1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DebugInfo.h" 25 #include "llvm/DerivedTypes.h" 26 #include "llvm/Function.h" 27 #include "llvm/GlobalVariable.h" 28 #include "llvm/InlineAsm.h" 29 #include "llvm/Instructions.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/IntrinsicInst.h" 32 #include "llvm/LLVMContext.h" 33 #include "llvm/Module.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/FastISel.h" 36 #include "llvm/CodeGen/FunctionLoweringInfo.h" 37 #include "llvm/CodeGen/GCStrategy.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineJumpTableInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Target/TargetData.h" 47 #include "llvm/Target/TargetFrameLowering.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetIntrinsicInfo.h" 50 #include "llvm/Target/TargetLibraryInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/IntegersSubsetMapping.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 // Limit the width of DAG chains. This is important in general to prevent 74 // prevent DAG-based analysis from blowing up. For example, alias analysis and 75 // load clustering may not complete in reasonable time. It is difficult to 76 // recognize and avoid this situation within each individual analysis, and 77 // future analyses are likely to have the same behavior. Limiting DAG width is 78 // the safe approach, and will be especially important with global DAGs. 79 // 80 // MaxParallelChains default is arbitrarily high to avoid affecting 81 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 82 // sequence over this should have been converted to llvm.memcpy by the 83 // frontend. It easy to induce this behavior with .ll code such as: 84 // %buffer = alloca [4096 x i8] 85 // %data = load [4096 x i8]* %argPtr 86 // store [4096 x i8] %data, [4096 x i8]* %buffer 87 static const unsigned MaxParallelChains = 64; 88 89 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 90 const SDValue *Parts, unsigned NumParts, 91 EVT PartVT, EVT ValueVT); 92 93 /// getCopyFromParts - Create a value that contains the specified legal parts 94 /// combined into the value they represent. If the parts combine to a type 95 /// larger then ValueVT then AssertOp can be used to specify whether the extra 96 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 97 /// (ISD::AssertSext). 98 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 99 const SDValue *Parts, 100 unsigned NumParts, EVT PartVT, EVT ValueVT, 101 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 102 if (ValueVT.isVector()) 103 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 104 105 assert(NumParts > 0 && "No parts to assemble!"); 106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 107 SDValue Val = Parts[0]; 108 109 if (NumParts > 1) { 110 // Assemble the value from multiple parts. 111 if (ValueVT.isInteger()) { 112 unsigned PartBits = PartVT.getSizeInBits(); 113 unsigned ValueBits = ValueVT.getSizeInBits(); 114 115 // Assemble the power of 2 part. 116 unsigned RoundParts = NumParts & (NumParts - 1) ? 117 1 << Log2_32(NumParts) : NumParts; 118 unsigned RoundBits = PartBits * RoundParts; 119 EVT RoundVT = RoundBits == ValueBits ? 120 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 121 SDValue Lo, Hi; 122 123 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 124 125 if (RoundParts > 2) { 126 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 127 PartVT, HalfVT); 128 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 129 RoundParts / 2, PartVT, HalfVT); 130 } else { 131 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 132 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 133 } 134 135 if (TLI.isBigEndian()) 136 std::swap(Lo, Hi); 137 138 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 139 140 if (RoundParts < NumParts) { 141 // Assemble the trailing non-power-of-2 part. 142 unsigned OddParts = NumParts - RoundParts; 143 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 144 Hi = getCopyFromParts(DAG, DL, 145 Parts + RoundParts, OddParts, PartVT, OddVT); 146 147 // Combine the round and odd parts. 148 Lo = Val; 149 if (TLI.isBigEndian()) 150 std::swap(Lo, Hi); 151 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 152 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 153 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 154 DAG.getConstant(Lo.getValueType().getSizeInBits(), 155 TLI.getPointerTy())); 156 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 157 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 158 } 159 } else if (PartVT.isFloatingPoint()) { 160 // FP split into multiple FP parts (for ppcf128) 161 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 162 "Unexpected split"); 163 SDValue Lo, Hi; 164 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 165 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 166 if (TLI.isBigEndian()) 167 std::swap(Lo, Hi); 168 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 169 } else { 170 // FP split into integer parts (soft fp) 171 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 172 !PartVT.isVector() && "Unexpected split"); 173 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 174 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 175 } 176 } 177 178 // There is now one part, held in Val. Correct it to match ValueVT. 179 PartVT = Val.getValueType(); 180 181 if (PartVT == ValueVT) 182 return Val; 183 184 if (PartVT.isInteger() && ValueVT.isInteger()) { 185 if (ValueVT.bitsLT(PartVT)) { 186 // For a truncate, see if we have any information to 187 // indicate whether the truncated bits will always be 188 // zero or sign-extension. 189 if (AssertOp != ISD::DELETED_NODE) 190 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 191 DAG.getValueType(ValueVT)); 192 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 193 } 194 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 195 } 196 197 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 198 // FP_ROUND's are always exact here. 199 if (ValueVT.bitsLT(Val.getValueType())) 200 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 201 DAG.getTargetConstant(1, TLI.getPointerTy())); 202 203 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 204 } 205 206 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 207 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 208 209 llvm_unreachable("Unknown mismatch!"); 210 } 211 212 /// getCopyFromParts - Create a value that contains the specified legal parts 213 /// combined into the value they represent. If the parts combine to a type 214 /// larger then ValueVT then AssertOp can be used to specify whether the extra 215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 216 /// (ISD::AssertSext). 217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 218 const SDValue *Parts, unsigned NumParts, 219 EVT PartVT, EVT ValueVT) { 220 assert(ValueVT.isVector() && "Not a vector value"); 221 assert(NumParts > 0 && "No parts to assemble!"); 222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 223 SDValue Val = Parts[0]; 224 225 // Handle a multi-element vector. 226 if (NumParts > 1) { 227 EVT IntermediateVT, RegisterVT; 228 unsigned NumIntermediates; 229 unsigned NumRegs = 230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 231 NumIntermediates, RegisterVT); 232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 233 NumParts = NumRegs; // Silence a compiler warning. 234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 235 assert(RegisterVT == Parts[0].getValueType() && 236 "Part type doesn't match part!"); 237 238 // Assemble the parts into intermediate operands. 239 SmallVector<SDValue, 8> Ops(NumIntermediates); 240 if (NumIntermediates == NumParts) { 241 // If the register was not expanded, truncate or copy the value, 242 // as appropriate. 243 for (unsigned i = 0; i != NumParts; ++i) 244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 245 PartVT, IntermediateVT); 246 } else if (NumParts > 0) { 247 // If the intermediate type was expanded, build the intermediate 248 // operands from the parts. 249 assert(NumParts % NumIntermediates == 0 && 250 "Must expand into a divisible number of parts!"); 251 unsigned Factor = NumParts / NumIntermediates; 252 for (unsigned i = 0; i != NumIntermediates; ++i) 253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 254 PartVT, IntermediateVT); 255 } 256 257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 258 // intermediate operands. 259 Val = DAG.getNode(IntermediateVT.isVector() ? 260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 261 ValueVT, &Ops[0], NumIntermediates); 262 } 263 264 // There is now one part, held in Val. Correct it to match ValueVT. 265 PartVT = Val.getValueType(); 266 267 if (PartVT == ValueVT) 268 return Val; 269 270 if (PartVT.isVector()) { 271 // If the element type of the source/dest vectors are the same, but the 272 // parts vector has more elements than the value vector, then we have a 273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 274 // elements we want. 275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 277 "Cannot narrow, it would be a lossy transformation"); 278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 279 DAG.getIntPtrConstant(0)); 280 } 281 282 // Vector/Vector bitcast. 283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 285 286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 287 "Cannot handle this kind of promotion"); 288 // Promoted vector extract 289 bool Smaller = ValueVT.bitsLE(PartVT); 290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 291 DL, ValueVT, Val); 292 293 } 294 295 // Trivial bitcast if the types are the same size and the destination 296 // vector type is legal. 297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 298 TLI.isTypeLegal(ValueVT)) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle cases such as i8 -> <1 x i1> 302 assert(ValueVT.getVectorNumElements() == 1 && 303 "Only trivial scalar-to-vector conversions should get here!"); 304 305 if (ValueVT.getVectorNumElements() == 1 && 306 ValueVT.getVectorElementType() != PartVT) { 307 bool Smaller = ValueVT.bitsLE(PartVT); 308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 309 DL, ValueVT.getScalarType(), Val); 310 } 311 312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 313 } 314 315 316 317 318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 319 SDValue Val, SDValue *Parts, unsigned NumParts, 320 EVT PartVT); 321 322 /// getCopyToParts - Create a series of nodes that contain the specified value 323 /// split into legal parts. If the parts contain more bits than Val, then, for 324 /// integers, ExtendKind can be used to specify how to generate the extra bits. 325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 326 SDValue Val, SDValue *Parts, unsigned NumParts, 327 EVT PartVT, 328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 329 EVT ValueVT = Val.getValueType(); 330 331 // Handle the vector case separately. 332 if (ValueVT.isVector()) 333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 unsigned PartBits = PartVT.getSizeInBits(); 337 unsigned OrigNumParts = NumParts; 338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 339 340 if (NumParts == 0) 341 return; 342 343 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 344 if (PartVT == ValueVT) { 345 assert(NumParts == 1 && "No-op copy with multiple parts!"); 346 Parts[0] = Val; 347 return; 348 } 349 350 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 351 // If the parts cover more bits than the value has, promote the value. 352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 353 assert(NumParts == 1 && "Do not know what to promote to!"); 354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 355 } else { 356 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 357 ValueVT.isInteger() && 358 "Unknown mismatch!"); 359 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 360 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 361 if (PartVT == MVT::x86mmx) 362 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 363 } 364 } else if (PartBits == ValueVT.getSizeInBits()) { 365 // Different types of the same size. 366 assert(NumParts == 1 && PartVT != ValueVT); 367 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 368 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 369 // If the parts cover less bits than value has, truncate the value. 370 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 371 ValueVT.isInteger() && 372 "Unknown mismatch!"); 373 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 374 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 375 if (PartVT == MVT::x86mmx) 376 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 377 } 378 379 // The value may have changed - recompute ValueVT. 380 ValueVT = Val.getValueType(); 381 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 382 "Failed to tile the value with PartVT!"); 383 384 if (NumParts == 1) { 385 assert(PartVT == ValueVT && "Type conversion failed!"); 386 Parts[0] = Val; 387 return; 388 } 389 390 // Expand the value into multiple parts. 391 if (NumParts & (NumParts - 1)) { 392 // The number of parts is not a power of 2. Split off and copy the tail. 393 assert(PartVT.isInteger() && ValueVT.isInteger() && 394 "Do not know what to expand to!"); 395 unsigned RoundParts = 1 << Log2_32(NumParts); 396 unsigned RoundBits = RoundParts * PartBits; 397 unsigned OddParts = NumParts - RoundParts; 398 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 399 DAG.getIntPtrConstant(RoundBits)); 400 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 401 402 if (TLI.isBigEndian()) 403 // The odd parts were reversed by getCopyToParts - unreverse them. 404 std::reverse(Parts + RoundParts, Parts + NumParts); 405 406 NumParts = RoundParts; 407 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 408 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 409 } 410 411 // The number of parts is a power of 2. Repeatedly bisect the value using 412 // EXTRACT_ELEMENT. 413 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 414 EVT::getIntegerVT(*DAG.getContext(), 415 ValueVT.getSizeInBits()), 416 Val); 417 418 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 419 for (unsigned i = 0; i < NumParts; i += StepSize) { 420 unsigned ThisBits = StepSize * PartBits / 2; 421 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 422 SDValue &Part0 = Parts[i]; 423 SDValue &Part1 = Parts[i+StepSize/2]; 424 425 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 426 ThisVT, Part0, DAG.getIntPtrConstant(1)); 427 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 428 ThisVT, Part0, DAG.getIntPtrConstant(0)); 429 430 if (ThisBits == PartBits && ThisVT != PartVT) { 431 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 432 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 433 } 434 } 435 } 436 437 if (TLI.isBigEndian()) 438 std::reverse(Parts, Parts + OrigNumParts); 439 } 440 441 442 /// getCopyToPartsVector - Create a series of nodes that contain the specified 443 /// value split into legal parts. 444 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 445 SDValue Val, SDValue *Parts, unsigned NumParts, 446 EVT PartVT) { 447 EVT ValueVT = Val.getValueType(); 448 assert(ValueVT.isVector() && "Not a vector"); 449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 450 451 if (NumParts == 1) { 452 if (PartVT == ValueVT) { 453 // Nothing to do. 454 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 455 // Bitconvert vector->vector case. 456 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 457 } else if (PartVT.isVector() && 458 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 459 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 460 EVT ElementVT = PartVT.getVectorElementType(); 461 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 462 // undef elements. 463 SmallVector<SDValue, 16> Ops; 464 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 465 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 466 ElementVT, Val, DAG.getIntPtrConstant(i))); 467 468 for (unsigned i = ValueVT.getVectorNumElements(), 469 e = PartVT.getVectorNumElements(); i != e; ++i) 470 Ops.push_back(DAG.getUNDEF(ElementVT)); 471 472 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 473 474 // FIXME: Use CONCAT for 2x -> 4x. 475 476 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 477 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 478 } else if (PartVT.isVector() && 479 PartVT.getVectorElementType().bitsGE( 480 ValueVT.getVectorElementType()) && 481 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 482 483 // Promoted vector extract 484 bool Smaller = PartVT.bitsLE(ValueVT); 485 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 486 DL, PartVT, Val); 487 } else{ 488 // Vector -> scalar conversion. 489 assert(ValueVT.getVectorNumElements() == 1 && 490 "Only trivial vector-to-scalar conversions should get here!"); 491 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 492 PartVT, Val, DAG.getIntPtrConstant(0)); 493 494 bool Smaller = ValueVT.bitsLE(PartVT); 495 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 496 DL, PartVT, Val); 497 } 498 499 Parts[0] = Val; 500 return; 501 } 502 503 // Handle a multi-element vector. 504 EVT IntermediateVT, RegisterVT; 505 unsigned NumIntermediates; 506 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 507 IntermediateVT, 508 NumIntermediates, RegisterVT); 509 unsigned NumElements = ValueVT.getVectorNumElements(); 510 511 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 512 NumParts = NumRegs; // Silence a compiler warning. 513 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 514 515 // Split the vector into intermediate operands. 516 SmallVector<SDValue, 8> Ops(NumIntermediates); 517 for (unsigned i = 0; i != NumIntermediates; ++i) { 518 if (IntermediateVT.isVector()) 519 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 520 IntermediateVT, Val, 521 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 522 else 523 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 524 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 525 } 526 527 // Split the intermediate operands into legal parts. 528 if (NumParts == NumIntermediates) { 529 // If the register was not expanded, promote or copy the value, 530 // as appropriate. 531 for (unsigned i = 0; i != NumParts; ++i) 532 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 533 } else if (NumParts > 0) { 534 // If the intermediate type was expanded, split each the value into 535 // legal parts. 536 assert(NumParts % NumIntermediates == 0 && 537 "Must expand into a divisible number of parts!"); 538 unsigned Factor = NumParts / NumIntermediates; 539 for (unsigned i = 0; i != NumIntermediates; ++i) 540 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 541 } 542 } 543 544 545 546 547 namespace { 548 /// RegsForValue - This struct represents the registers (physical or virtual) 549 /// that a particular set of values is assigned, and the type information 550 /// about the value. The most common situation is to represent one value at a 551 /// time, but struct or array values are handled element-wise as multiple 552 /// values. The splitting of aggregates is performed recursively, so that we 553 /// never have aggregate-typed registers. The values at this point do not 554 /// necessarily have legal types, so each value may require one or more 555 /// registers of some legal type. 556 /// 557 struct RegsForValue { 558 /// ValueVTs - The value types of the values, which may not be legal, and 559 /// may need be promoted or synthesized from one or more registers. 560 /// 561 SmallVector<EVT, 4> ValueVTs; 562 563 /// RegVTs - The value types of the registers. This is the same size as 564 /// ValueVTs and it records, for each value, what the type of the assigned 565 /// register or registers are. (Individual values are never synthesized 566 /// from more than one type of register.) 567 /// 568 /// With virtual registers, the contents of RegVTs is redundant with TLI's 569 /// getRegisterType member function, however when with physical registers 570 /// it is necessary to have a separate record of the types. 571 /// 572 SmallVector<EVT, 4> RegVTs; 573 574 /// Regs - This list holds the registers assigned to the values. 575 /// Each legal or promoted value requires one register, and each 576 /// expanded value requires multiple registers. 577 /// 578 SmallVector<unsigned, 4> Regs; 579 580 RegsForValue() {} 581 582 RegsForValue(const SmallVector<unsigned, 4> ®s, 583 EVT regvt, EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 587 unsigned Reg, Type *Ty) { 588 ComputeValueVTs(tli, Ty, ValueVTs); 589 590 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 591 EVT ValueVT = ValueVTs[Value]; 592 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 593 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// areValueTypesLegal - Return true if types of all the values are legal. 602 bool areValueTypesLegal(const TargetLowering &TLI) { 603 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 604 EVT RegisterVT = RegVTs[Value]; 605 if (!TLI.isTypeLegal(RegisterVT)) 606 return false; 607 } 608 return true; 609 } 610 611 /// append - Add the specified values to this one. 612 void append(const RegsForValue &RHS) { 613 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 614 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 615 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 616 } 617 618 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 619 /// this value and returns the result as a ValueVTs value. This uses 620 /// Chain/Flag as the input and updates them for the output Chain/Flag. 621 /// If the Flag pointer is NULL, no flag is used. 622 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 623 DebugLoc dl, 624 SDValue &Chain, SDValue *Flag) const; 625 626 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 627 /// specified value into the registers specified by this object. This uses 628 /// Chain/Flag as the input and updates them for the output Chain/Flag. 629 /// If the Flag pointer is NULL, no flag is used. 630 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 631 SDValue &Chain, SDValue *Flag) const; 632 633 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 634 /// operand list. This adds the code marker, matching input operand index 635 /// (if applicable), and includes the number of values added into it. 636 void AddInlineAsmOperands(unsigned Kind, 637 bool HasMatching, unsigned MatchingIdx, 638 SelectionDAG &DAG, 639 std::vector<SDValue> &Ops) const; 640 }; 641 } 642 643 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 644 /// this value and returns the result as a ValueVT value. This uses 645 /// Chain/Flag as the input and updates them for the output Chain/Flag. 646 /// If the Flag pointer is NULL, no flag is used. 647 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 648 FunctionLoweringInfo &FuncInfo, 649 DebugLoc dl, 650 SDValue &Chain, SDValue *Flag) const { 651 // A Value with type {} or [0 x %t] needs no registers. 652 if (ValueVTs.empty()) 653 return SDValue(); 654 655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 656 657 // Assemble the legal parts into the final values. 658 SmallVector<SDValue, 4> Values(ValueVTs.size()); 659 SmallVector<SDValue, 8> Parts; 660 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 661 // Copy the legal parts from the registers. 662 EVT ValueVT = ValueVTs[Value]; 663 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 664 EVT RegisterVT = RegVTs[Value]; 665 666 Parts.resize(NumRegs); 667 for (unsigned i = 0; i != NumRegs; ++i) { 668 SDValue P; 669 if (Flag == 0) { 670 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 671 } else { 672 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 673 *Flag = P.getValue(2); 674 } 675 676 Chain = P.getValue(1); 677 Parts[i] = P; 678 679 // If the source register was virtual and if we know something about it, 680 // add an assert node. 681 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 682 !RegisterVT.isInteger() || RegisterVT.isVector()) 683 continue; 684 685 const FunctionLoweringInfo::LiveOutInfo *LOI = 686 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 687 if (!LOI) 688 continue; 689 690 unsigned RegSize = RegisterVT.getSizeInBits(); 691 unsigned NumSignBits = LOI->NumSignBits; 692 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 693 694 // FIXME: We capture more information than the dag can represent. For 695 // now, just use the tightest assertzext/assertsext possible. 696 bool isSExt = true; 697 EVT FromVT(MVT::Other); 698 if (NumSignBits == RegSize) 699 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 700 else if (NumZeroBits >= RegSize-1) 701 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 702 else if (NumSignBits > RegSize-8) 703 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 704 else if (NumZeroBits >= RegSize-8) 705 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 706 else if (NumSignBits > RegSize-16) 707 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 708 else if (NumZeroBits >= RegSize-16) 709 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 710 else if (NumSignBits > RegSize-32) 711 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 712 else if (NumZeroBits >= RegSize-32) 713 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 714 else 715 continue; 716 717 // Add an assertion node. 718 assert(FromVT != MVT::Other); 719 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 720 RegisterVT, P, DAG.getValueType(FromVT)); 721 } 722 723 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 724 NumRegs, RegisterVT, ValueVT); 725 Part += NumRegs; 726 Parts.clear(); 727 } 728 729 return DAG.getNode(ISD::MERGE_VALUES, dl, 730 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 731 &Values[0], ValueVTs.size()); 732 } 733 734 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 735 /// specified value into the registers specified by this object. This uses 736 /// Chain/Flag as the input and updates them for the output Chain/Flag. 737 /// If the Flag pointer is NULL, no flag is used. 738 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 739 SDValue &Chain, SDValue *Flag) const { 740 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 741 742 // Get the list of the values's legal parts. 743 unsigned NumRegs = Regs.size(); 744 SmallVector<SDValue, 8> Parts(NumRegs); 745 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 746 EVT ValueVT = ValueVTs[Value]; 747 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 748 EVT RegisterVT = RegVTs[Value]; 749 750 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 751 &Parts[Part], NumParts, RegisterVT); 752 Part += NumParts; 753 } 754 755 // Copy the parts into the registers. 756 SmallVector<SDValue, 8> Chains(NumRegs); 757 for (unsigned i = 0; i != NumRegs; ++i) { 758 SDValue Part; 759 if (Flag == 0) { 760 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 761 } else { 762 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 763 *Flag = Part.getValue(1); 764 } 765 766 Chains[i] = Part.getValue(0); 767 } 768 769 if (NumRegs == 1 || Flag) 770 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 771 // flagged to it. That is the CopyToReg nodes and the user are considered 772 // a single scheduling unit. If we create a TokenFactor and return it as 773 // chain, then the TokenFactor is both a predecessor (operand) of the 774 // user as well as a successor (the TF operands are flagged to the user). 775 // c1, f1 = CopyToReg 776 // c2, f2 = CopyToReg 777 // c3 = TokenFactor c1, c2 778 // ... 779 // = op c3, ..., f2 780 Chain = Chains[NumRegs-1]; 781 else 782 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 783 } 784 785 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 786 /// operand list. This adds the code marker and includes the number of 787 /// values added into it. 788 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 789 unsigned MatchingIdx, 790 SelectionDAG &DAG, 791 std::vector<SDValue> &Ops) const { 792 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 793 794 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 795 if (HasMatching) 796 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 797 else if (!Regs.empty() && 798 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 799 // Put the register class of the virtual registers in the flag word. That 800 // way, later passes can recompute register class constraints for inline 801 // assembly as well as normal instructions. 802 // Don't do this for tied operands that can use the regclass information 803 // from the def. 804 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 805 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 806 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 807 } 808 809 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 810 Ops.push_back(Res); 811 812 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 813 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 814 EVT RegisterVT = RegVTs[Value]; 815 for (unsigned i = 0; i != NumRegs; ++i) { 816 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 817 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 818 } 819 } 820 } 821 822 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 823 const TargetLibraryInfo *li) { 824 AA = &aa; 825 GFI = gfi; 826 LibInfo = li; 827 TD = DAG.getTarget().getTargetData(); 828 Context = DAG.getContext(); 829 LPadToCallSiteMap.clear(); 830 } 831 832 /// clear - Clear out the current SelectionDAG and the associated 833 /// state and prepare this SelectionDAGBuilder object to be used 834 /// for a new block. This doesn't clear out information about 835 /// additional blocks that are needed to complete switch lowering 836 /// or PHI node updating; that information is cleared out as it is 837 /// consumed. 838 void SelectionDAGBuilder::clear() { 839 NodeMap.clear(); 840 UnusedArgNodeMap.clear(); 841 PendingLoads.clear(); 842 PendingExports.clear(); 843 CurDebugLoc = DebugLoc(); 844 HasTailCall = false; 845 } 846 847 /// clearDanglingDebugInfo - Clear the dangling debug information 848 /// map. This function is separated from the clear so that debug 849 /// information that is dangling in a basic block can be properly 850 /// resolved in a different basic block. This allows the 851 /// SelectionDAG to resolve dangling debug information attached 852 /// to PHI nodes. 853 void SelectionDAGBuilder::clearDanglingDebugInfo() { 854 DanglingDebugInfoMap.clear(); 855 } 856 857 /// getRoot - Return the current virtual root of the Selection DAG, 858 /// flushing any PendingLoad items. This must be done before emitting 859 /// a store or any other node that may need to be ordered after any 860 /// prior load instructions. 