1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 // A dbg.value for an alloca is always indirect. 954 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 955 SDDbgValue *SDV; 956 if (Val.getNode()) { 957 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 958 Val)) { 959 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 960 IsIndirect, Offset, dl, DbgSDNodeOrder); 961 DAG.AddDbgValue(SDV, Val.getNode(), false); 962 } 963 } else 964 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 965 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 966 } 967 } 968 969 /// getCopyFromRegs - If there was virtual register allocated for the value V 970 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 971 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 972 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 973 SDValue Result; 974 975 if (It != FuncInfo.ValueMap.end()) { 976 unsigned InReg = It->second; 977 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 978 DAG.getDataLayout(), InReg, Ty); 979 SDValue Chain = DAG.getEntryNode(); 980 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 981 resolveDanglingDebugInfo(V, Result); 982 } 983 984 return Result; 985 } 986 987 /// getValue - Return an SDValue for the given Value. 988 SDValue SelectionDAGBuilder::getValue(const Value *V) { 989 // If we already have an SDValue for this value, use it. It's important 990 // to do this first, so that we don't create a CopyFromReg if we already 991 // have a regular SDValue. 992 SDValue &N = NodeMap[V]; 993 if (N.getNode()) return N; 994 995 // If there's a virtual register allocated and initialized for this 996 // value, use it. 997 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 998 if (copyFromReg.getNode()) { 999 return copyFromReg; 1000 } 1001 1002 // Otherwise create a new SDValue and remember it. 1003 SDValue Val = getValueImpl(V); 1004 NodeMap[V] = Val; 1005 resolveDanglingDebugInfo(V, Val); 1006 return Val; 1007 } 1008 1009 // Return true if SDValue exists for the given Value 1010 bool SelectionDAGBuilder::findValue(const Value *V) const { 1011 return (NodeMap.find(V) != NodeMap.end()) || 1012 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1013 } 1014 1015 /// getNonRegisterValue - Return an SDValue for the given Value, but 1016 /// don't look in FuncInfo.ValueMap for a virtual register. 1017 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1018 // If we already have an SDValue for this value, use it. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) { 1021 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1022 // Remove the debug location from the node as the node is about to be used 1023 // in a location which may differ from the original debug location. This 1024 // is relevant to Constant and ConstantFP nodes because they can appear 1025 // as constant expressions inside PHI nodes. 1026 N->setDebugLoc(DebugLoc()); 1027 } 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1039 /// Create an SDValue for the given value. 1040 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1042 1043 if (const Constant *C = dyn_cast<Constant>(V)) { 1044 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1045 1046 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1047 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1048 1049 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1050 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1051 1052 if (isa<ConstantPointerNull>(C)) { 1053 unsigned AS = V->getType()->getPointerAddressSpace(); 1054 return DAG.getConstant(0, getCurSDLoc(), 1055 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1056 } 1057 1058 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1059 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1060 1061 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1062 return DAG.getUNDEF(VT); 1063 1064 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1065 visit(CE->getOpcode(), *CE); 1066 SDValue N1 = NodeMap[V]; 1067 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1068 return N1; 1069 } 1070 1071 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1072 SmallVector<SDValue, 4> Constants; 1073 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1074 OI != OE; ++OI) { 1075 SDNode *Val = getValue(*OI).getNode(); 1076 // If the operand is an empty aggregate, there are no values. 1077 if (!Val) continue; 1078 // Add each leaf value from the operand to the Constants list 1079 // to form a flattened list of all the values. 1080 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1081 Constants.push_back(SDValue(Val, i)); 1082 } 1083 1084 return DAG.getMergeValues(Constants, getCurSDLoc()); 1085 } 1086 1087 if (const ConstantDataSequential *CDS = 1088 dyn_cast<ConstantDataSequential>(C)) { 1089 SmallVector<SDValue, 4> Ops; 1090 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1091 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1092 // Add each leaf value from the operand to the Constants list 1093 // to form a flattened list of all the values. 