xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 3faabbbe85d51f5efb1f3f540fe7b81916144a2e)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/StackMaps.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfo.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GetElementPtrTypeIterator.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Statepoint.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetFrameLowering.h"
65 #include "llvm/Target/TargetInstrInfo.h"
66 #include "llvm/Target/TargetIntrinsicInfo.h"
67 #include "llvm/Target/TargetLowering.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Target/TargetSubtargetInfo.h"
70 #include <algorithm>
71 #include <utility>
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "isel"
75 
76 /// LimitFloatPrecision - Generate low-precision inline sequences for
77 /// some float libcalls (6, 8 or 12 bits).
78 static unsigned LimitFloatPrecision;
79 
80 static cl::opt<unsigned, true>
81 LimitFPPrecision("limit-float-precision",
82                  cl::desc("Generate low-precision inline sequences "
83                           "for some float libcalls"),
84                  cl::location(LimitFloatPrecision),
85                  cl::init(0));
86 // Limit the width of DAG chains. This is important in general to prevent
87 // DAG-based analysis from blowing up. For example, alias analysis and
88 // load clustering may not complete in reasonable time. It is difficult to
89 // recognize and avoid this situation within each individual analysis, and
90 // future analyses are likely to have the same behavior. Limiting DAG width is
91 // the safe approach and will be especially important with global DAGs.
92 //
93 // MaxParallelChains default is arbitrarily high to avoid affecting
94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
95 // sequence over this should have been converted to llvm.memcpy by the
96 // frontend. It is easy to induce this behavior with .ll code such as:
97 // %buffer = alloca [4096 x i8]
98 // %data = load [4096 x i8]* %argPtr
99 // store [4096 x i8] %data, [4096 x i8]* %buffer
100 static const unsigned MaxParallelChains = 64;
101 
102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
103                                       const SDValue *Parts, unsigned NumParts,
104                                       MVT PartVT, EVT ValueVT, const Value *V,
105                                       bool IsABIRegCopy);
106 
107 /// getCopyFromParts - Create a value that contains the specified legal parts
108 /// combined into the value they represent.  If the parts combine to a type
109 /// larger than ValueVT then AssertOp can be used to specify whether the extra
110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
111 /// (ISD::AssertSext).
112 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
113                                 const SDValue *Parts, unsigned NumParts,
114                                 MVT PartVT, EVT ValueVT, const Value *V,
115                                 Optional<ISD::NodeType> AssertOp = None,
116                                 bool IsABIRegCopy = false) {
117   if (ValueVT.isVector())
118     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
119                                   PartVT, ValueVT, V, IsABIRegCopy);
120 
121   assert(NumParts > 0 && "No parts to assemble!");
122   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
123   SDValue Val = Parts[0];
124 
125   if (NumParts > 1) {
126     // Assemble the value from multiple parts.
127     if (ValueVT.isInteger()) {
128       unsigned PartBits = PartVT.getSizeInBits();
129       unsigned ValueBits = ValueVT.getSizeInBits();
130 
131       // Assemble the power of 2 part.
132       unsigned RoundParts = NumParts & (NumParts - 1) ?
133         1 << Log2_32(NumParts) : NumParts;
134       unsigned RoundBits = PartBits * RoundParts;
135       EVT RoundVT = RoundBits == ValueBits ?
136         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
137       SDValue Lo, Hi;
138 
139       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
140 
141       if (RoundParts > 2) {
142         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
143                               PartVT, HalfVT, V);
144         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
145                               RoundParts / 2, PartVT, HalfVT, V);
146       } else {
147         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
148         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
149       }
150 
151       if (DAG.getDataLayout().isBigEndian())
152         std::swap(Lo, Hi);
153 
154       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
155 
156       if (RoundParts < NumParts) {
157         // Assemble the trailing non-power-of-2 part.
158         unsigned OddParts = NumParts - RoundParts;
159         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
160         Hi = getCopyFromParts(DAG, DL,
161                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
162 
163         // Combine the round and odd parts.
164         Lo = Val;
165         if (DAG.getDataLayout().isBigEndian())
166           std::swap(Lo, Hi);
167         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
168         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
169         Hi =
170             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
171                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
172                                         TLI.getPointerTy(DAG.getDataLayout())));
173         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
174         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
175       }
176     } else if (PartVT.isFloatingPoint()) {
177       // FP split into multiple FP parts (for ppcf128)
178       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
179              "Unexpected split");
180       SDValue Lo, Hi;
181       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
182       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
183       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
184         std::swap(Lo, Hi);
185       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
186     } else {
187       // FP split into integer parts (soft fp)
188       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
189              !PartVT.isVector() && "Unexpected split");
190       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
191       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
192     }
193   }
194 
195   // There is now one part, held in Val.  Correct it to match ValueVT.
196   // PartEVT is the type of the register class that holds the value.
197   // ValueVT is the type of the inline asm operation.
198   EVT PartEVT = Val.getValueType();
199 
200   if (PartEVT == ValueVT)
201     return Val;
202 
203   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
204       ValueVT.bitsLT(PartEVT)) {
205     // For an FP value in an integer part, we need to truncate to the right
206     // width first.
207     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
208     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
209   }
210 
211   // Handle types that have the same size.
212   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
213     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
214 
215   // Handle types with different sizes.
216   if (PartEVT.isInteger() && ValueVT.isInteger()) {
217     if (ValueVT.bitsLT(PartEVT)) {
218       // For a truncate, see if we have any information to
219       // indicate whether the truncated bits will always be
220       // zero or sign-extension.
221       if (AssertOp.hasValue())
222         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
223                           DAG.getValueType(ValueVT));
224       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
225     }
226     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
227   }
228 
229   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
230     // FP_ROUND's are always exact here.
231     if (ValueVT.bitsLT(Val.getValueType()))
232       return DAG.getNode(
233           ISD::FP_ROUND, DL, ValueVT, Val,
234           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
235 
236     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
237   }
238 
239   llvm_unreachable("Unknown mismatch!");
240 }
241 
242 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
243                                               const Twine &ErrMsg) {
244   const Instruction *I = dyn_cast_or_null<Instruction>(V);
245   if (!V)
246     return Ctx.emitError(ErrMsg);
247 
248   const char *AsmError = ", possible invalid constraint for vector type";
249   if (const CallInst *CI = dyn_cast<CallInst>(I))
250     if (isa<InlineAsm>(CI->getCalledValue()))
251       return Ctx.emitError(I, ErrMsg + AsmError);
252 
253   return Ctx.emitError(I, ErrMsg);
254 }
255 
256 /// getCopyFromPartsVector - Create a value that contains the specified legal
257 /// parts combined into the value they represent.  If the parts combine to a
258 /// type larger than ValueVT then AssertOp can be used to specify whether the
259 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
260 /// ValueVT (ISD::AssertSext).
261 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
262                                       const SDValue *Parts, unsigned NumParts,
263                                       MVT PartVT, EVT ValueVT, const Value *V,
264                                       bool IsABIRegCopy) {
265   assert(ValueVT.isVector() && "Not a vector value");
266   assert(NumParts > 0 && "No parts to assemble!");
267   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
268   SDValue Val = Parts[0];
269 
270   // Handle a multi-element vector.
271   if (NumParts > 1) {
272     EVT IntermediateVT;
273     MVT RegisterVT;
274     unsigned NumIntermediates;
275     unsigned NumRegs;
276 
277     if (IsABIRegCopy) {
278       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
279           *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
280           RegisterVT);
281     } else {
282       NumRegs =
283           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
284                                      NumIntermediates, RegisterVT);
285     }
286 
287     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
288     NumParts = NumRegs; // Silence a compiler warning.
289     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
290     assert(RegisterVT.getSizeInBits() ==
291            Parts[0].getSimpleValueType().getSizeInBits() &&
292            "Part type sizes don't match!");
293 
294     // Assemble the parts into intermediate operands.
295     SmallVector<SDValue, 8> Ops(NumIntermediates);
296     if (NumIntermediates == NumParts) {
297       // If the register was not expanded, truncate or copy the value,
298       // as appropriate.
299       for (unsigned i = 0; i != NumParts; ++i)
300         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
301                                   PartVT, IntermediateVT, V);
302     } else if (NumParts > 0) {
303       // If the intermediate type was expanded, build the intermediate
304       // operands from the parts.
305       assert(NumParts % NumIntermediates == 0 &&
306              "Must expand into a divisible number of parts!");
307       unsigned Factor = NumParts / NumIntermediates;
308       for (unsigned i = 0; i != NumIntermediates; ++i)
309         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
310                                   PartVT, IntermediateVT, V);
311     }
312 
313     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
314     // intermediate operands.
315     EVT BuiltVectorTy =
316         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
317                          (IntermediateVT.isVector()
318                               ? IntermediateVT.getVectorNumElements() * NumParts
319                               : NumIntermediates));
320     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321                                                 : ISD::BUILD_VECTOR,
322                       DL, BuiltVectorTy, Ops);
323   }
324 
325   // There is now one part, held in Val.  Correct it to match ValueVT.
326   EVT PartEVT = Val.getValueType();
327 
328   if (PartEVT == ValueVT)
329     return Val;
330 
331   if (PartEVT.isVector()) {
332     // If the element type of the source/dest vectors are the same, but the
333     // parts vector has more elements than the value vector, then we have a
334     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
335     // elements we want.
336     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338              "Cannot narrow, it would be a lossy transformation");
339       return DAG.getNode(
340           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342     }
343 
344     // Vector/Vector bitcast.
345     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349       "Cannot handle this kind of promotion");
350     // Promoted vector extract
351     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352 
353   }
354 
355   // Trivial bitcast if the types are the same size and the destination
356   // vector type is legal.
357   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358       TLI.isTypeLegal(ValueVT))
359     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360 
361   if (ValueVT.getVectorNumElements() != 1) {
362      // Certain ABIs require that vectors are passed as integers. For vectors
363      // are the same size, this is an obvious bitcast.
364      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
365        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
366      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
367        // Bitcast Val back the original type and extract the corresponding
368        // vector we want.
369        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
370        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
371                                            ValueVT.getVectorElementType(), Elts);
372        Val = DAG.getBitcast(WiderVecType, Val);
373        return DAG.getNode(
374            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
375            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
376      }
377 
378      diagnosePossiblyInvalidConstraint(
379          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
380      return DAG.getUNDEF(ValueVT);
381   }
382 
383   // Handle cases such as i8 -> <1 x i1>
384   EVT ValueSVT = ValueVT.getVectorElementType();
385   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
386     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
387                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
388 
389   return DAG.getBuildVector(ValueVT, DL, Val);
390 }
391 
392 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
393                                  SDValue Val, SDValue *Parts, unsigned NumParts,
394                                  MVT PartVT, const Value *V, bool IsABIRegCopy);
395 
396 /// getCopyToParts - Create a series of nodes that contain the specified value
397 /// split into legal parts.  If the parts contain more bits than Val, then, for
398 /// integers, ExtendKind can be used to specify how to generate the extra bits.
399 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
400                            SDValue *Parts, unsigned NumParts, MVT PartVT,
401                            const Value *V,
402                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND,
403                            bool IsABIRegCopy = false) {
404   EVT ValueVT = Val.getValueType();
405 
406   // Handle the vector case separately.
407   if (ValueVT.isVector())
408     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
409                                 IsABIRegCopy);
410 
411   unsigned PartBits = PartVT.getSizeInBits();
412   unsigned OrigNumParts = NumParts;
413   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
414          "Copying to an illegal type!");
415 
416   if (NumParts == 0)
417     return;
418 
419   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
420   EVT PartEVT = PartVT;
421   if (PartEVT == ValueVT) {
422     assert(NumParts == 1 && "No-op copy with multiple parts!");
423     Parts[0] = Val;
424     return;
425   }
426 
427   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
428     // If the parts cover more bits than the value has, promote the value.
429     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
430       assert(NumParts == 1 && "Do not know what to promote to!");
431       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
432     } else {
433       if (ValueVT.isFloatingPoint()) {
434         // FP values need to be bitcast, then extended if they are being put
435         // into a larger container.
436         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
437         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438       }
439       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
440              ValueVT.isInteger() &&
441              "Unknown mismatch!");
442       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
443       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
444       if (PartVT == MVT::x86mmx)
445         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
446     }
447   } else if (PartBits == ValueVT.getSizeInBits()) {
448     // Different types of the same size.
449     assert(NumParts == 1 && PartEVT != ValueVT);
450     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
452     // If the parts cover less bits than value has, truncate the value.
453     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
454            ValueVT.isInteger() &&
455            "Unknown mismatch!");
456     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
457     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
458     if (PartVT == MVT::x86mmx)
459       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
460   }
461 
462   // The value may have changed - recompute ValueVT.
463   ValueVT = Val.getValueType();
464   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
465          "Failed to tile the value with PartVT!");
466 
467   if (NumParts == 1) {
468     if (PartEVT != ValueVT) {
469       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
470                                         "scalar-to-vector conversion failed");
471       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
472     }
473 
474     Parts[0] = Val;
475     return;
476   }
477 
478   // Expand the value into multiple parts.
479   if (NumParts & (NumParts - 1)) {
480     // The number of parts is not a power of 2.  Split off and copy the tail.
481     assert(PartVT.isInteger() && ValueVT.isInteger() &&
482            "Do not know what to expand to!");
483     unsigned RoundParts = 1 << Log2_32(NumParts);
484     unsigned RoundBits = RoundParts * PartBits;
485     unsigned OddParts = NumParts - RoundParts;
486     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
487                                  DAG.getIntPtrConstant(RoundBits, DL));
488     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
489 
490     if (DAG.getDataLayout().isBigEndian())
491       // The odd parts were reversed by getCopyToParts - unreverse them.
492       std::reverse(Parts + RoundParts, Parts + NumParts);
493 
494     NumParts = RoundParts;
495     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
496     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
497   }
498 
499   // The number of parts is a power of 2.  Repeatedly bisect the value using
500   // EXTRACT_ELEMENT.
501   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
502                          EVT::getIntegerVT(*DAG.getContext(),
503                                            ValueVT.getSizeInBits()),
504                          Val);
505 
506   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
507     for (unsigned i = 0; i < NumParts; i += StepSize) {
508       unsigned ThisBits = StepSize * PartBits / 2;
509       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
510       SDValue &Part0 = Parts[i];
511       SDValue &Part1 = Parts[i+StepSize/2];
512 
513       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
514                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
515       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
516                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
517 
518       if (ThisBits == PartBits && ThisVT != PartVT) {
519         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
520         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
521       }
522     }
523   }
524 
525   if (DAG.getDataLayout().isBigEndian())
526     std::reverse(Parts, Parts + OrigNumParts);
527 }
528 
529 
530 /// getCopyToPartsVector - Create a series of nodes that contain the specified
531 /// value split into legal parts.
532 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
533                                  SDValue Val, SDValue *Parts, unsigned NumParts,
534                                  MVT PartVT, const Value *V,
535                                  bool IsABIRegCopy) {
536 
537   EVT ValueVT = Val.getValueType();
538   assert(ValueVT.isVector() && "Not a vector");
539   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
540 
541   if (NumParts == 1) {
542     EVT PartEVT = PartVT;
543     if (PartEVT == ValueVT) {
544       // Nothing to do.
545     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
546       // Bitconvert vector->vector case.
547       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548     } else if (PartVT.isVector() &&
549                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
550                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
551       EVT ElementVT = PartVT.getVectorElementType();
552       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
553       // undef elements.
554       SmallVector<SDValue, 16> Ops;
555       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
556         Ops.push_back(DAG.getNode(
557             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
558             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
559 
560       for (unsigned i = ValueVT.getVectorNumElements(),
561            e = PartVT.getVectorNumElements(); i != e; ++i)
562         Ops.push_back(DAG.getUNDEF(ElementVT));
563 
564       Val = DAG.getBuildVector(PartVT, DL, Ops);
565 
566       // FIXME: Use CONCAT for 2x -> 4x.
567 
568       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
569       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
570     } else if (PartVT.isVector() &&
571                PartEVT.getVectorElementType().bitsGE(
572                  ValueVT.getVectorElementType()) &&
573                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
574 
575       // Promoted vector extract
576       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
577     } else {
578       if (ValueVT.getVectorNumElements() == 1) {
579         Val = DAG.getNode(
580             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
581             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
582 
583       } else {
584         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
585                "lossy conversion of vector to scalar type");
586         EVT IntermediateType =
587             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
588         Val = DAG.getBitcast(IntermediateType, Val);
589         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
590       }
591     }
592 
593     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
594     Parts[0] = Val;
595     return;
596   }
597 
598   // Handle a multi-element vector.
599   EVT IntermediateVT;
600   MVT RegisterVT;
601   unsigned NumIntermediates;
602   unsigned NumRegs;
603   if (IsABIRegCopy) {
604     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
605         *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
606         RegisterVT);
607   } else {
608     NumRegs =
609         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
610                                    NumIntermediates, RegisterVT);
611   }
612   unsigned NumElements = ValueVT.getVectorNumElements();
613 
614   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
615   NumParts = NumRegs; // Silence a compiler warning.
616   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
617 
618   // Convert the vector to the appropiate type if necessary.
619   unsigned DestVectorNoElts =
620       NumIntermediates *
621       (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1);
622   EVT BuiltVectorTy = EVT::getVectorVT(
623       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
624   if (Val.getValueType() != BuiltVectorTy)
625     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
626 
627   // Split the vector into intermediate operands.
628   SmallVector<SDValue, 8> Ops(NumIntermediates);
629   for (unsigned i = 0; i != NumIntermediates; ++i) {
630     if (IntermediateVT.isVector())
631       Ops[i] =
632           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
633                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
634                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
635     else
636       Ops[i] = DAG.getNode(
637           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
638           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
639   }
640 
641   // Split the intermediate operands into legal parts.
642   if (NumParts == NumIntermediates) {
643     // If the register was not expanded, promote or copy the value,
644     // as appropriate.
645     for (unsigned i = 0; i != NumParts; ++i)
646       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
647   } else if (NumParts > 0) {
648     // If the intermediate type was expanded, split each the value into
649     // legal parts.
650     assert(NumIntermediates != 0 && "division by zero");
651     assert(NumParts % NumIntermediates == 0 &&
652            "Must expand into a divisible number of parts!");
653     unsigned Factor = NumParts / NumIntermediates;
654     for (unsigned i = 0; i != NumIntermediates; ++i)
655       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
656   }
657 }
658 
659 RegsForValue::RegsForValue() { IsABIMangled = false; }
660 
661 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
662                            EVT valuevt, bool IsABIMangledValue)
663     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
664       RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {}
665 
666 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
667                            const DataLayout &DL, unsigned Reg, Type *Ty,
668                            bool IsABIMangledValue) {
669   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
670 
671   IsABIMangled = IsABIMangledValue;
672 
673   for (EVT ValueVT : ValueVTs) {
674     unsigned NumRegs = IsABIMangledValue
675                            ? TLI.getNumRegistersForCallingConv(Context, ValueVT)
676                            : TLI.getNumRegisters(Context, ValueVT);
677     MVT RegisterVT = IsABIMangledValue
678                          ? TLI.getRegisterTypeForCallingConv(Context, ValueVT)
679                          : TLI.getRegisterType(Context, ValueVT);
680     for (unsigned i = 0; i != NumRegs; ++i)
681       Regs.push_back(Reg + i);
682     RegVTs.push_back(RegisterVT);
683     RegCount.push_back(NumRegs);
684     Reg += NumRegs;
685   }
686 }
687 
688 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
689                                       FunctionLoweringInfo &FuncInfo,
690                                       const SDLoc &dl, SDValue &Chain,
691                                       SDValue *Flag, const Value *V) const {
692   // A Value with type {} or [0 x %t] needs no registers.
693   if (ValueVTs.empty())
694     return SDValue();
695 
696   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
697 
698   // Assemble the legal parts into the final values.
699   SmallVector<SDValue, 4> Values(ValueVTs.size());
700   SmallVector<SDValue, 8> Parts;
701   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
702     // Copy the legal parts from the registers.
703     EVT ValueVT = ValueVTs[Value];
704     unsigned NumRegs = RegCount[Value];
705     MVT RegisterVT = IsABIMangled
706                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
707                          : RegVTs[Value];
708 
709     Parts.resize(NumRegs);
710     for (unsigned i = 0; i != NumRegs; ++i) {
711       SDValue P;
712       if (!Flag) {
713         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
714       } else {
715         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
716         *Flag = P.getValue(2);
717       }
718 
719       Chain = P.getValue(1);
720       Parts[i] = P;
721 
722       // If the source register was virtual and if we know something about it,
723       // add an assert node.
724       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
725           !RegisterVT.isInteger() || RegisterVT.isVector())
726         continue;
727 
728       const FunctionLoweringInfo::LiveOutInfo *LOI =
729         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
730       if (!LOI)
731         continue;
732 
733       unsigned RegSize = RegisterVT.getSizeInBits();
734       unsigned NumSignBits = LOI->NumSignBits;
735       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
736 
737       if (NumZeroBits == RegSize) {
738         // The current value is a zero.
739         // Explicitly express that as it would be easier for
740         // optimizations to kick in.
741         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
742         continue;
743       }
744 
745       // FIXME: We capture more information than the dag can represent.  For
746       // now, just use the tightest assertzext/assertsext possible.
747       bool isSExt = true;
748       EVT FromVT(MVT::Other);
749       if (NumSignBits == RegSize) {
750         isSExt = true;   // ASSERT SEXT 1
751         FromVT = MVT::i1;
752       } else if (NumZeroBits >= RegSize - 1) {
753         isSExt = false;  // ASSERT ZEXT 1
754         FromVT = MVT::i1;
755       } else if (NumSignBits > RegSize - 8) {
756         isSExt = true;   // ASSERT SEXT 8
757         FromVT = MVT::i8;
758       } else if (NumZeroBits >= RegSize - 8) {
759         isSExt = false;  // ASSERT ZEXT 8
760         FromVT = MVT::i8;
761       } else if (NumSignBits > RegSize - 16) {
762         isSExt = true;   // ASSERT SEXT 16
763         FromVT = MVT::i16;
764       } else if (NumZeroBits >= RegSize - 16) {
765         isSExt = false;  // ASSERT ZEXT 16
766         FromVT = MVT::i16;
767       } else if (NumSignBits > RegSize - 32) {
768         isSExt = true;   // ASSERT SEXT 32
769         FromVT = MVT::i32;
770       } else if (NumZeroBits >= RegSize - 32) {
771         isSExt = false;  // ASSERT ZEXT 32
772         FromVT = MVT::i32;
773       } else {
774         continue;
775       }
776       // Add an assertion node.
777       assert(FromVT != MVT::Other);
778       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
779                              RegisterVT, P, DAG.getValueType(FromVT));
780     }
781 
782     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
783                                      NumRegs, RegisterVT, ValueVT, V);
784     Part += NumRegs;
785     Parts.clear();
786   }
787 
788   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
789 }
790 
791 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
792                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
793                                  const Value *V,
794                                  ISD::NodeType PreferredExtendType) const {
795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
796   ISD::NodeType ExtendKind = PreferredExtendType;
797 
798   // Get the list of the values's legal parts.
799   unsigned NumRegs = Regs.size();
800   SmallVector<SDValue, 8> Parts(NumRegs);
801   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
802     unsigned NumParts = RegCount[Value];
803 
804     MVT RegisterVT = IsABIMangled
805                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
806                          : RegVTs[Value];
807 
808     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
809       ExtendKind = ISD::ZERO_EXTEND;
810 
811     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
812                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
813     Part += NumParts;
814   }
815 
816   // Copy the parts into the registers.
817   SmallVector<SDValue, 8> Chains(NumRegs);
818   for (unsigned i = 0; i != NumRegs; ++i) {
819     SDValue Part;
820     if (!Flag) {
821       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
822     } else {
823       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
824       *Flag = Part.getValue(1);
825     }
826 
827     Chains[i] = Part.getValue(0);
828   }
829 
830   if (NumRegs == 1 || Flag)
831     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
832     // flagged to it. That is the CopyToReg nodes and the user are considered
833     // a single scheduling unit. If we create a TokenFactor and return it as
834     // chain, then the TokenFactor is both a predecessor (operand) of the
835     // user as well as a successor (the TF operands are flagged to the user).
836     // c1, f1 = CopyToReg
837     // c2, f2 = CopyToReg
838     // c3     = TokenFactor c1, c2
839     // ...
840     //        = op c3, ..., f2
841     Chain = Chains[NumRegs-1];
842   else
843     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
844 }
845 
846 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
847                                         unsigned MatchingIdx, const SDLoc &dl,
848                                         SelectionDAG &DAG,
849                                         std::vector<SDValue> &Ops) const {
850   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
851 
852   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
853   if (HasMatching)
854     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
855   else if (!Regs.empty() &&
856            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
857     // Put the register class of the virtual registers in the flag word.  That
858     // way, later passes can recompute register class constraints for inline
859     // assembly as well as normal instructions.
860     // Don't do this for tied operands that can use the regclass information
861     // from the def.
862     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
863     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
864     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
865   }
866 
867   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
868   Ops.push_back(Res);
869 
870   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
871   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
872     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
873     MVT RegisterVT = RegVTs[Value];
874     for (unsigned i = 0; i != NumRegs; ++i) {
875       assert(Reg < Regs.size() && "Mismatch in # registers expected");
876       unsigned TheReg = Regs[Reg++];
877       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
878 
879       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
880         // If we clobbered the stack pointer, MFI should know about it.
881         assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment());
882       }
883     }
884   }
885 }
886 
887 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
888                                const TargetLibraryInfo *li) {
889   AA = aa;
890   GFI = gfi;
891   LibInfo = li;
892   DL = &DAG.getDataLayout();
893   Context = DAG.getContext();
894   LPadToCallSiteMap.clear();
895 }
896 
897 void SelectionDAGBuilder::clear() {
898   NodeMap.clear();
899   UnusedArgNodeMap.clear();
900   PendingLoads.clear();
901   PendingExports.clear();
902   CurInst = nullptr;
903   HasTailCall = false;
904   SDNodeOrder = LowestSDNodeOrder;
905   StatepointLowering.clear();
906 }
907 
908 void SelectionDAGBuilder::clearDanglingDebugInfo() {
909   DanglingDebugInfoMap.clear();
910 }
911 
912 SDValue SelectionDAGBuilder::getRoot() {
913   if (PendingLoads.empty())
914     return DAG.getRoot();
915 
916   if (PendingLoads.size() == 1) {
917     SDValue Root = PendingLoads[0];
918     DAG.setRoot(Root);
919     PendingLoads.clear();
920     return Root;
921   }
922 
923   // Otherwise, we have to make a token factor node.
924   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
925                              PendingLoads);
926   PendingLoads.clear();
927   DAG.setRoot(Root);
928   return Root;
929 }
930 
931 SDValue SelectionDAGBuilder::getControlRoot() {
932   SDValue Root = DAG.getRoot();
933 
934   if (PendingExports.empty())
935     return Root;
936 
937   // Turn all of the CopyToReg chains into one factored node.
938   if (Root.getOpcode() != ISD::EntryToken) {
939     unsigned i = 0, e = PendingExports.size();
940     for (; i != e; ++i) {
941       assert(PendingExports[i].getNode()->getNumOperands() > 1);
942       if (PendingExports[i].getNode()->getOperand(0) == Root)
943         break;  // Don't add the root if we already indirectly depend on it.
944     }
945 
946     if (i == e)
947       PendingExports.push_back(Root);
948   }
949 
950   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
951                      PendingExports);
952   PendingExports.clear();
953   DAG.setRoot(Root);
954   return Root;
955 }
956 
957 void SelectionDAGBuilder::visit(const Instruction &I) {
958   // Set up outgoing PHI node register values before emitting the terminator.
959   if (isa<TerminatorInst>(&I)) {
960     HandlePHINodesInSuccessorBlocks(I.getParent());
961   }
962 
963   // Increase the SDNodeOrder if dealing with a non-debug instruction.
964   if (!isa<DbgInfoIntrinsic>(I))
965     ++SDNodeOrder;
966 
967   CurInst = &I;
968 
969   visit(I.getOpcode(), I);
970 
971   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
972       !isStatepoint(&I)) // statepoints handle their exports internally
973     CopyToExportRegsIfNeeded(&I);
974 
975   CurInst = nullptr;
976 }
977 
978 void SelectionDAGBuilder::visitPHI(const PHINode &) {
979   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
980 }
981 
982 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
983   // Note: this doesn't use InstVisitor, because it has to work with
984   // ConstantExpr's in addition to instructions.
985   switch (Opcode) {
986   default: llvm_unreachable("Unknown instruction type encountered!");
987     // Build the switch statement using the Instruction.def file.
988 #define HANDLE_INST(NUM, OPCODE, CLASS) \
989     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
990 #include "llvm/IR/Instruction.def"
991   }
992 }
993 
994 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
995 // generate the debug data structures now that we've seen its definition.
996 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
997                                                    SDValue Val) {
998   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
999   if (DDI.getDI()) {
1000     const DbgValueInst *DI = DDI.getDI();
1001     DebugLoc dl = DDI.getdl();
1002     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1003     DILocalVariable *Variable = DI->getVariable();
1004     DIExpression *Expr = DI->getExpression();
1005     assert(Variable->isValidLocationForIntrinsic(dl) &&
1006            "Expected inlined-at fields to agree");
1007     uint64_t Offset = DI->getOffset();
1008     SDDbgValue *SDV;
1009     if (Val.getNode()) {
1010       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
1011                                     Val)) {
1012         SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder);
1013         DAG.AddDbgValue(SDV, Val.getNode(), false);
1014       }
1015     } else
1016       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1017     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1018   }
1019 }
1020 
1021 /// getCopyFromRegs - If there was virtual register allocated for the value V
1022 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1023 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1024   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1025   SDValue Result;
1026 
1027   if (It != FuncInfo.ValueMap.end()) {
1028     unsigned InReg = It->second;
1029     bool IsABIRegCopy =
1030         V && ((isa<CallInst>(V) &&
1031                !(static_cast<const CallInst *>(V))->isInlineAsm()) ||
1032               isa<ReturnInst>(V));
1033 
1034     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1035                      DAG.getDataLayout(), InReg, Ty, IsABIRegCopy);
1036     SDValue Chain = DAG.getEntryNode();
1037     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1038                                  V);
1039     resolveDanglingDebugInfo(V, Result);
1040   }
1041 
1042   return Result;
1043 }
1044 
1045 /// getValue - Return an SDValue for the given Value.
1046 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1047   // If we already have an SDValue for this value, use it. It's important
1048   // to do this first, so that we don't create a CopyFromReg if we already
1049   // have a regular SDValue.
1050   SDValue &N = NodeMap[V];
1051   if (N.getNode()) return N;
1052 
1053   // If there's a virtual register allocated and initialized for this
1054   // value, use it.
1055   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1056     return copyFromReg;
1057 
1058   // Otherwise create a new SDValue and remember it.
1059   SDValue Val = getValueImpl(V);
1060   NodeMap[V] = Val;
1061   resolveDanglingDebugInfo(V, Val);
1062   return Val;
1063 }
1064 
1065 // Return true if SDValue exists for the given Value
1066 bool SelectionDAGBuilder::findValue(const Value *V) const {
1067   return (NodeMap.find(V) != NodeMap.end()) ||
1068     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1069 }
1070 
1071 /// getNonRegisterValue - Return an SDValue for the given Value, but
1072 /// don't look in FuncInfo.ValueMap for a virtual register.
1073 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1074   // If we already have an SDValue for this value, use it.
1075   SDValue &N = NodeMap[V];
1076   if (N.getNode()) {
1077     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1078       // Remove the debug location from the node as the node is about to be used
1079       // in a location which may differ from the original debug location.  This
1080       // is relevant to Constant and ConstantFP nodes because they can appear
1081       // as constant expressions inside PHI nodes.
1082       N->setDebugLoc(DebugLoc());
1083     }
1084     return N;
1085   }
1086 
1087   // Otherwise create a new SDValue and remember it.
1088   SDValue Val = getValueImpl(V);
1089   NodeMap[V] = Val;
1090   resolveDanglingDebugInfo(V, Val);
1091   return Val;
1092 }
1093 
1094 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1095 /// Create an SDValue for the given value.
1096 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1097   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1098 
1099   if (const Constant *C = dyn_cast<Constant>(V)) {
1100     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1101 
1102     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1103       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1104 
1105     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1106       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1107 
1108     if (isa<ConstantPointerNull>(C)) {
1109       unsigned AS = V->getType()->getPointerAddressSpace();
1110       return DAG.getConstant(0, getCurSDLoc(),
1111                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1112     }
1113 
1114     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1115       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1116 
1117     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1118       return DAG.getUNDEF(VT);
1119 
1120     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1121       visit(CE->getOpcode(), *CE);
1122       SDValue N1 = NodeMap[V];
1123       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1124       return N1;
1125     }
1126 
1127     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1128       SmallVector<SDValue, 4> Constants;
1129       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1130            OI != OE; ++OI) {
1131         SDNode *Val = getValue(*OI).getNode();
1132         // If the operand is an empty aggregate, there are no values.
1133         if (!Val) continue;
1134         // Add each leaf value from the operand to the Constants list
1135         // to form a flattened list of all the values.
1136         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1137           Constants.push_back(SDValue(Val, i));
1138       }
1139 
1140       return DAG.getMergeValues(Constants, getCurSDLoc());
1141     }
1142 
1143     if (const ConstantDataSequential *CDS =
1144           dyn_cast<ConstantDataSequential>(C)) {
1145       SmallVector<SDValue, 4> Ops;
1146       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1147         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1148         // Add each leaf value from the operand to the Constants list
1149         // to form a flattened list of all the values.
1150         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1151           Ops.push_back(SDValue(Val, i));
1152       }
1153 
1154       if (isa<ArrayType>(CDS->getType()))
1155         return DAG.getMergeValues(Ops, getCurSDLoc());
1156       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1157     }
1158 
1159     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1160       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1161              "Unknown struct or array constant!");
1162 
1163       SmallVector<EVT, 4> ValueVTs;
1164       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1165       unsigned NumElts = ValueVTs.size();
1166       if (NumElts == 0)
1167         return SDValue(); // empty struct
1168       SmallVector<SDValue, 4> Constants(NumElts);
1169       for (unsigned i = 0; i != NumElts; ++i) {
1170         EVT EltVT = ValueVTs[i];
1171         if (isa<UndefValue>(C))
1172           Constants[i] = DAG.getUNDEF(EltVT);
1173         else if (EltVT.isFloatingPoint())
1174           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1175         else
1176           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1177       }
1178 
1179       return DAG.getMergeValues(Constants, getCurSDLoc());
1180     }
1181 
1182     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1183       return DAG.getBlockAddress(BA, VT);
1184 
1185     VectorType *VecTy = cast<VectorType>(V->getType());
1186     unsigned NumElements = VecTy->getNumElements();
1187 
1188     // Now that we know the number and type of the elements, get that number of
1189     // elements into the Ops array based on what kind of constant it is.
1190     SmallVector<SDValue, 16> Ops;
1191     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1192       for (unsigned i = 0; i != NumElements; ++i)
1193         Ops.push_back(getValue(CV->getOperand(i)));
1194     } else {
1195       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1196       EVT EltVT =
1197           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1198 
1199       SDValue Op;
1200       if (EltVT.isFloatingPoint())
1201         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1202       else
1203         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1204       Ops.assign(NumElements, Op);
1205     }
1206 
1207     // Create a BUILD_VECTOR node.
1208     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1209   }
1210 
1211   // If this is a static alloca, generate it as the frameindex instead of
1212   // computation.
1213   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1214     DenseMap<const AllocaInst*, int>::iterator SI =
1215       FuncInfo.StaticAllocaMap.find(AI);
1216     if (SI != FuncInfo.StaticAllocaMap.end())
1217       return DAG.getFrameIndex(SI->second,
1218                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1219   }
1220 
1221   // If this is an instruction which fast-isel has deferred, select it now.
1222   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1223     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1224     bool IsABIRegCopy =
1225         V && ((isa<CallInst>(V) &&
1226                !(static_cast<const CallInst *>(V))->isInlineAsm()) ||
1227               isa<ReturnInst>(V));
1228 
1229     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1230                      Inst->getType(), IsABIRegCopy);
1231     SDValue Chain = DAG.getEntryNode();
1232     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1233   }
1234 
1235   llvm_unreachable("Can't get register for value!");
1236 }
1237 
1238 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1239   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1240   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1241   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1242   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1243   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1244   if (IsMSVCCXX || IsCoreCLR)
1245     CatchPadMBB->setIsEHFuncletEntry();
1246 
1247   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1248 }
1249 
1250 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1251   // Update machine-CFG edge.
1252   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1253   FuncInfo.MBB->addSuccessor(TargetMBB);
1254 
1255   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1256   bool IsSEH = isAsynchronousEHPersonality(Pers);
1257   if (IsSEH) {
1258     // If this is not a fall-through branch or optimizations are switched off,
1259     // emit the branch.
1260     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1261         TM.getOptLevel() == CodeGenOpt::None)
1262       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1263                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1264     return;
1265   }
1266 
1267   // Figure out the funclet membership for the catchret's successor.
1268   // This will be used by the FuncletLayout pass to determine how to order the
1269   // BB's.
1270   // A 'catchret' returns to the outer scope's color.
1271   Value *ParentPad = I.getCatchSwitchParentPad();
1272   const BasicBlock *SuccessorColor;
1273   if (isa<ConstantTokenNone>(ParentPad))
1274     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1275   else
1276     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1277   assert(SuccessorColor && "No parent funclet for catchret!");
1278   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1279   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1280 
1281   // Create the terminator node.
1282   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1283                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1284                             DAG.getBasicBlock(SuccessorColorMBB));
1285   DAG.setRoot(Ret);
1286 }
1287 
1288 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1289   // Don't emit any special code for the cleanuppad instruction. It just marks
1290   // the start of a funclet.
1291   FuncInfo.MBB->setIsEHFuncletEntry();
1292   FuncInfo.MBB->setIsCleanupFuncletEntry();
1293 }
1294 
1295 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1296 /// many places it could ultimately go. In the IR, we have a single unwind
1297 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1298 /// This function skips over imaginary basic blocks that hold catchswitch
1299 /// instructions, and finds all the "real" machine
1300 /// basic block destinations. As those destinations may not be successors of
1301 /// EHPadBB, here we also calculate the edge probability to those destinations.