861 /// 862 SDValue SelectionDAGBuilder::getRoot() { 863 if (PendingLoads.empty()) 864 return DAG.getRoot(); 865 866 if (PendingLoads.size() == 1) { 867 SDValue Root = PendingLoads[0]; 868 DAG.setRoot(Root); 869 PendingLoads.clear(); 870 return Root; 871 } 872 873 // Otherwise, we have to make a token factor node. 874 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 875 &PendingLoads[0], PendingLoads.size()); 876 PendingLoads.clear(); 877 DAG.setRoot(Root); 878 return Root; 879 } 880 881 /// getControlRoot - Similar to getRoot, but instead of flushing all the 882 /// PendingLoad items, flush all the PendingExports items. It is necessary 883 /// to do this before emitting a terminator instruction. 884 /// 885 SDValue SelectionDAGBuilder::getControlRoot() { 886 SDValue Root = DAG.getRoot(); 887 888 if (PendingExports.empty()) 889 return Root; 890 891 // Turn all of the CopyToReg chains into one factored node. 892 if (Root.getOpcode() != ISD::EntryToken) { 893 unsigned i = 0, e = PendingExports.size(); 894 for (; i != e; ++i) { 895 assert(PendingExports[i].getNode()->getNumOperands() > 1); 896 if (PendingExports[i].getNode()->getOperand(0) == Root) 897 break; // Don't add the root if we already indirectly depend on it. 898 } 899 900 if (i == e) 901 PendingExports.push_back(Root); 902 } 903 904 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 905 &PendingExports[0], 906 PendingExports.size()); 907 PendingExports.clear(); 908 DAG.setRoot(Root); 909 return Root; 910 } 911 912 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 913 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 914 DAG.AssignOrdering(Node, SDNodeOrder); 915 916 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 917 AssignOrderingToNode(Node->getOperand(I).getNode()); 918 } 919 920 void SelectionDAGBuilder::visit(const Instruction &I) { 921 // Set up outgoing PHI node register values before emitting the terminator. 922 if (isa<TerminatorInst>(&I)) 923 HandlePHINodesInSuccessorBlocks(I.getParent()); 924 925 CurDebugLoc = I.getDebugLoc(); 926 927 visit(I.getOpcode(), I); 928 929 if (!isa<TerminatorInst>(&I) && !HasTailCall) 930 CopyToExportRegsIfNeeded(&I); 931 932 CurDebugLoc = DebugLoc(); 933 } 934 935 void SelectionDAGBuilder::visitPHI(const PHINode &) { 936 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 937 } 938 939 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 940 // Note: this doesn't use InstVisitor, because it has to work with 941 // ConstantExpr's in addition to instructions. 942 switch (Opcode) { 943 default: llvm_unreachable("Unknown instruction type encountered!"); 944 // Build the switch statement using the Instruction.def file. 945 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 946 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 947 #include "llvm/Instruction.def" 948 } 949 950 // Assign the ordering to the freshly created DAG nodes. 951 if (NodeMap.count(&I)) { 952 ++SDNodeOrder; 953 AssignOrderingToNode(getValue(&I).getNode()); 954 } 955 } 956 957 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 958 // generate the debug data structures now that we've seen its definition. 959 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 960 SDValue Val) { 961 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 962 if (DDI.getDI()) { 963 const DbgValueInst *DI = DDI.getDI(); 964 DebugLoc dl = DDI.getdl(); 965 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 966 MDNode *Variable = DI->getVariable(); 967 uint64_t Offset = DI->getOffset(); 968 SDDbgValue *SDV; 969 if (Val.getNode()) { 970 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 971 SDV = DAG.getDbgValue(Variable, Val.getNode(), 972 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 973 DAG.AddDbgValue(SDV, Val.getNode(), false); 974 } 975 } else 976 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 977 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 978 } 979 } 980 981 /// getValue - Return an SDValue for the given Value. 982 SDValue SelectionDAGBuilder::getValue(const Value *V) { 983 // If we already have an SDValue for this value, use it. It's important 984 // to do this first, so that we don't create a CopyFromReg if we already 985 // have a regular SDValue. 986 SDValue &N = NodeMap[V]; 987 if (N.getNode()) return N; 988 989 // If there's a virtual register allocated and initialized for this 990 // value, use it. 991 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 992 if (It != FuncInfo.ValueMap.end()) { 993 unsigned InReg = It->second; 994 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 995 SDValue Chain = DAG.getEntryNode(); 996 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 997 resolveDanglingDebugInfo(V, N); 998 return N; 999 } 1000 1001 // Otherwise create a new SDValue and remember it. 1002 SDValue Val = getValueImpl(V); 1003 NodeMap[V] = Val; 1004 resolveDanglingDebugInfo(V, Val); 1005 return Val; 1006 } 1007 1008 /// getNonRegisterValue - Return an SDValue for the given Value, but 1009 /// don't look in FuncInfo.ValueMap for a virtual register. 1010 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1011 // If we already have an SDValue for this value, use it. 1012 SDValue &N = NodeMap[V]; 1013 if (N.getNode()) return N; 1014 1015 // Otherwise create a new SDValue and remember it. 1016 SDValue Val = getValueImpl(V); 1017 NodeMap[V] = Val; 1018 resolveDanglingDebugInfo(V, Val); 1019 return Val; 1020 } 1021 1022 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1023 /// Create an SDValue for the given value. 1024 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1025 if (const Constant *C = dyn_cast<Constant>(V)) { 1026 EVT VT = TLI.getValueType(V->getType(), true); 1027 1028 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1029 return DAG.getConstant(*CI, VT); 1030 1031 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1032 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1033 1034 if (isa<ConstantPointerNull>(C)) 1035 return DAG.getConstant(0, TLI.getPointerTy()); 1036 1037 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1038 return DAG.getConstantFP(*CFP, VT); 1039 1040 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1041 return DAG.getUNDEF(VT); 1042 1043 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1044 visit(CE->getOpcode(), *CE); 1045 SDValue N1 = NodeMap[V]; 1046 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1047 return N1; 1048 } 1049 1050 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1051 SmallVector<SDValue, 4> Constants; 1052 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1053 OI != OE; ++OI) { 1054 SDNode *Val = getValue(*OI).getNode(); 1055 // If the operand is an empty aggregate, there are no values. 1056 if (!Val) continue; 1057 // Add each leaf value from the operand to the Constants list 1058 // to form a flattened list of all the values. 1059 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1060 Constants.push_back(SDValue(Val, i)); 1061 } 1062 1063 return DAG.getMergeValues(&Constants[0], Constants.size(), 1064 getCurDebugLoc()); 1065 } 1066 1067 if (const ConstantDataSequential *CDS = 1068 dyn_cast<ConstantDataSequential>(C)) { 1069 SmallVector<SDValue, 4> Ops; 1070 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1071 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1072 // Add each leaf value from the operand to the Constants list 1073 // to form a flattened list of all the values. 1074 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1075 Ops.push_back(SDValue(Val, i)); 1076 } 1077 1078 if (isa<ArrayType>(CDS->getType())) 1079 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc()); 1080 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1081 VT, &Ops[0], Ops.size()); 1082 } 1083 1084 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1085 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1086 "Unknown struct or array constant!"); 1087 1088 SmallVector<EVT, 4> ValueVTs; 1089 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1090 unsigned NumElts = ValueVTs.size(); 1091 if (NumElts == 0) 1092 return SDValue(); // empty struct 1093 SmallVector<SDValue, 4> Constants(NumElts); 1094 for (unsigned i = 0; i != NumElts; ++i) { 1095 EVT EltVT = ValueVTs[i]; 1096 if (isa<UndefValue>(C)) 1097 Constants[i] = DAG.getUNDEF(EltVT); 1098 else if (EltVT.isFloatingPoint()) 1099 Constants[i] = DAG.getConstantFP(0, EltVT); 1100 else 1101 Constants[i] = DAG.getConstant(0, EltVT); 1102 } 1103 1104 return DAG.getMergeValues(&Constants[0], NumElts, 1105 getCurDebugLoc()); 1106 } 1107 1108 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1109 return DAG.getBlockAddress(BA, VT); 1110 1111 VectorType *VecTy = cast<VectorType>(V->getType()); 1112 unsigned NumElements = VecTy->getNumElements(); 1113 1114 // Now that we know the number and type of the elements, get that number of 1115 // elements into the Ops array based on what kind of constant it is. 1116 SmallVector<SDValue, 16> Ops; 1117 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1118 for (unsigned i = 0; i != NumElements; ++i) 1119 Ops.push_back(getValue(CV->getOperand(i))); 1120 } else { 1121 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1122 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1123 1124 SDValue Op; 1125 if (EltVT.isFloatingPoint()) 1126 Op = DAG.getConstantFP(0, EltVT); 1127 else 1128 Op = DAG.getConstant(0, EltVT); 1129 Ops.assign(NumElements, Op); 1130 } 1131 1132 // Create a BUILD_VECTOR node. 1133 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1134 VT, &Ops[0], Ops.size()); 1135 } 1136 1137 // If this is a static alloca, generate it as the frameindex instead of 1138 // computation. 1139 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1140 DenseMap<const AllocaInst*, int>::iterator SI = 1141 FuncInfo.StaticAllocaMap.find(AI); 1142 if (SI != FuncInfo.StaticAllocaMap.end()) 1143 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1144 } 1145 1146 // If this is an instruction which fast-isel has deferred, select it now. 1147 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1148 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1149 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1150 SDValue Chain = DAG.getEntryNode(); 1151 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1152 } 1153 1154 llvm_unreachable("Can't get register for value!"); 1155 } 1156 1157 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1158 SDValue Chain = getControlRoot(); 1159 SmallVector<ISD::OutputArg, 8> Outs; 1160 SmallVector<SDValue, 8> OutVals; 1161 1162 if (!FuncInfo.CanLowerReturn) { 1163 unsigned DemoteReg = FuncInfo.DemoteRegister; 1164 const Function *F = I.getParent()->getParent(); 1165 1166 // Emit a store of the return value through the virtual register. 1167 // Leave Outs empty so that LowerReturn won't try to load return 1168 // registers the usual way. 1169 SmallVector<EVT, 1> PtrValueVTs; 1170 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1171 PtrValueVTs); 1172 1173 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1174 SDValue RetOp = getValue(I.getOperand(0)); 1175 1176 SmallVector<EVT, 4> ValueVTs; 1177 SmallVector<uint64_t, 4> Offsets; 1178 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1179 unsigned NumValues = ValueVTs.size(); 1180 1181 SmallVector<SDValue, 4> Chains(NumValues); 1182 for (unsigned i = 0; i != NumValues; ++i) { 1183 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1184 RetPtr.getValueType(), RetPtr, 1185 DAG.getIntPtrConstant(Offsets[i])); 1186 Chains[i] = 1187 DAG.getStore(Chain, getCurDebugLoc(), 1188 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1189 // FIXME: better loc info would be nice. 1190 Add, MachinePointerInfo(), false, false, 0); 1191 } 1192 1193 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1194 MVT::Other, &Chains[0], NumValues); 1195 } else if (I.getNumOperands() != 0) { 1196 SmallVector<EVT, 4> ValueVTs; 1197 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1198 unsigned NumValues = ValueVTs.size(); 1199 if (NumValues) { 1200 SDValue RetOp = getValue(I.getOperand(0)); 1201 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1202 EVT VT = ValueVTs[j]; 1203 1204 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1205 1206 const Function *F = I.getParent()->getParent(); 1207 if (F->paramHasAttr(0, Attribute::SExt)) 1208 ExtendKind = ISD::SIGN_EXTEND; 1209 else if (F->paramHasAttr(0, Attribute::ZExt)) 1210 ExtendKind = ISD::ZERO_EXTEND; 1211 1212 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1213 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1214 1215 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1216 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1217 SmallVector<SDValue, 4> Parts(NumParts); 1218 getCopyToParts(DAG, getCurDebugLoc(), 1219 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1220 &Parts[0], NumParts, PartVT, ExtendKind); 1221 1222 // 'inreg' on function refers to return value 1223 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1224 if (F->paramHasAttr(0, Attribute::InReg)) 1225 Flags.setInReg(); 1226 1227 // Propagate extension type if any 1228 if (ExtendKind == ISD::SIGN_EXTEND) 1229 Flags.setSExt(); 1230 else if (ExtendKind == ISD::ZERO_EXTEND) 1231 Flags.setZExt(); 1232 1233 for (unsigned i = 0; i < NumParts; ++i) { 1234 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1235 /*isfixed=*/true)); 1236 OutVals.push_back(Parts[i]); 1237 } 1238 } 1239 } 1240 } 1241 1242 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1243 CallingConv::ID CallConv = 1244 DAG.getMachineFunction().getFunction()->getCallingConv(); 1245 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1246 Outs, OutVals, getCurDebugLoc(), DAG); 1247 1248 // Verify that the target's LowerReturn behaved as expected. 1249 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1250 "LowerReturn didn't return a valid chain!"); 1251 1252 // Update the DAG with the new chain value resulting from return lowering. 1253 DAG.setRoot(Chain); 1254 } 1255 1256 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1257 /// created for it, emit nodes to copy the value into the virtual 1258 /// registers. 1259 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1260 // Skip empty types 1261 if (V->getType()->isEmptyTy()) 1262 return; 1263 1264 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1265 if (VMI != FuncInfo.ValueMap.end()) { 1266 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1267 CopyValueToVirtualRegister(V, VMI->second); 1268 } 1269 } 1270 1271 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1272 /// the current basic block, add it to ValueMap now so that we'll get a 1273 /// CopyTo/FromReg. 1274 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1275 // No need to export constants. 1276 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1277 1278 // Already exported? 1279 if (FuncInfo.isExportedInst(V)) return; 1280 1281 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1282 CopyValueToVirtualRegister(V, Reg); 1283 } 1284 1285 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1286 const BasicBlock *FromBB) { 1287 // The operands of the setcc have to be in this block. We don't know 1288 // how to export them from some other block. 1289 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1290 // Can export from current BB. 1291 if (VI->getParent() == FromBB) 1292 return true; 1293 1294 // Is already exported, noop. 1295 return FuncInfo.isExportedInst(V); 1296 } 1297 1298 // If this is an argument, we can export it if the BB is the entry block or 1299 // if it is already exported. 1300 if (isa<Argument>(V)) { 1301 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1302 return true; 1303 1304 // Otherwise, can only export this if it is already exported. 1305 return FuncInfo.isExportedInst(V); 1306 } 1307 1308 // Otherwise, constants can always be exported. 1309 return true; 1310 } 1311 1312 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1313 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1314 const MachineBasicBlock *Dst) const { 1315 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1316 if (!BPI) 1317 return 0; 1318 const BasicBlock *SrcBB = Src->getBasicBlock(); 1319 const BasicBlock *DstBB = Dst->getBasicBlock(); 1320 return BPI->getEdgeWeight(SrcBB, DstBB); 1321 } 1322 1323 void SelectionDAGBuilder:: 1324 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1325 uint32_t Weight /* = 0 */) { 1326 if (!Weight) 1327 Weight = getEdgeWeight(Src, Dst); 1328 Src->addSuccessor(Dst, Weight); 1329 } 1330 1331 1332 static bool InBlock(const Value *V, const BasicBlock *BB) { 1333 if (const Instruction *I = dyn_cast<Instruction>(V)) 1334 return I->getParent() == BB; 1335 return true; 1336 } 1337 1338 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1339 /// This function emits a branch and is used at the leaves of an OR or an 1340 /// AND operator tree. 1341 /// 1342 void 1343 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1344 MachineBasicBlock *TBB, 1345 MachineBasicBlock *FBB, 1346 MachineBasicBlock *CurBB, 1347 MachineBasicBlock *SwitchBB) { 1348 const BasicBlock *BB = CurBB->getBasicBlock(); 1349 1350 // If the leaf of the tree is a comparison, merge the condition into 1351 // the caseblock. 1352 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1353 // The operands of the cmp have to be in this block. We don't know 1354 // how to export them from some other block. If this is the first block 1355 // of the sequence, no exporting is needed. 1356 if (CurBB == SwitchBB || 1357 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1358 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1359 ISD::CondCode Condition; 1360 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1361 Condition = getICmpCondCode(IC->getPredicate()); 1362 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1363 Condition = getFCmpCondCode(FC->getPredicate()); 1364 if (TM.Options.NoNaNsFPMath) 1365 Condition = getFCmpCodeWithoutNaN(Condition); 1366 } else { 1367 Condition = ISD::SETEQ; // silence warning. 1368 llvm_unreachable("Unknown compare instruction"); 1369 } 1370 1371 CaseBlock CB(Condition, BOp->getOperand(0), 1372 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1373 SwitchCases.push_back(CB); 1374 return; 1375 } 1376 } 1377 1378 // Create a CaseBlock record representing this branch. 1379 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1380 NULL, TBB, FBB, CurBB); 1381 SwitchCases.push_back(CB); 1382 } 1383 1384 /// FindMergedConditions - If Cond is an expression like 1385 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1386 MachineBasicBlock *TBB, 1387 MachineBasicBlock *FBB, 1388 MachineBasicBlock *CurBB, 1389 MachineBasicBlock *SwitchBB, 1390 unsigned Opc) { 1391 // If this node is not part of the or/and tree, emit it as a branch. 1392 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1393 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1394 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1395 BOp->getParent() != CurBB->getBasicBlock() || 1396 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1397 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1398 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1399 return; 1400 } 1401 1402 // Create TmpBB after CurBB. 1403 MachineFunction::iterator BBI = CurBB; 1404 MachineFunction &MF = DAG.getMachineFunction(); 1405 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1406 CurBB->getParent()->insert(++BBI, TmpBB); 1407 1408 if (Opc == Instruction::Or) { 1409 // Codegen X | Y as: 1410 // jmp_if_X TBB 1411 // jmp TmpBB 1412 // TmpBB: 1413 // jmp_if_Y TBB 1414 // jmp FBB 1415 // 1416 1417 // Emit the LHS condition. 1418 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1419 1420 // Emit the RHS condition into TmpBB. 1421 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1422 } else { 1423 assert(Opc == Instruction::And && "Unknown merge op!"); 1424 // Codegen X & Y as: 1425 // jmp_if_X TmpBB 1426 // jmp FBB 1427 // TmpBB: 1428 // jmp_if_Y TBB 1429 // jmp FBB 1430 // 1431 // This requires creation of TmpBB after CurBB. 1432 1433 // Emit the LHS condition. 1434 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1435 1436 // Emit the RHS condition into TmpBB. 1437 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1438 } 1439 } 1440 1441 /// If the set of cases should be emitted as a series of branches, return true. 1442 /// If we should emit this as a bunch of and/or'd together conditions, return 1443 /// false. 1444 bool 1445 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1446 if (Cases.size() != 2) return true; 1447 1448 // If this is two comparisons of the same values or'd or and'd together, they 1449 // will get folded into a single comparison, so don't emit two blocks. 1450 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1451 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1452 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1453 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1454 return false; 1455 } 1456 1457 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1458 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1459 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1460 Cases[0].CC == Cases[1].CC && 1461 isa<Constant>(Cases[0].CmpRHS) && 1462 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1463 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1464 return false; 1465 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1466 return false; 1467 } 1468 1469 return true; 1470 } 1471 1472 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1473 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1474 1475 // Update machine-CFG edges. 1476 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1477 1478 // Figure out which block is immediately after the current one. 1479 MachineBasicBlock *NextBlock = 0; 1480 MachineFunction::iterator BBI = BrMBB; 1481 if (++BBI != FuncInfo.MF->end()) 1482 NextBlock = BBI; 1483 1484 if (I.isUnconditional()) { 1485 // Update machine-CFG edges. 1486 BrMBB->addSuccessor(Succ0MBB); 1487 1488 // If this is not a fall-through branch, emit the branch. 1489 if (Succ0MBB != NextBlock) 1490 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1491 MVT::Other, getControlRoot(), 1492 DAG.getBasicBlock(Succ0MBB))); 1493 1494 return; 1495 } 1496 1497 // If this condition is one of the special cases we handle, do special stuff 1498 // now. 1499 const Value *CondVal = I.getCondition(); 1500 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1501 1502 // If this is a series of conditions that are or'd or and'd together, emit 1503 // this as a sequence of branches instead of setcc's with and/or operations. 1504 // As long as jumps are not expensive, this should improve performance. 1505 // For example, instead of something like: 1506 // cmp A, B 1507 // C = seteq 1508 // cmp D, E 1509 // F = setle 1510 // or C, F 1511 // jnz foo 1512 // Emit: 1513 // cmp A, B 1514 // je foo 1515 // cmp D, E 1516 // jle foo 1517 // 1518 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1519 if (!TLI.isJumpExpensive() && 1520 BOp->hasOneUse() && 1521 (BOp->getOpcode() == Instruction::And || 1522 BOp->getOpcode() == Instruction::Or)) { 1523 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1524 BOp->getOpcode()); 1525 // If the compares in later blocks need to use values not currently 1526 // exported from this block, export them now. This block should always 1527 // be the first entry. 1528 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1529 1530 // Allow some cases to be rejected. 1531 if (ShouldEmitAsBranches(SwitchCases)) { 1532 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1533 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1534 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1535 } 1536 1537 // Emit the branch for this block. 1538 visitSwitchCase(SwitchCases[0], BrMBB); 1539 SwitchCases.erase(SwitchCases.begin()); 1540 return; 1541 } 1542 1543 // Okay, we decided not to do this, remove any inserted MBB's and clear 1544 // SwitchCases. 1545 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1546 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1547 1548 SwitchCases.clear(); 1549 } 1550 } 1551 1552 // Create a CaseBlock record representing this branch. 1553 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1554 NULL, Succ0MBB, Succ1MBB, BrMBB); 1555 1556 // Use visitSwitchCase to actually insert the fast branch sequence for this 1557 // cond branch. 1558 visitSwitchCase(CB, BrMBB); 1559 } 1560 1561 /// visitSwitchCase - Emits the necessary code to represent a single node in 1562 /// the binary search tree resulting from lowering a switch instruction. 1563 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1564 MachineBasicBlock *SwitchBB) { 1565 SDValue Cond; 1566 SDValue CondLHS = getValue(CB.CmpLHS); 1567 DebugLoc dl = getCurDebugLoc(); 1568 1569 // Build the setcc now. 1570 if (CB.CmpMHS == NULL) { 1571 // Fold "(X == true)" to X and "(X == false)" to !X to 1572 // handle common cases produced by branch lowering. 1573 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1574 CB.CC == ISD::SETEQ) 1575 Cond = CondLHS; 1576 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1577 CB.CC == ISD::SETEQ) { 1578 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1579 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1580 } else 1581 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1582 } else { 1583 assert(CB.CC == ISD::SETCC_INVALID && 1584 "Condition is undefined for to-the-range belonging check."); 1585 1586 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1587 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1588 1589 SDValue CmpOp = getValue(CB.CmpMHS); 1590 EVT VT = CmpOp.getValueType(); 1591 1592 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) { 1593 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1594 ISD::SETULE); 1595 } else { 1596 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1597 VT, CmpOp, DAG.getConstant(Low, VT)); 1598 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1599 DAG.getConstant(High-Low, VT), ISD::SETULE); 1600 } 1601 } 1602 1603 // Update successor info 1604 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1605 // TrueBB and FalseBB are always different unless the incoming IR is 1606 // degenerate. This only happens when running llc on weird IR. 1607 if (CB.TrueBB != CB.FalseBB) 1608 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1609 1610 // Set NextBlock to be the MBB immediately after the current one, if any. 1611 // This is used to avoid emitting unnecessary branches to the next block. 1612 MachineBasicBlock *NextBlock = 0; 1613 MachineFunction::iterator BBI = SwitchBB; 1614 if (++BBI != FuncInfo.MF->end()) 1615 NextBlock = BBI; 1616 1617 // If the lhs block is the next block, invert the condition so that we can 1618 // fall through to the lhs instead of the rhs block. 1619 if (CB.TrueBB == NextBlock) { 1620 std::swap(CB.TrueBB, CB.FalseBB); 1621 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1622 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1623 } 1624 1625 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1626 MVT::Other, getControlRoot(), Cond, 1627 DAG.getBasicBlock(CB.TrueBB)); 1628 1629 // Insert the false branch. Do this even if it's a fall through branch, 1630 // this makes it easier to do DAG optimizations which require inverting 1631 // the branch condition. 1632 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1633 DAG.getBasicBlock(CB.FalseBB)); 1634 1635 DAG.setRoot(BrCond); 1636 } 1637 1638 /// visitJumpTable - Emit JumpTable node in the current MBB 1639 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1640 // Emit the code for the jump table 1641 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1642 EVT PTy = TLI.getPointerTy(); 1643 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1644 JT.Reg, PTy); 1645 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1646 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1647 MVT::Other, Index.getValue(1), 1648 Table, Index); 1649 DAG.setRoot(BrJumpTable); 1650 } 1651 1652 /// visitJumpTableHeader - This function emits necessary code to produce index 1653 /// in the JumpTable from switch case. 1654 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1655 JumpTableHeader &JTH, 1656 MachineBasicBlock *SwitchBB) { 1657 // Subtract the lowest switch case value from the value being switched on and 1658 // conditional branch to default mbb if the result is greater than the 1659 // difference between smallest and largest cases. 1660 SDValue SwitchOp = getValue(JTH.SValue); 1661 EVT VT = SwitchOp.getValueType(); 1662 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1663 DAG.getConstant(JTH.First, VT)); 1664 1665 // The SDNode we just created, which holds the value being switched on minus 1666 // the smallest case value, needs to be copied to a virtual register so it 1667 // can be used as an index into the jump table in a subsequent basic block. 1668 // This value may be smaller or larger than the target's pointer type, and 1669 // therefore require extension or truncating. 1670 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1671 1672 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1673 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1674 JumpTableReg, SwitchOp); 1675 JT.Reg = JumpTableReg; 1676 1677 // Emit the range check for the jump table, and branch to the default block 1678 // for the switch statement if the value being switched on exceeds the largest 1679 // case in the switch. 1680 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1681 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1682 DAG.getConstant(JTH.Last-JTH.First,VT), 1683 ISD::SETUGT); 1684 1685 // Set NextBlock to be the MBB immediately after the current one, if any. 1686 // This is used to avoid emitting unnecessary branches to the next block. 1687 MachineBasicBlock *NextBlock = 0; 1688 MachineFunction::iterator BBI = SwitchBB; 1689 1690 if (++BBI != FuncInfo.MF->end()) 1691 NextBlock = BBI; 1692 1693 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1694 MVT::Other, CopyTo, CMP, 1695 DAG.getBasicBlock(JT.Default)); 1696 1697 if (JT.MBB != NextBlock) 1698 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1699 DAG.getBasicBlock(JT.MBB)); 1700 1701 DAG.setRoot(BrCond); 1702 } 1703 1704 /// visitBitTestHeader - This function emits necessary code to produce value 1705 /// suitable for "bit tests" 1706 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1707 MachineBasicBlock *SwitchBB) { 1708 // Subtract the minimum value 1709 SDValue SwitchOp = getValue(B.SValue); 1710 EVT VT = SwitchOp.getValueType(); 1711 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1712 DAG.getConstant(B.First, VT)); 1713 1714 // Check range 1715 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1716 TLI.getSetCCResultType(Sub.getValueType()), 1717 Sub, DAG.getConstant(B.Range, VT), 1718 ISD::SETUGT); 1719 1720 // Determine the type of the test operands. 1721 bool UsePtrType = false; 1722 if (!TLI.isTypeLegal(VT)) 1723 UsePtrType = true; 1724 else { 1725 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1726 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1727 // Switch table case range are encoded into series of masks. 