) from the original aggregate. 4243 for (; i != LinearIndex; ++i) 4244 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4245 SDValue(Agg.getNode(), Agg.getResNo() + i); 4246 // Copy values from the inserted value(s). 4247 if (NumValValues) { 4248 SDValue Val = getValue(Op1); 4249 for (; i != LinearIndex + NumValValues; ++i) 4250 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4251 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4252 } 4253 // Copy remaining value(s) from the original aggregate. 4254 for (; i != NumAggValues; ++i) 4255 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4256 SDValue(Agg.getNode(), Agg.getResNo() + i); 4257 4258 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4259 DAG.getVTList(AggValueVTs), Values)); 4260 } 4261 4262 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4263 ArrayRef<unsigned> Indices = I.getIndices(); 4264 const Value *Op0 = I.getOperand(0); 4265 Type *AggTy = Op0->getType(); 4266 Type *ValTy = I.getType(); 4267 bool OutOfUndef = isa<UndefValue>(Op0); 4268 4269 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4270 4271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4272 SmallVector<EVT, 4> ValValueVTs; 4273 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4274 4275 unsigned NumValValues = ValValueVTs.size(); 4276 4277 // Ignore a extractvalue that produces an empty object 4278 if (!NumValValues) { 4279 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4280 return; 4281 } 4282 4283 SmallVector<SDValue, 4> Values(NumValValues); 4284 4285 SDValue Agg = getValue(Op0); 4286 // Copy out the selected value(s). 4287 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4288 Values[i - LinearIndex] = 4289 OutOfUndef ? 4290 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4291 SDValue(Agg.getNode(), Agg.getResNo() + i); 4292 4293 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4294 DAG.getVTList(ValValueVTs), Values)); 4295 } 4296 4297 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4298 Value *Op0 = I.getOperand(0); 4299 // Note that the pointer operand may be a vector of pointers. Take the scalar 4300 // element which holds a pointer. 4301 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4302 SDValue N = getValue(Op0); 4303 SDLoc dl = getCurSDLoc(); 4304 auto &TLI = DAG.getTargetLoweringInfo(); 4305 GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags(); 4306 4307 // Normalize Vector GEP - all scalar operands should be converted to the 4308 // splat vector. 4309 bool IsVectorGEP = I.getType()->isVectorTy(); 4310 ElementCount VectorElementCount = 4311 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4312 : ElementCount::getFixed(0); 4313 4314 if (IsVectorGEP && !N.getValueType().isVector()) { 4315 LLVMContext &Context = *DAG.getContext(); 4316 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4317 N = DAG.getSplat(VT, dl, N); 4318 } 4319 4320 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4321 GTI != E; ++GTI) { 4322 const Value *Idx = GTI.getOperand(); 4323 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4324 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4325 if (Field) { 4326 // N = N + Offset 4327 uint64_t Offset = 4328 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4329 4330 // In an inbounds GEP with an offset that is nonnegative even when 4331 // interpreted as signed, assume there is no unsigned overflow. 4332 SDNodeFlags Flags; 4333 if (NW.hasNoUnsignedWrap() || 4334 (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap())) 4335 Flags |= SDNodeFlags::NoUnsignedWrap; 4336 4337 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4338 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4339 } 4340 } else { 4341 // IdxSize is the width of the arithmetic according to IR semantics. 4342 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4343 // (and fix up the result later). 4344 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4345 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4346 TypeSize ElementSize = 4347 GTI.getSequentialElementStride(DAG.getDataLayout()); 4348 // We intentionally mask away the high bits here; ElementSize may not 4349 // fit in IdxTy. 4350 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue(), 4351 /*isSigned=*/false, /*implicitTrunc=*/true); 4352 bool ElementScalable = ElementSize.isScalable(); 4353 4354 // If this is a scalar constant or a splat vector of constants, 4355 // handle it quickly. 4356 const auto *C = dyn_cast<Constant>(Idx); 4357 if (C && isa<VectorType>(C->getType())) 4358 C = C->getSplatValue(); 4359 4360 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4361 if (CI && CI->isZero()) 4362 continue; 4363 if (CI && !ElementScalable) { 4364 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4365 LLVMContext &Context = *DAG.getContext(); 4366 SDValue OffsVal; 4367 if (IsVectorGEP) 4368 OffsVal = DAG.getConstant( 4369 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4370 else 4371 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4372 4373 // In an inbounds GEP with an offset that is nonnegative even when 4374 // interpreted as signed, assume there is no unsigned overflow. 4375 SDNodeFlags Flags; 4376 if (NW.hasNoUnsignedWrap() || 4377 (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap())) 4378 Flags.setNoUnsignedWrap(true); 4379 4380 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4381 4382 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4383 continue; 4384 } 4385 4386 // N = N + Idx * ElementMul; 4387 SDValue IdxN = getValue(Idx); 4388 4389 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4390 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4391 VectorElementCount); 4392 IdxN = DAG.getSplat(VT, dl, IdxN); 4393 } 4394 4395 // If the index is smaller or larger than intptr_t, truncate or extend 4396 // it. 4397 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4398 4399 SDNodeFlags ScaleFlags; 4400 // The multiplication of an index by the type size does not wrap the 4401 // pointer index type in a signed sense (mul nsw). 4402 ScaleFlags.setNoSignedWrap(NW.hasNoUnsignedSignedWrap()); 4403 4404 // The multiplication of an index by the type size does not wrap the 4405 // pointer index type in an unsigned sense (mul nuw). 4406 ScaleFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap()); 4407 4408 if (ElementScalable) { 4409 EVT VScaleTy = N.getValueType().getScalarType(); 4410 SDValue VScale = DAG.getNode( 4411 ISD::VSCALE, dl, VScaleTy, 4412 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4413 if (IsVectorGEP) 4414 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4415 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale, 4416 ScaleFlags); 4417 } else { 4418 // If this is a multiply by a power of two, turn it into a shl 4419 // immediately. This is a very common case. 4420 if (ElementMul != 1) { 4421 if (ElementMul.isPowerOf2()) { 4422 unsigned Amt = ElementMul.logBase2(); 4423 IdxN = DAG.getNode(ISD::SHL, dl, N.getValueType(), IdxN, 4424 DAG.getConstant(Amt, dl, IdxN.getValueType()), 4425 ScaleFlags); 4426 } else { 4427 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4428 IdxN.getValueType()); 4429 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, Scale, 4430 ScaleFlags); 4431 } 4432 } 4433 } 4434 4435 // The successive addition of the current address, truncated to the 4436 // pointer index type and interpreted as an unsigned number, and each 4437 // offset, also interpreted as an unsigned number, does not wrap the 4438 // pointer index type (add nuw). 4439 SDNodeFlags AddFlags; 4440 AddFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap()); 4441 4442 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, IdxN, AddFlags); 4443 } 4444 } 4445 4446 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4447 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4448 if (IsVectorGEP) { 4449 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4450 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4451 } 4452 4453 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4454 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4455 4456 setValue(&I, N); 4457 } 4458 4459 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4460 // If this is a fixed sized alloca in the entry block of the function, 4461 // allocate it statically on the stack. 4462 if (FuncInfo.StaticAllocaMap.count(&I)) 4463 return; // getValue will auto-populate this. 4464 4465 SDLoc dl = getCurSDLoc(); 4466 Type *Ty = I.getAllocatedType(); 4467 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4468 auto &DL = DAG.getDataLayout(); 4469 TypeSize TySize = DL.getTypeAllocSize(Ty); 4470 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4471 4472 SDValue AllocSize = getValue(I.getArraySize()); 4473 4474 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4475 if (AllocSize.getValueType() != IntPtr) 4476 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4477 4478 if (TySize.isScalable()) 4479 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4480 DAG.getVScale(dl, IntPtr, 4481 APInt(IntPtr.getScalarSizeInBits(), 4482 TySize.getKnownMinValue()))); 4483 else { 4484 SDValue TySizeValue = 4485 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4486 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4487 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4488 } 4489 4490 // Handle alignment. If the requested alignment is less than or equal to 4491 // the stack alignment, ignore it. If the size is greater than or equal to 4492 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4493 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4494 if (*Alignment <= StackAlign) 4495 Alignment = std::nullopt; 4496 4497 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4498 // Round the size of the allocation up to the stack alignment size 4499 // by add SA-1 to the size. This doesn't overflow because we're computing 4500 // an address inside an alloca. 4501 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4502 DAG.getConstant(StackAlignMask, dl, IntPtr), 4503 SDNodeFlags::NoUnsignedWrap); 4504 4505 // Mask out the low bits for alignment purposes. 4506 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4507 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr)); 4508 4509 SDValue Ops[] = { 4510 getRoot(), AllocSize, 4511 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4512 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4513 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4514 setValue(&I, DSA); 4515 DAG.setRoot(DSA.getValue(1)); 4516 4517 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4518 } 4519 4520 static const MDNode *getRangeMetadata(const Instruction &I) { 4521 // If !noundef is not present, then !range violation results in a poison 4522 // value rather than immediate undefined behavior. In theory, transferring 4523 // these annotations to SDAG is fine, but in practice there are key SDAG 4524 // transforms that are known not to be poison-safe, such as folding logical 4525 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4526 // also present. 4527 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4528 return nullptr; 4529 return I.getMetadata(LLVMContext::MD_range); 4530 } 4531 4532 static std::optional<ConstantRange> getRange(const Instruction &I) { 4533 if (const auto *CB = dyn_cast<CallBase>(&I)) { 4534 // see comment in getRangeMetadata about this check 4535 if (CB->hasRetAttr(Attribute::NoUndef)) 4536 return CB->getRange(); 4537 } 4538 if (const MDNode *Range = getRangeMetadata(I)) 4539 return getConstantRangeFromMetadata(*Range); 4540 return std::nullopt; 4541 } 4542 4543 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4544 if (I.isAtomic()) 4545 return visitAtomicLoad(I); 4546 4547 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4548 const Value *SV = I.getOperand(0); 4549 if (TLI.supportSwiftError()) { 4550 // Swifterror values can come from either a function parameter with 4551 // swifterror attribute or an alloca with swifterror attribute. 4552 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4553 if (Arg->hasSwiftErrorAttr()) 4554 return visitLoadFromSwiftError(I); 4555 } 4556 4557 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4558 if (Alloca->isSwiftError()) 4559 return visitLoadFromSwiftError(I); 4560 } 4561 } 4562 4563 SDValue Ptr = getValue(SV); 4564 4565 Type *Ty = I.getType(); 4566 SmallVector<EVT, 4> ValueVTs, MemVTs; 4567 SmallVector<TypeSize, 4> Offsets; 4568 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4569 unsigned NumValues = ValueVTs.size(); 4570 if (NumValues == 0) 4571 return; 4572 4573 Align Alignment = I.getAlign(); 4574 AAMDNodes AAInfo = I.getAAMetadata(); 4575 const MDNode *Ranges = getRangeMetadata(I); 4576 bool isVolatile = I.isVolatile(); 4577 MachineMemOperand::Flags MMOFlags = 4578 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4579 4580 SDValue Root; 4581 bool ConstantMemory = false; 4582 if (isVolatile) 4583 // Serialize volatile loads with other side effects. 4584 Root = getRoot(); 4585 else if (NumValues > MaxParallelChains) 4586 Root = getMemoryRoot(); 4587 else if (AA && 4588 AA->pointsToConstantMemory(MemoryLocation( 4589 SV, 4590 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4591 AAInfo))) { 4592 // Do not serialize (non-volatile) loads of constant memory with anything. 4593 Root = DAG.getEntryNode(); 4594 ConstantMemory = true; 4595 MMOFlags |= MachineMemOperand::MOInvariant; 4596 } else { 4597 // Do not serialize non-volatile loads against each other. 4598 Root = DAG.getRoot(); 4599 } 4600 4601 SDLoc dl = getCurSDLoc(); 4602 4603 if (isVolatile) 4604 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4605 4606 SmallVector<SDValue, 4> Values(NumValues); 4607 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4608 4609 unsigned ChainI = 0; 4610 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4611 // Serializing loads here may result in excessive register pressure, and 4612 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4613 // could recover a bit by hoisting nodes upward in the chain by recognizing 4614 // they are side-effect free or do not alias. The optimizer should really 4615 // avoid this case by converting large object/array copies to llvm.memcpy 4616 // (MaxParallelChains should always remain as failsafe). 4617 if (ChainI == MaxParallelChains) { 4618 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4619 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4620 ArrayRef(Chains.data(), ChainI)); 4621 Root = Chain; 4622 ChainI = 0; 4623 } 4624 4625 // TODO: MachinePointerInfo only supports a fixed length offset. 4626 MachinePointerInfo PtrInfo = 4627 !Offsets[i].isScalable() || Offsets[i].isZero() 4628 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4629 : MachinePointerInfo(); 4630 4631 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4632 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4633 MMOFlags, AAInfo, Ranges); 4634 Chains[ChainI] = L.getValue(1); 4635 4636 if (MemVTs[i] != ValueVTs[i]) 4637 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4638 4639 Values[i] = L; 4640 } 4641 4642 if (!ConstantMemory) { 4643 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4644 ArrayRef(Chains.data(), ChainI)); 4645 if (isVolatile) 4646 DAG.setRoot(Chain); 4647 else 4648 PendingLoads.push_back(Chain); 4649 } 4650 4651 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4652 DAG.getVTList(ValueVTs), Values)); 4653 } 4654 4655 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4656 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4657 "call visitStoreToSwiftError when backend supports swifterror"); 4658 4659 SmallVector<EVT, 4> ValueVTs; 4660 SmallVector<uint64_t, 4> Offsets; 4661 const Value *SrcV = I.getOperand(0); 4662 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4663 SrcV->getType(), ValueVTs, &Offsets, 0); 4664 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4665 "expect a single EVT for swifterror"); 4666 4667 SDValue Src = getValue(SrcV); 4668 // Create a virtual register, then update the virtual register. 4669 Register VReg = 4670 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4671 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4672 // Chain can be getRoot or getControlRoot. 4673 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4674 SDValue(Src.getNode(), Src.getResNo())); 4675 DAG.setRoot(CopyNode); 4676 } 4677 4678 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4679 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4680 "call visitLoadFromSwiftError when backend supports swifterror"); 4681 4682 assert(!I.isVolatile() && 4683 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4684 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4685 "Support volatile, non temporal, invariant for load_from_swift_error"); 4686 4687 const Value *SV = I.getOperand(0); 4688 Type *Ty = I.getType(); 4689 assert( 4690 (!AA || 4691 !AA->pointsToConstantMemory(MemoryLocation( 4692 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4693 I.getAAMetadata()))) && 4694 "load_from_swift_error should not be constant memory"); 4695 4696 SmallVector<EVT, 4> ValueVTs; 4697 SmallVector<uint64_t, 4> Offsets; 4698 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4699 ValueVTs, &Offsets, 0); 4700 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4701 "expect a single EVT for swifterror"); 4702 4703 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4704 SDValue L = DAG.getCopyFromReg( 4705 getRoot(), getCurSDLoc(), 4706 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4707 4708 setValue(&I, L); 4709 } 4710 4711 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4712 if (I.isAtomic()) 4713 return visitAtomicStore(I); 4714 4715 const Value *SrcV = I.getOperand(0); 4716 const Value *PtrV = I.getOperand(1); 4717 4718 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4719 if (TLI.supportSwiftError()) { 4720 // Swifterror values can come from either a function parameter with 4721 // swifterror attribute or an alloca with swifterror attribute. 4722 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4723 if (Arg->hasSwiftErrorAttr()) 4724 return visitStoreToSwiftError(I); 4725 } 4726 4727 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4728 if (Alloca->isSwiftError()) 4729 return visitStoreToSwiftError(I); 4730 } 4731 } 4732 4733 SmallVector<EVT, 4> ValueVTs, MemVTs; 4734 SmallVector<TypeSize, 4> Offsets; 4735 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4736 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4737 unsigned NumValues = ValueVTs.size(); 4738 if (NumValues == 0) 4739 return; 4740 4741 // Get the lowered operands. Note that we do this after 4742 // checking if NumResults is zero, because with zero results 4743 // the operands won't have values in the map. 4744 SDValue Src = getValue(SrcV); 4745 SDValue Ptr = getValue(PtrV); 4746 4747 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4748 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4749 SDLoc dl = getCurSDLoc(); 4750 Align Alignment = I.getAlign(); 4751 AAMDNodes AAInfo = I.getAAMetadata(); 4752 4753 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4754 4755 unsigned ChainI = 0; 4756 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4757 // See visitLoad comments. 4758 if (ChainI == MaxParallelChains) { 4759 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4760 ArrayRef(Chains.data(), ChainI)); 4761 Root = Chain; 4762 ChainI = 0; 4763 } 4764 4765 // TODO: MachinePointerInfo only supports a fixed length offset. 4766 MachinePointerInfo PtrInfo = 4767 !Offsets[i].isScalable() || Offsets[i].isZero() 4768 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4769 : MachinePointerInfo(); 4770 4771 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4772 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4773 if (MemVTs[i] != ValueVTs[i]) 4774 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4775 SDValue St = 4776 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4777 Chains[ChainI] = St; 4778 } 4779 4780 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4781 ArrayRef(Chains.data(), ChainI)); 4782 setValue(&I, StoreNode); 4783 DAG.setRoot(StoreNode); 4784 } 4785 4786 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4787 bool IsCompressing) { 4788 SDLoc sdl = getCurSDLoc(); 4789 4790 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4791 Align &Alignment) { 4792 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4793 Src0 = I.getArgOperand(0); 4794 Ptr = I.getArgOperand(1); 4795 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4796 Mask = I.getArgOperand(3); 4797 }; 4798 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4799 Align &Alignment) { 4800 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4801 Src0 = I.getArgOperand(0); 4802 Ptr = I.getArgOperand(1); 4803 Mask = I.getArgOperand(2); 4804 Alignment = I.getParamAlign(1).valueOrOne(); 4805 }; 4806 4807 Value *PtrOperand, *MaskOperand, *Src0Operand; 4808 Align Alignment; 4809 if (IsCompressing) 4810 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4811 else 4812 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4813 4814 SDValue Ptr = getValue(PtrOperand); 4815 SDValue Src0 = getValue(Src0Operand); 4816 SDValue Mask = getValue(MaskOperand); 4817 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4818 4819 EVT VT = Src0.getValueType(); 4820 4821 auto MMOFlags = MachineMemOperand::MOStore; 4822 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4823 MMOFlags |= MachineMemOperand::MONonTemporal; 4824 4825 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4826 MachinePointerInfo(PtrOperand), MMOFlags, 4827 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4828 4829 const auto &TLI = DAG.getTargetLoweringInfo(); 4830 const auto &TTI = 4831 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4832 SDValue StoreNode = 4833 !IsCompressing && 4834 TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType()) 4835 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0, 4836 Mask) 4837 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, 4838 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false, 4839 IsCompressing); 4840 DAG.setRoot(StoreNode); 4841 setValue(&I, StoreNode); 4842 } 4843 4844 // Get a uniform base for the Gather/Scatter intrinsic. 4845 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4846 // We try to represent it as a base pointer + vector of indices. 4847 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4848 // The first operand of the GEP may be a single pointer or a vector of pointers 4849 // Example: 4850 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4851 // or 4852 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4853 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4854 // 4855 // When the first GEP operand is a single pointer - it is the uniform base we 4856 // are looking for. If first operand of the GEP is a splat vector - we 4857 // extract the splat value and use it as a uniform base. 4858 // In all other cases the function returns 'false'. 4859 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4860 ISD::MemIndexType &IndexType, SDValue &Scale, 4861 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4862 uint64_t ElemSize) { 4863 SelectionDAG& DAG = SDB->DAG; 4864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4865 const DataLayout &DL = DAG.getDataLayout(); 4866 4867 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4868 4869 // Handle splat constant pointer. 4870 if (auto *C = dyn_cast<Constant>(Ptr)) { 4871 C = C->getSplatValue(); 4872 if (!C) 4873 return false; 4874 4875 Base = SDB->getValue(C); 4876 4877 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4878 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4879 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4880 IndexType = ISD::SIGNED_SCALED; 4881 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4882 return true; 4883 } 4884 4885 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4886 if (!GEP || GEP->getParent() != CurBB) 4887 return false; 4888 4889 if (GEP->getNumOperands() != 2) 4890 return false; 4891 4892 const Value *BasePtr = GEP->getPointerOperand(); 4893 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4894 4895 // Make sure the base is scalar and the index is a vector. 4896 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4897 return false; 4898 4899 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4900 if (ScaleVal.isScalable()) 4901 return false; 4902 4903 // Target may not support the required addressing mode. 4904 if (ScaleVal != 1 && 4905 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4906 return false; 4907 4908 Base = SDB->getValue(BasePtr); 4909 Index = SDB->getValue(IndexVal); 4910 IndexType = ISD::SIGNED_SCALED; 4911 4912 Scale = 4913 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4914 return true; 4915 } 4916 4917 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4918 SDLoc sdl = getCurSDLoc(); 4919 4920 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4921 const Value *Ptr = I.getArgOperand(1); 4922 SDValue Src0 = getValue(I.getArgOperand(0)); 4923 SDValue Mask = getValue(I.getArgOperand(3)); 4924 EVT VT = Src0.getValueType(); 4925 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4926 ->getMaybeAlignValue() 4927 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4929 4930 SDValue Base; 4931 SDValue Index; 4932 ISD::MemIndexType IndexType; 4933 SDValue Scale; 4934 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4935 I.getParent(), VT.getScalarStoreSize()); 4936 4937 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4938 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4939 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4940 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4941 if (!UniformBase) { 4942 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4943 Index = getValue(Ptr); 4944 IndexType = ISD::SIGNED_SCALED; 4945 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4946 } 4947 4948 EVT IdxVT = Index.getValueType(); 4949 EVT EltTy = IdxVT.getVectorElementType(); 4950 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4951 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4952 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4953 } 4954 4955 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4956 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4957 Ops, MMO, IndexType, false); 4958 DAG.setRoot(Scatter); 4959 setValue(&I, Scatter); 4960 } 4961 4962 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4963 SDLoc sdl = getCurSDLoc(); 4964 4965 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4966 Align &Alignment) { 4967 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4968 Ptr = I.getArgOperand(0); 4969 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4970 Mask = I.getArgOperand(2); 4971 Src0 = I.getArgOperand(3); 4972 }; 4973 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4974 Align &Alignment) { 4975 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4976 Ptr = I.getArgOperand(0); 4977 Alignment = I.getParamAlign(0).valueOrOne(); 4978 Mask = I.getArgOperand(1); 4979 Src0 = I.getArgOperand(2); 4980 }; 4981 4982 Value *PtrOperand, *MaskOperand, *Src0Operand; 4983 Align Alignment; 4984 if (IsExpanding) 4985 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4986 else 4987 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4988 4989 SDValue Ptr = getValue(PtrOperand); 4990 SDValue Src0 = getValue(Src0Operand); 4991 SDValue Mask = getValue(MaskOperand); 4992 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4993 4994 EVT VT = Src0.getValueType(); 4995 AAMDNodes AAInfo = I.getAAMetadata(); 4996 const MDNode *Ranges = getRangeMetadata(I); 4997 4998 // Do not serialize masked loads of constant memory with anything. 4999 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 5000 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 5001 5002 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 5003 5004 auto MMOFlags = MachineMemOperand::MOLoad; 5005 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 5006 MMOFlags |= MachineMemOperand::MONonTemporal; 5007 5008 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5009 MachinePointerInfo(PtrOperand), MMOFlags, 5010 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 5011 5012 const auto &TLI = DAG.getTargetLoweringInfo(); 5013 const auto &TTI = 5014 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 5015 // The Load/Res may point to different values and both of them are output 5016 // variables. 5017 SDValue Load; 5018 SDValue Res; 5019 if (!IsExpanding && 5020 TTI.hasConditionalLoadStoreForType(Src0Operand->getType())) 5021 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask); 5022 else 5023 Res = Load = 5024 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 5025 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 5026 if (AddToChain) 5027 PendingLoads.push_back(Load.getValue(1)); 5028 setValue(&I, Res); 5029 } 5030 5031 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 5032 SDLoc sdl = getCurSDLoc(); 5033 5034 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 5035 const Value *Ptr = I.getArgOperand(0); 5036 SDValue Src0 = getValue(I.getArgOperand(3)); 5037 SDValue Mask = getValue(I.getArgOperand(2)); 5038 5039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5040 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5041 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 5042 ->getMaybeAlignValue() 5043 .value_or(DAG.getEVTAlign(VT.getScalarType())); 5044 5045 const MDNode *Ranges = getRangeMetadata(I); 5046 5047 SDValue Root = DAG.getRoot(); 5048 SDValue Base; 5049 SDValue Index; 5050 ISD::MemIndexType IndexType; 5051 SDValue Scale; 5052 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 5053 I.getParent(), VT.getScalarStoreSize()); 5054 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 5055 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5056 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 5057 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 5058 Ranges); 5059 5060 if (!UniformBase) { 5061 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5062 Index = getValue(Ptr); 5063 IndexType = ISD::SIGNED_SCALED; 5064 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5065 } 5066 5067 EVT IdxVT = Index.getValueType(); 5068 EVT EltTy = IdxVT.getVectorElementType(); 5069 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 5070 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 5071 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 5072 } 5073 5074 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 5075 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 5076 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 5077 5078 PendingLoads.push_back(Gather.getValue(1)); 5079 setValue(&I, Gather); 5080 } 5081 5082 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5083 SDLoc dl = getCurSDLoc(); 5084 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5085 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5086 SyncScope::ID SSID = I.getSyncScopeID(); 5087 5088 SDValue InChain = getRoot(); 5089 5090 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5091 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5092 5093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5094 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5095 5096 MachineFunction &MF = DAG.getMachineFunction(); 5097 MachineMemOperand *MMO = MF.getMachineMemOperand( 5098 MachinePointerInfo(I.getPointerOperand()), Flags, 5099 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5100 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5101 5102 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5103 dl, MemVT, VTs, InChain, 5104 getValue(I.getPointerOperand()), 5105 getValue(I.getCompareOperand()), 5106 getValue(I.getNewValOperand()), MMO); 5107 5108 SDValue OutChain = L.getValue(2); 5109 5110 setValue(&I, L); 5111 DAG.setRoot(OutChain); 5112 } 5113 5114 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5115 SDLoc dl = getCurSDLoc(); 5116 ISD::NodeType NT; 5117 switch (I.getOperation()) { 5118 default: llvm_unreachable("Unknown atomicrmw operation"); 5119 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5120 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5121 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5122 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5123 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5124 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5125 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5126 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5127 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5128 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5129 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5130 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5131 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5132 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5133 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5134 case AtomicRMWInst::UIncWrap: 5135 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5136 break; 5137 case AtomicRMWInst::UDecWrap: 5138 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5139 break; 5140 case AtomicRMWInst::USubCond: 5141 NT = ISD::ATOMIC_LOAD_USUB_COND; 5142 break; 5143 case AtomicRMWInst::USubSat: 5144 NT = ISD::ATOMIC_LOAD_USUB_SAT; 5145 break; 5146 } 5147 AtomicOrdering Ordering = I.getOrdering(); 5148 SyncScope::ID SSID = I.getSyncScopeID(); 5149 5150 SDValue InChain = getRoot(); 5151 5152 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5153 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5154 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5155 5156 MachineFunction &MF = DAG.getMachineFunction(); 5157 MachineMemOperand *MMO = MF.getMachineMemOperand( 5158 MachinePointerInfo(I.getPointerOperand()), Flags, 5159 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5160 AAMDNodes(), nullptr, SSID, Ordering); 5161 5162 SDValue L = 5163 DAG.getAtomic(NT, dl, MemVT, InChain, 5164 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5165 MMO); 5166 5167 SDValue OutChain = L.getValue(1); 5168 5169 setValue(&I, L); 5170 DAG.setRoot(OutChain); 5171 } 5172 5173 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5174 SDLoc dl = getCurSDLoc(); 5175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5176 SDValue Ops[3]; 5177 Ops[0] = getRoot(); 5178 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5179 TLI.getFenceOperandTy(DAG.getDataLayout())); 5180 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5181 TLI.getFenceOperandTy(DAG.getDataLayout())); 5182 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5183 setValue(&I, N); 5184 DAG.setRoot(N); 5185 } 5186 5187 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5188 SDLoc dl = getCurSDLoc(); 5189 AtomicOrdering Order = I.getOrdering(); 5190 SyncScope::ID SSID = I.getSyncScopeID(); 5191 5192 SDValue InChain = getRoot(); 5193 5194 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5195 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5196 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5197 5198 if (!TLI.supportsUnalignedAtomics() && 5199 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5200 report_fatal_error("Cannot generate unaligned atomic load"); 5201 5202 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5203 5204 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5205 MachinePointerInfo(I.getPointerOperand()), Flags, 5206 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5207 nullptr, SSID, Order); 5208 5209 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5210 5211 SDValue Ptr = getValue(I.getPointerOperand()); 5212 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5213 Ptr, MMO); 5214 5215 SDValue OutChain = L.getValue(1); 5216 if (MemVT != VT) 5217 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5218 5219 setValue(&I, L); 5220 DAG.setRoot(OutChain); 5221 } 5222 5223 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5224 SDLoc dl = getCurSDLoc(); 5225 5226 AtomicOrdering Ordering = I.getOrdering(); 5227 SyncScope::ID SSID = I.getSyncScopeID(); 5228 5229 SDValue InChain = getRoot(); 5230 5231 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5232 EVT MemVT = 5233 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5234 5235 if (!TLI.supportsUnalignedAtomics() && 5236 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5237 report_fatal_error("Cannot generate unaligned atomic store"); 5238 5239 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5240 5241 MachineFunction &MF = DAG.getMachineFunction(); 5242 MachineMemOperand *MMO = MF.getMachineMemOperand( 5243 MachinePointerInfo(I.getPointerOperand()), Flags, 5244 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5245 nullptr, SSID, Ordering); 5246 5247 SDValue Val = getValue(I.getValueOperand()); 5248 if (Val.getValueType() != MemVT) 5249 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5250 SDValue Ptr = getValue(I.getPointerOperand()); 5251 5252 SDValue OutChain = 5253 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5254 5255 setValue(&I, OutChain); 5256 DAG.setRoot(OutChain); 5257 } 5258 5259 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5260 /// node. 5261 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5262 unsigned Intrinsic) { 5263 // Ignore the callsite's attributes. A specific call site may be marked with 5264 // readnone, but the lowering code will expect the chain based on the 5265 // definition. 5266 const Function *F = I.getCalledFunction(); 5267 bool HasChain = !F->doesNotAccessMemory(); 5268 bool OnlyLoad = 5269 HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow(); 5270 5271 // Build the operand list. 5272 SmallVector<SDValue, 8> Ops; 5273 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5274 if (OnlyLoad) { 5275 // We don't need to serialize loads against other loads. 5276 Ops.push_back(DAG.getRoot()); 5277 } else { 5278 Ops.push_back(getRoot()); 5279 } 5280 } 5281 5282 // Info is set by getTgtMemIntrinsic 5283 TargetLowering::IntrinsicInfo Info; 5284 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5285 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5286 DAG.getMachineFunction(), 5287 Intrinsic); 5288 5289 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5290 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5291 Info.opc == ISD::INTRINSIC_W_CHAIN) 5292 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5293 TLI.getPointerTy(DAG.getDataLayout()))); 5294 5295 // Add all operands of the call to the operand list. 5296 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5297 const Value *Arg = I.getArgOperand(i); 5298 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5299 Ops.push_back(getValue(Arg)); 5300 continue; 5301 } 5302 5303 // Use TargetConstant instead of a regular constant for immarg. 5304 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5305 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5306 assert(CI->getBitWidth() <= 64 && 5307 "large intrinsic immediates not handled"); 5308 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5309 } else { 5310 Ops.push_back( 5311 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5312 } 5313 } 5314 5315 SmallVector<EVT, 4> ValueVTs; 5316 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5317 5318 if (HasChain) 5319 ValueVTs.push_back(MVT::Other); 5320 5321 SDVTList VTs = DAG.getVTList(ValueVTs); 5322 5323 // Propagate fast-math-flags from IR to node(s). 5324 SDNodeFlags Flags; 5325 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5326 Flags.copyFMF(*FPMO); 5327 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5328 5329 // Create the node. 5330 SDValue Result; 5331 5332 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5333 auto *Token = Bundle->Inputs[0].get(); 5334 SDValue ConvControlToken = getValue(Token); 5335 assert(Ops.back().getValueType() != MVT::Glue && 5336 "Did not expected another glue node here."); 5337 ConvControlToken = 5338 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5339 Ops.push_back(ConvControlToken); 5340 } 5341 5342 // In some cases, custom collection of operands from CallInst I may be needed. 