1302 /// The passed-in Prob is the edge probability to EHPadBB.
1303 static void findUnwindDestinations(
1304     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1305     BranchProbability Prob,
1306     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1307         &UnwindDests) {
1308   EHPersonality Personality =
1309     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1310   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1311   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1312 
1313   while (EHPadBB) {
1314     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1315     BasicBlock *NewEHPadBB = nullptr;
1316     if (isa<LandingPadInst>(Pad)) {
1317       // Stop on landingpads. They are not funclets.
1318       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1319       break;
1320     } else if (isa<CleanupPadInst>(Pad)) {
1321       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1322       // personalities.
1323       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1324       UnwindDests.back().first->setIsEHFuncletEntry();
1325       break;
1326     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1327       // Add the catchpad handlers to the possible destinations.
1328       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1329         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1330         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1331         if (IsMSVCCXX || IsCoreCLR)
1332           UnwindDests.back().first->setIsEHFuncletEntry();
1333       }
1334       NewEHPadBB = CatchSwitch->getUnwindDest();
1335     } else {
1336       continue;
1337     }
1338 
1339     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1340     if (BPI && NewEHPadBB)
1341       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1342     EHPadBB = NewEHPadBB;
1343   }
1344 }
1345 
1346 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1347   // Update successor info.
1348   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1349   auto UnwindDest = I.getUnwindDest();
1350   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1351   BranchProbability UnwindDestProb =
1352       (BPI && UnwindDest)
1353           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1354           : BranchProbability::getZero();
1355   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1356   for (auto &UnwindDest : UnwindDests) {
1357     UnwindDest.first->setIsEHPad();
1358     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1359   }
1360   FuncInfo.MBB->normalizeSuccProbs();
1361 
1362   // Create the terminator node.
1363   SDValue Ret =
1364       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1365   DAG.setRoot(Ret);
1366 }
1367 
1368 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1369   report_fatal_error("visitCatchSwitch not yet implemented!");
1370 }
1371 
1372 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1373   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1374   auto &DL = DAG.getDataLayout();
1375   SDValue Chain = getControlRoot();
1376   SmallVector<ISD::OutputArg, 8> Outs;
1377   SmallVector<SDValue, 8> OutVals;
1378 
1379   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1380   // lower
1381   //
1382   //   %val = call <ty> @llvm.experimental.deoptimize()
1383   //   ret <ty> %val
1384   //
1385   // differently.
1386   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1387     LowerDeoptimizingReturn();
1388     return;
1389   }
1390 
1391   if (!FuncInfo.CanLowerReturn) {
1392     unsigned DemoteReg = FuncInfo.DemoteRegister;
1393     const Function *F = I.getParent()->getParent();
1394 
1395     // Emit a store of the return value through the virtual register.
1396     // Leave Outs empty so that LowerReturn won't try to load return
1397     // registers the usual way.
1398     SmallVector<EVT, 1> PtrValueVTs;
1399     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1400                     PtrValueVTs);
1401 
1402     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1403                                         DemoteReg, PtrValueVTs[0]);
1404     SDValue RetOp = getValue(I.getOperand(0));
1405 
1406     SmallVector<EVT, 4> ValueVTs;
1407     SmallVector<uint64_t, 4> Offsets;
1408     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1409     unsigned NumValues = ValueVTs.size();
1410 
1411     // An aggregate return value cannot wrap around the address space, so
1412     // offsets to its parts don't wrap either.
1413     SDNodeFlags Flags;
1414     Flags.setNoUnsignedWrap(true);
1415 
1416     SmallVector<SDValue, 4> Chains(NumValues);
1417     for (unsigned i = 0; i != NumValues; ++i) {
1418       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1419                                 RetPtr.getValueType(), RetPtr,
1420                                 DAG.getIntPtrConstant(Offsets[i],
1421                                                       getCurSDLoc()),
1422                                 Flags);
1423       Chains[i] = DAG.getStore(Chain, getCurSDLoc(),
1424                                SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1425                                // FIXME: better loc info would be nice.
1426                                Add, MachinePointerInfo());
1427     }
1428 
1429     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1430                         MVT::Other, Chains);
1431   } else if (I.getNumOperands() != 0) {
1432     SmallVector<EVT, 4> ValueVTs;
1433     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1434     unsigned NumValues = ValueVTs.size();
1435     if (NumValues) {
1436       SDValue RetOp = getValue(I.getOperand(0));
1437 
1438       const Function *F = I.getParent()->getParent();
1439 
1440       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1441       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1442                                           Attribute::SExt))
1443         ExtendKind = ISD::SIGN_EXTEND;
1444       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1445                                                Attribute::ZExt))
1446         ExtendKind = ISD::ZERO_EXTEND;
1447 
1448       LLVMContext &Context = F->getContext();
1449       bool RetInReg = F->getAttributes().hasAttribute(
1450           AttributeList::ReturnIndex, Attribute::InReg);
1451 
1452       for (unsigned j = 0; j != NumValues; ++j) {
1453         EVT VT = ValueVTs[j];
1454 
1455         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1456           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1457 
1458         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT);
1459         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT);
1460         SmallVector<SDValue, 4> Parts(NumParts);
1461         getCopyToParts(DAG, getCurSDLoc(),
1462                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1463                        &Parts[0], NumParts, PartVT, &I, ExtendKind, true);
1464 
1465         // 'inreg' on function refers to return value
1466         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1467         if (RetInReg)
1468           Flags.setInReg();
1469 
1470         // Propagate extension type if any
1471         if (ExtendKind == ISD::SIGN_EXTEND)
1472           Flags.setSExt();
1473         else if (ExtendKind == ISD::ZERO_EXTEND)
1474           Flags.setZExt();
1475 
1476         for (unsigned i = 0; i < NumParts; ++i) {
1477           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1478                                         VT, /*isfixed=*/true, 0, 0));
1479           OutVals.push_back(Parts[i]);
1480         }
1481       }
1482     }
1483   }
1484 
1485   // Push in swifterror virtual register as the last element of Outs. This makes
1486   // sure swifterror virtual register will be returned in the swifterror
1487   // physical register.
1488   const Function *F = I.getParent()->getParent();
1489   if (TLI.supportSwiftError() &&
1490       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1491     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1492     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1493     Flags.setSwiftError();
1494     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1495                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1496                                   true /*isfixed*/, 1 /*origidx*/,
1497                                   0 /*partOffs*/));
1498     // Create SDNode for the swifterror virtual register.
1499     OutVals.push_back(
1500         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1501                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1502                         EVT(TLI.getPointerTy(DL))));
1503   }
1504 
1505   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1506   CallingConv::ID CallConv =
1507     DAG.getMachineFunction().getFunction()->getCallingConv();
1508   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1509       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1510 
1511   // Verify that the target's LowerReturn behaved as expected.
1512   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1513          "LowerReturn didn't return a valid chain!");
1514 
1515   // Update the DAG with the new chain value resulting from return lowering.
1516   DAG.setRoot(Chain);
1517 }
1518 
1519 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1520 /// created for it, emit nodes to copy the value into the virtual
1521 /// registers.
1522 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1523   // Skip empty types
1524   if (V->getType()->isEmptyTy())
1525     return;
1526 
1527   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1528   if (VMI != FuncInfo.ValueMap.end()) {
1529     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1530     CopyValueToVirtualRegister(V, VMI->second);
1531   }
1532 }
1533 
1534 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1535 /// the current basic block, add it to ValueMap now so that we'll get a
1536 /// CopyTo/FromReg.
1537 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1538   // No need to export constants.
1539   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1540 
1541   // Already exported?
1542   if (FuncInfo.isExportedInst(V)) return;
1543 
1544   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1545   CopyValueToVirtualRegister(V, Reg);
1546 }
1547 
1548 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1549                                                      const BasicBlock *FromBB) {
1550   // The operands of the setcc have to be in this block.  We don't know
1551   // how to export them from some other block.
1552   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1553     // Can export from current BB.
1554     if (VI->getParent() == FromBB)
1555       return true;
1556 
1557     // Is already exported, noop.
1558     return FuncInfo.isExportedInst(V);
1559   }
1560 
1561   // If this is an argument, we can export it if the BB is the entry block or
1562   // if it is already exported.
1563   if (isa<Argument>(V)) {
1564     if (FromBB == &FromBB->getParent()->getEntryBlock())
1565       return true;
1566 
1567     // Otherwise, can only export this if it is already exported.
1568     return FuncInfo.isExportedInst(V);
1569   }
1570 
1571   // Otherwise, constants can always be exported.
1572   return true;
1573 }
1574 
1575 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1576 BranchProbability
1577 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1578                                         const MachineBasicBlock *Dst) const {
1579   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1580   const BasicBlock *SrcBB = Src->getBasicBlock();
1581   const BasicBlock *DstBB = Dst->getBasicBlock();
1582   if (!BPI) {
1583     // If BPI is not available, set the default probability as 1 / N, where N is
1584     // the number of successors.
1585     auto SuccSize = std::max<uint32_t>(
1586         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1587     return BranchProbability(1, SuccSize);
1588   }
1589   return BPI->getEdgeProbability(SrcBB, DstBB);
1590 }
1591 
1592 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1593                                                MachineBasicBlock *Dst,
1594                                                BranchProbability Prob) {
1595   if (!FuncInfo.BPI)
1596     Src->addSuccessorWithoutProb(Dst);
1597   else {
1598     if (Prob.isUnknown())
1599       Prob = getEdgeProbability(Src, Dst);
1600     Src->addSuccessor(Dst, Prob);
1601   }
1602 }
1603 
1604 static bool InBlock(const Value *V, const BasicBlock *BB) {
1605   if (const Instruction *I = dyn_cast<Instruction>(V))
1606     return I->getParent() == BB;
1607   return true;
1608 }
1609 
1610 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1611 /// This function emits a branch and is used at the leaves of an OR or an
1612 /// AND operator tree.
1613 ///
1614 void
1615 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1616                                                   MachineBasicBlock *TBB,
1617                                                   MachineBasicBlock *FBB,
1618                                                   MachineBasicBlock *CurBB,
1619                                                   MachineBasicBlock *SwitchBB,
1620                                                   BranchProbability TProb,
1621                                                   BranchProbability FProb,
1622                                                   bool InvertCond) {
1623   const BasicBlock *BB = CurBB->getBasicBlock();
1624 
1625   // If the leaf of the tree is a comparison, merge the condition into
1626   // the caseblock.
1627   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1628     // The operands of the cmp have to be in this block.  We don't know
1629     // how to export them from some other block.  If this is the first block
1630     // of the sequence, no exporting is needed.
1631     if (CurBB == SwitchBB ||
1632         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1633          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1634       ISD::CondCode Condition;
1635       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1636         ICmpInst::Predicate Pred =
1637             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1638         Condition = getICmpCondCode(Pred);
1639       } else {
1640         const FCmpInst *FC = cast<FCmpInst>(Cond);
1641         FCmpInst::Predicate Pred =
1642             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1643         Condition = getFCmpCondCode(Pred);
1644         if (TM.Options.NoNaNsFPMath)
1645           Condition = getFCmpCodeWithoutNaN(Condition);
1646       }
1647 
1648       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1649                    TBB, FBB, CurBB, TProb, FProb);
1650       SwitchCases.push_back(CB);
1651       return;
1652     }
1653   }
1654 
1655   // Create a CaseBlock record representing this branch.
1656   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1657   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1658                nullptr, TBB, FBB, CurBB, TProb, FProb);
1659   SwitchCases.push_back(CB);
1660 }
1661 
1662 /// FindMergedConditions - If Cond is an expression like
1663 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1664                                                MachineBasicBlock *TBB,
1665                                                MachineBasicBlock *FBB,
1666                                                MachineBasicBlock *CurBB,
1667                                                MachineBasicBlock *SwitchBB,
1668                                                Instruction::BinaryOps Opc,
1669                                                BranchProbability TProb,
1670                                                BranchProbability FProb,
1671                                                bool InvertCond) {
1672   // Skip over not part of the tree and remember to invert op and operands at
1673   // next level.
1674   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1675     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1676     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1677       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1678                            !InvertCond);
1679       return;
1680     }
1681   }
1682 
1683   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1684   // Compute the effective opcode for Cond, taking into account whether it needs
1685   // to be inverted, e.g.
1686   //   and (not (or A, B)), C
1687   // gets lowered as
1688   //   and (and (not A, not B), C)
1689   unsigned BOpc = 0;
1690   if (BOp) {
1691     BOpc = BOp->getOpcode();
1692     if (InvertCond) {
1693       if (BOpc == Instruction::And)
1694         BOpc = Instruction::Or;
1695       else if (BOpc == Instruction::Or)
1696         BOpc = Instruction::And;
1697     }
1698   }
1699 
1700   // If this node is not part of the or/and tree, emit it as a branch.
1701   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1702       BOpc != Opc || !BOp->hasOneUse() ||
1703       BOp->getParent() != CurBB->getBasicBlock() ||
1704       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1705       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1706     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1707                                  TProb, FProb, InvertCond);
1708     return;
1709   }
1710 
1711   //  Create TmpBB after CurBB.
1712   MachineFunction::iterator BBI(CurBB);
1713   MachineFunction &MF = DAG.getMachineFunction();
1714   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1715   CurBB->getParent()->insert(++BBI, TmpBB);
1716 
1717   if (Opc == Instruction::Or) {
1718     // Codegen X | Y as:
1719     // BB1:
1720     //   jmp_if_X TBB
1721     //   jmp TmpBB
1722     // TmpBB:
1723     //   jmp_if_Y TBB
1724     //   jmp FBB
1725     //
1726 
1727     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1728     // The requirement is that
1729     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1730     //     = TrueProb for original BB.
1731     // Assuming the original probabilities are A and B, one choice is to set
1732     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1733     // A/(1+B) and 2B/(1+B). This choice assumes that
1734     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1735     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1736     // TmpBB, but the math is more complicated.
1737 
1738     auto NewTrueProb = TProb / 2;
1739     auto NewFalseProb = TProb / 2 + FProb;
1740     // Emit the LHS condition.
1741     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1742                          NewTrueProb, NewFalseProb, InvertCond);
1743 
1744     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1745     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1746     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1747     // Emit the RHS condition into TmpBB.
1748     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1749                          Probs[0], Probs[1], InvertCond);
1750   } else {
1751     assert(Opc == Instruction::And && "Unknown merge op!");
1752     // Codegen X & Y as:
1753     // BB1:
1754     //   jmp_if_X TmpBB
1755     //   jmp FBB
1756     // TmpBB:
1757     //   jmp_if_Y TBB
1758     //   jmp FBB
1759     //
1760     //  This requires creation of TmpBB after CurBB.
1761 
1762     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1763     // The requirement is that
1764     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1765     //     = FalseProb for original BB.
1766     // Assuming the original probabilities are A and B, one choice is to set
1767     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1768     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1769     // TrueProb for BB1 * FalseProb for TmpBB.
1770 
1771     auto NewTrueProb = TProb + FProb / 2;
1772     auto NewFalseProb = FProb / 2;
1773     // Emit the LHS condition.
1774     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1775                          NewTrueProb, NewFalseProb, InvertCond);
1776 
1777     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1778     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1779     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1780     // Emit the RHS condition into TmpBB.
1781     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1782                          Probs[0], Probs[1], InvertCond);
1783   }
1784 }
1785 
1786 /// If the set of cases should be emitted as a series of branches, return true.
1787 /// If we should emit this as a bunch of and/or'd together conditions, return
1788 /// false.
1789 bool
1790 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1791   if (Cases.size() != 2) return true;
1792 
1793   // If this is two comparisons of the same values or'd or and'd together, they
1794   // will get folded into a single comparison, so don't emit two blocks.
1795   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1796        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1797       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1798        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1799     return false;
1800   }
1801 
1802   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1803   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1804   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1805       Cases[0].CC == Cases[1].CC &&
1806       isa<Constant>(Cases[0].CmpRHS) &&
1807       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1808     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1809       return false;
1810     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1811       return false;
1812   }
1813 
1814   return true;
1815 }
1816 
1817 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1818   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1819 
1820   // Update machine-CFG edges.
1821   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1822 
1823   if (I.isUnconditional()) {
1824     // Update machine-CFG edges.
1825     BrMBB->addSuccessor(Succ0MBB);
1826 
1827     // If this is not a fall-through branch or optimizations are switched off,
1828     // emit the branch.
1829     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1830       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1831                               MVT::Other, getControlRoot(),
1832                               DAG.getBasicBlock(Succ0MBB)));
1833 
1834     return;
1835   }
1836 
1837   // If this condition is one of the special cases we handle, do special stuff
1838   // now.
1839   const Value *CondVal = I.getCondition();
1840   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1841 
1842   // If this is a series of conditions that are or'd or and'd together, emit
1843   // this as a sequence of branches instead of setcc's with and/or operations.
1844   // As long as jumps are not expensive, this should improve performance.
1845   // For example, instead of something like:
1846   //     cmp A, B
1847   //     C = seteq
1848   //     cmp D, E
1849   //     F = setle
1850   //     or C, F
1851   //     jnz foo
1852   // Emit:
1853   //     cmp A, B
1854   //     je foo
1855   //     cmp D, E
1856   //     jle foo
1857   //
1858   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1859     Instruction::BinaryOps Opcode = BOp->getOpcode();
1860     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1861         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1862         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1863       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1864                            Opcode,
1865                            getEdgeProbability(BrMBB, Succ0MBB),
1866                            getEdgeProbability(BrMBB, Succ1MBB),
1867                            /*InvertCond=*/false);
1868       // If the compares in later blocks need to use values not currently
1869       // exported from this block, export them now.  This block should always
1870       // be the first entry.
1871       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1872 
1873       // Allow some cases to be rejected.
1874       if (ShouldEmitAsBranches(SwitchCases)) {
1875         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1876           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1877           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1878         }
1879 
1880         // Emit the branch for this block.
1881         visitSwitchCase(SwitchCases[0], BrMBB);
1882         SwitchCases.erase(SwitchCases.begin());
1883         return;
1884       }
1885 
1886       // Okay, we decided not to do this, remove any inserted MBB's and clear
1887       // SwitchCases.
1888       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1889         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1890 
1891       SwitchCases.clear();
1892     }
1893   }
1894 
1895   // Create a CaseBlock record representing this branch.
1896   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1897                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1898 
1899   // Use visitSwitchCase to actually insert the fast branch sequence for this
1900   // cond branch.
1901   visitSwitchCase(CB, BrMBB);
1902 }
1903 
1904 /// visitSwitchCase - Emits the necessary code to represent a single node in
1905 /// the binary search tree resulting from lowering a switch instruction.
1906 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1907                                           MachineBasicBlock *SwitchBB) {
1908   SDValue Cond;
1909   SDValue CondLHS = getValue(CB.CmpLHS);
1910   SDLoc dl = getCurSDLoc();
1911 
1912   // Build the setcc now.
1913   if (!CB.CmpMHS) {
1914     // Fold "(X == true)" to X and "(X == false)" to !X to
1915     // handle common cases produced by branch lowering.
1916     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1917         CB.CC == ISD::SETEQ)
1918       Cond = CondLHS;
1919     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1920              CB.CC == ISD::SETEQ) {
1921       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1922       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1923     } else
1924       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1925   } else {
1926     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1927 
1928     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1929     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1930 
1931     SDValue CmpOp = getValue(CB.CmpMHS);
1932     EVT VT = CmpOp.getValueType();
1933 
1934     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1935       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1936                           ISD::SETLE);
1937     } else {
1938       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1939                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1940       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1941                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1942     }
1943   }
1944 
1945   // Update successor info
1946   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1947   // TrueBB and FalseBB are always different unless the incoming IR is
1948   // degenerate. This only happens when running llc on weird IR.
1949   if (CB.TrueBB != CB.FalseBB)
1950     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1951   SwitchBB->normalizeSuccProbs();
1952 
1953   // If the lhs block is the next block, invert the condition so that we can
1954   // fall through to the lhs instead of the rhs block.
1955   if (CB.TrueBB == NextBlock(SwitchBB)) {
1956     std::swap(CB.TrueBB, CB.FalseBB);
1957     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1958     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1959   }
1960 
1961   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1962                                MVT::Other, getControlRoot(), Cond,
1963                                DAG.getBasicBlock(CB.TrueBB));
1964 
1965   // Insert the false branch. Do this even if it's a fall through branch,
1966   // this makes it easier to do DAG optimizations which require inverting
1967   // the branch condition.
1968   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1969                        DAG.getBasicBlock(CB.FalseBB));
1970 
1971   DAG.setRoot(BrCond);
1972 }
1973 
1974 /// visitJumpTable - Emit JumpTable node in the current MBB
1975 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1976   // Emit the code for the jump table
1977   assert(JT.Reg != -1U && "Should lower JT Header first!");
1978   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1979   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1980                                      JT.Reg, PTy);
1981   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1982   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1983                                     MVT::Other, Index.getValue(1),
1984                                     Table, Index);
1985   DAG.setRoot(BrJumpTable);
1986 }
1987 
1988 /// visitJumpTableHeader - This function emits necessary code to produce index
1989 /// in the JumpTable from switch case.
1990 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1991                                                JumpTableHeader &JTH,
1992                                                MachineBasicBlock *SwitchBB) {
1993   SDLoc dl = getCurSDLoc();
1994 
1995   // Subtract the lowest switch case value from the value being switched on and
1996   // conditional branch to default mbb if the result is greater than the
1997   // difference between smallest and largest cases.
1998   SDValue SwitchOp = getValue(JTH.SValue);
1999   EVT VT = SwitchOp.getValueType();
2000   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2001                             DAG.getConstant(JTH.First, dl, VT));
2002 
2003   // The SDNode we just created, which holds the value being switched on minus
2004   // the smallest case value, needs to be copied to a virtual register so it
2005   // can be used as an index into the jump table in a subsequent basic block.
2006   // This value may be smaller or larger than the target's pointer type, and
2007   // therefore require extension or truncating.
2008   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2009   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2010 
2011   unsigned JumpTableReg =
2012       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2013   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2014                                     JumpTableReg, SwitchOp);
2015   JT.Reg = JumpTableReg;
2016 
2017   // Emit the range check for the jump table, and branch to the default block
2018   // for the switch statement if the value being switched on exceeds the largest
2019   // case in the switch.
2020   SDValue CMP = DAG.getSetCC(
2021       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2022                                  Sub.getValueType()),
2023       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2024 
2025   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2026                                MVT::Other, CopyTo, CMP,
2027                                DAG.getBasicBlock(JT.Default));
2028 
2029   // Avoid emitting unnecessary branches to the next block.
2030   if (JT.MBB != NextBlock(SwitchBB))
2031     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2032                          DAG.getBasicBlock(JT.MBB));
2033 
2034   DAG.setRoot(BrCond);
2035 }
2036 
2037 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2038 /// variable if there exists one.
2039 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2040                                  SDValue &Chain) {
2041   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2042   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2043   MachineFunction &MF = DAG.getMachineFunction();
2044   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
2045   MachineSDNode *Node =
2046       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2047   if (Global) {
2048     MachinePointerInfo MPInfo(Global);
2049     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2050     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2051                  MachineMemOperand::MODereferenceable;
2052     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2053                                        DAG.getEVTAlignment(PtrTy));
2054     Node->setMemRefs(MemRefs, MemRefs + 1);
2055   }
2056   return SDValue(Node, 0);
2057 }
2058 
2059 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2060 /// tail spliced into a stack protector check success bb.
2061 ///
2062 /// For a high level explanation of how this fits into the stack protector
2063 /// generation see the comment on the declaration of class
2064 /// StackProtectorDescriptor.
2065 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2066                                                   MachineBasicBlock *ParentBB) {
2067 
2068   // First create the loads to the guard/stack slot for the comparison.
2069   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2070   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2071 
2072   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2073   int FI = MFI.getStackProtectorIndex();
2074 
2075   SDValue Guard;
2076   SDLoc dl = getCurSDLoc();
2077   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2078   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2079   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2080 
2081   // Generate code to load the content of the guard slot.
2082   SDValue StackSlot = DAG.getLoad(
2083       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2084       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2085       MachineMemOperand::MOVolatile);
2086 
2087   // Retrieve guard check function, nullptr if instrumentation is inlined.
2088   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2089     // The target provides a guard check function to validate the guard value.
2090     // Generate a call to that function with the content of the guard slot as
2091     // argument.
2092     auto *Fn = cast<Function>(GuardCheck);
2093     FunctionType *FnTy = Fn->getFunctionType();
2094     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2095 
2096     TargetLowering::ArgListTy Args;
2097     TargetLowering::ArgListEntry Entry;
2098     Entry.Node = StackSlot;
2099     Entry.Ty = FnTy->getParamType(0);
2100     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2101       Entry.IsInReg = true;
2102     Args.push_back(Entry);
2103 
2104     TargetLowering::CallLoweringInfo CLI(DAG);
2105     CLI.setDebugLoc(getCurSDLoc())
2106       .setChain(DAG.getEntryNode())
2107       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2108                  getValue(GuardCheck), std::move(Args));
2109 
2110     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2111     DAG.setRoot(Result.second);
2112     return;
2113   }
2114 
2115   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2116   // Otherwise, emit a volatile load to retrieve the stack guard value.
2117   SDValue Chain = DAG.getEntryNode();
2118   if (TLI.useLoadStackGuardNode()) {
2119     Guard = getLoadStackGuard(DAG, dl, Chain);
2120   } else {
2121     const Value *IRGuard = TLI.getSDagStackGuard(M);
2122     SDValue GuardPtr = getValue(IRGuard);
2123 
2124     Guard =
2125         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2126                     Align, MachineMemOperand::MOVolatile);
2127   }
2128 
2129   // Perform the comparison via a subtract/getsetcc.
2130   EVT VT = Guard.getValueType();
2131   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2132 
2133   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2134                                                         *DAG.getContext(),
2135                                                         Sub.getValueType()),
2136                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2137 
2138   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2139   // branch to failure MBB.
2140   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2141                                MVT::Other, StackSlot.getOperand(0),
2142                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2143   // Otherwise branch to success MBB.
2144   SDValue Br = DAG.getNode(ISD::BR, dl,
2145                            MVT::Other, BrCond,
2146                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2147 
2148   DAG.setRoot(Br);
2149 }
2150 
2151 /// Codegen the failure basic block for a stack protector check.
2152 ///
2153 /// A failure stack protector machine basic block consists simply of a call to
2154 /// __stack_chk_fail().
2155 ///
2156 /// For a high level explanation of how this fits into the stack protector
2157 /// generation see the comment on the declaration of class
2158 /// StackProtectorDescriptor.
2159 void
2160 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2161   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2162   SDValue Chain =
2163       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2164                       None, false, getCurSDLoc(), false, false).second;
2165   DAG.setRoot(Chain);
2166 }
2167 
2168 /// visitBitTestHeader - This function emits necessary code to produce value
2169 /// suitable for "bit tests"
2170 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2171                                              MachineBasicBlock *SwitchBB) {
2172   SDLoc dl = getCurSDLoc();
2173 
2174   // Subtract the minimum value
2175   SDValue SwitchOp = getValue(B.SValue);
2176   EVT VT = SwitchOp.getValueType();
2177   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2178                             DAG.getConstant(B.First, dl, VT));
2179 
2180   // Check range
2181   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2182   SDValue RangeCmp = DAG.getSetCC(
2183       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2184                                  Sub.getValueType()),
2185       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2186 
2187   // Determine the type of the test operands.
2188   bool UsePtrType = false;
2189   if (!TLI.isTypeLegal(VT))
2190     UsePtrType = true;
2191   else {
2192     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2193       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2194         // Switch table case range are encoded into series of masks.
2195         // Just use pointer type, it's guaranteed to fit.
2196         UsePtrType = true;
2197         break;
2198       }
2199   }
2200   if (UsePtrType) {
2201     VT = TLI.getPointerTy(DAG.getDataLayout());
2202     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2203   }
2204 
2205   B.RegVT = VT.getSimpleVT();
2206   B.Reg = FuncInfo.CreateReg(B.RegVT);
2207   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2208 
2209   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2210 
2211   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2212   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2213   SwitchBB->normalizeSuccProbs();
2214 
2215   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2216                                 MVT::Other, CopyTo, RangeCmp,
2217                                 DAG.getBasicBlock(B.Default));
2218 
2219   // Avoid emitting unnecessary branches to the next block.
2220   if (MBB != NextBlock(SwitchBB))
2221     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2222                           DAG.getBasicBlock(MBB));
2223 
2224   DAG.setRoot(BrRange);
2225 }
2226 
2227 /// visitBitTestCase - this function produces one "bit test"
2228 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2229                                            MachineBasicBlock* NextMBB,
2230                                            BranchProbability BranchProbToNext,
2231                                            unsigned Reg,
2232                                            BitTestCase &B,
2233                                            MachineBasicBlock *SwitchBB) {
2234   SDLoc dl = getCurSDLoc();
2235   MVT VT = BB.RegVT;
2236   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2237   SDValue Cmp;
2238   unsigned PopCount = countPopulation(B.Mask);
2239   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2240   if (PopCount == 1) {
2241     // Testing for a single bit; just compare the shift count with what it
2242     // would need to be to shift a 1 bit in that position.
2243     Cmp = DAG.getSetCC(
2244         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2245         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2246         ISD::SETEQ);
2247   } else if (PopCount == BB.Range) {
2248     // There is only one zero bit in the range, test for it directly.
2249     Cmp = DAG.getSetCC(
2250         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2251         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2252         ISD::SETNE);
2253   } else {
2254     // Make desired shift
2255     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2256                                     DAG.getConstant(1, dl, VT), ShiftOp);
2257 
2258     // Emit bit tests and jumps
2259     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2260                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2261     Cmp = DAG.getSetCC(
2262         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2263         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2264   }
2265 
2266   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2267   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2268   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2269   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2270   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2271   // one as they are relative probabilities (and thus work more like weights),
2272   // and hence we need to normalize them to let the sum of them become one.
2273   SwitchBB->normalizeSuccProbs();
2274 
2275   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2276                               MVT::Other, getControlRoot(),
2277                               Cmp, DAG.getBasicBlock(B.TargetBB));
2278 
2279   // Avoid emitting unnecessary branches to the next block.
2280   if (NextMBB != NextBlock(SwitchBB))
2281     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2282                         DAG.getBasicBlock(NextMBB));
2283 
2284   DAG.setRoot(BrAnd);
2285 }
2286 
2287 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2288   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2289 
2290   // Retrieve successors. Look through artificial IR level blocks like
2291   // catchswitch for successors.
2292   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2293   const BasicBlock *EHPadBB = I.getSuccessor(1);
2294 
2295   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2296   // have to do anything here to lower funclet bundles.
2297   assert(!I.hasOperandBundlesOtherThan(
2298              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2299          "Cannot lower invokes with arbitrary operand bundles yet!");
2300 
2301   const Value *Callee(I.getCalledValue());
2302   const Function *Fn = dyn_cast<Function>(Callee);
2303   if (isa<InlineAsm>(Callee))
2304     visitInlineAsm(&I);
2305   else if (Fn && Fn->isIntrinsic()) {
2306     switch (Fn->getIntrinsicID()) {
2307     default:
2308       llvm_unreachable("Cannot invoke this intrinsic");
2309     case Intrinsic::donothing:
2310       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2311       break;
2312     case Intrinsic::experimental_patchpoint_void:
2313     case Intrinsic::experimental_patchpoint_i64:
2314       visitPatchpoint(&I, EHPadBB);
2315       break;
2316     case Intrinsic::experimental_gc_statepoint:
2317       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2318       break;
2319     }
2320   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2321     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2322     // Eventually we will support lowering the @llvm.experimental.deoptimize
2323     // intrinsic, and right now there are no plans to support other intrinsics
2324     // with deopt state.
2325     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2326   } else {
2327     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2328   }
2329 
2330   // If the value of the invoke is used outside of its defining block, make it
2331   // available as a virtual register.
2332   // We already took care of the exported value for the statepoint instruction
2333   // during call to the LowerStatepoint.
2334   if (!isStatepoint(I)) {
2335     CopyToExportRegsIfNeeded(&I);
2336   }
2337 
2338   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2339   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2340   BranchProbability EHPadBBProb =
2341       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2342           : BranchProbability::getZero();
2343   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2344 
2345   // Update successor info.
2346   addSuccessorWithProb(InvokeMBB, Return);
2347   for (auto &UnwindDest : UnwindDests) {
2348     UnwindDest.first->setIsEHPad();
2349     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2350   }
2351   InvokeMBB->normalizeSuccProbs();
2352 
2353   // Drop into normal successor.
2354   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2355                           MVT::Other, getControlRoot(),
2356                           DAG.getBasicBlock(Return)));
2357 }
2358 
2359 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2360   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2361 }
2362 
2363 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2364   assert(FuncInfo.MBB->isEHPad() &&
2365          "Call to landingpad not in landing pad!");
2366 
2367   MachineBasicBlock *MBB = FuncInfo.MBB;
2368   addLandingPadInfo(LP, *MBB);
2369 
2370   // If there aren't registers to copy the values into (e.g., during SjLj
2371   // exceptions), then don't bother to create these DAG nodes.
2372   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2373   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2374   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2375       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2376     return;
2377 
2378   // If landingpad's return type is token type, we don't create DAG nodes
2379   // for its exception pointer and selector value. The extraction of exception
2380   // pointer or selector value from token type landingpads is not currently
2381   // supported.
2382   if (LP.getType()->isTokenTy())
2383     return;
2384 
2385   SmallVector<EVT, 2> ValueVTs;
2386   SDLoc dl = getCurSDLoc();
2387   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2388   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2389 
2390   // Get the two live-in registers as SDValues. The physregs have already been
2391   // copied into virtual registers.
2392   SDValue Ops[2];
2393   if (FuncInfo.ExceptionPointerVirtReg) {
2394     Ops[0] = DAG.getZExtOrTrunc(
2395         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2396                            FuncInfo.ExceptionPointerVirtReg,
2397                            TLI.getPointerTy(DAG.getDataLayout())),
2398         dl, ValueVTs[0]);
2399   } else {
2400     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2401   }
2402   Ops[1] = DAG.getZExtOrTrunc(
2403       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2404                          FuncInfo.ExceptionSelectorVirtReg,
2405                          TLI.getPointerTy(DAG.getDataLayout())),
2406       dl, ValueVTs[1]);
2407 
2408   // Merge into one.
2409   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2410                             DAG.getVTList(ValueVTs), Ops);
2411   setValue(&LP, Res);
2412 }
2413 
2414 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2415 #ifndef NDEBUG
2416   for (const CaseCluster &CC : Clusters)
2417     assert(CC.Low == CC.High && "Input clusters must be single-case");
2418 #endif
2419 
2420   std::sort(Clusters.begin(), Clusters.end(),
2421             [](const CaseCluster &a, const CaseCluster &b) {
2422     return a.Low->getValue().slt(b.Low->getValue());
2423   });
2424 
2425   // Merge adjacent clusters with the same destination.
2426   const unsigned N = Clusters.size();
2427   unsigned DstIndex = 0;
2428   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2429     CaseCluster &CC = Clusters[SrcIndex];
2430     const ConstantInt *CaseVal = CC.Low;
2431     MachineBasicBlock *Succ = CC.MBB;
2432 
2433     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2434         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2435       // If this case has the same successor and is a neighbour, merge it into
2436       // the previous cluster.
2437       Clusters[DstIndex - 1].High = CaseVal;
2438       Clusters[DstIndex - 1].Prob += CC.Prob;
2439     } else {
2440       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2441                    sizeof(Clusters[SrcIndex]));
2442     }
2443   }
2444   Clusters.resize(DstIndex);
2445 }
2446 
2447 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2448                                            MachineBasicBlock *Last) {
2449   // Update JTCases.
2450   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2451     if (JTCases[i].first.HeaderBB == First)
2452       JTCases[i].first.HeaderBB = Last;
2453 
2454   // Update BitTestCases.
2455   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2456     if (BitTestCases[i].Parent == First)
2457       BitTestCases[i].Parent = Last;
2458 }
2459 
2460 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2461   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2462 
2463   // Update machine-CFG edges with unique successors.
2464   SmallSet<BasicBlock*, 32> Done;
2465   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2466     BasicBlock *BB = I.getSuccessor(i);
2467     bool Inserted = Done.insert(BB).second;
2468     if (!Inserted)
2469         continue;
2470 
2471     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2472     addSuccessorWithProb(IndirectBrMBB, Succ);
2473   }
2474   IndirectBrMBB->normalizeSuccProbs();
2475 
2476   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2477                           MVT::Other, getControlRoot(),
2478                           getValue(I.getAddress())));
2479 }
2480 
2481 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2482   if (DAG.getTarget().Options.TrapUnreachable)
2483     DAG.setRoot(
2484         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2485 }
2486 
2487 void SelectionDAGBuilder::visitFSub(const User &I) {
2488   // -0.0 - X --> fneg
2489   Type *Ty = I.getType();
2490   if (isa<Constant>(I.getOperand(0)) &&
2491       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2492     SDValue Op2 = getValue(I.getOperand(1));
2493     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2494                              Op2.getValueType(), Op2));
2495     return;
2496   }
2497 
2498   visitBinary(I, ISD::FSUB);
2499 }
2500 
2501 /// Checks if the given instruction performs a vector reduction, in which case
2502 /// we have the freedom to alter the elements in the result as long as the
2503 /// reduction of them stays unchanged.
2504 static bool isVectorReductionOp(const User *I) {
2505   const Instruction *Inst = dyn_cast<Instruction>(I);
2506   if (!Inst || !Inst->getType()->isVectorTy())
2507     return false;
2508 
2509   auto OpCode = Inst->getOpcode();
2510   switch (OpCode) {
2511   case Instruction::Add:
2512   case Instruction::Mul:
2513   case Instruction::And:
2514   case Instruction::Or:
2515   case Instruction::Xor:
2516     break;
2517   case Instruction::FAdd:
2518   case Instruction::FMul:
2519     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2520       if (FPOp->getFastMathFlags().unsafeAlgebra())
2521         break;
2522     LLVM_FALLTHROUGH;
2523   default:
2524     return false;
2525   }
2526 
2527   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2528   unsigned ElemNumToReduce = ElemNum;
2529 
2530   // Do DFS search on the def-use chain from the given instruction. We only
2531   // allow four kinds of operations during the search until we reach the
2532   // instruction that extracts the first element from the vector:
2533   //
2534   //   1. The reduction operation of the same opcode as the given instruction.