1728 // Just use pointer type, it's guaranteed to fit. 1729 UsePtrType = true; 1730 break; 1731 } 1732 } 1733 if (UsePtrType) { 1734 VT = TLI.getPointerTy(); 1735 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1736 } 1737 1738 B.RegVT = VT; 1739 B.Reg = FuncInfo.CreateReg(VT); 1740 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1741 B.Reg, Sub); 1742 1743 // Set NextBlock to be the MBB immediately after the current one, if any. 1744 // This is used to avoid emitting unnecessary branches to the next block. 1745 MachineBasicBlock *NextBlock = 0; 1746 MachineFunction::iterator BBI = SwitchBB; 1747 if (++BBI != FuncInfo.MF->end()) 1748 NextBlock = BBI; 1749 1750 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1751 1752 addSuccessorWithWeight(SwitchBB, B.Default); 1753 addSuccessorWithWeight(SwitchBB, MBB); 1754 1755 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1756 MVT::Other, CopyTo, RangeCmp, 1757 DAG.getBasicBlock(B.Default)); 1758 1759 if (MBB != NextBlock) 1760 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1761 DAG.getBasicBlock(MBB)); 1762 1763 DAG.setRoot(BrRange); 1764 } 1765 1766 /// visitBitTestCase - this function produces one "bit test" 1767 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1768 MachineBasicBlock* NextMBB, 1769 unsigned Reg, 1770 BitTestCase &B, 1771 MachineBasicBlock *SwitchBB) { 1772 EVT VT = BB.RegVT; 1773 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1774 Reg, VT); 1775 SDValue Cmp; 1776 unsigned PopCount = CountPopulation_64(B.Mask); 1777 if (PopCount == 1) { 1778 // Testing for a single bit; just compare the shift count with what it 1779 // would need to be to shift a 1 bit in that position. 1780 Cmp = DAG.getSetCC(getCurDebugLoc(), 1781 TLI.getSetCCResultType(VT), 1782 ShiftOp, 1783 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1784 ISD::SETEQ); 1785 } else if (PopCount == BB.Range) { 1786 // There is only one zero bit in the range, test for it directly. 1787 Cmp = DAG.getSetCC(getCurDebugLoc(), 1788 TLI.getSetCCResultType(VT), 1789 ShiftOp, 1790 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1791 ISD::SETNE); 1792 } else { 1793 // Make desired shift 1794 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1795 DAG.getConstant(1, VT), ShiftOp); 1796 1797 // Emit bit tests and jumps 1798 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1799 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1800 Cmp = DAG.getSetCC(getCurDebugLoc(), 1801 TLI.getSetCCResultType(VT), 1802 AndOp, DAG.getConstant(0, VT), 1803 ISD::SETNE); 1804 } 1805 1806 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1807 addSuccessorWithWeight(SwitchBB, NextMBB); 1808 1809 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1810 MVT::Other, getControlRoot(), 1811 Cmp, DAG.getBasicBlock(B.TargetBB)); 1812 1813 // Set NextBlock to be the MBB immediately after the current one, if any. 1814 // This is used to avoid emitting unnecessary branches to the next block. 1815 MachineBasicBlock *NextBlock = 0; 1816 MachineFunction::iterator BBI = SwitchBB; 1817 if (++BBI != FuncInfo.MF->end()) 1818 NextBlock = BBI; 1819 1820 if (NextMBB != NextBlock) 1821 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1822 DAG.getBasicBlock(NextMBB)); 1823 1824 DAG.setRoot(BrAnd); 1825 } 1826 1827 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1828 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1829 1830 // Retrieve successors. 1831 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1832 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1833 1834 const Value *Callee(I.getCalledValue()); 1835 const Function *Fn = dyn_cast<Function>(Callee); 1836 if (isa<InlineAsm>(Callee)) 1837 visitInlineAsm(&I); 1838 else if (Fn && Fn->isIntrinsic()) { 1839 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 1840 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1841 } else 1842 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1843 1844 // If the value of the invoke is used outside of its defining block, make it 1845 // available as a virtual register. 1846 CopyToExportRegsIfNeeded(&I); 1847 1848 // Update successor info 1849 addSuccessorWithWeight(InvokeMBB, Return); 1850 addSuccessorWithWeight(InvokeMBB, LandingPad); 1851 1852 // Drop into normal successor. 1853 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1854 MVT::Other, getControlRoot(), 1855 DAG.getBasicBlock(Return))); 1856 } 1857 1858 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1859 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1860 } 1861 1862 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1863 assert(FuncInfo.MBB->isLandingPad() && 1864 "Call to landingpad not in landing pad!"); 1865 1866 MachineBasicBlock *MBB = FuncInfo.MBB; 1867 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1868 AddLandingPadInfo(LP, MMI, MBB); 1869 1870 // If there aren't registers to copy the values into (e.g., during SjLj 1871 // exceptions), then don't bother to create these DAG nodes. 1872 if (TLI.getExceptionPointerRegister() == 0 && 1873 TLI.getExceptionSelectorRegister() == 0) 1874 return; 1875 1876 SmallVector<EVT, 2> ValueVTs; 1877 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1878 1879 // Insert the EXCEPTIONADDR instruction. 1880 assert(FuncInfo.MBB->isLandingPad() && 1881 "Call to eh.exception not in landing pad!"); 1882 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1883 SDValue Ops[2]; 1884 Ops[0] = DAG.getRoot(); 1885 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1886 SDValue Chain = Op1.getValue(1); 1887 1888 // Insert the EHSELECTION instruction. 1889 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1890 Ops[0] = Op1; 1891 Ops[1] = Chain; 1892 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1893 Chain = Op2.getValue(1); 1894 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1895 1896 Ops[0] = Op1; 1897 Ops[1] = Op2; 1898 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1899 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1900 &Ops[0], 2); 1901 1902 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1903 setValue(&LP, RetPair.first); 1904 DAG.setRoot(RetPair.second); 1905 } 1906 1907 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1908 /// small case ranges). 1909 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1910 CaseRecVector& WorkList, 1911 const Value* SV, 1912 MachineBasicBlock *Default, 1913 MachineBasicBlock *SwitchBB) { 1914 // Size is the number of Cases represented by this range. 1915 size_t Size = CR.Range.second - CR.Range.first; 1916 if (Size > 3) 1917 return false; 1918 1919 // Get the MachineFunction which holds the current MBB. This is used when 1920 // inserting any additional MBBs necessary to represent the switch. 1921 MachineFunction *CurMF = FuncInfo.MF; 1922 1923 // Figure out which block is immediately after the current one. 1924 MachineBasicBlock *NextBlock = 0; 1925 MachineFunction::iterator BBI = CR.CaseBB; 1926 1927 if (++BBI != FuncInfo.MF->end()) 1928 NextBlock = BBI; 1929 1930 // If any two of the cases has the same destination, and if one value 1931 // is the same as the other, but has one bit unset that the other has set, 1932 // use bit manipulation to do two compares at once. For example: 1933 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1934 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1935 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1936 if (Size == 2 && CR.CaseBB == SwitchBB) { 1937 Case &Small = *CR.Range.first; 1938 Case &Big = *(CR.Range.second-1); 1939 1940 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1941 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1942 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1943 1944 // Check that there is only one bit different. 1945 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1946 (SmallValue | BigValue) == BigValue) { 1947 // Isolate the common bit. 1948 APInt CommonBit = BigValue & ~SmallValue; 1949 assert((SmallValue | CommonBit) == BigValue && 1950 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1951 1952 SDValue CondLHS = getValue(SV); 1953 EVT VT = CondLHS.getValueType(); 1954 DebugLoc DL = getCurDebugLoc(); 1955 1956 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1957 DAG.getConstant(CommonBit, VT)); 1958 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1959 Or, DAG.getConstant(BigValue, VT), 1960 ISD::SETEQ); 1961 1962 // Update successor info. 1963 addSuccessorWithWeight(SwitchBB, Small.BB); 1964 addSuccessorWithWeight(SwitchBB, Default); 1965 1966 // Insert the true branch. 1967 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1968 getControlRoot(), Cond, 1969 DAG.getBasicBlock(Small.BB)); 1970 1971 // Insert the false branch. 1972 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1973 DAG.getBasicBlock(Default)); 1974 1975 DAG.setRoot(BrCond); 1976 return true; 1977 } 1978 } 1979 } 1980 1981 // Order cases by weight so the most likely case will be checked first. 1982 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1983 if (BPI) { 1984 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 1985 uint32_t IWeight = BPI->getEdgeWeight(SwitchBB->getBasicBlock(), 1986 I->BB->getBasicBlock()); 1987 for (CaseItr J = CR.Range.first; J < I; ++J) { 1988 uint32_t JWeight = BPI->getEdgeWeight(SwitchBB->getBasicBlock(), 1989 J->BB->getBasicBlock()); 1990 if (IWeight > JWeight) 1991 std::swap(*I, *J); 1992 } 1993 } 1994 } 1995 // Rearrange the case blocks so that the last one falls through if possible. 1996 Case &BackCase = *(CR.Range.second-1); 1997 if (Size > 1 && 1998 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1999 // The last case block won't fall through into 'NextBlock' if we emit the 2000 // branches in this order. See if rearranging a case value would help. 2001 // We start at the bottom as it's the case with the least weight. 2002 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){ 2003 if (I->BB == NextBlock) { 2004 std::swap(*I, BackCase); 2005 break; 2006 } 2007 } 2008 } 2009 2010 // Create a CaseBlock record representing a conditional branch to 2011 // the Case's target mbb if the value being switched on SV is equal 2012 // to C. 2013 MachineBasicBlock *CurBlock = CR.CaseBB; 2014 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2015 MachineBasicBlock *FallThrough; 2016 if (I != E-1) { 2017 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2018 CurMF->insert(BBI, FallThrough); 2019 2020 // Put SV in a virtual register to make it available from the new blocks. 2021 ExportFromCurrentBlock(SV); 2022 } else { 2023 // If the last case doesn't match, go to the default block. 2024 FallThrough = Default; 2025 } 2026 2027 const Value *RHS, *LHS, *MHS; 2028 ISD::CondCode CC; 2029 if (I->High == I->Low) { 2030 // This is just small small case range :) containing exactly 1 case 2031 CC = ISD::SETEQ; 2032 LHS = SV; RHS = I->High; MHS = NULL; 2033 } else { 2034 CC = ISD::SETCC_INVALID; 2035 LHS = I->Low; MHS = SV; RHS = I->High; 2036 } 2037 2038 uint32_t ExtraWeight = I->ExtraWeight; 2039 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2040 /* me */ CurBlock, 2041 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2); 2042 2043 // If emitting the first comparison, just call visitSwitchCase to emit the 2044 // code into the current block. Otherwise, push the CaseBlock onto the 2045 // vector to be later processed by SDISel, and insert the node's MBB 2046 // before the next MBB. 2047 if (CurBlock == SwitchBB) 2048 visitSwitchCase(CB, SwitchBB); 2049 else 2050 SwitchCases.push_back(CB); 2051 2052 CurBlock = FallThrough; 2053 } 2054 2055 return true; 2056 } 2057 2058 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2059 return TLI.supportJumpTables() && 2060 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2061 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2062 } 2063 2064 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2065 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2066 APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth); 2067 return (LastExt - FirstExt + 1ULL); 2068 } 2069 2070 /// handleJTSwitchCase - Emit jumptable for current switch case range 2071 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2072 CaseRecVector &WorkList, 2073 const Value *SV, 2074 MachineBasicBlock *Default, 2075 MachineBasicBlock *SwitchBB) { 2076 Case& FrontCase = *CR.Range.first; 2077 Case& BackCase = *(CR.Range.second-1); 2078 2079 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2080 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2081 2082 APInt TSize(First.getBitWidth(), 0); 2083 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2084 TSize += I->size(); 2085 2086 if (!areJTsAllowed(TLI) || TSize.ult(4)) 2087 return false; 2088 2089 APInt Range = ComputeRange(First, Last); 2090 // The density is TSize / Range. Require at least 40%. 2091 // It should not be possible for IntTSize to saturate for sane code, but make 2092 // sure we handle Range saturation correctly. 2093 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2094 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2095 if (IntTSize * 10 < IntRange * 4) 2096 return false; 2097 2098 DEBUG(dbgs() << "Lowering jump table\n" 2099 << "First entry: " << First << ". Last entry: " << Last << '\n' 2100 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2101 2102 // Get the MachineFunction which holds the current MBB. This is used when 2103 // inserting any additional MBBs necessary to represent the switch. 2104 MachineFunction *CurMF = FuncInfo.MF; 2105 2106 // Figure out which block is immediately after the current one. 2107 MachineFunction::iterator BBI = CR.CaseBB; 2108 ++BBI; 2109 2110 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2111 2112 // Create a new basic block to hold the code for loading the address 2113 // of the jump table, and jumping to it. Update successor information; 2114 // we will either branch to the default case for the switch, or the jump 2115 // table. 2116 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2117 CurMF->insert(BBI, JumpTableBB); 2118 2119 addSuccessorWithWeight(CR.CaseBB, Default); 2120 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2121 2122 // Build a vector of destination BBs, corresponding to each target 2123 // of the jump table. If the value of the jump table slot corresponds to 2124 // a case statement, push the case's BB onto the vector, otherwise, push 2125 // the default BB. 2126 std::vector<MachineBasicBlock*> DestBBs; 2127 APInt TEI = First; 2128 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2129 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2130 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2131 2132 if (Low.ule(TEI) && TEI.ule(High)) { 2133 DestBBs.push_back(I->BB); 2134 if (TEI==High) 2135 ++I; 2136 } else { 2137 DestBBs.push_back(Default); 2138 } 2139 } 2140 2141 // Update successor info. Add one edge to each unique successor. 2142 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2143 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2144 E = DestBBs.end(); I != E; ++I) { 2145 if (!SuccsHandled[(*I)->getNumber()]) { 2146 SuccsHandled[(*I)->getNumber()] = true; 2147 addSuccessorWithWeight(JumpTableBB, *I); 2148 } 2149 } 2150 2151 // Create a jump table index for this jump table. 2152 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2153 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2154 ->createJumpTableIndex(DestBBs); 2155 2156 // Set the jump table information so that we can codegen it as a second 2157 // MachineBasicBlock 2158 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2159 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2160 if (CR.CaseBB == SwitchBB) 2161 visitJumpTableHeader(JT, JTH, SwitchBB); 2162 2163 JTCases.push_back(JumpTableBlock(JTH, JT)); 2164 return true; 2165 } 2166 2167 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2168 /// 2 subtrees. 2169 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2170 CaseRecVector& WorkList, 2171 const Value* SV, 2172 MachineBasicBlock *Default, 2173 MachineBasicBlock *SwitchBB) { 2174 // Get the MachineFunction which holds the current MBB. This is used when 2175 // inserting any additional MBBs necessary to represent the switch. 2176 MachineFunction *CurMF = FuncInfo.MF; 2177 2178 // Figure out which block is immediately after the current one. 2179 MachineFunction::iterator BBI = CR.CaseBB; 2180 ++BBI; 2181 2182 Case& FrontCase = *CR.Range.first; 2183 Case& BackCase = *(CR.Range.second-1); 2184 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2185 2186 // Size is the number of Cases represented by this range. 2187 unsigned Size = CR.Range.second - CR.Range.first; 2188 2189 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2190 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2191 double FMetric = 0; 2192 CaseItr Pivot = CR.Range.first + Size/2; 2193 2194 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2195 // (heuristically) allow us to emit JumpTable's later. 2196 APInt TSize(First.getBitWidth(), 0); 2197 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2198 I!=E; ++I) 2199 TSize += I->size(); 2200 2201 APInt LSize = FrontCase.size(); 2202 APInt RSize = TSize-LSize; 2203 DEBUG(dbgs() << "Selecting best pivot: \n" 2204 << "First: " << First << ", Last: " << Last <<'\n' 2205 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2206 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2207 J!=E; ++I, ++J) { 2208 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2209 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2210 APInt Range = ComputeRange(LEnd, RBegin); 2211 assert((Range - 2ULL).isNonNegative() && 2212 "Invalid case distance"); 2213 // Use volatile double here to avoid excess precision issues on some hosts, 2214 // e.g. that use 80-bit X87 registers. 2215 volatile double LDensity = 2216 (double)LSize.roundToDouble() / 2217 (LEnd - First + 1ULL).roundToDouble(); 2218 volatile double RDensity = 2219 (double)RSize.roundToDouble() / 2220 (Last - RBegin + 1ULL).roundToDouble(); 2221 double Metric = Range.logBase2()*(LDensity+RDensity); 2222 // Should always split in some non-trivial place 2223 DEBUG(dbgs() <<"=>Step\n" 2224 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2225 << "LDensity: " << LDensity 2226 << ", RDensity: " << RDensity << '\n' 2227 << "Metric: " << Metric << '\n'); 2228 if (FMetric < Metric) { 2229 Pivot = J; 2230 FMetric = Metric; 2231 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2232 } 2233 2234 LSize += J->size(); 2235 RSize -= J->size(); 2236 } 2237 if (areJTsAllowed(TLI)) { 2238 // If our case is dense we *really* should handle it earlier! 2239 assert((FMetric > 0) && "Should handle dense range earlier!"); 2240 } else { 2241 Pivot = CR.Range.first + Size/2; 2242 } 2243 2244 CaseRange LHSR(CR.Range.first, Pivot); 2245 CaseRange RHSR(Pivot, CR.Range.second); 2246 const Constant *C = Pivot->Low; 2247 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2248 2249 // We know that we branch to the LHS if the Value being switched on is 2250 // less than the Pivot value, C. We use this to optimize our binary 2251 // tree a bit, by recognizing that if SV is greater than or equal to the 2252 // LHS's Case Value, and that Case Value is exactly one less than the 2253 // Pivot's Value, then we can branch directly to the LHS's Target, 2254 // rather than creating a leaf node for it. 2255 if ((LHSR.second - LHSR.first) == 1 && 2256 LHSR.first->High == CR.GE && 2257 cast<ConstantInt>(C)->getValue() == 2258 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2259 TrueBB = LHSR.first->BB; 2260 } else { 2261 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2262 CurMF->insert(BBI, TrueBB); 2263 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2264 2265 // Put SV in a virtual register to make it available from the new blocks. 2266 ExportFromCurrentBlock(SV); 2267 } 2268 2269 // Similar to the optimization above, if the Value being switched on is 2270 // known to be less than the Constant CR.LT, and the current Case Value 2271 // is CR.LT - 1, then we can branch directly to the target block for 2272 // the current Case Value, rather than emitting a RHS leaf node for it. 2273 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2274 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2275 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2276 FalseBB = RHSR.first->BB; 2277 } else { 2278 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2279 CurMF->insert(BBI, FalseBB); 2280 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2281 2282 // Put SV in a virtual register to make it available from the new blocks. 2283 ExportFromCurrentBlock(SV); 2284 } 2285 2286 // Create a CaseBlock record representing a conditional branch to 2287 // the LHS node if the value being switched on SV is less than C. 2288 // Otherwise, branch to LHS. 2289 CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2290 2291 if (CR.CaseBB == SwitchBB) 2292 visitSwitchCase(CB, SwitchBB); 2293 else 2294 SwitchCases.push_back(CB); 2295 2296 return true; 2297 } 2298 2299 /// handleBitTestsSwitchCase - if current case range has few destination and 2300 /// range span less, than machine word bitwidth, encode case range into series 2301 /// of masks and emit bit tests with these masks. 2302 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2303 CaseRecVector& WorkList, 2304 const Value* SV, 2305 MachineBasicBlock* Default, 2306 MachineBasicBlock *SwitchBB){ 2307 EVT PTy = TLI.getPointerTy(); 2308 unsigned IntPtrBits = PTy.getSizeInBits(); 2309 2310 Case& FrontCase = *CR.Range.first; 2311 Case& BackCase = *(CR.Range.second-1); 2312 2313 // Get the MachineFunction which holds the current MBB. This is used when 2314 // inserting any additional MBBs necessary to represent the switch. 2315 MachineFunction *CurMF = FuncInfo.MF; 2316 2317 // If target does not have legal shift left, do not emit bit tests at all. 2318 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2319 return false; 2320 2321 size_t numCmps = 0; 2322 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2323 I!=E; ++I) { 2324 // Single case counts one, case range - two. 2325 numCmps += (I->Low == I->High ? 1 : 2); 2326 } 2327 2328 // Count unique destinations 2329 SmallSet<MachineBasicBlock*, 4> Dests; 2330 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2331 Dests.insert(I->BB); 2332 if (Dests.size() > 3) 2333 // Don't bother the code below, if there are too much unique destinations 2334 return false; 2335 } 2336 DEBUG(dbgs() << "Total number of unique destinations: " 2337 << Dests.size() << '\n' 2338 << "Total number of comparisons: " << numCmps << '\n'); 2339 2340 // Compute span of values. 2341 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2342 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2343 APInt cmpRange = maxValue - minValue; 2344 2345 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2346 << "Low bound: " << minValue << '\n' 2347 << "High bound: " << maxValue << '\n'); 2348 2349 if (cmpRange.uge(IntPtrBits) || 2350 (!(Dests.size() == 1 && numCmps >= 3) && 2351 !(Dests.size() == 2 && numCmps >= 5) && 2352 !(Dests.size() >= 3 && numCmps >= 6))) 2353 return false; 2354 2355 DEBUG(dbgs() << "Emitting bit tests\n"); 2356 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2357 2358 // Optimize the case where all the case values fit in a 2359 // word without having to subtract minValue. In this case, 2360 // we can optimize away the subtraction. 2361 if (maxValue.ult(IntPtrBits)) { 2362 cmpRange = maxValue; 2363 } else { 2364 lowBound = minValue; 2365 } 2366 2367 CaseBitsVector CasesBits; 2368 unsigned i, count = 0; 2369 2370 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2371 MachineBasicBlock* Dest = I->BB; 2372 for (i = 0; i < count; ++i) 2373 if (Dest == CasesBits[i].BB) 2374 break; 2375 2376 if (i == count) { 2377 assert((count < 3) && "Too much destinations to test!"); 2378 CasesBits.push_back(CaseBits(0, Dest, 0)); 2379 count++; 2380 } 2381 2382 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2383 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2384 2385 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2386 uint64_t hi = (highValue - lowBound).getZExtValue(); 2387 2388 for (uint64_t j = lo; j <= hi; j++) { 2389 CasesBits[i].Mask |= 1ULL << j; 2390 CasesBits[i].Bits++; 2391 } 2392 2393 } 2394 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2395 2396 BitTestInfo BTC; 2397 2398 // Figure out which block is immediately after the current one. 2399 MachineFunction::iterator BBI = CR.CaseBB; 2400 ++BBI; 2401 2402 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2403 2404 DEBUG(dbgs() << "Cases:\n"); 2405 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2406 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2407 << ", Bits: " << CasesBits[i].Bits 2408 << ", BB: " << CasesBits[i].BB << '\n'); 2409 2410 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2411 CurMF->insert(BBI, CaseBB); 2412 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2413 CaseBB, 2414 CasesBits[i].BB)); 2415 2416 // Put SV in a virtual register to make it available from the new blocks. 2417 ExportFromCurrentBlock(SV); 2418 } 2419 2420 BitTestBlock BTB(lowBound, cmpRange, SV, 2421 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2422 CR.CaseBB, Default, BTC); 2423 2424 if (CR.CaseBB == SwitchBB) 2425 visitBitTestHeader(BTB, SwitchBB); 2426 2427 BitTestCases.push_back(BTB); 2428 2429 return true; 2430 } 2431 2432 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2433 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2434 const SwitchInst& SI) { 2435 2436 /// Use a shorter form of declaration, and also 2437 /// show the we want to use CRSBuilder as Clusterifier. 2438 typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier; 2439 2440 Clusterifier TheClusterifier; 2441 2442 // Start with "simple" cases 2443 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2444 i != e; ++i) { 2445 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2446 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2447 2448 TheClusterifier.add(i.getCaseValueEx(), SMBB); 2449 } 2450 2451 TheClusterifier.optimize(); 2452 2453 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2454 size_t numCmps = 0; 2455 for (Clusterifier::RangeIterator i = TheClusterifier.begin(), 2456 e = TheClusterifier.end(); i != e; ++i, ++numCmps) { 2457 Clusterifier::Cluster &C = *i; 2458 unsigned W = 0; 2459 if (BPI) { 2460 W = BPI->getEdgeWeight(SI.getParent(), C.second->getBasicBlock()); 2461 if (!W) 2462 W = 16; 2463 W *= C.first.Weight; 2464 BPI->setEdgeWeight(SI.getParent(), C.second->getBasicBlock(), W); 2465 } 2466 2467 // FIXME: Currently work with ConstantInt based numbers. 2468 // Changing it to APInt based is a pretty heavy for this commit. 2469 Cases.push_back(Case(C.first.getLow().toConstantInt(), 2470 C.first.getHigh().toConstantInt(), C.second, W)); 2471 2472 if (C.first.getLow() != C.first.getHigh()) 2473 // A range counts double, since it requires two compares. 2474 ++numCmps; 2475 } 2476 2477 return numCmps; 2478 } 2479 2480 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2481 MachineBasicBlock *Last) { 2482 // Update JTCases. 2483 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2484 if (JTCases[i].first.HeaderBB == First) 2485 JTCases[i].first.HeaderBB = Last; 2486 2487 // Update BitTestCases. 2488 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2489 if (BitTestCases[i].Parent == First) 2490 BitTestCases[i].Parent = Last; 2491 } 2492 2493 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2494 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2495 2496 // Figure out which block is immediately after the current one. 2497 MachineBasicBlock *NextBlock = 0; 2498 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2499 2500 // If there is only the default destination, branch to it if it is not the 2501 // next basic block. Otherwise, just fall through. 2502 if (!SI.getNumCases()) { 2503 // Update machine-CFG edges. 2504 2505 // If this is not a fall-through branch, emit the branch. 2506 SwitchMBB->addSuccessor(Default); 2507 if (Default != NextBlock) 2508 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2509 MVT::Other, getControlRoot(), 2510 DAG.getBasicBlock(Default))); 2511 2512 return; 2513 } 2514 2515 // If there are any non-default case statements, create a vector of Cases 2516 // representing each one, and sort the vector so that we can efficiently 2517 // create a binary search tree from them. 2518 CaseVector Cases; 2519 size_t numCmps = Clusterify(Cases, SI); 2520 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2521 << ". Total compares: " << numCmps << '\n'); 2522 (void)numCmps; 2523 2524 // Get the Value to be switched on and default basic blocks, which will be 2525 // inserted into CaseBlock records, representing basic blocks in the binary 2526 // search tree. 2527 const Value *SV = SI.getCondition(); 2528 2529 // Push the initial CaseRec onto the worklist 2530 CaseRecVector WorkList; 2531 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2532 CaseRange(Cases.begin(),Cases.end()))); 2533 2534 while (!WorkList.empty()) { 2535 // Grab a record representing a case range to process off the worklist 2536 CaseRec CR = WorkList.back(); 2537 WorkList.pop_back(); 2538 2539 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2540 continue; 2541 2542 // If the range has few cases (two or less) emit a series of specific 2543 // tests. 2544 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2545 continue; 2546 2547 // If the switch has more than 5 blocks, and at least 40% dense, and the 2548 // target supports indirect branches, then emit a jump table rather than 2549 // lowering the switch to a binary tree of conditional branches. 2550 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2551 continue; 2552 2553 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2554 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2555 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2556 } 2557 } 2558 2559 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2560 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2561 2562 // Update machine-CFG edges with unique successors. 