1094 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1095 Ops.push_back(SDValue(Val, i)); 1096 } 1097 1098 if (isa<ArrayType>(CDS->getType())) 1099 return DAG.getMergeValues(Ops, getCurSDLoc()); 1100 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1101 VT, Ops); 1102 } 1103 1104 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1105 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1106 "Unknown struct or array constant!"); 1107 1108 SmallVector<EVT, 4> ValueVTs; 1109 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1110 unsigned NumElts = ValueVTs.size(); 1111 if (NumElts == 0) 1112 return SDValue(); // empty struct 1113 SmallVector<SDValue, 4> Constants(NumElts); 1114 for (unsigned i = 0; i != NumElts; ++i) { 1115 EVT EltVT = ValueVTs[i]; 1116 if (isa<UndefValue>(C)) 1117 Constants[i] = DAG.getUNDEF(EltVT); 1118 else if (EltVT.isFloatingPoint()) 1119 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1120 else 1121 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1122 } 1123 1124 return DAG.getMergeValues(Constants, getCurSDLoc()); 1125 } 1126 1127 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1128 return DAG.getBlockAddress(BA, VT); 1129 1130 VectorType *VecTy = cast<VectorType>(V->getType()); 1131 unsigned NumElements = VecTy->getNumElements(); 1132 1133 // Now that we know the number and type of the elements, get that number of 1134 // elements into the Ops array based on what kind of constant it is. 1135 SmallVector<SDValue, 16> Ops; 1136 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1137 for (unsigned i = 0; i != NumElements; ++i) 1138 Ops.push_back(getValue(CV->getOperand(i))); 1139 } else { 1140 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1141 EVT EltVT = 1142 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1143 1144 SDValue Op; 1145 if (EltVT.isFloatingPoint()) 1146 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1147 else 1148 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1149 Ops.assign(NumElements, Op); 1150 } 1151 1152 // Create a BUILD_VECTOR node. 1153 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1154 } 1155 1156 // If this is a static alloca, generate it as the frameindex instead of 1157 // computation. 1158 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1159 DenseMap<const AllocaInst*, int>::iterator SI = 1160 FuncInfo.StaticAllocaMap.find(AI); 1161 if (SI != FuncInfo.StaticAllocaMap.end()) 1162 return DAG.getFrameIndex(SI->second, 1163 TLI.getPointerTy(DAG.getDataLayout())); 1164 } 1165 1166 // If this is an instruction which fast-isel has deferred, select it now. 1167 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1168 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1169 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1170 Inst->getType()); 1171 SDValue Chain = DAG.getEntryNode(); 1172 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1173 } 1174 1175 llvm_unreachable("Can't get register for value!"); 1176 } 1177 1178 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1179 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1180 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1181 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1182 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1183 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1184 if (IsMSVCCXX || IsCoreCLR) 1185 CatchPadMBB->setIsEHFuncletEntry(); 1186 1187 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1188 } 1189 1190 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1191 // Update machine-CFG edge. 1192 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1193 FuncInfo.MBB->addSuccessor(TargetMBB); 1194 1195 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1196 bool IsSEH = isAsynchronousEHPersonality(Pers); 1197 if (IsSEH) { 1198 // If this is not a fall-through branch or optimizations are switched off, 1199 // emit the branch. 1200 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1201 TM.getOptLevel() == CodeGenOpt::None) 1202 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1203 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1204 return; 1205 } 1206 1207 // Figure out the funclet membership for the catchret's successor. 1208 // This will be used by the FuncletLayout pass to determine how to order the 1209 // BB's. 1210 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 1211 const BasicBlock *SuccessorColor = EHInfo->CatchRetSuccessorColorMap[&I]; 1212 assert(SuccessorColor && "No parent funclet for catchret!"); 1213 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1214 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1215 1216 // Create the terminator node. 1217 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1218 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1219 DAG.getBasicBlock(SuccessorColorMBB)); 1220 DAG.setRoot(Ret); 1221 } 1222 1223 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1224 // Don't emit any special code for the cleanuppad instruction. It just marks 1225 // the start of a funclet. 