2535   //
2536   //   2. PHI node.
2537   //
2538   //   3. ShuffleVector instruction together with a reduction operation that
2539   //      does a partial reduction.
2540   //
2541   //   4. ExtractElement that extracts the first element from the vector, and we
2542   //      stop searching the def-use chain here.
2543   //
2544   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2545   // from 1-3 to the stack to continue the DFS. The given instruction is not
2546   // a reduction operation if we meet any other instructions other than those
2547   // listed above.
2548 
2549   SmallVector<const User *, 16> UsersToVisit{Inst};
2550   SmallPtrSet<const User *, 16> Visited;
2551   bool ReduxExtracted = false;
2552 
2553   while (!UsersToVisit.empty()) {
2554     auto User = UsersToVisit.back();
2555     UsersToVisit.pop_back();
2556     if (!Visited.insert(User).second)
2557       continue;
2558 
2559     for (const auto &U : User->users()) {
2560       auto Inst = dyn_cast<Instruction>(U);
2561       if (!Inst)
2562         return false;
2563 
2564       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2565         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2566           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2567             return false;
2568         UsersToVisit.push_back(U);
2569       } else if (const ShuffleVectorInst *ShufInst =
2570                      dyn_cast<ShuffleVectorInst>(U)) {
2571         // Detect the following pattern: A ShuffleVector instruction together
2572         // with a reduction that do partial reduction on the first and second
2573         // ElemNumToReduce / 2 elements, and store the result in
2574         // ElemNumToReduce / 2 elements in another vector.
2575 
2576         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2577         if (ResultElements < ElemNum)
2578           return false;
2579 
2580         if (ElemNumToReduce == 1)
2581           return false;
2582         if (!isa<UndefValue>(U->getOperand(1)))
2583           return false;
2584         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2585           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2586             return false;
2587         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2588           if (ShufInst->getMaskValue(i) != -1)
2589             return false;
2590 
2591         // There is only one user of this ShuffleVector instruction, which
2592         // must be a reduction operation.
2593         if (!U->hasOneUse())
2594           return false;
2595 
2596         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2597         if (!U2 || U2->getOpcode() != OpCode)
2598           return false;
2599 
2600         // Check operands of the reduction operation.
2601         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2602             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2603           UsersToVisit.push_back(U2);
2604           ElemNumToReduce /= 2;
2605         } else
2606           return false;
2607       } else if (isa<ExtractElementInst>(U)) {
2608         // At this moment we should have reduced all elements in the vector.
2609         if (ElemNumToReduce != 1)
2610           return false;
2611 
2612         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2613         if (!Val || Val->getZExtValue() != 0)
2614           return false;
2615 
2616         ReduxExtracted = true;
2617       } else
2618         return false;
2619     }
2620   }
2621   return ReduxExtracted;
2622 }
2623 
2624 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2625   SDValue Op1 = getValue(I.getOperand(0));
2626   SDValue Op2 = getValue(I.getOperand(1));
2627 
2628   bool nuw = false;
2629   bool nsw = false;
2630   bool exact = false;
2631   bool vec_redux = false;
2632   FastMathFlags FMF;
2633 
2634   if (const OverflowingBinaryOperator *OFBinOp =
2635           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2636     nuw = OFBinOp->hasNoUnsignedWrap();
2637     nsw = OFBinOp->hasNoSignedWrap();
2638   }
2639   if (const PossiblyExactOperator *ExactOp =
2640           dyn_cast<const PossiblyExactOperator>(&I))
2641     exact = ExactOp->isExact();
2642   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2643     FMF = FPOp->getFastMathFlags();
2644 
2645   if (isVectorReductionOp(&I)) {
2646     vec_redux = true;
2647     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2648   }
2649 
2650   SDNodeFlags Flags;
2651   Flags.setExact(exact);
2652   Flags.setNoSignedWrap(nsw);
2653   Flags.setNoUnsignedWrap(nuw);
2654   Flags.setVectorReduction(vec_redux);
2655   Flags.setAllowReciprocal(FMF.allowReciprocal());
2656   Flags.setAllowContract(FMF.allowContract());
2657   Flags.setNoInfs(FMF.noInfs());
2658   Flags.setNoNaNs(FMF.noNaNs());
2659   Flags.setNoSignedZeros(FMF.noSignedZeros());
2660   Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2661 
2662   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2663                                      Op1, Op2, Flags);
2664   setValue(&I, BinNodeValue);
2665 }
2666 
2667 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2668   SDValue Op1 = getValue(I.getOperand(0));
2669   SDValue Op2 = getValue(I.getOperand(1));
2670 
2671   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2672       Op2.getValueType(), DAG.getDataLayout());
2673 
2674   // Coerce the shift amount to the right type if we can.
2675   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2676     unsigned ShiftSize = ShiftTy.getSizeInBits();
2677     unsigned Op2Size = Op2.getValueSizeInBits();
2678     SDLoc DL = getCurSDLoc();
2679 
2680     // If the operand is smaller than the shift count type, promote it.
2681     if (ShiftSize > Op2Size)
2682       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2683 
2684     // If the operand is larger than the shift count type but the shift
2685     // count type has enough bits to represent any shift value, truncate
2686     // it now. This is a common case and it exposes the truncate to
2687     // optimization early.
2688     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2689       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2690     // Otherwise we'll need to temporarily settle for some other convenient
2691     // type.  Type legalization will make adjustments once the shiftee is split.
2692     else
2693       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2694   }
2695 
2696   bool nuw = false;
2697   bool nsw = false;
2698   bool exact = false;
2699 
2700   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2701 
2702     if (const OverflowingBinaryOperator *OFBinOp =
2703             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2704       nuw = OFBinOp->hasNoUnsignedWrap();
2705       nsw = OFBinOp->hasNoSignedWrap();
2706     }
2707     if (const PossiblyExactOperator *ExactOp =
2708             dyn_cast<const PossiblyExactOperator>(&I))
2709       exact = ExactOp->isExact();
2710   }
2711   SDNodeFlags Flags;
2712   Flags.setExact(exact);
2713   Flags.setNoSignedWrap(nsw);
2714   Flags.setNoUnsignedWrap(nuw);
2715   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2716                             Flags);
2717   setValue(&I, Res);
2718 }
2719 
2720 void SelectionDAGBuilder::visitSDiv(const User &I) {
2721   SDValue Op1 = getValue(I.getOperand(0));
2722   SDValue Op2 = getValue(I.getOperand(1));
2723 
2724   SDNodeFlags Flags;
2725   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2726                  cast<PossiblyExactOperator>(&I)->isExact());
2727   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2728                            Op2, Flags));
2729 }
2730 
2731 void SelectionDAGBuilder::visitICmp(const User &I) {
2732   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2733   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2734     predicate = IC->getPredicate();
2735   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2736     predicate = ICmpInst::Predicate(IC->getPredicate());
2737   SDValue Op1 = getValue(I.getOperand(0));
2738   SDValue Op2 = getValue(I.getOperand(1));
2739   ISD::CondCode Opcode = getICmpCondCode(predicate);
2740 
2741   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2742                                                         I.getType());
2743   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2744 }
2745 
2746 void SelectionDAGBuilder::visitFCmp(const User &I) {
2747   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2748   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2749     predicate = FC->getPredicate();
2750   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2751     predicate = FCmpInst::Predicate(FC->getPredicate());
2752   SDValue Op1 = getValue(I.getOperand(0));
2753   SDValue Op2 = getValue(I.getOperand(1));
2754   ISD::CondCode Condition = getFCmpCondCode(predicate);
2755 
2756   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2757   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2758   // further optimization, but currently FMF is only applicable to binary nodes.
2759   if (TM.Options.NoNaNsFPMath)
2760     Condition = getFCmpCodeWithoutNaN(Condition);
2761   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2762                                                         I.getType());
2763   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2764 }
2765 
2766 // Check if the condition of the select has one use or two users that are both
2767 // selects with the same condition.
2768 static bool hasOnlySelectUsers(const Value *Cond) {
2769   return all_of(Cond->users(), [](const Value *V) {
2770     return isa<SelectInst>(V);
2771   });
2772 }
2773 
2774 void SelectionDAGBuilder::visitSelect(const User &I) {
2775   SmallVector<EVT, 4> ValueVTs;
2776   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2777                   ValueVTs);
2778   unsigned NumValues = ValueVTs.size();
2779   if (NumValues == 0) return;
2780 
2781   SmallVector<SDValue, 4> Values(NumValues);
2782   SDValue Cond     = getValue(I.getOperand(0));
2783   SDValue LHSVal   = getValue(I.getOperand(1));
2784   SDValue RHSVal   = getValue(I.getOperand(2));
2785   auto BaseOps = {Cond};
2786   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2787     ISD::VSELECT : ISD::SELECT;
2788 
2789   // Min/max matching is only viable if all output VTs are the same.
2790   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2791     EVT VT = ValueVTs[0];
2792     LLVMContext &Ctx = *DAG.getContext();
2793     auto &TLI = DAG.getTargetLoweringInfo();
2794 
2795     // We care about the legality of the operation after it has been type
2796     // legalized.
2797     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2798            VT != TLI.getTypeToTransformTo(Ctx, VT))
2799       VT = TLI.getTypeToTransformTo(Ctx, VT);
2800 
2801     // If the vselect is legal, assume we want to leave this as a vector setcc +
2802     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2803     // min/max is legal on the scalar type.
2804     bool UseScalarMinMax = VT.isVector() &&
2805       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2806 
2807     Value *LHS, *RHS;
2808     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2809     ISD::NodeType Opc = ISD::DELETED_NODE;
2810     switch (SPR.Flavor) {
2811     case SPF_UMAX:    Opc = ISD::UMAX; break;
2812     case SPF_UMIN:    Opc = ISD::UMIN; break;
2813     case SPF_SMAX:    Opc = ISD::SMAX; break;
2814     case SPF_SMIN:    Opc = ISD::SMIN; break;
2815     case SPF_FMINNUM:
2816       switch (SPR.NaNBehavior) {
2817       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2818       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2819       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2820       case SPNB_RETURNS_ANY: {
2821         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2822           Opc = ISD::FMINNUM;
2823         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2824           Opc = ISD::FMINNAN;
2825         else if (UseScalarMinMax)
2826           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2827             ISD::FMINNUM : ISD::FMINNAN;
2828         break;
2829       }
2830       }
2831       break;
2832     case SPF_FMAXNUM:
2833       switch (SPR.NaNBehavior) {
2834       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2835       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2836       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2837       case SPNB_RETURNS_ANY:
2838 
2839         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2840           Opc = ISD::FMAXNUM;
2841         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2842           Opc = ISD::FMAXNAN;
2843         else if (UseScalarMinMax)
2844           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2845             ISD::FMAXNUM : ISD::FMAXNAN;
2846         break;
2847       }
2848       break;
2849     default: break;
2850     }
2851 
2852     if (Opc != ISD::DELETED_NODE &&
2853         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2854          (UseScalarMinMax &&
2855           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2856         // If the underlying comparison instruction is used by any other
2857         // instruction, the consumed instructions won't be destroyed, so it is
2858         // not profitable to convert to a min/max.
2859         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2860       OpCode = Opc;
2861       LHSVal = getValue(LHS);
2862       RHSVal = getValue(RHS);
2863       BaseOps = {};
2864     }
2865   }
2866 
2867   for (unsigned i = 0; i != NumValues; ++i) {
2868     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2869     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2870     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2871     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2872                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2873                             Ops);
2874   }
2875 
2876   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2877                            DAG.getVTList(ValueVTs), Values));
2878 }
2879 
2880 void SelectionDAGBuilder::visitTrunc(const User &I) {
2881   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2882   SDValue N = getValue(I.getOperand(0));
2883   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2884                                                         I.getType());
2885   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2886 }
2887 
2888 void SelectionDAGBuilder::visitZExt(const User &I) {
2889   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2890   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2891   SDValue N = getValue(I.getOperand(0));
2892   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2893                                                         I.getType());
2894   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2895 }
2896 
2897 void SelectionDAGBuilder::visitSExt(const User &I) {
2898   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2899   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2900   SDValue N = getValue(I.getOperand(0));
2901   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2902                                                         I.getType());
2903   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2904 }
2905 
2906 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2907   // FPTrunc is never a no-op cast, no need to check
2908   SDValue N = getValue(I.getOperand(0));
2909   SDLoc dl = getCurSDLoc();
2910   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2911   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2912   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2913                            DAG.getTargetConstant(
2914                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2915 }
2916 
2917 void SelectionDAGBuilder::visitFPExt(const User &I) {
2918   // FPExt is never a no-op cast, no need to check
2919   SDValue N = getValue(I.getOperand(0));
2920   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2921                                                         I.getType());
2922   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2923 }
2924 
2925 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2926   // FPToUI is never a no-op cast, no need to check
2927   SDValue N = getValue(I.getOperand(0));
2928   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2929                                                         I.getType());
2930   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2931 }
2932 
2933 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2934   // FPToSI is never a no-op cast, no need to check
2935   SDValue N = getValue(I.getOperand(0));
2936   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2937                                                         I.getType());
2938   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2939 }
2940 
2941 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2942   // UIToFP is never a no-op cast, no need to check
2943   SDValue N = getValue(I.getOperand(0));
2944   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2945                                                         I.getType());
2946   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2947 }
2948 
2949 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2950   // SIToFP is never a no-op cast, no need to check
2951   SDValue N = getValue(I.getOperand(0));
2952   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2953                                                         I.getType());
2954   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2955 }
2956 
2957 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2958   // What to do depends on the size of the integer and the size of the pointer.
2959   // We can either truncate, zero extend, or no-op, accordingly.
2960   SDValue N = getValue(I.getOperand(0));
2961   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2962                                                         I.getType());
2963   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2964 }
2965 
2966 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2967   // What to do depends on the size of the integer and the size of the pointer.
2968   // We can either truncate, zero extend, or no-op, accordingly.
2969   SDValue N = getValue(I.getOperand(0));
2970   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2971                                                         I.getType());
2972   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2973 }
2974 
2975 void SelectionDAGBuilder::visitBitCast(const User &I) {
2976   SDValue N = getValue(I.getOperand(0));
2977   SDLoc dl = getCurSDLoc();
2978   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2979                                                         I.getType());
2980 
2981   // BitCast assures us that source and destination are the same size so this is
2982   // either a BITCAST or a no-op.
2983   if (DestVT != N.getValueType())
2984     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2985                              DestVT, N)); // convert types.
2986   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2987   // might fold any kind of constant expression to an integer constant and that
2988   // is not what we are looking for. Only recognize a bitcast of a genuine
2989   // constant integer as an opaque constant.
2990   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2991     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2992                                  /*isOpaque*/true));
2993   else
2994     setValue(&I, N);            // noop cast.
2995 }
2996 
2997 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2998   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2999   const Value *SV = I.getOperand(0);
3000   SDValue N = getValue(SV);
3001   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3002 
3003   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3004   unsigned DestAS = I.getType()->getPointerAddressSpace();
3005 
3006   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3007     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3008 
3009   setValue(&I, N);
3010 }
3011 
3012 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3013   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3014   SDValue InVec = getValue(I.getOperand(0));
3015   SDValue InVal = getValue(I.getOperand(1));
3016   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3017                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3018   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3019                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3020                            InVec, InVal, InIdx));
3021 }
3022 
3023 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3024   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3025   SDValue InVec = getValue(I.getOperand(0));
3026   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3027                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3028   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3029                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3030                            InVec, InIdx));
3031 }
3032 
3033 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3034   SDValue Src1 = getValue(I.getOperand(0));
3035   SDValue Src2 = getValue(I.getOperand(1));
3036   SDLoc DL = getCurSDLoc();
3037 
3038   SmallVector<int, 8> Mask;
3039   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3040   unsigned MaskNumElts = Mask.size();
3041 
3042   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3043   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3044   EVT SrcVT = Src1.getValueType();
3045   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3046 
3047   if (SrcNumElts == MaskNumElts) {
3048     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3049     return;
3050   }
3051 
3052   // Normalize the shuffle vector since mask and vector length don't match.
3053   if (SrcNumElts < MaskNumElts) {
3054     // Mask is longer than the source vectors. We can use concatenate vector to
3055     // make the mask and vectors lengths match.
3056 
3057     if (MaskNumElts % SrcNumElts == 0) {
3058       // Mask length is a multiple of the source vector length.
3059       // Check if the shuffle is some kind of concatenation of the input
3060       // vectors.
3061       unsigned NumConcat = MaskNumElts / SrcNumElts;
3062       bool IsConcat = true;
3063       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3064       for (unsigned i = 0; i != MaskNumElts; ++i) {
3065         int Idx = Mask[i];
3066         if (Idx < 0)
3067           continue;
3068         // Ensure the indices in each SrcVT sized piece are sequential and that
3069         // the same source is used for the whole piece.
3070         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3071             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3072              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3073           IsConcat = false;
3074           break;
3075         }
3076         // Remember which source this index came from.
3077         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3078       }
3079 
3080       // The shuffle is concatenating multiple vectors together. Just emit
3081       // a CONCAT_VECTORS operation.
3082       if (IsConcat) {
3083         SmallVector<SDValue, 8> ConcatOps;
3084         for (auto Src : ConcatSrcs) {
3085           if (Src < 0)
3086             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3087           else if (Src == 0)
3088             ConcatOps.push_back(Src1);
3089           else
3090             ConcatOps.push_back(Src2);
3091         }
3092         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3093         return;
3094       }
3095     }
3096 
3097     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3098     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3099     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3100                                     PaddedMaskNumElts);
3101 
3102     // Pad both vectors with undefs to make them the same length as the mask.
3103     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3104 
3105     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3106     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3107     MOps1[0] = Src1;
3108     MOps2[0] = Src2;
3109 
3110     Src1 = Src1.isUndef()
3111                ? DAG.getUNDEF(PaddedVT)
3112                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3113     Src2 = Src2.isUndef()
3114                ? DAG.getUNDEF(PaddedVT)
3115                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3116 
3117     // Readjust mask for new input vector length.
3118     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3119     for (unsigned i = 0; i != MaskNumElts; ++i) {
3120       int Idx = Mask[i];
3121       if (Idx >= (int)SrcNumElts)
3122         Idx -= SrcNumElts - PaddedMaskNumElts;
3123       MappedOps[i] = Idx;
3124     }
3125 
3126     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3127 
3128     // If the concatenated vector was padded, extract a subvector with the
3129     // correct number of elements.
3130     if (MaskNumElts != PaddedMaskNumElts)
3131       Result = DAG.getNode(
3132           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3133           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3134 
3135     setValue(&I, Result);
3136     return;
3137   }
3138 
3139   if (SrcNumElts > MaskNumElts) {
3140     // Analyze the access pattern of the vector to see if we can extract
3141     // two subvectors and do the shuffle.
3142     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3143     bool CanExtract = true;
3144     for (int Idx : Mask) {
3145       unsigned Input = 0;
3146       if (Idx < 0)
3147         continue;
3148 
3149       if (Idx >= (int)SrcNumElts) {
3150         Input = 1;
3151         Idx -= SrcNumElts;
3152       }
3153 
3154       // If all the indices come from the same MaskNumElts sized portion of
3155       // the sources we can use extract. Also make sure the extract wouldn't
3156       // extract past the end of the source.
3157       int NewStartIdx = alignDown(Idx, MaskNumElts);
3158       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3159           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3160         CanExtract = false;
3161       // Make sure we always update StartIdx as we use it to track if all
3162       // elements are undef.
3163       StartIdx[Input] = NewStartIdx;
3164     }
3165 
3166     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3167       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3168       return;
3169     }
3170     if (CanExtract) {
3171       // Extract appropriate subvector and generate a vector shuffle
3172       for (unsigned Input = 0; Input < 2; ++Input) {
3173         SDValue &Src = Input == 0 ? Src1 : Src2;
3174         if (StartIdx[Input] < 0)
3175           Src = DAG.getUNDEF(VT);
3176         else {
3177           Src = DAG.getNode(
3178               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3179               DAG.getConstant(StartIdx[Input], DL,
3180                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3181         }
3182       }
3183 
3184       // Calculate new mask.
3185       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3186       for (int &Idx : MappedOps) {
3187         if (Idx >= (int)SrcNumElts)
3188           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3189         else if (Idx >= 0)
3190           Idx -= StartIdx[0];
3191       }
3192 
3193       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3194       return;
3195     }
3196   }
3197 
3198   // We can't use either concat vectors or extract subvectors so fall back to
3199   // replacing the shuffle with extract and build vector.
3200   // to insert and build vector.
3201   EVT EltVT = VT.getVectorElementType();
3202   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3203   SmallVector<SDValue,8> Ops;
3204   for (int Idx : Mask) {
3205     SDValue Res;
3206 
3207     if (Idx < 0) {
3208       Res = DAG.getUNDEF(EltVT);
3209     } else {
3210       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3211       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3212 
3213       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3214                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3215     }
3216 
3217     Ops.push_back(Res);
3218   }
3219 
3220   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3221 }
3222 
3223 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3224   const Value *Op0 = I.getOperand(0);
3225   const Value *Op1 = I.getOperand(1);
3226   Type *AggTy = I.getType();
3227   Type *ValTy = Op1->getType();
3228   bool IntoUndef = isa<UndefValue>(Op0);
3229   bool FromUndef = isa<UndefValue>(Op1);
3230 
3231   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3232 
3233   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3234   SmallVector<EVT, 4> AggValueVTs;
3235   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3236   SmallVector<EVT, 4> ValValueVTs;
3237   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3238 
3239   unsigned NumAggValues = AggValueVTs.size();
3240   unsigned NumValValues = ValValueVTs.size();
3241   SmallVector<SDValue, 4> Values(NumAggValues);
3242 
3243   // Ignore an insertvalue that produces an empty object
3244   if (!NumAggValues) {
3245     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3246     return;
3247   }
3248 
3249   SDValue Agg = getValue(Op0);
3250   unsigned i = 0;
3251   // Copy the beginning value(s) from the original aggregate.
3252   for (; i != LinearIndex; ++i)
3253     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3254                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3255   // Copy values from the inserted value(s).
3256   if (NumValValues) {
3257     SDValue Val = getValue(Op1);
3258     for (; i != LinearIndex + NumValValues; ++i)
3259       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3260                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3261   }
3262   // Copy remaining value(s) from the original aggregate.
3263   for (; i != NumAggValues; ++i)
3264     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3265                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3266 
3267   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3268                            DAG.getVTList(AggValueVTs), Values));
3269 }
3270 
3271 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3272   const Value *Op0 = I.getOperand(0);
3273   Type *AggTy = Op0->getType();
3274   Type *ValTy = I.getType();
3275   bool OutOfUndef = isa<UndefValue>(Op0);
3276 
3277   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3278 
3279   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3280   SmallVector<EVT, 4> ValValueVTs;
3281   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3282 
3283   unsigned NumValValues = ValValueVTs.size();
3284 
3285   // Ignore a extractvalue that produces an empty object
3286   if (!NumValValues) {
3287     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3288     return;
3289   }
3290 
3291   SmallVector<SDValue, 4> Values(NumValValues);
3292 
3293   SDValue Agg = getValue(Op0);
3294   // Copy out the selected value(s).
3295   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3296     Values[i - LinearIndex] =
3297       OutOfUndef ?
3298         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3299         SDValue(Agg.getNode(), Agg.getResNo() + i);
3300 
3301   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3302                            DAG.getVTList(ValValueVTs), Values));
3303 }
3304 
3305 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3306   Value *Op0 = I.getOperand(0);
3307   // Note that the pointer operand may be a vector of pointers. Take the scalar
3308   // element which holds a pointer.
3309   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3310   SDValue N = getValue(Op0);
3311   SDLoc dl = getCurSDLoc();
3312 
3313   // Normalize Vector GEP - all scalar operands should be converted to the
3314   // splat vector.
3315   unsigned VectorWidth = I.getType()->isVectorTy() ?
3316     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3317 
3318   if (VectorWidth && !N.getValueType().isVector()) {
3319     LLVMContext &Context = *DAG.getContext();
3320     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3321     N = DAG.getSplatBuildVector(VT, dl, N);
3322   }
3323 
3324   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3325        GTI != E; ++GTI) {
3326     const Value *Idx = GTI.getOperand();
3327     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3328       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3329       if (Field) {
3330         // N = N + Offset
3331         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3332 
3333         // In an inbounds GEP with an offset that is nonnegative even when
3334         // interpreted as signed, assume there is no unsigned overflow.
3335         SDNodeFlags Flags;
3336         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3337           Flags.setNoUnsignedWrap(true);
3338 
3339         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3340                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3341       }
3342     } else {
3343       MVT PtrTy =
3344           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3345       unsigned PtrSize = PtrTy.getSizeInBits();
3346       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3347 
3348       // If this is a scalar constant or a splat vector of constants,
3349       // handle it quickly.
3350       const auto *CI = dyn_cast<ConstantInt>(Idx);
3351       if (!CI && isa<ConstantDataVector>(Idx) &&
3352           cast<ConstantDataVector>(Idx)->getSplatValue())
3353         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3354 
3355       if (CI) {
3356         if (CI->isZero())
3357           continue;
3358         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3359         LLVMContext &Context = *DAG.getContext();
3360         SDValue OffsVal = VectorWidth ?
3361           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
3362           DAG.getConstant(Offs, dl, PtrTy);
3363 
3364         // In an inbouds GEP with an offset that is nonnegative even when
3365         // interpreted as signed, assume there is no unsigned overflow.
3366         SDNodeFlags Flags;
3367         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3368           Flags.setNoUnsignedWrap(true);
3369 
3370         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3371         continue;
3372       }
3373 
3374       // N = N + Idx * ElementSize;
3375       SDValue IdxN = getValue(Idx);
3376 
3377       if (!IdxN.getValueType().isVector() && VectorWidth) {
3378         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3379         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3380       }
3381 
3382       // If the index is smaller or larger than intptr_t, truncate or extend
3383       // it.
3384       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3385 
3386       // If this is a multiply by a power of two, turn it into a shl
3387       // immediately.  This is a very common case.
3388       if (ElementSize != 1) {
3389         if (ElementSize.isPowerOf2()) {
3390           unsigned Amt = ElementSize.logBase2();
3391           IdxN = DAG.getNode(ISD::SHL, dl,
3392                              N.getValueType(), IdxN,
3393                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3394         } else {
3395           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3396           IdxN = DAG.getNode(ISD::MUL, dl,
3397                              N.getValueType(), IdxN, Scale);
3398         }
3399       }
3400 
3401       N = DAG.getNode(ISD::ADD, dl,
3402                       N.getValueType(), N, IdxN);
3403     }
3404   }
3405 
3406   setValue(&I, N);
3407 }
3408 
3409 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3410   // If this is a fixed sized alloca in the entry block of the function,
3411   // allocate it statically on the stack.
3412   if (FuncInfo.StaticAllocaMap.count(&I))
3413     return;   // getValue will auto-populate this.
3414 
3415   SDLoc dl = getCurSDLoc();
3416   Type *Ty = I.getAllocatedType();
3417   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3418   auto &DL = DAG.getDataLayout();
3419   uint64_t TySize = DL.getTypeAllocSize(Ty);
3420   unsigned Align =
3421       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3422 
3423   SDValue AllocSize = getValue(I.getArraySize());
3424 
3425   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3426   if (AllocSize.getValueType() != IntPtr)
3427     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3428 
3429   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3430                           AllocSize,
3431                           DAG.getConstant(TySize, dl, IntPtr));
3432 
3433   // Handle alignment.  If the requested alignment is less than or equal to
3434   // the stack alignment, ignore it.  If the size is greater than or equal to
3435   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3436   unsigned StackAlign =
3437       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3438   if (Align <= StackAlign)
3439     Align = 0;
3440 
3441   // Round the size of the allocation up to the stack alignment size
3442   // by add SA-1 to the size. This doesn't overflow because we're computing
3443   // an address inside an alloca.
3444   SDNodeFlags Flags;
3445   Flags.setNoUnsignedWrap(true);
3446   AllocSize = DAG.getNode(ISD::ADD, dl,
3447                           AllocSize.getValueType(), AllocSize,
3448                           DAG.getIntPtrConstant(StackAlign - 1, dl), Flags);
3449 
3450   // Mask out the low bits for alignment purposes.
3451   AllocSize = DAG.getNode(ISD::AND, dl,
3452                           AllocSize.getValueType(), AllocSize,
3453                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3454                                                 dl));
3455 
3456   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3457   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3458   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3459   setValue(&I, DSA);
3460   DAG.setRoot(DSA.getValue(1));
3461 
3462   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3463 }
3464 
3465 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3466   if (I.isAtomic())
3467     return visitAtomicLoad(I);
3468 
3469   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3470   const Value *SV = I.getOperand(0);
3471   if (TLI.supportSwiftError()) {
3472     // Swifterror values can come from either a function parameter with
3473     // swifterror attribute or an alloca with swifterror attribute.
3474     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3475       if (Arg->hasSwiftErrorAttr())
3476         return visitLoadFromSwiftError(I);
3477     }
3478 
3479     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3480       if (Alloca->isSwiftError())
3481         return visitLoadFromSwiftError(I);
3482     }
3483   }
3484 
3485   SDValue Ptr = getValue(SV);
3486 
3487   Type *Ty = I.getType();
3488 
3489   bool isVolatile = I.isVolatile();
3490   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3491   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3492   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3493   unsigned Alignment = I.getAlignment();
3494 
3495   AAMDNodes AAInfo;
3496   I.getAAMetadata(AAInfo);
3497   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3498 
3499   SmallVector<EVT, 4> ValueVTs;
3500   SmallVector<uint64_t, 4> Offsets;
3501   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3502   unsigned NumValues = ValueVTs.size();
3503   if (NumValues == 0)
3504     return;
3505 
3506   SDValue Root;
3507   bool ConstantMemory = false;
3508   if (isVolatile || NumValues > MaxParallelChains)
3509     // Serialize volatile loads with other side effects.
3510     Root = getRoot();
3511   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3512                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3513     // Do not serialize (non-volatile) loads of constant memory with anything.
3514     Root = DAG.getEntryNode();
3515     ConstantMemory = true;
3516   } else {
3517     // Do not serialize non-volatile loads against each other.
3518     Root = DAG.getRoot();
3519   }
3520 
3521   SDLoc dl = getCurSDLoc();
3522 
3523   if (isVolatile)
3524     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3525 
3526   // An aggregate load cannot wrap around the address space, so offsets to its
3527   // parts don't wrap either.
3528   SDNodeFlags Flags;
3529   Flags.setNoUnsignedWrap(true);
3530 
3531   SmallVector<SDValue, 4> Values(NumValues);
3532   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3533   EVT PtrVT = Ptr.getValueType();
3534   unsigned ChainI = 0;
3535   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3536     // Serializing loads here may result in excessive register pressure, and
3537     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3538     // could recover a bit by hoisting nodes upward in the chain by recognizing
3539     // they are side-effect free or do not alias. The optimizer should really
3540     // avoid this case by converting large object/array copies to llvm.memcpy
3541     // (MaxParallelChains should always remain as failsafe).
3542     if (ChainI == MaxParallelChains) {
3543       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3544       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3545                                   makeArrayRef(Chains.data(), ChainI));
3546       Root = Chain;
3547       ChainI = 0;
3548     }
3549     SDValue A = DAG.getNode(ISD::ADD, dl,
3550                             PtrVT, Ptr,
3551                             DAG.getConstant(Offsets[i], dl, PtrVT),
3552                             Flags);
3553     auto MMOFlags = MachineMemOperand::MONone;
3554     if (isVolatile)
3555       MMOFlags |= MachineMemOperand::MOVolatile;
3556     if (isNonTemporal)
3557       MMOFlags |= MachineMemOperand::MONonTemporal;
3558     if (isInvariant)
3559       MMOFlags |= MachineMemOperand::MOInvariant;
3560     if (isDereferenceable)
3561       MMOFlags |= MachineMemOperand::MODereferenceable;
3562 
3563     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3564                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3565                             MMOFlags, AAInfo, Ranges);
3566 
3567     Values[i] = L;
3568     Chains[ChainI] = L.getValue(1);
3569   }
3570 
3571   if (!ConstantMemory) {
3572     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3573                                 makeArrayRef(Chains.data(), ChainI));
3574     if (isVolatile)
3575       DAG.setRoot(Chain);
3576     else
3577       PendingLoads.push_back(Chain);
3578   }
3579 
3580   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3581                            DAG.getVTList(ValueVTs), Values));
3582 }
3583 
3584 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3585   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3586          "call visitStoreToSwiftError when backend supports swifterror");
3587 
3588   SmallVector<EVT, 4> ValueVTs;
3589   SmallVector<uint64_t, 4> Offsets;
3590   const Value *SrcV = I.getOperand(0);
3591   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3592                   SrcV->getType(), ValueVTs, &Offsets);
3593   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3594          "expect a single EVT for swifterror");
3595 
3596   SDValue Src = getValue(SrcV);
3597   // Create a virtual register, then update the virtual register.
3598   unsigned VReg; bool CreatedVReg;
3599   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3600   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3601   // Chain can be getRoot or getControlRoot.
3602   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3603                                       SDValue(Src.getNode(), Src.getResNo()));
3604   DAG.setRoot(CopyNode);
3605   if (CreatedVReg)
3606     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3607 }
3608 
3609 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3610   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3611          "call visitLoadFromSwiftError when backend supports swifterror");
3612 
3613   assert(!I.isVolatile() &&
3614          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3615          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3616          "Support volatile, non temporal, invariant for load_from_swift_error");
3617 
3618   const Value *SV = I.getOperand(0);
3619   Type *Ty = I.getType();
3620   AAMDNodes AAInfo;
3621   I.getAAMetadata(AAInfo);
3622   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3623              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3624          "load_from_swift_error should not be constant memory");
3625 
3626   SmallVector<EVT, 4> ValueVTs;
3627   SmallVector<uint64_t, 4> Offsets;
3628   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3629                   ValueVTs, &Offsets);
3630   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3631          "expect a single EVT for swifterror");
3632 
3633   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3634   SDValue L = DAG.getCopyFromReg(
3635       getRoot(), getCurSDLoc(),
3636       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3637       ValueVTs[0]);
3638 
3639   setValue(&I, L);
3640 }
3641 
3642 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3643   if (I.isAtomic())
3644     return visitAtomicStore(I);
3645 
3646   const Value *SrcV = I.getOperand(0);
3647   const Value *PtrV = I.getOperand(1);
3648 
3649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3650   if (TLI.supportSwiftError()) {
3651     // Swifterror values can come from either a function parameter with
3652     // swifterror attribute or an alloca with swifterror attribute.
3653     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3654       if (Arg->hasSwiftErrorAttr())
3655         return visitStoreToSwiftError(I);
3656     }
3657 
3658     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3659       if (Alloca->isSwiftError())
3660         return visitStoreToSwiftError(I);
3661     }
3662   }
3663 
3664   SmallVector<EVT, 4> ValueVTs;
3665   SmallVector<uint64_t, 4> Offsets;
3666   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3667                   SrcV->getType(), ValueVTs, &Offsets);
3668   unsigned NumValues = ValueVTs.size();
3669   if (NumValues == 0)
3670     return;
3671 
3672   // Get the lowered operands. Note that we do this after
3673   // checking if NumResults is zero, because with zero results
3674   // the operands won't have values in the map.
3675   SDValue Src = getValue(SrcV);
3676   SDValue Ptr = getValue(PtrV);
3677 
3678   SDValue Root = getRoot();
3679   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3680   SDLoc dl = getCurSDLoc();
3681   EVT PtrVT = Ptr.getValueType();
3682   unsigned Alignment = I.getAlignment();
3683   AAMDNodes AAInfo;
3684   I.getAAMetadata(AAInfo);
3685 
3686   auto MMOFlags = MachineMemOperand::MONone;
3687   if (I.isVolatile())
3688     MMOFlags |= MachineMemOperand::MOVolatile;
3689   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3690     MMOFlags |= MachineMemOperand::MONonTemporal;
3691 
3692   // An aggregate load cannot wrap around the address space, so offsets to its
3693   // parts don't wrap either.
3694   SDNodeFlags Flags;
3695   Flags.setNoUnsignedWrap(true);
3696 
3697   unsigned ChainI = 0;
3698   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3699     // See visitLoad comments.
3700     if (ChainI == MaxParallelChains) {
3701       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3702                                   makeArrayRef(Chains.data(), ChainI));
3703       Root = Chain;
3704       ChainI = 0;
3705     }
3706     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3707                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3708     SDValue St = DAG.getStore(
3709         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3710         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3711     Chains[ChainI] = St;
3712   }
3713 
3714   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3715                                   makeArrayRef(Chains.data(), ChainI));
3716   DAG.setRoot(StoreNode);
3717 }
3718 
3719 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3720                                            bool IsCompressing) {
3721   SDLoc sdl = getCurSDLoc();
3722 
3723   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3724                            unsigned& Alignment) {
3725     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3726     Src0 = I.getArgOperand(0);
3727     Ptr = I.getArgOperand(1);
3728     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3729     Mask = I.getArgOperand(3);
3730   };
3731   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3732                            unsigned& Alignment) {
3733     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3734     Src0 = I.getArgOperand(0);
3735     Ptr = I.getArgOperand(1);
3736     Mask = I.getArgOperand(2);
3737     Alignment = 0;
3738   };
3739 
3740   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3741   unsigned Alignment;
3742   if (IsCompressing)
3743     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3744   else
3745     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3746 
3747   SDValue Ptr = getValue(PtrOperand);
3748   SDValue Src0 = getValue(Src0Operand);
3749   SDValue Mask = getValue(MaskOperand);
3750 
3751   EVT VT = Src0.getValueType();
3752   if (!Alignment)
3753     Alignment = DAG.getEVTAlignment(VT);
3754 
3755   AAMDNodes AAInfo;
3756   I.getAAMetadata(AAInfo);
3757 
3758   MachineMemOperand *MMO =
3759     DAG.getMachineFunction().
3760     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3761                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3762                           Alignment, AAInfo);
3763   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3764                                          MMO, false /* Truncating */,
3765                                          IsCompressing);
3766   DAG.setRoot(StoreNode);
3767   setValue(&I, StoreNode);
3768 }
3769 
3770 // Get a uniform base for the Gather/Scatter intrinsic.