2563 SmallVector<BasicBlock*, 32> succs; 2564 succs.reserve(I.getNumSuccessors()); 2565 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2566 succs.push_back(I.getSuccessor(i)); 2567 array_pod_sort(succs.begin(), succs.end()); 2568 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2569 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2570 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2571 addSuccessorWithWeight(IndirectBrMBB, Succ); 2572 } 2573 2574 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2575 MVT::Other, getControlRoot(), 2576 getValue(I.getAddress()))); 2577 } 2578 2579 void SelectionDAGBuilder::visitFSub(const User &I) { 2580 // -0.0 - X --> fneg 2581 Type *Ty = I.getType(); 2582 if (isa<Constant>(I.getOperand(0)) && 2583 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2584 SDValue Op2 = getValue(I.getOperand(1)); 2585 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2586 Op2.getValueType(), Op2)); 2587 return; 2588 } 2589 2590 visitBinary(I, ISD::FSUB); 2591 } 2592 2593 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2594 SDValue Op1 = getValue(I.getOperand(0)); 2595 SDValue Op2 = getValue(I.getOperand(1)); 2596 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2597 Op1.getValueType(), Op1, Op2)); 2598 } 2599 2600 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2601 SDValue Op1 = getValue(I.getOperand(0)); 2602 SDValue Op2 = getValue(I.getOperand(1)); 2603 2604 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2605 2606 // Coerce the shift amount to the right type if we can. 2607 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2608 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2609 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2610 DebugLoc DL = getCurDebugLoc(); 2611 2612 // If the operand is smaller than the shift count type, promote it. 2613 if (ShiftSize > Op2Size) 2614 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2615 2616 // If the operand is larger than the shift count type but the shift 2617 // count type has enough bits to represent any shift value, truncate 2618 // it now. This is a common case and it exposes the truncate to 2619 // optimization early. 2620 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2621 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2622 // Otherwise we'll need to temporarily settle for some other convenient 2623 // type. Type legalization will make adjustments once the shiftee is split. 2624 else 2625 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2626 } 2627 2628 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2629 Op1.getValueType(), Op1, Op2)); 2630 } 2631 2632 void SelectionDAGBuilder::visitSDiv(const User &I) { 2633 SDValue Op1 = getValue(I.getOperand(0)); 2634 SDValue Op2 = getValue(I.getOperand(1)); 2635 2636 // Turn exact SDivs into multiplications. 2637 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2638 // exact bit. 2639 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2640 !isa<ConstantSDNode>(Op1) && 2641 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2642 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2643 else 2644 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2645 Op1, Op2)); 2646 } 2647 2648 void SelectionDAGBuilder::visitICmp(const User &I) { 2649 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2650 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2651 predicate = IC->getPredicate(); 2652 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2653 predicate = ICmpInst::Predicate(IC->getPredicate()); 2654 SDValue Op1 = getValue(I.getOperand(0)); 2655 SDValue Op2 = getValue(I.getOperand(1)); 2656 ISD::CondCode Opcode = getICmpCondCode(predicate); 2657 2658 EVT DestVT = TLI.getValueType(I.getType()); 2659 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2660 } 2661 2662 void SelectionDAGBuilder::visitFCmp(const User &I) { 2663 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2664 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2665 predicate = FC->getPredicate(); 2666 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2667 predicate = FCmpInst::Predicate(FC->getPredicate()); 2668 SDValue Op1 = getValue(I.getOperand(0)); 2669 SDValue Op2 = getValue(I.getOperand(1)); 2670 ISD::CondCode Condition = getFCmpCondCode(predicate); 2671 if (TM.Options.NoNaNsFPMath) 2672 Condition = getFCmpCodeWithoutNaN(Condition); 2673 EVT DestVT = TLI.getValueType(I.getType()); 2674 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2675 } 2676 2677 void SelectionDAGBuilder::visitSelect(const User &I) { 2678 SmallVector<EVT, 4> ValueVTs; 2679 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2680 unsigned NumValues = ValueVTs.size(); 2681 if (NumValues == 0) return; 2682 2683 SmallVector<SDValue, 4> Values(NumValues); 2684 SDValue Cond = getValue(I.getOperand(0)); 2685 SDValue TrueVal = getValue(I.getOperand(1)); 2686 SDValue FalseVal = getValue(I.getOperand(2)); 2687 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2688 ISD::VSELECT : ISD::SELECT; 2689 2690 for (unsigned i = 0; i != NumValues; ++i) 2691 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2692 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2693 Cond, 2694 SDValue(TrueVal.getNode(), 2695 TrueVal.getResNo() + i), 2696 SDValue(FalseVal.getNode(), 2697 FalseVal.getResNo() + i)); 2698 2699 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2700 DAG.getVTList(&ValueVTs[0], NumValues), 2701 &Values[0], NumValues)); 2702 } 2703 2704 void SelectionDAGBuilder::visitTrunc(const User &I) { 2705 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2706 SDValue N = getValue(I.getOperand(0)); 2707 EVT DestVT = TLI.getValueType(I.getType()); 2708 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2709 } 2710 2711 void SelectionDAGBuilder::visitZExt(const User &I) { 2712 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2713 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2714 SDValue N = getValue(I.getOperand(0)); 2715 EVT DestVT = TLI.getValueType(I.getType()); 2716 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2717 } 2718 2719 void SelectionDAGBuilder::visitSExt(const User &I) { 2720 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2721 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2722 SDValue N = getValue(I.getOperand(0)); 2723 EVT DestVT = TLI.getValueType(I.getType()); 2724 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2725 } 2726 2727 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2728 // FPTrunc is never a no-op cast, no need to check 2729 SDValue N = getValue(I.getOperand(0)); 2730 EVT DestVT = TLI.getValueType(I.getType()); 2731 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2732 DestVT, N, 2733 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2734 } 2735 2736 void SelectionDAGBuilder::visitFPExt(const User &I){ 2737 // FPExt is never a no-op cast, no need to check 2738 SDValue N = getValue(I.getOperand(0)); 2739 EVT DestVT = TLI.getValueType(I.getType()); 2740 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2741 } 2742 2743 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2744 // FPToUI is never a no-op cast, no need to check 2745 SDValue N = getValue(I.getOperand(0)); 2746 EVT DestVT = TLI.getValueType(I.getType()); 2747 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2748 } 2749 2750 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2751 // FPToSI is never a no-op cast, no need to check 2752 SDValue N = getValue(I.getOperand(0)); 2753 EVT DestVT = TLI.getValueType(I.getType()); 2754 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2755 } 2756 2757 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2758 // UIToFP is never a no-op cast, no need to check 2759 SDValue N = getValue(I.getOperand(0)); 2760 EVT DestVT = TLI.getValueType(I.getType()); 2761 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2762 } 2763 2764 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2765 // SIToFP is never a no-op cast, no need to check 2766 SDValue N = getValue(I.getOperand(0)); 2767 EVT DestVT = TLI.getValueType(I.getType()); 2768 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2769 } 2770 2771 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2772 // What to do depends on the size of the integer and the size of the pointer. 2773 // We can either truncate, zero extend, or no-op, accordingly. 2774 SDValue N = getValue(I.getOperand(0)); 2775 EVT DestVT = TLI.getValueType(I.getType()); 2776 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2777 } 2778 2779 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2780 // What to do depends on the size of the integer and the size of the pointer. 2781 // We can either truncate, zero extend, or no-op, accordingly. 2782 SDValue N = getValue(I.getOperand(0)); 2783 EVT DestVT = TLI.getValueType(I.getType()); 2784 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2785 } 2786 2787 void SelectionDAGBuilder::visitBitCast(const User &I) { 2788 SDValue N = getValue(I.getOperand(0)); 2789 EVT DestVT = TLI.getValueType(I.getType()); 2790 2791 // BitCast assures us that source and destination are the same size so this is 2792 // either a BITCAST or a no-op. 2793 if (DestVT != N.getValueType()) 2794 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2795 DestVT, N)); // convert types. 2796 else 2797 setValue(&I, N); // noop cast. 2798 } 2799 2800 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2801 SDValue InVec = getValue(I.getOperand(0)); 2802 SDValue InVal = getValue(I.getOperand(1)); 2803 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2804 TLI.getPointerTy(), 2805 getValue(I.getOperand(2))); 2806 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2807 TLI.getValueType(I.getType()), 2808 InVec, InVal, InIdx)); 2809 } 2810 2811 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2812 SDValue InVec = getValue(I.getOperand(0)); 2813 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2814 TLI.getPointerTy(), 2815 getValue(I.getOperand(1))); 2816 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2817 TLI.getValueType(I.getType()), InVec, InIdx)); 2818 } 2819 2820 // Utility for visitShuffleVector - Return true if every element in Mask, 2821 // beginning from position Pos and ending in Pos+Size, falls within the 2822 // specified sequential range [L, L+Pos). or is undef. 2823 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2824 unsigned Pos, unsigned Size, int Low) { 2825 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2826 if (Mask[i] >= 0 && Mask[i] != Low) 2827 return false; 2828 return true; 2829 } 2830 2831 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2832 SDValue Src1 = getValue(I.getOperand(0)); 2833 SDValue Src2 = getValue(I.getOperand(1)); 2834 2835 SmallVector<int, 8> Mask; 2836 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2837 unsigned MaskNumElts = Mask.size(); 2838 2839 EVT VT = TLI.getValueType(I.getType()); 2840 EVT SrcVT = Src1.getValueType(); 2841 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2842 2843 if (SrcNumElts == MaskNumElts) { 2844 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2845 &Mask[0])); 2846 return; 2847 } 2848 2849 // Normalize the shuffle vector since mask and vector length don't match. 2850 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2851 // Mask is longer than the source vectors and is a multiple of the source 2852 // vectors. We can use concatenate vector to make the mask and vectors 2853 // lengths match. 2854 if (SrcNumElts*2 == MaskNumElts) { 2855 // First check for Src1 in low and Src2 in high 2856 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2857 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2858 // The shuffle is concatenating two vectors together. 2859 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2860 VT, Src1, Src2)); 2861 return; 2862 } 2863 // Then check for Src2 in low and Src1 in high 2864 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2865 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2866 // The shuffle is concatenating two vectors together. 2867 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2868 VT, Src2, Src1)); 2869 return; 2870 } 2871 } 2872 2873 // Pad both vectors with undefs to make them the same length as the mask. 2874 unsigned NumConcat = MaskNumElts / SrcNumElts; 2875 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2876 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2877 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2878 2879 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2880 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2881 MOps1[0] = Src1; 2882 MOps2[0] = Src2; 2883 2884 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2885 getCurDebugLoc(), VT, 2886 &MOps1[0], NumConcat); 2887 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2888 getCurDebugLoc(), VT, 2889 &MOps2[0], NumConcat); 2890 2891 // Readjust mask for new input vector length. 2892 SmallVector<int, 8> MappedOps; 2893 for (unsigned i = 0; i != MaskNumElts; ++i) { 2894 int Idx = Mask[i]; 2895 if (Idx >= (int)SrcNumElts) 2896 Idx -= SrcNumElts - MaskNumElts; 2897 MappedOps.push_back(Idx); 2898 } 2899 2900 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2901 &MappedOps[0])); 2902 return; 2903 } 2904 2905 if (SrcNumElts > MaskNumElts) { 2906 // Analyze the access pattern of the vector to see if we can extract 2907 // two subvectors and do the shuffle. The analysis is done by calculating 2908 // the range of elements the mask access on both vectors. 2909 int MinRange[2] = { static_cast<int>(SrcNumElts), 2910 static_cast<int>(SrcNumElts)}; 2911 int MaxRange[2] = {-1, -1}; 2912 2913 for (unsigned i = 0; i != MaskNumElts; ++i) { 2914 int Idx = Mask[i]; 2915 unsigned Input = 0; 2916 if (Idx < 0) 2917 continue; 2918 2919 if (Idx >= (int)SrcNumElts) { 2920 Input = 1; 2921 Idx -= SrcNumElts; 2922 } 2923 if (Idx > MaxRange[Input]) 2924 MaxRange[Input] = Idx; 2925 if (Idx < MinRange[Input]) 2926 MinRange[Input] = Idx; 2927 } 2928 2929 // Check if the access is smaller than the vector size and can we find 2930 // a reasonable extract index. 2931 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2932 // Extract. 2933 int StartIdx[2]; // StartIdx to extract from 2934 for (unsigned Input = 0; Input < 2; ++Input) { 2935 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2936 RangeUse[Input] = 0; // Unused 2937 StartIdx[Input] = 0; 2938 continue; 2939 } 2940 2941 // Find a good start index that is a multiple of the mask length. Then 2942 // see if the rest of the elements are in range. 2943 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2944 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2945 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2946 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2947 } 2948 2949 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2950 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2951 return; 2952 } 2953 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2954 // Extract appropriate subvector and generate a vector shuffle 2955 for (unsigned Input = 0; Input < 2; ++Input) { 2956 SDValue &Src = Input == 0 ? Src1 : Src2; 2957 if (RangeUse[Input] == 0) 2958 Src = DAG.getUNDEF(VT); 2959 else 2960 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2961 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2962 } 2963 2964 // Calculate new mask. 2965 SmallVector<int, 8> MappedOps; 2966 for (unsigned i = 0; i != MaskNumElts; ++i) { 2967 int Idx = Mask[i]; 2968 if (Idx >= 0) { 2969 if (Idx < (int)SrcNumElts) 2970 Idx -= StartIdx[0]; 2971 else 2972 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2973 } 2974 MappedOps.push_back(Idx); 2975 } 2976 2977 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2978 &MappedOps[0])); 2979 return; 2980 } 2981 } 2982 2983 // We can't use either concat vectors or extract subvectors so fall back to 2984 // replacing the shuffle with extract and build vector. 2985 // to insert and build vector. 2986 EVT EltVT = VT.getVectorElementType(); 2987 EVT PtrVT = TLI.getPointerTy(); 2988 SmallVector<SDValue,8> Ops; 2989 for (unsigned i = 0; i != MaskNumElts; ++i) { 2990 int Idx = Mask[i]; 2991 SDValue Res; 2992 2993 if (Idx < 0) { 2994 Res = DAG.getUNDEF(EltVT); 2995 } else { 2996 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2997 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2998 2999 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 3000 EltVT, Src, DAG.getConstant(Idx, PtrVT)); 3001 } 3002 3003 Ops.push_back(Res); 3004 } 3005 3006 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 3007 VT, &Ops[0], Ops.size())); 3008 } 3009 3010 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3011 const Value *Op0 = I.getOperand(0); 3012 const Value *Op1 = I.getOperand(1); 3013 Type *AggTy = I.getType(); 3014 Type *ValTy = Op1->getType(); 3015 bool IntoUndef = isa<UndefValue>(Op0); 3016 bool FromUndef = isa<UndefValue>(Op1); 3017 3018 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3019 3020 SmallVector<EVT, 4> AggValueVTs; 3021 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3022 SmallVector<EVT, 4> ValValueVTs; 3023 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3024 3025 unsigned NumAggValues = AggValueVTs.size(); 3026 unsigned NumValValues = ValValueVTs.size(); 3027 SmallVector<SDValue, 4> Values(NumAggValues); 3028 3029 SDValue Agg = getValue(Op0); 3030 unsigned i = 0; 3031 // Copy the beginning value(s) from the original aggregate. 3032 for (; i != LinearIndex; ++i) 3033 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3034 SDValue(Agg.getNode(), Agg.getResNo() + i); 3035 // Copy values from the inserted value(s). 3036 if (NumValValues) { 3037 SDValue Val = getValue(Op1); 3038 for (; i != LinearIndex + NumValValues; ++i) 3039 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3040 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3041 } 3042 // Copy remaining value(s) from the original aggregate. 3043 for (; i != NumAggValues; ++i) 3044 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3045 SDValue(Agg.getNode(), Agg.getResNo() + i); 3046 3047 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3048 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3049 &Values[0], NumAggValues)); 3050 } 3051 3052 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3053 const Value *Op0 = I.getOperand(0); 3054 Type *AggTy = Op0->getType(); 3055 Type *ValTy = I.getType(); 3056 bool OutOfUndef = isa<UndefValue>(Op0); 3057 3058 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3059 3060 SmallVector<EVT, 4> ValValueVTs; 3061 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3062 3063 unsigned NumValValues = ValValueVTs.size(); 3064 3065 // Ignore a extractvalue that produces an empty object 3066 if (!NumValValues) { 3067 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3068 return; 3069 } 3070 3071 SmallVector<SDValue, 4> Values(NumValValues); 3072 3073 SDValue Agg = getValue(Op0); 3074 // Copy out the selected value(s). 3075 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3076 Values[i - LinearIndex] = 3077 OutOfUndef ? 3078 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3079 SDValue(Agg.getNode(), Agg.getResNo() + i); 3080 3081 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3082 DAG.getVTList(&ValValueVTs[0], NumValValues), 3083 &Values[0], NumValValues)); 3084 } 3085 3086 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3087 SDValue N = getValue(I.getOperand(0)); 3088 // Note that the pointer operand may be a vector of pointers. Take the scalar 3089 // element which holds a pointer. 3090 Type *Ty = I.getOperand(0)->getType()->getScalarType(); 3091 3092 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3093 OI != E; ++OI) { 3094 const Value *Idx = *OI; 3095 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3096 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 3097 if (Field) { 3098 // N = N + Offset 3099 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3100 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3101 DAG.getIntPtrConstant(Offset)); 3102 } 3103 3104 Ty = StTy->getElementType(Field); 3105 } else { 3106 Ty = cast<SequentialType>(Ty)->getElementType(); 3107 3108 // If this is a constant subscript, handle it quickly. 3109 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3110 if (CI->isZero()) continue; 3111 uint64_t Offs = 3112 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3113 SDValue OffsVal; 3114 EVT PTy = TLI.getPointerTy(); 3115 unsigned PtrBits = PTy.getSizeInBits(); 3116 if (PtrBits < 64) 3117 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3118 TLI.getPointerTy(), 3119 DAG.getConstant(Offs, MVT::i64)); 3120 else 3121 OffsVal = DAG.getIntPtrConstant(Offs); 3122 3123 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3124 OffsVal); 3125 continue; 3126 } 3127 3128 // N = N + Idx * ElementSize; 3129 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3130 TD->getTypeAllocSize(Ty)); 3131 SDValue IdxN = getValue(Idx); 3132 3133 // If the index is smaller or larger than intptr_t, truncate or extend 3134 // it. 3135 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3136 3137 // If this is a multiply by a power of two, turn it into a shl 3138 // immediately. This is a very common case. 3139 if (ElementSize != 1) { 3140 if (ElementSize.isPowerOf2()) { 3141 unsigned Amt = ElementSize.logBase2(); 3142 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3143 N.getValueType(), IdxN, 3144 DAG.getConstant(Amt, IdxN.getValueType())); 3145 } else { 3146 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3147 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3148 N.getValueType(), IdxN, Scale); 3149 } 3150 } 3151 3152 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3153 N.getValueType(), N, IdxN); 3154 } 3155 } 3156 3157 setValue(&I, N); 3158 } 3159 3160 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3161 // If this is a fixed sized alloca in the entry block of the function, 3162 // allocate it statically on the stack. 3163 if (FuncInfo.StaticAllocaMap.count(&I)) 3164 return; // getValue will auto-populate this. 3165 3166 Type *Ty = I.getAllocatedType(); 3167 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3168 unsigned Align = 3169 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3170 I.getAlignment()); 3171 3172 SDValue AllocSize = getValue(I.getArraySize()); 3173 3174 EVT IntPtr = TLI.getPointerTy(); 3175 if (AllocSize.getValueType() != IntPtr) 3176 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3177 3178 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3179 AllocSize, 3180 DAG.getConstant(TySize, IntPtr)); 3181 3182 // Handle alignment. If the requested alignment is less than or equal to 3183 // the stack alignment, ignore it. If the size is greater than or equal to 3184 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3185 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3186 if (Align <= StackAlign) 3187 Align = 0; 3188 3189 // Round the size of the allocation up to the stack alignment size 3190 // by add SA-1 to the size. 3191 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3192 AllocSize.getValueType(), AllocSize, 3193 DAG.getIntPtrConstant(StackAlign-1)); 3194 3195 // Mask out the low bits for alignment purposes. 3196 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3197 AllocSize.getValueType(), AllocSize, 3198 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3199 3200 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3201 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3202 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3203 VTs, Ops, 3); 3204 setValue(&I, DSA); 3205 DAG.setRoot(DSA.getValue(1)); 3206 3207 // Inform the Frame Information that we have just allocated a variable-sized 3208 // object. 3209 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3210 } 3211 3212 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3213 if (I.isAtomic()) 3214 return visitAtomicLoad(I); 3215 3216 const Value *SV = I.getOperand(0); 3217 SDValue Ptr = getValue(SV); 3218 3219 Type *Ty = I.getType(); 3220 3221 bool isVolatile = I.isVolatile(); 3222 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3223 bool isInvariant = I.getMetadata("invariant.load") != 0; 3224 unsigned Alignment = I.getAlignment(); 3225 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3226 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3227 3228 SmallVector<EVT, 4> ValueVTs; 3229 SmallVector<uint64_t, 4> Offsets; 3230 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3231 unsigned NumValues = ValueVTs.size(); 3232 if (NumValues == 0) 3233 return; 3234 3235 SDValue Root; 3236 bool ConstantMemory = false; 3237 if (I.isVolatile() || NumValues > MaxParallelChains) 3238 // Serialize volatile loads with other side effects. 3239 Root = getRoot(); 3240 else if (AA->pointsToConstantMemory( 3241 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3242 // Do not serialize (non-volatile) loads of constant memory with anything. 3243 Root = DAG.getEntryNode(); 3244 ConstantMemory = true; 3245 } else { 3246 // Do not serialize non-volatile loads against each other. 3247 Root = DAG.getRoot(); 3248 } 3249 3250 SmallVector<SDValue, 4> Values(NumValues); 3251 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3252 NumValues)); 3253 EVT PtrVT = Ptr.getValueType(); 3254 unsigned ChainI = 0; 3255 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3256 // Serializing loads here may result in excessive register pressure, and 3257 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3258 // could recover a bit by hoisting nodes upward in the chain by recognizing 3259 // they are side-effect free or do not alias. The optimizer should really 3260 // avoid this case by converting large object/array copies to llvm.memcpy 3261 // (MaxParallelChains should always remain as failsafe). 3262 if (ChainI == MaxParallelChains) { 3263 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3264 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3265 MVT::Other, &Chains[0], ChainI); 3266 Root = Chain; 3267 ChainI = 0; 3268 } 3269 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3270 PtrVT, Ptr, 3271 DAG.getConstant(Offsets[i], PtrVT)); 3272 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3273 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3274 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3275 Ranges); 3276 3277 Values[i] = L; 3278 Chains[ChainI] = L.getValue(1); 3279 } 3280 3281 if (!ConstantMemory) { 3282 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3283 MVT::Other, &Chains[0], ChainI); 3284 if (isVolatile) 3285 DAG.setRoot(Chain); 3286 else 3287 PendingLoads.push_back(Chain); 3288 } 3289 3290 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3291 DAG.getVTList(&ValueVTs[0], NumValues), 3292 &Values[0], NumValues)); 3293 } 3294 3295 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3296 if (I.isAtomic()) 3297 return visitAtomicStore(I); 3298 3299 const Value *SrcV = I.getOperand(0); 3300 const Value *PtrV = I.getOperand(1); 3301 3302 SmallVector<EVT, 4> ValueVTs; 3303 SmallVector<uint64_t, 4> Offsets; 3304 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3305 unsigned NumValues = ValueVTs.size(); 3306 if (NumValues == 0) 3307 return; 3308 3309 // Get the lowered operands. Note that we do this after 3310 // checking if NumResults is zero, because with zero results 3311 // the operands won't have values in the map. 3312 SDValue Src = getValue(SrcV); 3313 SDValue Ptr = getValue(PtrV); 3314 3315 SDValue Root = getRoot(); 3316 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3317 NumValues)); 3318 EVT PtrVT = Ptr.getValueType(); 3319 bool isVolatile = I.isVolatile(); 3320 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3321 unsigned Alignment = I.getAlignment(); 3322 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3323 3324 unsigned ChainI = 0; 3325 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3326 // See visitLoad comments. 3327 if (ChainI == MaxParallelChains) { 3328 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3329 MVT::Other, &Chains[0], ChainI); 3330 Root = Chain; 3331 ChainI = 0; 3332 } 3333 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3334 DAG.getConstant(Offsets[i], PtrVT)); 3335 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3336 SDValue(Src.getNode(), Src.getResNo() + i), 3337 Add, MachinePointerInfo(PtrV, Offsets[i]), 3338 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3339 Chains[ChainI] = St; 3340 } 3341 3342 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3343 MVT::Other, &Chains[0], ChainI); 3344 ++SDNodeOrder; 3345 AssignOrderingToNode(StoreNode.getNode()); 3346 DAG.setRoot(StoreNode); 3347 } 3348 3349 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3350 SynchronizationScope Scope, 3351 bool Before, DebugLoc dl, 3352 SelectionDAG &DAG, 3353 const TargetLowering &TLI) { 3354 // Fence, if necessary 3355 if (Before) { 3356 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3357 Order = Release; 3358 else if (Order == Acquire || Order == Monotonic) 3359 return Chain; 3360 } else { 3361 if (Order == AcquireRelease) 3362 Order = Acquire; 3363 else if (Order == Release || Order == Monotonic) 3364 return Chain; 3365 } 3366 SDValue Ops[3]; 3367 Ops[0] = Chain; 3368 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3369 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3370 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3371 } 3372 3373 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3374 DebugLoc dl = getCurDebugLoc(); 3375 AtomicOrdering Order = I.getOrdering(); 3376 SynchronizationScope Scope = I.getSynchScope(); 3377 3378 SDValue InChain = getRoot(); 3379 3380 if (TLI.getInsertFencesForAtomic()) 3381 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3382 DAG, TLI); 3383 3384 SDValue L = 3385 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3386 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3387 InChain, 3388 getValue(I.getPointerOperand()), 3389 getValue(I.getCompareOperand()), 3390 getValue(I.getNewValOperand()), 3391 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3392 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3393 Scope); 3394 3395 SDValue OutChain = L.getValue(1); 3396 3397 if (TLI.getInsertFencesForAtomic()) 3398 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3399 DAG, TLI); 3400 3401 setValue(&I, L); 3402 DAG.setRoot(OutChain); 3403 } 3404 3405 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3406 DebugLoc dl = getCurDebugLoc(); 3407 ISD::NodeType NT; 3408 switch (I.getOperation()) { 3409 default: llvm_unreachable("Unknown atomicrmw operation"); 3410 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3411 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3412 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3413 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3414 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3415 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3416 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3417 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3418 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3419 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3420 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3421 } 3422 AtomicOrdering Order = I.getOrdering(); 3423 SynchronizationScope Scope = I.getSynchScope(); 3424 3425 SDValue InChain = getRoot(); 3426 3427 if (TLI.getInsertFencesForAtomic()) 3428 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3429 DAG, TLI); 3430 3431 SDValue L = 3432 DAG.getAtomic(NT, dl, 3433 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3434 InChain, 3435 getValue(I.getPointerOperand()), 3436 getValue(I.getValOperand()), 3437 I.getPointerOperand(), 0 /* Alignment */, 3438 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3439 Scope); 3440 3441 SDValue OutChain = L.getValue(1); 3442 3443 if (TLI.getInsertFencesForAtomic()) 3444 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3445 DAG, TLI); 3446 3447 setValue(&I, L); 3448 DAG.setRoot(OutChain); 3449 } 3450 3451 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3452 DebugLoc dl = getCurDebugLoc(); 3453 SDValue Ops[3]; 3454 Ops[0] = getRoot(); 3455 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3456 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3457 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3458 } 3459 3460 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3461 DebugLoc dl = getCurDebugLoc(); 3462 AtomicOrdering Order = I.getOrdering(); 3463 SynchronizationScope Scope = I.getSynchScope(); 3464 3465 SDValue InChain = getRoot(); 3466 3467 EVT VT = TLI.getValueType(I.getType()); 3468 3469 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3470 report_fatal_error("Cannot generate unaligned atomic load"); 3471 3472 SDValue L = 3473 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3474 getValue(I.getPointerOperand()), 3475 I.getPointerOperand(), I.getAlignment(), 3476 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3477 Scope); 3478 3479 SDValue OutChain = L.getValue(1); 3480 3481 if (TLI.getInsertFencesForAtomic()) 3482 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3483 DAG, TLI); 3484 3485 setValue(&I, L); 3486 DAG.setRoot(OutChain); 3487 } 3488 3489 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3490 DebugLoc dl = getCurDebugLoc(); 3491 3492 AtomicOrdering Order = I.getOrdering(); 3493 SynchronizationScope Scope = I.getSynchScope(); 3494 3495 SDValue InChain = getRoot(); 3496 3497 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3498 3499 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3500 report_fatal_error("Cannot generate unaligned atomic store"); 3501 3502 if (TLI.getInsertFencesForAtomic()) 3503 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3504 DAG, TLI); 3505 3506 SDValue OutChain = 3507 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3508 InChain, 3509 getValue(I.getPointerOperand()), 3510 getValue(I.getValueOperand()), 3511 I.getPointerOperand(), I.getAlignment(), 3512 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3513 Scope); 3514 3515 if (TLI.getInsertFencesForAtomic()) 3516 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3517 DAG, TLI); 3518 3519 DAG.setRoot(OutChain); 3520 } 3521 3522 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3523 /// node. 3524 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3525 unsigned Intrinsic) { 3526 bool HasChain = !I.doesNotAccessMemory(); 3527 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3528 3529 // Build the operand list. 3530 SmallVector<SDValue, 8> Ops; 3531 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3532 if (OnlyLoad) { 3533 // We don't need to serialize loads against other loads. 