5343 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5344 if (IsTgtIntrinsic) { 5345 // This is target intrinsic that touches memory 5346 // 5347 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5348 // didn't yield anything useful. 5349 MachinePointerInfo MPI; 5350 if (Info.ptrVal) 5351 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5352 else if (Info.fallbackAddressSpace) 5353 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5354 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5355 Info.memVT, MPI, Info.align, Info.flags, 5356 Info.size, I.getAAMetadata()); 5357 } else if (!HasChain) { 5358 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5359 } else if (!I.getType()->isVoidTy()) { 5360 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5361 } else { 5362 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5363 } 5364 5365 if (HasChain) { 5366 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5367 if (OnlyLoad) 5368 PendingLoads.push_back(Chain); 5369 else 5370 DAG.setRoot(Chain); 5371 } 5372 5373 if (!I.getType()->isVoidTy()) { 5374 if (!isa<VectorType>(I.getType())) 5375 Result = lowerRangeToAssertZExt(DAG, I, Result); 5376 5377 MaybeAlign Alignment = I.getRetAlign(); 5378 5379 // Insert `assertalign` node if there's an alignment. 5380 if (InsertAssertAlign && Alignment) { 5381 Result = 5382 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5383 } 5384 } 5385 5386 setValue(&I, Result); 5387 } 5388 5389 /// GetSignificand - Get the significand and build it into a floating-point 5390 /// number with exponent of 1: 5391 /// 5392 /// Op = (Op & 0x007fffff) | 0x3f800000; 5393 /// 5394 /// where Op is the hexadecimal representation of floating point value. 5395 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5396 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5397 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5398 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5399 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5400 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5401 } 5402 5403 /// GetExponent - Get the exponent: 5404 /// 5405 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5406 /// 5407 /// where Op is the hexadecimal representation of floating point value. 5408 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5409 const TargetLowering &TLI, const SDLoc &dl) { 5410 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5411 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5412 SDValue t1 = DAG.getNode( 5413 ISD::SRL, dl, MVT::i32, t0, 5414 DAG.getConstant(23, dl, 5415 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5416 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5417 DAG.getConstant(127, dl, MVT::i32)); 5418 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5419 } 5420 5421 /// getF32Constant - Get 32-bit floating point constant. 5422 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5423 const SDLoc &dl) { 5424 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5425 MVT::f32); 5426 } 5427 5428 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5429 SelectionDAG &DAG) { 5430 // TODO: What fast-math-flags should be set on the floating-point nodes? 5431 5432 // IntegerPartOfX = ((int32_t)(t0); 5433 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5434 5435 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5436 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5437 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5438 5439 // IntegerPartOfX <<= 23; 5440 IntegerPartOfX = 5441 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5442 DAG.getConstant(23, dl, 5443 DAG.getTargetLoweringInfo().getShiftAmountTy( 5444 MVT::i32, DAG.getDataLayout()))); 5445 5446 SDValue TwoToFractionalPartOfX; 5447 if (LimitFloatPrecision <= 6) { 5448 // For floating-point precision of 6: 5449 // 5450 // TwoToFractionalPartOfX = 5451 // 0.997535578f + 5452 // (0.735607626f + 0.252464424f * x) * x; 5453 // 5454 // error 0.0144103317, which is 6 bits 5455 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5456 getF32Constant(DAG, 0x3e814304, dl)); 5457 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5458 getF32Constant(DAG, 0x3f3c50c8, dl)); 5459 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5460 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5461 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5462 } else if (LimitFloatPrecision <= 12) { 5463 // For floating-point precision of 12: 5464 // 5465 // TwoToFractionalPartOfX = 5466 // 0.999892986f + 5467 // (0.696457318f + 5468 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5469 // 5470 // error 0.000107046256, which is 13 to 14 bits 5471 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5472 getF32Constant(DAG, 0x3da235e3, dl)); 5473 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5474 getF32Constant(DAG, 0x3e65b8f3, dl)); 5475 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5476 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5477 getF32Constant(DAG, 0x3f324b07, dl)); 5478 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5479 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5480 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5481 } else { // LimitFloatPrecision <= 18 5482 // For floating-point precision of 18: 5483 // 5484 // TwoToFractionalPartOfX = 5485 // 0.999999982f + 5486 // (0.693148872f + 5487 // (0.240227044f + 5488 // (0.554906021e-1f + 5489 // (0.961591928e-2f + 5490 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5491 // error 2.47208000*10^(-7), which is better than 18 bits 5492 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5493 getF32Constant(DAG, 0x3924b03e, dl)); 5494 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5495 getF32Constant(DAG, 0x3ab24b87, dl)); 5496 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5497 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5498 getF32Constant(DAG, 0x3c1d8c17, dl)); 5499 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5500 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5501 getF32Constant(DAG, 0x3d634a1d, dl)); 5502 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5503 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5504 getF32Constant(DAG, 0x3e75fe14, dl)); 5505 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5506 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5507 getF32Constant(DAG, 0x3f317234, dl)); 5508 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5509 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5510 getF32Constant(DAG, 0x3f800000, dl)); 5511 } 5512 5513 // Add the exponent into the result in integer domain. 5514 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5515 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5516 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5517 } 5518 5519 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5520 /// limited-precision mode. 5521 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5522 const TargetLowering &TLI, SDNodeFlags Flags) { 5523 if (Op.getValueType() == MVT::f32 && 5524 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5525 5526 // Put the exponent in the right bit position for later addition to the 5527 // final result: 5528 // 5529 // t0 = Op * log2(e) 5530 5531 // TODO: What fast-math-flags should be set here? 5532 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5533 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5534 return getLimitedPrecisionExp2(t0, dl, DAG); 5535 } 5536 5537 // No special expansion. 5538 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5539 } 5540 5541 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5542 /// limited-precision mode. 5543 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5544 const TargetLowering &TLI, SDNodeFlags Flags) { 5545 // TODO: What fast-math-flags should be set on the floating-point nodes? 5546 5547 if (Op.getValueType() == MVT::f32 && 5548 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5549 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5550 5551 // Scale the exponent by log(2). 5552 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5553 SDValue LogOfExponent = 5554 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5555 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5556 5557 // Get the significand and build it into a floating-point number with 5558 // exponent of 1. 5559 SDValue X = GetSignificand(DAG, Op1, dl); 5560 5561 SDValue LogOfMantissa; 5562 if (LimitFloatPrecision <= 6) { 5563 // For floating-point precision of 6: 5564 // 5565 // LogofMantissa = 5566 // -1.1609546f + 5567 // (1.4034025f - 0.23903021f * x) * x; 5568 // 5569 // error 0.0034276066, which is better than 8 bits 5570 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5571 getF32Constant(DAG, 0xbe74c456, dl)); 5572 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5573 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5574 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5575 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5576 getF32Constant(DAG, 0x3f949a29, dl)); 5577 } else if (LimitFloatPrecision <= 12) { 5578 // For floating-point precision of 12: 5579 // 5580 // LogOfMantissa = 5581 // -1.7417939f + 5582 // (2.8212026f + 5583 // (-1.4699568f + 5584 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5585 // 5586 // error 0.000061011436, which is 14 bits 5587 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5588 getF32Constant(DAG, 0xbd67b6d6, dl)); 5589 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5590 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5591 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5592 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5593 getF32Constant(DAG, 0x3fbc278b, dl)); 5594 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5595 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5596 getF32Constant(DAG, 0x40348e95, dl)); 5597 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5598 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5599 getF32Constant(DAG, 0x3fdef31a, dl)); 5600 } else { // LimitFloatPrecision <= 18 5601 // For floating-point precision of 18: 5602 // 5603 // LogOfMantissa = 5604 // -2.1072184f + 5605 // (4.2372794f + 5606 // (-3.7029485f + 5607 // (2.2781945f + 5608 // (-0.87823314f + 5609 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5610 // 5611 // error 0.0000023660568, which is better than 18 bits 5612 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5613 getF32Constant(DAG, 0xbc91e5ac, dl)); 5614 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5615 getF32Constant(DAG, 0x3e4350aa, dl)); 5616 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5617 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5618 getF32Constant(DAG, 0x3f60d3e3, dl)); 5619 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5620 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5621 getF32Constant(DAG, 0x4011cdf0, dl)); 5622 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5623 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5624 getF32Constant(DAG, 0x406cfd1c, dl)); 5625 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5626 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5627 getF32Constant(DAG, 0x408797cb, dl)); 5628 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5629 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5630 getF32Constant(DAG, 0x4006dcab, dl)); 5631 } 5632 5633 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5634 } 5635 5636 // No special expansion. 5637 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5638 } 5639 5640 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5641 /// limited-precision mode. 5642 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5643 const TargetLowering &TLI, SDNodeFlags Flags) { 5644 // TODO: What fast-math-flags should be set on the floating-point nodes? 5645 5646 if (Op.getValueType() == MVT::f32 && 5647 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5648 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5649 5650 // Get the exponent. 5651 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5652 5653 // Get the significand and build it into a floating-point number with 5654 // exponent of 1. 5655 SDValue X = GetSignificand(DAG, Op1, dl); 5656 5657 // Different possible minimax approximations of significand in 5658 // floating-point for various degrees of accuracy over [1,2]. 5659 SDValue Log2ofMantissa; 5660 if (LimitFloatPrecision <= 6) { 5661 // For floating-point precision of 6: 5662 // 5663 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5664 // 5665 // error 0.0049451742, which is more than 7 bits 5666 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5667 getF32Constant(DAG, 0xbeb08fe0, dl)); 5668 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5669 getF32Constant(DAG, 0x40019463, dl)); 5670 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5671 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5672 getF32Constant(DAG, 0x3fd6633d, dl)); 5673 } else if (LimitFloatPrecision <= 12) { 5674 // For floating-point precision of 12: 5675 // 5676 // Log2ofMantissa = 5677 // -2.51285454f + 5678 // (4.07009056f + 5679 // (-2.12067489f + 5680 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5681 // 5682 // error 0.0000876136000, which is better than 13 bits 5683 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5684 getF32Constant(DAG, 0xbda7262e, dl)); 5685 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5686 getF32Constant(DAG, 0x3f25280b, dl)); 5687 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5688 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5689 getF32Constant(DAG, 0x4007b923, dl)); 5690 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5691 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5692 getF32Constant(DAG, 0x40823e2f, dl)); 5693 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5694 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5695 getF32Constant(DAG, 0x4020d29c, dl)); 5696 } else { // LimitFloatPrecision <= 18 5697 // For floating-point precision of 18: 5698 // 5699 // Log2ofMantissa = 5700 // -3.0400495f + 5701 // (6.1129976f + 5702 // (-5.3420409f + 5703 // (3.2865683f + 5704 // (-1.2669343f + 5705 // (0.27515199f - 5706 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5707 // 5708 // error 0.0000018516, which is better than 18 bits 5709 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5710 getF32Constant(DAG, 0xbcd2769e, dl)); 5711 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5712 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5713 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5714 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5715 getF32Constant(DAG, 0x3fa22ae7, dl)); 5716 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5717 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5718 getF32Constant(DAG, 0x40525723, dl)); 5719 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5720 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5721 getF32Constant(DAG, 0x40aaf200, dl)); 5722 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5723 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5724 getF32Constant(DAG, 0x40c39dad, dl)); 5725 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5726 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5727 getF32Constant(DAG, 0x4042902c, dl)); 5728 } 5729 5730 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5731 } 5732 5733 // No special expansion. 5734 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5735 } 5736 5737 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5738 /// limited-precision mode. 5739 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5740 const TargetLowering &TLI, SDNodeFlags Flags) { 5741 // TODO: What fast-math-flags should be set on the floating-point nodes? 5742 5743 if (Op.getValueType() == MVT::f32 && 5744 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5745 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5746 5747 // Scale the exponent by log10(2) [0.30102999f]. 5748 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5749 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5750 getF32Constant(DAG, 0x3e9a209a, dl)); 5751 5752 // Get the significand and build it into a floating-point number with 5753 // exponent of 1. 5754 SDValue X = GetSignificand(DAG, Op1, dl); 5755 5756 SDValue Log10ofMantissa; 5757 if (LimitFloatPrecision <= 6) { 5758 // For floating-point precision of 6: 5759 // 5760 // Log10ofMantissa = 5761 // -0.50419619f + 5762 // (0.60948995f - 0.10380950f * x) * x; 5763 // 5764 // error 0.0014886165, which is 6 bits 5765 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5766 getF32Constant(DAG, 0xbdd49a13, dl)); 5767 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5768 getF32Constant(DAG, 0x3f1c0789, dl)); 5769 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5770 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5771 getF32Constant(DAG, 0x3f011300, dl)); 5772 } else if (LimitFloatPrecision <= 12) { 5773 // For floating-point precision of 12: 5774 // 5775 // Log10ofMantissa = 5776 // -0.64831180f + 5777 // (0.91751397f + 5778 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5779 // 5780 // error 0.00019228036, which is better than 12 bits 5781 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5782 getF32Constant(DAG, 0x3d431f31, dl)); 5783 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5784 getF32Constant(DAG, 0x3ea21fb2, dl)); 5785 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5786 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5787 getF32Constant(DAG, 0x3f6ae232, dl)); 5788 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5789 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5790 getF32Constant(DAG, 0x3f25f7c3, dl)); 5791 } else { // LimitFloatPrecision <= 18 5792 // For floating-point precision of 18: 5793 // 5794 // Log10ofMantissa = 5795 // -0.84299375f + 5796 // (1.5327582f + 5797 // (-1.0688956f + 5798 // (0.49102474f + 5799 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5800 // 5801 // error 0.0000037995730, which is better than 18 bits 5802 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5803 getF32Constant(DAG, 0x3c5d51ce, dl)); 5804 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5805 getF32Constant(DAG, 0x3e00685a, dl)); 5806 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5807 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5808 getF32Constant(DAG, 0x3efb6798, dl)); 5809 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5810 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5811 getF32Constant(DAG, 0x3f88d192, dl)); 5812 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5813 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5814 getF32Constant(DAG, 0x3fc4316c, dl)); 5815 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5816 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5817 getF32Constant(DAG, 0x3f57ce70, dl)); 5818 } 5819 5820 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5821 } 5822 5823 // No special expansion. 5824 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5825 } 5826 5827 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5828 /// limited-precision mode. 5829 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5830 const TargetLowering &TLI, SDNodeFlags Flags) { 5831 if (Op.getValueType() == MVT::f32 && 5832 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5833 return getLimitedPrecisionExp2(Op, dl, DAG); 5834 5835 // No special expansion. 5836 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5837 } 5838 5839 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5840 /// limited-precision mode with x == 10.0f. 5841 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5842 SelectionDAG &DAG, const TargetLowering &TLI, 5843 SDNodeFlags Flags) { 5844 bool IsExp10 = false; 5845 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5846 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5847 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5848 APFloat Ten(10.0f); 5849 IsExp10 = LHSC->isExactlyValue(Ten); 5850 } 5851 } 5852 5853 // TODO: What fast-math-flags should be set on the FMUL node? 5854 if (IsExp10) { 5855 // Put the exponent in the right bit position for later addition to the 5856 // final result: 5857 // 5858 // #define LOG2OF10 3.3219281f 5859 // t0 = Op * LOG2OF10; 5860 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5861 getF32Constant(DAG, 0x40549a78, dl)); 5862 return getLimitedPrecisionExp2(t0, dl, DAG); 5863 } 5864 5865 // No special expansion. 5866 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5867 } 5868 5869 /// ExpandPowI - Expand a llvm.powi intrinsic. 5870 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5871 SelectionDAG &DAG) { 5872 // If RHS is a constant, we can expand this out to a multiplication tree if 5873 // it's beneficial on the target, otherwise we end up lowering to a call to 5874 // __powidf2 (for example). 5875 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5876 unsigned Val = RHSC->getSExtValue(); 5877 5878 // powi(x, 0) -> 1.0 5879 if (Val == 0) 5880 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5881 5882 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5883 Val, DAG.shouldOptForSize())) { 5884 // Get the exponent as a positive value. 5885 if ((int)Val < 0) 5886 Val = -Val; 5887 // We use the simple binary decomposition method to generate the multiply 5888 // sequence. There are more optimal ways to do this (for example, 5889 // powi(x,15) generates one more multiply than it should), but this has 5890 // the benefit of being both really simple and much better than a libcall. 5891 SDValue Res; // Logically starts equal to 1.0 5892 SDValue CurSquare = LHS; 5893 // TODO: Intrinsics should have fast-math-flags that propagate to these 5894 // nodes. 5895 while (Val) { 5896 if (Val & 1) { 5897 if (Res.getNode()) 5898 Res = 5899 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5900 else 5901 Res = CurSquare; // 1.0*CurSquare. 5902 } 5903 5904 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5905 CurSquare, CurSquare); 5906 Val >>= 1; 5907 } 5908 5909 // If the original was negative, invert the result, producing 1/(x*x*x). 5910 if (RHSC->getSExtValue() < 0) 5911 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5912 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5913 return Res; 5914 } 5915 } 5916 5917 // Otherwise, expand to a libcall. 5918 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5919 } 5920 5921 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5922 SDValue LHS, SDValue RHS, SDValue Scale, 5923 SelectionDAG &DAG, const TargetLowering &TLI) { 5924 EVT VT = LHS.getValueType(); 5925 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5926 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5927 LLVMContext &Ctx = *DAG.getContext(); 5928 5929 // If the type is legal but the operation isn't, this node might survive all 5930 // the way to operation legalization. If we end up there and we do not have 5931 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5932 // node. 5933 5934 // Coax the legalizer into expanding the node during type legalization instead 5935 // by bumping the size by one bit. This will force it to Promote, enabling the 5936 // early expansion and avoiding the need to expand later. 5937 5938 // We don't have to do this if Scale is 0; that can always be expanded, unless 5939 // it's a saturating signed operation. Those can experience true integer 5940 // division overflow, a case which we must avoid. 5941 5942 // FIXME: We wouldn't have to do this (or any of the early 5943 // expansion/promotion) if it was possible to expand a libcall of an 5944 // illegal type during operation legalization. But it's not, so things 5945 // get a bit hacky. 5946 unsigned ScaleInt = Scale->getAsZExtVal(); 5947 if ((ScaleInt > 0 || (Saturating && Signed)) && 5948 (TLI.isTypeLegal(VT) || 5949 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5950 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5951 Opcode, VT, ScaleInt); 5952 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5953 EVT PromVT; 5954 if (VT.isScalarInteger()) 5955 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5956 else if (VT.isVector()) { 5957 PromVT = VT.getVectorElementType(); 5958 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5959 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5960 } else 5961 llvm_unreachable("Wrong VT for DIVFIX?"); 5962 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5963 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5964 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5965 // For saturating operations, we need to shift up the LHS to get the 5966 // proper saturation width, and then shift down again afterwards. 5967 if (Saturating) 5968 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5969 DAG.getConstant(1, DL, ShiftTy)); 5970 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5971 if (Saturating) 5972 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5973 DAG.getConstant(1, DL, ShiftTy)); 5974 return DAG.getZExtOrTrunc(Res, DL, VT); 5975 } 5976 } 5977 5978 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5979 } 5980 5981 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5982 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5983 static void 5984 getUnderlyingArgRegs(SmallVectorImpl<std::pair<Register, TypeSize>> &Regs, 5985 const SDValue &N) { 5986 switch (N.getOpcode()) { 5987 case ISD::CopyFromReg: { 5988 SDValue Op = N.getOperand(1); 5989 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5990 Op.getValueType().getSizeInBits()); 5991 return; 5992 } 5993 case ISD::BITCAST: 5994 case ISD::AssertZext: 5995 case ISD::AssertSext: 5996 case ISD::TRUNCATE: 5997 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5998 return; 5999 case ISD::BUILD_PAIR: 6000 case ISD::BUILD_VECTOR: 6001 case ISD::CONCAT_VECTORS: 6002 for (SDValue Op : N->op_values()) 6003 getUnderlyingArgRegs(Regs, Op); 6004 return; 6005 default: 6006 return; 6007 } 6008 } 6009 6010 /// If the DbgValueInst is a dbg_value of a function argument, create the 6011 /// corresponding DBG_VALUE machine instruction for it now. At the end of 6012 /// instruction selection, they will be inserted to the entry BB. 6013 /// We don't currently support this for variadic dbg_values, as they shouldn't 6014 /// appear for function arguments or in the prologue. 6015 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 6016 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 6017 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 6018 const Argument *Arg = dyn_cast<Argument>(V); 6019 if (!Arg) 6020 return false; 6021 6022 MachineFunction &MF = DAG.getMachineFunction(); 6023 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6024 6025 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 6026 // we've been asked to pursue. 6027 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 6028 bool Indirect) { 6029 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 6030 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 6031 // pointing at the VReg, which will be patched up later. 6032 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 6033 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 6034 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 6035 /* isKill */ false, /* isDead */ false, 6036 /* isUndef */ false, /* isEarlyClobber */ false, 6037 /* SubReg */ 0, /* isDebug */ true)}); 6038 6039 auto *NewDIExpr = FragExpr; 6040 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 6041 // the DIExpression. 6042 if (Indirect) 6043 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 6044 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 6045 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 6046 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 6047 } else { 6048 // Create a completely standard DBG_VALUE. 6049 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 6050 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 6051 } 6052 }; 6053 6054 if (Kind == FuncArgumentDbgValueKind::Value) { 6055 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6056 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 6057 // the entry block. 6058 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 6059 if (!IsInEntryBlock) 6060 return false; 6061 6062 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6063 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 6064 // variable that also is a param. 6065 // 6066 // Although, if we are at the top of the entry block already, we can still 6067 // emit using ArgDbgValue. This might catch some situations when the 6068 // dbg.value refers to an argument that isn't used in the entry block, so 6069 // any CopyToReg node would be optimized out and the only way to express 6070 // this DBG_VALUE is by using the physical reg (or FI) as done in this 6071 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 6072 // we should only emit as ArgDbgValue if the Variable is an argument to the 6073 // current function, and the dbg.value intrinsic is found in the entry 6074 // block. 6075 bool VariableIsFunctionInputArg = Variable->isParameter() && 6076 !DL->getInlinedAt(); 6077 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 6078 if (!IsInPrologue && !VariableIsFunctionInputArg) 6079 return false; 6080 6081 // Here we assume that a function argument on IR level only can be used to 6082 // describe one input parameter on source level. If we for example have 6083 // source code like this 6084 // 6085 // struct A { long x, y; }; 6086 // void foo(struct A a, long b) { 6087 // ... 6088 // b = a.x; 6089 // ... 6090 // } 6091 // 6092 // and IR like this 6093 // 6094 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6095 // entry: 6096 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6097 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6098 // call void @llvm.dbg.value(metadata i32 %b, "b", 6099 // ... 6100 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6101 // ... 6102 // 6103 // then the last dbg.value is describing a parameter "b" using a value that 6104 // is an argument. But since we already has used %a1 to describe a parameter 6105 // we should not handle that last dbg.value here (that would result in an 6106 // incorrect hoisting of the DBG_VALUE to the function entry). 6107 // Notice that we allow one dbg.value per IR level argument, to accommodate 6108 // for the situation with fragments above. 6109 // If there is no node for the value being handled, we return true to skip 6110 // the normal generation of debug info, as it would kill existing debug 6111 // info for the parameter in case of duplicates. 6112 if (VariableIsFunctionInputArg) { 6113 unsigned ArgNo = Arg->getArgNo(); 6114 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6115 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6116 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6117 return !NodeMap[V].getNode(); 6118 FuncInfo.DescribedArgs.set(ArgNo); 6119 } 6120 } 6121 6122 bool IsIndirect = false; 6123 std::optional<MachineOperand> Op; 6124 // Some arguments' frame index is recorded during argument lowering. 6125 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6126 if (FI != std::numeric_limits<int>::max()) 6127 Op = MachineOperand::CreateFI(FI); 6128 6129 SmallVector<std::pair<Register, TypeSize>, 8> ArgRegsAndSizes; 6130 if (!Op && N.getNode()) { 6131 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6132 Register Reg; 6133 if (ArgRegsAndSizes.size() == 1) 6134 Reg = ArgRegsAndSizes.front().first; 6135 6136 if (Reg && Reg.isVirtual()) { 6137 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6138 Register PR = RegInfo.getLiveInPhysReg(Reg); 6139 if (PR) 6140 Reg = PR; 6141 } 6142 if (Reg) { 6143 Op = MachineOperand::CreateReg(Reg, false); 6144 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6145 } 6146 } 6147 6148 if (!Op && N.getNode()) { 6149 // Check if frame index is available. 6150 SDValue LCandidate = peekThroughBitcasts(N); 6151 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6152 if (FrameIndexSDNode *FINode = 6153 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6154 Op = MachineOperand::CreateFI(FINode->getIndex()); 6155 } 6156 6157 if (!Op) { 6158 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6159 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<Register, TypeSize>> 6160 SplitRegs) { 6161 unsigned Offset = 0; 6162 for (const auto &RegAndSize : SplitRegs) { 6163 // If the expression is already a fragment, the current register 6164 // offset+size might extend beyond the fragment. In this case, only 6165 // the register bits that are inside the fragment are relevant. 6166 int RegFragmentSizeInBits = RegAndSize.second; 6167 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6168 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6169 // The register is entirely outside the expression fragment, 6170 // so is irrelevant for debug info. 6171 if (Offset >= ExprFragmentSizeInBits) 6172 break; 6173 // The register is partially outside the expression fragment, only 6174 // the low bits within the fragment are relevant for debug info. 6175 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6176 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6177 } 6178 } 6179 6180 auto FragmentExpr = DIExpression::createFragmentExpression( 6181 Expr, Offset, RegFragmentSizeInBits); 6182 Offset += RegAndSize.second; 6183 // If a valid fragment expression cannot be created, the variable's 6184 // correct value cannot be determined and so it is set as Undef. 6185 if (!FragmentExpr) { 6186 SDDbgValue *SDV = DAG.getConstantDbgValue( 6187 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6188 DAG.AddDbgValue(SDV, false); 6189 continue; 6190 } 6191 MachineInstr *NewMI = 6192 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6193 Kind != FuncArgumentDbgValueKind::Value); 6194 FuncInfo.ArgDbgValues.push_back(NewMI); 6195 } 6196 }; 6197 6198 // Check if ValueMap has reg number. 6199 DenseMap<const Value *, Register>::const_iterator 6200 VMI = FuncInfo.ValueMap.find(V); 6201 if (VMI != FuncInfo.ValueMap.end()) { 6202 const auto &TLI = DAG.getTargetLoweringInfo(); 6203 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6204 V->getType(), std::nullopt); 6205 if (RFV.occupiesMultipleRegs()) { 6206 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6207 return true; 6208 } 6209 6210 Op = MachineOperand::CreateReg(VMI->second, false); 6211 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6212 } else if (ArgRegsAndSizes.size() > 1) { 6213 // This was split due to the calling convention, and no virtual register 6214 // mapping exists for the value. 6215 splitMultiRegDbgValue(ArgRegsAndSizes); 6216 return true; 6217 } 6218 } 6219 6220 if (!Op) 6221 return false; 6222 6223 assert(Variable->isValidLocationForIntrinsic(DL) && 6224 "Expected inlined-at fields to agree"); 6225 MachineInstr *NewMI = nullptr; 6226 6227 if (Op->isReg()) 6228 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6229 else 6230 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6231 Variable, Expr); 6232 6233 // Otherwise, use ArgDbgValues. 6234 FuncInfo.ArgDbgValues.push_back(NewMI); 6235 return true; 6236 } 6237 6238 /// Return the appropriate SDDbgValue based on N. 6239 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6240 DILocalVariable *Variable, 6241 DIExpression *Expr, 6242 const DebugLoc &dl, 6243 unsigned DbgSDNodeOrder) { 6244 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6245 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6246 // stack slot locations. 6247 // 6248 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6249 // debug values here after optimization: 6250 // 6251 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6252 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6253 // 6254 // Both describe the direct values of their associated variables. 6255 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6256 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6257 } 6258 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6259 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6260 } 6261 6262 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6263 switch (Intrinsic) { 6264 case Intrinsic::smul_fix: 6265 return ISD::SMULFIX; 6266 case Intrinsic::umul_fix: 6267 return ISD::UMULFIX; 6268 case Intrinsic::smul_fix_sat: 6269 return ISD::SMULFIXSAT; 6270 case Intrinsic::umul_fix_sat: 6271 return ISD::UMULFIXSAT; 6272 case Intrinsic::sdiv_fix: 6273 return ISD::SDIVFIX; 6274 case Intrinsic::udiv_fix: 6275 return ISD::UDIVFIX; 6276 case Intrinsic::sdiv_fix_sat: 6277 return ISD::SDIVFIXSAT; 6278 case Intrinsic::udiv_fix_sat: 6279 return ISD::UDIVFIXSAT; 6280 default: 6281 llvm_unreachable("Unhandled fixed point intrinsic"); 6282 } 6283 } 6284 6285 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6286 const char *FunctionName) { 6287 assert(FunctionName && "FunctionName must not be nullptr"); 6288 SDValue Callee = DAG.getExternalSymbol( 6289 FunctionName, 6290 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6291 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6292 } 6293 6294 /// Given a @llvm.call.preallocated.setup, return the corresponding 6295 /// preallocated call. 6296 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6297 assert(cast<CallBase>(PreallocatedSetup) 6298 ->getCalledFunction() 6299 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6300 "expected call_preallocated_setup Value"); 6301 for (const auto *U : PreallocatedSetup->users()) { 6302 auto *UseCall = cast<CallBase>(U); 6303 const Function *Fn = UseCall->getCalledFunction(); 6304 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6305 return UseCall; 6306 } 6307 } 6308 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6309 } 6310 6311 /// If DI is a debug value with an EntryValue expression, lower it using the 6312 /// corresponding physical register of the associated Argument value 6313 /// (guaranteed to exist by the verifier). 6314 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6315 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6316 DIExpression *Expr, DebugLoc DbgLoc) { 6317 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6318 return false; 6319 6320 // These properties are guaranteed by the verifier. 6321 const Argument *Arg = cast<Argument>(Values[0]); 6322 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6323 6324 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6325 if (ArgIt == FuncInfo.ValueMap.end()) { 6326 LLVM_DEBUG( 6327 dbgs() << "Dropping dbg.value: expression is entry_value but " 6328 "couldn't find an associated register for the Argument\n"); 6329 return true; 6330 } 6331 Register ArgVReg = ArgIt->getSecond(); 6332 6333 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6334 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6335 SDDbgValue *SDV = DAG.getVRegDbgValue( 6336 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6337 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6338 return true; 6339 } 6340 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6341 "couldn't find a physical register\n"); 6342 return true; 6343 } 6344 6345 /// Lower the call to the specified intrinsic function. 6346 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6347 unsigned Intrinsic) { 6348 SDLoc sdl = getCurSDLoc(); 6349 switch (Intrinsic) { 6350 case Intrinsic::experimental_convergence_anchor: 6351 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6352 break; 6353 case Intrinsic::experimental_convergence_entry: 6354 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6355 break; 6356 case Intrinsic::experimental_convergence_loop: { 6357 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6358 auto *Token = Bundle->Inputs[0].get(); 6359 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6360 getValue(Token))); 6361 break; 6362 } 6363 } 6364 } 6365 6366 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6367 unsigned IntrinsicID) { 6368 // For now, we're only lowering an 'add' histogram. 