3771 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3772 // We try to represent it as a base pointer + vector of indices.
3773 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3774 // The first operand of the GEP may be a single pointer or a vector of pointers
3775 // Example:
3776 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3777 //  or
3778 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3779 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3780 //
3781 // When the first GEP operand is a single pointer - it is the uniform base we
3782 // are looking for. If first operand of the GEP is a splat vector - we
3783 // extract the spalt value and use it as a uniform base.
3784 // In all other cases the function returns 'false'.
3785 //
3786 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3787                            SelectionDAGBuilder* SDB) {
3788 
3789   SelectionDAG& DAG = SDB->DAG;
3790   LLVMContext &Context = *DAG.getContext();
3791 
3792   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3793   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3794   if (!GEP || GEP->getNumOperands() > 2)
3795     return false;
3796 
3797   const Value *GEPPtr = GEP->getPointerOperand();
3798   if (!GEPPtr->getType()->isVectorTy())
3799     Ptr = GEPPtr;
3800   else if (!(Ptr = getSplatValue(GEPPtr)))
3801     return false;
3802 
3803   Value *IndexVal = GEP->getOperand(1);
3804 
3805   // The operands of the GEP may be defined in another basic block.
3806   // In this case we'll not find nodes for the operands.
3807   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3808     return false;
3809 
3810   Base = SDB->getValue(Ptr);
3811   Index = SDB->getValue(IndexVal);
3812 
3813   // Suppress sign extension.
3814   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3815     if (SDB->findValue(Sext->getOperand(0))) {
3816       IndexVal = Sext->getOperand(0);
3817       Index = SDB->getValue(IndexVal);
3818     }
3819   }
3820   if (!Index.getValueType().isVector()) {
3821     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3822     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3823     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3824   }
3825   return true;
3826 }
3827 
3828 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3829   SDLoc sdl = getCurSDLoc();
3830 
3831   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3832   const Value *Ptr = I.getArgOperand(1);
3833   SDValue Src0 = getValue(I.getArgOperand(0));
3834   SDValue Mask = getValue(I.getArgOperand(3));
3835   EVT VT = Src0.getValueType();
3836   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3837   if (!Alignment)
3838     Alignment = DAG.getEVTAlignment(VT);
3839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3840 
3841   AAMDNodes AAInfo;
3842   I.getAAMetadata(AAInfo);
3843 
3844   SDValue Base;
3845   SDValue Index;
3846   const Value *BasePtr = Ptr;
3847   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3848 
3849   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3850   MachineMemOperand *MMO = DAG.getMachineFunction().
3851     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3852                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3853                          Alignment, AAInfo);
3854   if (!UniformBase) {
3855     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3856     Index = getValue(Ptr);
3857   }
3858   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3859   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3860                                          Ops, MMO);
3861   DAG.setRoot(Scatter);
3862   setValue(&I, Scatter);
3863 }
3864 
3865 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
3866   SDLoc sdl = getCurSDLoc();
3867 
3868   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3869                            unsigned& Alignment) {
3870     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3871     Ptr = I.getArgOperand(0);
3872     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3873     Mask = I.getArgOperand(2);
3874     Src0 = I.getArgOperand(3);
3875   };
3876   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3877                            unsigned& Alignment) {
3878     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
3879     Ptr = I.getArgOperand(0);
3880     Alignment = 0;
3881     Mask = I.getArgOperand(1);
3882     Src0 = I.getArgOperand(2);
3883   };
3884 
3885   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3886   unsigned Alignment;
3887   if (IsExpanding)
3888     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3889   else
3890     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3891 
3892   SDValue Ptr = getValue(PtrOperand);
3893   SDValue Src0 = getValue(Src0Operand);
3894   SDValue Mask = getValue(MaskOperand);
3895 
3896   EVT VT = Src0.getValueType();
3897   if (!Alignment)
3898     Alignment = DAG.getEVTAlignment(VT);
3899 
3900   AAMDNodes AAInfo;
3901   I.getAAMetadata(AAInfo);
3902   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3903 
3904   // Do not serialize masked loads of constant memory with anything.
3905   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
3906       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3907   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3908 
3909   MachineMemOperand *MMO =
3910     DAG.getMachineFunction().
3911     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3912                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3913                           Alignment, AAInfo, Ranges);
3914 
3915   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3916                                    ISD::NON_EXTLOAD, IsExpanding);
3917   if (AddToChain) {
3918     SDValue OutChain = Load.getValue(1);
3919     DAG.setRoot(OutChain);
3920   }
3921   setValue(&I, Load);
3922 }
3923 
3924 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3925   SDLoc sdl = getCurSDLoc();
3926 
3927   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3928   const Value *Ptr = I.getArgOperand(0);
3929   SDValue Src0 = getValue(I.getArgOperand(3));
3930   SDValue Mask = getValue(I.getArgOperand(2));
3931 
3932   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3933   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3934   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3935   if (!Alignment)
3936     Alignment = DAG.getEVTAlignment(VT);
3937 
3938   AAMDNodes AAInfo;
3939   I.getAAMetadata(AAInfo);
3940   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3941 
3942   SDValue Root = DAG.getRoot();
3943   SDValue Base;
3944   SDValue Index;
3945   const Value *BasePtr = Ptr;
3946   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3947   bool ConstantMemory = false;
3948   if (UniformBase &&
3949       AA && AA->pointsToConstantMemory(MemoryLocation(
3950           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3951           AAInfo))) {
3952     // Do not serialize (non-volatile) loads of constant memory with anything.
3953     Root = DAG.getEntryNode();
3954     ConstantMemory = true;
3955   }
3956 
3957   MachineMemOperand *MMO =
3958     DAG.getMachineFunction().
3959     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3960                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3961                          Alignment, AAInfo, Ranges);
3962 
3963   if (!UniformBase) {
3964     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3965     Index = getValue(Ptr);
3966   }
3967   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3968   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3969                                        Ops, MMO);
3970 
3971   SDValue OutChain = Gather.getValue(1);
3972   if (!ConstantMemory)
3973     PendingLoads.push_back(OutChain);
3974   setValue(&I, Gather);
3975 }
3976 
3977 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3978   SDLoc dl = getCurSDLoc();
3979   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3980   AtomicOrdering FailureOrder = I.getFailureOrdering();
3981   SynchronizationScope Scope = I.getSynchScope();
3982 
3983   SDValue InChain = getRoot();
3984 
3985   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3986   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3987   SDValue L = DAG.getAtomicCmpSwap(
3988       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3989       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3990       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3991       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3992 
3993   SDValue OutChain = L.getValue(2);
3994 
3995   setValue(&I, L);
3996   DAG.setRoot(OutChain);
3997 }
3998 
3999 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4000   SDLoc dl = getCurSDLoc();
4001   ISD::NodeType NT;
4002   switch (I.getOperation()) {
4003   default: llvm_unreachable("Unknown atomicrmw operation");
4004   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4005   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4006   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4007   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4008   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4009   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4010   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4011   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4012   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4013   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4014   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4015   }
4016   AtomicOrdering Order = I.getOrdering();
4017   SynchronizationScope Scope = I.getSynchScope();
4018 
4019   SDValue InChain = getRoot();
4020 
4021   SDValue L =
4022     DAG.getAtomic(NT, dl,
4023                   getValue(I.getValOperand()).getSimpleValueType(),
4024                   InChain,
4025                   getValue(I.getPointerOperand()),
4026                   getValue(I.getValOperand()),
4027                   I.getPointerOperand(),
4028                   /* Alignment=*/ 0, Order, Scope);
4029 
4030   SDValue OutChain = L.getValue(1);
4031 
4032   setValue(&I, L);
4033   DAG.setRoot(OutChain);
4034 }
4035 
4036 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4037   SDLoc dl = getCurSDLoc();
4038   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4039   SDValue Ops[3];
4040   Ops[0] = getRoot();
4041   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4042                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4043   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
4044                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4045   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4046 }
4047 
4048 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4049   SDLoc dl = getCurSDLoc();
4050   AtomicOrdering Order = I.getOrdering();
4051   SynchronizationScope Scope = I.getSynchScope();
4052 
4053   SDValue InChain = getRoot();
4054 
4055   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4056   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4057 
4058   if (I.getAlignment() < VT.getSizeInBits() / 8)
4059     report_fatal_error("Cannot generate unaligned atomic load");
4060 
4061   MachineMemOperand *MMO =
4062       DAG.getMachineFunction().
4063       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4064                            MachineMemOperand::MOVolatile |
4065                            MachineMemOperand::MOLoad,
4066                            VT.getStoreSize(),
4067                            I.getAlignment() ? I.getAlignment() :
4068                                               DAG.getEVTAlignment(VT),
4069                            AAMDNodes(), nullptr, Scope, Order);
4070 
4071   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4072   SDValue L =
4073       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4074                     getValue(I.getPointerOperand()), MMO);
4075 
4076   SDValue OutChain = L.getValue(1);
4077 
4078   setValue(&I, L);
4079   DAG.setRoot(OutChain);
4080 }
4081 
4082 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4083   SDLoc dl = getCurSDLoc();
4084 
4085   AtomicOrdering Order = I.getOrdering();
4086   SynchronizationScope Scope = I.getSynchScope();
4087 
4088   SDValue InChain = getRoot();
4089 
4090   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4091   EVT VT =
4092       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4093 
4094   if (I.getAlignment() < VT.getSizeInBits() / 8)
4095     report_fatal_error("Cannot generate unaligned atomic store");
4096 
4097   SDValue OutChain =
4098     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4099                   InChain,
4100                   getValue(I.getPointerOperand()),
4101                   getValue(I.getValueOperand()),
4102                   I.getPointerOperand(), I.getAlignment(),
4103                   Order, Scope);
4104 
4105   DAG.setRoot(OutChain);
4106 }
4107 
4108 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4109 /// node.
4110 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4111                                                unsigned Intrinsic) {
4112   // Ignore the callsite's attributes. A specific call site may be marked with
4113   // readnone, but the lowering code will expect the chain based on the
4114   // definition.
4115   const Function *F = I.getCalledFunction();
4116   bool HasChain = !F->doesNotAccessMemory();
4117   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4118 
4119   // Build the operand list.
4120   SmallVector<SDValue, 8> Ops;
4121   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4122     if (OnlyLoad) {
4123       // We don't need to serialize loads against other loads.
4124       Ops.push_back(DAG.getRoot());
4125     } else {
4126       Ops.push_back(getRoot());
4127     }
4128   }
4129 
4130   // Info is set by getTgtMemInstrinsic
4131   TargetLowering::IntrinsicInfo Info;
4132   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4133   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4134 
4135   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4136   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4137       Info.opc == ISD::INTRINSIC_W_CHAIN)
4138     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4139                                         TLI.getPointerTy(DAG.getDataLayout())));
4140 
4141   // Add all operands of the call to the operand list.
4142   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4143     SDValue Op = getValue(I.getArgOperand(i));
4144     Ops.push_back(Op);
4145   }
4146 
4147   SmallVector<EVT, 4> ValueVTs;
4148   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4149 
4150   if (HasChain)
4151     ValueVTs.push_back(MVT::Other);
4152 
4153   SDVTList VTs = DAG.getVTList(ValueVTs);
4154 
4155   // Create the node.
4156   SDValue Result;
4157   if (IsTgtIntrinsic) {
4158     // This is target intrinsic that touches memory
4159     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4160                                      VTs, Ops, Info.memVT,
4161                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4162                                      Info.align, Info.vol,
4163                                      Info.readMem, Info.writeMem, Info.size);
4164   } else if (!HasChain) {
4165     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4166   } else if (!I.getType()->isVoidTy()) {
4167     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4168   } else {
4169     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4170   }
4171 
4172   if (HasChain) {
4173     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4174     if (OnlyLoad)
4175       PendingLoads.push_back(Chain);
4176     else
4177       DAG.setRoot(Chain);
4178   }
4179 
4180   if (!I.getType()->isVoidTy()) {
4181     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4182       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4183       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4184     } else
4185       Result = lowerRangeToAssertZExt(DAG, I, Result);
4186 
4187     setValue(&I, Result);
4188   }
4189 }
4190 
4191 /// GetSignificand - Get the significand and build it into a floating-point
4192 /// number with exponent of 1:
4193 ///
4194 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4195 ///
4196 /// where Op is the hexadecimal representation of floating point value.
4197 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4198   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4199                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4200   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4201                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4202   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4203 }
4204 
4205 /// GetExponent - Get the exponent:
4206 ///
4207 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4208 ///
4209 /// where Op is the hexadecimal representation of floating point value.
4210 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4211                            const TargetLowering &TLI, const SDLoc &dl) {
4212   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4213                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4214   SDValue t1 = DAG.getNode(
4215       ISD::SRL, dl, MVT::i32, t0,
4216       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4217   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4218                            DAG.getConstant(127, dl, MVT::i32));
4219   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4220 }
4221 
4222 /// getF32Constant - Get 32-bit floating point constant.
4223 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4224                               const SDLoc &dl) {
4225   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4226                            MVT::f32);
4227 }
4228 
4229 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4230                                        SelectionDAG &DAG) {
4231   // TODO: What fast-math-flags should be set on the floating-point nodes?
4232 
4233   //   IntegerPartOfX = ((int32_t)(t0);
4234   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4235 
4236   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4237   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4238   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4239 
4240   //   IntegerPartOfX <<= 23;
4241   IntegerPartOfX = DAG.getNode(
4242       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4243       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4244                                   DAG.getDataLayout())));
4245 
4246   SDValue TwoToFractionalPartOfX;
4247   if (LimitFloatPrecision <= 6) {
4248     // For floating-point precision of 6:
4249     //
4250     //   TwoToFractionalPartOfX =
4251     //     0.997535578f +
4252     //       (0.735607626f + 0.252464424f * x) * x;
4253     //
4254     // error 0.0144103317, which is 6 bits
4255     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4256                              getF32Constant(DAG, 0x3e814304, dl));
4257     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4258                              getF32Constant(DAG, 0x3f3c50c8, dl));
4259     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4260     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4261                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4262   } else if (LimitFloatPrecision <= 12) {
4263     // For floating-point precision of 12:
4264     //
4265     //   TwoToFractionalPartOfX =
4266     //     0.999892986f +
4267     //       (0.696457318f +
4268     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4269     //
4270     // error 0.000107046256, which is 13 to 14 bits
4271     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4272                              getF32Constant(DAG, 0x3da235e3, dl));
4273     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4274                              getF32Constant(DAG, 0x3e65b8f3, dl));
4275     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4276     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4277                              getF32Constant(DAG, 0x3f324b07, dl));
4278     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4279     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4280                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4281   } else { // LimitFloatPrecision <= 18
4282     // For floating-point precision of 18:
4283     //
4284     //   TwoToFractionalPartOfX =
4285     //     0.999999982f +
4286     //       (0.693148872f +
4287     //         (0.240227044f +
4288     //           (0.554906021e-1f +
4289     //             (0.961591928e-2f +
4290     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4291     // error 2.47208000*10^(-7), which is better than 18 bits
4292     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4293                              getF32Constant(DAG, 0x3924b03e, dl));
4294     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4295                              getF32Constant(DAG, 0x3ab24b87, dl));
4296     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4297     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4298                              getF32Constant(DAG, 0x3c1d8c17, dl));
4299     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4300     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4301                              getF32Constant(DAG, 0x3d634a1d, dl));
4302     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4303     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4304                              getF32Constant(DAG, 0x3e75fe14, dl));
4305     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4306     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4307                               getF32Constant(DAG, 0x3f317234, dl));
4308     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4309     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4310                                          getF32Constant(DAG, 0x3f800000, dl));
4311   }
4312 
4313   // Add the exponent into the result in integer domain.
4314   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4315   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4316                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4317 }
4318 
4319 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4320 /// limited-precision mode.
4321 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4322                          const TargetLowering &TLI) {
4323   if (Op.getValueType() == MVT::f32 &&
4324       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4325 
4326     // Put the exponent in the right bit position for later addition to the
4327     // final result:
4328     //
4329     //   #define LOG2OFe 1.4426950f
4330     //   t0 = Op * LOG2OFe
4331 
4332     // TODO: What fast-math-flags should be set here?
4333     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4334                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4335     return getLimitedPrecisionExp2(t0, dl, DAG);
4336   }
4337 
4338   // No special expansion.
4339   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4340 }
4341 
4342 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4343 /// limited-precision mode.
4344 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4345                          const TargetLowering &TLI) {
4346 
4347   // TODO: What fast-math-flags should be set on the floating-point nodes?
4348 
4349   if (Op.getValueType() == MVT::f32 &&
4350       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4351     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4352 
4353     // Scale the exponent by log(2) [0.69314718f].
4354     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4355     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4356                                         getF32Constant(DAG, 0x3f317218, dl));
4357 
4358     // Get the significand and build it into a floating-point number with
4359     // exponent of 1.
4360     SDValue X = GetSignificand(DAG, Op1, dl);
4361 
4362     SDValue LogOfMantissa;
4363     if (LimitFloatPrecision <= 6) {
4364       // For floating-point precision of 6:
4365       //
4366       //   LogofMantissa =
4367       //     -1.1609546f +
4368       //       (1.4034025f - 0.23903021f * x) * x;
4369       //
4370       // error 0.0034276066, which is better than 8 bits
4371       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4372                                getF32Constant(DAG, 0xbe74c456, dl));
4373       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4374                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4375       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4376       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4377                                   getF32Constant(DAG, 0x3f949a29, dl));
4378     } else if (LimitFloatPrecision <= 12) {
4379       // For floating-point precision of 12:
4380       //
4381       //   LogOfMantissa =
4382       //     -1.7417939f +
4383       //       (2.8212026f +
4384       //         (-1.4699568f +
4385       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4386       //
4387       // error 0.000061011436, which is 14 bits
4388       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4389                                getF32Constant(DAG, 0xbd67b6d6, dl));
4390       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4391                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4392       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4393       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4394                                getF32Constant(DAG, 0x3fbc278b, dl));
4395       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4396       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4397                                getF32Constant(DAG, 0x40348e95, dl));
4398       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4399       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4400                                   getF32Constant(DAG, 0x3fdef31a, dl));
4401     } else { // LimitFloatPrecision <= 18
4402       // For floating-point precision of 18:
4403       //
4404       //   LogOfMantissa =
4405       //     -2.1072184f +
4406       //       (4.2372794f +
4407       //         (-3.7029485f +
4408       //           (2.2781945f +
4409       //             (-0.87823314f +
4410       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4411       //
4412       // error 0.0000023660568, which is better than 18 bits
4413       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4414                                getF32Constant(DAG, 0xbc91e5ac, dl));
4415       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4416                                getF32Constant(DAG, 0x3e4350aa, dl));
4417       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4418       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4419                                getF32Constant(DAG, 0x3f60d3e3, dl));
4420       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4421       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4422                                getF32Constant(DAG, 0x4011cdf0, dl));
4423       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4424       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4425                                getF32Constant(DAG, 0x406cfd1c, dl));
4426       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4427       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4428                                getF32Constant(DAG, 0x408797cb, dl));
4429       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4430       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4431                                   getF32Constant(DAG, 0x4006dcab, dl));
4432     }
4433 
4434     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4435   }
4436 
4437   // No special expansion.
4438   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4439 }
4440 
4441 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4442 /// limited-precision mode.
4443 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4444                           const TargetLowering &TLI) {
4445 
4446   // TODO: What fast-math-flags should be set on the floating-point nodes?
4447 
4448   if (Op.getValueType() == MVT::f32 &&
4449       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4450     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4451 
4452     // Get the exponent.
4453     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4454 
4455     // Get the significand and build it into a floating-point number with
4456     // exponent of 1.
4457     SDValue X = GetSignificand(DAG, Op1, dl);
4458 
4459     // Different possible minimax approximations of significand in
4460     // floating-point for various degrees of accuracy over [1,2].
4461     SDValue Log2ofMantissa;
4462     if (LimitFloatPrecision <= 6) {
4463       // For floating-point precision of 6:
4464       //
4465       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4466       //
4467       // error 0.0049451742, which is more than 7 bits
4468       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4469                                getF32Constant(DAG, 0xbeb08fe0, dl));
4470       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4471                                getF32Constant(DAG, 0x40019463, dl));
4472       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4473       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4474                                    getF32Constant(DAG, 0x3fd6633d, dl));
4475     } else if (LimitFloatPrecision <= 12) {
4476       // For floating-point precision of 12:
4477       //
4478       //   Log2ofMantissa =
4479       //     -2.51285454f +
4480       //       (4.07009056f +
4481       //         (-2.12067489f +
4482       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4483       //
4484       // error 0.0000876136000, which is better than 13 bits
4485       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4486                                getF32Constant(DAG, 0xbda7262e, dl));
4487       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4488                                getF32Constant(DAG, 0x3f25280b, dl));
4489       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4490       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4491                                getF32Constant(DAG, 0x4007b923, dl));
4492       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4493       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4494                                getF32Constant(DAG, 0x40823e2f, dl));
4495       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4496       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4497                                    getF32Constant(DAG, 0x4020d29c, dl));
4498     } else { // LimitFloatPrecision <= 18
4499       // For floating-point precision of 18:
4500       //
4501       //   Log2ofMantissa =
4502       //     -3.0400495f +
4503       //       (6.1129976f +
4504       //         (-5.3420409f +
4505       //           (3.2865683f +
4506       //             (-1.2669343f +
4507       //               (0.27515199f -
4508       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4509       //
4510       // error 0.0000018516, which is better than 18 bits
4511       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4512                                getF32Constant(DAG, 0xbcd2769e, dl));
4513       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4514                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4515       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4516       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4517                                getF32Constant(DAG, 0x3fa22ae7, dl));
4518       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4519       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4520                                getF32Constant(DAG, 0x40525723, dl));
4521       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4522       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4523                                getF32Constant(DAG, 0x40aaf200, dl));
4524       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4525       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4526                                getF32Constant(DAG, 0x40c39dad, dl));
4527       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4528       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4529                                    getF32Constant(DAG, 0x4042902c, dl));
4530     }
4531 
4532     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4533   }
4534 
4535   // No special expansion.
4536   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4537 }
4538 
4539 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4540 /// limited-precision mode.
4541 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4542                            const TargetLowering &TLI) {
4543 
4544   // TODO: What fast-math-flags should be set on the floating-point nodes?
4545 
4546   if (Op.getValueType() == MVT::f32 &&
4547       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4548     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4549 
4550     // Scale the exponent by log10(2) [0.30102999f].
4551     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4552     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4553                                         getF32Constant(DAG, 0x3e9a209a, dl));
4554 
4555     // Get the significand and build it into a floating-point number with
4556     // exponent of 1.
4557     SDValue X = GetSignificand(DAG, Op1, dl);
4558 
4559     SDValue Log10ofMantissa;
4560     if (LimitFloatPrecision <= 6) {
4561       // For floating-point precision of 6:
4562       //
4563       //   Log10ofMantissa =
4564       //     -0.50419619f +
4565       //       (0.60948995f - 0.10380950f * x) * x;
4566       //
4567       // error 0.0014886165, which is 6 bits
4568       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4569                                getF32Constant(DAG, 0xbdd49a13, dl));
4570       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4571                                getF32Constant(DAG, 0x3f1c0789, dl));
4572       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4573       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4574                                     getF32Constant(DAG, 0x3f011300, dl));
4575     } else if (LimitFloatPrecision <= 12) {
4576       // For floating-point precision of 12:
4577       //
4578       //   Log10ofMantissa =
4579       //     -0.64831180f +
4580       //       (0.91751397f +
4581       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4582       //
4583       // error 0.00019228036, which is better than 12 bits
4584       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4585                                getF32Constant(DAG, 0x3d431f31, dl));
4586       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4587                                getF32Constant(DAG, 0x3ea21fb2, dl));
4588       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4589       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4590                                getF32Constant(DAG, 0x3f6ae232, dl));
4591       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4592       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4593                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4594     } else { // LimitFloatPrecision <= 18
4595       // For floating-point precision of 18:
4596       //
4597       //   Log10ofMantissa =
4598       //     -0.84299375f +
4599       //       (1.5327582f +
4600       //         (-1.0688956f +
4601       //           (0.49102474f +
4602       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4603       //
4604       // error 0.0000037995730, which is better than 18 bits
4605       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4606                                getF32Constant(DAG, 0x3c5d51ce, dl));
4607       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4608                                getF32Constant(DAG, 0x3e00685a, dl));
4609       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4610       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4611                                getF32Constant(DAG, 0x3efb6798, dl));
4612       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4613       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4614                                getF32Constant(DAG, 0x3f88d192, dl));
4615       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4616       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4617                                getF32Constant(DAG, 0x3fc4316c, dl));
4618       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4619       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4620                                     getF32Constant(DAG, 0x3f57ce70, dl));
4621     }
4622 
4623     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4624   }
4625 
4626   // No special expansion.
4627   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4628 }
4629 
4630 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4631 /// limited-precision mode.
4632 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4633                           const TargetLowering &TLI) {
4634   if (Op.getValueType() == MVT::f32 &&
4635       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4636     return getLimitedPrecisionExp2(Op, dl, DAG);
4637 
4638   // No special expansion.
4639   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4640 }
4641 
4642 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4643 /// limited-precision mode with x == 10.0f.
4644 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4645                          SelectionDAG &DAG, const TargetLowering &TLI) {
4646   bool IsExp10 = false;
4647   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4648       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4649     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4650       APFloat Ten(10.0f);
4651       IsExp10 = LHSC->isExactlyValue(Ten);
4652     }
4653   }
4654 
4655   // TODO: What fast-math-flags should be set on the FMUL node?
4656   if (IsExp10) {
4657     // Put the exponent in the right bit position for later addition to the
4658     // final result:
4659     //
4660     //   #define LOG2OF10 3.3219281f
4661     //   t0 = Op * LOG2OF10;
4662     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4663                              getF32Constant(DAG, 0x40549a78, dl));
4664     return getLimitedPrecisionExp2(t0, dl, DAG);
4665   }
4666 
4667   // No special expansion.
4668   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4669 }
4670 
4671 
4672 /// ExpandPowI - Expand a llvm.powi intrinsic.
4673 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4674                           SelectionDAG &DAG) {
4675   // If RHS is a constant, we can expand this out to a multiplication tree,
4676   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4677   // optimizing for size, we only want to do this if the expansion would produce
4678   // a small number of multiplies, otherwise we do the full expansion.
4679   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4680     // Get the exponent as a positive value.
4681     unsigned Val = RHSC->getSExtValue();
4682     if ((int)Val < 0) Val = -Val;
4683 
4684     // powi(x, 0) -> 1.0
4685     if (Val == 0)
4686       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4687 
4688     const Function *F = DAG.getMachineFunction().getFunction();
4689     if (!F->optForSize() ||
4690         // If optimizing for size, don't insert too many multiplies.
4691         // This inserts up to 5 multiplies.
4692         countPopulation(Val) + Log2_32(Val) < 7) {
4693       // We use the simple binary decomposition method to generate the multiply
4694       // sequence.  There are more optimal ways to do this (for example,
4695       // powi(x,15) generates one more multiply than it should), but this has
4696       // the benefit of being both really simple and much better than a libcall.
4697       SDValue Res;  // Logically starts equal to 1.0
4698       SDValue CurSquare = LHS;
4699       // TODO: Intrinsics should have fast-math-flags that propagate to these
4700       // nodes.
4701       while (Val) {
4702         if (Val & 1) {
4703           if (Res.getNode())
4704             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4705           else
4706             Res = CurSquare;  // 1.0*CurSquare.
4707         }
4708 
4709         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4710                                 CurSquare, CurSquare);
4711         Val >>= 1;
4712       }
4713 
4714       // If the original was negative, invert the result, producing 1/(x*x*x).
4715       if (RHSC->getSExtValue() < 0)
4716         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4717                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4718       return Res;
4719     }
4720   }
4721 
4722   // Otherwise, expand to a libcall.
4723   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4724 }
4725 
4726 // getUnderlyingArgReg - Find underlying register used for a truncated or
4727 // bitcasted argument.
4728 static unsigned getUnderlyingArgReg(const SDValue &N) {
4729   switch (N.getOpcode()) {
4730   case ISD::CopyFromReg:
4731     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4732   case ISD::BITCAST:
4733   case ISD::AssertZext:
4734   case ISD::AssertSext:
4735   case ISD::TRUNCATE:
4736     return getUnderlyingArgReg(N.getOperand(0));
4737   default:
4738     return 0;
4739   }
4740 }
4741 
4742 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4743 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4744 /// At the end of instruction selection, they will be inserted to the entry BB.
4745 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4746     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4747     DILocation *DL, int64_t Offset, bool IsDbgDeclare, const SDValue &N) {
4748   const Argument *Arg = dyn_cast<Argument>(V);
4749   if (!Arg)
4750     return false;
4751 
4752   MachineFunction &MF = DAG.getMachineFunction();
4753   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4754 
4755   // Ignore inlined function arguments here.
4756   //
4757   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4758   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4759     return false;
4760 
4761   bool IsIndirect = false;
4762   Optional<MachineOperand> Op;
4763   // Some arguments' frame index is recorded during argument lowering.
4764   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4765   if (FI != INT_MAX)
4766     Op = MachineOperand::CreateFI(FI);
4767 
4768   if (!Op && N.getNode()) {
4769     unsigned Reg = getUnderlyingArgReg(N);
4770     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4771       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4772       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4773       if (PR)
4774         Reg = PR;
4775     }
4776     if (Reg) {
4777       Op = MachineOperand::CreateReg(Reg, false);
4778       IsIndirect = IsDbgDeclare;
4779     }
4780   }
4781 
4782   if (!Op) {
4783     // Check if ValueMap has reg number.
4784     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4785     if (VMI != FuncInfo.ValueMap.end()) {
4786       Op = MachineOperand::CreateReg(VMI->second, false);
4787       IsIndirect = IsDbgDeclare;
4788     }
4789   }
4790 
4791   if (!Op && N.getNode())
4792     // Check if frame index is available.
4793     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4794       if (FrameIndexSDNode *FINode =
4795           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4796         Op = MachineOperand::CreateFI(FINode->getIndex());
4797 
4798   if (!Op)
4799     return false;
4800 
4801   assert(Variable->isValidLocationForIntrinsic(DL) &&
4802          "Expected inlined-at fields to agree");
4803   if (Op->isReg())
4804     FuncInfo.ArgDbgValues.push_back(
4805         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4806                 Op->getReg(), Offset, Variable, Expr));
4807   else
4808     FuncInfo.ArgDbgValues.push_back(
4809         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4810             .add(*Op)
4811             .addImm(Offset)
4812             .addMetadata(Variable)
4813             .addMetadata(Expr));
4814 
4815   return true;
4816 }
4817 
4818 /// Return the appropriate SDDbgValue based on N.
4819 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4820                                              DILocalVariable *Variable,
4821                                              DIExpression *Expr, int64_t Offset,
4822                                              const DebugLoc &dl,
4823                                              unsigned DbgSDNodeOrder) {
4824   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
4825     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4826     // stack slot locations as such instead of as indirectly addressed
4827     // locations.
4828     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 0, dl,
4829                                      DbgSDNodeOrder);
4830   }
4831   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false,
4832                          Offset, dl, DbgSDNodeOrder);
4833 }
4834 
4835 // VisualStudio defines setjmp as _setjmp
4836 #if defined(_MSC_VER) && defined(setjmp) && \
4837                          !defined(setjmp_undefined_for_msvc)
4838 #  pragma push_macro("setjmp")
4839 #  undef setjmp
4840 #  define setjmp_undefined_for_msvc
4841 #endif
4842 
4843 /// Lower the call to the specified intrinsic function. If we want to emit this
4844 /// as a call to a named external function, return the name. Otherwise, lower it
4845 /// and return null.
4846 const char *
4847 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4848   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4849   SDLoc sdl = getCurSDLoc();
4850   DebugLoc dl = getCurDebugLoc();
4851   SDValue Res;
4852 
4853   switch (Intrinsic) {
4854   default:
4855     // By default, turn this into a target intrinsic node.
4856     visitTargetIntrinsic(I, Intrinsic);
4857     return nullptr;
4858   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4859   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4860   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4861   case Intrinsic::returnaddress:
4862     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4863                              TLI.getPointerTy(DAG.getDataLayout()),
4864                              getValue(I.getArgOperand(0))));
4865     return nullptr;
4866   case Intrinsic::addressofreturnaddress:
4867     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
4868                              TLI.getPointerTy(DAG.getDataLayout())));
4869     return nullptr;
4870   case Intrinsic::frameaddress:
4871     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4872                              TLI.getPointerTy(DAG.getDataLayout()),
4873                              getValue(I.getArgOperand(0))));
4874     return nullptr;
4875   case Intrinsic::read_register: {
4876     Value *Reg = I.getArgOperand(0);
4877     SDValue Chain = getRoot();
4878     SDValue RegName =
4879         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4880     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4881     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4882       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4883     setValue(&I, Res);
4884     DAG.setRoot(Res.getValue(1));
4885     return nullptr;
4886   }
4887   case Intrinsic::write_register: {
4888     Value *Reg = I.getArgOperand(0);
4889     Value *RegValue = I.getArgOperand(1);
4890     SDValue Chain = getRoot();
4891     SDValue RegName =
4892         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4893     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4894                             RegName, getValue(RegValue)));
4895     return nullptr;
4896   }
4897   case Intrinsic::setjmp:
4898     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4899   case Intrinsic::longjmp:
4900     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4901   case Intrinsic::memcpy: {
4902     SDValue Op1 = getValue(I.getArgOperand(0));
4903     SDValue Op2 = getValue(I.getArgOperand(1));
4904     SDValue Op3 = getValue(I.getArgOperand(2));
4905     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4906     if (!Align)
4907       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4908     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4909     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4910     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4911                                false, isTC,
4912                                MachinePointerInfo(I.getArgOperand(0)),
4913                                MachinePointerInfo(I.getArgOperand(1)));
4914     updateDAGForMaybeTailCall(MC);
4915     return nullptr;
4916   }
4917   case Intrinsic::memset: {
4918     SDValue Op1 = getValue(I.getArgOperand(0));
4919     SDValue Op2 = getValue(I.getArgOperand(1));
4920     SDValue Op3 = getValue(I.getArgOperand(2));
4921     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4922     if (!Align)
4923       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4924     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4925     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4926     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4927                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4928     updateDAGForMaybeTailCall(MS);
4929     return nullptr;
4930   }
4931   case Intrinsic::memmove: {
4932     SDValue Op1 = getValue(I.getArgOperand(0));
4933     SDValue Op2 = getValue(I.getArgOperand(1));
4934     SDValue Op3 = getValue(I.getArgOperand(2));
4935     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4936     if (!Align)
4937       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4938     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4939     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4940     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4941                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4942                                 MachinePointerInfo(I.getArgOperand(1)));
4943     updateDAGForMaybeTailCall(MM);
4944     return nullptr;
4945   }
4946   case Intrinsic::memcpy_element_unordered_atomic: {
4947     const ElementUnorderedAtomicMemCpyInst &MI =
4948         cast<ElementUnorderedAtomicMemCpyInst>(I);
4949     SDValue Dst = getValue(MI.getRawDest());
4950     SDValue Src = getValue(MI.getRawSource());
4951     SDValue Length = getValue(MI.getLength());
4952 
4953     // Emit a library call.
4954     TargetLowering::ArgListTy Args;
4955     TargetLowering::ArgListEntry Entry;
4956     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
4957     Entry.Node = Dst;
4958     Args.push_back(Entry);
4959 
4960     Entry.Node = Src;
4961     Args.push_back(Entry);
4962 
4963     Entry.Ty = MI.getLength()->getType();
4964     Entry.Node = Length;
4965     Args.push_back(Entry);
4966 
4967     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
4968     RTLIB::Libcall LibraryCall =
4969         RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
4970     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
4971       report_fatal_error("Unsupported element size");
4972 
4973     TargetLowering::CallLoweringInfo CLI(DAG);
4974     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
4975         TLI.getLibcallCallingConv(LibraryCall),
4976         Type::getVoidTy(*DAG.getContext()),
4977         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
4978                               TLI.getPointerTy(DAG.getDataLayout())),
4979         std::move(Args));
4980 
4981     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
4982     DAG.setRoot(CallResult.second);
4983     return nullptr;
4984   }
4985   case Intrinsic::dbg_declare: {
4986     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4987     DILocalVariable *Variable = DI.getVariable();
4988     DIExpression *Expression = DI.getExpression();
4989     const Value *Address = DI.getAddress();
4990     assert(Variable && "Missing variable");
4991     if (!Address) {
4992       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4993       return nullptr;
4994     }
4995 
4996     // Check if address has undef value.
4997     if (isa<UndefValue>(Address) ||
4998         (Address->use_empty() && !isa<Argument>(Address))) {
4999       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5000       return nullptr;
5001     }
5002 
5003     // Byval arguments with frame indices were already handled after argument
5004     // lowering and before isel.
5005     const auto *Arg =
5006         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
5007     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
5008       return nullptr;
5009 
5010     SDValue &N = NodeMap[Address];
5011     if (!N.getNode() && isa<Argument>(Address))
5012       // Check unused arguments map.
5013       N = UnusedArgNodeMap[Address];
5014     SDDbgValue *SDV;
5015     if (N.getNode()) {
5016       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5017         Address = BCI->getOperand(0);
5018       // Parameters are handled specially.
5019       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5020       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5021       if (isParameter && FINode) {
5022         // Byval parameter. We have a frame index at this point.
5023         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5024                                         FINode->getIndex(), 0, dl, SDNodeOrder);
5025       } else if (isa<Argument>(Address)) {
5026         // Address is an argument, so try to emit its dbg value using
5027         // virtual register info from the FuncInfo.ValueMap.
5028         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, true, N);
5029         return nullptr;
5030       } else {
5031         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5032                               true, 0, dl, SDNodeOrder);
5033       }
5034       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5035     } else {
5036       // If Address is an argument then try to emit its dbg value using
5037       // virtual register info from the FuncInfo.ValueMap.