3534 Ops.push_back(DAG.getRoot()); 3535 } else { 3536 Ops.push_back(getRoot()); 3537 } 3538 } 3539 3540 // Info is set by getTgtMemInstrinsic 3541 TargetLowering::IntrinsicInfo Info; 3542 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3543 3544 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3545 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3546 Info.opc == ISD::INTRINSIC_W_CHAIN) 3547 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3548 3549 // Add all operands of the call to the operand list. 3550 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3551 SDValue Op = getValue(I.getArgOperand(i)); 3552 Ops.push_back(Op); 3553 } 3554 3555 SmallVector<EVT, 4> ValueVTs; 3556 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3557 3558 if (HasChain) 3559 ValueVTs.push_back(MVT::Other); 3560 3561 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3562 3563 // Create the node. 3564 SDValue Result; 3565 if (IsTgtIntrinsic) { 3566 // This is target intrinsic that touches memory 3567 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3568 VTs, &Ops[0], Ops.size(), 3569 Info.memVT, 3570 MachinePointerInfo(Info.ptrVal, Info.offset), 3571 Info.align, Info.vol, 3572 Info.readMem, Info.writeMem); 3573 } else if (!HasChain) { 3574 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3575 VTs, &Ops[0], Ops.size()); 3576 } else if (!I.getType()->isVoidTy()) { 3577 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3578 VTs, &Ops[0], Ops.size()); 3579 } else { 3580 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3581 VTs, &Ops[0], Ops.size()); 3582 } 3583 3584 if (HasChain) { 3585 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3586 if (OnlyLoad) 3587 PendingLoads.push_back(Chain); 3588 else 3589 DAG.setRoot(Chain); 3590 } 3591 3592 if (!I.getType()->isVoidTy()) { 3593 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3594 EVT VT = TLI.getValueType(PTy); 3595 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3596 } 3597 3598 setValue(&I, Result); 3599 } else { 3600 // Assign order to result here. If the intrinsic does not produce a result, 3601 // it won't be mapped to a SDNode and visit() will not assign it an order 3602 // number. 3603 ++SDNodeOrder; 3604 AssignOrderingToNode(Result.getNode()); 3605 } 3606 } 3607 3608 /// GetSignificand - Get the significand and build it into a floating-point 3609 /// number with exponent of 1: 3610 /// 3611 /// Op = (Op & 0x007fffff) | 0x3f800000; 3612 /// 3613 /// where Op is the hexidecimal representation of floating point value. 3614 static SDValue 3615 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3616 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3617 DAG.getConstant(0x007fffff, MVT::i32)); 3618 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3619 DAG.getConstant(0x3f800000, MVT::i32)); 3620 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3621 } 3622 3623 /// GetExponent - Get the exponent: 3624 /// 3625 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3626 /// 3627 /// where Op is the hexidecimal representation of floating point value. 3628 static SDValue 3629 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3630 DebugLoc dl) { 3631 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3632 DAG.getConstant(0x7f800000, MVT::i32)); 3633 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3634 DAG.getConstant(23, TLI.getPointerTy())); 3635 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3636 DAG.getConstant(127, MVT::i32)); 3637 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3638 } 3639 3640 /// getF32Constant - Get 32-bit floating point constant. 3641 static SDValue 3642 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3643 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3644 } 3645 3646 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3647 /// limited-precision mode. 3648 void 3649 SelectionDAGBuilder::visitExp(const CallInst &I) { 3650 SDValue result; 3651 DebugLoc dl = getCurDebugLoc(); 3652 3653 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3654 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3655 SDValue Op = getValue(I.getArgOperand(0)); 3656 3657 // Put the exponent in the right bit position for later addition to the 3658 // final result: 3659 // 3660 // #define LOG2OFe 1.4426950f 3661 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3662 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3663 getF32Constant(DAG, 0x3fb8aa3b)); 3664 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3665 3666 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3667 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3668 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3669 3670 // IntegerPartOfX <<= 23; 3671 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3672 DAG.getConstant(23, TLI.getPointerTy())); 3673 3674 if (LimitFloatPrecision <= 6) { 3675 // For floating-point precision of 6: 3676 // 3677 // TwoToFractionalPartOfX = 3678 // 0.997535578f + 3679 // (0.735607626f + 0.252464424f * x) * x; 3680 // 3681 // error 0.0144103317, which is 6 bits 3682 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3683 getF32Constant(DAG, 0x3e814304)); 3684 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3685 getF32Constant(DAG, 0x3f3c50c8)); 3686 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3687 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3688 getF32Constant(DAG, 0x3f7f5e7e)); 3689 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3690 3691 // Add the exponent into the result in integer domain. 3692 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3693 TwoToFracPartOfX, IntegerPartOfX); 3694 3695 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3696 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3697 // For floating-point precision of 12: 3698 // 3699 // TwoToFractionalPartOfX = 3700 // 0.999892986f + 3701 // (0.696457318f + 3702 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3703 // 3704 // 0.000107046256 error, which is 13 to 14 bits 3705 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3706 getF32Constant(DAG, 0x3da235e3)); 3707 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3708 getF32Constant(DAG, 0x3e65b8f3)); 3709 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3710 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3711 getF32Constant(DAG, 0x3f324b07)); 3712 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3713 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3714 getF32Constant(DAG, 0x3f7ff8fd)); 3715 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3716 3717 // Add the exponent into the result in integer domain. 3718 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3719 TwoToFracPartOfX, IntegerPartOfX); 3720 3721 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3722 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3723 // For floating-point precision of 18: 3724 // 3725 // TwoToFractionalPartOfX = 3726 // 0.999999982f + 3727 // (0.693148872f + 3728 // (0.240227044f + 3729 // (0.554906021e-1f + 3730 // (0.961591928e-2f + 3731 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3732 // 3733 // error 2.47208000*10^(-7), which is better than 18 bits 3734 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3735 getF32Constant(DAG, 0x3924b03e)); 3736 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3737 getF32Constant(DAG, 0x3ab24b87)); 3738 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3739 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3740 getF32Constant(DAG, 0x3c1d8c17)); 3741 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3742 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3743 getF32Constant(DAG, 0x3d634a1d)); 3744 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3745 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3746 getF32Constant(DAG, 0x3e75fe14)); 3747 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3748 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3749 getF32Constant(DAG, 0x3f317234)); 3750 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3751 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3752 getF32Constant(DAG, 0x3f800000)); 3753 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3754 MVT::i32, t13); 3755 3756 // Add the exponent into the result in integer domain. 3757 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3758 TwoToFracPartOfX, IntegerPartOfX); 3759 3760 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3761 } 3762 } else { 3763 // No special expansion. 3764 result = DAG.getNode(ISD::FEXP, dl, 3765 getValue(I.getArgOperand(0)).getValueType(), 3766 getValue(I.getArgOperand(0))); 3767 } 3768 3769 setValue(&I, result); 3770 } 3771 3772 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3773 /// limited-precision mode. 3774 void 3775 SelectionDAGBuilder::visitLog(const CallInst &I) { 3776 SDValue result; 3777 DebugLoc dl = getCurDebugLoc(); 3778 3779 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3780 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3781 SDValue Op = getValue(I.getArgOperand(0)); 3782 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3783 3784 // Scale the exponent by log(2) [0.69314718f]. 3785 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3786 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3787 getF32Constant(DAG, 0x3f317218)); 3788 3789 // Get the significand and build it into a floating-point number with 3790 // exponent of 1. 3791 SDValue X = GetSignificand(DAG, Op1, dl); 3792 3793 if (LimitFloatPrecision <= 6) { 3794 // For floating-point precision of 6: 3795 // 3796 // LogofMantissa = 3797 // -1.1609546f + 3798 // (1.4034025f - 0.23903021f * x) * x; 3799 // 3800 // error 0.0034276066, which is better than 8 bits 3801 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3802 getF32Constant(DAG, 0xbe74c456)); 3803 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3804 getF32Constant(DAG, 0x3fb3a2b1)); 3805 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3806 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3807 getF32Constant(DAG, 0x3f949a29)); 3808 3809 result = DAG.getNode(ISD::FADD, dl, 3810 MVT::f32, LogOfExponent, LogOfMantissa); 3811 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3812 // For floating-point precision of 12: 3813 // 3814 // LogOfMantissa = 3815 // -1.7417939f + 3816 // (2.8212026f + 3817 // (-1.4699568f + 3818 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3819 // 3820 // error 0.000061011436, which is 14 bits 3821 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3822 getF32Constant(DAG, 0xbd67b6d6)); 3823 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3824 getF32Constant(DAG, 0x3ee4f4b8)); 3825 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3826 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3827 getF32Constant(DAG, 0x3fbc278b)); 3828 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3829 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3830 getF32Constant(DAG, 0x40348e95)); 3831 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3832 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3833 getF32Constant(DAG, 0x3fdef31a)); 3834 3835 result = DAG.getNode(ISD::FADD, dl, 3836 MVT::f32, LogOfExponent, LogOfMantissa); 3837 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3838 // For floating-point precision of 18: 3839 // 3840 // LogOfMantissa = 3841 // -2.1072184f + 3842 // (4.2372794f + 3843 // (-3.7029485f + 3844 // (2.2781945f + 3845 // (-0.87823314f + 3846 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3847 // 3848 // error 0.0000023660568, which is better than 18 bits 3849 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3850 getF32Constant(DAG, 0xbc91e5ac)); 3851 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3852 getF32Constant(DAG, 0x3e4350aa)); 3853 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3854 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3855 getF32Constant(DAG, 0x3f60d3e3)); 3856 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3857 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3858 getF32Constant(DAG, 0x4011cdf0)); 3859 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3860 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3861 getF32Constant(DAG, 0x406cfd1c)); 3862 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3863 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3864 getF32Constant(DAG, 0x408797cb)); 3865 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3866 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3867 getF32Constant(DAG, 0x4006dcab)); 3868 3869 result = DAG.getNode(ISD::FADD, dl, 3870 MVT::f32, LogOfExponent, LogOfMantissa); 3871 } 3872 } else { 3873 // No special expansion. 3874 result = DAG.getNode(ISD::FLOG, dl, 3875 getValue(I.getArgOperand(0)).getValueType(), 3876 getValue(I.getArgOperand(0))); 3877 } 3878 3879 setValue(&I, result); 3880 } 3881 3882 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3883 /// limited-precision mode. 3884 void 3885 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3886 SDValue result; 3887 DebugLoc dl = getCurDebugLoc(); 3888 3889 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3890 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3891 SDValue Op = getValue(I.getArgOperand(0)); 3892 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3893 3894 // Get the exponent. 3895 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3896 3897 // Get the significand and build it into a floating-point number with 3898 // exponent of 1. 3899 SDValue X = GetSignificand(DAG, Op1, dl); 3900 3901 // Different possible minimax approximations of significand in 3902 // floating-point for various degrees of accuracy over [1,2]. 3903 if (LimitFloatPrecision <= 6) { 3904 // For floating-point precision of 6: 3905 // 3906 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3907 // 3908 // error 0.0049451742, which is more than 7 bits 3909 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3910 getF32Constant(DAG, 0xbeb08fe0)); 3911 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3912 getF32Constant(DAG, 0x40019463)); 3913 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3914 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3915 getF32Constant(DAG, 0x3fd6633d)); 3916 3917 result = DAG.getNode(ISD::FADD, dl, 3918 MVT::f32, LogOfExponent, Log2ofMantissa); 3919 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3920 // For floating-point precision of 12: 3921 // 3922 // Log2ofMantissa = 3923 // -2.51285454f + 3924 // (4.07009056f + 3925 // (-2.12067489f + 3926 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3927 // 3928 // error 0.0000876136000, which is better than 13 bits 3929 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3930 getF32Constant(DAG, 0xbda7262e)); 3931 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3932 getF32Constant(DAG, 0x3f25280b)); 3933 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3934 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3935 getF32Constant(DAG, 0x4007b923)); 3936 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3937 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3938 getF32Constant(DAG, 0x40823e2f)); 3939 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3940 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3941 getF32Constant(DAG, 0x4020d29c)); 3942 3943 result = DAG.getNode(ISD::FADD, dl, 3944 MVT::f32, LogOfExponent, Log2ofMantissa); 3945 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3946 // For floating-point precision of 18: 3947 // 3948 // Log2ofMantissa = 3949 // -3.0400495f + 3950 // (6.1129976f + 3951 // (-5.3420409f + 3952 // (3.2865683f + 3953 // (-1.2669343f + 3954 // (0.27515199f - 3955 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3956 // 3957 // error 0.0000018516, which is better than 18 bits 3958 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3959 getF32Constant(DAG, 0xbcd2769e)); 3960 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3961 getF32Constant(DAG, 0x3e8ce0b9)); 3962 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3963 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3964 getF32Constant(DAG, 0x3fa22ae7)); 3965 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3966 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3967 getF32Constant(DAG, 0x40525723)); 3968 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3969 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3970 getF32Constant(DAG, 0x40aaf200)); 3971 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3972 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3973 getF32Constant(DAG, 0x40c39dad)); 3974 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3975 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3976 getF32Constant(DAG, 0x4042902c)); 3977 3978 result = DAG.getNode(ISD::FADD, dl, 3979 MVT::f32, LogOfExponent, Log2ofMantissa); 3980 } 3981 } else { 3982 // No special expansion. 3983 result = DAG.getNode(ISD::FLOG2, dl, 3984 getValue(I.getArgOperand(0)).getValueType(), 3985 getValue(I.getArgOperand(0))); 3986 } 3987 3988 setValue(&I, result); 3989 } 3990 3991 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3992 /// limited-precision mode. 3993 void 3994 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3995 SDValue result; 3996 DebugLoc dl = getCurDebugLoc(); 3997 3998 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3999 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4000 SDValue Op = getValue(I.getArgOperand(0)); 4001 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4002 4003 // Scale the exponent by log10(2) [0.30102999f]. 4004 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4005 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4006 getF32Constant(DAG, 0x3e9a209a)); 4007 4008 // Get the significand and build it into a floating-point number with 4009 // exponent of 1. 4010 SDValue X = GetSignificand(DAG, Op1, dl); 4011 4012 if (LimitFloatPrecision <= 6) { 4013 // For floating-point precision of 6: 4014 // 4015 // Log10ofMantissa = 4016 // -0.50419619f + 4017 // (0.60948995f - 0.10380950f * x) * x; 4018 // 4019 // error 0.0014886165, which is 6 bits 4020 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4021 getF32Constant(DAG, 0xbdd49a13)); 4022 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4023 getF32Constant(DAG, 0x3f1c0789)); 4024 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4025 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4026 getF32Constant(DAG, 0x3f011300)); 4027 4028 result = DAG.getNode(ISD::FADD, dl, 4029 MVT::f32, LogOfExponent, Log10ofMantissa); 4030 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4031 // For floating-point precision of 12: 4032 // 4033 // Log10ofMantissa = 4034 // -0.64831180f + 4035 // (0.91751397f + 4036 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4037 // 4038 // error 0.00019228036, which is better than 12 bits 4039 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4040 getF32Constant(DAG, 0x3d431f31)); 4041 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4042 getF32Constant(DAG, 0x3ea21fb2)); 4043 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4044 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4045 getF32Constant(DAG, 0x3f6ae232)); 4046 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4047 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4048 getF32Constant(DAG, 0x3f25f7c3)); 4049 4050 result = DAG.getNode(ISD::FADD, dl, 4051 MVT::f32, LogOfExponent, Log10ofMantissa); 4052 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4053 // For floating-point precision of 18: 4054 // 4055 // Log10ofMantissa = 4056 // -0.84299375f + 4057 // (1.5327582f + 4058 // (-1.0688956f + 4059 // (0.49102474f + 4060 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4061 // 4062 // error 0.0000037995730, which is better than 18 bits 4063 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4064 getF32Constant(DAG, 0x3c5d51ce)); 4065 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4066 getF32Constant(DAG, 0x3e00685a)); 4067 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4068 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4069 getF32Constant(DAG, 0x3efb6798)); 4070 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4071 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4072 getF32Constant(DAG, 0x3f88d192)); 4073 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4074 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4075 getF32Constant(DAG, 0x3fc4316c)); 4076 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4077 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4078 getF32Constant(DAG, 0x3f57ce70)); 4079 4080 result = DAG.getNode(ISD::FADD, dl, 4081 MVT::f32, LogOfExponent, Log10ofMantissa); 4082 } 4083 } else { 4084 // No special expansion. 4085 result = DAG.getNode(ISD::FLOG10, dl, 4086 getValue(I.getArgOperand(0)).getValueType(), 4087 getValue(I.getArgOperand(0))); 4088 } 4089 4090 setValue(&I, result); 4091 } 4092 4093 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4094 /// limited-precision mode. 4095 void 4096 SelectionDAGBuilder::visitExp2(const CallInst &I) { 4097 SDValue result; 4098 DebugLoc dl = getCurDebugLoc(); 4099 4100 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4101 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4102 SDValue Op = getValue(I.getArgOperand(0)); 4103 4104 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4105 4106 // FractionalPartOfX = x - (float)IntegerPartOfX; 4107 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4108 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4109 4110 // IntegerPartOfX <<= 23; 4111 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4112 DAG.getConstant(23, TLI.getPointerTy())); 4113 4114 if (LimitFloatPrecision <= 6) { 4115 // For floating-point precision of 6: 4116 // 4117 // TwoToFractionalPartOfX = 4118 // 0.997535578f + 4119 // (0.735607626f + 0.252464424f * x) * x; 4120 // 4121 // error 0.0144103317, which is 6 bits 4122 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4123 getF32Constant(DAG, 0x3e814304)); 4124 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4125 getF32Constant(DAG, 0x3f3c50c8)); 4126 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4127 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4128 getF32Constant(DAG, 0x3f7f5e7e)); 4129 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4130 SDValue TwoToFractionalPartOfX = 4131 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4132 4133 result = DAG.getNode(ISD::BITCAST, dl, 4134 MVT::f32, TwoToFractionalPartOfX); 4135 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4136 // For floating-point precision of 12: 4137 // 4138 // TwoToFractionalPartOfX = 4139 // 0.999892986f + 4140 // (0.696457318f + 4141 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4142 // 4143 // error 0.000107046256, which is 13 to 14 bits 4144 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4145 getF32Constant(DAG, 0x3da235e3)); 4146 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4147 getF32Constant(DAG, 0x3e65b8f3)); 4148 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4149 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4150 getF32Constant(DAG, 0x3f324b07)); 4151 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4152 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4153 getF32Constant(DAG, 0x3f7ff8fd)); 4154 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4155 SDValue TwoToFractionalPartOfX = 4156 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4157 4158 result = DAG.getNode(ISD::BITCAST, dl, 4159 MVT::f32, TwoToFractionalPartOfX); 4160 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4161 // For floating-point precision of 18: 4162 // 4163 // TwoToFractionalPartOfX = 4164 // 0.999999982f + 4165 // (0.693148872f + 4166 // (0.240227044f + 4167 // (0.554906021e-1f + 4168 // (0.961591928e-2f + 4169 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4170 // error 2.47208000*10^(-7), which is better than 18 bits 4171 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4172 getF32Constant(DAG, 0x3924b03e)); 4173 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4174 getF32Constant(DAG, 0x3ab24b87)); 4175 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4176 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4177 getF32Constant(DAG, 0x3c1d8c17)); 4178 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4179 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4180 getF32Constant(DAG, 0x3d634a1d)); 4181 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4182 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4183 getF32Constant(DAG, 0x3e75fe14)); 4184 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4185 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4186 getF32Constant(DAG, 0x3f317234)); 4187 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4188 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4189 getF32Constant(DAG, 0x3f800000)); 4190 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4191 SDValue TwoToFractionalPartOfX = 4192 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4193 4194 result = DAG.getNode(ISD::BITCAST, dl, 4195 MVT::f32, TwoToFractionalPartOfX); 4196 } 4197 } else { 4198 // No special expansion. 4199 result = DAG.getNode(ISD::FEXP2, dl, 4200 getValue(I.getArgOperand(0)).getValueType(), 4201 getValue(I.getArgOperand(0))); 4202 } 4203 4204 setValue(&I, result); 4205 } 4206 4207 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4208 /// limited-precision mode with x == 10.0f. 4209 void 4210 SelectionDAGBuilder::visitPow(const CallInst &I) { 4211 SDValue result; 4212 const Value *Val = I.getArgOperand(0); 4213 DebugLoc dl = getCurDebugLoc(); 4214 bool IsExp10 = false; 4215 4216 if (getValue(Val).getValueType() == MVT::f32 && 4217 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4218 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4219 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4220 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4221 APFloat Ten(10.0f); 4222 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4223 } 4224 } 4225 } 4226 4227 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4228 SDValue Op = getValue(I.getArgOperand(1)); 4229 4230 // Put the exponent in the right bit position for later addition to the 4231 // final result: 4232 // 4233 // #define LOG2OF10 3.3219281f 4234 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4235 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4236 getF32Constant(DAG, 0x40549a78)); 4237 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4238 4239 // FractionalPartOfX = x - (float)IntegerPartOfX; 4240 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4241 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4242 4243 // IntegerPartOfX <<= 23; 4244 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4245 DAG.getConstant(23, TLI.getPointerTy())); 4246 4247 if (LimitFloatPrecision <= 6) { 4248 // For floating-point precision of 6: 4249 // 4250 // twoToFractionalPartOfX = 4251 // 0.997535578f + 4252 // (0.735607626f + 0.252464424f * x) * x; 4253 // 4254 // error 0.0144103317, which is 6 bits 4255 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4256 getF32Constant(DAG, 0x3e814304)); 4257 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4258 getF32Constant(DAG, 0x3f3c50c8)); 4259 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4260 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4261 getF32Constant(DAG, 0x3f7f5e7e)); 4262 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4263 SDValue TwoToFractionalPartOfX = 4264 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4265 4266 result = DAG.getNode(ISD::BITCAST, dl, 4267 MVT::f32, TwoToFractionalPartOfX); 4268 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4269 // For floating-point precision of 12: 4270 // 4271 // TwoToFractionalPartOfX = 4272 // 0.999892986f + 4273 // (0.696457318f + 4274 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4275 // 4276 // error 0.000107046256, which is 13 to 14 bits 4277 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4278 getF32Constant(DAG, 0x3da235e3)); 4279 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4280 getF32Constant(DAG, 0x3e65b8f3)); 4281 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4282 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4283 getF32Constant(DAG, 0x3f324b07)); 4284 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4285 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4286 getF32Constant(DAG, 0x3f7ff8fd)); 4287 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4288 SDValue TwoToFractionalPartOfX = 4289 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4290 4291 result = DAG.getNode(ISD::BITCAST, dl, 4292 MVT::f32, TwoToFractionalPartOfX); 4293 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4294 // For floating-point precision of 18: 4295 // 4296 // TwoToFractionalPartOfX = 4297 // 0.999999982f + 4298 // (0.693148872f + 4299 // (0.240227044f + 4300 // (0.554906021e-1f + 4301 // (0.961591928e-2f + 4302 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4303 // error 2.47208000*10^(-7), which is better than 18 bits 4304 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4305 getF32Constant(DAG, 0x3924b03e)); 4306 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4307 getF32Constant(DAG, 0x3ab24b87)); 4308 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4309 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4310 getF32Constant(DAG, 0x3c1d8c17)); 4311 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4312 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4313 getF32Constant(DAG, 0x3d634a1d)); 4314 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4315 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4316 getF32Constant(DAG, 0x3e75fe14)); 4317 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4318 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4319 getF32Constant(DAG, 0x3f317234)); 4320 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4321 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4322 getF32Constant(DAG, 0x3f800000)); 4323 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4324 SDValue TwoToFractionalPartOfX = 4325 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4326 4327 result = DAG.getNode(ISD::BITCAST, dl, 4328 MVT::f32, TwoToFractionalPartOfX); 4329 } 4330 } else { 4331 // No special expansion. 