1226 FuncInfo.MBB->setIsEHFuncletEntry(); 1227 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1228 } 1229 1230 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1231 /// many places it could ultimately go. In the IR, we have a single unwind 1232 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1233 /// This function skips over imaginary basic blocks that hold catchswitch 1234 /// instructions, and finds all the "real" machine 1235 /// basic block destinations. As those destinations may not be successors of 1236 /// EHPadBB, here we also calculate the edge probability to those destinations. 1237 /// The passed-in Prob is the edge probability to EHPadBB. 1238 static void findUnwindDestinations( 1239 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1240 BranchProbability Prob, 1241 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1242 &UnwindDests) { 1243 EHPersonality Personality = 1244 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1245 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1246 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1247 1248 while (EHPadBB) { 1249 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1250 BasicBlock *NewEHPadBB = nullptr; 1251 if (isa<LandingPadInst>(Pad)) { 1252 // Stop on landingpads. They are not funclets. 1253 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1254 break; 1255 } else if (isa<CleanupPadInst>(Pad)) { 1256 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1257 // personalities. 1258 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1259 UnwindDests.back().first->setIsEHFuncletEntry(); 1260 break; 1261 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1262 // Add the catchpad handlers to the possible destinations. 1263 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1264 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1265 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1266 if (IsMSVCCXX || IsCoreCLR) 1267 UnwindDests.back().first->setIsEHFuncletEntry(); 1268 } 1269 NewEHPadBB = CatchSwitch->getUnwindDest(); 1270 } else { 1271 continue; 1272 } 1273 1274 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1275 if (BPI && NewEHPadBB) 1276 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1277 EHPadBB = NewEHPadBB; 1278 } 1279 } 1280 1281 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1282 // Update successor info. 1283 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1284 auto UnwindDest = I.getUnwindDest(); 1285 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1286 BranchProbability UnwindDestProb = 1287 (BPI && UnwindDest) 1288 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1289 : BranchProbability::getZero(); 1290 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1291 for (auto &UnwindDest : UnwindDests) { 1292 UnwindDest.first->setIsEHPad(); 1293 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1294 } 1295 FuncInfo.MBB->normalizeSuccProbs(); 1296 1297 // Create the terminator node. 1298 SDValue Ret = 1299 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1300 DAG.setRoot(Ret); 1301 } 1302 1303 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1304 report_fatal_error("visitCatchSwitch not yet implemented!"); 1305 } 1306 1307 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1309 auto &DL = DAG.getDataLayout(); 1310 SDValue Chain = getControlRoot(); 1311 SmallVector<ISD::OutputArg, 8> Outs; 1312 SmallVector<SDValue, 8> OutVals; 1313 1314 if (!FuncInfo.CanLowerReturn) { 1315 unsigned DemoteReg = FuncInfo.DemoteRegister; 1316 const Function *F = I.getParent()->getParent(); 1317 1318 // Emit a store of the return value through the virtual register. 1319 // Leave Outs empty so that LowerReturn won't try to load return 1320 // registers the usual way. 1321 SmallVector<EVT, 1> PtrValueVTs; 1322 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1323 PtrValueVTs); 1324 1325 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1326 DemoteReg, PtrValueVTs[0]); 1327 SDValue RetOp = getValue(I.getOperand(0)); 1328 1329 SmallVector<EVT, 4> ValueVTs; 1330 SmallVector<uint64_t, 4> Offsets; 1331 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1332 unsigned NumValues = ValueVTs.size(); 1333 1334 SmallVector<SDValue, 4> Chains(NumValues); 1335 for (unsigned i = 0; i != NumValues; ++i) { 1336 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1337 RetPtr.getValueType(), RetPtr, 1338 DAG.getIntPtrConstant(Offsets[i], 1339 getCurSDLoc())); 1340 Chains[i] = 1341 DAG.getStore(Chain, getCurSDLoc(), 1342 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1343 // FIXME: better loc info would be nice. 1344 Add, MachinePointerInfo(), false, false, 0); 1345 } 1346 1347 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1348 MVT::Other, Chains); 1349 } else if (I.getNumOperands() != 0) { 1350 SmallVector<EVT, 4> ValueVTs; 1351 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1352 unsigned NumValues = ValueVTs.size(); 1353 if (NumValues) { 1354 SDValue RetOp = getValue(I.getOperand(0)); 1355 1356 const Function *F = I.getParent()->getParent(); 1357 1358 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1359 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1360 Attribute::SExt)) 1361 ExtendKind = ISD::SIGN_EXTEND; 1362 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1363 Attribute::ZExt)) 1364 ExtendKind = ISD::ZERO_EXTEND; 1365 1366 LLVMContext &Context = F->getContext(); 1367 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1368 Attribute::InReg); 1369 1370 for (unsigned j = 0; j != NumValues; ++j) { 1371 EVT VT = ValueVTs[j]; 1372 1373 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1374 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1375 1376 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1377 MVT PartVT = TLI.getRegisterType(Context, VT); 1378 SmallVector<SDValue, 4> Parts(NumParts); 1379 getCopyToParts(DAG, getCurSDLoc(), 1380 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1381 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1382 1383 // 'inreg' on function refers to return value 1384 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1385 if (RetInReg) 1386 Flags.setInReg(); 1387 1388 // Propagate extension type if any 1389 if (ExtendKind == ISD::SIGN_EXTEND) 1390 Flags.setSExt(); 1391 else if (ExtendKind == ISD::ZERO_EXTEND) 1392 Flags.setZExt(); 1393 1394 for (unsigned i = 0; i < NumParts; ++i) { 1395 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1396 VT, /*isfixed=*/true, 0, 0)); 1397 OutVals.push_back(Parts[i]); 1398 } 1399 } 1400 } 1401 } 1402 1403 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1404 CallingConv::ID CallConv = 1405 DAG.getMachineFunction().getFunction()->getCallingConv(); 1406 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1407 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1408 1409 // Verify that the target's LowerReturn behaved as expected. 1410 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1411 "LowerReturn didn't return a valid chain!"); 1412 1413 // Update the DAG with the new chain value resulting from return lowering. 1414 DAG.setRoot(Chain); 1415 } 1416 1417 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1418 /// created for it, emit nodes to copy the value into the virtual 1419 /// registers. 1420 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1421 // Skip empty types 1422 if (V->getType()->isEmptyTy()) 1423 return; 1424 1425 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1426 if (VMI != FuncInfo.ValueMap.end()) { 1427 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1428 CopyValueToVirtualRegister(V, VMI->second); 1429 } 1430 } 1431 1432 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1433 /// the current basic block, add it to ValueMap now so that we'll get a 1434 /// CopyTo/FromReg. 1435 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1436 // No need to export constants. 1437 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1438 1439 // Already exported? 1440 if (FuncInfo.isExportedInst(V)) return; 1441 1442 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1443 CopyValueToVirtualRegister(V, Reg); 1444 } 1445 1446 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1447 const BasicBlock *FromBB) { 1448 // The operands of the setcc have to be in this block. We don't know 1449 // how to export them from some other block. 1450 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1451 // Can export from current BB. 1452 if (VI->getParent() == FromBB) 1453 return true; 1454 1455 // Is already exported, noop. 1456 return FuncInfo.isExportedInst(V); 1457 } 1458 1459 // If this is an argument, we can export it if the BB is the entry block or 1460 // if it is already exported. 1461 if (isa<Argument>(V)) { 1462 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1463 return true; 1464 1465 // Otherwise, can only export this if it is already exported. 1466 return FuncInfo.isExportedInst(V); 1467 } 1468 1469 // Otherwise, constants can always be exported. 1470 return true; 1471 } 1472 1473 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1474 BranchProbability 1475 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1476 const MachineBasicBlock *Dst) const { 1477 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1478 const BasicBlock *SrcBB = Src->getBasicBlock(); 1479 const BasicBlock *DstBB = Dst->getBasicBlock(); 1480 if (!BPI) { 1481 // If BPI is not available, set the default probability as 1 / N, where N is 1482 // the number of successors. 