6369 // We can add others later, e.g. saturating adds, min/max. 6370 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6371 "Tried to lower unsupported histogram type"); 6372 SDLoc sdl = getCurSDLoc(); 6373 Value *Ptr = I.getOperand(0); 6374 SDValue Inc = getValue(I.getOperand(1)); 6375 SDValue Mask = getValue(I.getOperand(2)); 6376 6377 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6378 DataLayout TargetDL = DAG.getDataLayout(); 6379 EVT VT = Inc.getValueType(); 6380 Align Alignment = DAG.getEVTAlign(VT); 6381 6382 const MDNode *Ranges = getRangeMetadata(I); 6383 6384 SDValue Root = DAG.getRoot(); 6385 SDValue Base; 6386 SDValue Index; 6387 ISD::MemIndexType IndexType; 6388 SDValue Scale; 6389 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6390 I.getParent(), VT.getScalarStoreSize()); 6391 6392 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6393 6394 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6395 MachinePointerInfo(AS), 6396 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6397 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6398 6399 if (!UniformBase) { 6400 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6401 Index = getValue(Ptr); 6402 IndexType = ISD::SIGNED_SCALED; 6403 Scale = 6404 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6405 } 6406 6407 EVT IdxVT = Index.getValueType(); 6408 EVT EltTy = IdxVT.getVectorElementType(); 6409 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6410 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6411 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6412 } 6413 6414 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6415 6416 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6417 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6418 Ops, MMO, IndexType); 6419 6420 setValue(&I, Histogram); 6421 DAG.setRoot(Histogram); 6422 } 6423 6424 void SelectionDAGBuilder::visitVectorExtractLastActive(const CallInst &I, 6425 unsigned Intrinsic) { 6426 assert(Intrinsic == Intrinsic::experimental_vector_extract_last_active && 6427 "Tried lowering invalid vector extract last"); 6428 SDLoc sdl = getCurSDLoc(); 6429 SDValue Data = getValue(I.getOperand(0)); 6430 SDValue Mask = getValue(I.getOperand(1)); 6431 SDValue PassThru = getValue(I.getOperand(2)); 6432 6433 EVT DataVT = Data.getValueType(); 6434 EVT ScalarVT = PassThru.getValueType(); 6435 EVT BoolVT = Mask.getValueType().getScalarType(); 6436 6437 // Find a suitable type for a stepvector. 6438 ConstantRange VScaleRange(1, /*isFullSet=*/true); // Dummy value. 6439 if (DataVT.isScalableVector()) 6440 VScaleRange = getVScaleRange(I.getCaller(), 64); 6441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6442 unsigned EltWidth = TLI.getBitWidthForCttzElements( 6443 I.getType(), DataVT.getVectorElementCount(), /*ZeroIsPoison=*/true, 6444 &VScaleRange); 6445 MVT StepVT = MVT::getIntegerVT(EltWidth); 6446 EVT StepVecVT = DataVT.changeVectorElementType(StepVT); 6447 6448 // Zero out lanes with inactive elements, then find the highest remaining 6449 // value from the stepvector. 6450 SDValue Zeroes = DAG.getConstant(0, sdl, StepVecVT); 6451 SDValue StepVec = DAG.getStepVector(sdl, StepVecVT); 6452 SDValue ActiveElts = DAG.getSelect(sdl, StepVecVT, Mask, StepVec, Zeroes); 6453 SDValue HighestIdx = 6454 DAG.getNode(ISD::VECREDUCE_UMAX, sdl, StepVT, ActiveElts); 6455 6456 // Extract the corresponding lane from the data vector 6457 EVT ExtVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 6458 SDValue Idx = DAG.getZExtOrTrunc(HighestIdx, sdl, ExtVT); 6459 SDValue Extract = 6460 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, ScalarVT, Data, Idx); 6461 6462 // If all mask lanes were inactive, choose the passthru value instead. 6463 SDValue AnyActive = DAG.getNode(ISD::VECREDUCE_OR, sdl, BoolVT, Mask); 6464 SDValue Result = DAG.getSelect(sdl, ScalarVT, AnyActive, Extract, PassThru); 6465 setValue(&I, Result); 6466 } 6467 6468 /// Lower the call to the specified intrinsic function. 6469 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6470 unsigned Intrinsic) { 6471 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6472 SDLoc sdl = getCurSDLoc(); 6473 DebugLoc dl = getCurDebugLoc(); 6474 SDValue Res; 6475 6476 SDNodeFlags Flags; 6477 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6478 Flags.copyFMF(*FPOp); 6479 6480 switch (Intrinsic) { 6481 default: 6482 // By default, turn this into a target intrinsic node. 6483 visitTargetIntrinsic(I, Intrinsic); 6484 return; 6485 case Intrinsic::vscale: { 6486 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6487 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6488 return; 6489 } 6490 case Intrinsic::vastart: visitVAStart(I); return; 6491 case Intrinsic::vaend: visitVAEnd(I); return; 6492 case Intrinsic::vacopy: visitVACopy(I); return; 6493 case Intrinsic::returnaddress: 6494 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6495 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6496 getValue(I.getArgOperand(0)))); 6497 return; 6498 case Intrinsic::addressofreturnaddress: 6499 setValue(&I, 6500 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6501 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6502 return; 6503 case Intrinsic::sponentry: 6504 setValue(&I, 6505 DAG.getNode(ISD::SPONENTRY, sdl, 6506 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6507 return; 6508 case Intrinsic::frameaddress: 6509 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6510 TLI.getFrameIndexTy(DAG.getDataLayout()), 6511 getValue(I.getArgOperand(0)))); 6512 return; 6513 case Intrinsic::read_volatile_register: 6514 case Intrinsic::read_register: { 6515 Value *Reg = I.getArgOperand(0); 6516 SDValue Chain = getRoot(); 6517 SDValue RegName = 6518 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6519 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6520 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6521 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6522 setValue(&I, Res); 6523 DAG.setRoot(Res.getValue(1)); 6524 return; 6525 } 6526 case Intrinsic::write_register: { 6527 Value *Reg = I.getArgOperand(0); 6528 Value *RegValue = I.getArgOperand(1); 6529 SDValue Chain = getRoot(); 6530 SDValue RegName = 6531 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6532 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6533 RegName, getValue(RegValue))); 6534 return; 6535 } 6536 case Intrinsic::memcpy: { 6537 const auto &MCI = cast<MemCpyInst>(I); 6538 SDValue Op1 = getValue(I.getArgOperand(0)); 6539 SDValue Op2 = getValue(I.getArgOperand(1)); 6540 SDValue Op3 = getValue(I.getArgOperand(2)); 6541 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6542 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6543 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6544 Align Alignment = std::min(DstAlign, SrcAlign); 6545 bool isVol = MCI.isVolatile(); 6546 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6547 // node. 6548 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6549 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6550 /* AlwaysInline */ false, &I, std::nullopt, 6551 MachinePointerInfo(I.getArgOperand(0)), 6552 MachinePointerInfo(I.getArgOperand(1)), 6553 I.getAAMetadata(), AA); 6554 updateDAGForMaybeTailCall(MC); 6555 return; 6556 } 6557 case Intrinsic::memcpy_inline: { 6558 const auto &MCI = cast<MemCpyInlineInst>(I); 6559 SDValue Dst = getValue(I.getArgOperand(0)); 6560 SDValue Src = getValue(I.getArgOperand(1)); 6561 SDValue Size = getValue(I.getArgOperand(2)); 6562 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6563 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6564 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6565 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6566 Align Alignment = std::min(DstAlign, SrcAlign); 6567 bool isVol = MCI.isVolatile(); 6568 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6569 // node. 6570 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6571 /* AlwaysInline */ true, &I, std::nullopt, 6572 MachinePointerInfo(I.getArgOperand(0)), 6573 MachinePointerInfo(I.getArgOperand(1)), 6574 I.getAAMetadata(), AA); 6575 updateDAGForMaybeTailCall(MC); 6576 return; 6577 } 6578 case Intrinsic::memset: { 6579 const auto &MSI = cast<MemSetInst>(I); 6580 SDValue Op1 = getValue(I.getArgOperand(0)); 6581 SDValue Op2 = getValue(I.getArgOperand(1)); 6582 SDValue Op3 = getValue(I.getArgOperand(2)); 6583 // @llvm.memset defines 0 and 1 to both mean no alignment. 6584 Align Alignment = MSI.getDestAlign().valueOrOne(); 6585 bool isVol = MSI.isVolatile(); 6586 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6587 SDValue MS = DAG.getMemset( 6588 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6589 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6590 updateDAGForMaybeTailCall(MS); 6591 return; 6592 } 6593 case Intrinsic::memset_inline: { 6594 const auto &MSII = cast<MemSetInlineInst>(I); 6595 SDValue Dst = getValue(I.getArgOperand(0)); 6596 SDValue Value = getValue(I.getArgOperand(1)); 6597 SDValue Size = getValue(I.getArgOperand(2)); 6598 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6599 // @llvm.memset defines 0 and 1 to both mean no alignment. 6600 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6601 bool isVol = MSII.isVolatile(); 6602 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6603 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6604 /* AlwaysInline */ true, &I, 6605 MachinePointerInfo(I.getArgOperand(0)), 6606 I.getAAMetadata()); 6607 updateDAGForMaybeTailCall(MC); 6608 return; 6609 } 6610 case Intrinsic::memmove: { 6611 const auto &MMI = cast<MemMoveInst>(I); 6612 SDValue Op1 = getValue(I.getArgOperand(0)); 6613 SDValue Op2 = getValue(I.getArgOperand(1)); 6614 SDValue Op3 = getValue(I.getArgOperand(2)); 6615 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6616 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6617 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6618 Align Alignment = std::min(DstAlign, SrcAlign); 6619 bool isVol = MMI.isVolatile(); 6620 // FIXME: Support passing different dest/src alignments to the memmove DAG 6621 // node. 6622 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6623 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I, 6624 /* OverrideTailCall */ std::nullopt, 6625 MachinePointerInfo(I.getArgOperand(0)), 6626 MachinePointerInfo(I.getArgOperand(1)), 6627 I.getAAMetadata(), AA); 6628 updateDAGForMaybeTailCall(MM); 6629 return; 6630 } 6631 case Intrinsic::memcpy_element_unordered_atomic: { 6632 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6633 SDValue Dst = getValue(MI.getRawDest()); 6634 SDValue Src = getValue(MI.getRawSource()); 6635 SDValue Length = getValue(MI.getLength()); 6636 6637 Type *LengthTy = MI.getLength()->getType(); 6638 unsigned ElemSz = MI.getElementSizeInBytes(); 6639 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6640 SDValue MC = 6641 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6642 isTC, MachinePointerInfo(MI.getRawDest()), 6643 MachinePointerInfo(MI.getRawSource())); 6644 updateDAGForMaybeTailCall(MC); 6645 return; 6646 } 6647 case Intrinsic::memmove_element_unordered_atomic: { 6648 auto &MI = cast<AtomicMemMoveInst>(I); 6649 SDValue Dst = getValue(MI.getRawDest()); 6650 SDValue Src = getValue(MI.getRawSource()); 6651 SDValue Length = getValue(MI.getLength()); 6652 6653 Type *LengthTy = MI.getLength()->getType(); 6654 unsigned ElemSz = MI.getElementSizeInBytes(); 6655 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6656 SDValue MC = 6657 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6658 isTC, MachinePointerInfo(MI.getRawDest()), 6659 MachinePointerInfo(MI.getRawSource())); 6660 updateDAGForMaybeTailCall(MC); 6661 return; 6662 } 6663 case Intrinsic::memset_element_unordered_atomic: { 6664 auto &MI = cast<AtomicMemSetInst>(I); 6665 SDValue Dst = getValue(MI.getRawDest()); 6666 SDValue Val = getValue(MI.getValue()); 6667 SDValue Length = getValue(MI.getLength()); 6668 6669 Type *LengthTy = MI.getLength()->getType(); 6670 unsigned ElemSz = MI.getElementSizeInBytes(); 6671 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6672 SDValue MC = 6673 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6674 isTC, MachinePointerInfo(MI.getRawDest())); 6675 updateDAGForMaybeTailCall(MC); 6676 return; 6677 } 6678 case Intrinsic::call_preallocated_setup: { 6679 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6680 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6681 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6682 getRoot(), SrcValue); 6683 setValue(&I, Res); 6684 DAG.setRoot(Res); 6685 return; 6686 } 6687 case Intrinsic::call_preallocated_arg: { 6688 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6689 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6690 SDValue Ops[3]; 6691 Ops[0] = getRoot(); 6692 Ops[1] = SrcValue; 6693 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6694 MVT::i32); // arg index 6695 SDValue Res = DAG.getNode( 6696 ISD::PREALLOCATED_ARG, sdl, 6697 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6698 setValue(&I, Res); 6699 DAG.setRoot(Res.getValue(1)); 6700 return; 6701 } 6702 case Intrinsic::dbg_declare: { 6703 const auto &DI = cast<DbgDeclareInst>(I); 6704 // Debug intrinsics are handled separately in assignment tracking mode. 6705 // Some intrinsics are handled right after Argument lowering. 6706 if (AssignmentTrackingEnabled || 6707 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6708 return; 6709 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6710 DILocalVariable *Variable = DI.getVariable(); 6711 DIExpression *Expression = DI.getExpression(); 6712 dropDanglingDebugInfo(Variable, Expression); 6713 // Assume dbg.declare can not currently use DIArgList, i.e. 6714 // it is non-variadic. 6715 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6716 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6717 DI.getDebugLoc()); 6718 return; 6719 } 6720 case Intrinsic::dbg_label: { 6721 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6722 DILabel *Label = DI.getLabel(); 6723 assert(Label && "Missing label"); 6724 6725 SDDbgLabel *SDV; 6726 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6727 DAG.AddDbgLabel(SDV); 6728 return; 6729 } 6730 case Intrinsic::dbg_assign: { 6731 // Debug intrinsics are handled separately in assignment tracking mode. 6732 if (AssignmentTrackingEnabled) 6733 return; 6734 // If assignment tracking hasn't been enabled then fall through and treat 6735 // the dbg.assign as a dbg.value. 6736 [[fallthrough]]; 6737 } 6738 case Intrinsic::dbg_value: { 6739 // Debug intrinsics are handled separately in assignment tracking mode. 6740 if (AssignmentTrackingEnabled) 6741 return; 6742 const DbgValueInst &DI = cast<DbgValueInst>(I); 6743 assert(DI.getVariable() && "Missing variable"); 6744 6745 DILocalVariable *Variable = DI.getVariable(); 6746 DIExpression *Expression = DI.getExpression(); 6747 dropDanglingDebugInfo(Variable, Expression); 6748 6749 if (DI.isKillLocation()) { 6750 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6751 return; 6752 } 6753 6754 SmallVector<Value *, 4> Values(DI.getValues()); 6755 if (Values.empty()) 6756 return; 6757 6758 bool IsVariadic = DI.hasArgList(); 6759 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6760 SDNodeOrder, IsVariadic)) 6761 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6762 DI.getDebugLoc(), SDNodeOrder); 6763 return; 6764 } 6765 6766 case Intrinsic::eh_typeid_for: { 6767 // Find the type id for the given typeinfo. 6768 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6769 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6770 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6771 setValue(&I, Res); 6772 return; 6773 } 6774 6775 case Intrinsic::eh_return_i32: 6776 case Intrinsic::eh_return_i64: 6777 DAG.getMachineFunction().setCallsEHReturn(true); 6778 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6779 MVT::Other, 6780 getControlRoot(), 6781 getValue(I.getArgOperand(0)), 6782 getValue(I.getArgOperand(1)))); 6783 return; 6784 case Intrinsic::eh_unwind_init: 6785 DAG.getMachineFunction().setCallsUnwindInit(true); 6786 return; 6787 case Intrinsic::eh_dwarf_cfa: 6788 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6789 TLI.getPointerTy(DAG.getDataLayout()), 6790 getValue(I.getArgOperand(0)))); 6791 return; 6792 case Intrinsic::eh_sjlj_callsite: { 6793 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6794 assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6795 6796 FuncInfo.setCurrentCallSite(CI->getZExtValue()); 6797 return; 6798 } 6799 case Intrinsic::eh_sjlj_functioncontext: { 6800 // Get and store the index of the function context. 6801 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6802 AllocaInst *FnCtx = 6803 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6804 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6805 MFI.setFunctionContextIndex(FI); 6806 return; 6807 } 6808 case Intrinsic::eh_sjlj_setjmp: { 6809 SDValue Ops[2]; 6810 Ops[0] = getRoot(); 6811 Ops[1] = getValue(I.getArgOperand(0)); 6812 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6813 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6814 setValue(&I, Op.getValue(0)); 6815 DAG.setRoot(Op.getValue(1)); 6816 return; 6817 } 6818 case Intrinsic::eh_sjlj_longjmp: 6819 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6820 getRoot(), getValue(I.getArgOperand(0)))); 6821 return; 6822 case Intrinsic::eh_sjlj_setup_dispatch: 6823 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6824 getRoot())); 6825 return; 6826 case Intrinsic::masked_gather: 6827 visitMaskedGather(I); 6828 return; 6829 case Intrinsic::masked_load: 6830 visitMaskedLoad(I); 6831 return; 6832 case Intrinsic::masked_scatter: 6833 visitMaskedScatter(I); 6834 return; 6835 case Intrinsic::masked_store: 6836 visitMaskedStore(I); 6837 return; 6838 case Intrinsic::masked_expandload: 6839 visitMaskedLoad(I, true /* IsExpanding */); 6840 return; 6841 case Intrinsic::masked_compressstore: 6842 visitMaskedStore(I, true /* IsCompressing */); 6843 return; 6844 case Intrinsic::powi: 6845 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6846 getValue(I.getArgOperand(1)), DAG)); 6847 return; 6848 case Intrinsic::log: 6849 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6850 return; 6851 case Intrinsic::log2: 6852 setValue(&I, 6853 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6854 return; 6855 case Intrinsic::log10: 6856 setValue(&I, 6857 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6858 return; 6859 case Intrinsic::exp: 6860 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6861 return; 6862 case Intrinsic::exp2: 6863 setValue(&I, 6864 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6865 return; 6866 case Intrinsic::pow: 6867 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6868 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6869 return; 6870 case Intrinsic::sqrt: 6871 case Intrinsic::fabs: 6872 case Intrinsic::sin: 6873 case Intrinsic::cos: 6874 case Intrinsic::tan: 6875 case Intrinsic::asin: 6876 case Intrinsic::acos: 6877 case Intrinsic::atan: 6878 case Intrinsic::sinh: 6879 case Intrinsic::cosh: 6880 case Intrinsic::tanh: 6881 case Intrinsic::exp10: 6882 case Intrinsic::floor: 6883 case Intrinsic::ceil: 6884 case Intrinsic::trunc: 6885 case Intrinsic::rint: 6886 case Intrinsic::nearbyint: 6887 case Intrinsic::round: 6888 case Intrinsic::roundeven: 6889 case Intrinsic::canonicalize: { 6890 unsigned Opcode; 6891 // clang-format off 6892 switch (Intrinsic) { 6893 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6894 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6895 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6896 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6897 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6898 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6899 case Intrinsic::asin: Opcode = ISD::FASIN; break; 6900 case Intrinsic::acos: Opcode = ISD::FACOS; break; 6901 case Intrinsic::atan: Opcode = ISD::FATAN; break; 6902 case Intrinsic::sinh: Opcode = ISD::FSINH; break; 6903 case Intrinsic::cosh: Opcode = ISD::FCOSH; break; 6904 case Intrinsic::tanh: Opcode = ISD::FTANH; break; 6905 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6906 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6907 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6908 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6909 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6910 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6911 case Intrinsic::round: Opcode = ISD::FROUND; break; 6912 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6913 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6914 } 6915 // clang-format on 6916 6917 setValue(&I, DAG.getNode(Opcode, sdl, 6918 getValue(I.getArgOperand(0)).getValueType(), 6919 getValue(I.getArgOperand(0)), Flags)); 6920 return; 6921 } 6922 case Intrinsic::atan2: 6923 setValue(&I, DAG.getNode(ISD::FATAN2, sdl, 6924 getValue(I.getArgOperand(0)).getValueType(), 6925 getValue(I.getArgOperand(0)), 6926 getValue(I.getArgOperand(1)), Flags)); 6927 return; 6928 case Intrinsic::lround: 6929 case Intrinsic::llround: 6930 case Intrinsic::lrint: 6931 case Intrinsic::llrint: { 6932 unsigned Opcode; 6933 // clang-format off 6934 switch (Intrinsic) { 6935 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6936 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6937 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6938 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6939 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6940 } 6941 // clang-format on 6942 6943 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6944 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6945 getValue(I.getArgOperand(0)))); 6946 return; 6947 } 6948 case Intrinsic::minnum: 6949 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6950 getValue(I.getArgOperand(0)).getValueType(), 6951 getValue(I.getArgOperand(0)), 6952 getValue(I.getArgOperand(1)), Flags)); 6953 return; 6954 case Intrinsic::maxnum: 6955 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6956 getValue(I.getArgOperand(0)).getValueType(), 6957 getValue(I.getArgOperand(0)), 6958 getValue(I.getArgOperand(1)), Flags)); 6959 return; 6960 case Intrinsic::minimum: 6961 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6962 getValue(I.getArgOperand(0)).getValueType(), 6963 getValue(I.getArgOperand(0)), 6964 getValue(I.getArgOperand(1)), Flags)); 6965 return; 6966 case Intrinsic::maximum: 6967 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6968 getValue(I.getArgOperand(0)).getValueType(), 6969 getValue(I.getArgOperand(0)), 6970 getValue(I.getArgOperand(1)), Flags)); 6971 return; 6972 case Intrinsic::minimumnum: 6973 setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl, 6974 getValue(I.getArgOperand(0)).getValueType(), 6975 getValue(I.getArgOperand(0)), 6976 getValue(I.getArgOperand(1)), Flags)); 6977 return; 6978 case Intrinsic::maximumnum: 6979 setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl, 6980 getValue(I.getArgOperand(0)).getValueType(), 6981 getValue(I.getArgOperand(0)), 6982 getValue(I.getArgOperand(1)), Flags)); 6983 return; 6984 case Intrinsic::copysign: 6985 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6986 getValue(I.getArgOperand(0)).getValueType(), 6987 getValue(I.getArgOperand(0)), 6988 getValue(I.getArgOperand(1)), Flags)); 6989 return; 6990 case Intrinsic::ldexp: 6991 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6992 getValue(I.getArgOperand(0)).getValueType(), 6993 getValue(I.getArgOperand(0)), 6994 getValue(I.getArgOperand(1)), Flags)); 6995 return; 6996 case Intrinsic::sincos: 6997 case Intrinsic::frexp: { 6998 unsigned Opcode; 6999 switch (Intrinsic) { 7000 default: 7001 llvm_unreachable("unexpected intrinsic"); 7002 case Intrinsic::sincos: 7003 Opcode = ISD::FSINCOS; 7004 break; 7005 case Intrinsic::frexp: 7006 Opcode = ISD::FFREXP; 7007 break; 7008 } 7009 SmallVector<EVT, 2> ValueVTs; 7010 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 7011 SDVTList VTs = DAG.getVTList(ValueVTs); 7012 setValue( 7013 &I, DAG.getNode(Opcode, sdl, VTs, getValue(I.getArgOperand(0)), Flags)); 7014 return; 7015 } 7016 case Intrinsic::arithmetic_fence: { 7017 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 7018 getValue(I.getArgOperand(0)).getValueType(), 7019 getValue(I.getArgOperand(0)), Flags)); 7020 return; 7021 } 7022 case Intrinsic::fma: 7023 setValue(&I, DAG.getNode( 7024 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 7025 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 7026 getValue(I.getArgOperand(2)), Flags)); 7027 return; 7028 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 7029 case Intrinsic::INTRINSIC: 7030 #include "llvm/IR/ConstrainedOps.def" 7031 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 7032 return; 7033 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 7034 #include "llvm/IR/VPIntrinsics.def" 7035 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 7036 return; 7037 case Intrinsic::fptrunc_round: { 7038 // Get the last argument, the metadata and convert it to an integer in the 7039 // call 7040 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 7041 std::optional<RoundingMode> RoundMode = 7042 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 7043 7044 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7045 7046 // Propagate fast-math-flags from IR to node(s). 7047 SDNodeFlags Flags; 7048 Flags.copyFMF(*cast<FPMathOperator>(&I)); 7049 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 7050 7051 SDValue Result; 7052 Result = DAG.getNode( 7053 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 7054 DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32)); 7055 setValue(&I, Result); 7056 7057 return; 7058 } 7059 case Intrinsic::fmuladd: { 7060 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7061 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7062 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7063 setValue(&I, DAG.getNode(ISD::FMA, sdl, 7064 getValue(I.getArgOperand(0)).getValueType(), 7065 getValue(I.getArgOperand(0)), 7066 getValue(I.getArgOperand(1)), 7067 getValue(I.getArgOperand(2)), Flags)); 7068 } else { 7069 // TODO: Intrinsic calls should have fast-math-flags. 7070 SDValue Mul = DAG.getNode( 7071 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 7072 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 7073 SDValue Add = DAG.getNode(ISD::FADD, sdl, 7074 getValue(I.getArgOperand(0)).getValueType(), 7075 Mul, getValue(I.getArgOperand(2)), Flags); 7076 setValue(&I, Add); 7077 } 7078 return; 7079 } 7080 case Intrinsic::convert_to_fp16: 7081 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 7082 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 7083 getValue(I.getArgOperand(0)), 7084 DAG.getTargetConstant(0, sdl, 7085 MVT::i32)))); 7086 return; 7087 case Intrinsic::convert_from_fp16: 7088 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 7089 TLI.getValueType(DAG.getDataLayout(), I.getType()), 7090 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 7091 getValue(I.getArgOperand(0))))); 7092 return; 7093 case Intrinsic::fptosi_sat: { 7094 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7095 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 7096 getValue(I.getArgOperand(0)), 7097 DAG.getValueType(VT.getScalarType()))); 7098 return; 7099 } 7100 case Intrinsic::fptoui_sat: { 7101 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7102 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 7103 getValue(I.getArgOperand(0)), 7104 DAG.getValueType(VT.getScalarType()))); 7105 return; 7106 } 7107 case Intrinsic::set_rounding: 7108 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 7109 {getRoot(), getValue(I.getArgOperand(0))}); 7110 setValue(&I, Res); 7111 DAG.setRoot(Res.getValue(0)); 7112 return; 7113 case Intrinsic::is_fpclass: { 7114 const DataLayout DLayout = DAG.getDataLayout(); 7115 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 7116 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 7117 FPClassTest Test = static_cast<FPClassTest>( 7118 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 7119 MachineFunction &MF = DAG.getMachineFunction(); 7120 const Function &F = MF.getFunction(); 7121 SDValue Op = getValue(I.getArgOperand(0)); 7122 SDNodeFlags Flags; 7123 Flags.setNoFPExcept( 7124 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 7125 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 7126 // expansion can use illegal types. Making expansion early allows 7127 // legalizing these types prior to selection. 7128 if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) && 7129 !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) { 7130 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 7131 setValue(&I, Result); 7132 return; 7133 } 7134 7135 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 7136 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 7137 setValue(&I, V); 7138 return; 7139 } 7140 case Intrinsic::get_fpenv: { 7141 const DataLayout DLayout = DAG.getDataLayout(); 7142 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 7143 Align TempAlign = DAG.getEVTAlign(EnvVT); 7144 SDValue Chain = getRoot(); 7145 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 7146 // and temporary storage in stack. 7147 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 7148 Res = DAG.getNode( 7149 ISD::GET_FPENV, sdl, 7150 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7151 MVT::Other), 7152 Chain); 7153 } else { 7154 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7155 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7156 auto MPI = 7157 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7158 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7159 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 7160 TempAlign); 7161 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7162 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 7163 } 7164 setValue(&I, Res); 7165 DAG.setRoot(Res.getValue(1)); 7166 return; 7167 } 7168 case Intrinsic::set_fpenv: { 7169 const DataLayout DLayout = DAG.getDataLayout(); 7170 SDValue Env = getValue(I.getArgOperand(0)); 7171 EVT EnvVT = Env.getValueType(); 7172 Align TempAlign = DAG.getEVTAlign(EnvVT); 7173 SDValue Chain = getRoot(); 7174 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7175 // environment from memory. 7176 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7177 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7178 } else { 7179 // Allocate space in stack, copy environment bits into it and use this 7180 // memory in SET_FPENV_MEM. 7181 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7182 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7183 auto MPI = 7184 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7185 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7186 MachineMemOperand::MOStore); 7187 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7188 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7189 TempAlign); 7190 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7191 } 7192 DAG.setRoot(Chain); 7193 return; 7194 } 7195 case Intrinsic::reset_fpenv: 7196 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7197 return; 7198 case Intrinsic::get_fpmode: 7199 Res = DAG.getNode( 7200 ISD::GET_FPMODE, sdl, 7201 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7202 MVT::Other), 7203 DAG.getRoot()); 7204 setValue(&I, Res); 7205 DAG.setRoot(Res.getValue(1)); 7206 return; 7207 case Intrinsic::set_fpmode: 7208 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7209 getValue(I.getArgOperand(0))); 7210 DAG.setRoot(Res); 7211 return; 7212 case Intrinsic::reset_fpmode: { 7213 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7214 DAG.setRoot(Res); 7215 return; 7216 } 7217 case Intrinsic::pcmarker: { 7218 SDValue Tmp = getValue(I.getArgOperand(0)); 7219 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7220 return; 7221 } 7222 case Intrinsic::readcyclecounter: { 7223 SDValue Op = getRoot(); 7224 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7225 DAG.getVTList(MVT::i64, MVT::Other), Op); 7226 setValue(&I, Res); 7227 DAG.setRoot(Res.getValue(1)); 7228 return; 7229 } 7230 case Intrinsic::readsteadycounter: { 7231 SDValue Op = getRoot(); 7232 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7233 DAG.getVTList(MVT::i64, MVT::Other), Op); 7234 setValue(&I, Res); 7235 DAG.setRoot(Res.getValue(1)); 7236 return; 7237 } 7238 case Intrinsic::bitreverse: 7239 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7240 getValue(I.getArgOperand(0)).getValueType(), 7241 getValue(I.getArgOperand(0)))); 7242 return; 7243 case Intrinsic::bswap: 7244 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7245 getValue(I.getArgOperand(0)).getValueType(), 7246 getValue(I.getArgOperand(0)))); 7247 return; 7248 case Intrinsic::cttz: { 7249 SDValue Arg = getValue(I.getArgOperand(0)); 7250 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7251 EVT Ty = Arg.getValueType(); 7252 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7253 sdl, Ty, Arg)); 7254 return; 7255 } 7256 case Intrinsic::ctlz: { 7257 SDValue Arg = getValue(I.getArgOperand(0)); 7258 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7259 EVT Ty = Arg.getValueType(); 7260 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7261 sdl, Ty, Arg)); 7262 return; 7263 } 7264 case Intrinsic::ctpop: { 7265 SDValue Arg = getValue(I.getArgOperand(0)); 7266 EVT Ty = Arg.getValueType(); 7267 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7268 return; 7269 } 7270 case Intrinsic::fshl: 7271 case Intrinsic::fshr: { 7272 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7273 SDValue X = getValue(I.getArgOperand(0)); 7274 SDValue Y = getValue(I.getArgOperand(1)); 7275 SDValue Z = getValue(I.getArgOperand(2)); 7276 EVT VT = X.getValueType(); 7277 7278 if (X == Y) { 7279 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7280 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7281 } else { 7282 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7283 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7284 } 7285 return; 7286 } 7287 case Intrinsic::sadd_sat: { 7288 SDValue Op1 = getValue(I.getArgOperand(0)); 7289 SDValue Op2 = getValue(I.getArgOperand(1)); 7290 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7291 return; 7292 } 7293 case Intrinsic::uadd_sat: { 7294 SDValue Op1 = getValue(I.getArgOperand(0)); 7295 SDValue Op2 = getValue(I.getArgOperand(1)); 7296 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7297 return; 7298 } 7299 case Intrinsic::ssub_sat: { 7300 SDValue Op1 = getValue(I.getArgOperand(0)); 7301 SDValue Op2 = getValue(I.getArgOperand(1)); 7302 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7303 return; 7304 } 7305 case Intrinsic::usub_sat: { 7306 SDValue Op1 = getValue(I.getArgOperand(0)); 7307 SDValue Op2 = getValue(I.getArgOperand(1)); 7308 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7309 return; 7310 } 7311 case Intrinsic::sshl_sat: { 7312 SDValue Op1 = getValue(I.getArgOperand(0)); 7313 SDValue Op2 = getValue(I.getArgOperand(1)); 7314 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7315 return; 7316 } 7317 case Intrinsic::ushl_sat: { 7318 SDValue Op1 = getValue(I.getArgOperand(0)); 7319 SDValue Op2 = getValue(I.getArgOperand(1)); 7320 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7321 return; 7322 } 7323 case Intrinsic::smul_fix: 7324 case Intrinsic::umul_fix: 7325 case Intrinsic::smul_fix_sat: 7326 case Intrinsic::umul_fix_sat: { 7327 SDValue Op1 = getValue(I.getArgOperand(0)); 7328 SDValue Op2 = getValue(I.getArgOperand(1)); 7329 SDValue Op3 = getValue(I.getArgOperand(2)); 7330 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7331 Op1.getValueType(), Op1, Op2, Op3)); 7332 return; 7333 } 7334 case Intrinsic::sdiv_fix: 7335 case Intrinsic::udiv_fix: 7336 case Intrinsic::sdiv_fix_sat: 7337 case Intrinsic::udiv_fix_sat: { 7338 SDValue Op1 = getValue(I.getArgOperand(0)); 7339 SDValue Op2 = getValue(I.getArgOperand(1)); 7340 SDValue Op3 = getValue(I.getArgOperand(2)); 7341 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7342 Op1, Op2, Op3, DAG, TLI)); 7343 return; 7344 } 7345 case Intrinsic::smax: { 7346 SDValue Op1 = getValue(I.getArgOperand(0)); 7347 SDValue Op2 = getValue(I.getArgOperand(1)); 7348 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7349 return; 7350 } 7351 case Intrinsic::smin: { 7352 SDValue Op1 = getValue(I.getArgOperand(0)); 7353 SDValue Op2 = getValue(I.getArgOperand(1)); 7354 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7355 return; 7356 } 7357 case Intrinsic::umax: { 7358 SDValue Op1 = getValue(I.getArgOperand(0)); 7359 SDValue Op2 = getValue(I.getArgOperand(1)); 7360 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7361 return; 7362 } 7363 case Intrinsic::umin: { 7364 SDValue Op1 = getValue(I.getArgOperand(0)); 7365 SDValue Op2 = getValue(I.getArgOperand(1)); 7366 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7367 return; 7368 } 7369 case Intrinsic::abs: { 7370 // TODO: Preserve "int min is poison" arg in SDAG? 7371 SDValue Op1 = getValue(I.getArgOperand(0)); 7372 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7373 return; 7374 } 7375 case Intrinsic::scmp: { 7376 SDValue Op1 = getValue(I.getArgOperand(0)); 7377 SDValue Op2 = getValue(I.getArgOperand(1)); 7378 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7379 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2)); 7380 break; 7381 } 7382 case Intrinsic::ucmp: { 7383 SDValue Op1 = getValue(I.getArgOperand(0)); 7384 SDValue Op2 = getValue(I.getArgOperand(1)); 7385 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7386 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2)); 7387 break; 7388 } 7389 case Intrinsic::stacksave: { 7390 SDValue Op = getRoot(); 7391 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7392 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7393 setValue(&I, Res); 7394 DAG.setRoot(Res.getValue(1)); 7395 return; 7396 } 7397 case Intrinsic::stackrestore: 7398 Res = getValue(I.getArgOperand(0)); 7399 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7400 return; 7401 case Intrinsic::get_dynamic_area_offset: { 7402 SDValue Op = getRoot(); 7403 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7404 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7405 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7406 // target. 7407 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7408 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7409 " intrinsic!"); 7410 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7411 Op); 7412 DAG.setRoot(Op); 7413 setValue(&I, Res); 7414 return; 7415 } 7416 case Intrinsic::stackguard: { 7417 MachineFunction &MF = DAG.getMachineFunction(); 7418 const Module &M = *MF.getFunction().getParent(); 7419 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7420 SDValue Chain = getRoot(); 7421 if (TLI.useLoadStackGuardNode(M)) { 7422 Res = getLoadStackGuard(DAG, sdl, Chain); 7423 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7424 } else { 7425 const Value *Global = TLI.getSDagStackGuard(M); 7426 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7427 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7428 MachinePointerInfo(Global, 0), Align, 7429 MachineMemOperand::MOVolatile); 7430 } 7431 if (TLI.useStackGuardXorFP()) 7432 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7433 DAG.setRoot(Chain); 7434 setValue(&I, Res); 7435 return; 7436 } 7437 case Intrinsic::stackprotector: { 7438 // Emit code into the DAG to store the stack guard onto the stack. 7439 MachineFunction &MF = DAG.getMachineFunction(); 7440 MachineFrameInfo &MFI = MF.getFrameInfo(); 7441 const Module &M = *MF.getFunction().getParent(); 7442 SDValue Src, Chain = getRoot(); 7443 7444 if (TLI.useLoadStackGuardNode(M)) 7445 Src = getLoadStackGuard(DAG, sdl, Chain); 7446 else 7447 Src = getValue(I.getArgOperand(0)); // The guard's value. 