5038       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, true,
5039                                     N)) {
5040         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5041       }
5042     }
5043     return nullptr;
5044   }
5045   case Intrinsic::dbg_value: {
5046     const DbgValueInst &DI = cast<DbgValueInst>(I);
5047     assert(DI.getVariable() && "Missing variable");
5048 
5049     DILocalVariable *Variable = DI.getVariable();
5050     DIExpression *Expression = DI.getExpression();
5051     uint64_t Offset = DI.getOffset();
5052     const Value *V = DI.getValue();
5053     if (!V)
5054       return nullptr;
5055 
5056     SDDbgValue *SDV;
5057     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5058       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
5059                                     SDNodeOrder);
5060       DAG.AddDbgValue(SDV, nullptr, false);
5061       return nullptr;
5062     }
5063 
5064     // Do not use getValue() in here; we don't want to generate code at
5065     // this point if it hasn't been done yet.
5066     SDValue N = NodeMap[V];
5067     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5068       N = UnusedArgNodeMap[V];
5069     if (N.getNode()) {
5070       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, false,
5071                                    N))
5072         return nullptr;
5073       SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder);
5074       DAG.AddDbgValue(SDV, N.getNode(), false);
5075       return nullptr;
5076     }
5077 
5078     if (!V->use_empty() ) {
5079       // Do not call getValue(V) yet, as we don't want to generate code.
5080       // Remember it for later.
5081       DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5082       DanglingDebugInfoMap[V] = DDI;
5083       return nullptr;
5084     }
5085 
5086     DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5087     DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5088     return nullptr;
5089   }
5090 
5091   case Intrinsic::eh_typeid_for: {
5092     // Find the type id for the given typeinfo.
5093     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5094     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5095     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5096     setValue(&I, Res);
5097     return nullptr;
5098   }
5099 
5100   case Intrinsic::eh_return_i32:
5101   case Intrinsic::eh_return_i64:
5102     DAG.getMachineFunction().setCallsEHReturn(true);
5103     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5104                             MVT::Other,
5105                             getControlRoot(),
5106                             getValue(I.getArgOperand(0)),
5107                             getValue(I.getArgOperand(1))));
5108     return nullptr;
5109   case Intrinsic::eh_unwind_init:
5110     DAG.getMachineFunction().setCallsUnwindInit(true);
5111     return nullptr;
5112   case Intrinsic::eh_dwarf_cfa: {
5113     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5114                              TLI.getPointerTy(DAG.getDataLayout()),
5115                              getValue(I.getArgOperand(0))));
5116     return nullptr;
5117   }
5118   case Intrinsic::eh_sjlj_callsite: {
5119     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5120     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5121     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5122     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5123 
5124     MMI.setCurrentCallSite(CI->getZExtValue());
5125     return nullptr;
5126   }
5127   case Intrinsic::eh_sjlj_functioncontext: {
5128     // Get and store the index of the function context.
5129     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5130     AllocaInst *FnCtx =
5131       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5132     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5133     MFI.setFunctionContextIndex(FI);
5134     return nullptr;
5135   }
5136   case Intrinsic::eh_sjlj_setjmp: {
5137     SDValue Ops[2];
5138     Ops[0] = getRoot();
5139     Ops[1] = getValue(I.getArgOperand(0));
5140     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5141                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5142     setValue(&I, Op.getValue(0));
5143     DAG.setRoot(Op.getValue(1));
5144     return nullptr;
5145   }
5146   case Intrinsic::eh_sjlj_longjmp: {
5147     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5148                             getRoot(), getValue(I.getArgOperand(0))));
5149     return nullptr;
5150   }
5151   case Intrinsic::eh_sjlj_setup_dispatch: {
5152     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5153                             getRoot()));
5154     return nullptr;
5155   }
5156 
5157   case Intrinsic::masked_gather:
5158     visitMaskedGather(I);
5159     return nullptr;
5160   case Intrinsic::masked_load:
5161     visitMaskedLoad(I);
5162     return nullptr;
5163   case Intrinsic::masked_scatter:
5164     visitMaskedScatter(I);
5165     return nullptr;
5166   case Intrinsic::masked_store:
5167     visitMaskedStore(I);
5168     return nullptr;
5169   case Intrinsic::masked_expandload:
5170     visitMaskedLoad(I, true /* IsExpanding */);
5171     return nullptr;
5172   case Intrinsic::masked_compressstore:
5173     visitMaskedStore(I, true /* IsCompressing */);
5174     return nullptr;
5175   case Intrinsic::x86_mmx_pslli_w:
5176   case Intrinsic::x86_mmx_pslli_d:
5177   case Intrinsic::x86_mmx_pslli_q:
5178   case Intrinsic::x86_mmx_psrli_w:
5179   case Intrinsic::x86_mmx_psrli_d:
5180   case Intrinsic::x86_mmx_psrli_q:
5181   case Intrinsic::x86_mmx_psrai_w:
5182   case Intrinsic::x86_mmx_psrai_d: {
5183     SDValue ShAmt = getValue(I.getArgOperand(1));
5184     if (isa<ConstantSDNode>(ShAmt)) {
5185       visitTargetIntrinsic(I, Intrinsic);
5186       return nullptr;
5187     }
5188     unsigned NewIntrinsic = 0;
5189     EVT ShAmtVT = MVT::v2i32;
5190     switch (Intrinsic) {
5191     case Intrinsic::x86_mmx_pslli_w:
5192       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5193       break;
5194     case Intrinsic::x86_mmx_pslli_d:
5195       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5196       break;
5197     case Intrinsic::x86_mmx_pslli_q:
5198       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5199       break;
5200     case Intrinsic::x86_mmx_psrli_w:
5201       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5202       break;
5203     case Intrinsic::x86_mmx_psrli_d:
5204       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5205       break;
5206     case Intrinsic::x86_mmx_psrli_q:
5207       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5208       break;
5209     case Intrinsic::x86_mmx_psrai_w:
5210       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5211       break;
5212     case Intrinsic::x86_mmx_psrai_d:
5213       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5214       break;
5215     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5216     }
5217 
5218     // The vector shift intrinsics with scalars uses 32b shift amounts but
5219     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5220     // to be zero.
5221     // We must do this early because v2i32 is not a legal type.
5222     SDValue ShOps[2];
5223     ShOps[0] = ShAmt;
5224     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5225     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5226     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5227     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5228     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5229                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5230                        getValue(I.getArgOperand(0)), ShAmt);
5231     setValue(&I, Res);
5232     return nullptr;
5233   }
5234   case Intrinsic::powi:
5235     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5236                             getValue(I.getArgOperand(1)), DAG));
5237     return nullptr;
5238   case Intrinsic::log:
5239     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5240     return nullptr;
5241   case Intrinsic::log2:
5242     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5243     return nullptr;
5244   case Intrinsic::log10:
5245     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5246     return nullptr;
5247   case Intrinsic::exp:
5248     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5249     return nullptr;
5250   case Intrinsic::exp2:
5251     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5252     return nullptr;
5253   case Intrinsic::pow:
5254     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5255                            getValue(I.getArgOperand(1)), DAG, TLI));
5256     return nullptr;
5257   case Intrinsic::sqrt:
5258   case Intrinsic::fabs:
5259   case Intrinsic::sin:
5260   case Intrinsic::cos:
5261   case Intrinsic::floor:
5262   case Intrinsic::ceil:
5263   case Intrinsic::trunc:
5264   case Intrinsic::rint:
5265   case Intrinsic::nearbyint:
5266   case Intrinsic::round:
5267   case Intrinsic::canonicalize: {
5268     unsigned Opcode;
5269     switch (Intrinsic) {
5270     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5271     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5272     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5273     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5274     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5275     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5276     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5277     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5278     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5279     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5280     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5281     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5282     }
5283 
5284     setValue(&I, DAG.getNode(Opcode, sdl,
5285                              getValue(I.getArgOperand(0)).getValueType(),
5286                              getValue(I.getArgOperand(0))));
5287     return nullptr;
5288   }
5289   case Intrinsic::minnum: {
5290     auto VT = getValue(I.getArgOperand(0)).getValueType();
5291     unsigned Opc =
5292         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5293             ? ISD::FMINNAN
5294             : ISD::FMINNUM;
5295     setValue(&I, DAG.getNode(Opc, sdl, VT,
5296                              getValue(I.getArgOperand(0)),
5297                              getValue(I.getArgOperand(1))));
5298     return nullptr;
5299   }
5300   case Intrinsic::maxnum: {
5301     auto VT = getValue(I.getArgOperand(0)).getValueType();
5302     unsigned Opc =
5303         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5304             ? ISD::FMAXNAN
5305             : ISD::FMAXNUM;
5306     setValue(&I, DAG.getNode(Opc, sdl, VT,
5307                              getValue(I.getArgOperand(0)),
5308                              getValue(I.getArgOperand(1))));
5309     return nullptr;
5310   }
5311   case Intrinsic::copysign:
5312     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5313                              getValue(I.getArgOperand(0)).getValueType(),
5314                              getValue(I.getArgOperand(0)),
5315                              getValue(I.getArgOperand(1))));
5316     return nullptr;
5317   case Intrinsic::fma:
5318     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5319                              getValue(I.getArgOperand(0)).getValueType(),
5320                              getValue(I.getArgOperand(0)),
5321                              getValue(I.getArgOperand(1)),
5322                              getValue(I.getArgOperand(2))));
5323     return nullptr;
5324   case Intrinsic::experimental_constrained_fadd:
5325   case Intrinsic::experimental_constrained_fsub:
5326   case Intrinsic::experimental_constrained_fmul:
5327   case Intrinsic::experimental_constrained_fdiv:
5328   case Intrinsic::experimental_constrained_frem:
5329   case Intrinsic::experimental_constrained_sqrt:
5330   case Intrinsic::experimental_constrained_pow:
5331   case Intrinsic::experimental_constrained_powi:
5332   case Intrinsic::experimental_constrained_sin:
5333   case Intrinsic::experimental_constrained_cos:
5334   case Intrinsic::experimental_constrained_exp:
5335   case Intrinsic::experimental_constrained_exp2:
5336   case Intrinsic::experimental_constrained_log:
5337   case Intrinsic::experimental_constrained_log10:
5338   case Intrinsic::experimental_constrained_log2:
5339   case Intrinsic::experimental_constrained_rint:
5340   case Intrinsic::experimental_constrained_nearbyint:
5341     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5342     return nullptr;
5343   case Intrinsic::fmuladd: {
5344     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5345     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5346         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5347       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5348                                getValue(I.getArgOperand(0)).getValueType(),
5349                                getValue(I.getArgOperand(0)),
5350                                getValue(I.getArgOperand(1)),
5351                                getValue(I.getArgOperand(2))));
5352     } else {
5353       // TODO: Intrinsic calls should have fast-math-flags.
5354       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5355                                 getValue(I.getArgOperand(0)).getValueType(),
5356                                 getValue(I.getArgOperand(0)),
5357                                 getValue(I.getArgOperand(1)));
5358       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5359                                 getValue(I.getArgOperand(0)).getValueType(),
5360                                 Mul,
5361                                 getValue(I.getArgOperand(2)));
5362       setValue(&I, Add);
5363     }
5364     return nullptr;
5365   }
5366   case Intrinsic::convert_to_fp16:
5367     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5368                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5369                                          getValue(I.getArgOperand(0)),
5370                                          DAG.getTargetConstant(0, sdl,
5371                                                                MVT::i32))));
5372     return nullptr;
5373   case Intrinsic::convert_from_fp16:
5374     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5375                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5376                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5377                                          getValue(I.getArgOperand(0)))));
5378     return nullptr;
5379   case Intrinsic::pcmarker: {
5380     SDValue Tmp = getValue(I.getArgOperand(0));
5381     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5382     return nullptr;
5383   }
5384   case Intrinsic::readcyclecounter: {
5385     SDValue Op = getRoot();
5386     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5387                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5388     setValue(&I, Res);
5389     DAG.setRoot(Res.getValue(1));
5390     return nullptr;
5391   }
5392   case Intrinsic::bitreverse:
5393     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5394                              getValue(I.getArgOperand(0)).getValueType(),
5395                              getValue(I.getArgOperand(0))));
5396     return nullptr;
5397   case Intrinsic::bswap:
5398     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5399                              getValue(I.getArgOperand(0)).getValueType(),
5400                              getValue(I.getArgOperand(0))));
5401     return nullptr;
5402   case Intrinsic::cttz: {
5403     SDValue Arg = getValue(I.getArgOperand(0));
5404     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5405     EVT Ty = Arg.getValueType();
5406     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5407                              sdl, Ty, Arg));
5408     return nullptr;
5409   }
5410   case Intrinsic::ctlz: {
5411     SDValue Arg = getValue(I.getArgOperand(0));
5412     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5413     EVT Ty = Arg.getValueType();
5414     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5415                              sdl, Ty, Arg));
5416     return nullptr;
5417   }
5418   case Intrinsic::ctpop: {
5419     SDValue Arg = getValue(I.getArgOperand(0));
5420     EVT Ty = Arg.getValueType();
5421     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5422     return nullptr;
5423   }
5424   case Intrinsic::stacksave: {
5425     SDValue Op = getRoot();
5426     Res = DAG.getNode(
5427         ISD::STACKSAVE, sdl,
5428         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5429     setValue(&I, Res);
5430     DAG.setRoot(Res.getValue(1));
5431     return nullptr;
5432   }
5433   case Intrinsic::stackrestore: {
5434     Res = getValue(I.getArgOperand(0));
5435     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5436     return nullptr;
5437   }
5438   case Intrinsic::get_dynamic_area_offset: {
5439     SDValue Op = getRoot();
5440     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5441     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5442     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5443     // target.
5444     if (PtrTy != ResTy)
5445       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5446                          " intrinsic!");
5447     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5448                       Op);
5449     DAG.setRoot(Op);
5450     setValue(&I, Res);
5451     return nullptr;
5452   }
5453   case Intrinsic::stackguard: {
5454     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5455     MachineFunction &MF = DAG.getMachineFunction();
5456     const Module &M = *MF.getFunction()->getParent();
5457     SDValue Chain = getRoot();
5458     if (TLI.useLoadStackGuardNode()) {
5459       Res = getLoadStackGuard(DAG, sdl, Chain);
5460     } else {
5461       const Value *Global = TLI.getSDagStackGuard(M);
5462       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5463       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5464                         MachinePointerInfo(Global, 0), Align,
5465                         MachineMemOperand::MOVolatile);
5466     }
5467     DAG.setRoot(Chain);
5468     setValue(&I, Res);
5469     return nullptr;
5470   }
5471   case Intrinsic::stackprotector: {
5472     // Emit code into the DAG to store the stack guard onto the stack.
5473     MachineFunction &MF = DAG.getMachineFunction();
5474     MachineFrameInfo &MFI = MF.getFrameInfo();
5475     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5476     SDValue Src, Chain = getRoot();
5477 
5478     if (TLI.useLoadStackGuardNode())
5479       Src = getLoadStackGuard(DAG, sdl, Chain);
5480     else
5481       Src = getValue(I.getArgOperand(0));   // The guard's value.
5482 
5483     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5484 
5485     int FI = FuncInfo.StaticAllocaMap[Slot];
5486     MFI.setStackProtectorIndex(FI);
5487 
5488     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5489 
5490     // Store the stack protector onto the stack.
5491     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5492                                                  DAG.getMachineFunction(), FI),
5493                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5494     setValue(&I, Res);
5495     DAG.setRoot(Res);
5496     return nullptr;
5497   }
5498   case Intrinsic::objectsize: {
5499     // If we don't know by now, we're never going to know.
5500     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5501 
5502     assert(CI && "Non-constant type in __builtin_object_size?");
5503 
5504     SDValue Arg = getValue(I.getCalledValue());
5505     EVT Ty = Arg.getValueType();
5506 
5507     if (CI->isZero())
5508       Res = DAG.getConstant(-1ULL, sdl, Ty);
5509     else
5510       Res = DAG.getConstant(0, sdl, Ty);
5511 
5512     setValue(&I, Res);
5513     return nullptr;
5514   }
5515   case Intrinsic::annotation:
5516   case Intrinsic::ptr_annotation:
5517   case Intrinsic::invariant_group_barrier:
5518     // Drop the intrinsic, but forward the value
5519     setValue(&I, getValue(I.getOperand(0)));
5520     return nullptr;
5521   case Intrinsic::assume:
5522   case Intrinsic::var_annotation:
5523     // Discard annotate attributes and assumptions
5524     return nullptr;
5525 
5526   case Intrinsic::init_trampoline: {
5527     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5528 
5529     SDValue Ops[6];
5530     Ops[0] = getRoot();
5531     Ops[1] = getValue(I.getArgOperand(0));
5532     Ops[2] = getValue(I.getArgOperand(1));
5533     Ops[3] = getValue(I.getArgOperand(2));
5534     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5535     Ops[5] = DAG.getSrcValue(F);
5536 
5537     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5538 
5539     DAG.setRoot(Res);
5540     return nullptr;
5541   }
5542   case Intrinsic::adjust_trampoline: {
5543     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5544                              TLI.getPointerTy(DAG.getDataLayout()),
5545                              getValue(I.getArgOperand(0))));
5546     return nullptr;
5547   }
5548   case Intrinsic::gcroot: {
5549     MachineFunction &MF = DAG.getMachineFunction();
5550     const Function *F = MF.getFunction();
5551     (void)F;
5552     assert(F->hasGC() &&
5553            "only valid in functions with gc specified, enforced by Verifier");
5554     assert(GFI && "implied by previous");
5555     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5556     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5557 
5558     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5559     GFI->addStackRoot(FI->getIndex(), TypeMap);
5560     return nullptr;
5561   }
5562   case Intrinsic::gcread:
5563   case Intrinsic::gcwrite:
5564     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5565   case Intrinsic::flt_rounds:
5566     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5567     return nullptr;
5568 
5569   case Intrinsic::expect: {
5570     // Just replace __builtin_expect(exp, c) with EXP.
5571     setValue(&I, getValue(I.getArgOperand(0)));
5572     return nullptr;
5573   }
5574 
5575   case Intrinsic::debugtrap:
5576   case Intrinsic::trap: {
5577     StringRef TrapFuncName =
5578         I.getAttributes()
5579             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5580             .getValueAsString();
5581     if (TrapFuncName.empty()) {
5582       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5583         ISD::TRAP : ISD::DEBUGTRAP;
5584       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5585       return nullptr;
5586     }
5587     TargetLowering::ArgListTy Args;
5588 
5589     TargetLowering::CallLoweringInfo CLI(DAG);
5590     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5591         CallingConv::C, I.getType(),
5592         DAG.getExternalSymbol(TrapFuncName.data(),
5593                               TLI.getPointerTy(DAG.getDataLayout())),
5594         std::move(Args));
5595 
5596     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5597     DAG.setRoot(Result.second);
5598     return nullptr;
5599   }
5600 
5601   case Intrinsic::uadd_with_overflow:
5602   case Intrinsic::sadd_with_overflow:
5603   case Intrinsic::usub_with_overflow:
5604   case Intrinsic::ssub_with_overflow:
5605   case Intrinsic::umul_with_overflow:
5606   case Intrinsic::smul_with_overflow: {
5607     ISD::NodeType Op;
5608     switch (Intrinsic) {
5609     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5610     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5611     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5612     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5613     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5614     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5615     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5616     }
5617     SDValue Op1 = getValue(I.getArgOperand(0));
5618     SDValue Op2 = getValue(I.getArgOperand(1));
5619 
5620     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5621     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5622     return nullptr;
5623   }
5624   case Intrinsic::prefetch: {
5625     SDValue Ops[5];
5626     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5627     Ops[0] = getRoot();
5628     Ops[1] = getValue(I.getArgOperand(0));
5629     Ops[2] = getValue(I.getArgOperand(1));
5630     Ops[3] = getValue(I.getArgOperand(2));
5631     Ops[4] = getValue(I.getArgOperand(3));
5632     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5633                                         DAG.getVTList(MVT::Other), Ops,
5634                                         EVT::getIntegerVT(*Context, 8),
5635                                         MachinePointerInfo(I.getArgOperand(0)),
5636                                         0, /* align */
5637                                         false, /* volatile */
5638                                         rw==0, /* read */
5639                                         rw==1)); /* write */
5640     return nullptr;
5641   }
5642   case Intrinsic::lifetime_start:
5643   case Intrinsic::lifetime_end: {
5644     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5645     // Stack coloring is not enabled in O0, discard region information.
5646     if (TM.getOptLevel() == CodeGenOpt::None)
5647       return nullptr;
5648 
5649     SmallVector<Value *, 4> Allocas;
5650     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5651 
5652     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5653            E = Allocas.end(); Object != E; ++Object) {
5654       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5655 
5656       // Could not find an Alloca.
5657       if (!LifetimeObject)
5658         continue;
5659 
5660       // First check that the Alloca is static, otherwise it won't have a
5661       // valid frame index.
5662       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5663       if (SI == FuncInfo.StaticAllocaMap.end())
5664         return nullptr;
5665 
5666       int FI = SI->second;
5667 
5668       SDValue Ops[2];
5669       Ops[0] = getRoot();
5670       Ops[1] =
5671           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
5672       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5673 
5674       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5675       DAG.setRoot(Res);
5676     }
5677     return nullptr;
5678   }
5679   case Intrinsic::invariant_start:
5680     // Discard region information.
5681     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5682     return nullptr;
5683   case Intrinsic::invariant_end:
5684     // Discard region information.
5685     return nullptr;
5686   case Intrinsic::clear_cache:
5687     return TLI.getClearCacheBuiltinName();
5688   case Intrinsic::donothing:
5689     // ignore
5690     return nullptr;
5691   case Intrinsic::experimental_stackmap: {
5692     visitStackmap(I);
5693     return nullptr;
5694   }
5695   case Intrinsic::experimental_patchpoint_void:
5696   case Intrinsic::experimental_patchpoint_i64: {
5697     visitPatchpoint(&I);
5698     return nullptr;
5699   }
5700   case Intrinsic::experimental_gc_statepoint: {
5701     LowerStatepoint(ImmutableStatepoint(&I));
5702     return nullptr;
5703   }
5704   case Intrinsic::experimental_gc_result: {
5705     visitGCResult(cast<GCResultInst>(I));
5706     return nullptr;
5707   }
5708   case Intrinsic::experimental_gc_relocate: {
5709     visitGCRelocate(cast<GCRelocateInst>(I));
5710     return nullptr;
5711   }
5712   case Intrinsic::instrprof_increment:
5713     llvm_unreachable("instrprof failed to lower an increment");
5714   case Intrinsic::instrprof_value_profile:
5715     llvm_unreachable("instrprof failed to lower a value profiling call");
5716   case Intrinsic::localescape: {
5717     MachineFunction &MF = DAG.getMachineFunction();
5718     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5719 
5720     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5721     // is the same on all targets.
5722     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5723       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5724       if (isa<ConstantPointerNull>(Arg))
5725         continue; // Skip null pointers. They represent a hole in index space.
5726       AllocaInst *Slot = cast<AllocaInst>(Arg);
5727       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5728              "can only escape static allocas");
5729       int FI = FuncInfo.StaticAllocaMap[Slot];
5730       MCSymbol *FrameAllocSym =
5731           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5732               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
5733       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5734               TII->get(TargetOpcode::LOCAL_ESCAPE))
5735           .addSym(FrameAllocSym)
5736           .addFrameIndex(FI);
5737     }
5738 
5739     return nullptr;
5740   }
5741 
5742   case Intrinsic::localrecover: {
5743     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5744     MachineFunction &MF = DAG.getMachineFunction();
5745     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5746 
5747     // Get the symbol that defines the frame offset.
5748     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5749     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5750     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5751     MCSymbol *FrameAllocSym =
5752         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5753             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
5754 
5755     // Create a MCSymbol for the label to avoid any target lowering
5756     // that would make this PC relative.
5757     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5758     SDValue OffsetVal =
5759         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5760 
5761     // Add the offset to the FP.
5762     Value *FP = I.getArgOperand(1);
5763     SDValue FPVal = getValue(FP);
5764     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5765     setValue(&I, Add);
5766 
5767     return nullptr;
5768   }
5769 
5770   case Intrinsic::eh_exceptionpointer:
5771   case Intrinsic::eh_exceptioncode: {
5772     // Get the exception pointer vreg, copy from it, and resize it to fit.
5773     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5774     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5775     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5776     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5777     SDValue N =
5778         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5779     if (Intrinsic == Intrinsic::eh_exceptioncode)
5780       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5781     setValue(&I, N);
5782     return nullptr;
5783   }
5784   case Intrinsic::xray_customevent: {
5785     // Here we want to make sure that the intrinsic behaves as if it has a
5786     // specific calling convention, and only for x86_64.
5787     // FIXME: Support other platforms later.
5788     const auto &Triple = DAG.getTarget().getTargetTriple();
5789     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
5790       return nullptr;
5791 
5792     SDLoc DL = getCurSDLoc();
5793     SmallVector<SDValue, 8> Ops;
5794 
5795     // We want to say that we always want the arguments in registers.
5796     SDValue LogEntryVal = getValue(I.getArgOperand(0));
5797     SDValue StrSizeVal = getValue(I.getArgOperand(1));
5798     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
5799     SDValue Chain = getRoot();
5800     Ops.push_back(LogEntryVal);
5801     Ops.push_back(StrSizeVal);
5802     Ops.push_back(Chain);
5803 
5804     // We need to enforce the calling convention for the callsite, so that
5805     // argument ordering is enforced correctly, and that register allocation can
5806     // see that some registers may be assumed clobbered and have to preserve
5807     // them across calls to the intrinsic.
5808     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
5809                                            DL, NodeTys, Ops);
5810     SDValue patchableNode = SDValue(MN, 0);
5811     DAG.setRoot(patchableNode);
5812     setValue(&I, patchableNode);
5813     return nullptr;
5814   }
5815   case Intrinsic::experimental_deoptimize:
5816     LowerDeoptimizeCall(&I);
5817     return nullptr;
5818 
5819   case Intrinsic::experimental_vector_reduce_fadd:
5820   case Intrinsic::experimental_vector_reduce_fmul:
5821   case Intrinsic::experimental_vector_reduce_add:
5822   case Intrinsic::experimental_vector_reduce_mul:
5823   case Intrinsic::experimental_vector_reduce_and:
5824   case Intrinsic::experimental_vector_reduce_or:
5825   case Intrinsic::experimental_vector_reduce_xor:
5826   case Intrinsic::experimental_vector_reduce_smax:
5827   case Intrinsic::experimental_vector_reduce_smin:
5828   case Intrinsic::experimental_vector_reduce_umax:
5829   case Intrinsic::experimental_vector_reduce_umin:
5830   case Intrinsic::experimental_vector_reduce_fmax:
5831   case Intrinsic::experimental_vector_reduce_fmin: {
5832     visitVectorReduce(I, Intrinsic);
5833     return nullptr;
5834   }
5835 
5836   }
5837 }
5838 
5839 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
5840     const ConstrainedFPIntrinsic &FPI) {
5841   SDLoc sdl = getCurSDLoc();
5842   unsigned Opcode;
5843   switch (FPI.getIntrinsicID()) {
5844   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5845   case Intrinsic::experimental_constrained_fadd:
5846     Opcode = ISD::STRICT_FADD;
5847     break;
5848   case Intrinsic::experimental_constrained_fsub:
5849     Opcode = ISD::STRICT_FSUB;
5850     break;
5851   case Intrinsic::experimental_constrained_fmul:
5852     Opcode = ISD::STRICT_FMUL;
5853     break;
5854   case Intrinsic::experimental_constrained_fdiv:
5855     Opcode = ISD::STRICT_FDIV;
5856     break;
5857   case Intrinsic::experimental_constrained_frem:
5858     Opcode = ISD::STRICT_FREM;
5859     break;
5860   case Intrinsic::experimental_constrained_sqrt:
5861     Opcode = ISD::STRICT_FSQRT;
5862     break;
5863   case Intrinsic::experimental_constrained_pow:
5864     Opcode = ISD::STRICT_FPOW;
5865     break;
5866   case Intrinsic::experimental_constrained_powi:
5867     Opcode = ISD::STRICT_FPOWI;
5868     break;
5869   case Intrinsic::experimental_constrained_sin:
5870     Opcode = ISD::STRICT_FSIN;
5871     break;
5872   case Intrinsic::experimental_constrained_cos:
5873     Opcode = ISD::STRICT_FCOS;
5874     break;
5875   case Intrinsic::experimental_constrained_exp:
5876     Opcode = ISD::STRICT_FEXP;
5877     break;
5878   case Intrinsic::experimental_constrained_exp2:
5879     Opcode = ISD::STRICT_FEXP2;
5880     break;
5881   case Intrinsic::experimental_constrained_log:
5882     Opcode = ISD::STRICT_FLOG;
5883     break;
5884   case Intrinsic::experimental_constrained_log10:
5885     Opcode = ISD::STRICT_FLOG10;
5886     break;
5887   case Intrinsic::experimental_constrained_log2:
5888     Opcode = ISD::STRICT_FLOG2;
5889     break;
5890   case Intrinsic::experimental_constrained_rint:
5891     Opcode = ISD::STRICT_FRINT;
5892     break;
5893   case Intrinsic::experimental_constrained_nearbyint:
5894     Opcode = ISD::STRICT_FNEARBYINT;
5895     break;
5896   }
5897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5898   SDValue Chain = getRoot();
5899   SmallVector<EVT, 4> ValueVTs;
5900   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
5901   ValueVTs.push_back(MVT::Other); // Out chain
5902 
5903   SDVTList VTs = DAG.getVTList(ValueVTs);
5904   SDValue Result;
5905   if (FPI.isUnaryOp())
5906     Result = DAG.getNode(Opcode, sdl, VTs,
5907                          { Chain, getValue(FPI.getArgOperand(0)) });
5908   else
5909     Result = DAG.getNode(Opcode, sdl, VTs,
5910                          { Chain, getValue(FPI.getArgOperand(0)),
5911                            getValue(FPI.getArgOperand(1))  });
5912 
5913   assert(Result.getNode()->getNumValues() == 2);
5914   SDValue OutChain = Result.getValue(1);
5915   DAG.setRoot(OutChain);
5916   SDValue FPResult = Result.getValue(0);
5917   setValue(&FPI, FPResult);
5918 }
5919 
5920 std::pair<SDValue, SDValue>
5921 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5922                                     const BasicBlock *EHPadBB) {
5923   MachineFunction &MF = DAG.getMachineFunction();
5924   MachineModuleInfo &MMI = MF.getMMI();
5925   MCSymbol *BeginLabel = nullptr;
5926 
5927   if (EHPadBB) {
5928     // Insert a label before the invoke call to mark the try range.  This can be
5929     // used to detect deletion of the invoke via the MachineModuleInfo.
5930     BeginLabel = MMI.getContext().createTempSymbol();
5931 
5932     // For SjLj, keep track of which landing pads go with which invokes
5933     // so as to maintain the ordering of pads in the LSDA.
5934     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5935     if (CallSiteIndex) {
5936       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5937       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5938 
5939       // Now that the call site is handled, stop tracking it.
5940       MMI.setCurrentCallSite(0);
5941     }
5942 
5943     // Both PendingLoads and PendingExports must be flushed here;
5944     // this call might not return.
5945     (void)getRoot();
5946     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5947 
5948     CLI.setChain(getRoot());
5949   }
5950   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5951   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5952 
5953   assert((CLI.IsTailCall || Result.second.getNode()) &&
5954          "Non-null chain expected with non-tail call!");
5955   assert((Result.second.getNode() || !Result.first.getNode()) &&
5956          "Null value expected with tail call!");
5957 
5958   if (!Result.second.getNode()) {
5959     // As a special case, a null chain means that a tail call has been emitted
5960     // and the DAG root is already updated.
5961     HasTailCall = true;
5962 
5963     // Since there's no actual continuation from this block, nothing can be
5964     // relying on us setting vregs for them.
5965     PendingExports.clear();
5966   } else {
5967     DAG.setRoot(Result.second);
5968   }
5969 
5970   if (EHPadBB) {
5971     // Insert a label at the end of the invoke call to mark the try range.  This
5972     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5973     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5974     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5975 
5976     // Inform MachineModuleInfo of range.
5977     if (MF.hasEHFunclets()) {
5978       assert(CLI.CS);
5979       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5980       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5981                                 BeginLabel, EndLabel);
5982     } else {
5983       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5984     }
5985   }
5986 
5987   return Result;
5988 }
5989 
5990 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5991                                       bool isTailCall,
5992                                       const BasicBlock *EHPadBB) {
5993   auto &DL = DAG.getDataLayout();
5994   FunctionType *FTy = CS.getFunctionType();
5995   Type *RetTy = CS.getType();
5996 
5997   TargetLowering::ArgListTy Args;
5998   Args.reserve(CS.arg_size());
5999 
6000   const Value *SwiftErrorVal = nullptr;
6001   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6002 
6003   // We can't tail call inside a function with a swifterror argument. Lowering
6004   // does not support this yet. It would have to move into the swifterror
6005   // register before the call.
6006   auto *Caller = CS.getInstruction()->getParent()->getParent();
6007   if (TLI.supportSwiftError() &&
6008       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6009     isTailCall = false;
6010 
6011   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6012        i != e; ++i) {
6013     TargetLowering::ArgListEntry Entry;
6014     const Value *V = *i;
6015 
6016     // Skip empty types
6017     if (V->getType()->isEmptyTy())
6018       continue;
6019 
6020     SDValue ArgNode = getValue(V);
6021     Entry.Node = ArgNode; Entry.Ty = V->getType();
6022 
6023     Entry.setAttributes(&CS, i - CS.arg_begin());
6024 
6025     // Use swifterror virtual register as input to the call.
6026     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6027       SwiftErrorVal = V;
6028       // We find the virtual register for the actual swifterror argument.
6029       // Instead of using the Value, we use the virtual register instead.
6030       Entry.Node = DAG.getRegister(FuncInfo
6031                                        .getOrCreateSwiftErrorVRegUseAt(
6032                                            CS.getInstruction(), FuncInfo.MBB, V)
6033                                        .first,
6034                                    EVT(TLI.getPointerTy(DL)));
6035     }
6036 
6037     Args.push_back(Entry);
6038 
6039     // If we have an explicit sret argument that is an Instruction, (i.e., it
6040     // might point to function-local memory), we can't meaningfully tail-call.
6041     if (Entry.IsSRet && isa<Instruction>(V))
6042       isTailCall = false;
6043   }
6044 
6045   // Check if target-independent constraints permit a tail call here.
6046   // Target-dependent constraints are checked within TLI->LowerCallTo.
6047   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6048     isTailCall = false;
6049 
6050   // Disable tail calls if there is an swifterror argument. Targets have not
6051   // been updated to support tail calls.
6052   if (TLI.supportSwiftError() && SwiftErrorVal)
6053     isTailCall = false;
6054 
6055   TargetLowering::CallLoweringInfo CLI(DAG);
6056   CLI.setDebugLoc(getCurSDLoc())
6057       .setChain(getRoot())
6058       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6059       .setTailCall(isTailCall)
6060       .setConvergent(CS.isConvergent());
6061   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6062 
6063   if (Result.first.getNode()) {
6064     const Instruction *Inst = CS.getInstruction();
6065     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6066     setValue(Inst, Result.first);
6067   }
6068 
6069   // The last element of CLI.InVals has the SDValue for swifterror return.
6070   // Here we copy it to a virtual register and update SwiftErrorMap for
6071   // book-keeping.
6072   if (SwiftErrorVal && TLI.supportSwiftError()) {
6073     // Get the last element of InVals.
6074     SDValue Src = CLI.InVals.back();
6075     unsigned VReg; bool CreatedVReg;
6076     std::tie(VReg, CreatedVReg) =
6077         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6078     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6079     // We update the virtual register for the actual swifterror argument.
6080     if (CreatedVReg)
6081       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6082     DAG.setRoot(CopyNode);
6083   }
6084 }
6085 
6086 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6087                              SelectionDAGBuilder &Builder) {
6088 
6089   // Check to see if this load can be trivially constant folded, e.g. if the
6090   // input is from a string literal.
6091   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6092     // Cast pointer to the type we really want to load.
6093     Type *LoadTy =
6094         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6095     if (LoadVT.isVector())
6096       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6097 
6098     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6099                                          PointerType::getUnqual(LoadTy));
6100 
6101     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6102             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6103       return Builder.getValue(LoadCst);
6104   }
6105 
6106   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6107   // still constant memory, the input chain can be the entry node.
6108   SDValue Root;
6109   bool ConstantMemory = false;
6110 
6111   // Do not serialize (non-volatile) loads of constant memory with anything.
6112   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6113     Root = Builder.DAG.getEntryNode();
6114     ConstantMemory = true;
6115   } else {
6116     // Do not serialize non-volatile loads against each other.
6117     Root = Builder.DAG.getRoot();
6118   }
6119 
6120   SDValue Ptr = Builder.getValue(PtrVal);
6121   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6122                                         Ptr, MachinePointerInfo(PtrVal),
6123                                         /* Alignment = */ 1);
6124 
6125   if (!ConstantMemory)
6126     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6127   return LoadVal;
6128 }
6129 
6130 /// Record the value for an instruction that produces an integer result,
6131 /// converting the type where necessary.
6132 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6133                                                   SDValue Value,
6134                                                   bool IsSigned) {
6135   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6136                                                     I.getType(), true);
6137   if (IsSigned)
6138     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6139   else
6140     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6141   setValue(&I, Value);
6142 }
6143 
6144 /// See if we can lower a memcmp call into an optimized form. If so, return
6145 /// true and lower it. Otherwise return false, and it will be lowered like a
6146 /// normal call.
6147 /// The caller already checked that \p I calls the appropriate LibFunc with a
6148 /// correct prototype.
6149 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6150   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6151   const Value *Size = I.getArgOperand(2);
6152   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6153   if (CSize && CSize->getZExtValue() == 0) {
6154     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6155                                                           I.getType(), true);
6156     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6157     return true;
6158   }
6159 
6160   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6161   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6162       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6163       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6164   if (Res.first.getNode()) {
6165     processIntegerCallValue(I, Res.first, true);
6166     PendingLoads.push_back(Res.second);
6167     return true;
6168   }
6169 
6170   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6171   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6172   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6173     return false;
6174 
6175   // If the target has a fast compare for the given size, it will return a
6176   // preferred load type for that size. Require that the load VT is legal and
6177   // that the target supports unaligned loads of that type. Otherwise, return
6178   // INVALID.
6179   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6180     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6181     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6182     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6183       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6184       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6185       // TODO: Check alignment of src and dest ptrs.