4332 result = DAG.getNode(ISD::FPOW, dl, 4333 getValue(I.getArgOperand(0)).getValueType(), 4334 getValue(I.getArgOperand(0)), 4335 getValue(I.getArgOperand(1))); 4336 } 4337 4338 setValue(&I, result); 4339 } 4340 4341 4342 /// ExpandPowI - Expand a llvm.powi intrinsic. 4343 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4344 SelectionDAG &DAG) { 4345 // If RHS is a constant, we can expand this out to a multiplication tree, 4346 // otherwise we end up lowering to a call to __powidf2 (for example). When 4347 // optimizing for size, we only want to do this if the expansion would produce 4348 // a small number of multiplies, otherwise we do the full expansion. 4349 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4350 // Get the exponent as a positive value. 4351 unsigned Val = RHSC->getSExtValue(); 4352 if ((int)Val < 0) Val = -Val; 4353 4354 // powi(x, 0) -> 1.0 4355 if (Val == 0) 4356 return DAG.getConstantFP(1.0, LHS.getValueType()); 4357 4358 const Function *F = DAG.getMachineFunction().getFunction(); 4359 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4360 // If optimizing for size, don't insert too many multiplies. This 4361 // inserts up to 5 multiplies. 4362 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4363 // We use the simple binary decomposition method to generate the multiply 4364 // sequence. There are more optimal ways to do this (for example, 4365 // powi(x,15) generates one more multiply than it should), but this has 4366 // the benefit of being both really simple and much better than a libcall. 4367 SDValue Res; // Logically starts equal to 1.0 4368 SDValue CurSquare = LHS; 4369 while (Val) { 4370 if (Val & 1) { 4371 if (Res.getNode()) 4372 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4373 else 4374 Res = CurSquare; // 1.0*CurSquare. 4375 } 4376 4377 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4378 CurSquare, CurSquare); 4379 Val >>= 1; 4380 } 4381 4382 // If the original was negative, invert the result, producing 1/(x*x*x). 4383 if (RHSC->getSExtValue() < 0) 4384 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4385 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4386 return Res; 4387 } 4388 } 4389 4390 // Otherwise, expand to a libcall. 4391 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4392 } 4393 4394 // getTruncatedArgReg - Find underlying register used for an truncated 4395 // argument. 4396 static unsigned getTruncatedArgReg(const SDValue &N) { 4397 if (N.getOpcode() != ISD::TRUNCATE) 4398 return 0; 4399 4400 const SDValue &Ext = N.getOperand(0); 4401 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4402 const SDValue &CFR = Ext.getOperand(0); 4403 if (CFR.getOpcode() == ISD::CopyFromReg) 4404 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4405 if (CFR.getOpcode() == ISD::TRUNCATE) 4406 return getTruncatedArgReg(CFR); 4407 } 4408 return 0; 4409 } 4410 4411 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4412 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4413 /// At the end of instruction selection, they will be inserted to the entry BB. 4414 bool 4415 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4416 int64_t Offset, 4417 const SDValue &N) { 4418 const Argument *Arg = dyn_cast<Argument>(V); 4419 if (!Arg) 4420 return false; 4421 4422 MachineFunction &MF = DAG.getMachineFunction(); 4423 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4424 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4425 4426 // Ignore inlined function arguments here. 4427 DIVariable DV(Variable); 4428 if (DV.isInlinedFnArgument(MF.getFunction())) 4429 return false; 4430 4431 unsigned Reg = 0; 4432 // Some arguments' frame index is recorded during argument lowering. 4433 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4434 if (Offset) 4435 Reg = TRI->getFrameRegister(MF); 4436 4437 if (!Reg && N.getNode()) { 4438 if (N.getOpcode() == ISD::CopyFromReg) 4439 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4440 else 4441 Reg = getTruncatedArgReg(N); 4442 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4443 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4444 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4445 if (PR) 4446 Reg = PR; 4447 } 4448 } 4449 4450 if (!Reg) { 4451 // Check if ValueMap has reg number. 4452 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4453 if (VMI != FuncInfo.ValueMap.end()) 4454 Reg = VMI->second; 4455 } 4456 4457 if (!Reg && N.getNode()) { 4458 // Check if frame index is available. 4459 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4460 if (FrameIndexSDNode *FINode = 4461 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4462 Reg = TRI->getFrameRegister(MF); 4463 Offset = FINode->getIndex(); 4464 } 4465 } 4466 4467 if (!Reg) 4468 return false; 4469 4470 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4471 TII->get(TargetOpcode::DBG_VALUE)) 4472 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4473 FuncInfo.ArgDbgValues.push_back(&*MIB); 4474 return true; 4475 } 4476 4477 // VisualStudio defines setjmp as _setjmp 4478 #if defined(_MSC_VER) && defined(setjmp) && \ 4479 !defined(setjmp_undefined_for_msvc) 4480 # pragma push_macro("setjmp") 4481 # undef setjmp 4482 # define setjmp_undefined_for_msvc 4483 #endif 4484 4485 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4486 /// we want to emit this as a call to a named external function, return the name 4487 /// otherwise lower it and return null. 4488 const char * 4489 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4490 DebugLoc dl = getCurDebugLoc(); 4491 SDValue Res; 4492 4493 switch (Intrinsic) { 4494 default: 4495 // By default, turn this into a target intrinsic node. 4496 visitTargetIntrinsic(I, Intrinsic); 4497 return 0; 4498 case Intrinsic::vastart: visitVAStart(I); return 0; 4499 case Intrinsic::vaend: visitVAEnd(I); return 0; 4500 case Intrinsic::vacopy: visitVACopy(I); return 0; 4501 case Intrinsic::returnaddress: 4502 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4503 getValue(I.getArgOperand(0)))); 4504 return 0; 4505 case Intrinsic::frameaddress: 4506 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4507 getValue(I.getArgOperand(0)))); 4508 return 0; 4509 case Intrinsic::setjmp: 4510 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4511 case Intrinsic::longjmp: 4512 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4513 case Intrinsic::memcpy: { 4514 // Assert for address < 256 since we support only user defined address 4515 // spaces. 4516 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4517 < 256 && 4518 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4519 < 256 && 4520 "Unknown address space"); 4521 SDValue Op1 = getValue(I.getArgOperand(0)); 4522 SDValue Op2 = getValue(I.getArgOperand(1)); 4523 SDValue Op3 = getValue(I.getArgOperand(2)); 4524 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4525 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4526 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4527 MachinePointerInfo(I.getArgOperand(0)), 4528 MachinePointerInfo(I.getArgOperand(1)))); 4529 return 0; 4530 } 4531 case Intrinsic::memset: { 4532 // Assert for address < 256 since we support only user defined address 4533 // spaces. 4534 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4535 < 256 && 4536 "Unknown address space"); 4537 SDValue Op1 = getValue(I.getArgOperand(0)); 4538 SDValue Op2 = getValue(I.getArgOperand(1)); 4539 SDValue Op3 = getValue(I.getArgOperand(2)); 4540 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4541 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4542 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4543 MachinePointerInfo(I.getArgOperand(0)))); 4544 return 0; 4545 } 4546 case Intrinsic::memmove: { 4547 // Assert for address < 256 since we support only user defined address 4548 // spaces. 4549 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4550 < 256 && 4551 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4552 < 256 && 4553 "Unknown address space"); 4554 SDValue Op1 = getValue(I.getArgOperand(0)); 4555 SDValue Op2 = getValue(I.getArgOperand(1)); 4556 SDValue Op3 = getValue(I.getArgOperand(2)); 4557 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4558 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4559 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4560 MachinePointerInfo(I.getArgOperand(0)), 4561 MachinePointerInfo(I.getArgOperand(1)))); 4562 return 0; 4563 } 4564 case Intrinsic::dbg_declare: { 4565 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4566 MDNode *Variable = DI.getVariable(); 4567 const Value *Address = DI.getAddress(); 4568 if (!Address || !DIVariable(Variable).Verify()) { 4569 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4570 return 0; 4571 } 4572 4573 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4574 // but do not always have a corresponding SDNode built. The SDNodeOrder 4575 // absolute, but not relative, values are different depending on whether 4576 // debug info exists. 4577 ++SDNodeOrder; 4578 4579 // Check if address has undef value. 4580 if (isa<UndefValue>(Address) || 4581 (Address->use_empty() && !isa<Argument>(Address))) { 4582 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4583 return 0; 4584 } 4585 4586 SDValue &N = NodeMap[Address]; 4587 if (!N.getNode() && isa<Argument>(Address)) 4588 // Check unused arguments map. 4589 N = UnusedArgNodeMap[Address]; 4590 SDDbgValue *SDV; 4591 if (N.getNode()) { 4592 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4593 Address = BCI->getOperand(0); 4594 // Parameters are handled specially. 4595 bool isParameter = 4596 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4597 isa<Argument>(Address)); 4598 4599 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4600 4601 if (isParameter && !AI) { 4602 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4603 if (FINode) 4604 // Byval parameter. We have a frame index at this point. 4605 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4606 0, dl, SDNodeOrder); 4607 else { 4608 // Address is an argument, so try to emit its dbg value using 4609 // virtual register info from the FuncInfo.ValueMap. 4610 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4611 return 0; 4612 } 4613 } else if (AI) 4614 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4615 0, dl, SDNodeOrder); 4616 else { 4617 // Can't do anything with other non-AI cases yet. 4618 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4619 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4620 DEBUG(Address->dump()); 4621 return 0; 4622 } 4623 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4624 } else { 4625 // If Address is an argument then try to emit its dbg value using 4626 // virtual register info from the FuncInfo.ValueMap. 4627 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4628 // If variable is pinned by a alloca in dominating bb then 4629 // use StaticAllocaMap. 4630 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4631 if (AI->getParent() != DI.getParent()) { 4632 DenseMap<const AllocaInst*, int>::iterator SI = 4633 FuncInfo.StaticAllocaMap.find(AI); 4634 if (SI != FuncInfo.StaticAllocaMap.end()) { 4635 SDV = DAG.getDbgValue(Variable, SI->second, 4636 0, dl, SDNodeOrder); 4637 DAG.AddDbgValue(SDV, 0, false); 4638 return 0; 4639 } 4640 } 4641 } 4642 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4643 } 4644 } 4645 return 0; 4646 } 4647 case Intrinsic::dbg_value: { 4648 const DbgValueInst &DI = cast<DbgValueInst>(I); 4649 if (!DIVariable(DI.getVariable()).Verify()) 4650 return 0; 4651 4652 MDNode *Variable = DI.getVariable(); 4653 uint64_t Offset = DI.getOffset(); 4654 const Value *V = DI.getValue(); 4655 if (!V) 4656 return 0; 4657 4658 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4659 // but do not always have a corresponding SDNode built. The SDNodeOrder 4660 // absolute, but not relative, values are different depending on whether 4661 // debug info exists. 4662 ++SDNodeOrder; 4663 SDDbgValue *SDV; 4664 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4665 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4666 DAG.AddDbgValue(SDV, 0, false); 4667 } else { 4668 // Do not use getValue() in here; we don't want to generate code at 4669 // this point if it hasn't been done yet. 4670 SDValue N = NodeMap[V]; 4671 if (!N.getNode() && isa<Argument>(V)) 4672 // Check unused arguments map. 4673 N = UnusedArgNodeMap[V]; 4674 if (N.getNode()) { 4675 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4676 SDV = DAG.getDbgValue(Variable, N.getNode(), 4677 N.getResNo(), Offset, dl, SDNodeOrder); 4678 DAG.AddDbgValue(SDV, N.getNode(), false); 4679 } 4680 } else if (!V->use_empty() ) { 4681 // Do not call getValue(V) yet, as we don't want to generate code. 4682 // Remember it for later. 4683 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4684 DanglingDebugInfoMap[V] = DDI; 4685 } else { 4686 // We may expand this to cover more cases. One case where we have no 4687 // data available is an unreferenced parameter. 4688 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4689 } 4690 } 4691 4692 // Build a debug info table entry. 4693 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4694 V = BCI->getOperand(0); 4695 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4696 // Don't handle byval struct arguments or VLAs, for example. 4697 if (!AI) { 4698 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4699 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4700 return 0; 4701 } 4702 DenseMap<const AllocaInst*, int>::iterator SI = 4703 FuncInfo.StaticAllocaMap.find(AI); 4704 if (SI == FuncInfo.StaticAllocaMap.end()) 4705 return 0; // VLAs. 4706 int FI = SI->second; 4707 4708 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4709 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4710 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4711 return 0; 4712 } 4713 4714 case Intrinsic::eh_typeid_for: { 4715 // Find the type id for the given typeinfo. 4716 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4717 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4718 Res = DAG.getConstant(TypeID, MVT::i32); 4719 setValue(&I, Res); 4720 return 0; 4721 } 4722 4723 case Intrinsic::eh_return_i32: 4724 case Intrinsic::eh_return_i64: 4725 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4726 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4727 MVT::Other, 4728 getControlRoot(), 4729 getValue(I.getArgOperand(0)), 4730 getValue(I.getArgOperand(1)))); 4731 return 0; 4732 case Intrinsic::eh_unwind_init: 4733 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4734 return 0; 4735 case Intrinsic::eh_dwarf_cfa: { 4736 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4737 TLI.getPointerTy()); 4738 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4739 TLI.getPointerTy(), 4740 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4741 TLI.getPointerTy()), 4742 CfaArg); 4743 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4744 TLI.getPointerTy(), 4745 DAG.getConstant(0, TLI.getPointerTy())); 4746 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4747 FA, Offset)); 4748 return 0; 4749 } 4750 case Intrinsic::eh_sjlj_callsite: { 4751 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4752 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4753 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4754 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4755 4756 MMI.setCurrentCallSite(CI->getZExtValue()); 4757 return 0; 4758 } 4759 case Intrinsic::eh_sjlj_functioncontext: { 4760 // Get and store the index of the function context. 4761 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4762 AllocaInst *FnCtx = 4763 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4764 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4765 MFI->setFunctionContextIndex(FI); 4766 return 0; 4767 } 4768 case Intrinsic::eh_sjlj_setjmp: { 4769 SDValue Ops[2]; 4770 Ops[0] = getRoot(); 4771 Ops[1] = getValue(I.getArgOperand(0)); 4772 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4773 DAG.getVTList(MVT::i32, MVT::Other), 4774 Ops, 2); 4775 setValue(&I, Op.getValue(0)); 4776 DAG.setRoot(Op.getValue(1)); 4777 return 0; 4778 } 4779 case Intrinsic::eh_sjlj_longjmp: { 4780 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4781 getRoot(), getValue(I.getArgOperand(0)))); 4782 return 0; 4783 } 4784 4785 case Intrinsic::x86_mmx_pslli_w: 4786 case Intrinsic::x86_mmx_pslli_d: 4787 case Intrinsic::x86_mmx_pslli_q: 4788 case Intrinsic::x86_mmx_psrli_w: 4789 case Intrinsic::x86_mmx_psrli_d: 4790 case Intrinsic::x86_mmx_psrli_q: 4791 case Intrinsic::x86_mmx_psrai_w: 4792 case Intrinsic::x86_mmx_psrai_d: { 4793 SDValue ShAmt = getValue(I.getArgOperand(1)); 4794 if (isa<ConstantSDNode>(ShAmt)) { 4795 visitTargetIntrinsic(I, Intrinsic); 4796 return 0; 4797 } 4798 unsigned NewIntrinsic = 0; 4799 EVT ShAmtVT = MVT::v2i32; 4800 switch (Intrinsic) { 4801 case Intrinsic::x86_mmx_pslli_w: 4802 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4803 break; 4804 case Intrinsic::x86_mmx_pslli_d: 4805 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4806 break; 4807 case Intrinsic::x86_mmx_pslli_q: 4808 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4809 break; 4810 case Intrinsic::x86_mmx_psrli_w: 4811 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4812 break; 4813 case Intrinsic::x86_mmx_psrli_d: 4814 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4815 break; 4816 case Intrinsic::x86_mmx_psrli_q: 4817 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4818 break; 4819 case Intrinsic::x86_mmx_psrai_w: 4820 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4821 break; 4822 case Intrinsic::x86_mmx_psrai_d: 4823 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4824 break; 4825 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4826 } 4827 4828 // The vector shift intrinsics with scalars uses 32b shift amounts but 4829 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4830 // to be zero. 4831 // We must do this early because v2i32 is not a legal type. 4832 DebugLoc dl = getCurDebugLoc(); 4833 SDValue ShOps[2]; 4834 ShOps[0] = ShAmt; 4835 ShOps[1] = DAG.getConstant(0, MVT::i32); 4836 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4837 EVT DestVT = TLI.getValueType(I.getType()); 4838 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4839 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4840 DAG.getConstant(NewIntrinsic, MVT::i32), 4841 getValue(I.getArgOperand(0)), ShAmt); 4842 setValue(&I, Res); 4843 return 0; 4844 } 4845 case Intrinsic::x86_avx_vinsertf128_pd_256: 4846 case Intrinsic::x86_avx_vinsertf128_ps_256: 4847 case Intrinsic::x86_avx_vinsertf128_si_256: 4848 case Intrinsic::x86_avx2_vinserti128: { 4849 DebugLoc dl = getCurDebugLoc(); 4850 EVT DestVT = TLI.getValueType(I.getType()); 4851 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4852 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4853 ElVT.getVectorNumElements(); 4854 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT, 4855 getValue(I.getArgOperand(0)), 4856 getValue(I.getArgOperand(1)), 4857 DAG.getConstant(Idx, MVT::i32)); 4858 setValue(&I, Res); 4859 return 0; 4860 } 4861 case Intrinsic::convertff: 4862 case Intrinsic::convertfsi: 4863 case Intrinsic::convertfui: 4864 case Intrinsic::convertsif: 4865 case Intrinsic::convertuif: 4866 case Intrinsic::convertss: 4867 case Intrinsic::convertsu: 4868 case Intrinsic::convertus: 4869 case Intrinsic::convertuu: { 4870 ISD::CvtCode Code = ISD::CVT_INVALID; 4871 switch (Intrinsic) { 4872 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4873 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4874 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4875 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4876 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4877 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4878 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4879 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4880 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4881 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4882 } 4883 EVT DestVT = TLI.getValueType(I.getType()); 4884 const Value *Op1 = I.getArgOperand(0); 4885 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4886 DAG.getValueType(DestVT), 4887 DAG.getValueType(getValue(Op1).getValueType()), 4888 getValue(I.getArgOperand(1)), 4889 getValue(I.getArgOperand(2)), 4890 Code); 4891 setValue(&I, Res); 4892 return 0; 4893 } 4894 case Intrinsic::sqrt: 4895 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4896 getValue(I.getArgOperand(0)).getValueType(), 4897 getValue(I.getArgOperand(0)))); 4898 return 0; 4899 case Intrinsic::powi: 4900 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4901 getValue(I.getArgOperand(1)), DAG)); 4902 return 0; 4903 case Intrinsic::sin: 4904 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4905 getValue(I.getArgOperand(0)).getValueType(), 4906 getValue(I.getArgOperand(0)))); 4907 return 0; 4908 case Intrinsic::cos: 4909 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4910 getValue(I.getArgOperand(0)).getValueType(), 4911 getValue(I.getArgOperand(0)))); 4912 return 0; 4913 case Intrinsic::log: 4914 visitLog(I); 4915 return 0; 4916 case Intrinsic::log2: 4917 visitLog2(I); 4918 return 0; 4919 case Intrinsic::log10: 4920 visitLog10(I); 4921 return 0; 4922 case Intrinsic::exp: 4923 visitExp(I); 4924 return 0; 4925 case Intrinsic::exp2: 4926 visitExp2(I); 4927 return 0; 4928 case Intrinsic::pow: 4929 visitPow(I); 4930 return 0; 4931 case Intrinsic::fabs: 4932 setValue(&I, DAG.getNode(ISD::FABS, dl, 4933 getValue(I.getArgOperand(0)).getValueType(), 4934 getValue(I.getArgOperand(0)))); 4935 return 0; 4936 case Intrinsic::floor: 4937 setValue(&I, DAG.getNode(ISD::FFLOOR, dl, 4938 getValue(I.getArgOperand(0)).getValueType(), 4939 getValue(I.getArgOperand(0)))); 4940 return 0; 4941 case Intrinsic::fma: 4942 setValue(&I, DAG.getNode(ISD::FMA, dl, 4943 getValue(I.getArgOperand(0)).getValueType(), 4944 getValue(I.getArgOperand(0)), 4945 getValue(I.getArgOperand(1)), 4946 getValue(I.getArgOperand(2)))); 4947 return 0; 4948 case Intrinsic::fmuladd: { 4949 EVT VT = TLI.getValueType(I.getType()); 4950 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4951 TLI.isOperationLegal(ISD::FMA, VT) && 4952 TLI.isFMAFasterThanMulAndAdd(VT)){ 4953 setValue(&I, DAG.getNode(ISD::FMA, dl, 4954 getValue(I.getArgOperand(0)).getValueType(), 4955 getValue(I.getArgOperand(0)), 4956 getValue(I.getArgOperand(1)), 4957 getValue(I.getArgOperand(2)))); 4958 } else { 4959 SDValue Mul = DAG.getNode(ISD::FMUL, dl, 4960 getValue(I.getArgOperand(0)).getValueType(), 4961 getValue(I.getArgOperand(0)), 4962 getValue(I.getArgOperand(1))); 4963 SDValue Add = DAG.getNode(ISD::FADD, dl, 4964 getValue(I.getArgOperand(0)).getValueType(), 4965 Mul, 4966 getValue(I.getArgOperand(2))); 4967 setValue(&I, Add); 4968 } 4969 return 0; 4970 } 4971 case Intrinsic::convert_to_fp16: 4972 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4973 MVT::i16, getValue(I.getArgOperand(0)))); 4974 return 0; 4975 case Intrinsic::convert_from_fp16: 4976 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4977 MVT::f32, getValue(I.getArgOperand(0)))); 4978 return 0; 4979 case Intrinsic::pcmarker: { 4980 SDValue Tmp = getValue(I.getArgOperand(0)); 4981 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4982 return 0; 4983 } 4984 case Intrinsic::readcyclecounter: { 4985 SDValue Op = getRoot(); 4986 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4987 DAG.getVTList(MVT::i64, MVT::Other), 4988 &Op, 1); 4989 setValue(&I, Res); 4990 DAG.setRoot(Res.getValue(1)); 4991 return 0; 4992 } 4993 case Intrinsic::bswap: 4994 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4995 getValue(I.getArgOperand(0)).getValueType(), 4996 getValue(I.getArgOperand(0)))); 4997 return 0; 4998 case Intrinsic::cttz: { 4999 SDValue Arg = getValue(I.getArgOperand(0)); 5000 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5001 EVT Ty = Arg.getValueType(); 5002 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5003 dl, Ty, Arg)); 5004 return 0; 5005 } 5006 case Intrinsic::ctlz: { 5007 SDValue Arg = getValue(I.getArgOperand(0)); 5008 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5009 EVT Ty = Arg.getValueType(); 5010 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5011 dl, Ty, Arg)); 5012 return 0; 5013 } 5014 case Intrinsic::ctpop: { 5015 SDValue Arg = getValue(I.getArgOperand(0)); 5016 EVT Ty = Arg.getValueType(); 5017 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 5018 return 0; 5019 } 5020 case Intrinsic::stacksave: { 5021 SDValue Op = getRoot(); 5022 Res = DAG.getNode(ISD::STACKSAVE, dl, 5023 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 5024 setValue(&I, Res); 5025 DAG.setRoot(Res.getValue(1)); 5026 return 0; 5027 } 5028 case Intrinsic::stackrestore: { 5029 Res = getValue(I.getArgOperand(0)); 5030 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 5031 return 0; 5032 } 5033 case Intrinsic::stackprotector: { 5034 // Emit code into the DAG to store the stack guard onto the stack. 5035 MachineFunction &MF = DAG.getMachineFunction(); 5036 MachineFrameInfo *MFI = MF.getFrameInfo(); 5037 EVT PtrTy = TLI.getPointerTy(); 5038 5039 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5040 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5041 5042 int FI = FuncInfo.StaticAllocaMap[Slot]; 5043 MFI->setStackProtectorIndex(FI); 5044 5045 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5046 5047 // Store the stack protector onto the stack. 5048 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 5049 MachinePointerInfo::getFixedStack(FI), 5050 true, false, 0); 5051 setValue(&I, Res); 5052 DAG.setRoot(Res); 5053 return 0; 5054 } 5055 case Intrinsic::objectsize: { 5056 // If we don't know by now, we're never going to know. 5057 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5058 5059 assert(CI && "Non-constant type in __builtin_object_size?"); 5060 5061 SDValue Arg = getValue(I.getCalledValue()); 5062 EVT Ty = Arg.getValueType(); 5063 5064 if (CI->isZero()) 5065 Res = DAG.getConstant(-1ULL, Ty); 5066 else 5067 Res = DAG.getConstant(0, Ty); 5068 5069 setValue(&I, Res); 5070 return 0; 5071 } 5072 case Intrinsic::var_annotation: 5073 // Discard annotate attributes 5074 return 0; 5075 5076 case Intrinsic::init_trampoline: { 5077 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5078 5079 SDValue Ops[6]; 5080 Ops[0] = getRoot(); 5081 Ops[1] = getValue(I.getArgOperand(0)); 5082 Ops[2] = getValue(I.getArgOperand(1)); 5083 Ops[3] = getValue(I.getArgOperand(2)); 5084 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5085 Ops[5] = DAG.getSrcValue(F); 5086 5087 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5088 5089 DAG.setRoot(Res); 5090 return 0; 5091 } 5092 case Intrinsic::adjust_trampoline: { 5093 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5094 TLI.getPointerTy(), 5095 getValue(I.getArgOperand(0)))); 5096 return 0; 5097 } 5098 case Intrinsic::gcroot: 5099 if (GFI) { 5100 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5101 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5102 5103 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5104 GFI->addStackRoot(FI->getIndex(), TypeMap); 5105 } 5106 return 0; 5107 case Intrinsic::gcread: 5108 case Intrinsic::gcwrite: 5109 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5110 case Intrinsic::flt_rounds: 5111 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5112 return 0; 5113 5114 case Intrinsic::expect: { 5115 // Just replace __builtin_expect(exp, c) with EXP. 5116 setValue(&I, getValue(I.getArgOperand(0))); 5117 return 0; 5118 } 5119 5120 case Intrinsic::trap: { 5121 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5122 if (TrapFuncName.empty()) { 5123 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 5124 return 0; 5125 } 5126 TargetLowering::ArgListTy Args; 5127 TargetLowering:: 5128 CallLoweringInfo CLI(getRoot(), I.getType(), 5129 false, false, false, false, 0, CallingConv::C, 5130 /*isTailCall=*/false, 5131 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5132 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5133 Args, DAG, getCurDebugLoc()); 5134 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5135 DAG.setRoot(Result.second); 5136 return 0; 5137 } 5138 case Intrinsic::debugtrap: { 5139 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, dl,MVT::Other, getRoot())); 5140 return 0; 5141 } 5142 case Intrinsic::uadd_with_overflow: 5143 case Intrinsic::sadd_with_overflow: 5144 case Intrinsic::usub_with_overflow: 5145 case Intrinsic::ssub_with_overflow: 5146 case Intrinsic::umul_with_overflow: 5147 case Intrinsic::smul_with_overflow: { 5148 ISD::NodeType Op; 5149 switch (Intrinsic) { 5150 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5151 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5152 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5153 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5154 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5155 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5156 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5157 } 5158 SDValue Op1 = getValue(I.getArgOperand(0)); 5159 SDValue Op2 = getValue(I.getArgOperand(1)); 5160 5161 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5162 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 5163 return 0; 5164 } 5165 case Intrinsic::prefetch: { 5166 SDValue Ops[5]; 5167 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5168 Ops[0] = getRoot(); 5169 Ops[1] = getValue(I.getArgOperand(0)); 5170 Ops[2] = getValue(I.getArgOperand(1)); 5171 Ops[3] = getValue(I.getArgOperand(2)); 5172 Ops[4] = getValue(I.getArgOperand(3)); 5173 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5174 DAG.getVTList(MVT::Other), 5175 &Ops[0], 5, 5176 EVT::getIntegerVT(*Context, 8), 5177 MachinePointerInfo(I.getArgOperand(0)), 5178 0, /* align */ 5179 false, /* volatile */ 5180 rw==0, /* read */ 5181 rw==1)); /* write */ 5182 return 0; 5183 } 5184 5185 case Intrinsic::invariant_start: 5186 case Intrinsic::lifetime_start: 5187 // Discard region information. 