7448 7449 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7450 7451 int FI = FuncInfo.StaticAllocaMap[Slot]; 7452 MFI.setStackProtectorIndex(FI); 7453 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7454 7455 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7456 7457 // Store the stack protector onto the stack. 7458 Res = DAG.getStore( 7459 Chain, sdl, Src, FIN, 7460 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7461 MaybeAlign(), MachineMemOperand::MOVolatile); 7462 setValue(&I, Res); 7463 DAG.setRoot(Res); 7464 return; 7465 } 7466 case Intrinsic::objectsize: 7467 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7468 7469 case Intrinsic::is_constant: 7470 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7471 7472 case Intrinsic::annotation: 7473 case Intrinsic::ptr_annotation: 7474 case Intrinsic::launder_invariant_group: 7475 case Intrinsic::strip_invariant_group: 7476 // Drop the intrinsic, but forward the value 7477 setValue(&I, getValue(I.getOperand(0))); 7478 return; 7479 7480 case Intrinsic::assume: 7481 case Intrinsic::experimental_noalias_scope_decl: 7482 case Intrinsic::var_annotation: 7483 case Intrinsic::sideeffect: 7484 // Discard annotate attributes, noalias scope declarations, assumptions, and 7485 // artificial side-effects. 7486 return; 7487 7488 case Intrinsic::codeview_annotation: { 7489 // Emit a label associated with this metadata. 7490 MachineFunction &MF = DAG.getMachineFunction(); 7491 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true); 7492 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7493 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7494 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7495 DAG.setRoot(Res); 7496 return; 7497 } 7498 7499 case Intrinsic::init_trampoline: { 7500 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7501 7502 SDValue Ops[6]; 7503 Ops[0] = getRoot(); 7504 Ops[1] = getValue(I.getArgOperand(0)); 7505 Ops[2] = getValue(I.getArgOperand(1)); 7506 Ops[3] = getValue(I.getArgOperand(2)); 7507 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7508 Ops[5] = DAG.getSrcValue(F); 7509 7510 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7511 7512 DAG.setRoot(Res); 7513 return; 7514 } 7515 case Intrinsic::adjust_trampoline: 7516 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7517 TLI.getPointerTy(DAG.getDataLayout()), 7518 getValue(I.getArgOperand(0)))); 7519 return; 7520 case Intrinsic::gcroot: { 7521 assert(DAG.getMachineFunction().getFunction().hasGC() && 7522 "only valid in functions with gc specified, enforced by Verifier"); 7523 assert(GFI && "implied by previous"); 7524 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7525 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7526 7527 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7528 GFI->addStackRoot(FI->getIndex(), TypeMap); 7529 return; 7530 } 7531 case Intrinsic::gcread: 7532 case Intrinsic::gcwrite: 7533 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7534 case Intrinsic::get_rounding: 7535 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7536 setValue(&I, Res); 7537 DAG.setRoot(Res.getValue(1)); 7538 return; 7539 7540 case Intrinsic::expect: 7541 case Intrinsic::expect_with_probability: 7542 // Just replace __builtin_expect(exp, c) and 7543 // __builtin_expect_with_probability(exp, c, p) with EXP. 7544 setValue(&I, getValue(I.getArgOperand(0))); 7545 return; 7546 7547 case Intrinsic::ubsantrap: 7548 case Intrinsic::debugtrap: 7549 case Intrinsic::trap: { 7550 StringRef TrapFuncName = 7551 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7552 if (TrapFuncName.empty()) { 7553 switch (Intrinsic) { 7554 case Intrinsic::trap: 7555 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7556 break; 7557 case Intrinsic::debugtrap: 7558 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7559 break; 7560 case Intrinsic::ubsantrap: 7561 DAG.setRoot(DAG.getNode( 7562 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7563 DAG.getTargetConstant( 7564 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7565 MVT::i32))); 7566 break; 7567 default: llvm_unreachable("unknown trap intrinsic"); 7568 } 7569 DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(), 7570 I.hasFnAttr(Attribute::NoMerge)); 7571 return; 7572 } 7573 TargetLowering::ArgListTy Args; 7574 if (Intrinsic == Intrinsic::ubsantrap) { 7575 Args.push_back(TargetLoweringBase::ArgListEntry()); 7576 Args[0].Val = I.getArgOperand(0); 7577 Args[0].Node = getValue(Args[0].Val); 7578 Args[0].Ty = Args[0].Val->getType(); 7579 } 7580 7581 TargetLowering::CallLoweringInfo CLI(DAG); 7582 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7583 CallingConv::C, I.getType(), 7584 DAG.getExternalSymbol(TrapFuncName.data(), 7585 TLI.getPointerTy(DAG.getDataLayout())), 7586 std::move(Args)); 7587 CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge); 7588 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7589 DAG.setRoot(Result.second); 7590 return; 7591 } 7592 7593 case Intrinsic::allow_runtime_check: 7594 case Intrinsic::allow_ubsan_check: 7595 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7596 return; 7597 7598 case Intrinsic::uadd_with_overflow: 7599 case Intrinsic::sadd_with_overflow: 7600 case Intrinsic::usub_with_overflow: 7601 case Intrinsic::ssub_with_overflow: 7602 case Intrinsic::umul_with_overflow: 7603 case Intrinsic::smul_with_overflow: { 7604 ISD::NodeType Op; 7605 switch (Intrinsic) { 7606 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7607 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7608 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7609 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7610 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7611 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7612 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7613 } 7614 SDValue Op1 = getValue(I.getArgOperand(0)); 7615 SDValue Op2 = getValue(I.getArgOperand(1)); 7616 7617 EVT ResultVT = Op1.getValueType(); 7618 EVT OverflowVT = MVT::i1; 7619 if (ResultVT.isVector()) 7620 OverflowVT = EVT::getVectorVT( 7621 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7622 7623 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7624 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7625 return; 7626 } 7627 case Intrinsic::prefetch: { 7628 SDValue Ops[5]; 7629 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7630 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7631 Ops[0] = DAG.getRoot(); 7632 Ops[1] = getValue(I.getArgOperand(0)); 7633 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7634 MVT::i32); 7635 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7636 MVT::i32); 7637 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7638 MVT::i32); 7639 SDValue Result = DAG.getMemIntrinsicNode( 7640 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7641 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7642 /* align */ std::nullopt, Flags); 7643 7644 // Chain the prefetch in parallel with any pending loads, to stay out of 7645 // the way of later optimizations. 7646 PendingLoads.push_back(Result); 7647 Result = getRoot(); 7648 DAG.setRoot(Result); 7649 return; 7650 } 7651 case Intrinsic::lifetime_start: 7652 case Intrinsic::lifetime_end: { 7653 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7654 // Stack coloring is not enabled in O0, discard region information. 7655 if (TM.getOptLevel() == CodeGenOptLevel::None) 7656 return; 7657 7658 const int64_t ObjectSize = 7659 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7660 Value *const ObjectPtr = I.getArgOperand(1); 7661 SmallVector<const Value *, 4> Allocas; 7662 getUnderlyingObjects(ObjectPtr, Allocas); 7663 7664 for (const Value *Alloca : Allocas) { 7665 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7666 7667 // Could not find an Alloca. 7668 if (!LifetimeObject) 7669 continue; 7670 7671 // First check that the Alloca is static, otherwise it won't have a 7672 // valid frame index. 7673 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7674 if (SI == FuncInfo.StaticAllocaMap.end()) 7675 return; 7676 7677 const int FrameIndex = SI->second; 7678 int64_t Offset; 7679 if (GetPointerBaseWithConstantOffset( 7680 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7681 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7682 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7683 Offset); 7684 DAG.setRoot(Res); 7685 } 7686 return; 7687 } 7688 case Intrinsic::pseudoprobe: { 7689 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7690 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7691 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7692 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7693 DAG.setRoot(Res); 7694 return; 7695 } 7696 case Intrinsic::invariant_start: 7697 // Discard region information. 7698 setValue(&I, 7699 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7700 return; 7701 case Intrinsic::invariant_end: 7702 // Discard region information. 7703 return; 7704 case Intrinsic::clear_cache: { 7705 SDValue InputChain = DAG.getRoot(); 7706 SDValue StartVal = getValue(I.getArgOperand(0)); 7707 SDValue EndVal = getValue(I.getArgOperand(1)); 7708 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7709 {InputChain, StartVal, EndVal}); 7710 setValue(&I, Res); 7711 DAG.setRoot(Res); 7712 return; 7713 } 7714 case Intrinsic::donothing: 7715 case Intrinsic::seh_try_begin: 7716 case Intrinsic::seh_scope_begin: 7717 case Intrinsic::seh_try_end: 7718 case Intrinsic::seh_scope_end: 7719 // ignore 7720 return; 7721 case Intrinsic::experimental_stackmap: 7722 visitStackmap(I); 7723 return; 7724 case Intrinsic::experimental_patchpoint_void: 7725 case Intrinsic::experimental_patchpoint: 7726 visitPatchpoint(I); 7727 return; 7728 case Intrinsic::experimental_gc_statepoint: 7729 LowerStatepoint(cast<GCStatepointInst>(I)); 7730 return; 7731 case Intrinsic::experimental_gc_result: 7732 visitGCResult(cast<GCResultInst>(I)); 7733 return; 7734 case Intrinsic::experimental_gc_relocate: 7735 visitGCRelocate(cast<GCRelocateInst>(I)); 7736 return; 7737 case Intrinsic::instrprof_cover: 7738 llvm_unreachable("instrprof failed to lower a cover"); 7739 case Intrinsic::instrprof_increment: 7740 llvm_unreachable("instrprof failed to lower an increment"); 7741 case Intrinsic::instrprof_timestamp: 7742 llvm_unreachable("instrprof failed to lower a timestamp"); 7743 case Intrinsic::instrprof_value_profile: 7744 llvm_unreachable("instrprof failed to lower a value profiling call"); 7745 case Intrinsic::instrprof_mcdc_parameters: 7746 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7747 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7748 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7749 case Intrinsic::localescape: { 7750 MachineFunction &MF = DAG.getMachineFunction(); 7751 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7752 7753 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7754 // is the same on all targets. 7755 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7756 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7757 if (isa<ConstantPointerNull>(Arg)) 7758 continue; // Skip null pointers. They represent a hole in index space. 7759 AllocaInst *Slot = cast<AllocaInst>(Arg); 7760 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7761 "can only escape static allocas"); 7762 int FI = FuncInfo.StaticAllocaMap[Slot]; 7763 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7764 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7765 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7766 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7767 .addSym(FrameAllocSym) 7768 .addFrameIndex(FI); 7769 } 7770 7771 return; 7772 } 7773 7774 case Intrinsic::localrecover: { 7775 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7776 MachineFunction &MF = DAG.getMachineFunction(); 7777 7778 // Get the symbol that defines the frame offset. 7779 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7780 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7781 unsigned IdxVal = 7782 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7783 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7784 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7785 7786 Value *FP = I.getArgOperand(1); 7787 SDValue FPVal = getValue(FP); 7788 EVT PtrVT = FPVal.getValueType(); 7789 7790 // Create a MCSymbol for the label to avoid any target lowering 7791 // that would make this PC relative. 7792 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7793 SDValue OffsetVal = 7794 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7795 7796 // Add the offset to the FP. 7797 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7798 setValue(&I, Add); 7799 7800 return; 7801 } 7802 7803 case Intrinsic::fake_use: { 7804 Value *V = I.getArgOperand(0); 7805 SDValue Ops[2]; 7806 // For Values not declared or previously used in this basic block, the 7807 // NodeMap will not have an entry, and `getValue` will assert if V has no 7808 // valid register value. 7809 auto FakeUseValue = [&]() -> SDValue { 7810 SDValue &N = NodeMap[V]; 7811 if (N.getNode()) 7812 return N; 7813 7814 // If there's a virtual register allocated and initialized for this 7815 // value, use it. 7816 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 7817 return copyFromReg; 7818 // FIXME: Do we want to preserve constants? It seems pointless. 7819 if (isa<Constant>(V)) 7820 return getValue(V); 7821 return SDValue(); 7822 }(); 7823 if (!FakeUseValue || FakeUseValue.isUndef()) 7824 return; 7825 Ops[0] = getRoot(); 7826 Ops[1] = FakeUseValue; 7827 // Also, do not translate a fake use with an undef operand, or any other 7828 // empty SDValues. 7829 if (!Ops[1] || Ops[1].isUndef()) 7830 return; 7831 DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops)); 7832 return; 7833 } 7834 7835 case Intrinsic::eh_exceptionpointer: 7836 case Intrinsic::eh_exceptioncode: { 7837 // Get the exception pointer vreg, copy from it, and resize it to fit. 7838 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7839 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7840 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7841 Register VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7842 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7843 if (Intrinsic == Intrinsic::eh_exceptioncode) 7844 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7845 setValue(&I, N); 7846 return; 7847 } 7848 case Intrinsic::xray_customevent: { 7849 // Here we want to make sure that the intrinsic behaves as if it has a 7850 // specific calling convention. 7851 const auto &Triple = DAG.getTarget().getTargetTriple(); 7852 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7853 return; 7854 7855 SmallVector<SDValue, 8> Ops; 7856 7857 // We want to say that we always want the arguments in registers. 7858 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7859 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7860 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7861 SDValue Chain = getRoot(); 7862 Ops.push_back(LogEntryVal); 7863 Ops.push_back(StrSizeVal); 7864 Ops.push_back(Chain); 7865 7866 // We need to enforce the calling convention for the callsite, so that 7867 // argument ordering is enforced correctly, and that register allocation can 7868 // see that some registers may be assumed clobbered and have to preserve 7869 // them across calls to the intrinsic. 7870 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7871 sdl, NodeTys, Ops); 7872 SDValue patchableNode = SDValue(MN, 0); 7873 DAG.setRoot(patchableNode); 7874 setValue(&I, patchableNode); 7875 return; 7876 } 7877 case Intrinsic::xray_typedevent: { 7878 // Here we want to make sure that the intrinsic behaves as if it has a 7879 // specific calling convention. 7880 const auto &Triple = DAG.getTarget().getTargetTriple(); 7881 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7882 return; 7883 7884 SmallVector<SDValue, 8> Ops; 7885 7886 // We want to say that we always want the arguments in registers. 7887 // It's unclear to me how manipulating the selection DAG here forces callers 7888 // to provide arguments in registers instead of on the stack. 7889 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7890 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7891 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7892 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7893 SDValue Chain = getRoot(); 7894 Ops.push_back(LogTypeId); 7895 Ops.push_back(LogEntryVal); 7896 Ops.push_back(StrSizeVal); 7897 Ops.push_back(Chain); 7898 7899 // We need to enforce the calling convention for the callsite, so that 7900 // argument ordering is enforced correctly, and that register allocation can 7901 // see that some registers may be assumed clobbered and have to preserve 7902 // them across calls to the intrinsic. 7903 MachineSDNode *MN = DAG.getMachineNode( 7904 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7905 SDValue patchableNode = SDValue(MN, 0); 7906 DAG.setRoot(patchableNode); 7907 setValue(&I, patchableNode); 7908 return; 7909 } 7910 case Intrinsic::experimental_deoptimize: 7911 LowerDeoptimizeCall(&I); 7912 return; 7913 case Intrinsic::stepvector: 7914 visitStepVector(I); 7915 return; 7916 case Intrinsic::vector_reduce_fadd: 7917 case Intrinsic::vector_reduce_fmul: 7918 case Intrinsic::vector_reduce_add: 7919 case Intrinsic::vector_reduce_mul: 7920 case Intrinsic::vector_reduce_and: 7921 case Intrinsic::vector_reduce_or: 7922 case Intrinsic::vector_reduce_xor: 7923 case Intrinsic::vector_reduce_smax: 7924 case Intrinsic::vector_reduce_smin: 7925 case Intrinsic::vector_reduce_umax: 7926 case Intrinsic::vector_reduce_umin: 7927 case Intrinsic::vector_reduce_fmax: 7928 case Intrinsic::vector_reduce_fmin: 7929 case Intrinsic::vector_reduce_fmaximum: 7930 case Intrinsic::vector_reduce_fminimum: 7931 visitVectorReduce(I, Intrinsic); 7932 return; 7933 7934 case Intrinsic::icall_branch_funnel: { 7935 SmallVector<SDValue, 16> Ops; 7936 Ops.push_back(getValue(I.getArgOperand(0))); 7937 7938 int64_t Offset; 7939 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7940 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7941 if (!Base) 7942 report_fatal_error( 7943 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7944 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7945 7946 struct BranchFunnelTarget { 7947 int64_t Offset; 7948 SDValue Target; 7949 }; 7950 SmallVector<BranchFunnelTarget, 8> Targets; 7951 7952 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7953 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7954 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7955 if (ElemBase != Base) 7956 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7957 "to the same GlobalValue"); 7958 7959 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7960 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7961 if (!GA) 7962 report_fatal_error( 7963 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7964 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7965 GA->getGlobal(), sdl, Val.getValueType(), 7966 GA->getOffset())}); 7967 } 7968 llvm::sort(Targets, 7969 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7970 return T1.Offset < T2.Offset; 7971 }); 7972 7973 for (auto &T : Targets) { 7974 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7975 Ops.push_back(T.Target); 7976 } 7977 7978 Ops.push_back(DAG.getRoot()); // Chain 7979 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7980 MVT::Other, Ops), 7981 0); 7982 DAG.setRoot(N); 7983 setValue(&I, N); 7984 HasTailCall = true; 7985 return; 7986 } 7987 7988 case Intrinsic::wasm_landingpad_index: 7989 // Information this intrinsic contained has been transferred to 7990 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7991 // delete it now. 7992 return; 7993 7994 case Intrinsic::aarch64_settag: 7995 case Intrinsic::aarch64_settag_zero: { 7996 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7997 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7998 SDValue Val = TSI.EmitTargetCodeForSetTag( 7999 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 8000 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 8001 ZeroMemory); 8002 DAG.setRoot(Val); 8003 setValue(&I, Val); 8004 return; 8005 } 8006 case Intrinsic::amdgcn_cs_chain: { 8007 assert(I.arg_size() == 5 && "Additional args not supported yet"); 8008 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 8009 "Non-zero flags not supported yet"); 8010 8011 // At this point we don't care if it's amdgpu_cs_chain or 8012 // amdgpu_cs_chain_preserve. 8013 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 8014 8015 Type *RetTy = I.getType(); 8016 assert(RetTy->isVoidTy() && "Should not return"); 8017 8018 SDValue Callee = getValue(I.getOperand(0)); 8019 8020 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 8021 // We'll also tack the value of the EXEC mask at the end. 8022 TargetLowering::ArgListTy Args; 8023 Args.reserve(3); 8024 8025 for (unsigned Idx : {2, 3, 1}) { 8026 TargetLowering::ArgListEntry Arg; 8027 Arg.Node = getValue(I.getOperand(Idx)); 8028 Arg.Ty = I.getOperand(Idx)->getType(); 8029 Arg.setAttributes(&I, Idx); 8030 Args.push_back(Arg); 8031 } 8032 8033 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 8034 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 8035 Args[2].IsInReg = true; // EXEC should be inreg 8036 8037 TargetLowering::CallLoweringInfo CLI(DAG); 8038 CLI.setDebugLoc(getCurSDLoc()) 8039 .setChain(getRoot()) 8040 .setCallee(CC, RetTy, Callee, std::move(Args)) 8041 .setNoReturn(true) 8042 .setTailCall(true) 8043 .setConvergent(I.isConvergent()); 8044 CLI.CB = &I; 8045 std::pair<SDValue, SDValue> Result = 8046 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 8047 (void)Result; 8048 assert(!Result.first.getNode() && !Result.second.getNode() && 8049 "Should've lowered as tail call"); 8050 8051 HasTailCall = true; 8052 return; 8053 } 8054 case Intrinsic::ptrmask: { 8055 SDValue Ptr = getValue(I.getOperand(0)); 8056 SDValue Mask = getValue(I.getOperand(1)); 8057 8058 // On arm64_32, pointers are 32 bits when stored in memory, but 8059 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 8060 // match the index type, but the pointer is 64 bits, so the the mask must be 8061 // zero-extended up to 64 bits to match the pointer. 8062 EVT PtrVT = 8063 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 8064 EVT MemVT = 8065 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 8066 assert(PtrVT == Ptr.getValueType()); 8067 assert(MemVT == Mask.getValueType()); 8068 if (MemVT != PtrVT) 8069 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 8070 8071 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 8072 return; 8073 } 8074 case Intrinsic::threadlocal_address: { 8075 setValue(&I, getValue(I.getOperand(0))); 8076 return; 8077 } 8078 case Intrinsic::get_active_lane_mask: { 8079 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8080 SDValue Index = getValue(I.getOperand(0)); 8081 EVT ElementVT = Index.getValueType(); 8082 8083 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 8084 visitTargetIntrinsic(I, Intrinsic); 8085 return; 8086 } 8087 8088 SDValue TripCount = getValue(I.getOperand(1)); 8089 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 8090 CCVT.getVectorElementCount()); 8091 8092 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 8093 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 8094 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 8095 SDValue VectorInduction = DAG.getNode( 8096 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 8097 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 8098 VectorTripCount, ISD::CondCode::SETULT); 8099 setValue(&I, SetCC); 8100 return; 8101 } 8102 case Intrinsic::experimental_get_vector_length: { 8103 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 8104 "Expected positive VF"); 8105 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 8106 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 8107 8108 SDValue Count = getValue(I.getOperand(0)); 8109 EVT CountVT = Count.getValueType(); 8110 8111 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 8112 visitTargetIntrinsic(I, Intrinsic); 8113 return; 8114 } 8115 8116 // Expand to a umin between the trip count and the maximum elements the type 8117 // can hold. 8118 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8119 8120 // Extend the trip count to at least the result VT. 8121 if (CountVT.bitsLT(VT)) { 8122 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 8123 CountVT = VT; 8124 } 8125 8126 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 8127 ElementCount::get(VF, IsScalable)); 8128 8129 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 8130 // Clip to the result type if needed. 8131 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 8132 8133 setValue(&I, Trunc); 8134 return; 8135 } 8136 case Intrinsic::experimental_vector_partial_reduce_add: { 8137 8138 if (!TLI.shouldExpandPartialReductionIntrinsic(cast<IntrinsicInst>(&I))) { 8139 visitTargetIntrinsic(I, Intrinsic); 8140 return; 8141 } 8142 8143 setValue(&I, DAG.getPartialReduceAdd(sdl, EVT::getEVT(I.getType()), 8144 getValue(I.getOperand(0)), 8145 getValue(I.getOperand(1)))); 8146 return; 8147 } 8148 case Intrinsic::experimental_cttz_elts: { 8149 auto DL = getCurSDLoc(); 8150 SDValue Op = getValue(I.getOperand(0)); 8151 EVT OpVT = Op.getValueType(); 8152 8153 if (!TLI.shouldExpandCttzElements(OpVT)) { 8154 visitTargetIntrinsic(I, Intrinsic); 8155 return; 8156 } 8157 8158 if (OpVT.getScalarType() != MVT::i1) { 8159 // Compare the input vector elements to zero & use to count trailing zeros 8160 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 8161 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 8162 OpVT.getVectorElementCount()); 8163 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 8164 } 8165 8166 // If the zero-is-poison flag is set, we can assume the upper limit 8167 // of the result is VF-1. 8168 bool ZeroIsPoison = 8169 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 8170 ConstantRange VScaleRange(1, true); // Dummy value. 8171 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 8172 VScaleRange = getVScaleRange(I.getCaller(), 64); 8173 unsigned EltWidth = TLI.getBitWidthForCttzElements( 8174 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 8175 8176 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 8177 8178 // Create the new vector type & get the vector length 8179 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 8180 OpVT.getVectorElementCount()); 8181 8182 SDValue VL = 8183 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 8184 8185 SDValue StepVec = DAG.getStepVector(DL, NewVT); 8186 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 8187 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 8188 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 8189 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 8190 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 8191 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 8192 8193 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8194 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 8195 8196 setValue(&I, Ret); 8197 return; 8198 } 8199 case Intrinsic::vector_insert: { 8200 SDValue Vec = getValue(I.getOperand(0)); 8201 SDValue SubVec = getValue(I.getOperand(1)); 8202 SDValue Index = getValue(I.getOperand(2)); 8203 8204 // The intrinsic's index type is i64, but the SDNode requires an index type 8205 // suitable for the target. Convert the index as required. 8206 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8207 if (Index.getValueType() != VectorIdxTy) 8208 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8209 8210 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8211 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 8212 Index)); 8213 return; 8214 } 8215 case Intrinsic::vector_extract: { 8216 SDValue Vec = getValue(I.getOperand(0)); 8217 SDValue Index = getValue(I.getOperand(1)); 8218 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8219 8220 // The intrinsic's index type is i64, but the SDNode requires an index type 8221 // suitable for the target. Convert the index as required. 8222 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8223 if (Index.getValueType() != VectorIdxTy) 8224 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8225 8226 setValue(&I, 8227 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 8228 return; 8229 } 8230 case Intrinsic::experimental_vector_match: { 8231 SDValue Op1 = getValue(I.getOperand(0)); 8232 SDValue Op2 = getValue(I.getOperand(1)); 8233 SDValue Mask = getValue(I.getOperand(2)); 8234 EVT Op1VT = Op1.getValueType(); 8235 EVT Op2VT = Op2.getValueType(); 8236 EVT ResVT = Mask.getValueType(); 8237 unsigned SearchSize = Op2VT.getVectorNumElements(); 8238 8239 // If the target has native support for this vector match operation, lower 8240 // the intrinsic untouched; otherwise, expand it below. 8241 if (!TLI.shouldExpandVectorMatch(Op1VT, SearchSize)) { 8242 visitTargetIntrinsic(I, Intrinsic); 8243 return; 8244 } 8245 8246 SDValue Ret = DAG.getConstant(0, sdl, ResVT); 8247 8248 for (unsigned i = 0; i < SearchSize; ++i) { 8249 SDValue Op2Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 8250 Op2VT.getVectorElementType(), Op2, 8251 DAG.getVectorIdxConstant(i, sdl)); 8252 SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, sdl, Op1VT, Op2Elem); 8253 SDValue Cmp = DAG.getSetCC(sdl, ResVT, Op1, Splat, ISD::SETEQ); 8254 Ret = DAG.getNode(ISD::OR, sdl, ResVT, Ret, Cmp); 8255 } 8256 8257 setValue(&I, DAG.getNode(ISD::AND, sdl, ResVT, Ret, Mask)); 8258 return; 8259 } 8260 case Intrinsic::vector_reverse: 8261 visitVectorReverse(I); 8262 return; 8263 case Intrinsic::vector_splice: 8264 visitVectorSplice(I); 8265 return; 8266 case Intrinsic::callbr_landingpad: 8267 visitCallBrLandingPad(I); 8268 return; 8269 case Intrinsic::vector_interleave2: 8270 visitVectorInterleave(I); 8271 return; 8272 case Intrinsic::vector_deinterleave2: 8273 visitVectorDeinterleave(I); 8274 return; 8275 case Intrinsic::experimental_vector_compress: 8276 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl, 8277 getValue(I.getArgOperand(0)).getValueType(), 8278 getValue(I.getArgOperand(0)), 8279 getValue(I.getArgOperand(1)), 8280 getValue(I.getArgOperand(2)), Flags)); 8281 return; 8282 case Intrinsic::experimental_convergence_anchor: 8283 case Intrinsic::experimental_convergence_entry: 8284 case Intrinsic::experimental_convergence_loop: 8285 visitConvergenceControl(I, Intrinsic); 8286 return; 8287 case Intrinsic::experimental_vector_histogram_add: { 8288 visitVectorHistogram(I, Intrinsic); 8289 return; 8290 } 8291 case Intrinsic::experimental_vector_extract_last_active: { 8292 visitVectorExtractLastActive(I, Intrinsic); 8293 return; 8294 } 8295 } 8296 } 8297 8298 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8299 const ConstrainedFPIntrinsic &FPI) { 8300 SDLoc sdl = getCurSDLoc(); 8301 8302 // We do not need to serialize constrained FP intrinsics against 8303 // each other or against (nonvolatile) loads, so they can be 8304 // chained like loads. 8305 SDValue Chain = DAG.getRoot(); 8306 SmallVector<SDValue, 4> Opers; 8307 Opers.push_back(Chain); 8308 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8309 Opers.push_back(getValue(FPI.getArgOperand(I))); 8310 8311 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8312 assert(Result.getNode()->getNumValues() == 2); 8313 8314 // Push node to the appropriate list so that future instructions can be 8315 // chained up correctly. 8316 SDValue OutChain = Result.getValue(1); 8317 switch (EB) { 8318 case fp::ExceptionBehavior::ebIgnore: 8319 // The only reason why ebIgnore nodes still need to be chained is that 8320 // they might depend on the current rounding mode, and therefore must 8321 // not be moved across instruction that may change that mode. 8322 [[fallthrough]]; 8323 case fp::ExceptionBehavior::ebMayTrap: 8324 // These must not be moved across calls or instructions that may change 8325 // floating-point exception masks. 8326 PendingConstrainedFP.push_back(OutChain); 8327 break; 8328 case fp::ExceptionBehavior::ebStrict: 8329 // These must not be moved across calls or instructions that may change 8330 // floating-point exception masks or read floating-point exception flags. 8331 // In addition, they cannot be optimized out even if unused. 8332 PendingConstrainedFPStrict.push_back(OutChain); 8333 break; 8334 } 8335 }; 8336 8337 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8338 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8339 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8340 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8341 8342 SDNodeFlags Flags; 8343 if (EB == fp::ExceptionBehavior::ebIgnore) 8344 Flags.setNoFPExcept(true); 8345 8346 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8347 Flags.copyFMF(*FPOp); 8348 8349 unsigned Opcode; 8350 switch (FPI.getIntrinsicID()) { 8351 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8352 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8353 case Intrinsic::INTRINSIC: \ 8354 Opcode = ISD::STRICT_##DAGN; \ 8355 break; 8356 #include "llvm/IR/ConstrainedOps.def" 8357 case Intrinsic::experimental_constrained_fmuladd: { 8358 Opcode = ISD::STRICT_FMA; 8359 // Break fmuladd into fmul and fadd. 8360 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8361 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8362 Opers.pop_back(); 8363 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8364 pushOutChain(Mul, EB); 8365 Opcode = ISD::STRICT_FADD; 8366 Opers.clear(); 8367 Opers.push_back(Mul.getValue(1)); 8368 Opers.push_back(Mul.getValue(0)); 8369 Opers.push_back(getValue(FPI.getArgOperand(2))); 8370 } 8371 break; 8372 } 8373 } 8374 8375 // A few strict DAG nodes carry additional operands that are not 8376 // set up by the default code above. 8377 switch (Opcode) { 8378 default: break; 8379 case ISD::STRICT_FP_ROUND: 8380 Opers.push_back( 8381 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8382 break; 8383 case ISD::STRICT_FSETCC: 8384 case ISD::STRICT_FSETCCS: { 8385 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8386 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8387 if (TM.Options.NoNaNsFPMath) 8388 Condition = getFCmpCodeWithoutNaN(Condition); 8389 Opers.push_back(DAG.getCondCode(Condition)); 8390 break; 8391 } 8392 } 8393 8394 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8395 pushOutChain(Result, EB); 8396 8397 SDValue FPResult = Result.getValue(0); 8398 setValue(&FPI, FPResult); 8399 } 8400 8401 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8402 std::optional<unsigned> ResOPC; 8403 switch (VPIntrin.getIntrinsicID()) { 8404 case Intrinsic::vp_ctlz: { 8405 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8406 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8407 break; 8408 } 8409 case Intrinsic::vp_cttz: { 8410 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8411 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8412 break; 8413 } 8414 case Intrinsic::vp_cttz_elts: { 8415 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8416 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8417 break; 8418 } 8419 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8420 case Intrinsic::VPID: \ 8421 ResOPC = ISD::VPSD; \ 8422 break; 8423 #include "llvm/IR/VPIntrinsics.def" 8424 } 8425 8426 if (!ResOPC) 8427 llvm_unreachable( 8428 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8429 8430 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8431 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8432 if (VPIntrin.getFastMathFlags().allowReassoc()) 8433 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8434 : ISD::VP_REDUCE_FMUL; 8435 } 8436 8437 return *ResOPC; 8438 } 8439 8440 void SelectionDAGBuilder::visitVPLoad( 8441 const VPIntrinsic &VPIntrin, EVT VT, 8442 const SmallVectorImpl<SDValue> &OpValues) { 8443 SDLoc DL = getCurSDLoc(); 8444 Value *PtrOperand = VPIntrin.getArgOperand(0); 8445 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8446 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8447 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8448 SDValue LD; 8449 // Do not serialize variable-length loads of constant memory with 8450 // anything. 