6186       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6187       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6188       if (!TLI.isTypeLegal(LVT) ||
6189           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6190           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6191         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6192     }
6193 
6194     return LVT;
6195   };
6196 
6197   // This turns into unaligned loads. We only do this if the target natively
6198   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6199   // we'll only produce a small number of byte loads.
6200   MVT LoadVT;
6201   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6202   switch (NumBitsToCompare) {
6203   default:
6204     return false;
6205   case 16:
6206     LoadVT = MVT::i16;
6207     break;
6208   case 32:
6209     LoadVT = MVT::i32;
6210     break;
6211   case 64:
6212   case 128:
6213   case 256:
6214     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6215     break;
6216   }
6217 
6218   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6219     return false;
6220 
6221   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6222   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6223 
6224   // Bitcast to a wide integer type if the loads are vectors.
6225   if (LoadVT.isVector()) {
6226     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6227     LoadL = DAG.getBitcast(CmpVT, LoadL);
6228     LoadR = DAG.getBitcast(CmpVT, LoadR);
6229   }
6230 
6231   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6232   processIntegerCallValue(I, Cmp, false);
6233   return true;
6234 }
6235 
6236 /// See if we can lower a memchr call into an optimized form. If so, return
6237 /// true and lower it. Otherwise return false, and it will be lowered like a
6238 /// normal call.
6239 /// The caller already checked that \p I calls the appropriate LibFunc with a
6240 /// correct prototype.
6241 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6242   const Value *Src = I.getArgOperand(0);
6243   const Value *Char = I.getArgOperand(1);
6244   const Value *Length = I.getArgOperand(2);
6245 
6246   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6247   std::pair<SDValue, SDValue> Res =
6248     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6249                                 getValue(Src), getValue(Char), getValue(Length),
6250                                 MachinePointerInfo(Src));
6251   if (Res.first.getNode()) {
6252     setValue(&I, Res.first);
6253     PendingLoads.push_back(Res.second);
6254     return true;
6255   }
6256 
6257   return false;
6258 }
6259 
6260 /// See if we can lower a mempcpy call into an optimized form. If so, return
6261 /// true and lower it. Otherwise return false, and it will be lowered like a
6262 /// normal call.
6263 /// The caller already checked that \p I calls the appropriate LibFunc with a
6264 /// correct prototype.
6265 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6266   SDValue Dst = getValue(I.getArgOperand(0));
6267   SDValue Src = getValue(I.getArgOperand(1));
6268   SDValue Size = getValue(I.getArgOperand(2));
6269 
6270   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6271   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6272   unsigned Align = std::min(DstAlign, SrcAlign);
6273   if (Align == 0) // Alignment of one or both could not be inferred.
6274     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6275 
6276   bool isVol = false;
6277   SDLoc sdl = getCurSDLoc();
6278 
6279   // In the mempcpy context we need to pass in a false value for isTailCall
6280   // because the return pointer needs to be adjusted by the size of
6281   // the copied memory.
6282   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6283                              false, /*isTailCall=*/false,
6284                              MachinePointerInfo(I.getArgOperand(0)),
6285                              MachinePointerInfo(I.getArgOperand(1)));
6286   assert(MC.getNode() != nullptr &&
6287          "** memcpy should not be lowered as TailCall in mempcpy context **");
6288   DAG.setRoot(MC);
6289 
6290   // Check if Size needs to be truncated or extended.
6291   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6292 
6293   // Adjust return pointer to point just past the last dst byte.
6294   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6295                                     Dst, Size);
6296   setValue(&I, DstPlusSize);
6297   return true;
6298 }
6299 
6300 /// See if we can lower a strcpy call into an optimized form.  If so, return
6301 /// true and lower it, otherwise return false and it will be lowered like a
6302 /// normal call.
6303 /// The caller already checked that \p I calls the appropriate LibFunc with a
6304 /// correct prototype.
6305 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6306   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6307 
6308   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6309   std::pair<SDValue, SDValue> Res =
6310     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6311                                 getValue(Arg0), getValue(Arg1),
6312                                 MachinePointerInfo(Arg0),
6313                                 MachinePointerInfo(Arg1), isStpcpy);
6314   if (Res.first.getNode()) {
6315     setValue(&I, Res.first);
6316     DAG.setRoot(Res.second);
6317     return true;
6318   }
6319 
6320   return false;
6321 }
6322 
6323 /// See if we can lower a strcmp call into an optimized form.  If so, return
6324 /// true and lower it, otherwise return false and it will be lowered like a
6325 /// normal call.
6326 /// The caller already checked that \p I calls the appropriate LibFunc with a
6327 /// correct prototype.
6328 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6329   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6330 
6331   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6332   std::pair<SDValue, SDValue> Res =
6333     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6334                                 getValue(Arg0), getValue(Arg1),
6335                                 MachinePointerInfo(Arg0),
6336                                 MachinePointerInfo(Arg1));
6337   if (Res.first.getNode()) {
6338     processIntegerCallValue(I, Res.first, true);
6339     PendingLoads.push_back(Res.second);
6340     return true;
6341   }
6342 
6343   return false;
6344 }
6345 
6346 /// See if we can lower a strlen call into an optimized form.  If so, return
6347 /// true and lower it, otherwise return false and it will be lowered like a
6348 /// normal call.
6349 /// The caller already checked that \p I calls the appropriate LibFunc with a
6350 /// correct prototype.
6351 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6352   const Value *Arg0 = I.getArgOperand(0);
6353 
6354   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6355   std::pair<SDValue, SDValue> Res =
6356     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6357                                 getValue(Arg0), MachinePointerInfo(Arg0));
6358   if (Res.first.getNode()) {
6359     processIntegerCallValue(I, Res.first, false);
6360     PendingLoads.push_back(Res.second);
6361     return true;
6362   }
6363 
6364   return false;
6365 }
6366 
6367 /// See if we can lower a strnlen call into an optimized form.  If so, return
6368 /// true and lower it, otherwise return false and it will be lowered like a
6369 /// normal call.
6370 /// The caller already checked that \p I calls the appropriate LibFunc with a
6371 /// correct prototype.
6372 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6373   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6374 
6375   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6376   std::pair<SDValue, SDValue> Res =
6377     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6378                                  getValue(Arg0), getValue(Arg1),
6379                                  MachinePointerInfo(Arg0));
6380   if (Res.first.getNode()) {
6381     processIntegerCallValue(I, Res.first, false);
6382     PendingLoads.push_back(Res.second);
6383     return true;
6384   }
6385 
6386   return false;
6387 }
6388 
6389 /// See if we can lower a unary floating-point operation into an SDNode with
6390 /// the specified Opcode.  If so, return true and lower it, otherwise return
6391 /// false and it will be lowered like a normal call.
6392 /// The caller already checked that \p I calls the appropriate LibFunc with a
6393 /// correct prototype.
6394 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6395                                               unsigned Opcode) {
6396   // We already checked this call's prototype; verify it doesn't modify errno.
6397   if (!I.onlyReadsMemory())
6398     return false;
6399 
6400   SDValue Tmp = getValue(I.getArgOperand(0));
6401   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6402   return true;
6403 }
6404 
6405 /// See if we can lower a binary floating-point operation into an SDNode with
6406 /// the specified Opcode. If so, return true and lower it. Otherwise return
6407 /// false, and it will be lowered like a normal call.
6408 /// The caller already checked that \p I calls the appropriate LibFunc with a
6409 /// correct prototype.
6410 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6411                                                unsigned Opcode) {
6412   // We already checked this call's prototype; verify it doesn't modify errno.
6413   if (!I.onlyReadsMemory())
6414     return false;
6415 
6416   SDValue Tmp0 = getValue(I.getArgOperand(0));
6417   SDValue Tmp1 = getValue(I.getArgOperand(1));
6418   EVT VT = Tmp0.getValueType();
6419   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6420   return true;
6421 }
6422 
6423 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6424   // Handle inline assembly differently.
6425   if (isa<InlineAsm>(I.getCalledValue())) {
6426     visitInlineAsm(&I);
6427     return;
6428   }
6429 
6430   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6431   computeUsesVAFloatArgument(I, MMI);
6432 
6433   const char *RenameFn = nullptr;
6434   if (Function *F = I.getCalledFunction()) {
6435     if (F->isDeclaration()) {
6436       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6437         if (unsigned IID = II->getIntrinsicID(F)) {
6438           RenameFn = visitIntrinsicCall(I, IID);
6439           if (!RenameFn)
6440             return;
6441         }
6442       }
6443       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6444         RenameFn = visitIntrinsicCall(I, IID);
6445         if (!RenameFn)
6446           return;
6447       }
6448     }
6449 
6450     // Check for well-known libc/libm calls.  If the function is internal, it
6451     // can't be a library call.  Don't do the check if marked as nobuiltin for
6452     // some reason.
6453     LibFunc Func;
6454     if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
6455         LibInfo->getLibFunc(*F, Func) &&
6456         LibInfo->hasOptimizedCodeGen(Func)) {
6457       switch (Func) {
6458       default: break;
6459       case LibFunc_copysign:
6460       case LibFunc_copysignf:
6461       case LibFunc_copysignl:
6462         // We already checked this call's prototype; verify it doesn't modify
6463         // errno.
6464         if (I.onlyReadsMemory()) {
6465           SDValue LHS = getValue(I.getArgOperand(0));
6466           SDValue RHS = getValue(I.getArgOperand(1));
6467           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6468                                    LHS.getValueType(), LHS, RHS));
6469           return;
6470         }
6471         break;
6472       case LibFunc_fabs:
6473       case LibFunc_fabsf:
6474       case LibFunc_fabsl:
6475         if (visitUnaryFloatCall(I, ISD::FABS))
6476           return;
6477         break;
6478       case LibFunc_fmin:
6479       case LibFunc_fminf:
6480       case LibFunc_fminl:
6481         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6482           return;
6483         break;
6484       case LibFunc_fmax:
6485       case LibFunc_fmaxf:
6486       case LibFunc_fmaxl:
6487         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6488           return;
6489         break;
6490       case LibFunc_sin:
6491       case LibFunc_sinf:
6492       case LibFunc_sinl:
6493         if (visitUnaryFloatCall(I, ISD::FSIN))
6494           return;
6495         break;
6496       case LibFunc_cos:
6497       case LibFunc_cosf:
6498       case LibFunc_cosl:
6499         if (visitUnaryFloatCall(I, ISD::FCOS))
6500           return;
6501         break;
6502       case LibFunc_sqrt:
6503       case LibFunc_sqrtf:
6504       case LibFunc_sqrtl:
6505       case LibFunc_sqrt_finite:
6506       case LibFunc_sqrtf_finite:
6507       case LibFunc_sqrtl_finite:
6508         if (visitUnaryFloatCall(I, ISD::FSQRT))
6509           return;
6510         break;
6511       case LibFunc_floor:
6512       case LibFunc_floorf:
6513       case LibFunc_floorl:
6514         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6515           return;
6516         break;
6517       case LibFunc_nearbyint:
6518       case LibFunc_nearbyintf:
6519       case LibFunc_nearbyintl:
6520         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6521           return;
6522         break;
6523       case LibFunc_ceil:
6524       case LibFunc_ceilf:
6525       case LibFunc_ceill:
6526         if (visitUnaryFloatCall(I, ISD::FCEIL))
6527           return;
6528         break;
6529       case LibFunc_rint:
6530       case LibFunc_rintf:
6531       case LibFunc_rintl:
6532         if (visitUnaryFloatCall(I, ISD::FRINT))
6533           return;
6534         break;
6535       case LibFunc_round:
6536       case LibFunc_roundf:
6537       case LibFunc_roundl:
6538         if (visitUnaryFloatCall(I, ISD::FROUND))
6539           return;
6540         break;
6541       case LibFunc_trunc:
6542       case LibFunc_truncf:
6543       case LibFunc_truncl:
6544         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6545           return;
6546         break;
6547       case LibFunc_log2:
6548       case LibFunc_log2f:
6549       case LibFunc_log2l:
6550         if (visitUnaryFloatCall(I, ISD::FLOG2))
6551           return;
6552         break;
6553       case LibFunc_exp2:
6554       case LibFunc_exp2f:
6555       case LibFunc_exp2l:
6556         if (visitUnaryFloatCall(I, ISD::FEXP2))
6557           return;
6558         break;
6559       case LibFunc_memcmp:
6560         if (visitMemCmpCall(I))
6561           return;
6562         break;
6563       case LibFunc_mempcpy:
6564         if (visitMemPCpyCall(I))
6565           return;
6566         break;
6567       case LibFunc_memchr:
6568         if (visitMemChrCall(I))
6569           return;
6570         break;
6571       case LibFunc_strcpy:
6572         if (visitStrCpyCall(I, false))
6573           return;
6574         break;
6575       case LibFunc_stpcpy:
6576         if (visitStrCpyCall(I, true))
6577           return;
6578         break;
6579       case LibFunc_strcmp:
6580         if (visitStrCmpCall(I))
6581           return;
6582         break;
6583       case LibFunc_strlen:
6584         if (visitStrLenCall(I))
6585           return;
6586         break;
6587       case LibFunc_strnlen:
6588         if (visitStrNLenCall(I))
6589           return;
6590         break;
6591       }
6592     }
6593   }
6594 
6595   SDValue Callee;
6596   if (!RenameFn)
6597     Callee = getValue(I.getCalledValue());
6598   else
6599     Callee = DAG.getExternalSymbol(
6600         RenameFn,
6601         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6602 
6603   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6604   // have to do anything here to lower funclet bundles.
6605   assert(!I.hasOperandBundlesOtherThan(
6606              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6607          "Cannot lower calls with arbitrary operand bundles!");
6608 
6609   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6610     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6611   else
6612     // Check if we can potentially perform a tail call. More detailed checking
6613     // is be done within LowerCallTo, after more information about the call is
6614     // known.
6615     LowerCallTo(&I, Callee, I.isTailCall());
6616 }
6617 
6618 namespace {
6619 
6620 /// AsmOperandInfo - This contains information for each constraint that we are
6621 /// lowering.
6622 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6623 public:
6624   /// CallOperand - If this is the result output operand or a clobber
6625   /// this is null, otherwise it is the incoming operand to the CallInst.
6626   /// This gets modified as the asm is processed.
6627   SDValue CallOperand;
6628 
6629   /// AssignedRegs - If this is a register or register class operand, this
6630   /// contains the set of register corresponding to the operand.
6631   RegsForValue AssignedRegs;
6632 
6633   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6634     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6635   }
6636 
6637   /// Whether or not this operand accesses memory
6638   bool hasMemory(const TargetLowering &TLI) const {
6639     // Indirect operand accesses access memory.
6640     if (isIndirect)
6641       return true;
6642 
6643     for (const auto &Code : Codes)
6644       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6645         return true;
6646 
6647     return false;
6648   }
6649 
6650   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6651   /// corresponds to.  If there is no Value* for this operand, it returns
6652   /// MVT::Other.
6653   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6654                            const DataLayout &DL) const {
6655     if (!CallOperandVal) return MVT::Other;
6656 
6657     if (isa<BasicBlock>(CallOperandVal))
6658       return TLI.getPointerTy(DL);
6659 
6660     llvm::Type *OpTy = CallOperandVal->getType();
6661 
6662     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6663     // If this is an indirect operand, the operand is a pointer to the
6664     // accessed type.
6665     if (isIndirect) {
6666       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6667       if (!PtrTy)
6668         report_fatal_error("Indirect operand for inline asm not a pointer!");
6669       OpTy = PtrTy->getElementType();
6670     }
6671 
6672     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6673     if (StructType *STy = dyn_cast<StructType>(OpTy))
6674       if (STy->getNumElements() == 1)
6675         OpTy = STy->getElementType(0);
6676 
6677     // If OpTy is not a single value, it may be a struct/union that we
6678     // can tile with integers.
6679     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6680       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6681       switch (BitSize) {
6682       default: break;
6683       case 1:
6684       case 8:
6685       case 16:
6686       case 32:
6687       case 64:
6688       case 128:
6689         OpTy = IntegerType::get(Context, BitSize);
6690         break;
6691       }
6692     }
6693 
6694     return TLI.getValueType(DL, OpTy, true);
6695   }
6696 };
6697 
6698 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6699 
6700 } // end anonymous namespace
6701 
6702 /// Make sure that the output operand \p OpInfo and its corresponding input
6703 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
6704 /// out).
6705 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
6706                                SDISelAsmOperandInfo &MatchingOpInfo,
6707                                SelectionDAG &DAG) {
6708   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
6709     return;
6710 
6711   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6712   const auto &TLI = DAG.getTargetLoweringInfo();
6713 
6714   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6715       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6716                                        OpInfo.ConstraintVT);
6717   std::pair<unsigned, const TargetRegisterClass *> InputRC =
6718       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
6719                                        MatchingOpInfo.ConstraintVT);
6720   if ((OpInfo.ConstraintVT.isInteger() !=
6721        MatchingOpInfo.ConstraintVT.isInteger()) ||
6722       (MatchRC.second != InputRC.second)) {
6723     // FIXME: error out in a more elegant fashion
6724     report_fatal_error("Unsupported asm: input constraint"
6725                        " with a matching output constraint of"
6726                        " incompatible type!");
6727   }
6728   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
6729 }
6730 
6731 /// Get a direct memory input to behave well as an indirect operand.
6732 /// This may introduce stores, hence the need for a \p Chain.
6733 /// \return The (possibly updated) chain.
6734 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
6735                                         SDISelAsmOperandInfo &OpInfo,
6736                                         SelectionDAG &DAG) {
6737   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6738 
6739   // If we don't have an indirect input, put it in the constpool if we can,
6740   // otherwise spill it to a stack slot.
6741   // TODO: This isn't quite right. We need to handle these according to
6742   // the addressing mode that the constraint wants. Also, this may take
6743   // an additional register for the computation and we don't want that
6744   // either.
6745 
6746   // If the operand is a float, integer, or vector constant, spill to a
6747   // constant pool entry to get its address.
6748   const Value *OpVal = OpInfo.CallOperandVal;
6749   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6750       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6751     OpInfo.CallOperand = DAG.getConstantPool(
6752         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6753     return Chain;
6754   }
6755 
6756   // Otherwise, create a stack slot and emit a store to it before the asm.
6757   Type *Ty = OpVal->getType();
6758   auto &DL = DAG.getDataLayout();
6759   uint64_t TySize = DL.getTypeAllocSize(Ty);
6760   unsigned Align = DL.getPrefTypeAlignment(Ty);
6761   MachineFunction &MF = DAG.getMachineFunction();
6762   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
6763   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
6764   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
6765                        MachinePointerInfo::getFixedStack(MF, SSFI));
6766   OpInfo.CallOperand = StackSlot;
6767 
6768   return Chain;
6769 }
6770 
6771 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6772 /// specified operand.  We prefer to assign virtual registers, to allow the
6773 /// register allocator to handle the assignment process.  However, if the asm
6774 /// uses features that we can't model on machineinstrs, we have SDISel do the
6775 /// allocation.  This produces generally horrible, but correct, code.
6776 ///
6777 ///   OpInfo describes the operand.
6778 ///
6779 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6780                                  const SDLoc &DL,
6781                                  SDISelAsmOperandInfo &OpInfo) {
6782   LLVMContext &Context = *DAG.getContext();
6783 
6784   MachineFunction &MF = DAG.getMachineFunction();
6785   SmallVector<unsigned, 4> Regs;
6786   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6787 
6788   // If this is a constraint for a single physreg, or a constraint for a
6789   // register class, find it.
6790   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6791       TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode,
6792                                        OpInfo.ConstraintVT);
6793 
6794   unsigned NumRegs = 1;
6795   if (OpInfo.ConstraintVT != MVT::Other) {
6796     // If this is a FP input in an integer register (or visa versa) insert a bit
6797     // cast of the input value.  More generally, handle any case where the input
6798     // value disagrees with the register class we plan to stick this in.
6799     if (OpInfo.Type == InlineAsm::isInput && PhysReg.second &&
6800         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
6801       // Try to convert to the first EVT that the reg class contains.  If the
6802       // types are identical size, use a bitcast to convert (e.g. two differing
6803       // vector types).
6804       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
6805       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6806         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6807                                          RegVT, OpInfo.CallOperand);
6808         OpInfo.ConstraintVT = RegVT;
6809       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6810         // If the input is a FP value and we want it in FP registers, do a
6811         // bitcast to the corresponding integer type.  This turns an f64 value
6812         // into i64, which can be passed with two i32 values on a 32-bit
6813         // machine.
6814         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6815         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6816                                          RegVT, OpInfo.CallOperand);
6817         OpInfo.ConstraintVT = RegVT;
6818       }
6819     }
6820 
6821     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6822   }
6823 
6824   MVT RegVT;
6825   EVT ValueVT = OpInfo.ConstraintVT;
6826 
6827   // If this is a constraint for a specific physical register, like {r17},
6828   // assign it now.
6829   if (unsigned AssignedReg = PhysReg.first) {
6830     const TargetRegisterClass *RC = PhysReg.second;
6831     if (OpInfo.ConstraintVT == MVT::Other)
6832       ValueVT = *TRI.legalclasstypes_begin(*RC);
6833 
6834     // Get the actual register value type.  This is important, because the user
6835     // may have asked for (e.g.) the AX register in i32 type.  We need to
6836     // remember that AX is actually i16 to get the right extension.
6837     RegVT = *TRI.legalclasstypes_begin(*RC);
6838 
6839     // This is a explicit reference to a physical register.
6840     Regs.push_back(AssignedReg);
6841 
6842     // If this is an expanded reference, add the rest of the regs to Regs.
6843     if (NumRegs != 1) {
6844       TargetRegisterClass::iterator I = RC->begin();
6845       for (; *I != AssignedReg; ++I)
6846         assert(I != RC->end() && "Didn't find reg!");
6847 
6848       // Already added the first reg.
6849       --NumRegs; ++I;
6850       for (; NumRegs; --NumRegs, ++I) {
6851         assert(I != RC->end() && "Ran out of registers to allocate!");
6852         Regs.push_back(*I);
6853       }
6854     }
6855 
6856     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6857     return;
6858   }
6859 
6860   // Otherwise, if this was a reference to an LLVM register class, create vregs
6861   // for this reference.
6862   if (const TargetRegisterClass *RC = PhysReg.second) {
6863     RegVT = *TRI.legalclasstypes_begin(*RC);
6864     if (OpInfo.ConstraintVT == MVT::Other)
6865       ValueVT = RegVT;
6866 
6867     // Create the appropriate number of virtual registers.
6868     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6869     for (; NumRegs; --NumRegs)
6870       Regs.push_back(RegInfo.createVirtualRegister(RC));
6871 
6872     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6873     return;
6874   }
6875 
6876   // Otherwise, we couldn't allocate enough registers for this.
6877 }
6878 
6879 static unsigned
6880 findMatchingInlineAsmOperand(unsigned OperandNo,
6881                              const std::vector<SDValue> &AsmNodeOperands) {
6882   // Scan until we find the definition we already emitted of this operand.
6883   unsigned CurOp = InlineAsm::Op_FirstOperand;
6884   for (; OperandNo; --OperandNo) {
6885     // Advance to the next operand.
6886     unsigned OpFlag =
6887         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6888     assert((InlineAsm::isRegDefKind(OpFlag) ||
6889             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6890             InlineAsm::isMemKind(OpFlag)) &&
6891            "Skipped past definitions?");
6892     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
6893   }
6894   return CurOp;
6895 }
6896 
6897 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
6898 /// \return true if it has succeeded, false otherwise
6899 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
6900                               MVT RegVT, SelectionDAG &DAG) {
6901   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6902   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6903   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
6904     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6905       Regs.push_back(RegInfo.createVirtualRegister(RC));
6906     else
6907       return false;
6908   }
6909   return true;
6910 }
6911 
6912 class ExtraFlags {
6913   unsigned Flags = 0;
6914 
6915 public:
6916   explicit ExtraFlags(ImmutableCallSite CS) {
6917     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6918     if (IA->hasSideEffects())
6919       Flags |= InlineAsm::Extra_HasSideEffects;
6920     if (IA->isAlignStack())
6921       Flags |= InlineAsm::Extra_IsAlignStack;
6922     if (CS.isConvergent())
6923       Flags |= InlineAsm::Extra_IsConvergent;
6924     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6925   }
6926 
6927   void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) {
6928     // Ideally, we would only check against memory constraints.  However, the
6929     // meaning of an Other constraint can be target-specific and we can't easily
6930     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6931     // for Other constraints as well.
6932     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6933         OpInfo.ConstraintType == TargetLowering::C_Other) {
6934       if (OpInfo.Type == InlineAsm::isInput)
6935         Flags |= InlineAsm::Extra_MayLoad;
6936       else if (OpInfo.Type == InlineAsm::isOutput)
6937         Flags |= InlineAsm::Extra_MayStore;
6938       else if (OpInfo.Type == InlineAsm::isClobber)
6939         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6940     }
6941   }
6942 
6943   unsigned get() const { return Flags; }
6944 };
6945 
6946 /// visitInlineAsm - Handle a call to an InlineAsm object.
6947 ///
6948 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6949   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6950 
6951   /// ConstraintOperands - Information about all of the constraints.
6952   SDISelAsmOperandInfoVector ConstraintOperands;
6953 
6954   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6955   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6956       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6957 
6958   bool hasMemory = false;
6959 
6960   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6961   ExtraFlags ExtraInfo(CS);
6962 
6963   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6964   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6965   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6966     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6967     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6968 
6969     MVT OpVT = MVT::Other;
6970 
6971     // Compute the value type for each operand.
6972     if (OpInfo.Type == InlineAsm::isInput ||
6973         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
6974       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6975 
6976       // Process the call argument. BasicBlocks are labels, currently appearing
6977       // only in asm's.
6978       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6979         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6980       } else {
6981         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6982       }
6983 
6984       OpVT =
6985           OpInfo
6986               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
6987               .getSimpleVT();
6988     }
6989 
6990     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
6991       // The return value of the call is this value.  As such, there is no
6992       // corresponding argument.
6993       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6994       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6995         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6996                                       STy->getElementType(ResNo));
6997       } else {
6998         assert(ResNo == 0 && "Asm only has one result!");
6999         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7000       }
7001       ++ResNo;
7002     }
7003 
7004     OpInfo.ConstraintVT = OpVT;
7005 
7006     if (!hasMemory)
7007       hasMemory = OpInfo.hasMemory(TLI);
7008 
7009     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7010     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7011     auto TargetConstraint = TargetConstraints[i];
7012 
7013     // Compute the constraint code and ConstraintType to use.
7014     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7015 
7016     ExtraInfo.update(TargetConstraint);
7017   }
7018 
7019   SDValue Chain, Flag;
7020 
7021   // We won't need to flush pending loads if this asm doesn't touch
7022   // memory and is nonvolatile.
7023   if (hasMemory || IA->hasSideEffects())
7024     Chain = getRoot();
7025   else
7026     Chain = DAG.getRoot();
7027 
7028   // Second pass over the constraints: compute which constraint option to use
7029   // and assign registers to constraints that want a specific physreg.
7030   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7031     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7032 
7033     // If this is an output operand with a matching input operand, look up the
7034     // matching input. If their types mismatch, e.g. one is an integer, the
7035     // other is floating point, or their sizes are different, flag it as an
7036     // error.
7037     if (OpInfo.hasMatchingInput()) {
7038       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7039       patchMatchingInput(OpInfo, Input, DAG);
7040     }
7041 
7042     // Compute the constraint code and ConstraintType to use.
7043     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7044 
7045     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7046         OpInfo.Type == InlineAsm::isClobber)
7047       continue;
7048 
7049     // If this is a memory input, and if the operand is not indirect, do what we
7050     // need to to provide an address for the memory input.
7051     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7052         !OpInfo.isIndirect) {
7053       assert((OpInfo.isMultipleAlternative ||
7054               (OpInfo.Type == InlineAsm::isInput)) &&
7055              "Can only indirectify direct input operands!");
7056 
7057       // Memory operands really want the address of the value.
7058       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7059 
7060       // There is no longer a Value* corresponding to this operand.
7061       OpInfo.CallOperandVal = nullptr;
7062 
7063       // It is now an indirect operand.
7064       OpInfo.isIndirect = true;
7065     }
7066 
7067     // If this constraint is for a specific register, allocate it before
7068     // anything else.
7069     if (OpInfo.ConstraintType == TargetLowering::C_Register)
7070       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7071   }
7072 
7073   // Third pass - Loop over all of the operands, assigning virtual or physregs
7074   // to register class operands.
7075   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7076     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7077 
7078     // C_Register operands have already been allocated, Other/Memory don't need
7079     // to be.
7080     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7081       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7082   }
7083 
7084   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7085   std::vector<SDValue> AsmNodeOperands;
7086   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7087   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7088       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7089 
7090   // If we have a !srcloc metadata node associated with it, we want to attach
7091   // this to the ultimately generated inline asm machineinstr.  To do this, we
7092   // pass in the third operand as this (potentially null) inline asm MDNode.
7093   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7094   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7095 
7096   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7097   // bits as operand 3.
7098   AsmNodeOperands.push_back(DAG.getTargetConstant(
7099       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7100 
7101   // Loop over all of the inputs, copying the operand values into the
7102   // appropriate registers and processing the output regs.
7103   RegsForValue RetValRegs;
7104 
7105   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7106   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
7107 
7108   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7109     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7110 
7111     switch (OpInfo.Type) {
7112     case InlineAsm::isOutput: {
7113       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7114           OpInfo.ConstraintType != TargetLowering::C_Register) {
7115         // Memory output, or 'other' output (e.g. 'X' constraint).
7116         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7117 
7118         unsigned ConstraintID =
7119             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7120         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7121                "Failed to convert memory constraint code to constraint id.");
7122 
7123         // Add information to the INLINEASM node to know about this output.
7124         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7125         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7126         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7127                                                         MVT::i32));
7128         AsmNodeOperands.push_back(OpInfo.CallOperand);
7129         break;
7130       }
7131 
7132       // Otherwise, this is a register or register class output.
7133 
7134       // Copy the output from the appropriate register.  Find a register that
7135       // we can use.
7136       if (OpInfo.AssignedRegs.Regs.empty()) {
7137         emitInlineAsmError(
7138             CS, "couldn't allocate output register for constraint '" +
7139                     Twine(OpInfo.ConstraintCode) + "'");
7140         return;
7141       }
7142 
7143       // If this is an indirect operand, store through the pointer after the
7144       // asm.
7145       if (OpInfo.isIndirect) {
7146         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7147                                                       OpInfo.CallOperandVal));
7148       } else {
7149         // This is the result value of the call.
7150         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7151         // Concatenate this output onto the outputs list.
7152         RetValRegs.append(OpInfo.AssignedRegs);
7153       }
7154 
7155       // Add information to the INLINEASM node to know that this register is
7156       // set.
7157       OpInfo.AssignedRegs
7158           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7159                                     ? InlineAsm::Kind_RegDefEarlyClobber
7160                                     : InlineAsm::Kind_RegDef,
7161                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7162       break;
7163     }
7164     case InlineAsm::isInput: {
7165       SDValue InOperandVal = OpInfo.CallOperand;
7166 
7167       if (OpInfo.isMatchingInputConstraint()) {
7168         // If this is required to match an output register we have already set,
7169         // just use its register.
7170         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7171                                                   AsmNodeOperands);
7172         unsigned OpFlag =
7173           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7174         if (InlineAsm::isRegDefKind(OpFlag) ||
7175             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7176           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7177           if (OpInfo.isIndirect) {
7178             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7179             emitInlineAsmError(CS, "inline asm not supported yet:"
7180                                    " don't know how to handle tied "
7181                                    "indirect register inputs");
7182             return;
7183           }
7184 
7185           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7186           SmallVector<unsigned, 4> Regs;
7187 
7188           if (!createVirtualRegs(Regs,
7189                                  InlineAsm::getNumOperandRegisters(OpFlag),
7190                                  RegVT, DAG)) {
7191             emitInlineAsmError(CS, "inline asm error: This value type register "
7192                                    "class is not natively supported!");
7193             return;
7194           }
7195 
7196           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7197 
7198           SDLoc dl = getCurSDLoc();
7199           // Use the produced MatchedRegs object to
7200           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7201                                     CS.getInstruction());
7202           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7203                                            true, OpInfo.getMatchedOperand(), dl,
7204                                            DAG, AsmNodeOperands);
7205           break;
7206         }
7207 
7208         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7209         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7210                "Unexpected number of operands");
7211         // Add information to the INLINEASM node to know about this input.
7212         // See InlineAsm.h isUseOperandTiedToDef.
7213         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7214         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7215                                                     OpInfo.getMatchedOperand());
7216         AsmNodeOperands.push_back(DAG.getTargetConstant(
7217             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7218         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7219         break;
7220       }
7221 
7222       // Treat indirect 'X' constraint as memory.
7223       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7224           OpInfo.isIndirect)
7225         OpInfo.ConstraintType = TargetLowering::C_Memory;
7226 
7227       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7228         std::vector<SDValue> Ops;
7229         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7230                                           Ops, DAG);
7231         if (Ops.empty()) {
7232           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7233                                      Twine(OpInfo.ConstraintCode) + "'");
7234           return;
7235         }
7236 
7237         // Add information to the INLINEASM node to know about this input.
7238         unsigned ResOpType =
7239           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7240         AsmNodeOperands.push_back(DAG.getTargetConstant(
7241             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7242         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7243         break;
7244       }
7245 
7246       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7247         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7248         assert(InOperandVal.getValueType() ==
7249                    TLI.getPointerTy(DAG.getDataLayout()) &&
7250                "Memory operands expect pointer values");
7251 
7252         unsigned ConstraintID =
7253             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7254         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7255                "Failed to convert memory constraint code to constraint id.");
7256 
7257         // Add information to the INLINEASM node to know about this input.
7258         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7259         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7260         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7261                                                         getCurSDLoc(),
7262                                                         MVT::i32));
7263         AsmNodeOperands.push_back(InOperandVal);
7264         break;
7265       }
7266 
7267       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7268               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7269              "Unknown constraint type!");
7270 
7271       // TODO: Support this.
7272       if (OpInfo.isIndirect) {
7273         emitInlineAsmError(
7274             CS, "Don't know how to handle indirect register inputs yet "
7275                 "for constraint '" +
7276                     Twine(OpInfo.ConstraintCode) + "'");
7277         return;
7278       }
7279 
7280       // Copy the input into the appropriate registers.
7281       if (OpInfo.AssignedRegs.Regs.empty()) {
7282         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7283                                    Twine(OpInfo.ConstraintCode) + "'");
7284         return;
7285       }
7286 
7287       SDLoc dl = getCurSDLoc();
7288 
7289       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7290                                         Chain, &Flag, CS.getInstruction());
7291 
7292       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7293                                                dl, DAG, AsmNodeOperands);
7294       break;
7295     }
7296     case InlineAsm::isClobber: {
7297       // Add the clobbered value to the operand list, so that the register
7298       // allocator is aware that the physreg got clobbered.
7299       if (!OpInfo.AssignedRegs.Regs.empty())
7300         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7301                                                  false, 0, getCurSDLoc(), DAG,
7302                                                  AsmNodeOperands);
7303       break;
7304     }
7305     }
7306   }
7307 
7308   // Finish up input operands.  Set the input chain and add the flag last.
7309   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7310   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7311 
7312   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7313                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7314   Flag = Chain.getValue(1);
7315 
7316   // If this asm returns a register value, copy the result from that register
7317   // and set it as the value of the call.
7318   if (!RetValRegs.Regs.empty()) {
7319     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7320                                              Chain, &Flag, CS.getInstruction());
7321 
7322     // FIXME: Why don't we do this for inline asms with MRVs?
7323     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7324       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7325 
7326       // If any of the results of the inline asm is a vector, it may have the
7327       // wrong width/num elts.  This can happen for register classes that can
7328       // contain multiple different value types.  The preg or vreg allocated may
7329       // not have the same VT as was expected.  Convert it to the right type
7330       // with bit_convert.
7331       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7332         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7333                           ResultType, Val);
7334 
7335       } else if (ResultType != Val.getValueType() &&
7336                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7337         // If a result value was tied to an input value, the computed result may
7338         // have a wider width than the expected result.  Extract the relevant
7339         // portion.
7340         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7341       }
7342 
7343       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7344     }
7345 
7346     setValue(CS.getInstruction(), Val);
7347     // Don't need to use this as a chain in this case.
7348     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7349       return;
7350   }
7351 
7352   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7353 
7354   // Process indirect outputs, first output all of the flagged copies out of
7355   // physregs.
7356   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7357     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7358     const Value *Ptr = IndirectStoresToEmit[i].second;
7359     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7360                                              Chain, &Flag, IA);
7361     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7362   }
7363 
7364   // Emit the non-flagged stores from the physregs.
7365   SmallVector<SDValue, 8> OutChains;
7366   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7367     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7368                                getValue(StoresToEmit[i].second),
7369                                MachinePointerInfo(StoresToEmit[i].second));
7370     OutChains.push_back(Val);
7371   }
7372 
7373   if (!OutChains.empty())
7374     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7375 
7376   DAG.setRoot(Chain);
7377 }
7378 
7379 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7380                                              const Twine &Message) {
7381   LLVMContext &Ctx = *DAG.getContext();
7382   Ctx.emitError(CS.getInstruction(), Message);
7383 
7384   // Make sure we leave the DAG in a valid state
7385   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7386   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7387   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7388 }
7389 
7390 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7391   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7392                           MVT::Other, getRoot(),
7393                           getValue(I.getArgOperand(0)),
7394                           DAG.getSrcValue(I.getArgOperand(0))));
7395 }
7396 
7397 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7398   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7399   const DataLayout &DL = DAG.getDataLayout();
7400   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7401                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7402                            DAG.getSrcValue(I.getOperand(0)),
7403                            DL.getABITypeAlignment(I.getType()));
7404   setValue(&I, V);
7405   DAG.setRoot(V.getValue(1));
7406 }
7407 
7408 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7409   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7410                           MVT::Other, getRoot(),
7411                           getValue(I.getArgOperand(0)),
7412                           DAG.getSrcValue(I.getArgOperand(0))));
7413 }
7414 
7415 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7416   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7417                           MVT::Other, getRoot(),
7418                           getValue(I.getArgOperand(0)),
7419                           getValue(I.getArgOperand(1)),
7420                           DAG.getSrcValue(I.getArgOperand(0)),
7421                           DAG.getSrcValue(I.getArgOperand(1))));
7422 }
7423 
7424 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7425                                                     const Instruction &I,
7426                                                     SDValue Op) {
7427   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7428   if (!Range)
7429     return Op;
7430 
7431   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7432   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7433     return Op;
7434 
7435   APInt Lo = CR.getUnsignedMin();
7436   if (!Lo.isMinValue())
7437     return Op;
7438 
7439   APInt Hi = CR.getUnsignedMax();
7440   unsigned Bits = Hi.getActiveBits();
7441 
7442   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7443 
7444   SDLoc SL = getCurSDLoc();
7445 
7446   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7447                              DAG.getValueType(SmallVT));
7448   unsigned NumVals = Op.getNode()->getNumValues();
7449   if (NumVals == 1)
7450     return ZExt;
7451 
7452   SmallVector<SDValue, 4> Ops;
7453 
7454   Ops.push_back(ZExt);
7455   for (unsigned I = 1; I != NumVals; ++I)
7456     Ops.push_back(Op.getValue(I));
7457 
7458   return DAG.getMergeValues(Ops, SL);
7459 }
7460 
7461 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7462 /// the call being lowered.