1483 auto SuccSize = std::max<uint32_t>( 1484 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1485 return BranchProbability(1, SuccSize); 1486 } 1487 return BPI->getEdgeProbability(SrcBB, DstBB); 1488 } 1489 1490 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1491 MachineBasicBlock *Dst, 1492 BranchProbability Prob) { 1493 if (!FuncInfo.BPI) 1494 Src->addSuccessorWithoutProb(Dst); 1495 else { 1496 if (Prob.isUnknown()) 1497 Prob = getEdgeProbability(Src, Dst); 1498 Src->addSuccessor(Dst, Prob); 1499 } 1500 } 1501 1502 static bool InBlock(const Value *V, const BasicBlock *BB) { 1503 if (const Instruction *I = dyn_cast<Instruction>(V)) 1504 return I->getParent() == BB; 1505 return true; 1506 } 1507 1508 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1509 /// This function emits a branch and is used at the leaves of an OR or an 1510 /// AND operator tree. 1511 /// 1512 void 1513 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1514 MachineBasicBlock *TBB, 1515 MachineBasicBlock *FBB, 1516 MachineBasicBlock *CurBB, 1517 MachineBasicBlock *SwitchBB, 1518 BranchProbability TProb, 1519 BranchProbability FProb) { 1520 const BasicBlock *BB = CurBB->getBasicBlock(); 1521 1522 // If the leaf of the tree is a comparison, merge the condition into 1523 // the caseblock. 1524 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1525 // The operands of the cmp have to be in this block. We don't know 1526 // how to export them from some other block. If this is the first block 1527 // of the sequence, no exporting is needed. 1528 if (CurBB == SwitchBB || 1529 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1530 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1531 ISD::CondCode Condition; 1532 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1533 Condition = getICmpCondCode(IC->getPredicate()); 1534 } else { 1535 const FCmpInst *FC = cast<FCmpInst>(Cond); 1536 Condition = getFCmpCondCode(FC->getPredicate()); 1537 if (TM.Options.NoNaNsFPMath) 1538 Condition = getFCmpCodeWithoutNaN(Condition); 1539 } 1540 1541 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1542 TBB, FBB, CurBB, TProb, FProb); 1543 SwitchCases.push_back(CB); 1544 return; 1545 } 1546 } 1547 1548 // Create a CaseBlock record representing this branch. 1549 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1550 nullptr, TBB, FBB, CurBB, TProb, FProb); 1551 SwitchCases.push_back(CB); 1552 } 1553 1554 /// FindMergedConditions - If Cond is an expression like 1555 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1556 MachineBasicBlock *TBB, 1557 MachineBasicBlock *FBB, 1558 MachineBasicBlock *CurBB, 1559 MachineBasicBlock *SwitchBB, 1560 Instruction::BinaryOps Opc, 1561 BranchProbability TProb, 1562 BranchProbability FProb) { 1563 // If this node is not part of the or/and tree, emit it as a branch. 1564 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1565 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1566 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1567 BOp->getParent() != CurBB->getBasicBlock() || 1568 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1569 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1570 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1571 TProb, FProb); 1572 return; 1573 } 1574 1575 // Create TmpBB after CurBB. 1576 MachineFunction::iterator BBI(CurBB); 1577 MachineFunction &MF = DAG.getMachineFunction(); 1578 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1579 CurBB->getParent()->insert(++BBI, TmpBB); 1580 1581 if (Opc == Instruction::Or) { 1582 // Codegen X | Y as: 1583 // BB1: 1584 // jmp_if_X TBB 1585 // jmp TmpBB 1586 // TmpBB: 1587 // jmp_if_Y TBB 1588 // jmp FBB 1589 // 1590 1591 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1592 // The requirement is that 1593 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1594 // = TrueProb for original BB. 1595 // Assuming the original probabilities are A and B, one choice is to set 1596 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1597 // A/(1+B) and 2B/(1+B). This choice assumes that 1598 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1599 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1600 // TmpBB, but the math is more complicated. 1601 1602 auto NewTrueProb = TProb / 2; 1603 auto NewFalseProb = TProb / 2 + FProb; 1604 // Emit the LHS condition. 1605 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1606 NewTrueProb, NewFalseProb); 1607 1608 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1609 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1610 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1611 // Emit the RHS condition into TmpBB. 