8451 if (!Alignment) 8452 Alignment = DAG.getEVTAlign(VT); 8453 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8454 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8455 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8456 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8457 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8458 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8459 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8460 MMO, false /*IsExpanding */); 8461 if (AddToChain) 8462 PendingLoads.push_back(LD.getValue(1)); 8463 setValue(&VPIntrin, LD); 8464 } 8465 8466 void SelectionDAGBuilder::visitVPGather( 8467 const VPIntrinsic &VPIntrin, EVT VT, 8468 const SmallVectorImpl<SDValue> &OpValues) { 8469 SDLoc DL = getCurSDLoc(); 8470 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8471 Value *PtrOperand = VPIntrin.getArgOperand(0); 8472 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8473 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8474 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8475 SDValue LD; 8476 if (!Alignment) 8477 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8478 unsigned AS = 8479 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8480 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8481 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8482 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8483 SDValue Base, Index, Scale; 8484 ISD::MemIndexType IndexType; 8485 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8486 this, VPIntrin.getParent(), 8487 VT.getScalarStoreSize()); 8488 if (!UniformBase) { 8489 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8490 Index = getValue(PtrOperand); 8491 IndexType = ISD::SIGNED_SCALED; 8492 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8493 } 8494 EVT IdxVT = Index.getValueType(); 8495 EVT EltTy = IdxVT.getVectorElementType(); 8496 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8497 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8498 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8499 } 8500 LD = DAG.getGatherVP( 8501 DAG.getVTList(VT, MVT::Other), VT, DL, 8502 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8503 IndexType); 8504 PendingLoads.push_back(LD.getValue(1)); 8505 setValue(&VPIntrin, LD); 8506 } 8507 8508 void SelectionDAGBuilder::visitVPStore( 8509 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8510 SDLoc DL = getCurSDLoc(); 8511 Value *PtrOperand = VPIntrin.getArgOperand(1); 8512 EVT VT = OpValues[0].getValueType(); 8513 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8514 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8515 SDValue ST; 8516 if (!Alignment) 8517 Alignment = DAG.getEVTAlign(VT); 8518 SDValue Ptr = OpValues[1]; 8519 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8520 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8521 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8522 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8523 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8524 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8525 /* IsTruncating */ false, /*IsCompressing*/ false); 8526 DAG.setRoot(ST); 8527 setValue(&VPIntrin, ST); 8528 } 8529 8530 void SelectionDAGBuilder::visitVPScatter( 8531 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8532 SDLoc DL = getCurSDLoc(); 8533 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8534 Value *PtrOperand = VPIntrin.getArgOperand(1); 8535 EVT VT = OpValues[0].getValueType(); 8536 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8537 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8538 SDValue ST; 8539 if (!Alignment) 8540 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8541 unsigned AS = 8542 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8543 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8544 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8545 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8546 SDValue Base, Index, Scale; 8547 ISD::MemIndexType IndexType; 8548 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8549 this, VPIntrin.getParent(), 8550 VT.getScalarStoreSize()); 8551 if (!UniformBase) { 8552 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8553 Index = getValue(PtrOperand); 8554 IndexType = ISD::SIGNED_SCALED; 8555 Scale = 8556 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8557 } 8558 EVT IdxVT = Index.getValueType(); 8559 EVT EltTy = IdxVT.getVectorElementType(); 8560 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8561 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8562 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8563 } 8564 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8565 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8566 OpValues[2], OpValues[3]}, 8567 MMO, IndexType); 8568 DAG.setRoot(ST); 8569 setValue(&VPIntrin, ST); 8570 } 8571 8572 void SelectionDAGBuilder::visitVPStridedLoad( 8573 const VPIntrinsic &VPIntrin, EVT VT, 8574 const SmallVectorImpl<SDValue> &OpValues) { 8575 SDLoc DL = getCurSDLoc(); 8576 Value *PtrOperand = VPIntrin.getArgOperand(0); 8577 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8578 if (!Alignment) 8579 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8580 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8581 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8582 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8583 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8584 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8585 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8586 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8587 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8588 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8589 8590 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8591 OpValues[2], OpValues[3], MMO, 8592 false /*IsExpanding*/); 8593 8594 if (AddToChain) 8595 PendingLoads.push_back(LD.getValue(1)); 8596 setValue(&VPIntrin, LD); 8597 } 8598 8599 void SelectionDAGBuilder::visitVPStridedStore( 8600 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8601 SDLoc DL = getCurSDLoc(); 8602 Value *PtrOperand = VPIntrin.getArgOperand(1); 8603 EVT VT = OpValues[0].getValueType(); 8604 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8605 if (!Alignment) 8606 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8607 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8608 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8609 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8610 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8611 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8612 8613 SDValue ST = DAG.getStridedStoreVP( 8614 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8615 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8616 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8617 /*IsCompressing*/ false); 8618 8619 DAG.setRoot(ST); 8620 setValue(&VPIntrin, ST); 8621 } 8622 8623 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8624 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8625 SDLoc DL = getCurSDLoc(); 8626 8627 ISD::CondCode Condition; 8628 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8629 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8630 if (IsFP) { 8631 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8632 // flags, but calls that don't return floating-point types can't be 8633 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8634 Condition = getFCmpCondCode(CondCode); 8635 if (TM.Options.NoNaNsFPMath) 8636 Condition = getFCmpCodeWithoutNaN(Condition); 8637 } else { 8638 Condition = getICmpCondCode(CondCode); 8639 } 8640 8641 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8642 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8643 // #2 is the condition code 8644 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8645 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8646 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8647 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8648 "Unexpected target EVL type"); 8649 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8650 8651 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8652 VPIntrin.getType()); 8653 setValue(&VPIntrin, 8654 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8655 } 8656 8657 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8658 const VPIntrinsic &VPIntrin) { 8659 SDLoc DL = getCurSDLoc(); 8660 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8661 8662 auto IID = VPIntrin.getIntrinsicID(); 8663 8664 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8665 return visitVPCmp(*CmpI); 8666 8667 SmallVector<EVT, 4> ValueVTs; 8668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8669 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8670 SDVTList VTs = DAG.getVTList(ValueVTs); 8671 8672 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8673 8674 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8675 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8676 "Unexpected target EVL type"); 8677 8678 // Request operands. 8679 SmallVector<SDValue, 7> OpValues; 8680 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8681 auto Op = getValue(VPIntrin.getArgOperand(I)); 8682 if (I == EVLParamPos) 8683 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8684 OpValues.push_back(Op); 8685 } 8686 8687 switch (Opcode) { 8688 default: { 8689 SDNodeFlags SDFlags; 8690 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8691 SDFlags.copyFMF(*FPMO); 8692 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8693 setValue(&VPIntrin, Result); 8694 break; 8695 } 8696 case ISD::VP_LOAD: 8697 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8698 break; 8699 case ISD::VP_GATHER: 8700 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8701 break; 8702 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8703 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8704 break; 8705 case ISD::VP_STORE: 8706 visitVPStore(VPIntrin, OpValues); 8707 break; 8708 case ISD::VP_SCATTER: 8709 visitVPScatter(VPIntrin, OpValues); 8710 break; 8711 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8712 visitVPStridedStore(VPIntrin, OpValues); 8713 break; 8714 case ISD::VP_FMULADD: { 8715 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8716 SDNodeFlags SDFlags; 8717 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8718 SDFlags.copyFMF(*FPMO); 8719 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8720 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8721 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8722 } else { 8723 SDValue Mul = DAG.getNode( 8724 ISD::VP_FMUL, DL, VTs, 8725 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8726 SDValue Add = 8727 DAG.getNode(ISD::VP_FADD, DL, VTs, 8728 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8729 setValue(&VPIntrin, Add); 8730 } 8731 break; 8732 } 8733 case ISD::VP_IS_FPCLASS: { 8734 const DataLayout DLayout = DAG.getDataLayout(); 8735 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8736 auto Constant = OpValues[1]->getAsZExtVal(); 8737 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8738 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8739 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8740 setValue(&VPIntrin, V); 8741 return; 8742 } 8743 case ISD::VP_INTTOPTR: { 8744 SDValue N = OpValues[0]; 8745 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8746 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8747 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8748 OpValues[2]); 8749 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8750 OpValues[2]); 8751 setValue(&VPIntrin, N); 8752 break; 8753 } 8754 case ISD::VP_PTRTOINT: { 8755 SDValue N = OpValues[0]; 8756 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8757 VPIntrin.getType()); 8758 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8759 VPIntrin.getOperand(0)->getType()); 8760 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8761 OpValues[2]); 8762 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8763 OpValues[2]); 8764 setValue(&VPIntrin, N); 8765 break; 8766 } 8767 case ISD::VP_ABS: 8768 case ISD::VP_CTLZ: 8769 case ISD::VP_CTLZ_ZERO_UNDEF: 8770 case ISD::VP_CTTZ: 8771 case ISD::VP_CTTZ_ZERO_UNDEF: 8772 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8773 case ISD::VP_CTTZ_ELTS: { 8774 SDValue Result = 8775 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8776 setValue(&VPIntrin, Result); 8777 break; 8778 } 8779 } 8780 } 8781 8782 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8783 const BasicBlock *EHPadBB, 8784 MCSymbol *&BeginLabel) { 8785 MachineFunction &MF = DAG.getMachineFunction(); 8786 8787 // Insert a label before the invoke call to mark the try range. This can be 8788 // used to detect deletion of the invoke via the MachineModuleInfo. 8789 BeginLabel = MF.getContext().createTempSymbol(); 8790 8791 // For SjLj, keep track of which landing pads go with which invokes 8792 // so as to maintain the ordering of pads in the LSDA. 8793 unsigned CallSiteIndex = FuncInfo.getCurrentCallSite(); 8794 if (CallSiteIndex) { 8795 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8796 LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex); 8797 8798 // Now that the call site is handled, stop tracking it. 8799 FuncInfo.setCurrentCallSite(0); 8800 } 8801 8802 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8803 } 8804 8805 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8806 const BasicBlock *EHPadBB, 8807 MCSymbol *BeginLabel) { 8808 assert(BeginLabel && "BeginLabel should've been set"); 8809 8810 MachineFunction &MF = DAG.getMachineFunction(); 8811 8812 // Insert a label at the end of the invoke call to mark the try range. This 8813 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8814 MCSymbol *EndLabel = MF.getContext().createTempSymbol(); 8815 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8816 8817 // Inform MachineModuleInfo of range. 8818 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8819 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8820 // actually use outlined funclets and their LSDA info style. 8821 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8822 assert(II && "II should've been set"); 8823 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8824 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8825 } else if (!isScopedEHPersonality(Pers)) { 8826 assert(EHPadBB); 8827 MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel); 8828 } 8829 8830 return Chain; 8831 } 8832 8833 std::pair<SDValue, SDValue> 8834 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8835 const BasicBlock *EHPadBB) { 8836 MCSymbol *BeginLabel = nullptr; 8837 8838 if (EHPadBB) { 8839 // Both PendingLoads and PendingExports must be flushed here; 8840 // this call might not return. 8841 (void)getRoot(); 8842 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8843 CLI.setChain(getRoot()); 8844 } 8845 8846 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8847 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8848 8849 assert((CLI.IsTailCall || Result.second.getNode()) && 8850 "Non-null chain expected with non-tail call!"); 8851 assert((Result.second.getNode() || !Result.first.getNode()) && 8852 "Null value expected with tail call!"); 8853 8854 if (!Result.second.getNode()) { 8855 // As a special case, a null chain means that a tail call has been emitted 8856 // and the DAG root is already updated. 8857 HasTailCall = true; 8858 8859 // Since there's no actual continuation from this block, nothing can be 8860 // relying on us setting vregs for them. 8861 PendingExports.clear(); 8862 } else { 8863 DAG.setRoot(Result.second); 8864 } 8865 8866 if (EHPadBB) { 8867 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8868 BeginLabel)); 8869 Result.second = getRoot(); 8870 } 8871 8872 return Result; 8873 } 8874 8875 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8876 bool isTailCall, bool isMustTailCall, 8877 const BasicBlock *EHPadBB, 8878 const TargetLowering::PtrAuthInfo *PAI) { 8879 auto &DL = DAG.getDataLayout(); 8880 FunctionType *FTy = CB.getFunctionType(); 8881 Type *RetTy = CB.getType(); 8882 8883 TargetLowering::ArgListTy Args; 8884 Args.reserve(CB.arg_size()); 8885 8886 const Value *SwiftErrorVal = nullptr; 8887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8888 8889 if (isTailCall) { 8890 // Avoid emitting tail calls in functions with the disable-tail-calls 8891 // attribute. 8892 auto *Caller = CB.getParent()->getParent(); 8893 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8894 "true" && !isMustTailCall) 8895 isTailCall = false; 8896 8897 // We can't tail call inside a function with a swifterror argument. Lowering 8898 // does not support this yet. It would have to move into the swifterror 8899 // register before the call. 8900 if (TLI.supportSwiftError() && 8901 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8902 isTailCall = false; 8903 } 8904 8905 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8906 TargetLowering::ArgListEntry Entry; 8907 const Value *V = *I; 8908 8909 // Skip empty types 8910 if (V->getType()->isEmptyTy()) 8911 continue; 8912 8913 SDValue ArgNode = getValue(V); 8914 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8915 8916 Entry.setAttributes(&CB, I - CB.arg_begin()); 8917 8918 // Use swifterror virtual register as input to the call. 8919 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8920 SwiftErrorVal = V; 8921 // We find the virtual register for the actual swifterror argument. 8922 // Instead of using the Value, we use the virtual register instead. 8923 Entry.Node = 8924 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8925 EVT(TLI.getPointerTy(DL))); 8926 } 8927 8928 Args.push_back(Entry); 8929 8930 // If we have an explicit sret argument that is an Instruction, (i.e., it 8931 // might point to function-local memory), we can't meaningfully tail-call. 8932 if (Entry.IsSRet && isa<Instruction>(V)) 8933 isTailCall = false; 8934 } 8935 8936 // If call site has a cfguardtarget operand bundle, create and add an 8937 // additional ArgListEntry. 8938 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8939 TargetLowering::ArgListEntry Entry; 8940 Value *V = Bundle->Inputs[0]; 8941 SDValue ArgNode = getValue(V); 8942 Entry.Node = ArgNode; 8943 Entry.Ty = V->getType(); 8944 Entry.IsCFGuardTarget = true; 8945 Args.push_back(Entry); 8946 } 8947 8948 // Check if target-independent constraints permit a tail call here. 8949 // Target-dependent constraints are checked within TLI->LowerCallTo. 8950 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8951 isTailCall = false; 8952 8953 // Disable tail calls if there is an swifterror argument. Targets have not 8954 // been updated to support tail calls. 8955 if (TLI.supportSwiftError() && SwiftErrorVal) 8956 isTailCall = false; 8957 8958 ConstantInt *CFIType = nullptr; 8959 if (CB.isIndirectCall()) { 8960 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8961 if (!TLI.supportKCFIBundles()) 8962 report_fatal_error( 8963 "Target doesn't support calls with kcfi operand bundles."); 8964 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8965 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8966 } 8967 } 8968 8969 SDValue ConvControlToken; 8970 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8971 auto *Token = Bundle->Inputs[0].get(); 8972 ConvControlToken = getValue(Token); 8973 } 8974 8975 TargetLowering::CallLoweringInfo CLI(DAG); 8976 CLI.setDebugLoc(getCurSDLoc()) 8977 .setChain(getRoot()) 8978 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8979 .setTailCall(isTailCall) 8980 .setConvergent(CB.isConvergent()) 8981 .setIsPreallocated( 8982 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8983 .setCFIType(CFIType) 8984 .setConvergenceControlToken(ConvControlToken); 8985 8986 // Set the pointer authentication info if we have it. 8987 if (PAI) { 8988 if (!TLI.supportPtrAuthBundles()) 8989 report_fatal_error( 8990 "This target doesn't support calls with ptrauth operand bundles."); 8991 CLI.setPtrAuth(*PAI); 8992 } 8993 8994 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8995 8996 if (Result.first.getNode()) { 8997 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8998 setValue(&CB, Result.first); 8999 } 9000 9001 // The last element of CLI.InVals has the SDValue for swifterror return. 9002 // Here we copy it to a virtual register and update SwiftErrorMap for 9003 // book-keeping. 9004 if (SwiftErrorVal && TLI.supportSwiftError()) { 9005 // Get the last element of InVals. 9006 SDValue Src = CLI.InVals.back(); 9007 Register VReg = 9008 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 9009 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 9010 DAG.setRoot(CopyNode); 9011 } 9012 } 9013 9014 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 9015 SelectionDAGBuilder &Builder) { 9016 // Check to see if this load can be trivially constant folded, e.g. if the 9017 // input is from a string literal. 9018 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 9019 // Cast pointer to the type we really want to load. 9020 Type *LoadTy = 9021 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 9022 if (LoadVT.isVector()) 9023 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 9024 9025 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 9026 PointerType::getUnqual(LoadTy)); 9027 9028 if (const Constant *LoadCst = 9029 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 9030 LoadTy, Builder.DAG.getDataLayout())) 9031 return Builder.getValue(LoadCst); 9032 } 9033 9034 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 9035 // still constant memory, the input chain can be the entry node. 9036 SDValue Root; 9037 bool ConstantMemory = false; 9038 9039 // Do not serialize (non-volatile) loads of constant memory with anything. 9040 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 9041 Root = Builder.DAG.getEntryNode(); 9042 ConstantMemory = true; 9043 } else { 9044 // Do not serialize non-volatile loads against each other. 9045 Root = Builder.DAG.getRoot(); 9046 } 9047 9048 SDValue Ptr = Builder.getValue(PtrVal); 9049 SDValue LoadVal = 9050 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 9051 MachinePointerInfo(PtrVal), Align(1)); 9052 9053 if (!ConstantMemory) 9054 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 9055 return LoadVal; 9056 } 9057 9058 /// Record the value for an instruction that produces an integer result, 9059 /// converting the type where necessary. 9060 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 9061 SDValue Value, 9062 bool IsSigned) { 9063 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 9064 I.getType(), true); 9065 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 9066 setValue(&I, Value); 9067 } 9068 9069 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 9070 /// true and lower it. Otherwise return false, and it will be lowered like a 9071 /// normal call. 9072 /// The caller already checked that \p I calls the appropriate LibFunc with a 9073 /// correct prototype. 9074 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 9075 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 9076 const Value *Size = I.getArgOperand(2); 9077 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 9078 if (CSize && CSize->getZExtValue() == 0) { 9079 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 9080 I.getType(), true); 9081 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 9082 return true; 9083 } 9084 9085 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9086 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 9087 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 9088 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 9089 if (Res.first.getNode()) { 9090 processIntegerCallValue(I, Res.first, true); 9091 PendingLoads.push_back(Res.second); 9092 return true; 9093 } 9094 9095 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 9096 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 9097 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 9098 return false; 9099 9100 // If the target has a fast compare for the given size, it will return a 9101 // preferred load type for that size. Require that the load VT is legal and 9102 // that the target supports unaligned loads of that type. Otherwise, return 9103 // INVALID. 9104 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 9105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9106 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 9107 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 9108 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 9109 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 9110 // TODO: Check alignment of src and dest ptrs. 9111 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 9112 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 9113 if (!TLI.isTypeLegal(LVT) || 9114 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 9115 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 9116 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 9117 } 9118 9119 return LVT; 9120 }; 9121 9122 // This turns into unaligned loads. We only do this if the target natively 9123 // supports the MVT we'll be loading or if it is small enough (<= 4) that 9124 // we'll only produce a small number of byte loads. 9125 MVT LoadVT; 9126 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 9127 switch (NumBitsToCompare) { 9128 default: 9129 return false; 9130 case 16: 9131 LoadVT = MVT::i16; 9132 break; 9133 case 32: 9134 LoadVT = MVT::i32; 9135 break; 9136 case 64: 9137 case 128: 9138 case 256: 9139 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 9140 break; 9141 } 9142 9143 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 9144 return false; 9145 9146 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 9147 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 9148 9149 // Bitcast to a wide integer type if the loads are vectors. 9150 if (LoadVT.isVector()) { 9151 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 9152 LoadL = DAG.getBitcast(CmpVT, LoadL); 9153 LoadR = DAG.getBitcast(CmpVT, LoadR); 9154 } 9155 9156 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 9157 processIntegerCallValue(I, Cmp, false); 9158 return true; 9159 } 9160 9161 /// See if we can lower a memchr call into an optimized form. If so, return 9162 /// true and lower it. Otherwise return false, and it will be lowered like a 9163 /// normal call. 9164 /// The caller already checked that \p I calls the appropriate LibFunc with a 9165 /// correct prototype. 9166 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 9167 const Value *Src = I.getArgOperand(0); 9168 const Value *Char = I.getArgOperand(1); 9169 const Value *Length = I.getArgOperand(2); 9170 9171 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9172 std::pair<SDValue, SDValue> Res = 9173 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 9174 getValue(Src), getValue(Char), getValue(Length), 9175 MachinePointerInfo(Src)); 9176 if (Res.first.getNode()) { 9177 setValue(&I, Res.first); 9178 PendingLoads.push_back(Res.second); 9179 return true; 9180 } 9181 9182 return false; 9183 } 9184 9185 /// See if we can lower a mempcpy call into an optimized form. If so, return 9186 /// true and lower it. Otherwise return false, and it will be lowered like a 9187 /// normal call. 9188 /// The caller already checked that \p I calls the appropriate LibFunc with a 9189 /// correct prototype. 9190 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 9191 SDValue Dst = getValue(I.getArgOperand(0)); 9192 SDValue Src = getValue(I.getArgOperand(1)); 9193 SDValue Size = getValue(I.getArgOperand(2)); 9194 9195 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 9196 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 9197 // DAG::getMemcpy needs Alignment to be defined. 9198 Align Alignment = std::min(DstAlign, SrcAlign); 9199 9200 SDLoc sdl = getCurSDLoc(); 9201 9202 // In the mempcpy context we need to pass in a false value for isTailCall 9203 // because the return pointer needs to be adjusted by the size of 9204 // the copied memory. 9205 SDValue Root = getMemoryRoot(); 9206 SDValue MC = DAG.getMemcpy( 9207 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr, 9208 std::nullopt, MachinePointerInfo(I.getArgOperand(0)), 9209 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata()); 9210 assert(MC.getNode() != nullptr && 9211 "** memcpy should not be lowered as TailCall in mempcpy context **"); 9212 DAG.setRoot(MC); 9213 9214 // Check if Size needs to be truncated or extended. 9215 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 9216 9217 // Adjust return pointer to point just past the last dst byte. 9218 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 9219 Dst, Size); 9220 setValue(&I, DstPlusSize); 9221 return true; 9222 } 9223 9224 /// See if we can lower a strcpy call into an optimized form. If so, return 9225 /// true and lower it, otherwise return false and it will be lowered like a 9226 /// normal call. 9227 /// The caller already checked that \p I calls the appropriate LibFunc with a 9228 /// correct prototype. 9229 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 9230 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9231 9232 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9233 std::pair<SDValue, SDValue> Res = 9234 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 9235 getValue(Arg0), getValue(Arg1), 9236 MachinePointerInfo(Arg0), 9237 MachinePointerInfo(Arg1), isStpcpy); 9238 if (Res.first.getNode()) { 9239 setValue(&I, Res.first); 9240 DAG.setRoot(Res.second); 9241 return true; 9242 } 9243 9244 return false; 9245 } 9246 9247 /// See if we can lower a strcmp call into an optimized form. If so, return 9248 /// true and lower it, otherwise return false and it will be lowered like a 9249 /// normal call. 9250 /// The caller already checked that \p I calls the appropriate LibFunc with a 9251 /// correct prototype. 9252 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 9253 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9254 9255 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9256 std::pair<SDValue, SDValue> Res = 9257 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 9258 getValue(Arg0), getValue(Arg1), 9259 MachinePointerInfo(Arg0), 9260 MachinePointerInfo(Arg1)); 9261 if (Res.first.getNode()) { 9262 processIntegerCallValue(I, Res.first, true); 9263 PendingLoads.push_back(Res.second); 9264 return true; 9265 } 9266 9267 return false; 9268 } 9269 9270 /// See if we can lower a strlen call into an optimized form. If so, return 9271 /// true and lower it, otherwise return false and it will be lowered like a 9272 /// normal call. 9273 /// The caller already checked that \p I calls the appropriate LibFunc with a 9274 /// correct prototype. 9275 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9276 const Value *Arg0 = I.getArgOperand(0); 9277 9278 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9279 std::pair<SDValue, SDValue> Res = 9280 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9281 getValue(Arg0), MachinePointerInfo(Arg0)); 9282 if (Res.first.getNode()) { 9283 processIntegerCallValue(I, Res.first, false); 9284 PendingLoads.push_back(Res.second); 9285 return true; 9286 } 9287 9288 return false; 9289 } 9290 9291 /// See if we can lower a strnlen call into an optimized form. If so, return 9292 /// true and lower it, otherwise return false and it will be lowered like a 9293 /// normal call. 9294 /// The caller already checked that \p I calls the appropriate LibFunc with a 9295 /// correct prototype. 9296 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9297 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9298 9299 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9300 std::pair<SDValue, SDValue> Res = 9301 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9302 getValue(Arg0), getValue(Arg1), 9303 MachinePointerInfo(Arg0)); 9304 if (Res.first.getNode()) { 9305 processIntegerCallValue(I, Res.first, false); 9306 PendingLoads.push_back(Res.second); 9307 return true; 9308 } 9309 9310 return false; 9311 } 9312 9313 /// See if we can lower a unary floating-point operation into an SDNode with 9314 /// the specified Opcode. If so, return true and lower it, otherwise return 9315 /// false and it will be lowered like a normal call. 9316 /// The caller already checked that \p I calls the appropriate LibFunc with a 9317 /// correct prototype. 9318 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9319 unsigned Opcode) { 9320 // We already checked this call's prototype; verify it doesn't modify errno. 9321 if (!I.onlyReadsMemory()) 9322 return false; 9323 9324 SDNodeFlags Flags; 9325 Flags.copyFMF(cast<FPMathOperator>(I)); 9326 9327 SDValue Tmp = getValue(I.getArgOperand(0)); 9328 setValue(&I, 9329 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9330 return true; 9331 } 9332 9333 /// See if we can lower a binary floating-point operation into an SDNode with 9334 /// the specified Opcode. If so, return true and lower it. Otherwise return 9335 /// false, and it will be lowered like a normal call. 9336 /// The caller already checked that \p I calls the appropriate LibFunc with a 9337 /// correct prototype. 9338 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9339 unsigned Opcode) { 9340 // We already checked this call's prototype; verify it doesn't modify errno. 9341 if (!I.onlyReadsMemory()) 9342 return false; 9343 9344 SDNodeFlags Flags; 9345 Flags.copyFMF(cast<FPMathOperator>(I)); 9346 9347 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9348 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9349 EVT VT = Tmp0.getValueType(); 9350 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9351 return true; 9352 } 9353 9354 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9355 // Handle inline assembly differently. 9356 if (I.isInlineAsm()) { 9357 visitInlineAsm(I); 9358 return; 9359 } 9360 9361 diagnoseDontCall(I); 9362 9363 if (Function *F = I.getCalledFunction()) { 9364 if (F->isDeclaration()) { 9365 // Is this an LLVM intrinsic or a target-specific intrinsic? 9366 unsigned IID = F->getIntrinsicID(); 9367 if (!IID) 9368 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9369 IID = II->getIntrinsicID(F); 9370 9371 if (IID) { 9372 visitIntrinsicCall(I, IID); 9373 return; 9374 } 9375 } 9376 9377 // Check for well-known libc/libm calls. If the function is internal, it 9378 // can't be a library call. Don't do the check if marked as nobuiltin for 9379 // some reason or the call site requires strict floating point semantics. 9380 LibFunc Func; 9381 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9382 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9383 LibInfo->hasOptimizedCodeGen(Func)) { 9384 switch (Func) { 9385 default: break; 9386 case LibFunc_bcmp: 9387 if (visitMemCmpBCmpCall(I)) 9388 return; 9389 break; 9390 case LibFunc_copysign: 9391 case LibFunc_copysignf: 9392 case LibFunc_copysignl: 9393 // We already checked this call's prototype; verify it doesn't modify 9394 // errno. 9395 if (I.onlyReadsMemory()) { 9396 SDValue LHS = getValue(I.getArgOperand(0)); 9397 SDValue RHS = getValue(I.getArgOperand(1)); 9398 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9399 LHS.getValueType(), LHS, RHS)); 9400 return; 9401 } 9402 break; 9403 case LibFunc_fabs: 9404 case LibFunc_fabsf: 9405 case LibFunc_fabsl: 9406 if (visitUnaryFloatCall(I, ISD::FABS)) 9407 return; 9408 break; 9409 case LibFunc_fmin: 9410 case LibFunc_fminf: 9411 case LibFunc_fminl: 9412 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9413 return; 9414 break; 9415 case LibFunc_fmax: 9416 case LibFunc_fmaxf: 9417 case LibFunc_fmaxl: 9418 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9419 return; 9420 break; 9421 case LibFunc_fminimum_num: 9422 case LibFunc_fminimum_numf: 9423 case LibFunc_fminimum_numl: 9424 if (visitBinaryFloatCall(I, ISD::FMINIMUMNUM)) 9425 return; 9426 break; 9427 case LibFunc_fmaximum_num: 9428 case LibFunc_fmaximum_numf: 9429 case LibFunc_fmaximum_numl: 9430 if (visitBinaryFloatCall(I, ISD::FMAXIMUMNUM)) 9431 return; 9432 break; 9433 case LibFunc_sin: 9434 case LibFunc_sinf: 9435 case LibFunc_sinl: 9436 if (visitUnaryFloatCall(I, ISD::FSIN)) 9437 return; 9438 break; 9439 case LibFunc_cos: 9440 case LibFunc_cosf: 9441 case LibFunc_cosl: 9442 if (visitUnaryFloatCall(I, ISD::FCOS)) 9443 return; 9444 break; 9445 case LibFunc_tan: 9446 case LibFunc_tanf: 9447 case LibFunc_tanl: 9448 if (visitUnaryFloatCall(I, ISD::FTAN)) 9449 return; 9450 break; 9451 case LibFunc_asin: 9452 case LibFunc_asinf: 9453 case LibFunc_asinl: 9454 if (visitUnaryFloatCall(I, ISD::FASIN)) 9455 return; 9456 break; 9457 case LibFunc_acos: 9458 case LibFunc_acosf: 9459 case LibFunc_acosl: 9460 if (visitUnaryFloatCall(I, ISD::FACOS)) 9461 return; 9462 break; 9463 case LibFunc_atan: 9464 case LibFunc_atanf: 9465 case LibFunc_atanl: 9466 if (visitUnaryFloatCall(I, ISD::FATAN)) 9467 return; 9468 break; 9469 case LibFunc_atan2: 9470 case LibFunc_atan2f: 9471 case LibFunc_atan2l: 9472 if (visitBinaryFloatCall(I, ISD::FATAN2)) 9473 return; 9474 break; 9475 case LibFunc_sinh: 9476 case LibFunc_sinhf: 9477 case LibFunc_sinhl: 9478 if (visitUnaryFloatCall(I, ISD::FSINH)) 9479 return; 9480 break; 9481 case LibFunc_cosh: 9482 case LibFunc_coshf: 9483 case LibFunc_coshl: 9484 if (visitUnaryFloatCall(I, ISD::FCOSH)) 9485 return; 9486 break; 9487 case LibFunc_tanh: 9488 case LibFunc_tanhf: 9489 case LibFunc_tanhl: 9490 if (visitUnaryFloatCall(I, ISD::FTANH)) 9491 return; 9492 break; 9493 case LibFunc_sqrt: 9494 case LibFunc_sqrtf: 9495 case LibFunc_sqrtl: 9496 case LibFunc_sqrt_finite: 9497 case LibFunc_sqrtf_finite: 9498 case LibFunc_sqrtl_finite: 9499 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9500 return; 9501 break; 9502 case LibFunc_floor: 9503 case LibFunc_floorf: 9504 case LibFunc_floorl: 9505 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9506 return; 9507 break; 9508 case LibFunc_nearbyint: 9509 case LibFunc_nearbyintf: 9510 case LibFunc_nearbyintl: 9511 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9512 return; 9513 break; 9514 case LibFunc_ceil: 9515 case LibFunc_ceilf: 9516 case LibFunc_ceill: 9517 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9518 return; 9519 break; 9520 case LibFunc_rint: 9521 case LibFunc_rintf: 9522 case LibFunc_rintl: 9523 if (visitUnaryFloatCall(I, ISD::FRINT)) 9524 return; 9525 break; 9526 case LibFunc_round: 9527 case LibFunc_roundf: 9528 case LibFunc_roundl: 9529 if (visitUnaryFloatCall(I, ISD::FROUND)) 9530 return; 9531 break; 9532 case LibFunc_trunc: 9533 case LibFunc_truncf: 9534 case LibFunc_truncl: 9535 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9536 return; 9537 break; 9538 case LibFunc_log2: 9539 case LibFunc_log2f: 9540 case LibFunc_log2l: 9541 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9542 return; 9543 break; 9544 case LibFunc_exp2: 9545 case LibFunc_exp2f: 9546 case LibFunc_exp2l: 9547 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9548 return; 9549 break; 9550 case LibFunc_exp10: 9551 case LibFunc_exp10f: 9552 case LibFunc_exp10l: 9553 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9554 return; 9555 break; 9556 case LibFunc_ldexp: 9557 case LibFunc_ldexpf: 9558 case LibFunc_ldexpl: 9559 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9560 return; 9561 break; 9562 case LibFunc_memcmp: 9563 if (visitMemCmpBCmpCall(I)) 9564 return; 9565 break; 9566 case LibFunc_mempcpy: 9567 if (visitMemPCpyCall(I)) 9568 return; 9569 break; 9570 case LibFunc_memchr: 9571 if (visitMemChrCall(I)) 9572 return; 9573 break; 9574 case LibFunc_strcpy: 9575 if (visitStrCpyCall(I, false)) 9576 return; 9577 break; 9578 case LibFunc_stpcpy: 9579 if (visitStrCpyCall(I, true)) 9580 return; 9581 break; 9582 case LibFunc_strcmp: 9583 if (visitStrCmpCall(I)) 9584 return; 9585 break; 9586 case LibFunc_strlen: 9587 if (visitStrLenCall(I)) 9588 return; 9589 break; 9590 case LibFunc_strnlen: 9591 if (visitStrNLenCall(I)) 9592 return; 9593 break; 9594 } 9595 } 9596 } 9597 9598 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9599 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9600 return; 9601 } 9602 9603 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9604 // have to do anything here to lower funclet bundles. 9605 // CFGuardTarget bundles are lowered in LowerCallTo. 9606 assert(!I.hasOperandBundlesOtherThan( 9607 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9608 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9609 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9610 LLVMContext::OB_convergencectrl}) && 9611 "Cannot lower calls with arbitrary operand bundles!"); 9612 9613 SDValue Callee = getValue(I.getCalledOperand()); 9614 9615 if (I.hasDeoptState()) 9616 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9617 else 9618 // Check if we can potentially perform a tail call. More detailed checking 9619 // is be done within LowerCallTo, after more information about the call is 9620 // known. 9621 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9622 } 9623 9624 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9625 const CallBase &CB, const BasicBlock *EHPadBB) { 9626 auto PAB = CB.getOperandBundle("ptrauth"); 9627 const Value *CalleeV = CB.getCalledOperand(); 9628 9629 // Gather the call ptrauth data from the operand bundle: 9630 // [ i32 <key>, i64 <discriminator> ] 9631 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9632 const Value *Discriminator = PAB->Inputs[1]; 9633 9634 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9635 assert(Discriminator->getType()->isIntegerTy(64) && 9636 "Invalid ptrauth discriminator"); 9637 9638 // Look through ptrauth constants to find the raw callee. 9639 // Do a direct unauthenticated call if we found it and everything matches. 9640 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV)) 9641 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator, 9642 DAG.getDataLayout())) 9643 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(), 9644 CB.isMustTailCall(), EHPadBB); 9645 9646 // Functions should never be ptrauth-called directly. 9647 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9648 9649 // Otherwise, do an authenticated indirect call. 9650 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9651 getValue(Discriminator)}; 9652 9653 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9654 EHPadBB, &PAI); 9655 } 9656 9657 namespace { 9658 9659 /// AsmOperandInfo - This contains information for each constraint that we are 9660 /// lowering. 9661 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9662 public: 9663 /// CallOperand - If this is the result output operand or a clobber 9664 /// this is null, otherwise it is the incoming operand to the CallInst. 9665 /// This gets modified as the asm is processed. 9666 SDValue CallOperand; 9667 9668 /// AssignedRegs - If this is a register or register class operand, this 9669 /// contains the set of register corresponding to the operand. 9670 RegsForValue AssignedRegs; 9671 9672 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9673 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9674 } 9675 9676 /// Whether or not this operand accesses memory 9677 bool hasMemory(const TargetLowering &TLI) const { 9678 // Indirect operand accesses access memory. 9679 if (isIndirect) 9680 return true; 9681 9682 for (const auto &Code : Codes) 9683 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9684 return true; 9685 9686 return false; 9687 } 9688 }; 9689 9690 9691 } // end anonymous namespace 9692 9693 /// Make sure that the output operand \p OpInfo and its corresponding input 9694 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9695 /// out). 