5188 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5189 return 0; 5190 case Intrinsic::invariant_end: 5191 case Intrinsic::lifetime_end: 5192 // Discard region information. 5193 return 0; 5194 case Intrinsic::donothing: 5195 // ignore 5196 return 0; 5197 } 5198 } 5199 5200 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5201 bool isTailCall, 5202 MachineBasicBlock *LandingPad) { 5203 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5204 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5205 Type *RetTy = FTy->getReturnType(); 5206 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5207 MCSymbol *BeginLabel = 0; 5208 5209 TargetLowering::ArgListTy Args; 5210 TargetLowering::ArgListEntry Entry; 5211 Args.reserve(CS.arg_size()); 5212 5213 // Check whether the function can return without sret-demotion. 5214 SmallVector<ISD::OutputArg, 4> Outs; 5215 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5216 Outs, TLI); 5217 5218 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5219 DAG.getMachineFunction(), 5220 FTy->isVarArg(), Outs, 5221 FTy->getContext()); 5222 5223 SDValue DemoteStackSlot; 5224 int DemoteStackIdx = -100; 5225 5226 if (!CanLowerReturn) { 5227 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 5228 FTy->getReturnType()); 5229 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 5230 FTy->getReturnType()); 5231 MachineFunction &MF = DAG.getMachineFunction(); 5232 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5233 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5234 5235 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5236 Entry.Node = DemoteStackSlot; 5237 Entry.Ty = StackSlotPtrType; 5238 Entry.isSExt = false; 5239 Entry.isZExt = false; 5240 Entry.isInReg = false; 5241 Entry.isSRet = true; 5242 Entry.isNest = false; 5243 Entry.isByVal = false; 5244 Entry.Alignment = Align; 5245 Args.push_back(Entry); 5246 RetTy = Type::getVoidTy(FTy->getContext()); 5247 } 5248 5249 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5250 i != e; ++i) { 5251 const Value *V = *i; 5252 5253 // Skip empty types 5254 if (V->getType()->isEmptyTy()) 5255 continue; 5256 5257 SDValue ArgNode = getValue(V); 5258 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5259 5260 unsigned attrInd = i - CS.arg_begin() + 1; 5261 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5262 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5263 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5264 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5265 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5266 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5267 Entry.Alignment = CS.getParamAlignment(attrInd); 5268 Args.push_back(Entry); 5269 } 5270 5271 if (LandingPad) { 5272 // Insert a label before the invoke call to mark the try range. This can be 5273 // used to detect deletion of the invoke via the MachineModuleInfo. 5274 BeginLabel = MMI.getContext().CreateTempSymbol(); 5275 5276 // For SjLj, keep track of which landing pads go with which invokes 5277 // so as to maintain the ordering of pads in the LSDA. 5278 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5279 if (CallSiteIndex) { 5280 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5281 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5282 5283 // Now that the call site is handled, stop tracking it. 5284 MMI.setCurrentCallSite(0); 5285 } 5286 5287 // Both PendingLoads and PendingExports must be flushed here; 5288 // this call might not return. 5289 (void)getRoot(); 5290 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5291 } 5292 5293 // Check if target-independent constraints permit a tail call here. 5294 // Target-dependent constraints are checked within TLI.LowerCallTo. 5295 if (isTailCall && 5296 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5297 isTailCall = false; 5298 5299 // If there's a possibility that fast-isel has already selected some amount 5300 // of the current basic block, don't emit a tail call. 5301 if (isTailCall && TM.Options.EnableFastISel) 5302 isTailCall = false; 5303 5304 TargetLowering:: 5305 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5306 getCurDebugLoc(), CS); 5307 std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI); 5308 assert((isTailCall || Result.second.getNode()) && 5309 "Non-null chain expected with non-tail call!"); 5310 assert((Result.second.getNode() || !Result.first.getNode()) && 5311 "Null value expected with tail call!"); 5312 if (Result.first.getNode()) { 5313 setValue(CS.getInstruction(), Result.first); 5314 } else if (!CanLowerReturn && Result.second.getNode()) { 5315 // The instruction result is the result of loading from the 5316 // hidden sret parameter. 5317 SmallVector<EVT, 1> PVTs; 5318 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5319 5320 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5321 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5322 EVT PtrVT = PVTs[0]; 5323 5324 SmallVector<EVT, 4> RetTys; 5325 SmallVector<uint64_t, 4> Offsets; 5326 RetTy = FTy->getReturnType(); 5327 ComputeValueVTs(TLI, RetTy, RetTys, &Offsets); 5328 5329 unsigned NumValues = RetTys.size(); 5330 SmallVector<SDValue, 4> Values(NumValues); 5331 SmallVector<SDValue, 4> Chains(NumValues); 5332 5333 for (unsigned i = 0; i < NumValues; ++i) { 5334 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5335 DemoteStackSlot, 5336 DAG.getConstant(Offsets[i], PtrVT)); 5337 SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add, 5338 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5339 false, false, false, 1); 5340 Values[i] = L; 5341 Chains[i] = L.getValue(1); 5342 } 5343 5344 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5345 MVT::Other, &Chains[0], NumValues); 5346 PendingLoads.push_back(Chain); 5347 5348 setValue(CS.getInstruction(), 5349 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5350 DAG.getVTList(&RetTys[0], RetTys.size()), 5351 &Values[0], Values.size())); 5352 } 5353 5354 // Assign order to nodes here. If the call does not produce a result, it won't 5355 // be mapped to a SDNode and visit() will not assign it an order number. 5356 if (!Result.second.getNode()) { 5357 // As a special case, a null chain means that a tail call has been emitted and 5358 // the DAG root is already updated. 5359 HasTailCall = true; 5360 ++SDNodeOrder; 5361 AssignOrderingToNode(DAG.getRoot().getNode()); 5362 } else { 5363 DAG.setRoot(Result.second); 5364 ++SDNodeOrder; 5365 AssignOrderingToNode(Result.second.getNode()); 5366 } 5367 5368 if (LandingPad) { 5369 // Insert a label at the end of the invoke call to mark the try range. This 5370 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5371 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5372 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5373 5374 // Inform MachineModuleInfo of range. 5375 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5376 } 5377 } 5378 5379 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5380 /// value is equal or not-equal to zero. 5381 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5382 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5383 UI != E; ++UI) { 5384 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5385 if (IC->isEquality()) 5386 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5387 if (C->isNullValue()) 5388 continue; 5389 // Unknown instruction. 5390 return false; 5391 } 5392 return true; 5393 } 5394 5395 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5396 Type *LoadTy, 5397 SelectionDAGBuilder &Builder) { 5398 5399 // Check to see if this load can be trivially constant folded, e.g. if the 5400 // input is from a string literal. 5401 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5402 // Cast pointer to the type we really want to load. 5403 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5404 PointerType::getUnqual(LoadTy)); 5405 5406 if (const Constant *LoadCst = 5407 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5408 Builder.TD)) 5409 return Builder.getValue(LoadCst); 5410 } 5411 5412 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5413 // still constant memory, the input chain can be the entry node. 5414 SDValue Root; 5415 bool ConstantMemory = false; 5416 5417 // Do not serialize (non-volatile) loads of constant memory with anything. 5418 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5419 Root = Builder.DAG.getEntryNode(); 5420 ConstantMemory = true; 5421 } else { 5422 // Do not serialize non-volatile loads against each other. 5423 Root = Builder.DAG.getRoot(); 5424 } 5425 5426 SDValue Ptr = Builder.getValue(PtrVal); 5427 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5428 Ptr, MachinePointerInfo(PtrVal), 5429 false /*volatile*/, 5430 false /*nontemporal*/, 5431 false /*isinvariant*/, 1 /* align=1 */); 5432 5433 if (!ConstantMemory) 5434 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5435 return LoadVal; 5436 } 5437 5438 5439 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5440 /// If so, return true and lower it, otherwise return false and it will be 5441 /// lowered like a normal call. 5442 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5443 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5444 if (I.getNumArgOperands() != 3) 5445 return false; 5446 5447 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5448 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5449 !I.getArgOperand(2)->getType()->isIntegerTy() || 5450 !I.getType()->isIntegerTy()) 5451 return false; 5452 5453 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5454 5455 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5456 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5457 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5458 bool ActuallyDoIt = true; 5459 MVT LoadVT; 5460 Type *LoadTy; 5461 switch (Size->getZExtValue()) { 5462 default: 5463 LoadVT = MVT::Other; 5464 LoadTy = 0; 5465 ActuallyDoIt = false; 5466 break; 5467 case 2: 5468 LoadVT = MVT::i16; 5469 LoadTy = Type::getInt16Ty(Size->getContext()); 5470 break; 5471 case 4: 5472 LoadVT = MVT::i32; 5473 LoadTy = Type::getInt32Ty(Size->getContext()); 5474 break; 5475 case 8: 5476 LoadVT = MVT::i64; 5477 LoadTy = Type::getInt64Ty(Size->getContext()); 5478 break; 5479 /* 5480 case 16: 5481 LoadVT = MVT::v4i32; 5482 LoadTy = Type::getInt32Ty(Size->getContext()); 5483 LoadTy = VectorType::get(LoadTy, 4); 5484 break; 5485 */ 5486 } 5487 5488 // This turns into unaligned loads. We only do this if the target natively 5489 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5490 // we'll only produce a small number of byte loads. 5491 5492 // Require that we can find a legal MVT, and only do this if the target 5493 // supports unaligned loads of that type. Expanding into byte loads would 5494 // bloat the code. 5495 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5496 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5497 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5498 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5499 ActuallyDoIt = false; 5500 } 5501 5502 if (ActuallyDoIt) { 5503 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5504 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5505 5506 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5507 ISD::SETNE); 5508 EVT CallVT = TLI.getValueType(I.getType(), true); 5509 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5510 return true; 5511 } 5512 } 5513 5514 5515 return false; 5516 } 5517 5518 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5519 /// operation (as expected), translate it to an SDNode with the specified opcode 5520 /// and return true. 5521 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5522 unsigned Opcode) { 5523 // Sanity check that it really is a unary floating-point call. 5524 if (I.getNumArgOperands() != 1 || 5525 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5526 I.getType() != I.getArgOperand(0)->getType() || 5527 !I.onlyReadsMemory()) 5528 return false; 5529 5530 SDValue Tmp = getValue(I.getArgOperand(0)); 5531 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp)); 5532 return true; 5533 } 5534 5535 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5536 // Handle inline assembly differently. 5537 if (isa<InlineAsm>(I.getCalledValue())) { 5538 visitInlineAsm(&I); 5539 return; 5540 } 5541 5542 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5543 ComputeUsesVAFloatArgument(I, &MMI); 5544 5545 const char *RenameFn = 0; 5546 if (Function *F = I.getCalledFunction()) { 5547 if (F->isDeclaration()) { 5548 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5549 if (unsigned IID = II->getIntrinsicID(F)) { 5550 RenameFn = visitIntrinsicCall(I, IID); 5551 if (!RenameFn) 5552 return; 5553 } 5554 } 5555 if (unsigned IID = F->getIntrinsicID()) { 5556 RenameFn = visitIntrinsicCall(I, IID); 5557 if (!RenameFn) 5558 return; 5559 } 5560 } 5561 5562 // Check for well-known libc/libm calls. If the function is internal, it 5563 // can't be a library call. 5564 LibFunc::Func Func; 5565 if (!F->hasLocalLinkage() && F->hasName() && 5566 LibInfo->getLibFunc(F->getName(), Func) && 5567 LibInfo->hasOptimizedCodeGen(Func)) { 5568 switch (Func) { 5569 default: break; 5570 case LibFunc::copysign: 5571 case LibFunc::copysignf: 5572 case LibFunc::copysignl: 5573 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5574 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5575 I.getType() == I.getArgOperand(0)->getType() && 5576 I.getType() == I.getArgOperand(1)->getType() && 5577 I.onlyReadsMemory()) { 5578 SDValue LHS = getValue(I.getArgOperand(0)); 5579 SDValue RHS = getValue(I.getArgOperand(1)); 5580 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5581 LHS.getValueType(), LHS, RHS)); 5582 return; 5583 } 5584 break; 5585 case LibFunc::fabs: 5586 case LibFunc::fabsf: 5587 case LibFunc::fabsl: 5588 if (visitUnaryFloatCall(I, ISD::FABS)) 5589 return; 5590 break; 5591 case LibFunc::sin: 5592 case LibFunc::sinf: 5593 case LibFunc::sinl: 5594 if (visitUnaryFloatCall(I, ISD::FSIN)) 5595 return; 5596 break; 5597 case LibFunc::cos: 5598 case LibFunc::cosf: 5599 case LibFunc::cosl: 5600 if (visitUnaryFloatCall(I, ISD::FCOS)) 5601 return; 5602 break; 5603 case LibFunc::sqrt: 5604 case LibFunc::sqrtf: 5605 case LibFunc::sqrtl: 5606 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5607 return; 5608 break; 5609 case LibFunc::floor: 5610 case LibFunc::floorf: 5611 case LibFunc::floorl: 5612 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5613 return; 5614 break; 5615 case LibFunc::nearbyint: 5616 case LibFunc::nearbyintf: 5617 case LibFunc::nearbyintl: 5618 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5619 return; 5620 break; 5621 case LibFunc::ceil: 5622 case LibFunc::ceilf: 5623 case LibFunc::ceill: 5624 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5625 return; 5626 break; 5627 case LibFunc::rint: 5628 case LibFunc::rintf: 5629 case LibFunc::rintl: 5630 if (visitUnaryFloatCall(I, ISD::FRINT)) 5631 return; 5632 break; 5633 case LibFunc::trunc: 5634 case LibFunc::truncf: 5635 case LibFunc::truncl: 5636 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5637 return; 5638 break; 5639 case LibFunc::log2: 5640 case LibFunc::log2f: 5641 case LibFunc::log2l: 5642 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5643 return; 5644 break; 5645 case LibFunc::exp2: 5646 case LibFunc::exp2f: 5647 case LibFunc::exp2l: 5648 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5649 return; 5650 break; 5651 case LibFunc::memcmp: 5652 if (visitMemCmpCall(I)) 5653 return; 5654 break; 5655 } 5656 } 5657 } 5658 5659 SDValue Callee; 5660 if (!RenameFn) 5661 Callee = getValue(I.getCalledValue()); 5662 else 5663 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5664 5665 // Check if we can potentially perform a tail call. More detailed checking is 5666 // be done within LowerCallTo, after more information about the call is known. 5667 LowerCallTo(&I, Callee, I.isTailCall()); 5668 } 5669 5670 namespace { 5671 5672 /// AsmOperandInfo - This contains information for each constraint that we are 5673 /// lowering. 5674 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5675 public: 5676 /// CallOperand - If this is the result output operand or a clobber 5677 /// this is null, otherwise it is the incoming operand to the CallInst. 5678 /// This gets modified as the asm is processed. 5679 SDValue CallOperand; 5680 5681 /// AssignedRegs - If this is a register or register class operand, this 5682 /// contains the set of register corresponding to the operand. 5683 RegsForValue AssignedRegs; 5684 5685 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5686 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5687 } 5688 5689 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5690 /// corresponds to. If there is no Value* for this operand, it returns 5691 /// MVT::Other. 5692 EVT getCallOperandValEVT(LLVMContext &Context, 5693 const TargetLowering &TLI, 5694 const TargetData *TD) const { 5695 if (CallOperandVal == 0) return MVT::Other; 5696 5697 if (isa<BasicBlock>(CallOperandVal)) 5698 return TLI.getPointerTy(); 5699 5700 llvm::Type *OpTy = CallOperandVal->getType(); 5701 5702 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5703 // If this is an indirect operand, the operand is a pointer to the 5704 // accessed type. 5705 if (isIndirect) { 5706 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5707 if (!PtrTy) 5708 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5709 OpTy = PtrTy->getElementType(); 5710 } 5711 5712 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5713 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5714 if (STy->getNumElements() == 1) 5715 OpTy = STy->getElementType(0); 5716 5717 // If OpTy is not a single value, it may be a struct/union that we 5718 // can tile with integers. 5719 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5720 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5721 switch (BitSize) { 5722 default: break; 5723 case 1: 5724 case 8: 5725 case 16: 5726 case 32: 5727 case 64: 5728 case 128: 5729 OpTy = IntegerType::get(Context, BitSize); 5730 break; 5731 } 5732 } 5733 5734 return TLI.getValueType(OpTy, true); 5735 } 5736 }; 5737 5738 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5739 5740 } // end anonymous namespace 5741 5742 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5743 /// specified operand. We prefer to assign virtual registers, to allow the 5744 /// register allocator to handle the assignment process. However, if the asm 5745 /// uses features that we can't model on machineinstrs, we have SDISel do the 5746 /// allocation. This produces generally horrible, but correct, code. 5747 /// 5748 /// OpInfo describes the operand. 5749 /// 5750 static void GetRegistersForValue(SelectionDAG &DAG, 5751 const TargetLowering &TLI, 5752 DebugLoc DL, 5753 SDISelAsmOperandInfo &OpInfo) { 5754 LLVMContext &Context = *DAG.getContext(); 5755 5756 MachineFunction &MF = DAG.getMachineFunction(); 5757 SmallVector<unsigned, 4> Regs; 5758 5759 // If this is a constraint for a single physreg, or a constraint for a 5760 // register class, find it. 5761 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5762 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5763 OpInfo.ConstraintVT); 5764 5765 unsigned NumRegs = 1; 5766 if (OpInfo.ConstraintVT != MVT::Other) { 5767 // If this is a FP input in an integer register (or visa versa) insert a bit 5768 // cast of the input value. More generally, handle any case where the input 5769 // value disagrees with the register class we plan to stick this in. 5770 if (OpInfo.Type == InlineAsm::isInput && 5771 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5772 // Try to convert to the first EVT that the reg class contains. If the 5773 // types are identical size, use a bitcast to convert (e.g. two differing 5774 // vector types). 5775 EVT RegVT = *PhysReg.second->vt_begin(); 5776 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5777 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5778 RegVT, OpInfo.CallOperand); 5779 OpInfo.ConstraintVT = RegVT; 5780 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5781 // If the input is a FP value and we want it in FP registers, do a 5782 // bitcast to the corresponding integer type. This turns an f64 value 5783 // into i64, which can be passed with two i32 values on a 32-bit 5784 // machine. 5785 RegVT = EVT::getIntegerVT(Context, 5786 OpInfo.ConstraintVT.getSizeInBits()); 5787 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5788 RegVT, OpInfo.CallOperand); 5789 OpInfo.ConstraintVT = RegVT; 5790 } 5791 } 5792 5793 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5794 } 5795 5796 EVT RegVT; 5797 EVT ValueVT = OpInfo.ConstraintVT; 5798 5799 // If this is a constraint for a specific physical register, like {r17}, 5800 // assign it now. 5801 if (unsigned AssignedReg = PhysReg.first) { 5802 const TargetRegisterClass *RC = PhysReg.second; 5803 if (OpInfo.ConstraintVT == MVT::Other) 5804 ValueVT = *RC->vt_begin(); 5805 5806 // Get the actual register value type. This is important, because the user 5807 // may have asked for (e.g.) the AX register in i32 type. We need to 5808 // remember that AX is actually i16 to get the right extension. 5809 RegVT = *RC->vt_begin(); 5810 5811 // This is a explicit reference to a physical register. 5812 Regs.push_back(AssignedReg); 5813 5814 // If this is an expanded reference, add the rest of the regs to Regs. 5815 if (NumRegs != 1) { 5816 TargetRegisterClass::iterator I = RC->begin(); 5817 for (; *I != AssignedReg; ++I) 5818 assert(I != RC->end() && "Didn't find reg!"); 5819 5820 // Already added the first reg. 5821 --NumRegs; ++I; 5822 for (; NumRegs; --NumRegs, ++I) { 5823 assert(I != RC->end() && "Ran out of registers to allocate!"); 5824 Regs.push_back(*I); 5825 } 5826 } 5827 5828 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5829 return; 5830 } 5831 5832 // Otherwise, if this was a reference to an LLVM register class, create vregs 5833 // for this reference. 5834 if (const TargetRegisterClass *RC = PhysReg.second) { 5835 RegVT = *RC->vt_begin(); 5836 if (OpInfo.ConstraintVT == MVT::Other) 5837 ValueVT = RegVT; 5838 5839 // Create the appropriate number of virtual registers. 5840 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5841 for (; NumRegs; --NumRegs) 5842 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5843 5844 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5845 return; 5846 } 5847 5848 // Otherwise, we couldn't allocate enough registers for this. 5849 } 5850 5851 /// visitInlineAsm - Handle a call to an InlineAsm object. 5852 /// 5853 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5854 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5855 5856 /// ConstraintOperands - Information about all of the constraints. 5857 SDISelAsmOperandInfoVector ConstraintOperands; 5858 5859 TargetLowering::AsmOperandInfoVector 5860 TargetConstraints = TLI.ParseConstraints(CS); 5861 5862 bool hasMemory = false; 5863 5864 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5865 unsigned ResNo = 0; // ResNo - The result number of the next output. 5866 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5867 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5868 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5869 5870 EVT OpVT = MVT::Other; 5871 5872 // Compute the value type for each operand. 5873 switch (OpInfo.Type) { 5874 case InlineAsm::isOutput: 5875 // Indirect outputs just consume an argument. 5876 if (OpInfo.isIndirect) { 5877 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5878 break; 5879 } 5880 5881 // The return value of the call is this value. As such, there is no 5882 // corresponding argument. 5883 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5884 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5885 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5886 } else { 5887 assert(ResNo == 0 && "Asm only has one result!"); 5888 OpVT = TLI.getValueType(CS.getType()); 5889 } 5890 ++ResNo; 5891 break; 5892 case InlineAsm::isInput: 5893 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5894 break; 5895 case InlineAsm::isClobber: 5896 // Nothing to do. 5897 break; 5898 } 5899 5900 // If this is an input or an indirect output, process the call argument. 5901 // BasicBlocks are labels, currently appearing only in asm's. 5902 if (OpInfo.CallOperandVal) { 5903 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5904 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5905 } else { 5906 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5907 } 5908 5909 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5910 } 5911 5912 OpInfo.ConstraintVT = OpVT; 5913 5914 // Indirect operand accesses access memory. 5915 if (OpInfo.isIndirect) 5916 hasMemory = true; 5917 else { 5918 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5919 TargetLowering::ConstraintType 5920 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5921 if (CType == TargetLowering::C_Memory) { 5922 hasMemory = true; 5923 break; 5924 } 5925 } 5926 } 5927 } 5928 5929 SDValue Chain, Flag; 5930 5931 // We won't need to flush pending loads if this asm doesn't touch 5932 // memory and is nonvolatile. 5933 if (hasMemory || IA->hasSideEffects()) 5934 Chain = getRoot(); 5935 else 5936 Chain = DAG.getRoot(); 5937 5938 // Second pass over the constraints: compute which constraint option to use 5939 // and assign registers to constraints that want a specific physreg. 5940 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5941 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5942 5943 // If this is an output operand with a matching input operand, look up the 5944 // matching input. If their types mismatch, e.g. one is an integer, the 5945 // other is floating point, or their sizes are different, flag it as an 5946 // error. 5947 if (OpInfo.hasMatchingInput()) { 5948 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5949 5950 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5951 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5952 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5953 OpInfo.ConstraintVT); 5954 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5955 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 5956 Input.ConstraintVT); 5957 if ((OpInfo.ConstraintVT.isInteger() != 5958 Input.ConstraintVT.isInteger()) || 5959 (MatchRC.second != InputRC.second)) { 5960 report_fatal_error("Unsupported asm: input constraint" 5961 " with a matching output constraint of" 5962 " incompatible type!"); 5963 } 5964 Input.ConstraintVT = OpInfo.ConstraintVT; 5965 } 5966 } 5967 5968 // Compute the constraint code and ConstraintType to use. 5969 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5970 5971 // If this is a memory input, and if the operand is not indirect, do what we 5972 // need to to provide an address for the memory input. 5973 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5974 !OpInfo.isIndirect) { 5975 assert((OpInfo.isMultipleAlternative || 5976 (OpInfo.Type == InlineAsm::isInput)) && 5977 "Can only indirectify direct input operands!"); 5978 5979 // Memory operands really want the address of the value. If we don't have 5980 // an indirect input, put it in the constpool if we can, otherwise spill 5981 // it to a stack slot. 5982 // TODO: This isn't quite right. We need to handle these according to 5983 // the addressing mode that the constraint wants. Also, this may take 5984 // an additional register for the computation and we don't want that 5985 // either. 5986 5987 // If the operand is a float, integer, or vector constant, spill to a 5988 // constant pool entry to get its address. 5989 const Value *OpVal = OpInfo.CallOperandVal; 5990 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5991 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5992 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5993 TLI.getPointerTy()); 5994 } else { 5995 // Otherwise, create a stack slot and emit a store to it before the 5996 // asm. 5997 Type *Ty = OpVal->getType(); 5998 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5999 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 6000 MachineFunction &MF = DAG.getMachineFunction(); 6001 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6002 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6003 Chain = DAG.getStore(Chain, getCurDebugLoc(), 6004 OpInfo.CallOperand, StackSlot, 6005 MachinePointerInfo::getFixedStack(SSFI), 6006 false, false, 0); 6007 OpInfo.CallOperand = StackSlot; 6008 } 6009 6010 // There is no longer a Value* corresponding to this operand. 6011 OpInfo.CallOperandVal = 0; 6012 6013 // It is now an indirect operand. 6014 OpInfo.isIndirect = true; 6015 } 6016 6017 // If this constraint is for a specific register, allocate it before 6018 // anything else. 6019 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6020 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6021 } 6022 6023 // Second pass - Loop over all of the operands, assigning virtual or physregs 6024 // to register class operands. 