7463 ///
7464 /// This is a helper for lowering intrinsics that follow a target calling
7465 /// convention or require stack pointer adjustment. Only a subset of the
7466 /// intrinsic's operands need to participate in the calling convention.
7467 void SelectionDAGBuilder::populateCallLoweringInfo(
7468     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7469     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7470     bool IsPatchPoint) {
7471   TargetLowering::ArgListTy Args;
7472   Args.reserve(NumArgs);
7473 
7474   // Populate the argument list.
7475   // Attributes for args start at offset 1, after the return attribute.
7476   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7477        ArgI != ArgE; ++ArgI) {
7478     const Value *V = CS->getOperand(ArgI);
7479 
7480     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7481 
7482     TargetLowering::ArgListEntry Entry;
7483     Entry.Node = getValue(V);
7484     Entry.Ty = V->getType();
7485     Entry.setAttributes(&CS, ArgIdx);
7486     Args.push_back(Entry);
7487   }
7488 
7489   CLI.setDebugLoc(getCurSDLoc())
7490       .setChain(getRoot())
7491       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7492       .setDiscardResult(CS->use_empty())
7493       .setIsPatchPoint(IsPatchPoint);
7494 }
7495 
7496 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7497 /// or patchpoint target node's operand list.
7498 ///
7499 /// Constants are converted to TargetConstants purely as an optimization to
7500 /// avoid constant materialization and register allocation.
7501 ///
7502 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7503 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7504 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7505 /// address materialization and register allocation, but may also be required
7506 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7507 /// alloca in the entry block, then the runtime may assume that the alloca's
7508 /// StackMap location can be read immediately after compilation and that the
7509 /// location is valid at any point during execution (this is similar to the
7510 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7511 /// only available in a register, then the runtime would need to trap when
7512 /// execution reaches the StackMap in order to read the alloca's location.
7513 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7514                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7515                                 SelectionDAGBuilder &Builder) {
7516   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7517     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7518     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7519       Ops.push_back(
7520         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7521       Ops.push_back(
7522         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7523     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7524       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7525       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7526           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
7527     } else
7528       Ops.push_back(OpVal);
7529   }
7530 }
7531 
7532 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7533 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7534   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7535   //                                  [live variables...])
7536 
7537   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7538 
7539   SDValue Chain, InFlag, Callee, NullPtr;
7540   SmallVector<SDValue, 32> Ops;
7541 
7542   SDLoc DL = getCurSDLoc();
7543   Callee = getValue(CI.getCalledValue());
7544   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7545 
7546   // The stackmap intrinsic only records the live variables (the arguemnts
7547   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7548   // intrinsic, this won't be lowered to a function call. This means we don't
7549   // have to worry about calling conventions and target specific lowering code.
7550   // Instead we perform the call lowering right here.
7551   //
7552   // chain, flag = CALLSEQ_START(chain, 0, 0)
7553   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7554   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7555   //
7556   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
7557   InFlag = Chain.getValue(1);
7558 
7559   // Add the <id> and <numBytes> constants.
7560   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7561   Ops.push_back(DAG.getTargetConstant(
7562                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7563   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7564   Ops.push_back(DAG.getTargetConstant(
7565                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7566                   MVT::i32));
7567 
7568   // Push live variables for the stack map.
7569   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7570 
7571   // We are not pushing any register mask info here on the operands list,
7572   // because the stackmap doesn't clobber anything.
7573 
7574   // Push the chain and the glue flag.
7575   Ops.push_back(Chain);
7576   Ops.push_back(InFlag);
7577 
7578   // Create the STACKMAP node.
7579   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7580   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7581   Chain = SDValue(SM, 0);
7582   InFlag = Chain.getValue(1);
7583 
7584   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7585 
7586   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7587 
7588   // Set the root to the target-lowered call chain.
7589   DAG.setRoot(Chain);
7590 
7591   // Inform the Frame Information that we have a stackmap in this function.
7592   FuncInfo.MF->getFrameInfo().setHasStackMap();
7593 }
7594 
7595 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7596 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7597                                           const BasicBlock *EHPadBB) {
7598   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7599   //                                                 i32 <numBytes>,
7600   //                                                 i8* <target>,
7601   //                                                 i32 <numArgs>,
7602   //                                                 [Args...],
7603   //                                                 [live variables...])
7604 
7605   CallingConv::ID CC = CS.getCallingConv();
7606   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7607   bool HasDef = !CS->getType()->isVoidTy();
7608   SDLoc dl = getCurSDLoc();
7609   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7610 
7611   // Handle immediate and symbolic callees.
7612   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7613     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7614                                    /*isTarget=*/true);
7615   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7616     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7617                                          SDLoc(SymbolicCallee),
7618                                          SymbolicCallee->getValueType(0));
7619 
7620   // Get the real number of arguments participating in the call <numArgs>
7621   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7622   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7623 
7624   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7625   // Intrinsics include all meta-operands up to but not including CC.
7626   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7627   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7628          "Not enough arguments provided to the patchpoint intrinsic");
7629 
7630   // For AnyRegCC the arguments are lowered later on manually.
7631   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7632   Type *ReturnTy =
7633     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7634 
7635   TargetLowering::CallLoweringInfo CLI(DAG);
7636   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7637                            true);
7638   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7639 
7640   SDNode *CallEnd = Result.second.getNode();
7641   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7642     CallEnd = CallEnd->getOperand(0).getNode();
7643 
7644   /// Get a call instruction from the call sequence chain.
7645   /// Tail calls are not allowed.
7646   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7647          "Expected a callseq node.");
7648   SDNode *Call = CallEnd->getOperand(0).getNode();
7649   bool HasGlue = Call->getGluedNode();
7650 
7651   // Replace the target specific call node with the patchable intrinsic.
7652   SmallVector<SDValue, 8> Ops;
7653 
7654   // Add the <id> and <numBytes> constants.
7655   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7656   Ops.push_back(DAG.getTargetConstant(
7657                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7658   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7659   Ops.push_back(DAG.getTargetConstant(
7660                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7661                   MVT::i32));
7662 
7663   // Add the callee.
7664   Ops.push_back(Callee);
7665 
7666   // Adjust <numArgs> to account for any arguments that have been passed on the
7667   // stack instead.
7668   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7669   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7670   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7671   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7672 
7673   // Add the calling convention
7674   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7675 
7676   // Add the arguments we omitted previously. The register allocator should
7677   // place these in any free register.
7678   if (IsAnyRegCC)
7679     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7680       Ops.push_back(getValue(CS.getArgument(i)));
7681 
7682   // Push the arguments from the call instruction up to the register mask.
7683   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7684   Ops.append(Call->op_begin() + 2, e);
7685 
7686   // Push live variables for the stack map.
7687   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7688 
7689   // Push the register mask info.
7690   if (HasGlue)
7691     Ops.push_back(*(Call->op_end()-2));
7692   else
7693     Ops.push_back(*(Call->op_end()-1));
7694 
7695   // Push the chain (this is originally the first operand of the call, but
7696   // becomes now the last or second to last operand).
7697   Ops.push_back(*(Call->op_begin()));
7698 
7699   // Push the glue flag (last operand).
7700   if (HasGlue)
7701     Ops.push_back(*(Call->op_end()-1));
7702 
7703   SDVTList NodeTys;
7704   if (IsAnyRegCC && HasDef) {
7705     // Create the return types based on the intrinsic definition
7706     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7707     SmallVector<EVT, 3> ValueVTs;
7708     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7709     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7710 
7711     // There is always a chain and a glue type at the end
7712     ValueVTs.push_back(MVT::Other);
7713     ValueVTs.push_back(MVT::Glue);
7714     NodeTys = DAG.getVTList(ValueVTs);
7715   } else
7716     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7717 
7718   // Replace the target specific call node with a PATCHPOINT node.
7719   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7720                                          dl, NodeTys, Ops);
7721 
7722   // Update the NodeMap.
7723   if (HasDef) {
7724     if (IsAnyRegCC)
7725       setValue(CS.getInstruction(), SDValue(MN, 0));
7726     else
7727       setValue(CS.getInstruction(), Result.first);
7728   }
7729 
7730   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7731   // call sequence. Furthermore the location of the chain and glue can change
7732   // when the AnyReg calling convention is used and the intrinsic returns a
7733   // value.
7734   if (IsAnyRegCC && HasDef) {
7735     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7736     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7737     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7738   } else
7739     DAG.ReplaceAllUsesWith(Call, MN);
7740   DAG.DeleteNode(Call);
7741 
7742   // Inform the Frame Information that we have a patchpoint in this function.
7743   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
7744 }
7745 
7746 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
7747                                             unsigned Intrinsic) {
7748   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7749   SDValue Op1 = getValue(I.getArgOperand(0));
7750   SDValue Op2;
7751   if (I.getNumArgOperands() > 1)
7752     Op2 = getValue(I.getArgOperand(1));
7753   SDLoc dl = getCurSDLoc();
7754   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7755   SDValue Res;
7756   FastMathFlags FMF;
7757   if (isa<FPMathOperator>(I))
7758     FMF = I.getFastMathFlags();
7759   SDNodeFlags SDFlags;
7760   SDFlags.setNoNaNs(FMF.noNaNs());
7761 
7762   switch (Intrinsic) {
7763   case Intrinsic::experimental_vector_reduce_fadd:
7764     if (FMF.unsafeAlgebra())
7765       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
7766     else
7767       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
7768     break;
7769   case Intrinsic::experimental_vector_reduce_fmul:
7770     if (FMF.unsafeAlgebra())
7771       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
7772     else
7773       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
7774     break;
7775   case Intrinsic::experimental_vector_reduce_add:
7776     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
7777     break;
7778   case Intrinsic::experimental_vector_reduce_mul:
7779     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
7780     break;
7781   case Intrinsic::experimental_vector_reduce_and:
7782     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
7783     break;
7784   case Intrinsic::experimental_vector_reduce_or:
7785     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
7786     break;
7787   case Intrinsic::experimental_vector_reduce_xor:
7788     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
7789     break;
7790   case Intrinsic::experimental_vector_reduce_smax:
7791     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
7792     break;
7793   case Intrinsic::experimental_vector_reduce_smin:
7794     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
7795     break;
7796   case Intrinsic::experimental_vector_reduce_umax:
7797     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
7798     break;
7799   case Intrinsic::experimental_vector_reduce_umin:
7800     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
7801     break;
7802   case Intrinsic::experimental_vector_reduce_fmax: {
7803     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
7804     break;
7805   }
7806   case Intrinsic::experimental_vector_reduce_fmin: {
7807     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
7808     break;
7809   }
7810   default:
7811     llvm_unreachable("Unhandled vector reduce intrinsic");
7812   }
7813   setValue(&I, Res);
7814 }
7815 
7816 /// Returns an AttributeList representing the attributes applied to the return
7817 /// value of the given call.
7818 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7819   SmallVector<Attribute::AttrKind, 2> Attrs;
7820   if (CLI.RetSExt)
7821     Attrs.push_back(Attribute::SExt);
7822   if (CLI.RetZExt)
7823     Attrs.push_back(Attribute::ZExt);
7824   if (CLI.IsInReg)
7825     Attrs.push_back(Attribute::InReg);
7826 
7827   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
7828                             Attrs);
7829 }
7830 
7831 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7832 /// implementation, which just calls LowerCall.
7833 /// FIXME: When all targets are
7834 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7835 std::pair<SDValue, SDValue>
7836 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7837   // Handle the incoming return values from the call.
7838   CLI.Ins.clear();
7839   Type *OrigRetTy = CLI.RetTy;
7840   SmallVector<EVT, 4> RetTys;
7841   SmallVector<uint64_t, 4> Offsets;
7842   auto &DL = CLI.DAG.getDataLayout();
7843   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7844 
7845   SmallVector<ISD::OutputArg, 4> Outs;
7846   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7847 
7848   bool CanLowerReturn =
7849       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7850                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7851 
7852   SDValue DemoteStackSlot;
7853   int DemoteStackIdx = -100;
7854   if (!CanLowerReturn) {
7855     // FIXME: equivalent assert?
7856     // assert(!CS.hasInAllocaArgument() &&
7857     //        "sret demotion is incompatible with inalloca");
7858     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7859     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7860     MachineFunction &MF = CLI.DAG.getMachineFunction();
7861     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7862     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7863 
7864     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
7865     ArgListEntry Entry;
7866     Entry.Node = DemoteStackSlot;
7867     Entry.Ty = StackSlotPtrType;
7868     Entry.IsSExt = false;
7869     Entry.IsZExt = false;
7870     Entry.IsInReg = false;
7871     Entry.IsSRet = true;
7872     Entry.IsNest = false;
7873     Entry.IsByVal = false;
7874     Entry.IsReturned = false;
7875     Entry.IsSwiftSelf = false;
7876     Entry.IsSwiftError = false;
7877     Entry.Alignment = Align;
7878     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7879     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7880 
7881     // sret demotion isn't compatible with tail-calls, since the sret argument
7882     // points into the callers stack frame.
7883     CLI.IsTailCall = false;
7884   } else {
7885     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7886       EVT VT = RetTys[I];
7887       MVT RegisterVT =
7888           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
7889       unsigned NumRegs =
7890           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
7891       for (unsigned i = 0; i != NumRegs; ++i) {
7892         ISD::InputArg MyFlags;
7893         MyFlags.VT = RegisterVT;
7894         MyFlags.ArgVT = VT;
7895         MyFlags.Used = CLI.IsReturnValueUsed;
7896         if (CLI.RetSExt)
7897           MyFlags.Flags.setSExt();
7898         if (CLI.RetZExt)
7899           MyFlags.Flags.setZExt();
7900         if (CLI.IsInReg)
7901           MyFlags.Flags.setInReg();
7902         CLI.Ins.push_back(MyFlags);
7903       }
7904     }
7905   }
7906 
7907   // We push in swifterror return as the last element of CLI.Ins.
7908   ArgListTy &Args = CLI.getArgs();
7909   if (supportSwiftError()) {
7910     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7911       if (Args[i].IsSwiftError) {
7912         ISD::InputArg MyFlags;
7913         MyFlags.VT = getPointerTy(DL);
7914         MyFlags.ArgVT = EVT(getPointerTy(DL));
7915         MyFlags.Flags.setSwiftError();
7916         CLI.Ins.push_back(MyFlags);
7917       }
7918     }
7919   }
7920 
7921   // Handle all of the outgoing arguments.
7922   CLI.Outs.clear();
7923   CLI.OutVals.clear();
7924   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7925     SmallVector<EVT, 4> ValueVTs;
7926     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7927     Type *FinalType = Args[i].Ty;
7928     if (Args[i].IsByVal)
7929       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7930     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7931         FinalType, CLI.CallConv, CLI.IsVarArg);
7932     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7933          ++Value) {
7934       EVT VT = ValueVTs[Value];
7935       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7936       SDValue Op = SDValue(Args[i].Node.getNode(),
7937                            Args[i].Node.getResNo() + Value);
7938       ISD::ArgFlagsTy Flags;
7939 
7940       // Certain targets (such as MIPS), may have a different ABI alignment
7941       // for a type depending on the context. Give the target a chance to
7942       // specify the alignment it wants.
7943       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
7944 
7945       if (Args[i].IsZExt)
7946         Flags.setZExt();
7947       if (Args[i].IsSExt)
7948         Flags.setSExt();
7949       if (Args[i].IsInReg) {
7950         // If we are using vectorcall calling convention, a structure that is
7951         // passed InReg - is surely an HVA
7952         if (CLI.CallConv == CallingConv::X86_VectorCall &&
7953             isa<StructType>(FinalType)) {
7954           // The first value of a structure is marked
7955           if (0 == Value)
7956             Flags.setHvaStart();
7957           Flags.setHva();
7958         }
7959         // Set InReg Flag
7960         Flags.setInReg();
7961       }
7962       if (Args[i].IsSRet)
7963         Flags.setSRet();
7964       if (Args[i].IsSwiftSelf)
7965         Flags.setSwiftSelf();
7966       if (Args[i].IsSwiftError)
7967         Flags.setSwiftError();
7968       if (Args[i].IsByVal)
7969         Flags.setByVal();
7970       if (Args[i].IsInAlloca) {
7971         Flags.setInAlloca();
7972         // Set the byval flag for CCAssignFn callbacks that don't know about
7973         // inalloca.  This way we can know how many bytes we should've allocated
7974         // and how many bytes a callee cleanup function will pop.  If we port
7975         // inalloca to more targets, we'll have to add custom inalloca handling
7976         // in the various CC lowering callbacks.
7977         Flags.setByVal();
7978       }
7979       if (Args[i].IsByVal || Args[i].IsInAlloca) {
7980         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7981         Type *ElementTy = Ty->getElementType();
7982         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7983         // For ByVal, alignment should come from FE.  BE will guess if this
7984         // info is not there but there are cases it cannot get right.
7985         unsigned FrameAlign;
7986         if (Args[i].Alignment)
7987           FrameAlign = Args[i].Alignment;
7988         else
7989           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7990         Flags.setByValAlign(FrameAlign);
7991       }
7992       if (Args[i].IsNest)
7993         Flags.setNest();
7994       if (NeedsRegBlock)
7995         Flags.setInConsecutiveRegs();
7996       Flags.setOrigAlign(OriginalAlignment);
7997 
7998       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
7999       unsigned NumParts =
8000           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8001       SmallVector<SDValue, 4> Parts(NumParts);
8002       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8003 
8004       if (Args[i].IsSExt)
8005         ExtendKind = ISD::SIGN_EXTEND;
8006       else if (Args[i].IsZExt)
8007         ExtendKind = ISD::ZERO_EXTEND;
8008 
8009       // Conservatively only handle 'returned' on non-vectors for now
8010       if (Args[i].IsReturned && !Op.getValueType().isVector()) {
8011         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8012                "unexpected use of 'returned'");
8013         // Before passing 'returned' to the target lowering code, ensure that
8014         // either the register MVT and the actual EVT are the same size or that
8015         // the return value and argument are extended in the same way; in these
8016         // cases it's safe to pass the argument register value unchanged as the
8017         // return register value (although it's at the target's option whether
8018         // to do so)
8019         // TODO: allow code generation to take advantage of partially preserved
8020         // registers rather than clobbering the entire register when the
8021         // parameter extension method is not compatible with the return
8022         // extension method
8023         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8024             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8025              CLI.RetZExt == Args[i].IsZExt))
8026           Flags.setReturned();
8027       }
8028 
8029       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8030                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind,
8031                      true);
8032 
8033       for (unsigned j = 0; j != NumParts; ++j) {
8034         // if it isn't first piece, alignment must be 1
8035         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8036                                i < CLI.NumFixedArgs,
8037                                i, j*Parts[j].getValueType().getStoreSize());
8038         if (NumParts > 1 && j == 0)
8039           MyFlags.Flags.setSplit();
8040         else if (j != 0) {
8041           MyFlags.Flags.setOrigAlign(1);
8042           if (j == NumParts - 1)
8043             MyFlags.Flags.setSplitEnd();
8044         }
8045 
8046         CLI.Outs.push_back(MyFlags);
8047         CLI.OutVals.push_back(Parts[j]);
8048       }
8049 
8050       if (NeedsRegBlock && Value == NumValues - 1)
8051         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8052     }
8053   }
8054 
8055   SmallVector<SDValue, 4> InVals;
8056   CLI.Chain = LowerCall(CLI, InVals);
8057 
8058   // Update CLI.InVals to use outside of this function.
8059   CLI.InVals = InVals;
8060 
8061   // Verify that the target's LowerCall behaved as expected.
8062   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8063          "LowerCall didn't return a valid chain!");
8064   assert((!CLI.IsTailCall || InVals.empty()) &&
8065          "LowerCall emitted a return value for a tail call!");
8066   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8067          "LowerCall didn't emit the correct number of values!");
8068 
8069   // For a tail call, the return value is merely live-out and there aren't
8070   // any nodes in the DAG representing it. Return a special value to
8071   // indicate that a tail call has been emitted and no more Instructions
8072   // should be processed in the current block.
8073   if (CLI.IsTailCall) {
8074     CLI.DAG.setRoot(CLI.Chain);
8075     return std::make_pair(SDValue(), SDValue());
8076   }
8077 
8078 #ifndef NDEBUG
8079   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8080     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8081     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8082            "LowerCall emitted a value with the wrong type!");
8083   }
8084 #endif
8085 
8086   SmallVector<SDValue, 4> ReturnValues;
8087   if (!CanLowerReturn) {
8088     // The instruction result is the result of loading from the
8089     // hidden sret parameter.
8090     SmallVector<EVT, 1> PVTs;
8091     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
8092 
8093     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8094     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8095     EVT PtrVT = PVTs[0];
8096 
8097     unsigned NumValues = RetTys.size();
8098     ReturnValues.resize(NumValues);
8099     SmallVector<SDValue, 4> Chains(NumValues);
8100 
8101     // An aggregate return value cannot wrap around the address space, so
8102     // offsets to its parts don't wrap either.
8103     SDNodeFlags Flags;
8104     Flags.setNoUnsignedWrap(true);
8105 
8106     for (unsigned i = 0; i < NumValues; ++i) {
8107       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8108                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8109                                                         PtrVT), Flags);
8110       SDValue L = CLI.DAG.getLoad(
8111           RetTys[i], CLI.DL, CLI.Chain, Add,
8112           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8113                                             DemoteStackIdx, Offsets[i]),
8114           /* Alignment = */ 1);
8115       ReturnValues[i] = L;
8116       Chains[i] = L.getValue(1);
8117     }
8118 
8119     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8120   } else {
8121     // Collect the legal value parts into potentially illegal values
8122     // that correspond to the original function's return values.
8123     Optional<ISD::NodeType> AssertOp;
8124     if (CLI.RetSExt)
8125       AssertOp = ISD::AssertSext;
8126     else if (CLI.RetZExt)
8127       AssertOp = ISD::AssertZext;
8128     unsigned CurReg = 0;
8129     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8130       EVT VT = RetTys[I];
8131       MVT RegisterVT =
8132           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8133       unsigned NumRegs =
8134           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8135 
8136       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8137                                               NumRegs, RegisterVT, VT, nullptr,
8138                                               AssertOp, true));
8139       CurReg += NumRegs;
8140     }
8141 
8142     // For a function returning void, there is no return value. We can't create
8143     // such a node, so we just return a null return value in that case. In
8144     // that case, nothing will actually look at the value.
8145     if (ReturnValues.empty())
8146       return std::make_pair(SDValue(), CLI.Chain);
8147   }
8148 
8149   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8150                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8151   return std::make_pair(Res, CLI.Chain);
8152 }
8153 
8154 void TargetLowering::LowerOperationWrapper(SDNode *N,
8155                                            SmallVectorImpl<SDValue> &Results,
8156                                            SelectionDAG &DAG) const {
8157   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8158     Results.push_back(Res);
8159 }
8160 
8161 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8162   llvm_unreachable("LowerOperation not implemented for this target!");
8163 }
8164 
8165 void
8166 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8167   SDValue Op = getNonRegisterValue(V);
8168   assert((Op.getOpcode() != ISD::CopyFromReg ||
8169           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8170          "Copy from a reg to the same reg!");
8171   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8172 
8173   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8174   // If this is an InlineAsm we have to match the registers required, not the
8175   // notional registers required by the type.
8176   bool IsABIRegCopy =
8177     V && ((isa<CallInst>(V) &&
8178            !(static_cast<const CallInst *>(V))->isInlineAsm()) ||
8179           isa<ReturnInst>(V));
8180 
8181   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8182                    V->getType(), IsABIRegCopy);
8183   SDValue Chain = DAG.getEntryNode();
8184 
8185   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8186                               FuncInfo.PreferredExtendType.end())
8187                                  ? ISD::ANY_EXTEND
8188                                  : FuncInfo.PreferredExtendType[V];
8189   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8190   PendingExports.push_back(Chain);
8191 }
8192 
8193 #include "llvm/CodeGen/SelectionDAGISel.h"
8194 
8195 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8196 /// entry block, return true.  This includes arguments used by switches, since
8197 /// the switch may expand into multiple basic blocks.
8198 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8199   // With FastISel active, we may be splitting blocks, so force creation
8200   // of virtual registers for all non-dead arguments.
8201   if (FastISel)
8202     return A->use_empty();
8203 
8204   const BasicBlock &Entry = A->getParent()->front();
8205   for (const User *U : A->users())
8206     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8207       return false;  // Use not in entry block.
8208 
8209   return true;
8210 }
8211 
8212 typedef DenseMap<const Argument *,
8213                  std::pair<const AllocaInst *, const StoreInst *>>
8214     ArgCopyElisionMapTy;
8215 
8216 /// Scan the entry block of the function in FuncInfo for arguments that look
8217 /// like copies into a local alloca. Record any copied arguments in
8218 /// ArgCopyElisionCandidates.
8219 static void
8220 findArgumentCopyElisionCandidates(const DataLayout &DL,
8221                                   FunctionLoweringInfo *FuncInfo,
8222                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8223   // Record the state of every static alloca used in the entry block. Argument
8224   // allocas are all used in the entry block, so we need approximately as many
8225   // entries as we have arguments.
8226   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8227   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8228   unsigned NumArgs = FuncInfo->Fn->arg_size();
8229   StaticAllocas.reserve(NumArgs * 2);
8230 
8231   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8232     if (!V)
8233       return nullptr;
8234     V = V->stripPointerCasts();
8235     const auto *AI = dyn_cast<AllocaInst>(V);
8236     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8237       return nullptr;
8238     auto Iter = StaticAllocas.insert({AI, Unknown});
8239     return &Iter.first->second;
8240   };
8241 
8242   // Look for stores of arguments to static allocas. Look through bitcasts and
8243   // GEPs to handle type coercions, as long as the alloca is fully initialized
8244   // by the store. Any non-store use of an alloca escapes it and any subsequent
8245   // unanalyzed store might write it.
8246   // FIXME: Handle structs initialized with multiple stores.
8247   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8248     // Look for stores, and handle non-store uses conservatively.
8249     const auto *SI = dyn_cast<StoreInst>(&I);
8250     if (!SI) {
8251       // We will look through cast uses, so ignore them completely.
8252       if (I.isCast())
8253         continue;
8254       // Ignore debug info intrinsics, they don't escape or store to allocas.
8255       if (isa<DbgInfoIntrinsic>(I))
8256         continue;
8257       // This is an unknown instruction. Assume it escapes or writes to all
8258       // static alloca operands.
8259       for (const Use &U : I.operands()) {
8260         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8261           *Info = StaticAllocaInfo::Clobbered;
8262       }
8263       continue;
8264     }
8265 
8266     // If the stored value is a static alloca, mark it as escaped.
8267     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8268       *Info = StaticAllocaInfo::Clobbered;
8269 
8270     // Check if the destination is a static alloca.
8271     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8272     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8273     if (!Info)
8274       continue;
8275     const AllocaInst *AI = cast<AllocaInst>(Dst);
8276 
8277     // Skip allocas that have been initialized or clobbered.
8278     if (*Info != StaticAllocaInfo::Unknown)
8279       continue;
8280 
8281     // Check if the stored value is an argument, and that this store fully
8282     // initializes the alloca. Don't elide copies from the same argument twice.
8283     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8284     const auto *Arg = dyn_cast<Argument>(Val);
8285     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8286         Arg->getType()->isEmptyTy() ||
8287         DL.getTypeStoreSize(Arg->getType()) !=
8288             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8289         ArgCopyElisionCandidates.count(Arg)) {
8290       *Info = StaticAllocaInfo::Clobbered;
8291       continue;
8292     }
8293 
8294     DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n');
8295 
8296     // Mark this alloca and store for argument copy elision.
8297     *Info = StaticAllocaInfo::Elidable;
8298     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8299 
8300     // Stop scanning if we've seen all arguments. This will happen early in -O0
8301     // builds, which is useful, because -O0 builds have large entry blocks and
8302     // many allocas.
8303     if (ArgCopyElisionCandidates.size() == NumArgs)
8304       break;
8305   }
8306 }
8307 
8308 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8309 /// ArgVal is a load from a suitable fixed stack object.
8310 static void tryToElideArgumentCopy(
8311     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8312     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8313     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8314     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8315     SDValue ArgVal, bool &ArgHasUses) {
8316   // Check if this is a load from a fixed stack object.
8317   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8318   if (!LNode)
8319     return;
8320   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8321   if (!FINode)
8322     return;
8323 
8324   // Check that the fixed stack object is the right size and alignment.
8325   // Look at the alignment that the user wrote on the alloca instead of looking
8326   // at the stack object.
8327   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8328   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8329   const AllocaInst *AI = ArgCopyIter->second.first;
8330   int FixedIndex = FINode->getIndex();
8331   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8332   int OldIndex = AllocaIndex;
8333   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8334   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8335     DEBUG(dbgs() << "  argument copy elision failed due to bad fixed stack "
8336                     "object size\n");
8337     return;
8338   }
8339   unsigned RequiredAlignment = AI->getAlignment();
8340   if (!RequiredAlignment) {
8341     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8342         AI->getAllocatedType());
8343   }
8344   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8345     DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8346                     "greater than stack argument alignment ("
8347                  << RequiredAlignment << " vs "
8348                  << MFI.getObjectAlignment(FixedIndex) << ")\n");
8349     return;
8350   }
8351 
8352   // Perform the elision. Delete the old stack object and replace its only use
8353   // in the variable info map. Mark the stack object as mutable.
8354   DEBUG({
8355     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8356            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8357            << '\n';
8358   });
8359   MFI.RemoveStackObject(OldIndex);
8360   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8361   AllocaIndex = FixedIndex;
8362   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8363   Chains.push_back(ArgVal.getValue(1));
8364 
8365   // Avoid emitting code for the store implementing the copy.
8366   const StoreInst *SI = ArgCopyIter->second.second;
8367   ElidedArgCopyInstrs.insert(SI);
8368 
8369   // Check for uses of the argument again so that we can avoid exporting ArgVal
8370   // if it is't used by anything other than the store.
8371   for (const Value *U : Arg.users()) {
8372     if (U != SI) {
8373       ArgHasUses = true;
8374       break;
8375     }
8376   }
8377 }
8378 
8379 void SelectionDAGISel::LowerArguments(const Function &F) {
8380   SelectionDAG &DAG = SDB->DAG;
8381   SDLoc dl = SDB->getCurSDLoc();
8382   const DataLayout &DL = DAG.getDataLayout();
8383   SmallVector<ISD::InputArg, 16> Ins;
8384 
8385   if (!FuncInfo->CanLowerReturn) {
8386     // Put in an sret pointer parameter before all the other parameters.
8387     SmallVector<EVT, 1> ValueVTs;
8388     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8389                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8390 
8391     // NOTE: Assuming that a pointer will never break down to more than one VT
8392     // or one register.
8393     ISD::ArgFlagsTy Flags;
8394     Flags.setSRet();
8395     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8396     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8397                          ISD::InputArg::NoArgIndex, 0);
8398     Ins.push_back(RetArg);
8399   }
8400 
8401   // Look for stores of arguments to static allocas. Mark such arguments with a
8402   // flag to ask the target to give us the memory location of that argument if
8403   // available.
8404   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8405   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8406 
8407   // Set up the incoming argument description vector.
8408   for (const Argument &Arg : F.args()) {
8409     unsigned ArgNo = Arg.getArgNo();
8410     SmallVector<EVT, 4> ValueVTs;
8411     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8412     bool isArgValueUsed = !Arg.use_empty();
8413     unsigned PartBase = 0;
8414     Type *FinalType = Arg.getType();
8415     if (Arg.hasAttribute(Attribute::ByVal))
8416       FinalType = cast<PointerType>(FinalType)->getElementType();
8417     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8418         FinalType, F.getCallingConv(), F.isVarArg());
8419     for (unsigned Value = 0, NumValues = ValueVTs.size();
8420          Value != NumValues; ++Value) {
8421       EVT VT = ValueVTs[Value];
8422       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8423       ISD::ArgFlagsTy Flags;
8424 
8425       // Certain targets (such as MIPS), may have a different ABI alignment
8426       // for a type depending on the context. Give the target a chance to
8427       // specify the alignment it wants.
8428       unsigned OriginalAlignment =
8429           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8430 
8431       if (Arg.hasAttribute(Attribute::ZExt))
8432         Flags.setZExt();
8433       if (Arg.hasAttribute(Attribute::SExt))
8434         Flags.setSExt();
8435       if (Arg.hasAttribute(Attribute::InReg)) {
8436         // If we are using vectorcall calling convention, a structure that is
8437         // passed InReg - is surely an HVA
8438         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8439             isa<StructType>(Arg.getType())) {
8440           // The first value of a structure is marked
8441           if (0 == Value)
8442             Flags.setHvaStart();
8443           Flags.setHva();
8444         }
8445         // Set InReg Flag
8446         Flags.setInReg();
8447       }
8448       if (Arg.hasAttribute(Attribute::StructRet))
8449         Flags.setSRet();
8450       if (Arg.hasAttribute(Attribute::SwiftSelf))
8451         Flags.setSwiftSelf();
8452       if (Arg.hasAttribute(Attribute::SwiftError))
8453         Flags.setSwiftError();
8454       if (Arg.hasAttribute(Attribute::ByVal))
8455         Flags.setByVal();
8456       if (Arg.hasAttribute(Attribute::InAlloca)) {
8457         Flags.setInAlloca();
8458         // Set the byval flag for CCAssignFn callbacks that don't know about
8459         // inalloca.  This way we can know how many bytes we should've allocated
8460         // and how many bytes a callee cleanup function will pop.  If we port
8461         // inalloca to more targets, we'll have to add custom inalloca handling
8462         // in the various CC lowering callbacks.
8463         Flags.setByVal();
8464       }
8465       if (F.getCallingConv() == CallingConv::X86_INTR) {
8466         // IA Interrupt passes frame (1st parameter) by value in the stack.
8467         if (ArgNo == 0)
8468           Flags.setByVal();
8469       }
8470       if (Flags.isByVal() || Flags.isInAlloca()) {
8471         PointerType *Ty = cast<PointerType>(Arg.getType());
8472         Type *ElementTy = Ty->getElementType();
8473         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8474         // For ByVal, alignment should be passed from FE.  BE will guess if
8475         // this info is not there but there are cases it cannot get right.
8476         unsigned FrameAlign;
8477         if (Arg.getParamAlignment())
8478           FrameAlign = Arg.getParamAlignment();
8479         else
8480           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8481         Flags.setByValAlign(FrameAlign);
8482       }
8483       if (Arg.hasAttribute(Attribute::Nest))
8484         Flags.setNest();
8485       if (NeedsRegBlock)
8486         Flags.setInConsecutiveRegs();
8487       Flags.setOrigAlign(OriginalAlignment);
8488       if (ArgCopyElisionCandidates.count(&Arg))
8489         Flags.setCopyElisionCandidate();
8490 
8491       MVT RegisterVT =
8492           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8493       unsigned NumRegs =
8494           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8495       for (unsigned i = 0; i != NumRegs; ++i) {
8496         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8497                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
8498         if (NumRegs > 1 && i == 0)
8499           MyFlags.Flags.setSplit();
8500         // if it isn't first piece, alignment must be 1
8501         else if (i > 0) {
8502           MyFlags.Flags.setOrigAlign(1);
8503           if (i == NumRegs - 1)
8504             MyFlags.Flags.setSplitEnd();
8505         }
8506         Ins.push_back(MyFlags);
8507       }
8508       if (NeedsRegBlock && Value == NumValues - 1)
8509         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8510       PartBase += VT.getStoreSize();
8511     }
8512   }
8513 
8514   // Call the target to set up the argument values.
8515   SmallVector<SDValue, 8> InVals;
8516   SDValue NewRoot = TLI->LowerFormalArguments(
8517       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8518 
8519   // Verify that the target's LowerFormalArguments behaved as expected.
8520   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8521          "LowerFormalArguments didn't return a valid chain!");
8522   assert(InVals.size() == Ins.size() &&
8523          "LowerFormalArguments didn't emit the correct number of values!");
8524   DEBUG({
8525       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8526         assert(InVals[i].getNode() &&
8527                "LowerFormalArguments emitted a null value!");
8528         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8529                "LowerFormalArguments emitted a value with the wrong type!");
8530       }
8531     });
8532 
8533   // Update the DAG with the new chain value resulting from argument lowering.
8534   DAG.setRoot(NewRoot);
8535 
8536   // Set up the argument values.
8537   unsigned i = 0;
8538   if (!FuncInfo->CanLowerReturn) {
8539     // Create a virtual register for the sret pointer, and put in a copy
8540     // from the sret argument into it.
8541     SmallVector<EVT, 1> ValueVTs;
8542     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8543                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8544     MVT VT = ValueVTs[0].getSimpleVT();
8545     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8546     Optional<ISD::NodeType> AssertOp = None;
8547     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8548                                         RegVT, VT, nullptr, AssertOp);
8549 
8550     MachineFunction& MF = SDB->DAG.getMachineFunction();
8551     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8552     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8553     FuncInfo->DemoteRegister = SRetReg;
8554     NewRoot =
8555         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8556     DAG.setRoot(NewRoot);
8557 
8558     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8559     ++i;
8560   }
8561 
8562   SmallVector<SDValue, 4> Chains;
8563   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
8564   for (const Argument &Arg : F.args()) {
8565     SmallVector<SDValue, 4> ArgValues;
8566     SmallVector<EVT, 4> ValueVTs;
8567     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8568     unsigned NumValues = ValueVTs.size();
8569     if (NumValues == 0)
8570       continue;
8571 
8572     bool ArgHasUses = !Arg.use_empty();
8573 
8574     // Elide the copying store if the target loaded this argument from a
8575     // suitable fixed stack object.