9696 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9697 SDISelAsmOperandInfo &MatchingOpInfo, 9698 SelectionDAG &DAG) { 9699 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9700 return; 9701 9702 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9703 const auto &TLI = DAG.getTargetLoweringInfo(); 9704 9705 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9706 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9707 OpInfo.ConstraintVT); 9708 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9709 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9710 MatchingOpInfo.ConstraintVT); 9711 const bool OutOpIsIntOrFP = 9712 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint(); 9713 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() || 9714 MatchingOpInfo.ConstraintVT.isFloatingPoint(); 9715 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) { 9716 // FIXME: error out in a more elegant fashion 9717 report_fatal_error("Unsupported asm: input constraint" 9718 " with a matching output constraint of" 9719 " incompatible type!"); 9720 } 9721 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9722 } 9723 9724 /// Get a direct memory input to behave well as an indirect operand. 9725 /// This may introduce stores, hence the need for a \p Chain. 9726 /// \return The (possibly updated) chain. 9727 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9728 SDISelAsmOperandInfo &OpInfo, 9729 SelectionDAG &DAG) { 9730 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9731 9732 // If we don't have an indirect input, put it in the constpool if we can, 9733 // otherwise spill it to a stack slot. 9734 // TODO: This isn't quite right. We need to handle these according to 9735 // the addressing mode that the constraint wants. Also, this may take 9736 // an additional register for the computation and we don't want that 9737 // either. 9738 9739 // If the operand is a float, integer, or vector constant, spill to a 9740 // constant pool entry to get its address. 9741 const Value *OpVal = OpInfo.CallOperandVal; 9742 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9743 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9744 OpInfo.CallOperand = DAG.getConstantPool( 9745 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9746 return Chain; 9747 } 9748 9749 // Otherwise, create a stack slot and emit a store to it before the asm. 9750 Type *Ty = OpVal->getType(); 9751 auto &DL = DAG.getDataLayout(); 9752 TypeSize TySize = DL.getTypeAllocSize(Ty); 9753 MachineFunction &MF = DAG.getMachineFunction(); 9754 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 9755 int StackID = 0; 9756 if (TySize.isScalable()) 9757 StackID = TFI->getStackIDForScalableVectors(); 9758 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(), 9759 DL.getPrefTypeAlign(Ty), false, 9760 nullptr, StackID); 9761 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9762 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9763 MachinePointerInfo::getFixedStack(MF, SSFI), 9764 TLI.getMemValueType(DL, Ty)); 9765 OpInfo.CallOperand = StackSlot; 9766 9767 return Chain; 9768 } 9769 9770 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9771 /// specified operand. We prefer to assign virtual registers, to allow the 9772 /// register allocator to handle the assignment process. However, if the asm 9773 /// uses features that we can't model on machineinstrs, we have SDISel do the 9774 /// allocation. This produces generally horrible, but correct, code. 9775 /// 9776 /// OpInfo describes the operand 9777 /// RefOpInfo describes the matching operand if any, the operand otherwise 9778 static std::optional<unsigned> 9779 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9780 SDISelAsmOperandInfo &OpInfo, 9781 SDISelAsmOperandInfo &RefOpInfo) { 9782 LLVMContext &Context = *DAG.getContext(); 9783 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9784 9785 MachineFunction &MF = DAG.getMachineFunction(); 9786 SmallVector<Register, 4> Regs; 9787 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9788 9789 // No work to do for memory/address operands. 9790 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9791 OpInfo.ConstraintType == TargetLowering::C_Address) 9792 return std::nullopt; 9793 9794 // If this is a constraint for a single physreg, or a constraint for a 9795 // register class, find it. 9796 unsigned AssignedReg; 9797 const TargetRegisterClass *RC; 9798 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9799 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9800 // RC is unset only on failure. Return immediately. 9801 if (!RC) 9802 return std::nullopt; 9803 9804 // Get the actual register value type. This is important, because the user 9805 // may have asked for (e.g.) the AX register in i32 type. We need to 9806 // remember that AX is actually i16 to get the right extension. 9807 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9808 9809 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9810 // If this is an FP operand in an integer register (or visa versa), or more 9811 // generally if the operand value disagrees with the register class we plan 9812 // to stick it in, fix the operand type. 9813 // 9814 // If this is an input value, the bitcast to the new type is done now. 9815 // Bitcast for output value is done at the end of visitInlineAsm(). 9816 if ((OpInfo.Type == InlineAsm::isOutput || 9817 OpInfo.Type == InlineAsm::isInput) && 9818 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9819 // Try to convert to the first EVT that the reg class contains. If the 9820 // types are identical size, use a bitcast to convert (e.g. two differing 9821 // vector types). Note: output bitcast is done at the end of 9822 // visitInlineAsm(). 9823 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9824 // Exclude indirect inputs while they are unsupported because the code 9825 // to perform the load is missing and thus OpInfo.CallOperand still 9826 // refers to the input address rather than the pointed-to value. 9827 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9828 OpInfo.CallOperand = 9829 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9830 OpInfo.ConstraintVT = RegVT; 9831 // If the operand is an FP value and we want it in integer registers, 9832 // use the corresponding integer type. This turns an f64 value into 9833 // i64, which can be passed with two i32 values on a 32-bit machine. 9834 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9835 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9836 if (OpInfo.Type == InlineAsm::isInput) 9837 OpInfo.CallOperand = 9838 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9839 OpInfo.ConstraintVT = VT; 9840 } 9841 } 9842 } 9843 9844 // No need to allocate a matching input constraint since the constraint it's 9845 // matching to has already been allocated. 9846 if (OpInfo.isMatchingInputConstraint()) 9847 return std::nullopt; 9848 9849 EVT ValueVT = OpInfo.ConstraintVT; 9850 if (OpInfo.ConstraintVT == MVT::Other) 9851 ValueVT = RegVT; 9852 9853 // Initialize NumRegs. 9854 unsigned NumRegs = 1; 9855 if (OpInfo.ConstraintVT != MVT::Other) 9856 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9857 9858 // If this is a constraint for a specific physical register, like {r17}, 9859 // assign it now. 9860 9861 // If this associated to a specific register, initialize iterator to correct 9862 // place. If virtual, make sure we have enough registers 9863 9864 // Initialize iterator if necessary 9865 TargetRegisterClass::iterator I = RC->begin(); 9866 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9867 9868 // Do not check for single registers. 9869 if (AssignedReg) { 9870 I = std::find(I, RC->end(), AssignedReg); 9871 if (I == RC->end()) { 9872 // RC does not contain the selected register, which indicates a 9873 // mismatch between the register and the required type/bitwidth. 9874 return {AssignedReg}; 9875 } 9876 } 9877 9878 for (; NumRegs; --NumRegs, ++I) { 9879 assert(I != RC->end() && "Ran out of registers to allocate!"); 9880 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9881 Regs.push_back(R); 9882 } 9883 9884 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9885 return std::nullopt; 9886 } 9887 9888 static unsigned 9889 findMatchingInlineAsmOperand(unsigned OperandNo, 9890 const std::vector<SDValue> &AsmNodeOperands) { 9891 // Scan until we find the definition we already emitted of this operand. 9892 unsigned CurOp = InlineAsm::Op_FirstOperand; 9893 for (; OperandNo; --OperandNo) { 9894 // Advance to the next operand. 9895 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9896 const InlineAsm::Flag F(OpFlag); 9897 assert( 9898 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9899 "Skipped past definitions?"); 9900 CurOp += F.getNumOperandRegisters() + 1; 9901 } 9902 return CurOp; 9903 } 9904 9905 namespace { 9906 9907 class ExtraFlags { 9908 unsigned Flags = 0; 9909 9910 public: 9911 explicit ExtraFlags(const CallBase &Call) { 9912 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9913 if (IA->hasSideEffects()) 9914 Flags |= InlineAsm::Extra_HasSideEffects; 9915 if (IA->isAlignStack()) 9916 Flags |= InlineAsm::Extra_IsAlignStack; 9917 if (Call.isConvergent()) 9918 Flags |= InlineAsm::Extra_IsConvergent; 9919 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9920 } 9921 9922 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9923 // Ideally, we would only check against memory constraints. However, the 9924 // meaning of an Other constraint can be target-specific and we can't easily 9925 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9926 // for Other constraints as well. 9927 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9928 OpInfo.ConstraintType == TargetLowering::C_Other) { 9929 if (OpInfo.Type == InlineAsm::isInput) 9930 Flags |= InlineAsm::Extra_MayLoad; 9931 else if (OpInfo.Type == InlineAsm::isOutput) 9932 Flags |= InlineAsm::Extra_MayStore; 9933 else if (OpInfo.Type == InlineAsm::isClobber) 9934 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9935 } 9936 } 9937 9938 unsigned get() const { return Flags; } 9939 }; 9940 9941 } // end anonymous namespace 9942 9943 static bool isFunction(SDValue Op) { 9944 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9945 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9946 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9947 9948 // In normal "call dllimport func" instruction (non-inlineasm) it force 9949 // indirect access by specifing call opcode. And usually specially print 9950 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9951 // not do in this way now. (In fact, this is similar with "Data Access" 9952 // action). So here we ignore dllimport function. 9953 if (Fn && !Fn->hasDLLImportStorageClass()) 9954 return true; 9955 } 9956 } 9957 return false; 9958 } 9959 9960 /// visitInlineAsm - Handle a call to an InlineAsm object. 9961 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9962 const BasicBlock *EHPadBB) { 9963 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9964 9965 /// ConstraintOperands - Information about all of the constraints. 9966 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9967 9968 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9969 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9970 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9971 9972 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9973 // AsmDialect, MayLoad, MayStore). 9974 bool HasSideEffect = IA->hasSideEffects(); 9975 ExtraFlags ExtraInfo(Call); 9976 9977 for (auto &T : TargetConstraints) { 9978 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9979 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9980 9981 if (OpInfo.CallOperandVal) 9982 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9983 9984 if (!HasSideEffect) 9985 HasSideEffect = OpInfo.hasMemory(TLI); 9986 9987 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9988 // FIXME: Could we compute this on OpInfo rather than T? 9989 9990 // Compute the constraint code and ConstraintType to use. 9991 TLI.ComputeConstraintToUse(T, SDValue()); 9992 9993 if (T.ConstraintType == TargetLowering::C_Immediate && 9994 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9995 // We've delayed emitting a diagnostic like the "n" constraint because 9996 // inlining could cause an integer showing up. 9997 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9998 "' expects an integer constant " 9999 "expression"); 10000 10001 ExtraInfo.update(T); 10002 } 10003 10004 // We won't need to flush pending loads if this asm doesn't touch 10005 // memory and is nonvolatile. 10006 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 10007 10008 bool EmitEHLabels = isa<InvokeInst>(Call); 10009 if (EmitEHLabels) { 10010 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 10011 } 10012 bool IsCallBr = isa<CallBrInst>(Call); 10013 10014 if (IsCallBr || EmitEHLabels) { 10015 // If this is a callbr or invoke we need to flush pending exports since 10016 // inlineasm_br and invoke are terminators. 10017 // We need to do this before nodes are glued to the inlineasm_br node. 10018 Chain = getControlRoot(); 10019 } 10020 10021 MCSymbol *BeginLabel = nullptr; 10022 if (EmitEHLabels) { 10023 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 10024 } 10025 10026 int OpNo = -1; 10027 SmallVector<StringRef> AsmStrs; 10028 IA->collectAsmStrs(AsmStrs); 10029 10030 // Second pass over the constraints: compute which constraint option to use. 10031 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10032 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 10033 OpNo++; 10034 10035 // If this is an output operand with a matching input operand, look up the 10036 // matching input. If their types mismatch, e.g. one is an integer, the 10037 // other is floating point, or their sizes are different, flag it as an 10038 // error. 10039 if (OpInfo.hasMatchingInput()) { 10040 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 10041 patchMatchingInput(OpInfo, Input, DAG); 10042 } 10043 10044 // Compute the constraint code and ConstraintType to use. 10045 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 10046 10047 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 10048 OpInfo.Type == InlineAsm::isClobber) || 10049 OpInfo.ConstraintType == TargetLowering::C_Address) 10050 continue; 10051 10052 // In Linux PIC model, there are 4 cases about value/label addressing: 10053 // 10054 // 1: Function call or Label jmp inside the module. 10055 // 2: Data access (such as global variable, static variable) inside module. 10056 // 3: Function call or Label jmp outside the module. 10057 // 4: Data access (such as global variable) outside the module. 10058 // 10059 // Due to current llvm inline asm architecture designed to not "recognize" 10060 // the asm code, there are quite troubles for us to treat mem addressing 10061 // differently for same value/adress used in different instuctions. 10062 // For example, in pic model, call a func may in plt way or direclty 10063 // pc-related, but lea/mov a function adress may use got. 10064 // 10065 // Here we try to "recognize" function call for the case 1 and case 3 in 10066 // inline asm. And try to adjust the constraint for them. 10067 // 10068 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 10069 // label, so here we don't handle jmp function label now, but we need to 10070 // enhance it (especilly in PIC model) if we meet meaningful requirements. 10071 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 10072 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 10073 TM.getCodeModel() != CodeModel::Large) { 10074 OpInfo.isIndirect = false; 10075 OpInfo.ConstraintType = TargetLowering::C_Address; 10076 } 10077 10078 // If this is a memory input, and if the operand is not indirect, do what we 10079 // need to provide an address for the memory input. 10080 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 10081 !OpInfo.isIndirect) { 10082 assert((OpInfo.isMultipleAlternative || 10083 (OpInfo.Type == InlineAsm::isInput)) && 10084 "Can only indirectify direct input operands!"); 10085 10086 // Memory operands really want the address of the value. 10087 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 10088 10089 // There is no longer a Value* corresponding to this operand. 10090 OpInfo.CallOperandVal = nullptr; 10091 10092 // It is now an indirect operand. 10093 OpInfo.isIndirect = true; 10094 } 10095 10096 } 10097 10098 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 10099 std::vector<SDValue> AsmNodeOperands; 10100 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 10101 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 10102 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 10103 10104 // If we have a !srcloc metadata node associated with it, we want to attach 10105 // this to the ultimately generated inline asm machineinstr. To do this, we 10106 // pass in the third operand as this (potentially null) inline asm MDNode. 10107 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 10108 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 10109 10110 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 10111 // bits as operand 3. 10112 AsmNodeOperands.push_back(DAG.getTargetConstant( 10113 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10114 10115 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 10116 // this, assign virtual and physical registers for inputs and otput. 10117 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10118 // Assign Registers. 10119 SDISelAsmOperandInfo &RefOpInfo = 10120 OpInfo.isMatchingInputConstraint() 10121 ? ConstraintOperands[OpInfo.getMatchedOperand()] 10122 : OpInfo; 10123 const auto RegError = 10124 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 10125 if (RegError) { 10126 const MachineFunction &MF = DAG.getMachineFunction(); 10127 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10128 const char *RegName = TRI.getName(*RegError); 10129 emitInlineAsmError(Call, "register '" + Twine(RegName) + 10130 "' allocated for constraint '" + 10131 Twine(OpInfo.ConstraintCode) + 10132 "' does not match required type"); 10133 return; 10134 } 10135 10136 auto DetectWriteToReservedRegister = [&]() { 10137 const MachineFunction &MF = DAG.getMachineFunction(); 10138 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10139 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 10140 if (Register::isPhysicalRegister(Reg) && 10141 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 10142 const char *RegName = TRI.getName(Reg); 10143 emitInlineAsmError(Call, "write to reserved register '" + 10144 Twine(RegName) + "'"); 10145 return true; 10146 } 10147 } 10148 return false; 10149 }; 10150 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 10151 (OpInfo.Type == InlineAsm::isInput && 10152 !OpInfo.isMatchingInputConstraint())) && 10153 "Only address as input operand is allowed."); 10154 10155 switch (OpInfo.Type) { 10156 case InlineAsm::isOutput: 10157 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10158 const InlineAsm::ConstraintCode ConstraintID = 10159 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10160 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10161 "Failed to convert memory constraint code to constraint id."); 10162 10163 // Add information to the INLINEASM node to know about this output. 10164 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 10165 OpFlags.setMemConstraint(ConstraintID); 10166 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 10167 MVT::i32)); 10168 AsmNodeOperands.push_back(OpInfo.CallOperand); 10169 } else { 10170 // Otherwise, this outputs to a register (directly for C_Register / 10171 // C_RegisterClass, and a target-defined fashion for 10172 // C_Immediate/C_Other). Find a register that we can use. 10173 if (OpInfo.AssignedRegs.Regs.empty()) { 10174 emitInlineAsmError( 10175 Call, "couldn't allocate output register for constraint '" + 10176 Twine(OpInfo.ConstraintCode) + "'"); 10177 return; 10178 } 10179 10180 if (DetectWriteToReservedRegister()) 10181 return; 10182 10183 // Add information to the INLINEASM node to know that this register is 10184 // set. 10185 OpInfo.AssignedRegs.AddInlineAsmOperands( 10186 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 10187 : InlineAsm::Kind::RegDef, 10188 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 10189 } 10190 break; 10191 10192 case InlineAsm::isInput: 10193 case InlineAsm::isLabel: { 10194 SDValue InOperandVal = OpInfo.CallOperand; 10195 10196 if (OpInfo.isMatchingInputConstraint()) { 10197 // If this is required to match an output register we have already set, 10198 // just use its register. 10199 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 10200 AsmNodeOperands); 10201 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 10202 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 10203 if (OpInfo.isIndirect) { 10204 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 10205 emitInlineAsmError(Call, "inline asm not supported yet: " 10206 "don't know how to handle tied " 10207 "indirect register inputs"); 10208 return; 10209 } 10210 10211 SmallVector<Register, 4> Regs; 10212 MachineFunction &MF = DAG.getMachineFunction(); 10213 MachineRegisterInfo &MRI = MF.getRegInfo(); 10214 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10215 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 10216 Register TiedReg = R->getReg(); 10217 MVT RegVT = R->getSimpleValueType(0); 10218 const TargetRegisterClass *RC = 10219 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 10220 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 10221 : TRI.getMinimalPhysRegClass(TiedReg); 10222 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 10223 Regs.push_back(MRI.createVirtualRegister(RC)); 10224 10225 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 10226 10227 SDLoc dl = getCurSDLoc(); 10228 // Use the produced MatchedRegs object to 10229 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 10230 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 10231 OpInfo.getMatchedOperand(), dl, DAG, 10232 AsmNodeOperands); 10233 break; 10234 } 10235 10236 assert(Flag.isMemKind() && "Unknown matching constraint!"); 10237 assert(Flag.getNumOperandRegisters() == 1 && 10238 "Unexpected number of operands"); 10239 // Add information to the INLINEASM node to know about this input. 10240 // See InlineAsm.h isUseOperandTiedToDef. 10241 Flag.clearMemConstraint(); 10242 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 10243 AsmNodeOperands.push_back(DAG.getTargetConstant( 10244 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10245 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 10246 break; 10247 } 10248 10249 // Treat indirect 'X' constraint as memory. 10250 if (OpInfo.ConstraintType == TargetLowering::C_Other && 10251 OpInfo.isIndirect) 10252 OpInfo.ConstraintType = TargetLowering::C_Memory; 10253 10254 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 10255 OpInfo.ConstraintType == TargetLowering::C_Other) { 10256 std::vector<SDValue> Ops; 10257 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 10258 Ops, DAG); 10259 if (Ops.empty()) { 10260 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 10261 if (isa<ConstantSDNode>(InOperandVal)) { 10262 emitInlineAsmError(Call, "value out of range for constraint '" + 10263 Twine(OpInfo.ConstraintCode) + "'"); 10264 return; 10265 } 10266 10267 emitInlineAsmError(Call, 10268 "invalid operand for inline asm constraint '" + 10269 Twine(OpInfo.ConstraintCode) + "'"); 10270 return; 10271 } 10272 10273 // Add information to the INLINEASM node to know about this input. 10274 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 10275 AsmNodeOperands.push_back(DAG.getTargetConstant( 10276 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10277 llvm::append_range(AsmNodeOperands, Ops); 10278 break; 10279 } 10280 10281 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10282 assert((OpInfo.isIndirect || 10283 OpInfo.ConstraintType != TargetLowering::C_Memory) && 10284 "Operand must be indirect to be a mem!"); 10285 assert(InOperandVal.getValueType() == 10286 TLI.getPointerTy(DAG.getDataLayout()) && 10287 "Memory operands expect pointer values"); 10288 10289 const InlineAsm::ConstraintCode ConstraintID = 10290 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10291 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10292 "Failed to convert memory constraint code to constraint id."); 10293 10294 // Add information to the INLINEASM node to know about this input. 10295 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10296 ResOpType.setMemConstraint(ConstraintID); 10297 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 10298 getCurSDLoc(), 10299 MVT::i32)); 10300 AsmNodeOperands.push_back(InOperandVal); 10301 break; 10302 } 10303 10304 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 10305 const InlineAsm::ConstraintCode ConstraintID = 10306 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10307 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10308 "Failed to convert memory constraint code to constraint id."); 10309 10310 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10311 10312 SDValue AsmOp = InOperandVal; 10313 if (isFunction(InOperandVal)) { 10314 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 10315 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 10316 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 10317 InOperandVal.getValueType(), 10318 GA->getOffset()); 10319 } 10320 10321 // Add information to the INLINEASM node to know about this input. 10322 ResOpType.setMemConstraint(ConstraintID); 10323 10324 AsmNodeOperands.push_back( 10325 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 10326 10327 AsmNodeOperands.push_back(AsmOp); 10328 break; 10329 } 10330 10331 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 10332 OpInfo.ConstraintType != TargetLowering::C_Register) { 10333 emitInlineAsmError(Call, "unknown asm constraint '" + 10334 Twine(OpInfo.ConstraintCode) + "'"); 10335 return; 10336 } 10337 10338 // TODO: Support this. 10339 if (OpInfo.isIndirect) { 10340 emitInlineAsmError( 10341 Call, "Don't know how to handle indirect register inputs yet " 10342 "for constraint '" + 10343 Twine(OpInfo.ConstraintCode) + "'"); 10344 return; 10345 } 10346 10347 // Copy the input into the appropriate registers. 10348 if (OpInfo.AssignedRegs.Regs.empty()) { 10349 emitInlineAsmError(Call, 10350 "couldn't allocate input reg for constraint '" + 10351 Twine(OpInfo.ConstraintCode) + "'"); 10352 return; 10353 } 10354 10355 if (DetectWriteToReservedRegister()) 10356 return; 10357 10358 SDLoc dl = getCurSDLoc(); 10359 10360 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10361 &Call); 10362 10363 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10364 0, dl, DAG, AsmNodeOperands); 10365 break; 10366 } 10367 case InlineAsm::isClobber: 10368 // Add the clobbered value to the operand list, so that the register 10369 // allocator is aware that the physreg got clobbered. 10370 if (!OpInfo.AssignedRegs.Regs.empty()) 10371 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10372 false, 0, getCurSDLoc(), DAG, 10373 AsmNodeOperands); 10374 break; 10375 } 10376 } 10377 10378 // Finish up input operands. Set the input chain and add the flag last. 10379 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10380 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10381 10382 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10383 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10384 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10385 Glue = Chain.getValue(1); 10386 10387 // Do additional work to generate outputs. 10388 10389 SmallVector<EVT, 1> ResultVTs; 10390 SmallVector<SDValue, 1> ResultValues; 10391 SmallVector<SDValue, 8> OutChains; 10392 10393 llvm::Type *CallResultType = Call.getType(); 10394 ArrayRef<Type *> ResultTypes; 10395 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10396 ResultTypes = StructResult->elements(); 10397 else if (!CallResultType->isVoidTy()) 10398 ResultTypes = ArrayRef(CallResultType); 10399 10400 auto CurResultType = ResultTypes.begin(); 10401 auto handleRegAssign = [&](SDValue V) { 10402 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10403 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10404 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10405 ++CurResultType; 10406 // If the type of the inline asm call site return value is different but has 10407 // same size as the type of the asm output bitcast it. One example of this 10408 // is for vectors with different width / number of elements. This can 10409 // happen for register classes that can contain multiple different value 10410 // types. The preg or vreg allocated may not have the same VT as was 10411 // expected. 10412 // 10413 // This can also happen for a return value that disagrees with the register 10414 // class it is put in, eg. a double in a general-purpose register on a 10415 // 32-bit machine. 10416 if (ResultVT != V.getValueType() && 10417 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10418 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10419 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10420 V.getValueType().isInteger()) { 10421 // If a result value was tied to an input value, the computed result 10422 // may have a wider width than the expected result. Extract the 10423 // relevant portion. 10424 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10425 } 10426 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10427 ResultVTs.push_back(ResultVT); 10428 ResultValues.push_back(V); 10429 }; 10430 10431 // Deal with output operands. 10432 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10433 if (OpInfo.Type == InlineAsm::isOutput) { 10434 SDValue Val; 10435 // Skip trivial output operands. 10436 if (OpInfo.AssignedRegs.Regs.empty()) 10437 continue; 10438 10439 switch (OpInfo.ConstraintType) { 10440 case TargetLowering::C_Register: 10441 case TargetLowering::C_RegisterClass: 10442 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10443 Chain, &Glue, &Call); 10444 break; 10445 case TargetLowering::C_Immediate: 10446 case TargetLowering::C_Other: 10447 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10448 OpInfo, DAG); 10449 break; 10450 case TargetLowering::C_Memory: 10451 break; // Already handled. 10452 case TargetLowering::C_Address: 10453 break; // Silence warning. 10454 case TargetLowering::C_Unknown: 10455 assert(false && "Unexpected unknown constraint"); 10456 } 10457 10458 // Indirect output manifest as stores. Record output chains. 10459 if (OpInfo.isIndirect) { 10460 const Value *Ptr = OpInfo.CallOperandVal; 10461 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10462 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10463 MachinePointerInfo(Ptr)); 10464 OutChains.push_back(Store); 10465 } else { 10466 // generate CopyFromRegs to associated registers. 10467 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10468 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10469 for (const SDValue &V : Val->op_values()) 10470 handleRegAssign(V); 10471 } else 10472 handleRegAssign(Val); 10473 } 10474 } 10475 } 10476 10477 // Set results. 10478 if (!ResultValues.empty()) { 10479 assert(CurResultType == ResultTypes.end() && 10480 "Mismatch in number of ResultTypes"); 10481 assert(ResultValues.size() == ResultTypes.size() && 10482 "Mismatch in number of output operands in asm result"); 10483 10484 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10485 DAG.getVTList(ResultVTs), ResultValues); 10486 setValue(&Call, V); 10487 } 10488 10489 // Collect store chains. 10490 if (!OutChains.empty()) 10491 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10492 10493 if (EmitEHLabels) { 10494 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10495 } 10496 10497 // Only Update Root if inline assembly has a memory effect. 10498 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10499 EmitEHLabels) 10500 DAG.setRoot(Chain); 10501 } 10502 10503 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10504 const Twine &Message) { 10505 LLVMContext &Ctx = *DAG.getContext(); 10506 Ctx.emitError(&Call, Message); 10507 10508 // Make sure we leave the DAG in a valid state 10509 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10510 SmallVector<EVT, 1> ValueVTs; 10511 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10512 10513 if (ValueVTs.empty()) 10514 return; 10515 10516 SmallVector<SDValue, 1> Ops; 10517 for (const EVT &VT : ValueVTs) 10518 Ops.push_back(DAG.getUNDEF(VT)); 10519 10520 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10521 } 10522 10523 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10524 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10525 MVT::Other, getRoot(), 10526 getValue(I.getArgOperand(0)), 10527 DAG.getSrcValue(I.getArgOperand(0)))); 10528 } 10529 10530 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10532 const DataLayout &DL = DAG.getDataLayout(); 10533 SDValue V = DAG.getVAArg( 10534 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10535 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10536 DL.getABITypeAlign(I.getType()).value()); 10537 DAG.setRoot(V.getValue(1)); 10538 10539 if (I.getType()->isPointerTy()) 10540 V = DAG.getPtrExtOrTrunc( 10541 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10542 setValue(&I, V); 10543 } 10544 10545 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10546 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10547 MVT::Other, getRoot(), 10548 getValue(I.getArgOperand(0)), 10549 DAG.getSrcValue(I.getArgOperand(0)))); 10550 } 10551 10552 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10553 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10554 MVT::Other, getRoot(), 10555 getValue(I.getArgOperand(0)), 10556 getValue(I.getArgOperand(1)), 10557 DAG.getSrcValue(I.getArgOperand(0)), 10558 DAG.getSrcValue(I.getArgOperand(1)))); 10559 } 10560 10561 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10562 const Instruction &I, 10563 SDValue Op) { 10564 std::optional<ConstantRange> CR = getRange(I); 10565 10566 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped()) 10567 return Op; 10568 10569 APInt Lo = CR->getUnsignedMin(); 10570 if (!Lo.isMinValue()) 10571 return Op; 10572 10573 APInt Hi = CR->getUnsignedMax(); 10574 unsigned Bits = std::max(Hi.getActiveBits(), 10575 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10576 10577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10578 10579 SDLoc SL = getCurSDLoc(); 10580 10581 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10582 DAG.getValueType(SmallVT)); 10583 unsigned NumVals = Op.getNode()->getNumValues(); 10584 if (NumVals == 1) 10585 return ZExt; 10586 10587 SmallVector<SDValue, 4> Ops; 10588 10589 Ops.push_back(ZExt); 10590 for (unsigned I = 1; I != NumVals; ++I) 10591 Ops.push_back(Op.getValue(I)); 10592 10593 return DAG.getMergeValues(Ops, SL); 10594 } 10595 10596 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10597 /// the call being lowered. 10598 /// 10599 /// This is a helper for lowering intrinsics that follow a target calling 10600 /// convention or require stack pointer adjustment. Only a subset of the 10601 /// intrinsic's operands need to participate in the calling convention. 10602 void SelectionDAGBuilder::populateCallLoweringInfo( 10603 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10604 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10605 AttributeSet RetAttrs, bool IsPatchPoint) { 10606 TargetLowering::ArgListTy Args; 10607 Args.reserve(NumArgs); 10608 10609 // Populate the argument list. 10610 // Attributes for args start at offset 1, after the return attribute. 10611 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10612 ArgI != ArgE; ++ArgI) { 10613 const Value *V = Call->getOperand(ArgI); 10614 10615 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10616 10617 TargetLowering::ArgListEntry Entry; 10618 Entry.Node = getValue(V); 10619 Entry.Ty = V->getType(); 10620 Entry.setAttributes(Call, ArgI); 10621 Args.push_back(Entry); 10622 } 10623 10624 CLI.setDebugLoc(getCurSDLoc()) 10625 .setChain(getRoot()) 10626 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10627 RetAttrs) 10628 .setDiscardResult(Call->use_empty()) 10629 .setIsPatchPoint(IsPatchPoint) 10630 .setIsPreallocated( 10631 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10632 } 10633 10634 /// Add a stack map intrinsic call's live variable operands to a stackmap 10635 /// or patchpoint target node's operand list. 10636 /// 10637 /// Constants are converted to TargetConstants purely as an optimization to 10638 /// avoid constant materialization and register allocation. 10639 /// 10640 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10641 /// generate addess computation nodes, and so FinalizeISel can convert the 10642 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10643 /// address materialization and register allocation, but may also be required 10644 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10645 /// alloca in the entry block, then the runtime may assume that the alloca's 10646 /// StackMap location can be read immediately after compilation and that the 10647 /// location is valid at any point during execution (this is similar to the 10648 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10649 /// only available in a register, then the runtime would need to trap when 10650 /// execution reaches the StackMap in order to read the alloca's location. 10651 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10652 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10653 SelectionDAGBuilder &Builder) { 10654 SelectionDAG &DAG = Builder.DAG; 10655 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10656 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10657 10658 // Things on the stack are pointer-typed, meaning that they are already 10659 // legal and can be emitted directly to target nodes. 10660 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10661 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10662 } else { 10663 // Otherwise emit a target independent node to be legalised. 10664 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10665 } 10666 } 10667 } 10668 10669 /// Lower llvm.experimental.stackmap. 10670 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10671 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10672 // [live variables...]) 10673 10674 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10675 10676 SDValue Chain, InGlue, Callee; 10677 SmallVector<SDValue, 32> Ops; 10678 10679 SDLoc DL = getCurSDLoc(); 10680 Callee = getValue(CI.getCalledOperand()); 10681 10682 // The stackmap intrinsic only records the live variables (the arguments 10683 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10684 // intrinsic, this won't be lowered to a function call. This means we don't 10685 // have to worry about calling conventions and target specific lowering code. 10686 // Instead we perform the call lowering right here. 10687 // 10688 // chain, flag = CALLSEQ_START(chain, 0, 0) 10689 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10690 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10691 // 10692 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10693 InGlue = Chain.getValue(1); 10694 10695 // Add the STACKMAP operands, starting with DAG house-keeping. 10696 Ops.push_back(Chain); 10697 Ops.push_back(InGlue); 10698 10699 // Add the <id>, <numShadowBytes> operands. 10700 // 10701 // These do not require legalisation, and can be emitted directly to target 10702 // constant nodes. 10703 SDValue ID = getValue(CI.getArgOperand(0)); 10704 assert(ID.getValueType() == MVT::i64); 10705 SDValue IDConst = 10706 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10707 Ops.push_back(IDConst); 10708 10709 SDValue Shad = getValue(CI.getArgOperand(1)); 10710 assert(Shad.getValueType() == MVT::i32); 10711 SDValue ShadConst = 10712 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10713 Ops.push_back(ShadConst); 10714 10715 // Add the live variables. 