6025 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6026 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6027 6028 // C_Register operands have already been allocated, Other/Memory don't need 6029 // to be. 6030 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6031 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6032 } 6033 6034 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6035 std::vector<SDValue> AsmNodeOperands; 6036 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6037 AsmNodeOperands.push_back( 6038 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6039 TLI.getPointerTy())); 6040 6041 // If we have a !srcloc metadata node associated with it, we want to attach 6042 // this to the ultimately generated inline asm machineinstr. To do this, we 6043 // pass in the third operand as this (potentially null) inline asm MDNode. 6044 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6045 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6046 6047 // Remember the HasSideEffect and AlignStack bits as operand 3. 6048 unsigned ExtraInfo = 0; 6049 if (IA->hasSideEffects()) 6050 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6051 if (IA->isAlignStack()) 6052 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6053 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6054 TLI.getPointerTy())); 6055 6056 // Loop over all of the inputs, copying the operand values into the 6057 // appropriate registers and processing the output regs. 6058 RegsForValue RetValRegs; 6059 6060 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6061 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6062 6063 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6064 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6065 6066 switch (OpInfo.Type) { 6067 case InlineAsm::isOutput: { 6068 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6069 OpInfo.ConstraintType != TargetLowering::C_Register) { 6070 // Memory output, or 'other' output (e.g. 'X' constraint). 6071 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6072 6073 // Add information to the INLINEASM node to know about this output. 6074 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6075 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6076 TLI.getPointerTy())); 6077 AsmNodeOperands.push_back(OpInfo.CallOperand); 6078 break; 6079 } 6080 6081 // Otherwise, this is a register or register class output. 6082 6083 // Copy the output from the appropriate register. Find a register that 6084 // we can use. 6085 if (OpInfo.AssignedRegs.Regs.empty()) { 6086 LLVMContext &Ctx = *DAG.getContext(); 6087 Ctx.emitError(CS.getInstruction(), 6088 "couldn't allocate output register for constraint '" + 6089 Twine(OpInfo.ConstraintCode) + "'"); 6090 break; 6091 } 6092 6093 // If this is an indirect operand, store through the pointer after the 6094 // asm. 6095 if (OpInfo.isIndirect) { 6096 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6097 OpInfo.CallOperandVal)); 6098 } else { 6099 // This is the result value of the call. 6100 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6101 // Concatenate this output onto the outputs list. 6102 RetValRegs.append(OpInfo.AssignedRegs); 6103 } 6104 6105 // Add information to the INLINEASM node to know that this register is 6106 // set. 6107 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6108 InlineAsm::Kind_RegDefEarlyClobber : 6109 InlineAsm::Kind_RegDef, 6110 false, 6111 0, 6112 DAG, 6113 AsmNodeOperands); 6114 break; 6115 } 6116 case InlineAsm::isInput: { 6117 SDValue InOperandVal = OpInfo.CallOperand; 6118 6119 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6120 // If this is required to match an output register we have already set, 6121 // just use its register. 6122 unsigned OperandNo = OpInfo.getMatchedOperand(); 6123 6124 // Scan until we find the definition we already emitted of this operand. 6125 // When we find it, create a RegsForValue operand. 6126 unsigned CurOp = InlineAsm::Op_FirstOperand; 6127 for (; OperandNo; --OperandNo) { 6128 // Advance to the next operand. 6129 unsigned OpFlag = 6130 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6131 assert((InlineAsm::isRegDefKind(OpFlag) || 6132 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6133 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6134 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6135 } 6136 6137 unsigned OpFlag = 6138 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6139 if (InlineAsm::isRegDefKind(OpFlag) || 6140 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6141 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6142 if (OpInfo.isIndirect) { 6143 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6144 LLVMContext &Ctx = *DAG.getContext(); 6145 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6146 " don't know how to handle tied " 6147 "indirect register inputs"); 6148 } 6149 6150 RegsForValue MatchedRegs; 6151 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6152 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6153 MatchedRegs.RegVTs.push_back(RegVT); 6154 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6155 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6156 i != e; ++i) 6157 MatchedRegs.Regs.push_back 6158 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6159 6160 // Use the produced MatchedRegs object to 6161 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6162 Chain, &Flag); 6163 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6164 true, OpInfo.getMatchedOperand(), 6165 DAG, AsmNodeOperands); 6166 break; 6167 } 6168 6169 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6170 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6171 "Unexpected number of operands"); 6172 // Add information to the INLINEASM node to know about this input. 6173 // See InlineAsm.h isUseOperandTiedToDef. 6174 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6175 OpInfo.getMatchedOperand()); 6176 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6177 TLI.getPointerTy())); 6178 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6179 break; 6180 } 6181 6182 // Treat indirect 'X' constraint as memory. 6183 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6184 OpInfo.isIndirect) 6185 OpInfo.ConstraintType = TargetLowering::C_Memory; 6186 6187 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6188 std::vector<SDValue> Ops; 6189 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6190 Ops, DAG); 6191 if (Ops.empty()) { 6192 LLVMContext &Ctx = *DAG.getContext(); 6193 Ctx.emitError(CS.getInstruction(), 6194 "invalid operand for inline asm constraint '" + 6195 Twine(OpInfo.ConstraintCode) + "'"); 6196 break; 6197 } 6198 6199 // Add information to the INLINEASM node to know about this input. 6200 unsigned ResOpType = 6201 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6202 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6203 TLI.getPointerTy())); 6204 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6205 break; 6206 } 6207 6208 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6209 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6210 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6211 "Memory operands expect pointer values"); 6212 6213 // Add information to the INLINEASM node to know about this input. 6214 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6215 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6216 TLI.getPointerTy())); 6217 AsmNodeOperands.push_back(InOperandVal); 6218 break; 6219 } 6220 6221 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6222 OpInfo.ConstraintType == TargetLowering::C_Register) && 6223 "Unknown constraint type!"); 6224 6225 // TODO: Support this. 6226 if (OpInfo.isIndirect) { 6227 LLVMContext &Ctx = *DAG.getContext(); 6228 Ctx.emitError(CS.getInstruction(), 6229 "Don't know how to handle indirect register inputs yet " 6230 "for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); 6231 break; 6232 } 6233 6234 // Copy the input into the appropriate registers. 6235 if (OpInfo.AssignedRegs.Regs.empty()) { 6236 LLVMContext &Ctx = *DAG.getContext(); 6237 Ctx.emitError(CS.getInstruction(), 6238 "couldn't allocate input reg for constraint '" + 6239 Twine(OpInfo.ConstraintCode) + "'"); 6240 break; 6241 } 6242 6243 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6244 Chain, &Flag); 6245 6246 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6247 DAG, AsmNodeOperands); 6248 break; 6249 } 6250 case InlineAsm::isClobber: { 6251 // Add the clobbered value to the operand list, so that the register 6252 // allocator is aware that the physreg got clobbered. 6253 if (!OpInfo.AssignedRegs.Regs.empty()) 6254 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6255 false, 0, DAG, 6256 AsmNodeOperands); 6257 break; 6258 } 6259 } 6260 } 6261 6262 // Finish up input operands. Set the input chain and add the flag last. 6263 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6264 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6265 6266 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6267 DAG.getVTList(MVT::Other, MVT::Glue), 6268 &AsmNodeOperands[0], AsmNodeOperands.size()); 6269 Flag = Chain.getValue(1); 6270 6271 // If this asm returns a register value, copy the result from that register 6272 // and set it as the value of the call. 6273 if (!RetValRegs.Regs.empty()) { 6274 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6275 Chain, &Flag); 6276 6277 // FIXME: Why don't we do this for inline asms with MRVs? 6278 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6279 EVT ResultType = TLI.getValueType(CS.getType()); 6280 6281 // If any of the results of the inline asm is a vector, it may have the 6282 // wrong width/num elts. This can happen for register classes that can 6283 // contain multiple different value types. The preg or vreg allocated may 6284 // not have the same VT as was expected. Convert it to the right type 6285 // with bit_convert. 6286 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6287 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6288 ResultType, Val); 6289 6290 } else if (ResultType != Val.getValueType() && 6291 ResultType.isInteger() && Val.getValueType().isInteger()) { 6292 // If a result value was tied to an input value, the computed result may 6293 // have a wider width than the expected result. Extract the relevant 6294 // portion. 6295 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6296 } 6297 6298 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6299 } 6300 6301 setValue(CS.getInstruction(), Val); 6302 // Don't need to use this as a chain in this case. 6303 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6304 return; 6305 } 6306 6307 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6308 6309 // Process indirect outputs, first output all of the flagged copies out of 6310 // physregs. 6311 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6312 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6313 const Value *Ptr = IndirectStoresToEmit[i].second; 6314 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6315 Chain, &Flag); 6316 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6317 } 6318 6319 // Emit the non-flagged stores from the physregs. 6320 SmallVector<SDValue, 8> OutChains; 6321 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6322 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6323 StoresToEmit[i].first, 6324 getValue(StoresToEmit[i].second), 6325 MachinePointerInfo(StoresToEmit[i].second), 6326 false, false, 0); 6327 OutChains.push_back(Val); 6328 } 6329 6330 if (!OutChains.empty()) 6331 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6332 &OutChains[0], OutChains.size()); 6333 6334 DAG.setRoot(Chain); 6335 } 6336 6337 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6338 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6339 MVT::Other, getRoot(), 6340 getValue(I.getArgOperand(0)), 6341 DAG.getSrcValue(I.getArgOperand(0)))); 6342 } 6343 6344 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6345 const TargetData &TD = *TLI.getTargetData(); 6346 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6347 getRoot(), getValue(I.getOperand(0)), 6348 DAG.getSrcValue(I.getOperand(0)), 6349 TD.getABITypeAlignment(I.getType())); 6350 setValue(&I, V); 6351 DAG.setRoot(V.getValue(1)); 6352 } 6353 6354 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6355 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6356 MVT::Other, getRoot(), 6357 getValue(I.getArgOperand(0)), 6358 DAG.getSrcValue(I.getArgOperand(0)))); 6359 } 6360 6361 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6362 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6363 MVT::Other, getRoot(), 6364 getValue(I.getArgOperand(0)), 6365 getValue(I.getArgOperand(1)), 6366 DAG.getSrcValue(I.getArgOperand(0)), 6367 DAG.getSrcValue(I.getArgOperand(1)))); 6368 } 6369 6370 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6371 /// implementation, which just calls LowerCall. 6372 /// FIXME: When all targets are 6373 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6374 std::pair<SDValue, SDValue> 6375 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6376 // Handle all of the outgoing arguments. 6377 CLI.Outs.clear(); 6378 CLI.OutVals.clear(); 6379 ArgListTy &Args = CLI.Args; 6380 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6381 SmallVector<EVT, 4> ValueVTs; 6382 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6383 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6384 Value != NumValues; ++Value) { 6385 EVT VT = ValueVTs[Value]; 6386 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6387 SDValue Op = SDValue(Args[i].Node.getNode(), 6388 Args[i].Node.getResNo() + Value); 6389 ISD::ArgFlagsTy Flags; 6390 unsigned OriginalAlignment = 6391 getTargetData()->getABITypeAlignment(ArgTy); 6392 6393 if (Args[i].isZExt) 6394 Flags.setZExt(); 6395 if (Args[i].isSExt) 6396 Flags.setSExt(); 6397 if (Args[i].isInReg) 6398 Flags.setInReg(); 6399 if (Args[i].isSRet) 6400 Flags.setSRet(); 6401 if (Args[i].isByVal) { 6402 Flags.setByVal(); 6403 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6404 Type *ElementTy = Ty->getElementType(); 6405 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6406 // For ByVal, alignment should come from FE. BE will guess if this 6407 // info is not there but there are cases it cannot get right. 6408 unsigned FrameAlign; 6409 if (Args[i].Alignment) 6410 FrameAlign = Args[i].Alignment; 6411 else 6412 FrameAlign = getByValTypeAlignment(ElementTy); 6413 Flags.setByValAlign(FrameAlign); 6414 } 6415 if (Args[i].isNest) 6416 Flags.setNest(); 6417 Flags.setOrigAlign(OriginalAlignment); 6418 6419 EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6420 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6421 SmallVector<SDValue, 4> Parts(NumParts); 6422 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6423 6424 if (Args[i].isSExt) 6425 ExtendKind = ISD::SIGN_EXTEND; 6426 else if (Args[i].isZExt) 6427 ExtendKind = ISD::ZERO_EXTEND; 6428 6429 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 6430 PartVT, ExtendKind); 6431 6432 for (unsigned j = 0; j != NumParts; ++j) { 6433 // if it isn't first piece, alignment must be 1 6434 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6435 i < CLI.NumFixedArgs); 6436 if (NumParts > 1 && j == 0) 6437 MyFlags.Flags.setSplit(); 6438 else if (j != 0) 6439 MyFlags.Flags.setOrigAlign(1); 6440 6441 CLI.Outs.push_back(MyFlags); 6442 CLI.OutVals.push_back(Parts[j]); 6443 } 6444 } 6445 } 6446 6447 // Handle the incoming return values from the call. 6448 CLI.Ins.clear(); 6449 SmallVector<EVT, 4> RetTys; 6450 ComputeValueVTs(*this, CLI.RetTy, RetTys); 6451 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6452 EVT VT = RetTys[I]; 6453 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6454 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6455 for (unsigned i = 0; i != NumRegs; ++i) { 6456 ISD::InputArg MyFlags; 6457 MyFlags.VT = RegisterVT.getSimpleVT(); 6458 MyFlags.Used = CLI.IsReturnValueUsed; 6459 if (CLI.RetSExt) 6460 MyFlags.Flags.setSExt(); 6461 if (CLI.RetZExt) 6462 MyFlags.Flags.setZExt(); 6463 if (CLI.IsInReg) 6464 MyFlags.Flags.setInReg(); 6465 CLI.Ins.push_back(MyFlags); 6466 } 6467 } 6468 6469 SmallVector<SDValue, 4> InVals; 6470 CLI.Chain = LowerCall(CLI, InVals); 6471 6472 // Verify that the target's LowerCall behaved as expected. 6473 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6474 "LowerCall didn't return a valid chain!"); 6475 assert((!CLI.IsTailCall || InVals.empty()) && 6476 "LowerCall emitted a return value for a tail call!"); 6477 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6478 "LowerCall didn't emit the correct number of values!"); 6479 6480 // For a tail call, the return value is merely live-out and there aren't 6481 // any nodes in the DAG representing it. Return a special value to 6482 // indicate that a tail call has been emitted and no more Instructions 6483 // should be processed in the current block. 6484 if (CLI.IsTailCall) { 6485 CLI.DAG.setRoot(CLI.Chain); 6486 return std::make_pair(SDValue(), SDValue()); 6487 } 6488 6489 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6490 assert(InVals[i].getNode() && 6491 "LowerCall emitted a null value!"); 6492 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6493 "LowerCall emitted a value with the wrong type!"); 6494 }); 6495 6496 // Collect the legal value parts into potentially illegal values 6497 // that correspond to the original function's return values. 6498 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6499 if (CLI.RetSExt) 6500 AssertOp = ISD::AssertSext; 6501 else if (CLI.RetZExt) 6502 AssertOp = ISD::AssertZext; 6503 SmallVector<SDValue, 4> ReturnValues; 6504 unsigned CurReg = 0; 6505 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6506 EVT VT = RetTys[I]; 6507 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6508 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6509 6510 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6511 NumRegs, RegisterVT, VT, 6512 AssertOp)); 6513 CurReg += NumRegs; 6514 } 6515 6516 // For a function returning void, there is no return value. We can't create 6517 // such a node, so we just return a null return value in that case. In 6518 // that case, nothing will actually look at the value. 6519 if (ReturnValues.empty()) 6520 return std::make_pair(SDValue(), CLI.Chain); 6521 6522 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6523 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 6524 &ReturnValues[0], ReturnValues.size()); 6525 return std::make_pair(Res, CLI.Chain); 6526 } 6527 6528 void TargetLowering::LowerOperationWrapper(SDNode *N, 6529 SmallVectorImpl<SDValue> &Results, 6530 SelectionDAG &DAG) const { 6531 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6532 if (Res.getNode()) 6533 Results.push_back(Res); 6534 } 6535 6536 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6537 llvm_unreachable("LowerOperation not implemented for this target!"); 6538 } 6539 6540 void 6541 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6542 SDValue Op = getNonRegisterValue(V); 6543 assert((Op.getOpcode() != ISD::CopyFromReg || 6544 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6545 "Copy from a reg to the same reg!"); 6546 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6547 6548 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6549 SDValue Chain = DAG.getEntryNode(); 6550 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6551 PendingExports.push_back(Chain); 6552 } 6553 6554 #include "llvm/CodeGen/SelectionDAGISel.h" 6555 6556 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6557 /// entry block, return true. This includes arguments used by switches, since 6558 /// the switch may expand into multiple basic blocks. 6559 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6560 // With FastISel active, we may be splitting blocks, so force creation 6561 // of virtual registers for all non-dead arguments. 6562 if (FastISel) 6563 return A->use_empty(); 6564 6565 const BasicBlock *Entry = A->getParent()->begin(); 6566 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6567 UI != E; ++UI) { 6568 const User *U = *UI; 6569 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6570 return false; // Use not in entry block. 6571 } 6572 return true; 6573 } 6574 6575 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6576 // If this is the entry block, emit arguments. 6577 const Function &F = *LLVMBB->getParent(); 6578 SelectionDAG &DAG = SDB->DAG; 6579 DebugLoc dl = SDB->getCurDebugLoc(); 6580 const TargetData *TD = TLI.getTargetData(); 6581 SmallVector<ISD::InputArg, 16> Ins; 6582 6583 // Check whether the function can return without sret-demotion. 6584 SmallVector<ISD::OutputArg, 4> Outs; 6585 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6586 Outs, TLI); 6587 6588 if (!FuncInfo->CanLowerReturn) { 6589 // Put in an sret pointer parameter before all the other parameters. 6590 SmallVector<EVT, 1> ValueVTs; 6591 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6592 6593 // NOTE: Assuming that a pointer will never break down to more than one VT 6594 // or one register. 6595 ISD::ArgFlagsTy Flags; 6596 Flags.setSRet(); 6597 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6598 ISD::InputArg RetArg(Flags, RegisterVT, true); 6599 Ins.push_back(RetArg); 6600 } 6601 6602 // Set up the incoming argument description vector. 6603 unsigned Idx = 1; 6604 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6605 I != E; ++I, ++Idx) { 6606 SmallVector<EVT, 4> ValueVTs; 6607 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6608 bool isArgValueUsed = !I->use_empty(); 6609 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6610 Value != NumValues; ++Value) { 6611 EVT VT = ValueVTs[Value]; 6612 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6613 ISD::ArgFlagsTy Flags; 6614 unsigned OriginalAlignment = 6615 TD->getABITypeAlignment(ArgTy); 6616 6617 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6618 Flags.setZExt(); 6619 if (F.paramHasAttr(Idx, Attribute::SExt)) 6620 Flags.setSExt(); 6621 if (F.paramHasAttr(Idx, Attribute::InReg)) 6622 Flags.setInReg(); 6623 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6624 Flags.setSRet(); 6625 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6626 Flags.setByVal(); 6627 PointerType *Ty = cast<PointerType>(I->getType()); 6628 Type *ElementTy = Ty->getElementType(); 6629 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6630 // For ByVal, alignment should be passed from FE. BE will guess if 6631 // this info is not there but there are cases it cannot get right. 6632 unsigned FrameAlign; 6633 if (F.getParamAlignment(Idx)) 6634 FrameAlign = F.getParamAlignment(Idx); 6635 else 6636 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6637 Flags.setByValAlign(FrameAlign); 6638 } 6639 if (F.paramHasAttr(Idx, Attribute::Nest)) 6640 Flags.setNest(); 6641 Flags.setOrigAlign(OriginalAlignment); 6642 6643 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6644 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6645 for (unsigned i = 0; i != NumRegs; ++i) { 6646 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6647 if (NumRegs > 1 && i == 0) 6648 MyFlags.Flags.setSplit(); 6649 // if it isn't first piece, alignment must be 1 6650 else if (i > 0) 6651 MyFlags.Flags.setOrigAlign(1); 6652 Ins.push_back(MyFlags); 6653 } 6654 } 6655 } 6656 6657 // Call the target to set up the argument values. 6658 SmallVector<SDValue, 8> InVals; 6659 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6660 F.isVarArg(), Ins, 6661 dl, DAG, InVals); 6662 6663 // Verify that the target's LowerFormalArguments behaved as expected. 6664 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6665 "LowerFormalArguments didn't return a valid chain!"); 6666 assert(InVals.size() == Ins.size() && 6667 "LowerFormalArguments didn't emit the correct number of values!"); 6668 DEBUG({ 6669 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6670 assert(InVals[i].getNode() && 6671 "LowerFormalArguments emitted a null value!"); 6672 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6673 "LowerFormalArguments emitted a value with the wrong type!"); 6674 } 6675 }); 6676 6677 // Update the DAG with the new chain value resulting from argument lowering. 6678 DAG.setRoot(NewRoot); 6679 6680 // Set up the argument values. 6681 unsigned i = 0; 6682 Idx = 1; 6683 if (!FuncInfo->CanLowerReturn) { 6684 // Create a virtual register for the sret pointer, and put in a copy 6685 // from the sret argument into it. 6686 SmallVector<EVT, 1> ValueVTs; 6687 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6688 EVT VT = ValueVTs[0]; 6689 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6690 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6691 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6692 RegVT, VT, AssertOp); 6693 6694 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6695 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6696 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6697 FuncInfo->DemoteRegister = SRetReg; 6698 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6699 SRetReg, ArgValue); 6700 DAG.setRoot(NewRoot); 6701 6702 // i indexes lowered arguments. Bump it past the hidden sret argument. 6703 // Idx indexes LLVM arguments. Don't touch it. 6704 ++i; 6705 } 6706 6707 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6708 ++I, ++Idx) { 6709 SmallVector<SDValue, 4> ArgValues; 6710 SmallVector<EVT, 4> ValueVTs; 6711 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6712 unsigned NumValues = ValueVTs.size(); 6713 6714 // If this argument is unused then remember its value. It is used to generate 6715 // debugging information. 6716 if (I->use_empty() && NumValues) 6717 SDB->setUnusedArgValue(I, InVals[i]); 6718 6719 for (unsigned Val = 0; Val != NumValues; ++Val) { 6720 EVT VT = ValueVTs[Val]; 6721 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6722 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6723 6724 if (!I->use_empty()) { 6725 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6726 if (F.paramHasAttr(Idx, Attribute::SExt)) 6727 AssertOp = ISD::AssertSext; 6728 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6729 AssertOp = ISD::AssertZext; 6730 6731 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6732 NumParts, PartVT, VT, 6733 AssertOp)); 6734 } 6735 6736 i += NumParts; 6737 } 6738 6739 // We don't need to do anything else for unused arguments. 6740 if (ArgValues.empty()) 6741 continue; 6742 6743 // Note down frame index. 6744 if (FrameIndexSDNode *FI = 6745 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6746 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6747 6748 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6749 SDB->getCurDebugLoc()); 6750 6751 SDB->setValue(I, Res); 6752 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6753 if (LoadSDNode *LNode = 6754 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6755 if (FrameIndexSDNode *FI = 6756 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6757 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6758 } 6759 6760 // If this argument is live outside of the entry block, insert a copy from 6761 // wherever we got it to the vreg that other BB's will reference it as. 6762 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6763 // If we can, though, try to skip creating an unnecessary vreg. 6764 // FIXME: This isn't very clean... it would be nice to make this more 6765 // general. It's also subtly incompatible with the hacks FastISel 6766 // uses with vregs. 6767 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6768 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6769 FuncInfo->ValueMap[I] = Reg; 6770 continue; 6771 } 6772 } 6773 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6774 FuncInfo->InitializeRegForValue(I); 6775 SDB->CopyToExportRegsIfNeeded(I); 6776 } 6777 } 6778 6779 assert(i == InVals.size() && "Argument register count mismatch!"); 6780 6781 // Finally, if the target has anything special to do, allow it to do so. 6782 // FIXME: this should insert code into the DAG! 6783 EmitFunctionEntryCode(); 6784 } 6785 6786 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6787 /// ensure constants are generated when needed. Remember the virtual registers 6788 /// that need to be added to the Machine PHI nodes as input. We cannot just 6789 /// directly add them, because expansion might result in multiple MBB's for one 6790 /// BB. As such, the start of the BB might correspond to a different MBB than 6791 /// the end. 6792 /// 6793 void 6794 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6795 const TerminatorInst *TI = LLVMBB->getTerminator(); 6796 6797 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6798 6799 // Check successor nodes' PHI nodes that expect a constant to be available 6800 // from this block. 6801 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6802 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6803 if (!isa<PHINode>(SuccBB->begin())) continue; 6804 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6805 6806 // If this terminator has multiple identical successors (common for 6807 // switches), only handle each succ once. 6808 if (!SuccsHandled.insert(SuccMBB)) continue; 6809 6810 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6811 6812 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6813 // nodes and Machine PHI nodes, but the incoming operands have not been 6814 // emitted yet. 6815 for (BasicBlock::const_iterator I = SuccBB->begin(); 6816 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6817 // Ignore dead phi's. 6818 if (PN->use_empty()) continue; 6819 6820 // Skip empty types 6821 if (PN->getType()->isEmptyTy()) 6822 continue; 6823 6824 unsigned Reg; 6825 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6826 6827 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6828 unsigned &RegOut = ConstantsOut[C]; 6829 if (RegOut == 0) { 6830 RegOut = FuncInfo.CreateRegs(C->getType()); 6831 CopyValueToVirtualRegister(C, RegOut); 6832 } 6833 Reg = RegOut; 6834 } else { 6835 DenseMap<const Value *, unsigned>::iterator I = 6836 FuncInfo.ValueMap.find(PHIOp); 6837 if (I != FuncInfo.ValueMap.end()) 6838 Reg = I->second; 6839 else { 6840 assert(isa<AllocaInst>(PHIOp) && 6841 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6842 "Didn't codegen value into a register!??"); 6843 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6844 CopyValueToVirtualRegister(PHIOp, Reg); 6845 } 6846 } 6847 6848 // Remember that this register needs to added to the machine PHI node as 6849 // the input for this MBB. 6850 SmallVector<EVT, 4> ValueVTs; 6851 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6852 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6853 EVT VT = ValueVTs[vti]; 6854 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6855 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6856 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6857 Reg += NumRegisters; 6858 } 6859 } 6860 } 6861 ConstantsOut.clear(); 6862 } 6863