8576     if (Ins[i].Flags.isCopyElisionCandidate()) {
8577       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
8578                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
8579                              InVals[i], ArgHasUses);
8580     }
8581 
8582     // If this argument is unused then remember its value. It is used to generate
8583     // debugging information.
8584     bool isSwiftErrorArg =
8585         TLI->supportSwiftError() &&
8586         Arg.hasAttribute(Attribute::SwiftError);
8587     if (!ArgHasUses && !isSwiftErrorArg) {
8588       SDB->setUnusedArgValue(&Arg, InVals[i]);
8589 
8590       // Also remember any frame index for use in FastISel.
8591       if (FrameIndexSDNode *FI =
8592           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8593         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8594     }
8595 
8596     for (unsigned Val = 0; Val != NumValues; ++Val) {
8597       EVT VT = ValueVTs[Val];
8598       MVT PartVT =
8599           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8600       unsigned NumParts =
8601           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8602 
8603       // Even an apparant 'unused' swifterror argument needs to be returned. So
8604       // we do generate a copy for it that can be used on return from the
8605       // function.
8606       if (ArgHasUses || isSwiftErrorArg) {
8607         Optional<ISD::NodeType> AssertOp;
8608         if (Arg.hasAttribute(Attribute::SExt))
8609           AssertOp = ISD::AssertSext;
8610         else if (Arg.hasAttribute(Attribute::ZExt))
8611           AssertOp = ISD::AssertZext;
8612 
8613         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
8614                                              PartVT, VT, nullptr, AssertOp,
8615                                              true));
8616       }
8617 
8618       i += NumParts;
8619     }
8620 
8621     // We don't need to do anything else for unused arguments.
8622     if (ArgValues.empty())
8623       continue;
8624 
8625     // Note down frame index.
8626     if (FrameIndexSDNode *FI =
8627         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8628       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8629 
8630     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8631                                      SDB->getCurSDLoc());
8632 
8633     SDB->setValue(&Arg, Res);
8634     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8635       if (LoadSDNode *LNode =
8636           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8637         if (FrameIndexSDNode *FI =
8638             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8639         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8640     }
8641 
8642     // Update the SwiftErrorVRegDefMap.
8643     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8644       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8645       if (TargetRegisterInfo::isVirtualRegister(Reg))
8646         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
8647                                            FuncInfo->SwiftErrorArg, Reg);
8648     }
8649 
8650     // If this argument is live outside of the entry block, insert a copy from
8651     // wherever we got it to the vreg that other BB's will reference it as.
8652     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8653       // If we can, though, try to skip creating an unnecessary vreg.
8654       // FIXME: This isn't very clean... it would be nice to make this more
8655       // general.  It's also subtly incompatible with the hacks FastISel
8656       // uses with vregs.
8657       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8658       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8659         FuncInfo->ValueMap[&Arg] = Reg;
8660         continue;
8661       }
8662     }
8663     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
8664       FuncInfo->InitializeRegForValue(&Arg);
8665       SDB->CopyToExportRegsIfNeeded(&Arg);
8666     }
8667   }
8668 
8669   if (!Chains.empty()) {
8670     Chains.push_back(NewRoot);
8671     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
8672   }
8673 
8674   DAG.setRoot(NewRoot);
8675 
8676   assert(i == InVals.size() && "Argument register count mismatch!");
8677 
8678   // If any argument copy elisions occurred and we have debug info, update the
8679   // stale frame indices used in the dbg.declare variable info table.
8680   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
8681   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
8682     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
8683       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
8684       if (I != ArgCopyElisionFrameIndexMap.end())
8685         VI.Slot = I->second;
8686     }
8687   }
8688 
8689   // Finally, if the target has anything special to do, allow it to do so.
8690   EmitFunctionEntryCode();
8691 }
8692 
8693 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8694 /// ensure constants are generated when needed.  Remember the virtual registers
8695 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8696 /// directly add them, because expansion might result in multiple MBB's for one
8697 /// BB.  As such, the start of the BB might correspond to a different MBB than
8698 /// the end.
8699 ///
8700 void
8701 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8702   const TerminatorInst *TI = LLVMBB->getTerminator();
8703 
8704   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8705 
8706   // Check PHI nodes in successors that expect a value to be available from this
8707   // block.
8708   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8709     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8710     if (!isa<PHINode>(SuccBB->begin())) continue;
8711     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8712 
8713     // If this terminator has multiple identical successors (common for
8714     // switches), only handle each succ once.
8715     if (!SuccsHandled.insert(SuccMBB).second)
8716       continue;
8717 
8718     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8719 
8720     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8721     // nodes and Machine PHI nodes, but the incoming operands have not been
8722     // emitted yet.
8723     for (BasicBlock::const_iterator I = SuccBB->begin();
8724          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8725       // Ignore dead phi's.
8726       if (PN->use_empty()) continue;
8727 
8728       // Skip empty types
8729       if (PN->getType()->isEmptyTy())
8730         continue;
8731 
8732       unsigned Reg;
8733       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8734 
8735       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8736         unsigned &RegOut = ConstantsOut[C];
8737         if (RegOut == 0) {
8738           RegOut = FuncInfo.CreateRegs(C->getType());
8739           CopyValueToVirtualRegister(C, RegOut);
8740         }
8741         Reg = RegOut;
8742       } else {
8743         DenseMap<const Value *, unsigned>::iterator I =
8744           FuncInfo.ValueMap.find(PHIOp);
8745         if (I != FuncInfo.ValueMap.end())
8746           Reg = I->second;
8747         else {
8748           assert(isa<AllocaInst>(PHIOp) &&
8749                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8750                  "Didn't codegen value into a register!??");
8751           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8752           CopyValueToVirtualRegister(PHIOp, Reg);
8753         }
8754       }
8755 
8756       // Remember that this register needs to added to the machine PHI node as
8757       // the input for this MBB.
8758       SmallVector<EVT, 4> ValueVTs;
8759       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8760       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8761       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8762         EVT VT = ValueVTs[vti];
8763         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8764         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8765           FuncInfo.PHINodesToUpdate.push_back(
8766               std::make_pair(&*MBBI++, Reg + i));
8767         Reg += NumRegisters;
8768       }
8769     }
8770   }
8771 
8772   ConstantsOut.clear();
8773 }
8774 
8775 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8776 /// is 0.
8777 MachineBasicBlock *
8778 SelectionDAGBuilder::StackProtectorDescriptor::
8779 AddSuccessorMBB(const BasicBlock *BB,
8780                 MachineBasicBlock *ParentMBB,
8781                 bool IsLikely,
8782                 MachineBasicBlock *SuccMBB) {
8783   // If SuccBB has not been created yet, create it.
8784   if (!SuccMBB) {
8785     MachineFunction *MF = ParentMBB->getParent();
8786     MachineFunction::iterator BBI(ParentMBB);
8787     SuccMBB = MF->CreateMachineBasicBlock(BB);
8788     MF->insert(++BBI, SuccMBB);
8789   }
8790   // Add it as a successor of ParentMBB.
8791   ParentMBB->addSuccessor(
8792       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8793   return SuccMBB;
8794 }
8795 
8796 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8797   MachineFunction::iterator I(MBB);
8798   if (++I == FuncInfo.MF->end())
8799     return nullptr;
8800   return &*I;
8801 }
8802 
8803 /// During lowering new call nodes can be created (such as memset, etc.).
8804 /// Those will become new roots of the current DAG, but complications arise
8805 /// when they are tail calls. In such cases, the call lowering will update
8806 /// the root, but the builder still needs to know that a tail call has been
8807 /// lowered in order to avoid generating an additional return.
8808 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8809   // If the node is null, we do have a tail call.
8810   if (MaybeTC.getNode() != nullptr)
8811     DAG.setRoot(MaybeTC);
8812   else
8813     HasTailCall = true;
8814 }
8815 
8816 uint64_t
8817 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
8818                                        unsigned First, unsigned Last) const {
8819   assert(Last >= First);
8820   const APInt &LowCase = Clusters[First].Low->getValue();
8821   const APInt &HighCase = Clusters[Last].High->getValue();
8822   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8823 
8824   // FIXME: A range of consecutive cases has 100% density, but only requires one
8825   // comparison to lower. We should discriminate against such consecutive ranges
8826   // in jump tables.
8827 
8828   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
8829 }
8830 
8831 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
8832     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
8833     unsigned Last) const {
8834   assert(Last >= First);
8835   assert(TotalCases[Last] >= TotalCases[First]);
8836   uint64_t NumCases =
8837       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8838   return NumCases;
8839 }
8840 
8841 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
8842                                          unsigned First, unsigned Last,
8843                                          const SwitchInst *SI,
8844                                          MachineBasicBlock *DefaultMBB,
8845                                          CaseCluster &JTCluster) {
8846   assert(First <= Last);
8847 
8848   auto Prob = BranchProbability::getZero();
8849   unsigned NumCmps = 0;
8850   std::vector<MachineBasicBlock*> Table;
8851   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8852 
8853   // Initialize probabilities in JTProbs.
8854   for (unsigned I = First; I <= Last; ++I)
8855     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8856 
8857   for (unsigned I = First; I <= Last; ++I) {
8858     assert(Clusters[I].Kind == CC_Range);
8859     Prob += Clusters[I].Prob;
8860     const APInt &Low = Clusters[I].Low->getValue();
8861     const APInt &High = Clusters[I].High->getValue();
8862     NumCmps += (Low == High) ? 1 : 2;
8863     if (I != First) {
8864       // Fill the gap between this and the previous cluster.
8865       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
8866       assert(PreviousHigh.slt(Low));
8867       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8868       for (uint64_t J = 0; J < Gap; J++)
8869         Table.push_back(DefaultMBB);
8870     }
8871     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8872     for (uint64_t J = 0; J < ClusterSize; ++J)
8873       Table.push_back(Clusters[I].MBB);
8874     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8875   }
8876 
8877   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8878   unsigned NumDests = JTProbs.size();
8879   if (TLI.isSuitableForBitTests(
8880           NumDests, NumCmps, Clusters[First].Low->getValue(),
8881           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
8882     // Clusters[First..Last] should be lowered as bit tests instead.
8883     return false;
8884   }
8885 
8886   // Create the MBB that will load from and jump through the table.
8887   // Note: We create it here, but it's not inserted into the function yet.
8888   MachineFunction *CurMF = FuncInfo.MF;
8889   MachineBasicBlock *JumpTableMBB =
8890       CurMF->CreateMachineBasicBlock(SI->getParent());
8891 
8892   // Add successors. Note: use table order for determinism.
8893   SmallPtrSet<MachineBasicBlock *, 8> Done;
8894   for (MachineBasicBlock *Succ : Table) {
8895     if (Done.count(Succ))
8896       continue;
8897     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8898     Done.insert(Succ);
8899   }
8900   JumpTableMBB->normalizeSuccProbs();
8901 
8902   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8903                      ->createJumpTableIndex(Table);
8904 
8905   // Set up the jump table info.
8906   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8907   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8908                       Clusters[Last].High->getValue(), SI->getCondition(),
8909                       nullptr, false);
8910   JTCases.emplace_back(std::move(JTH), std::move(JT));
8911 
8912   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8913                                      JTCases.size() - 1, Prob);
8914   return true;
8915 }
8916 
8917 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8918                                          const SwitchInst *SI,
8919                                          MachineBasicBlock *DefaultMBB) {
8920 #ifndef NDEBUG
8921   // Clusters must be non-empty, sorted, and only contain Range clusters.
8922   assert(!Clusters.empty());
8923   for (CaseCluster &C : Clusters)
8924     assert(C.Kind == CC_Range);
8925   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8926     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8927 #endif
8928 
8929   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8930   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
8931     return;
8932 
8933   const int64_t N = Clusters.size();
8934   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
8935   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
8936 
8937   if (N < 2 || N < MinJumpTableEntries)
8938     return;
8939 
8940   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8941   SmallVector<unsigned, 8> TotalCases(N);
8942   for (unsigned i = 0; i < N; ++i) {
8943     const APInt &Hi = Clusters[i].High->getValue();
8944     const APInt &Lo = Clusters[i].Low->getValue();
8945     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8946     if (i != 0)
8947       TotalCases[i] += TotalCases[i - 1];
8948   }
8949 
8950   // Cheap case: the whole range may be suitable for jump table.
8951   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
8952   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
8953   assert(NumCases < UINT64_MAX / 100);
8954   assert(Range >= NumCases);
8955   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
8956     CaseCluster JTCluster;
8957     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8958       Clusters[0] = JTCluster;
8959       Clusters.resize(1);
8960       return;
8961     }
8962   }
8963 
8964   // The algorithm below is not suitable for -O0.
8965   if (TM.getOptLevel() == CodeGenOpt::None)
8966     return;
8967 
8968   // Split Clusters into minimum number of dense partitions. The algorithm uses
8969   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8970   // for the Case Statement'" (1994), but builds the MinPartitions array in
8971   // reverse order to make it easier to reconstruct the partitions in ascending
8972   // order. In the choice between two optimal partitionings, it picks the one
8973   // which yields more jump tables.
8974 
8975   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8976   SmallVector<unsigned, 8> MinPartitions(N);
8977   // LastElement[i] is the last element of the partition starting at i.
8978   SmallVector<unsigned, 8> LastElement(N);
8979   // PartitionsScore[i] is used to break ties when choosing between two
8980   // partitionings resulting in the same number of partitions.
8981   SmallVector<unsigned, 8> PartitionsScore(N);
8982   // For PartitionsScore, a small number of comparisons is considered as good as
8983   // a jump table and a single comparison is considered better than a jump
8984   // table.
8985   enum PartitionScores : unsigned {
8986     NoTable = 0,
8987     Table = 1,
8988     FewCases = 1,
8989     SingleCase = 2
8990   };
8991 
8992   // Base case: There is only one way to partition Clusters[N-1].
8993   MinPartitions[N - 1] = 1;
8994   LastElement[N - 1] = N - 1;
8995   PartitionsScore[N - 1] = PartitionScores::SingleCase;
8996 
8997   // Note: loop indexes are signed to avoid underflow.
8998   for (int64_t i = N - 2; i >= 0; i--) {
8999     // Find optimal partitioning of Clusters[i..N-1].
9000     // Baseline: Put Clusters[i] into a partition on its own.
9001     MinPartitions[i] = MinPartitions[i + 1] + 1;
9002     LastElement[i] = i;
9003     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9004 
9005     // Search for a solution that results in fewer partitions.
9006     for (int64_t j = N - 1; j > i; j--) {
9007       // Try building a partition from Clusters[i..j].
9008       uint64_t Range = getJumpTableRange(Clusters, i, j);
9009       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9010       assert(NumCases < UINT64_MAX / 100);
9011       assert(Range >= NumCases);
9012       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9013         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9014         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9015         int64_t NumEntries = j - i + 1;
9016 
9017         if (NumEntries == 1)
9018           Score += PartitionScores::SingleCase;
9019         else if (NumEntries <= SmallNumberOfEntries)
9020           Score += PartitionScores::FewCases;
9021         else if (NumEntries >= MinJumpTableEntries)
9022           Score += PartitionScores::Table;
9023 
9024         // If this leads to fewer partitions, or to the same number of
9025         // partitions with better score, it is a better partitioning.
9026         if (NumPartitions < MinPartitions[i] ||
9027             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9028           MinPartitions[i] = NumPartitions;
9029           LastElement[i] = j;
9030           PartitionsScore[i] = Score;
9031         }
9032       }
9033     }
9034   }
9035 
9036   // Iterate over the partitions, replacing some with jump tables in-place.
9037   unsigned DstIndex = 0;
9038   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9039     Last = LastElement[First];
9040     assert(Last >= First);
9041     assert(DstIndex <= First);
9042     unsigned NumClusters = Last - First + 1;
9043 
9044     CaseCluster JTCluster;
9045     if (NumClusters >= MinJumpTableEntries &&
9046         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9047       Clusters[DstIndex++] = JTCluster;
9048     } else {
9049       for (unsigned I = First; I <= Last; ++I)
9050         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9051     }
9052   }
9053   Clusters.resize(DstIndex);
9054 }
9055 
9056 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9057                                         unsigned First, unsigned Last,
9058                                         const SwitchInst *SI,
9059                                         CaseCluster &BTCluster) {
9060   assert(First <= Last);
9061   if (First == Last)
9062     return false;
9063 
9064   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9065   unsigned NumCmps = 0;
9066   for (int64_t I = First; I <= Last; ++I) {
9067     assert(Clusters[I].Kind == CC_Range);
9068     Dests.set(Clusters[I].MBB->getNumber());
9069     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9070   }
9071   unsigned NumDests = Dests.count();
9072 
9073   APInt Low = Clusters[First].Low->getValue();
9074   APInt High = Clusters[Last].High->getValue();
9075   assert(Low.slt(High));
9076 
9077   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9078   const DataLayout &DL = DAG.getDataLayout();
9079   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9080     return false;
9081 
9082   APInt LowBound;
9083   APInt CmpRange;
9084 
9085   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9086   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9087          "Case range must fit in bit mask!");
9088 
9089   // Check if the clusters cover a contiguous range such that no value in the
9090   // range will jump to the default statement.
9091   bool ContiguousRange = true;
9092   for (int64_t I = First + 1; I <= Last; ++I) {
9093     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9094       ContiguousRange = false;
9095       break;
9096     }
9097   }
9098 
9099   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9100     // Optimize the case where all the case values fit in a word without having
9101     // to subtract minValue. In this case, we can optimize away the subtraction.
9102     LowBound = APInt::getNullValue(Low.getBitWidth());
9103     CmpRange = High;
9104     ContiguousRange = false;
9105   } else {
9106     LowBound = Low;
9107     CmpRange = High - Low;
9108   }
9109 
9110   CaseBitsVector CBV;
9111   auto TotalProb = BranchProbability::getZero();
9112   for (unsigned i = First; i <= Last; ++i) {
9113     // Find the CaseBits for this destination.
9114     unsigned j;
9115     for (j = 0; j < CBV.size(); ++j)
9116       if (CBV[j].BB == Clusters[i].MBB)
9117         break;
9118     if (j == CBV.size())
9119       CBV.push_back(
9120           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9121     CaseBits *CB = &CBV[j];
9122 
9123     // Update Mask, Bits and ExtraProb.
9124     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9125     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9126     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9127     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9128     CB->Bits += Hi - Lo + 1;
9129     CB->ExtraProb += Clusters[i].Prob;
9130     TotalProb += Clusters[i].Prob;
9131   }
9132 
9133   BitTestInfo BTI;
9134   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9135     // Sort by probability first, number of bits second.
9136     if (a.ExtraProb != b.ExtraProb)
9137       return a.ExtraProb > b.ExtraProb;
9138     return a.Bits > b.Bits;
9139   });
9140 
9141   for (auto &CB : CBV) {
9142     MachineBasicBlock *BitTestBB =
9143         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9144     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9145   }
9146   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9147                             SI->getCondition(), -1U, MVT::Other, false,
9148                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9149                             TotalProb);
9150 
9151   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9152                                     BitTestCases.size() - 1, TotalProb);
9153   return true;
9154 }
9155 
9156 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9157                                               const SwitchInst *SI) {
9158 // Partition Clusters into as few subsets as possible, where each subset has a
9159 // range that fits in a machine word and has <= 3 unique destinations.
9160 
9161 #ifndef NDEBUG
9162   // Clusters must be sorted and contain Range or JumpTable clusters.
9163   assert(!Clusters.empty());
9164   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9165   for (const CaseCluster &C : Clusters)
9166     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9167   for (unsigned i = 1; i < Clusters.size(); ++i)
9168     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9169 #endif
9170 
9171   // The algorithm below is not suitable for -O0.
9172   if (TM.getOptLevel() == CodeGenOpt::None)
9173     return;
9174 
9175   // If target does not have legal shift left, do not emit bit tests at all.
9176   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9177   const DataLayout &DL = DAG.getDataLayout();
9178 
9179   EVT PTy = TLI.getPointerTy(DL);
9180   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9181     return;
9182 
9183   int BitWidth = PTy.getSizeInBits();
9184   const int64_t N = Clusters.size();
9185 
9186   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9187   SmallVector<unsigned, 8> MinPartitions(N);
9188   // LastElement[i] is the last element of the partition starting at i.
9189   SmallVector<unsigned, 8> LastElement(N);
9190 
9191   // FIXME: This might not be the best algorithm for finding bit test clusters.
9192 
9193   // Base case: There is only one way to partition Clusters[N-1].
9194   MinPartitions[N - 1] = 1;
9195   LastElement[N - 1] = N - 1;
9196 
9197   // Note: loop indexes are signed to avoid underflow.
9198   for (int64_t i = N - 2; i >= 0; --i) {
9199     // Find optimal partitioning of Clusters[i..N-1].
9200     // Baseline: Put Clusters[i] into a partition on its own.
9201     MinPartitions[i] = MinPartitions[i + 1] + 1;
9202     LastElement[i] = i;
9203 
9204     // Search for a solution that results in fewer partitions.
9205     // Note: the search is limited by BitWidth, reducing time complexity.
9206     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9207       // Try building a partition from Clusters[i..j].
9208 
9209       // Check the range.
9210       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9211                                Clusters[j].High->getValue(), DL))
9212         continue;
9213 
9214       // Check nbr of destinations and cluster types.
9215       // FIXME: This works, but doesn't seem very efficient.
9216       bool RangesOnly = true;
9217       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9218       for (int64_t k = i; k <= j; k++) {
9219         if (Clusters[k].Kind != CC_Range) {
9220           RangesOnly = false;
9221           break;
9222         }
9223         Dests.set(Clusters[k].MBB->getNumber());
9224       }
9225       if (!RangesOnly || Dests.count() > 3)
9226         break;
9227 
9228       // Check if it's a better partition.
9229       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9230       if (NumPartitions < MinPartitions[i]) {
9231         // Found a better partition.
9232         MinPartitions[i] = NumPartitions;
9233         LastElement[i] = j;
9234       }
9235     }
9236   }
9237 
9238   // Iterate over the partitions, replacing with bit-test clusters in-place.
9239   unsigned DstIndex = 0;
9240   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9241     Last = LastElement[First];
9242     assert(First <= Last);
9243     assert(DstIndex <= First);
9244 
9245     CaseCluster BitTestCluster;
9246     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9247       Clusters[DstIndex++] = BitTestCluster;
9248     } else {
9249       size_t NumClusters = Last - First + 1;
9250       std::memmove(&Clusters[DstIndex], &Clusters[First],
9251                    sizeof(Clusters[0]) * NumClusters);
9252       DstIndex += NumClusters;
9253     }
9254   }
9255   Clusters.resize(DstIndex);
9256 }
9257 
9258 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9259                                         MachineBasicBlock *SwitchMBB,
9260                                         MachineBasicBlock *DefaultMBB) {
9261   MachineFunction *CurMF = FuncInfo.MF;
9262   MachineBasicBlock *NextMBB = nullptr;
9263   MachineFunction::iterator BBI(W.MBB);
9264   if (++BBI != FuncInfo.MF->end())
9265     NextMBB = &*BBI;
9266 
9267   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9268 
9269   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9270 
9271   if (Size == 2 && W.MBB == SwitchMBB) {
9272     // If any two of the cases has the same destination, and if one value
9273     // is the same as the other, but has one bit unset that the other has set,
9274     // use bit manipulation to do two compares at once.  For example:
9275     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9276     // TODO: This could be extended to merge any 2 cases in switches with 3
9277     // cases.
9278     // TODO: Handle cases where W.CaseBB != SwitchBB.
9279     CaseCluster &Small = *W.FirstCluster;
9280     CaseCluster &Big = *W.LastCluster;
9281 
9282     if (Small.Low == Small.High && Big.Low == Big.High &&
9283         Small.MBB == Big.MBB) {
9284       const APInt &SmallValue = Small.Low->getValue();
9285       const APInt &BigValue = Big.Low->getValue();
9286 
9287       // Check that there is only one bit different.
9288       APInt CommonBit = BigValue ^ SmallValue;
9289       if (CommonBit.isPowerOf2()) {
9290         SDValue CondLHS = getValue(Cond);
9291         EVT VT = CondLHS.getValueType();
9292         SDLoc DL = getCurSDLoc();
9293 
9294         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9295                                  DAG.getConstant(CommonBit, DL, VT));
9296         SDValue Cond = DAG.getSetCC(
9297             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9298             ISD::SETEQ);
9299 
9300         // Update successor info.
9301         // Both Small and Big will jump to Small.BB, so we sum up the
9302         // probabilities.
9303         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9304         if (BPI)
9305           addSuccessorWithProb(
9306               SwitchMBB, DefaultMBB,
9307               // The default destination is the first successor in IR.
9308               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9309         else
9310           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9311 
9312         // Insert the true branch.
9313         SDValue BrCond =
9314             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9315                         DAG.getBasicBlock(Small.MBB));
9316         // Insert the false branch.
9317         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9318                              DAG.getBasicBlock(DefaultMBB));
9319 
9320         DAG.setRoot(BrCond);
9321         return;
9322       }
9323     }
9324   }
9325 
9326   if (TM.getOptLevel() != CodeGenOpt::None) {
9327     // Order cases by probability so the most likely case will be checked first.
9328     std::sort(W.FirstCluster, W.LastCluster + 1,
9329               [](const CaseCluster &a, const CaseCluster &b) {
9330       return a.Prob > b.Prob;
9331     });
9332 
9333     // Rearrange the case blocks so that the last one falls through if possible
9334     // without without changing the order of probabilities.
9335     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9336       --I;
9337       if (I->Prob > W.LastCluster->Prob)
9338         break;
9339       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9340         std::swap(*I, *W.LastCluster);
9341         break;
9342       }
9343     }
9344   }
9345 
9346   // Compute total probability.
9347   BranchProbability DefaultProb = W.DefaultProb;
9348   BranchProbability UnhandledProbs = DefaultProb;
9349   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9350     UnhandledProbs += I->Prob;
9351 
9352   MachineBasicBlock *CurMBB = W.MBB;
9353   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9354     MachineBasicBlock *Fallthrough;
9355     if (I == W.LastCluster) {
9356       // For the last cluster, fall through to the default destination.
9357       Fallthrough = DefaultMBB;
9358     } else {
9359       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9360       CurMF->insert(BBI, Fallthrough);
9361       // Put Cond in a virtual register to make it available from the new blocks.
9362       ExportFromCurrentBlock(Cond);
9363     }
9364     UnhandledProbs -= I->Prob;
9365 
9366     switch (I->Kind) {
9367       case CC_JumpTable: {
9368         // FIXME: Optimize away range check based on pivot comparisons.
9369         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9370         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9371 
9372         // The jump block hasn't been inserted yet; insert it here.
9373         MachineBasicBlock *JumpMBB = JT->MBB;
9374         CurMF->insert(BBI, JumpMBB);
9375 
9376         auto JumpProb = I->Prob;
9377         auto FallthroughProb = UnhandledProbs;
9378 
9379         // If the default statement is a target of the jump table, we evenly
9380         // distribute the default probability to successors of CurMBB. Also
9381         // update the probability on the edge from JumpMBB to Fallthrough.
9382         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9383                                               SE = JumpMBB->succ_end();
9384              SI != SE; ++SI) {
9385           if (*SI == DefaultMBB) {
9386             JumpProb += DefaultProb / 2;
9387             FallthroughProb -= DefaultProb / 2;
9388             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9389             JumpMBB->normalizeSuccProbs();
9390             break;
9391           }
9392         }
9393 
9394         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9395         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9396         CurMBB->normalizeSuccProbs();
9397 
9398         // The jump table header will be inserted in our current block, do the
9399         // range check, and fall through to our fallthrough block.
9400         JTH->HeaderBB = CurMBB;
9401         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9402 
9403         // If we're in the right place, emit the jump table header right now.
9404         if (CurMBB == SwitchMBB) {
9405           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9406           JTH->Emitted = true;
9407         }
9408         break;
9409       }
9410       case CC_BitTests: {
9411         // FIXME: Optimize away range check based on pivot comparisons.
9412         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9413 
9414         // The bit test blocks haven't been inserted yet; insert them here.
9415         for (BitTestCase &BTC : BTB->Cases)
9416           CurMF->insert(BBI, BTC.ThisBB);
9417 
9418         // Fill in fields of the BitTestBlock.
9419         BTB->Parent = CurMBB;
9420         BTB->Default = Fallthrough;
9421 
9422         BTB->DefaultProb = UnhandledProbs;
9423         // If the cases in bit test don't form a contiguous range, we evenly
9424         // distribute the probability on the edge to Fallthrough to two
9425         // successors of CurMBB.
9426         if (!BTB->ContiguousRange) {
9427           BTB->Prob += DefaultProb / 2;
9428           BTB->DefaultProb -= DefaultProb / 2;
9429         }
9430 
9431         // If we're in the right place, emit the bit test header right now.
9432         if (CurMBB == SwitchMBB) {
9433           visitBitTestHeader(*BTB, SwitchMBB);
9434           BTB->Emitted = true;
9435         }
9436         break;
9437       }
9438       case CC_Range: {
9439         const Value *RHS, *LHS, *MHS;
9440         ISD::CondCode CC;
9441         if (I->Low == I->High) {
9442           // Check Cond == I->Low.
9443           CC = ISD::SETEQ;
9444           LHS = Cond;
9445           RHS=I->Low;
9446           MHS = nullptr;
9447         } else {
9448           // Check I->Low <= Cond <= I->High.
9449           CC = ISD::SETLE;
9450           LHS = I->Low;
9451           MHS = Cond;
9452           RHS = I->High;
9453         }
9454 
9455         // The false probability is the sum of all unhandled cases.
9456         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
9457                      UnhandledProbs);
9458 
9459         if (CurMBB == SwitchMBB)
9460           visitSwitchCase(CB, SwitchMBB);
9461         else
9462           SwitchCases.push_back(CB);
9463 
9464         break;
9465       }
9466     }
9467     CurMBB = Fallthrough;
9468   }
9469 }
9470 
9471 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9472                                               CaseClusterIt First,
9473                                               CaseClusterIt Last) {
9474   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9475     if (X.Prob != CC.Prob)
9476       return X.Prob > CC.Prob;
9477 
9478     // Ties are broken by comparing the case value.
9479     return X.Low->getValue().slt(CC.Low->getValue());
9480   });
9481 }
9482 
9483 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9484                                         const SwitchWorkListItem &W,
9485                                         Value *Cond,
9486                                         MachineBasicBlock *SwitchMBB) {
9487   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9488          "Clusters not sorted?");
9489 
9490   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9491 
9492   // Balance the tree based on branch probabilities to create a near-optimal (in
9493   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9494   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9495   CaseClusterIt LastLeft = W.FirstCluster;
9496   CaseClusterIt FirstRight = W.LastCluster;
9497   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9498   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9499 
9500   // Move LastLeft and FirstRight towards each other from opposite directions to
9501   // find a partitioning of the clusters which balances the probability on both
9502   // sides. If LeftProb and RightProb are equal, alternate which side is
9503   // taken to ensure 0-probability nodes are distributed evenly.
9504   unsigned I = 0;
9505   while (LastLeft + 1 < FirstRight) {
9506     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9507       LeftProb += (++LastLeft)->Prob;
9508     else
9509       RightProb += (--FirstRight)->Prob;
9510     I++;
9511   }
9512 
9513   for (;;) {
9514     // Our binary search tree differs from a typical BST in that ours can have up
9515     // to three values in each leaf. The pivot selection above doesn't take that
9516     // into account, which means the tree might require more nodes and be less
9517     // efficient. We compensate for this here.
9518 
9519     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9520     unsigned NumRight = W.LastCluster - FirstRight + 1;
9521 
9522     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9523       // If one side has less than 3 clusters, and the other has more than 3,
9524       // consider taking a cluster from the other side.
9525 
9526       if (NumLeft < NumRight) {
9527         // Consider moving the first cluster on the right to the left side.
9528         CaseCluster &CC = *FirstRight;
9529         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9530         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9531         if (LeftSideRank <= RightSideRank) {
9532           // Moving the cluster to the left does not demote it.
9533           ++LastLeft;
9534           ++FirstRight;
9535           continue;
9536         }
9537       } else {
9538         assert(NumRight < NumLeft);
9539         // Consider moving the last element on the left to the right side.
9540         CaseCluster &CC = *LastLeft;
9541         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9542         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9543         if (RightSideRank <= LeftSideRank) {
9544           // Moving the cluster to the right does not demot it.
9545           --LastLeft;
9546           --FirstRight;
9547           continue;
9548         }
9549       }
9550     }
9551     break;
9552   }
9553 
9554   assert(LastLeft + 1 == FirstRight);
9555   assert(LastLeft >= W.FirstCluster);
9556   assert(FirstRight <= W.LastCluster);
9557 
9558   // Use the first element on the right as pivot since we will make less-than
9559   // comparisons against it.
9560   CaseClusterIt PivotCluster = FirstRight;
9561   assert(PivotCluster > W.FirstCluster);
9562   assert(PivotCluster <= W.LastCluster);
9563 
9564   CaseClusterIt FirstLeft = W.FirstCluster;
9565   CaseClusterIt LastRight = W.LastCluster;
9566 
9567   const ConstantInt *Pivot = PivotCluster->Low;
9568 
9569   // New blocks will be inserted immediately after the current one.
9570   MachineFunction::iterator BBI(W.MBB);
9571   ++BBI;
9572 
9573   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9574   // we can branch to its destination directly if it's squeezed exactly in
9575   // between the known lower bound and Pivot - 1.
9576   MachineBasicBlock *LeftMBB;
9577   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9578       FirstLeft->Low == W.GE &&
9579       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9580     LeftMBB = FirstLeft->MBB;
9581   } else {
9582     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9583     FuncInfo.MF->insert(BBI, LeftMBB);
9584     WorkList.push_back(
9585         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9586     // Put Cond in a virtual register to make it available from the new blocks.
9587     ExportFromCurrentBlock(Cond);
9588   }
9589 
9590   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9591   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9592   // directly if RHS.High equals the current upper bound.
9593   MachineBasicBlock *RightMBB;
9594   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9595       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9596     RightMBB = FirstRight->MBB;
9597   } else {
9598     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9599     FuncInfo.MF->insert(BBI, RightMBB);
9600     WorkList.push_back(
9601         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9602     // Put Cond in a virtual register to make it available from the new blocks.
9603     ExportFromCurrentBlock(Cond);
9604   }
9605 
9606   // Create the CaseBlock record that will be used to lower the branch.
9607   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9608                LeftProb, RightProb);
9609 
9610   if (W.MBB == SwitchMBB)
9611     visitSwitchCase(CB, SwitchMBB);
9612   else
9613     SwitchCases.push_back(CB);
9614 }
9615 
9616 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9617   // Extract cases from the switch.
9618   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9619   CaseClusterVector Clusters;
9620   Clusters.reserve(SI.getNumCases());
9621   for (auto I : SI.cases()) {
9622     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9623     const ConstantInt *CaseVal = I.getCaseValue();
9624     BranchProbability Prob =
9625         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9626             : BranchProbability(1, SI.getNumCases() + 1);
9627     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9628   }
9629 
9630   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9631 
9632   // Cluster adjacent cases with the same destination. We do this at all
9633   // optimization levels because it's cheap to do and will make codegen faster
9634   // if there are many clusters.
9635   sortAndRangeify(Clusters);
9636 
9637   if (TM.getOptLevel() != CodeGenOpt::None) {
9638     // Replace an unreachable default with the most popular destination.
9639     // FIXME: Exploit unreachable default more aggressively.
9640     bool UnreachableDefault =
9641         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9642     if (UnreachableDefault && !Clusters.empty()) {
9643       DenseMap<const BasicBlock *, unsigned> Popularity;
9644       unsigned MaxPop = 0;
9645       const BasicBlock *MaxBB = nullptr;
9646       for (auto I : SI.cases()) {
9647         const BasicBlock *BB = I.getCaseSuccessor();
9648         if (++Popularity[BB] > MaxPop) {
9649           MaxPop = Popularity[BB];
9650           MaxBB = BB;
9651         }
9652       }
9653       // Set new default.
9654       assert(MaxPop > 0 && MaxBB);
9655       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9656 
9657       // Remove cases that were pointing to the destination that is now the
9658       // default.
9659       CaseClusterVector New;
9660       New.reserve(Clusters.size());
9661       for (CaseCluster &CC : Clusters) {
9662         if (CC.MBB != DefaultMBB)
9663           New.push_back(CC);
9664       }
9665       Clusters = std::move(New);
9666     }
9667   }
9668 
9669   // If there is only the default destination, jump there directly.
9670   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9671   if (Clusters.empty()) {
9672     SwitchMBB->addSuccessor(DefaultMBB);
9673     if (DefaultMBB != NextBlock(SwitchMBB)) {
9674       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9675                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9676     }
9677     return;
9678   }
9679 
9680   findJumpTables(Clusters, &SI, DefaultMBB);
9681   findBitTestClusters(Clusters, &SI);
9682 
9683   DEBUG({
9684     dbgs() << "Case clusters: ";
9685     for (const CaseCluster &C : Clusters) {
9686       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9687       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9688 
9689       C.Low->getValue().print(dbgs(), true);
9690       if (C.Low != C.High) {
9691         dbgs() << '-';
9692         C.High->getValue().print(dbgs(), true);
9693       }
9694       dbgs() << ' ';
9695     }
9696     dbgs() << '\n';
9697   });
9698 
9699   assert(!Clusters.empty());
9700   SwitchWorkList WorkList;
9701   CaseClusterIt First = Clusters.begin();
9702   CaseClusterIt Last = Clusters.end() - 1;
9703   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9704   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9705 
9706   while (!WorkList.empty()) {
9707     SwitchWorkListItem W = WorkList.back();
9708     WorkList.pop_back();
9709     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9710 
9711     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
9712         !DefaultMBB->getParent()->getFunction()->optForMinSize()) {
9713       // For optimized builds, lower large range as a balanced binary tree.
9714       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9715       continue;
9716     }
9717 
9718     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9719   }
9720 }
9721