10716 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10717 10718 // Create the STACKMAP node. 10719 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10720 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10721 InGlue = Chain.getValue(1); 10722 10723 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10724 10725 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10726 10727 // Set the root to the target-lowered call chain. 10728 DAG.setRoot(Chain); 10729 10730 // Inform the Frame Information that we have a stackmap in this function. 10731 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10732 } 10733 10734 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10735 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10736 const BasicBlock *EHPadBB) { 10737 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10738 // i32 <numBytes>, 10739 // i8* <target>, 10740 // i32 <numArgs>, 10741 // [Args...], 10742 // [live variables...]) 10743 10744 CallingConv::ID CC = CB.getCallingConv(); 10745 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10746 bool HasDef = !CB.getType()->isVoidTy(); 10747 SDLoc dl = getCurSDLoc(); 10748 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10749 10750 // Handle immediate and symbolic callees. 10751 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10752 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10753 /*isTarget=*/true); 10754 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10755 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10756 SDLoc(SymbolicCallee), 10757 SymbolicCallee->getValueType(0)); 10758 10759 // Get the real number of arguments participating in the call <numArgs> 10760 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10761 unsigned NumArgs = NArgVal->getAsZExtVal(); 10762 10763 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10764 // Intrinsics include all meta-operands up to but not including CC. 10765 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10766 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10767 "Not enough arguments provided to the patchpoint intrinsic"); 10768 10769 // For AnyRegCC the arguments are lowered later on manually. 10770 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10771 Type *ReturnTy = 10772 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10773 10774 TargetLowering::CallLoweringInfo CLI(DAG); 10775 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10776 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10777 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10778 10779 SDNode *CallEnd = Result.second.getNode(); 10780 if (CallEnd->getOpcode() == ISD::EH_LABEL) 10781 CallEnd = CallEnd->getOperand(0).getNode(); 10782 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10783 CallEnd = CallEnd->getOperand(0).getNode(); 10784 10785 /// Get a call instruction from the call sequence chain. 10786 /// Tail calls are not allowed. 10787 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10788 "Expected a callseq node."); 10789 SDNode *Call = CallEnd->getOperand(0).getNode(); 10790 bool HasGlue = Call->getGluedNode(); 10791 10792 // Replace the target specific call node with the patchable intrinsic. 10793 SmallVector<SDValue, 8> Ops; 10794 10795 // Push the chain. 10796 Ops.push_back(*(Call->op_begin())); 10797 10798 // Optionally, push the glue (if any). 10799 if (HasGlue) 10800 Ops.push_back(*(Call->op_end() - 1)); 10801 10802 // Push the register mask info. 10803 if (HasGlue) 10804 Ops.push_back(*(Call->op_end() - 2)); 10805 else 10806 Ops.push_back(*(Call->op_end() - 1)); 10807 10808 // Add the <id> and <numBytes> constants. 10809 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10810 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10811 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10812 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10813 10814 // Add the callee. 10815 Ops.push_back(Callee); 10816 10817 // Adjust <numArgs> to account for any arguments that have been passed on the 10818 // stack instead. 10819 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10820 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10821 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10822 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10823 10824 // Add the calling convention 10825 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10826 10827 // Add the arguments we omitted previously. The register allocator should 10828 // place these in any free register. 10829 if (IsAnyRegCC) 10830 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10831 Ops.push_back(getValue(CB.getArgOperand(i))); 10832 10833 // Push the arguments from the call instruction. 10834 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10835 Ops.append(Call->op_begin() + 2, e); 10836 10837 // Push live variables for the stack map. 10838 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10839 10840 SDVTList NodeTys; 10841 if (IsAnyRegCC && HasDef) { 10842 // Create the return types based on the intrinsic definition 10843 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10844 SmallVector<EVT, 3> ValueVTs; 10845 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10846 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10847 10848 // There is always a chain and a glue type at the end 10849 ValueVTs.push_back(MVT::Other); 10850 ValueVTs.push_back(MVT::Glue); 10851 NodeTys = DAG.getVTList(ValueVTs); 10852 } else 10853 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10854 10855 // Replace the target specific call node with a PATCHPOINT node. 10856 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10857 10858 // Update the NodeMap. 10859 if (HasDef) { 10860 if (IsAnyRegCC) 10861 setValue(&CB, SDValue(PPV.getNode(), 0)); 10862 else 10863 setValue(&CB, Result.first); 10864 } 10865 10866 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10867 // call sequence. Furthermore the location of the chain and glue can change 10868 // when the AnyReg calling convention is used and the intrinsic returns a 10869 // value. 10870 if (IsAnyRegCC && HasDef) { 10871 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10872 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10873 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10874 } else 10875 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10876 DAG.DeleteNode(Call); 10877 10878 // Inform the Frame Information that we have a patchpoint in this function. 10879 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10880 } 10881 10882 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10883 unsigned Intrinsic) { 10884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10885 SDValue Op1 = getValue(I.getArgOperand(0)); 10886 SDValue Op2; 10887 if (I.arg_size() > 1) 10888 Op2 = getValue(I.getArgOperand(1)); 10889 SDLoc dl = getCurSDLoc(); 10890 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10891 SDValue Res; 10892 SDNodeFlags SDFlags; 10893 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10894 SDFlags.copyFMF(*FPMO); 10895 10896 switch (Intrinsic) { 10897 case Intrinsic::vector_reduce_fadd: 10898 if (SDFlags.hasAllowReassociation()) 10899 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10900 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10901 SDFlags); 10902 else 10903 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10904 break; 10905 case Intrinsic::vector_reduce_fmul: 10906 if (SDFlags.hasAllowReassociation()) 10907 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10908 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10909 SDFlags); 10910 else 10911 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10912 break; 10913 case Intrinsic::vector_reduce_add: 10914 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10915 break; 10916 case Intrinsic::vector_reduce_mul: 10917 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10918 break; 10919 case Intrinsic::vector_reduce_and: 10920 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10921 break; 10922 case Intrinsic::vector_reduce_or: 10923 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10924 break; 10925 case Intrinsic::vector_reduce_xor: 10926 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10927 break; 10928 case Intrinsic::vector_reduce_smax: 10929 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10930 break; 10931 case Intrinsic::vector_reduce_smin: 10932 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10933 break; 10934 case Intrinsic::vector_reduce_umax: 10935 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10936 break; 10937 case Intrinsic::vector_reduce_umin: 10938 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10939 break; 10940 case Intrinsic::vector_reduce_fmax: 10941 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10942 break; 10943 case Intrinsic::vector_reduce_fmin: 10944 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10945 break; 10946 case Intrinsic::vector_reduce_fmaximum: 10947 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10948 break; 10949 case Intrinsic::vector_reduce_fminimum: 10950 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10951 break; 10952 default: 10953 llvm_unreachable("Unhandled vector reduce intrinsic"); 10954 } 10955 setValue(&I, Res); 10956 } 10957 10958 /// Returns an AttributeList representing the attributes applied to the return 10959 /// value of the given call. 10960 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10961 SmallVector<Attribute::AttrKind, 2> Attrs; 10962 if (CLI.RetSExt) 10963 Attrs.push_back(Attribute::SExt); 10964 if (CLI.RetZExt) 10965 Attrs.push_back(Attribute::ZExt); 10966 if (CLI.IsInReg) 10967 Attrs.push_back(Attribute::InReg); 10968 10969 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10970 Attrs); 10971 } 10972 10973 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10974 /// implementation, which just calls LowerCall. 10975 /// FIXME: When all targets are 10976 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10977 std::pair<SDValue, SDValue> 10978 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10979 // Handle the incoming return values from the call. 10980 CLI.Ins.clear(); 10981 SmallVector<EVT, 4> RetTys; 10982 SmallVector<TypeSize, 4> Offsets; 10983 auto &DL = CLI.DAG.getDataLayout(); 10984 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10985 10986 if (CLI.IsPostTypeLegalization) { 10987 // If we are lowering a libcall after legalization, split the return type. 10988 SmallVector<EVT, 4> OldRetTys; 10989 SmallVector<TypeSize, 4> OldOffsets; 10990 RetTys.swap(OldRetTys); 10991 Offsets.swap(OldOffsets); 10992 10993 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10994 EVT RetVT = OldRetTys[i]; 10995 uint64_t Offset = OldOffsets[i]; 10996 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10997 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10998 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10999 RetTys.append(NumRegs, RegisterVT); 11000 for (unsigned j = 0; j != NumRegs; ++j) 11001 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 11002 } 11003 } 11004 11005 SmallVector<ISD::OutputArg, 4> Outs; 11006 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 11007 11008 bool CanLowerReturn = 11009 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 11010 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 11011 11012 SDValue DemoteStackSlot; 11013 int DemoteStackIdx = -100; 11014 if (!CanLowerReturn) { 11015 // FIXME: equivalent assert? 11016 // assert(!CS.hasInAllocaArgument() && 11017 // "sret demotion is incompatible with inalloca"); 11018 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 11019 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 11020 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11021 DemoteStackIdx = 11022 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 11023 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 11024 DL.getAllocaAddrSpace()); 11025 11026 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 11027 ArgListEntry Entry; 11028 Entry.Node = DemoteStackSlot; 11029 Entry.Ty = StackSlotPtrType; 11030 Entry.IsSExt = false; 11031 Entry.IsZExt = false; 11032 Entry.IsInReg = false; 11033 Entry.IsSRet = true; 11034 Entry.IsNest = false; 11035 Entry.IsByVal = false; 11036 Entry.IsByRef = false; 11037 Entry.IsReturned = false; 11038 Entry.IsSwiftSelf = false; 11039 Entry.IsSwiftAsync = false; 11040 Entry.IsSwiftError = false; 11041 Entry.IsCFGuardTarget = false; 11042 Entry.Alignment = Alignment; 11043 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 11044 CLI.NumFixedArgs += 1; 11045 CLI.getArgs()[0].IndirectType = CLI.RetTy; 11046 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 11047 11048 // sret demotion isn't compatible with tail-calls, since the sret argument 11049 // points into the callers stack frame. 11050 CLI.IsTailCall = false; 11051 } else { 11052 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 11053 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 11054 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 11055 ISD::ArgFlagsTy Flags; 11056 if (NeedsRegBlock) { 11057 Flags.setInConsecutiveRegs(); 11058 if (I == RetTys.size() - 1) 11059 Flags.setInConsecutiveRegsLast(); 11060 } 11061 EVT VT = RetTys[I]; 11062 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11063 CLI.CallConv, VT); 11064 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11065 CLI.CallConv, VT); 11066 for (unsigned i = 0; i != NumRegs; ++i) { 11067 ISD::InputArg MyFlags; 11068 MyFlags.Flags = Flags; 11069 MyFlags.VT = RegisterVT; 11070 MyFlags.ArgVT = VT; 11071 MyFlags.Used = CLI.IsReturnValueUsed; 11072 if (CLI.RetTy->isPointerTy()) { 11073 MyFlags.Flags.setPointer(); 11074 MyFlags.Flags.setPointerAddrSpace( 11075 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 11076 } 11077 if (CLI.RetSExt) 11078 MyFlags.Flags.setSExt(); 11079 if (CLI.RetZExt) 11080 MyFlags.Flags.setZExt(); 11081 if (CLI.IsInReg) 11082 MyFlags.Flags.setInReg(); 11083 CLI.Ins.push_back(MyFlags); 11084 } 11085 } 11086 } 11087 11088 // We push in swifterror return as the last element of CLI.Ins. 11089 ArgListTy &Args = CLI.getArgs(); 11090 if (supportSwiftError()) { 11091 for (const ArgListEntry &Arg : Args) { 11092 if (Arg.IsSwiftError) { 11093 ISD::InputArg MyFlags; 11094 MyFlags.VT = getPointerTy(DL); 11095 MyFlags.ArgVT = EVT(getPointerTy(DL)); 11096 MyFlags.Flags.setSwiftError(); 11097 CLI.Ins.push_back(MyFlags); 11098 } 11099 } 11100 } 11101 11102 // Handle all of the outgoing arguments. 11103 CLI.Outs.clear(); 11104 CLI.OutVals.clear(); 11105 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 11106 SmallVector<EVT, 4> ValueVTs; 11107 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 11108 // FIXME: Split arguments if CLI.IsPostTypeLegalization 11109 Type *FinalType = Args[i].Ty; 11110 if (Args[i].IsByVal) 11111 FinalType = Args[i].IndirectType; 11112 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 11113 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 11114 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 11115 ++Value) { 11116 EVT VT = ValueVTs[Value]; 11117 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 11118 SDValue Op = SDValue(Args[i].Node.getNode(), 11119 Args[i].Node.getResNo() + Value); 11120 ISD::ArgFlagsTy Flags; 11121 11122 // Certain targets (such as MIPS), may have a different ABI alignment 11123 // for a type depending on the context. Give the target a chance to 11124 // specify the alignment it wants. 11125 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 11126 Flags.setOrigAlign(OriginalAlignment); 11127 11128 if (Args[i].Ty->isPointerTy()) { 11129 Flags.setPointer(); 11130 Flags.setPointerAddrSpace( 11131 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 11132 } 11133 if (Args[i].IsZExt) 11134 Flags.setZExt(); 11135 if (Args[i].IsSExt) 11136 Flags.setSExt(); 11137 if (Args[i].IsNoExt) 11138 Flags.setNoExt(); 11139 if (Args[i].IsInReg) { 11140 // If we are using vectorcall calling convention, a structure that is 11141 // passed InReg - is surely an HVA 11142 if (CLI.CallConv == CallingConv::X86_VectorCall && 11143 isa<StructType>(FinalType)) { 11144 // The first value of a structure is marked 11145 if (0 == Value) 11146 Flags.setHvaStart(); 11147 Flags.setHva(); 11148 } 11149 // Set InReg Flag 11150 Flags.setInReg(); 11151 } 11152 if (Args[i].IsSRet) 11153 Flags.setSRet(); 11154 if (Args[i].IsSwiftSelf) 11155 Flags.setSwiftSelf(); 11156 if (Args[i].IsSwiftAsync) 11157 Flags.setSwiftAsync(); 11158 if (Args[i].IsSwiftError) 11159 Flags.setSwiftError(); 11160 if (Args[i].IsCFGuardTarget) 11161 Flags.setCFGuardTarget(); 11162 if (Args[i].IsByVal) 11163 Flags.setByVal(); 11164 if (Args[i].IsByRef) 11165 Flags.setByRef(); 11166 if (Args[i].IsPreallocated) { 11167 Flags.setPreallocated(); 11168 // Set the byval flag for CCAssignFn callbacks that don't know about 11169 // preallocated. This way we can know how many bytes we should've 11170 // allocated and how many bytes a callee cleanup function will pop. If 11171 // we port preallocated to more targets, we'll have to add custom 11172 // preallocated handling in the various CC lowering callbacks. 11173 Flags.setByVal(); 11174 } 11175 if (Args[i].IsInAlloca) { 11176 Flags.setInAlloca(); 11177 // Set the byval flag for CCAssignFn callbacks that don't know about 11178 // inalloca. This way we can know how many bytes we should've allocated 11179 // and how many bytes a callee cleanup function will pop. If we port 11180 // inalloca to more targets, we'll have to add custom inalloca handling 11181 // in the various CC lowering callbacks. 11182 Flags.setByVal(); 11183 } 11184 Align MemAlign; 11185 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 11186 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 11187 Flags.setByValSize(FrameSize); 11188 11189 // info is not there but there are cases it cannot get right. 11190 if (auto MA = Args[i].Alignment) 11191 MemAlign = *MA; 11192 else 11193 MemAlign = getByValTypeAlignment(Args[i].IndirectType, DL); 11194 } else if (auto MA = Args[i].Alignment) { 11195 MemAlign = *MA; 11196 } else { 11197 MemAlign = OriginalAlignment; 11198 } 11199 Flags.setMemAlign(MemAlign); 11200 if (Args[i].IsNest) 11201 Flags.setNest(); 11202 if (NeedsRegBlock) 11203 Flags.setInConsecutiveRegs(); 11204 11205 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11206 CLI.CallConv, VT); 11207 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11208 CLI.CallConv, VT); 11209 SmallVector<SDValue, 4> Parts(NumParts); 11210 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 11211 11212 if (Args[i].IsSExt) 11213 ExtendKind = ISD::SIGN_EXTEND; 11214 else if (Args[i].IsZExt) 11215 ExtendKind = ISD::ZERO_EXTEND; 11216 11217 // Conservatively only handle 'returned' on non-vectors that can be lowered, 11218 // for now. 11219 if (Args[i].IsReturned && !Op.getValueType().isVector() && 11220 CanLowerReturn) { 11221 assert((CLI.RetTy == Args[i].Ty || 11222 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 11223 CLI.RetTy->getPointerAddressSpace() == 11224 Args[i].Ty->getPointerAddressSpace())) && 11225 RetTys.size() == NumValues && "unexpected use of 'returned'"); 11226 // Before passing 'returned' to the target lowering code, ensure that 11227 // either the register MVT and the actual EVT are the same size or that 11228 // the return value and argument are extended in the same way; in these 11229 // cases it's safe to pass the argument register value unchanged as the 11230 // return register value (although it's at the target's option whether 11231 // to do so) 11232 // TODO: allow code generation to take advantage of partially preserved 11233 // registers rather than clobbering the entire register when the 11234 // parameter extension method is not compatible with the return 11235 // extension method 11236 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 11237 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 11238 CLI.RetZExt == Args[i].IsZExt)) 11239 Flags.setReturned(); 11240 } 11241 11242 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 11243 CLI.CallConv, ExtendKind); 11244 11245 for (unsigned j = 0; j != NumParts; ++j) { 11246 // if it isn't first piece, alignment must be 1 11247 // For scalable vectors the scalable part is currently handled 11248 // by individual targets, so we just use the known minimum size here. 11249 ISD::OutputArg MyFlags( 11250 Flags, Parts[j].getValueType().getSimpleVT(), VT, 11251 i < CLI.NumFixedArgs, i, 11252 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 11253 if (NumParts > 1 && j == 0) 11254 MyFlags.Flags.setSplit(); 11255 else if (j != 0) { 11256 MyFlags.Flags.setOrigAlign(Align(1)); 11257 if (j == NumParts - 1) 11258 MyFlags.Flags.setSplitEnd(); 11259 } 11260 11261 CLI.Outs.push_back(MyFlags); 11262 CLI.OutVals.push_back(Parts[j]); 11263 } 11264 11265 if (NeedsRegBlock && Value == NumValues - 1) 11266 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 11267 } 11268 } 11269 11270 SmallVector<SDValue, 4> InVals; 11271 CLI.Chain = LowerCall(CLI, InVals); 11272 11273 // Update CLI.InVals to use outside of this function. 11274 CLI.InVals = InVals; 11275 11276 // Verify that the target's LowerCall behaved as expected. 11277 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 11278 "LowerCall didn't return a valid chain!"); 11279 assert((!CLI.IsTailCall || InVals.empty()) && 11280 "LowerCall emitted a return value for a tail call!"); 11281 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 11282 "LowerCall didn't emit the correct number of values!"); 11283 11284 // For a tail call, the return value is merely live-out and there aren't 11285 // any nodes in the DAG representing it. Return a special value to 11286 // indicate that a tail call has been emitted and no more Instructions 11287 // should be processed in the current block. 11288 if (CLI.IsTailCall) { 11289 CLI.DAG.setRoot(CLI.Chain); 11290 return std::make_pair(SDValue(), SDValue()); 11291 } 11292 11293 #ifndef NDEBUG 11294 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 11295 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 11296 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 11297 "LowerCall emitted a value with the wrong type!"); 11298 } 11299 #endif 11300 11301 SmallVector<SDValue, 4> ReturnValues; 11302 if (!CanLowerReturn) { 11303 // The instruction result is the result of loading from the 11304 // hidden sret parameter. 11305 MVT PtrVT = getPointerTy(DL, DL.getAllocaAddrSpace()); 11306 11307 unsigned NumValues = RetTys.size(); 11308 ReturnValues.resize(NumValues); 11309 SmallVector<SDValue, 4> Chains(NumValues); 11310 11311 // An aggregate return value cannot wrap around the address space, so 11312 // offsets to its parts don't wrap either. 11313 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11314 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 11315 for (unsigned i = 0; i < NumValues; ++i) { 11316 SDValue Add = 11317 CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 11318 CLI.DAG.getConstant(Offsets[i], CLI.DL, PtrVT), 11319 SDNodeFlags::NoUnsignedWrap); 11320 SDValue L = CLI.DAG.getLoad( 11321 RetTys[i], CLI.DL, CLI.Chain, Add, 11322 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 11323 DemoteStackIdx, Offsets[i]), 11324 HiddenSRetAlign); 11325 ReturnValues[i] = L; 11326 Chains[i] = L.getValue(1); 11327 } 11328 11329 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 11330 } else { 11331 // Collect the legal value parts into potentially illegal values 11332 // that correspond to the original function's return values. 11333 std::optional<ISD::NodeType> AssertOp; 11334 if (CLI.RetSExt) 11335 AssertOp = ISD::AssertSext; 11336 else if (CLI.RetZExt) 11337 AssertOp = ISD::AssertZext; 11338 unsigned CurReg = 0; 11339 for (EVT VT : RetTys) { 11340 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11341 CLI.CallConv, VT); 11342 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11343 CLI.CallConv, VT); 11344 11345 ReturnValues.push_back(getCopyFromParts( 11346 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11347 CLI.Chain, CLI.CallConv, AssertOp)); 11348 CurReg += NumRegs; 11349 } 11350 11351 // For a function returning void, there is no return value. We can't create 11352 // such a node, so we just return a null return value in that case. In 11353 // that case, nothing will actually look at the value. 11354 if (ReturnValues.empty()) 11355 return std::make_pair(SDValue(), CLI.Chain); 11356 } 11357 11358 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11359 CLI.DAG.getVTList(RetTys), ReturnValues); 11360 return std::make_pair(Res, CLI.Chain); 11361 } 11362 11363 /// Places new result values for the node in Results (their number 11364 /// and types must exactly match those of the original return values of 11365 /// the node), or leaves Results empty, which indicates that the node is not 11366 /// to be custom lowered after all. 11367 void TargetLowering::LowerOperationWrapper(SDNode *N, 11368 SmallVectorImpl<SDValue> &Results, 11369 SelectionDAG &DAG) const { 11370 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11371 11372 if (!Res.getNode()) 11373 return; 11374 11375 // If the original node has one result, take the return value from 11376 // LowerOperation as is. It might not be result number 0. 11377 if (N->getNumValues() == 1) { 11378 Results.push_back(Res); 11379 return; 11380 } 11381 11382 // If the original node has multiple results, then the return node should 11383 // have the same number of results. 11384 assert((N->getNumValues() == Res->getNumValues()) && 11385 "Lowering returned the wrong number of results!"); 11386 11387 // Places new result values base on N result number. 11388 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11389 Results.push_back(Res.getValue(I)); 11390 } 11391 11392 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11393 llvm_unreachable("LowerOperation not implemented for this target!"); 11394 } 11395 11396 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11397 unsigned Reg, 11398 ISD::NodeType ExtendType) { 11399 SDValue Op = getNonRegisterValue(V); 11400 assert((Op.getOpcode() != ISD::CopyFromReg || 11401 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11402 "Copy from a reg to the same reg!"); 11403 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11404 11405 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11406 // If this is an InlineAsm we have to match the registers required, not the 11407 // notional registers required by the type. 11408 11409 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11410 std::nullopt); // This is not an ABI copy. 11411 SDValue Chain = DAG.getEntryNode(); 11412 11413 if (ExtendType == ISD::ANY_EXTEND) { 11414 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11415 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11416 ExtendType = PreferredExtendIt->second; 11417 } 11418 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11419 PendingExports.push_back(Chain); 11420 } 11421 11422 #include "llvm/CodeGen/SelectionDAGISel.h" 11423 11424 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11425 /// entry block, return true. This includes arguments used by switches, since 11426 /// the switch may expand into multiple basic blocks. 11427 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11428 // With FastISel active, we may be splitting blocks, so force creation 11429 // of virtual registers for all non-dead arguments. 11430 if (FastISel) 11431 return A->use_empty(); 11432 11433 const BasicBlock &Entry = A->getParent()->front(); 11434 for (const User *U : A->users()) 11435 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11436 return false; // Use not in entry block. 11437 11438 return true; 11439 } 11440 11441 using ArgCopyElisionMapTy = 11442 DenseMap<const Argument *, 11443 std::pair<const AllocaInst *, const StoreInst *>>; 11444 11445 /// Scan the entry block of the function in FuncInfo for arguments that look 11446 /// like copies into a local alloca. Record any copied arguments in 11447 /// ArgCopyElisionCandidates. 11448 static void 11449 findArgumentCopyElisionCandidates(const DataLayout &DL, 11450 FunctionLoweringInfo *FuncInfo, 11451 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11452 // Record the state of every static alloca used in the entry block. Argument 11453 // allocas are all used in the entry block, so we need approximately as many 11454 // entries as we have arguments. 11455 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11456 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11457 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11458 StaticAllocas.reserve(NumArgs * 2); 11459 11460 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11461 if (!V) 11462 return nullptr; 11463 V = V->stripPointerCasts(); 11464 const auto *AI = dyn_cast<AllocaInst>(V); 11465 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11466 return nullptr; 11467 auto Iter = StaticAllocas.insert({AI, Unknown}); 11468 return &Iter.first->second; 11469 }; 11470 11471 // Look for stores of arguments to static allocas. Look through bitcasts and 11472 // GEPs to handle type coercions, as long as the alloca is fully initialized 11473 // by the store. Any non-store use of an alloca escapes it and any subsequent 11474 // unanalyzed store might write it. 11475 // FIXME: Handle structs initialized with multiple stores. 11476 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11477 // Look for stores, and handle non-store uses conservatively. 11478 const auto *SI = dyn_cast<StoreInst>(&I); 11479 if (!SI) { 11480 // We will look through cast uses, so ignore them completely. 11481 if (I.isCast()) 11482 continue; 11483 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11484 // to allocas. 11485 if (I.isDebugOrPseudoInst()) 11486 continue; 11487 // This is an unknown instruction. Assume it escapes or writes to all 11488 // static alloca operands. 11489 for (const Use &U : I.operands()) { 11490 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11491 *Info = StaticAllocaInfo::Clobbered; 11492 } 11493 continue; 11494 } 11495 11496 // If the stored value is a static alloca, mark it as escaped. 11497 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11498 *Info = StaticAllocaInfo::Clobbered; 11499 11500 // Check if the destination is a static alloca. 11501 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11502 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11503 if (!Info) 11504 continue; 11505 const AllocaInst *AI = cast<AllocaInst>(Dst); 11506 11507 // Skip allocas that have been initialized or clobbered. 11508 if (*Info != StaticAllocaInfo::Unknown) 11509 continue; 11510 11511 // Check if the stored value is an argument, and that this store fully 11512 // initializes the alloca. 11513 // If the argument type has padding bits we can't directly forward a pointer 11514 // as the upper bits may contain garbage. 11515 // Don't elide copies from the same argument twice. 11516 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11517 const auto *Arg = dyn_cast<Argument>(Val); 11518 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11519 Arg->getType()->isEmptyTy() || 11520 DL.getTypeStoreSize(Arg->getType()) != 11521 DL.getTypeAllocSize(AI->getAllocatedType()) || 11522 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11523 ArgCopyElisionCandidates.count(Arg)) { 11524 *Info = StaticAllocaInfo::Clobbered; 11525 continue; 11526 } 11527 11528 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11529 << '\n'); 11530 11531 // Mark this alloca and store for argument copy elision. 11532 *Info = StaticAllocaInfo::Elidable; 11533 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11534 11535 // Stop scanning if we've seen all arguments. This will happen early in -O0 11536 // builds, which is useful, because -O0 builds have large entry blocks and 11537 // many allocas. 11538 if (ArgCopyElisionCandidates.size() == NumArgs) 11539 break; 11540 } 11541 } 11542 11543 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11544 /// ArgVal is a load from a suitable fixed stack object. 11545 static void tryToElideArgumentCopy( 11546 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11547 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11548 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11549 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11550 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11551 // Check if this is a load from a fixed stack object. 11552 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11553 if (!LNode) 11554 return; 11555 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11556 if (!FINode) 11557 return; 11558 11559 // Check that the fixed stack object is the right size and alignment. 11560 // Look at the alignment that the user wrote on the alloca instead of looking 11561 // at the stack object. 11562 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11563 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11564 const AllocaInst *AI = ArgCopyIter->second.first; 11565 int FixedIndex = FINode->getIndex(); 11566 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11567 int OldIndex = AllocaIndex; 11568 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11569 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11570 LLVM_DEBUG( 11571 dbgs() << " argument copy elision failed due to bad fixed stack " 11572 "object size\n"); 11573 return; 11574 } 11575 Align RequiredAlignment = AI->getAlign(); 11576 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11577 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11578 "greater than stack argument alignment (" 11579 << DebugStr(RequiredAlignment) << " vs " 11580 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11581 return; 11582 } 11583 11584 // Perform the elision. Delete the old stack object and replace its only use 11585 // in the variable info map. Mark the stack object as mutable and aliased. 11586 LLVM_DEBUG({ 11587 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11588 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11589 << '\n'; 11590 }); 11591 MFI.RemoveStackObject(OldIndex); 11592 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11593 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11594 AllocaIndex = FixedIndex; 11595 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11596 for (SDValue ArgVal : ArgVals) 11597 Chains.push_back(ArgVal.getValue(1)); 11598 11599 // Avoid emitting code for the store implementing the copy. 11600 const StoreInst *SI = ArgCopyIter->second.second; 11601 ElidedArgCopyInstrs.insert(SI); 11602 11603 // Check for uses of the argument again so that we can avoid exporting ArgVal 11604 // if it is't used by anything other than the store. 11605 for (const Value *U : Arg.users()) { 11606 if (U != SI) { 11607 ArgHasUses = true; 11608 break; 11609 } 11610 } 11611 } 11612 11613 void SelectionDAGISel::LowerArguments(const Function &F) { 11614 SelectionDAG &DAG = SDB->DAG; 11615 SDLoc dl = SDB->getCurSDLoc(); 11616 const DataLayout &DL = DAG.getDataLayout(); 11617 SmallVector<ISD::InputArg, 16> Ins; 11618 11619 // In Naked functions we aren't going to save any registers. 11620 if (F.hasFnAttribute(Attribute::Naked)) 11621 return; 11622 11623 if (!FuncInfo->CanLowerReturn) { 11624 // Put in an sret pointer parameter before all the other parameters. 11625 MVT ValueVT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace()); 11626 11627 ISD::ArgFlagsTy Flags; 11628 Flags.setSRet(); 11629 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVT); 11630 ISD::InputArg RetArg(Flags, RegisterVT, ValueVT, true, 11631 ISD::InputArg::NoArgIndex, 0); 11632 Ins.push_back(RetArg); 11633 } 11634 11635 // Look for stores of arguments to static allocas. Mark such arguments with a 11636 // flag to ask the target to give us the memory location of that argument if 11637 // available. 11638 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11639 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11640 ArgCopyElisionCandidates); 11641 11642 // Set up the incoming argument description vector. 11643 for (const Argument &Arg : F.args()) { 11644 unsigned ArgNo = Arg.getArgNo(); 11645 SmallVector<EVT, 4> ValueVTs; 11646 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11647 bool isArgValueUsed = !Arg.use_empty(); 11648 unsigned PartBase = 0; 11649 Type *FinalType = Arg.getType(); 11650 if (Arg.hasAttribute(Attribute::ByVal)) 11651 FinalType = Arg.getParamByValType(); 11652 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11653 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11654 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11655 Value != NumValues; ++Value) { 11656 EVT VT = ValueVTs[Value]; 11657 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11658 ISD::ArgFlagsTy Flags; 11659 11660 11661 if (Arg.getType()->isPointerTy()) { 11662 Flags.setPointer(); 11663 Flags.setPointerAddrSpace( 11664 cast<PointerType>(Arg.getType())->getAddressSpace()); 11665 } 11666 if (Arg.hasAttribute(Attribute::ZExt)) 11667 Flags.setZExt(); 11668 if (Arg.hasAttribute(Attribute::SExt)) 11669 Flags.setSExt(); 11670 if (Arg.hasAttribute(Attribute::InReg)) { 11671 // If we are using vectorcall calling convention, a structure that is 11672 // passed InReg - is surely an HVA 11673 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11674 isa<StructType>(Arg.getType())) { 11675 // The first value of a structure is marked 11676 if (0 == Value) 11677 Flags.setHvaStart(); 11678 Flags.setHva(); 11679 } 11680 // Set InReg Flag 11681 Flags.setInReg(); 11682 } 11683 if (Arg.hasAttribute(Attribute::StructRet)) 11684 Flags.setSRet(); 11685 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11686 Flags.setSwiftSelf(); 11687 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11688 Flags.setSwiftAsync(); 11689 if (Arg.hasAttribute(Attribute::SwiftError)) 11690 Flags.setSwiftError(); 11691 if (Arg.hasAttribute(Attribute::ByVal)) 11692 Flags.setByVal(); 11693 if (Arg.hasAttribute(Attribute::ByRef)) 11694 Flags.setByRef(); 11695 if (Arg.hasAttribute(Attribute::InAlloca)) { 11696 Flags.setInAlloca(); 11697 // Set the byval flag for CCAssignFn callbacks that don't know about 11698 // inalloca. This way we can know how many bytes we should've allocated 11699 // and how many bytes a callee cleanup function will pop. If we port 11700 // inalloca to more targets, we'll have to add custom inalloca handling 11701 // in the various CC lowering callbacks. 11702 Flags.setByVal(); 11703 } 11704 if (Arg.hasAttribute(Attribute::Preallocated)) { 11705 Flags.setPreallocated(); 11706 // Set the byval flag for CCAssignFn callbacks that don't know about 11707 // preallocated. This way we can know how many bytes we should've 11708 // allocated and how many bytes a callee cleanup function will pop. If 11709 // we port preallocated to more targets, we'll have to add custom 11710 // preallocated handling in the various CC lowering callbacks. 11711 Flags.setByVal(); 11712 } 11713 11714 // Certain targets (such as MIPS), may have a different ABI alignment 11715 // for a type depending on the context. Give the target a chance to 11716 // specify the alignment it wants. 11717 const Align OriginalAlignment( 11718 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11719 Flags.setOrigAlign(OriginalAlignment); 11720 11721 Align MemAlign; 11722 Type *ArgMemTy = nullptr; 11723 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11724 Flags.isByRef()) { 11725 if (!ArgMemTy) 11726 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11727 11728 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11729 11730 // For in-memory arguments, size and alignment should be passed from FE. 11731 // BE will guess if this info is not there but there are cases it cannot 11732 // get right. 11733 if (auto ParamAlign = Arg.getParamStackAlign()) 11734 MemAlign = *ParamAlign; 11735 else if ((ParamAlign = Arg.getParamAlign())) 11736 MemAlign = *ParamAlign; 11737 else 11738 MemAlign = TLI->getByValTypeAlignment(ArgMemTy, DL); 11739 if (Flags.isByRef()) 11740 Flags.setByRefSize(MemSize); 11741 else 11742 Flags.setByValSize(MemSize); 11743 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11744 MemAlign = *ParamAlign; 11745 } else { 11746 MemAlign = OriginalAlignment; 11747 } 11748 Flags.setMemAlign(MemAlign); 11749 11750 if (Arg.hasAttribute(Attribute::Nest)) 11751 Flags.setNest(); 11752 if (NeedsRegBlock) 11753 Flags.setInConsecutiveRegs(); 11754 if (ArgCopyElisionCandidates.count(&Arg)) 11755 Flags.setCopyElisionCandidate(); 11756 if (Arg.hasAttribute(Attribute::Returned)) 11757 Flags.setReturned(); 11758 11759 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11760 *CurDAG->getContext(), F.getCallingConv(), VT); 11761 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11762 *CurDAG->getContext(), F.getCallingConv(), VT); 11763 for (unsigned i = 0; i != NumRegs; ++i) { 11764 // For scalable vectors, use the minimum size; individual targets 11765 // are responsible for handling scalable vector arguments and 11766 // return values. 11767 ISD::InputArg MyFlags( 11768 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11769 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11770 if (NumRegs > 1 && i == 0) 11771 MyFlags.Flags.setSplit(); 11772 // if it isn't first piece, alignment must be 1 11773 else if (i > 0) { 11774 MyFlags.Flags.setOrigAlign(Align(1)); 11775 if (i == NumRegs - 1) 11776 MyFlags.Flags.setSplitEnd(); 11777 } 11778 Ins.push_back(MyFlags); 11779 } 11780 if (NeedsRegBlock && Value == NumValues - 1) 11781 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11782 PartBase += VT.getStoreSize().getKnownMinValue(); 11783 } 11784 } 11785 11786 // Call the target to set up the argument values. 11787 SmallVector<SDValue, 8> InVals; 11788 SDValue NewRoot = TLI->LowerFormalArguments( 11789 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11790 11791 // Verify that the target's LowerFormalArguments behaved as expected. 11792 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11793 "LowerFormalArguments didn't return a valid chain!"); 11794 assert(InVals.size() == Ins.size() && 11795 "LowerFormalArguments didn't emit the correct number of values!"); 11796 LLVM_DEBUG({ 11797 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11798 assert(InVals[i].getNode() && 11799 "LowerFormalArguments emitted a null value!"); 11800 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11801 "LowerFormalArguments emitted a value with the wrong type!"); 11802 } 11803 }); 11804 11805 // Update the DAG with the new chain value resulting from argument lowering. 11806 DAG.setRoot(NewRoot); 11807 11808 // Set up the argument values. 11809 unsigned i = 0; 11810 if (!FuncInfo->CanLowerReturn) { 11811 // Create a virtual register for the sret pointer, and put in a copy 11812 // from the sret argument into it. 11813 MVT VT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace()); 11814 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11815 std::optional<ISD::NodeType> AssertOp; 11816 SDValue ArgValue = 11817 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11818 F.getCallingConv(), AssertOp); 11819 11820 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11821 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11822 Register SRetReg = 11823 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11824 FuncInfo->DemoteRegister = SRetReg; 11825 NewRoot = 11826 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11827 DAG.setRoot(NewRoot); 11828 11829 // i indexes lowered arguments. Bump it past the hidden sret argument. 11830 ++i; 11831 } 11832 11833 SmallVector<SDValue, 4> Chains; 11834 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11835 for (const Argument &Arg : F.args()) { 11836 SmallVector<SDValue, 4> ArgValues; 11837 SmallVector<EVT, 4> ValueVTs; 11838 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11839 unsigned NumValues = ValueVTs.size(); 11840 if (NumValues == 0) 11841 continue; 11842 11843 bool ArgHasUses = !Arg.use_empty(); 11844 11845 // Elide the copying store if the target loaded this argument from a 11846 // suitable fixed stack object. 11847 if (Ins[i].Flags.isCopyElisionCandidate()) { 11848 unsigned NumParts = 0; 11849 for (EVT VT : ValueVTs) 11850 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11851 F.getCallingConv(), VT); 11852 11853 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11854 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11855 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11856 } 11857 11858 // If this argument is unused then remember its value. It is used to generate 11859 // debugging information. 11860 bool isSwiftErrorArg = 11861 TLI->supportSwiftError() && 11862 Arg.hasAttribute(Attribute::SwiftError); 11863 if (!ArgHasUses && !isSwiftErrorArg) { 11864 SDB->setUnusedArgValue(&Arg, InVals[i]); 11865 11866 // Also remember any frame index for use in FastISel. 11867 if (FrameIndexSDNode *FI = 11868 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11869 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11870 } 11871 11872 for (unsigned Val = 0; Val != NumValues; ++Val) { 11873 EVT VT = ValueVTs[Val]; 11874 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11875 F.getCallingConv(), VT); 11876 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11877 *CurDAG->getContext(), F.getCallingConv(), VT); 11878 11879 // Even an apparent 'unused' swifterror argument needs to be returned. So 11880 // we do generate a copy for it that can be used on return from the 11881 // function. 11882 if (ArgHasUses || isSwiftErrorArg) { 11883 std::optional<ISD::NodeType> AssertOp; 11884 if (Arg.hasAttribute(Attribute::SExt)) 11885 AssertOp = ISD::AssertSext; 11886 else if (Arg.hasAttribute(Attribute::ZExt)) 11887 AssertOp = ISD::AssertZext; 11888 11889 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11890 PartVT, VT, nullptr, NewRoot, 11891 F.getCallingConv(), AssertOp)); 11892 } 11893 11894 i += NumParts; 11895 } 11896 11897 // We don't need to do anything else for unused arguments. 11898 if (ArgValues.empty()) 11899 continue; 11900 11901 // Note down frame index. 11902 if (FrameIndexSDNode *FI = 11903 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11904 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11905 11906 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11907 SDB->getCurSDLoc()); 11908 11909 SDB->setValue(&Arg, Res); 11910 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11911 // We want to associate the argument with the frame index, among 11912 // involved operands, that correspond to the lowest address. The 11913 // getCopyFromParts function, called earlier, is swapping the order of 11914 // the operands to BUILD_PAIR depending on endianness. The result of 11915 // that swapping is that the least significant bits of the argument will 11916 // be in the first operand of the BUILD_PAIR node, and the most 11917 // significant bits will be in the second operand. 11918 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11919 if (LoadSDNode *LNode = 11920 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11921 if (FrameIndexSDNode *FI = 11922 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11923 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11924 } 11925 11926 // Analyses past this point are naive and don't expect an assertion. 11927 if (Res.getOpcode() == ISD::AssertZext) 11928 Res = Res.getOperand(0); 11929 11930 // Update the SwiftErrorVRegDefMap. 11931 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11932 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11933 if (Reg.isVirtual()) 11934 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11935 Reg); 11936 } 11937 11938 // If this argument is live outside of the entry block, insert a copy from 11939 // wherever we got it to the vreg that other BB's will reference it as. 11940 if (Res.getOpcode() == ISD::CopyFromReg) { 11941 // If we can, though, try to skip creating an unnecessary vreg. 11942 // FIXME: This isn't very clean... it would be nice to make this more 11943 // general. 11944 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11945 if (Reg.isVirtual()) { 11946 FuncInfo->ValueMap[&Arg] = Reg; 11947 continue; 11948 } 11949 } 11950 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11951 FuncInfo->InitializeRegForValue(&Arg); 11952 SDB->CopyToExportRegsIfNeeded(&Arg); 11953 } 11954 } 11955 11956 if (!Chains.empty()) { 11957 Chains.push_back(NewRoot); 11958 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11959 } 11960 11961 DAG.setRoot(NewRoot); 11962 11963 assert(i == InVals.size() && "Argument register count mismatch!"); 11964 11965 // If any argument copy elisions occurred and we have debug info, update the 11966 // stale frame indices used in the dbg.declare variable info table. 11967 if (!ArgCopyElisionFrameIndexMap.empty()) { 11968 for (MachineFunction::VariableDbgInfo &VI : 11969 MF->getInStackSlotVariableDbgInfo()) { 11970 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11971 if (I != ArgCopyElisionFrameIndexMap.end()) 11972 VI.updateStackSlot(I->second); 11973 } 11974 } 11975 11976 // Finally, if the target has anything special to do, allow it to do so. 11977 emitFunctionEntryCode(); 11978 } 11979 11980 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11981 /// ensure constants are generated when needed. Remember the virtual registers 11982 /// that need to be added to the Machine PHI nodes as input. We cannot just 11983 /// directly add them, because expansion might result in multiple MBB's for one 11984 /// BB. As such, the start of the BB might correspond to a different MBB than 11985 /// the end. 11986 void 11987 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11988 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11989 11990 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11991 11992 // Check PHI nodes in successors that expect a value to be available from this 11993 // block. 11994 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11995 if (!isa<PHINode>(SuccBB->begin())) continue; 11996 MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB); 11997 11998 // If this terminator has multiple identical successors (common for 11999 // switches), only handle each succ once. 12000 if (!SuccsHandled.insert(SuccMBB).second) 12001 continue; 12002 12003 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 12004 12005 // At this point we know that there is a 1-1 correspondence between LLVM PHI 12006 // nodes and Machine PHI nodes, but the incoming operands have not been 12007 // emitted yet. 12008 for (const PHINode &PN : SuccBB->phis()) { 12009 // Ignore dead phi's. 12010 if (PN.use_empty()) 12011 continue; 12012 12013 // Skip empty types 12014 if (PN.getType()->isEmptyTy()) 12015 continue; 12016 12017 unsigned Reg; 12018 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 12019 12020 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 12021 unsigned &RegOut = ConstantsOut[C]; 12022 if (RegOut == 0) { 12023 RegOut = FuncInfo.CreateRegs(C); 12024 // We need to zero/sign extend ConstantInt phi operands to match 12025 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 12026 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 12027 if (auto *CI = dyn_cast<ConstantInt>(C)) 12028 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 12029 : ISD::ZERO_EXTEND; 12030 CopyValueToVirtualRegister(C, RegOut, ExtendType); 12031 } 12032 Reg = RegOut; 12033 } else { 12034 DenseMap<const Value *, Register>::iterator I = 12035 FuncInfo.ValueMap.find(PHIOp); 12036 if (I != FuncInfo.ValueMap.end()) 12037 Reg = I->second; 12038 else { 12039 assert(isa<AllocaInst>(PHIOp) && 12040 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 12041 "Didn't codegen value into a register!??"); 12042 Reg = FuncInfo.CreateRegs(PHIOp); 12043 CopyValueToVirtualRegister(PHIOp, Reg); 12044 } 12045 } 12046 12047 // Remember that this register needs to added to the machine PHI node as 12048 // the input for this MBB. 12049 SmallVector<EVT, 4> ValueVTs; 12050 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 12051 for (EVT VT : ValueVTs) { 12052 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 12053 for (unsigned i = 0; i != NumRegisters; ++i) 12054 FuncInfo.PHINodesToUpdate.push_back( 12055 std::make_pair(&*MBBI++, Reg + i)); 12056 Reg += NumRegisters; 12057 } 12058 } 12059 } 12060 12061 ConstantsOut.clear(); 12062 } 12063 12064 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 12065 MachineFunction::iterator I(MBB); 12066 if (++I == FuncInfo.MF->end()) 12067 return nullptr; 12068 return &*I; 12069 } 12070 12071 /// During lowering new call nodes can be created (such as memset, etc.). 12072 /// Those will become new roots of the current DAG, but complications arise 12073 /// when they are tail calls. In such cases, the call lowering will update 12074 /// the root, but the builder still needs to know that a tail call has been 12075 /// lowered in order to avoid generating an additional return. 12076 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 12077 // If the node is null, we do have a tail call. 12078 if (MaybeTC.getNode() != nullptr) 12079 DAG.setRoot(MaybeTC); 12080 else 12081 HasTailCall = true; 12082 } 12083 12084 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 12085 MachineBasicBlock *SwitchMBB, 12086 MachineBasicBlock *DefaultMBB) { 12087 MachineFunction *CurMF = FuncInfo.MF; 12088 MachineBasicBlock *NextMBB = nullptr; 12089 MachineFunction::iterator BBI(W.MBB); 12090 if (++BBI != FuncInfo.MF->end()) 12091 NextMBB = &*BBI; 12092 12093 unsigned Size = W.LastCluster - W.FirstCluster + 1; 12094 12095 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12096 12097 if (Size == 2 && W.MBB == SwitchMBB) { 12098 // If any two of the cases has the same destination, and if one value 12099 // is the same as the other, but has one bit unset that the other has set, 12100 // use bit manipulation to do two compares at once. For example: 12101 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 12102 // TODO: This could be extended to merge any 2 cases in switches with 3 12103 // cases. 12104 // TODO: Handle cases where W.CaseBB != SwitchBB. 12105 CaseCluster &Small = *W.FirstCluster; 12106 CaseCluster &Big = *W.LastCluster; 12107 12108 if (Small.Low == Small.High && Big.Low == Big.High && 12109 Small.MBB == Big.MBB) { 12110 const APInt &SmallValue = Small.Low->getValue(); 12111 const APInt &BigValue = Big.Low->getValue(); 12112 12113 // Check that there is only one bit different. 12114 APInt CommonBit = BigValue ^ SmallValue; 12115 if (CommonBit.isPowerOf2()) { 12116 SDValue CondLHS = getValue(Cond); 12117 EVT VT = CondLHS.getValueType(); 12118 SDLoc DL = getCurSDLoc(); 12119 12120 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 12121 DAG.getConstant(CommonBit, DL, VT)); 12122 SDValue Cond = DAG.getSetCC( 12123 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 12124 ISD::SETEQ); 12125 12126 // Update successor info. 12127 // Both Small and Big will jump to Small.BB, so we sum up the 12128 // probabilities. 12129 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 12130 if (BPI) 12131 addSuccessorWithProb( 12132 SwitchMBB, DefaultMBB, 12133 // The default destination is the first successor in IR. 12134 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 12135 else 12136 addSuccessorWithProb(SwitchMBB, DefaultMBB); 12137 12138 // Insert the true branch. 12139 SDValue BrCond = 12140 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 12141 DAG.getBasicBlock(Small.MBB)); 12142 // Insert the false branch. 12143 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 12144 DAG.getBasicBlock(DefaultMBB)); 12145 12146 DAG.setRoot(BrCond); 12147 return; 12148 } 12149 } 12150 } 12151 12152 if (TM.getOptLevel() != CodeGenOptLevel::None) { 12153 // Here, we order cases by probability so the most likely case will be 12154 // checked first. However, two clusters can have the same probability in 12155 // which case their relative ordering is non-deterministic. So we use Low 12156 // as a tie-breaker as clusters are guaranteed to never overlap. 12157 llvm::sort(W.FirstCluster, W.LastCluster + 1, 12158 [](const CaseCluster &a, const CaseCluster &b) { 12159 return a.Prob != b.Prob ? 12160 a.Prob > b.Prob : 12161 a.Low->getValue().slt(b.Low->getValue()); 12162 }); 12163 12164 // Rearrange the case blocks so that the last one falls through if possible 12165 // without changing the order of probabilities. 12166 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 12167 --I; 12168 if (I->Prob > W.LastCluster->Prob) 12169 break; 12170 if (I->Kind == CC_Range && I->MBB == NextMBB) { 12171 std::swap(*I, *W.LastCluster); 12172 break; 12173 } 12174 } 12175 } 12176 12177 // Compute total probability. 12178 BranchProbability DefaultProb = W.DefaultProb; 12179 BranchProbability UnhandledProbs = DefaultProb; 12180 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 12181 UnhandledProbs += I->Prob; 12182 12183 MachineBasicBlock *CurMBB = W.MBB; 12184 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 12185 bool FallthroughUnreachable = false; 12186 MachineBasicBlock *Fallthrough; 12187 if (I == W.LastCluster) { 12188 // For the last cluster, fall through to the default destination. 12189 Fallthrough = DefaultMBB; 12190 FallthroughUnreachable = isa<UnreachableInst>( 12191 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 12192 } else { 12193 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 12194 CurMF->insert(BBI, Fallthrough); 12195 // Put Cond in a virtual register to make it available from the new blocks. 12196 ExportFromCurrentBlock(Cond); 12197 } 12198 UnhandledProbs -= I->Prob; 12199 12200 switch (I->Kind) { 12201 case CC_JumpTable: { 12202 // FIXME: Optimize away range check based on pivot comparisons. 12203 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 12204 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 12205 12206 // The jump block hasn't been inserted yet; insert it here. 12207 MachineBasicBlock *JumpMBB = JT->MBB; 12208 CurMF->insert(BBI, JumpMBB); 12209 12210 auto JumpProb = I->Prob; 12211 auto FallthroughProb = UnhandledProbs; 12212 12213 // If the default statement is a target of the jump table, we evenly 12214 // distribute the default probability to successors of CurMBB. Also 12215 // update the probability on the edge from JumpMBB to Fallthrough. 12216 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 12217 SE = JumpMBB->succ_end(); 12218 SI != SE; ++SI) { 12219 if (*SI == DefaultMBB) { 12220 JumpProb += DefaultProb / 2; 12221 FallthroughProb -= DefaultProb / 2; 12222 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 12223 JumpMBB->normalizeSuccProbs(); 12224 break; 12225 } 12226 } 12227 12228 // If the default clause is unreachable, propagate that knowledge into 12229 // JTH->FallthroughUnreachable which will use it to suppress the range 12230 // check. 12231 // 12232 // However, don't do this if we're doing branch target enforcement, 12233 // because a table branch _without_ a range check can be a tempting JOP 12234 // gadget - out-of-bounds inputs that are impossible in correct 12235 // execution become possible again if an attacker can influence the 12236 // control flow. So if an attacker doesn't already have a BTI bypass 12237 // available, we don't want them to be able to get one out of this 12238 // table branch. 12239 if (FallthroughUnreachable) { 12240 Function &CurFunc = CurMF->getFunction(); 12241 if (!CurFunc.hasFnAttribute("branch-target-enforcement")) 12242 JTH->FallthroughUnreachable = true; 12243 } 12244 12245 if (!JTH->FallthroughUnreachable) 12246 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 12247 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 12248 CurMBB->normalizeSuccProbs(); 12249 12250 // The jump table header will be inserted in our current block, do the 12251 // range check, and fall through to our fallthrough block. 12252 JTH->HeaderBB = CurMBB; 12253 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 12254 12255 // If we're in the right place, emit the jump table header right now. 12256 if (CurMBB == SwitchMBB) { 12257 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 12258 JTH->Emitted = true; 12259 } 12260 break; 12261 } 12262 case CC_BitTests: { 12263 // FIXME: Optimize away range check based on pivot comparisons. 12264 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 12265 12266 // The bit test blocks haven't been inserted yet; insert them here. 12267 for (BitTestCase &BTC : BTB->Cases) 12268 CurMF->insert(BBI, BTC.ThisBB); 12269 12270 // Fill in fields of the BitTestBlock. 12271 BTB->Parent = CurMBB; 12272 BTB->Default = Fallthrough; 12273 12274 BTB->DefaultProb = UnhandledProbs; 12275 // If the cases in bit test don't form a contiguous range, we evenly 12276 // distribute the probability on the edge to Fallthrough to two 12277 // successors of CurMBB. 12278 if (!BTB->ContiguousRange) { 12279 BTB->Prob += DefaultProb / 2; 12280 BTB->DefaultProb -= DefaultProb / 2; 12281 } 12282 12283 if (FallthroughUnreachable) 12284 BTB->FallthroughUnreachable = true; 12285 12286 // If we're in the right place, emit the bit test header right now. 12287 if (CurMBB == SwitchMBB) { 12288 visitBitTestHeader(*BTB, SwitchMBB); 12289 BTB->Emitted = true; 12290 } 12291 break; 12292 } 12293 case CC_Range: { 12294 const Value *RHS, *LHS, *MHS; 12295 ISD::CondCode CC; 12296 if (I->Low == I->High) { 12297 // Check Cond == I->Low. 12298 CC = ISD::SETEQ; 12299 LHS = Cond; 12300 RHS=I->Low; 12301 MHS = nullptr; 12302 } else { 12303 // Check I->Low <= Cond <= I->High. 12304 CC = ISD::SETLE; 12305 LHS = I->Low; 12306 MHS = Cond; 12307 RHS = I->High; 12308 } 12309 12310 // If Fallthrough is unreachable, fold away the comparison. 12311 if (FallthroughUnreachable) 12312 CC = ISD::SETTRUE; 12313 12314 // The false probability is the sum of all unhandled cases. 12315 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12316 getCurSDLoc(), I->Prob, UnhandledProbs); 12317 12318 if (CurMBB == SwitchMBB) 12319 visitSwitchCase(CB, SwitchMBB); 12320 else 12321 SL->SwitchCases.push_back(CB); 12322 12323 break; 12324 } 12325 } 12326 CurMBB = Fallthrough; 12327 } 12328 } 12329 12330 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12331 const SwitchWorkListItem &W, 12332 Value *Cond, 12333 MachineBasicBlock *SwitchMBB) { 12334 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12335 "Clusters not sorted?"); 12336 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12337 12338 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12339 SL->computeSplitWorkItemInfo(W); 12340 12341 // Use the first element on the right as pivot since we will make less-than 12342 // comparisons against it. 12343 CaseClusterIt PivotCluster = FirstRight; 12344 assert(PivotCluster > W.FirstCluster); 12345 assert(PivotCluster <= W.LastCluster); 12346 12347 CaseClusterIt FirstLeft = W.FirstCluster; 12348 CaseClusterIt LastRight = W.LastCluster; 12349 12350 const ConstantInt *Pivot = PivotCluster->Low; 12351 12352 // New blocks will be inserted immediately after the current one. 12353 MachineFunction::iterator BBI(W.MBB); 12354 ++BBI; 12355 12356 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12357 // we can branch to its destination directly if it's squeezed exactly in 12358 // between the known lower bound and Pivot - 1. 12359 MachineBasicBlock *LeftMBB; 12360 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12361 FirstLeft->Low == W.GE && 12362 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12363 LeftMBB = FirstLeft->MBB; 12364 } else { 12365 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12366 FuncInfo.MF->insert(BBI, LeftMBB); 12367 WorkList.push_back( 12368 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12369 // Put Cond in a virtual register to make it available from the new blocks. 12370 ExportFromCurrentBlock(Cond); 12371 } 12372 12373 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12374 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12375 // directly if RHS.High equals the current upper bound. 12376 MachineBasicBlock *RightMBB; 12377 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12378 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12379 RightMBB = FirstRight->MBB; 12380 } else { 12381 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12382 FuncInfo.MF->insert(BBI, RightMBB); 12383 WorkList.push_back( 12384 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12385 // Put Cond in a virtual register to make it available from the new blocks. 12386 ExportFromCurrentBlock(Cond); 12387 } 12388 12389 // Create the CaseBlock record that will be used to lower the branch. 12390 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12391 getCurSDLoc(), LeftProb, RightProb); 12392 12393 if (W.MBB == SwitchMBB) 12394 visitSwitchCase(CB, SwitchMBB); 12395 else 12396 SL->SwitchCases.push_back(CB); 12397 } 12398 12399 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12400 // from the swith statement. 12401 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12402 BranchProbability PeeledCaseProb) { 12403 if (PeeledCaseProb == BranchProbability::getOne()) 12404 return BranchProbability::getZero(); 12405 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12406 12407 uint32_t Numerator = CaseProb.getNumerator(); 12408 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12409 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12410 } 12411 12412 // Try to peel the top probability case if it exceeds the threshold. 12413 // Return current MachineBasicBlock for the switch statement if the peeling 12414 // does not occur. 12415 // If the peeling is performed, return the newly created MachineBasicBlock 12416 // for the peeled switch statement. Also update Clusters to remove the peeled 12417 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12418 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12419 const SwitchInst &SI, CaseClusterVector &Clusters, 12420 BranchProbability &PeeledCaseProb) { 12421 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12422 // Don't perform if there is only one cluster or optimizing for size. 12423 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12424 TM.getOptLevel() == CodeGenOptLevel::None || 12425 SwitchMBB->getParent()->getFunction().hasMinSize()) 12426 return SwitchMBB; 12427 12428 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12429 unsigned PeeledCaseIndex = 0; 12430 bool SwitchPeeled = false; 12431 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12432 CaseCluster &CC = Clusters[Index]; 12433 if (CC.Prob < TopCaseProb) 12434 continue; 12435 TopCaseProb = CC.Prob; 12436 PeeledCaseIndex = Index; 12437 SwitchPeeled = true; 12438 } 12439 if (!SwitchPeeled) 12440 return SwitchMBB; 12441 12442 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12443 << TopCaseProb << "\n"); 12444 12445 // Record the MBB for the peeled switch statement. 12446 MachineFunction::iterator BBI(SwitchMBB); 12447 ++BBI; 12448 MachineBasicBlock *PeeledSwitchMBB = 12449 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12450 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12451 12452 ExportFromCurrentBlock(SI.getCondition()); 12453 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12454 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12455 nullptr, nullptr, TopCaseProb.getCompl()}; 12456 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12457 12458 Clusters.erase(PeeledCaseIt); 12459 for (CaseCluster &CC : Clusters) { 12460 LLVM_DEBUG( 12461 dbgs() << "Scale the probablity for one cluster, before scaling: " 12462 << CC.Prob << "\n"); 12463 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12464 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12465 } 12466 PeeledCaseProb = TopCaseProb; 12467 return PeeledSwitchMBB; 12468 } 12469 12470 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12471 // Extract cases from the switch. 12472 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12473 CaseClusterVector Clusters; 12474 Clusters.reserve(SI.getNumCases()); 12475 for (auto I : SI.cases()) { 12476 MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor()); 12477 const ConstantInt *CaseVal = I.getCaseValue(); 12478 BranchProbability Prob = 12479 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12480 : BranchProbability(1, SI.getNumCases() + 1); 12481 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12482 } 12483 12484 MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest()); 12485 12486 // Cluster adjacent cases with the same destination. We do this at all 12487 // optimization levels because it's cheap to do and will make codegen faster 12488 // if there are many clusters. 12489 sortAndRangeify(Clusters); 12490 12491 // The branch probablity of the peeled case. 12492 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12493 MachineBasicBlock *PeeledSwitchMBB = 12494 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12495 12496 // If there is only the default destination, jump there directly. 12497 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12498 if (Clusters.empty()) { 12499 assert(PeeledSwitchMBB == SwitchMBB); 12500 SwitchMBB->addSuccessor(DefaultMBB); 12501 if (DefaultMBB != NextBlock(SwitchMBB)) { 12502 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12503 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12504 } 12505 return; 12506 } 12507 12508 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12509 DAG.getBFI()); 12510 SL->findBitTestClusters(Clusters, &SI); 12511 12512 LLVM_DEBUG({ 12513 dbgs() << "Case clusters: "; 12514 for (const CaseCluster &C : Clusters) { 12515 if (C.Kind == CC_JumpTable) 12516 dbgs() << "JT:"; 12517 if (C.Kind == CC_BitTests) 12518 dbgs() << "BT:"; 12519 12520 C.Low->getValue().print(dbgs(), true); 12521 if (C.Low != C.High) { 12522 dbgs() << '-'; 12523 C.High->getValue().print(dbgs(), true); 12524 } 12525 dbgs() << ' '; 12526 } 12527 dbgs() << '\n'; 12528 }); 12529 12530 assert(!Clusters.empty()); 12531 SwitchWorkList WorkList; 12532 CaseClusterIt First = Clusters.begin(); 12533 CaseClusterIt Last = Clusters.end() - 1; 12534 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12535 // Scale the branchprobability for DefaultMBB if the peel occurs and 12536 // DefaultMBB is not replaced. 12537 if (PeeledCaseProb != BranchProbability::getZero() && 12538 DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest())) 12539 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12540 WorkList.push_back( 12541 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12542 12543 while (!WorkList.empty()) { 12544 SwitchWorkListItem W = WorkList.pop_back_val(); 12545 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12546 12547 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12548 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12549 // For optimized builds, lower large range as a balanced binary tree. 12550 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12551 continue; 12552 } 12553 12554 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12555 } 12556 } 12557 12558 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12560 auto DL = getCurSDLoc(); 12561 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12562 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12563 } 12564 12565 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12566 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12567 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12568 12569 SDLoc DL = getCurSDLoc(); 12570 SDValue V = getValue(I.getOperand(0)); 12571 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12572 12573 if (VT.isScalableVector()) { 12574 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12575 return; 12576 } 12577 12578 // Use VECTOR_SHUFFLE for the fixed-length vector 12579 // to maintain existing behavior. 12580 SmallVector<int, 8> Mask; 12581 unsigned NumElts = VT.getVectorMinNumElements(); 12582 for (unsigned i = 0; i != NumElts; ++i) 12583 Mask.push_back(NumElts - 1 - i); 12584 12585 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12586 } 12587 12588 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12589 auto DL = getCurSDLoc(); 12590 SDValue InVec = getValue(I.getOperand(0)); 12591 EVT OutVT = 12592 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12593 12594 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12595 12596 // ISD Node needs the input vectors split into two equal parts 12597 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12598 DAG.getVectorIdxConstant(0, DL)); 12599 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12600 DAG.getVectorIdxConstant(OutNumElts, DL)); 12601 12602 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12603 // legalisation and combines. 12604 if (OutVT.isFixedLengthVector()) { 12605 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12606 createStrideMask(0, 2, OutNumElts)); 12607 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12608 createStrideMask(1, 2, OutNumElts)); 12609 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12610 setValue(&I, Res); 12611 return; 12612 } 12613 12614 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12615 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12616 setValue(&I, Res); 12617 } 12618 12619 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12620 auto DL = getCurSDLoc(); 12621 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12622 SDValue InVec0 = getValue(I.getOperand(0)); 12623 SDValue InVec1 = getValue(I.getOperand(1)); 12624 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12625 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12626 12627 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12628 // legalisation and combines. 12629 if (OutVT.isFixedLengthVector()) { 12630 unsigned NumElts = InVT.getVectorMinNumElements(); 12631 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12632 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12633 createInterleaveMask(NumElts, 2))); 12634 return; 12635 } 12636 12637 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12638 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12639 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12640 Res.getValue(1)); 12641 setValue(&I, Res); 12642 } 12643 12644 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12645 SmallVector<EVT, 4> ValueVTs; 12646 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12647 ValueVTs); 12648 unsigned NumValues = ValueVTs.size(); 12649 if (NumValues == 0) return; 12650 12651 SmallVector<SDValue, 4> Values(NumValues); 12652 SDValue Op = getValue(I.getOperand(0)); 12653 12654 for (unsigned i = 0; i != NumValues; ++i) 12655 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12656 SDValue(Op.getNode(), Op.getResNo() + i)); 12657 12658 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12659 DAG.getVTList(ValueVTs), Values)); 12660 } 12661 12662 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12663 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12664 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12665 12666 SDLoc DL = getCurSDLoc(); 12667 SDValue V1 = getValue(I.getOperand(0)); 12668 SDValue V2 = getValue(I.getOperand(1)); 12669 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12670 12671 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12672 if (VT.isScalableVector()) { 12673 setValue( 12674 &I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12675 DAG.getSignedConstant( 12676 Imm, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 12677 return; 12678 } 12679 12680 unsigned NumElts = VT.getVectorNumElements(); 12681 12682 uint64_t Idx = (NumElts + Imm) % NumElts; 12683 12684 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12685 SmallVector<int, 8> Mask; 12686 for (unsigned i = 0; i < NumElts; ++i) 12687 Mask.push_back(Idx + i); 12688 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12689 } 12690 12691 // Consider the following MIR after SelectionDAG, which produces output in 12692 // phyregs in the first case or virtregs in the second case. 12693 // 12694 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12695 // %5:gr32 = COPY $ebx 12696 // %6:gr32 = COPY $edx 12697 // %1:gr32 = COPY %6:gr32 12698 // %0:gr32 = COPY %5:gr32 12699 // 12700 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12701 // %1:gr32 = COPY %6:gr32 12702 // %0:gr32 = COPY %5:gr32 12703 // 12704 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12705 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12706 // 12707 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12708 // to a single virtreg (such as %0). The remaining outputs monotonically 12709 // increase in virtreg number from there. If a callbr has no outputs, then it 12710 // should not have a corresponding callbr landingpad; in fact, the callbr 12711 // landingpad would not even be able to refer to such a callbr. 12712 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12713 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12714 // There is definitely at least one copy. 12715 assert(MI->getOpcode() == TargetOpcode::COPY && 12716 "start of copy chain MUST be COPY"); 12717 Reg = MI->getOperand(1).getReg(); 12718 MI = MRI.def_begin(Reg)->getParent(); 12719 // There may be an optional second copy. 12720 if (MI->getOpcode() == TargetOpcode::COPY) { 12721 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12722 Reg = MI->getOperand(1).getReg(); 12723 assert(Reg.isPhysical() && "expected COPY of physical register"); 12724 MI = MRI.def_begin(Reg)->getParent(); 12725 } 12726 // The start of the chain must be an INLINEASM_BR. 12727 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12728 "end of copy chain MUST be INLINEASM_BR"); 12729 return Reg; 12730 } 12731 12732 // We must do this walk rather than the simpler 12733 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12734 // otherwise we will end up with copies of virtregs only valid along direct 12735 // edges. 12736 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12737 SmallVector<EVT, 8> ResultVTs; 12738 SmallVector<SDValue, 8> ResultValues; 12739 const auto *CBR = 12740 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12741 12742 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12743 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12744 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12745 12746 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12747 SDValue Chain = DAG.getRoot(); 12748 12749 // Re-parse the asm constraints string. 12750 TargetLowering::AsmOperandInfoVector TargetConstraints = 12751 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12752 for (auto &T : TargetConstraints) { 12753 SDISelAsmOperandInfo OpInfo(T); 12754 if (OpInfo.Type != InlineAsm::isOutput) 12755 continue; 12756 12757 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12758 // individual constraint. 12759 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12760 12761 switch (OpInfo.ConstraintType) { 12762 case TargetLowering::C_Register: 12763 case TargetLowering::C_RegisterClass: { 12764 // Fill in OpInfo.AssignedRegs.Regs. 12765 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12766 12767 // getRegistersForValue may produce 1 to many registers based on whether 12768 // the OpInfo.ConstraintVT is legal on the target or not. 12769 for (Register &Reg : OpInfo.AssignedRegs.Regs) { 12770 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12771 if (Register::isPhysicalRegister(OriginalDef)) 12772 FuncInfo.MBB->addLiveIn(OriginalDef); 12773 // Update the assigned registers to use the original defs. 12774 Reg = OriginalDef; 12775 } 12776 12777 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12778 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12779 ResultValues.push_back(V); 12780 ResultVTs.push_back(OpInfo.ConstraintVT); 12781 break; 12782 } 12783 case TargetLowering::C_Other: { 12784 SDValue Flag; 12785 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12786 OpInfo, DAG); 12787 ++InitialDef; 12788 ResultValues.push_back(V); 12789 ResultVTs.push_back(OpInfo.ConstraintVT); 12790 break; 12791 } 12792 default: 12793 break; 12794 } 12795 } 12796 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12797 DAG.getVTList(ResultVTs), ResultValues); 12798 setValue(&I, V); 12799 } 12800