1612 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1613 Probs[0], Probs[1]); 1614 } else { 1615 assert(Opc == Instruction::And && "Unknown merge op!"); 1616 // Codegen X & Y as: 1617 // BB1: 1618 // jmp_if_X TmpBB 1619 // jmp FBB 1620 // TmpBB: 1621 // jmp_if_Y TBB 1622 // jmp FBB 1623 // 1624 // This requires creation of TmpBB after CurBB. 1625 1626 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1627 // The requirement is that 1628 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1629 // = FalseProb for original BB. 1630 // Assuming the original probabilities are A and B, one choice is to set 1631 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1632 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1633 // TrueProb for BB1 * FalseProb for TmpBB. 1634 1635 auto NewTrueProb = TProb + FProb / 2; 1636 auto NewFalseProb = FProb / 2; 1637 // Emit the LHS condition. 1638 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1639 NewTrueProb, NewFalseProb); 1640 1641 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1642 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1643 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1644 // Emit the RHS condition into TmpBB. 1645 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1646 Probs[0], Probs[1]); 1647 } 1648 } 1649 1650 /// If the set of cases should be emitted as a series of branches, return true. 1651 /// If we should emit this as a bunch of and/or'd together conditions, return 1652 /// false. 1653 bool 1654 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1655 if (Cases.size() != 2) return true; 1656 1657 // If this is two comparisons of the same values or'd or and'd together, they 1658 // will get folded into a single comparison, so don't emit two blocks. 1659 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1660 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1661 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1662 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1663 return false; 1664 } 1665 1666 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1667 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1668 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1669 Cases[0].CC == Cases[1].CC && 1670 isa<Constant>(Cases[0].CmpRHS) && 1671 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1672 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1673 return false; 1674 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1675 return false; 1676 } 1677 1678 return true; 1679 } 1680 1681 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1682 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1683 1684 // Update machine-CFG edges. 1685 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1686 1687 if (I.isUnconditional()) { 1688 // Update machine-CFG edges. 1689 BrMBB->addSuccessor(Succ0MBB); 1690 1691 // If this is not a fall-through branch or optimizations are switched off, 1692 // emit the branch. 1693 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1694 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1695 MVT::Other, getControlRoot(), 1696 DAG.getBasicBlock(Succ0MBB))); 1697 1698 return; 1699 } 1700 1701 // If this condition is one of the special cases we handle, do special stuff 1702 // now. 1703 const Value *CondVal = I.getCondition(); 1704 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1705 1706 // If this is a series of conditions that are or'd or and'd together, emit 1707 // this as a sequence of branches instead of setcc's with and/or operations. 1708 // As long as jumps are not expensive, this should improve performance. 1709 // For example, instead of something like: 1710 // cmp A, B 1711 // C = seteq 1712 // cmp D, E 1713 // F = setle 1714 // or C, F 1715 // jnz foo 1716 // Emit: 1717 // cmp A, B 1718 // je foo 1719 // cmp D, E 1720 // jle foo 1721 // 1722 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1723 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1724 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1725 !I.getMetadata(LLVMContext::MD_unpredictable) && 1726 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1727 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1728 Opcode, 1729 getEdgeProbability(BrMBB, Succ0MBB), 1730 getEdgeProbability(BrMBB, Succ1MBB)); 1731 // If the compares in later blocks need to use values not currently 1732 // exported from this block, export them now. This block should always 1733 // be the first entry. 1734 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1735 1736 // Allow some cases to be rejected. 1737 if (ShouldEmitAsBranches(SwitchCases)) { 1738 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1739 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1740 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1741 } 1742 1743 // Emit the branch for this block. 1744 visitSwitchCase(SwitchCases[0], BrMBB); 1745 SwitchCases.erase(SwitchCases.begin()); 1746 return; 1747 } 1748 1749 // Okay, we decided not to do this, remove any inserted MBB's and clear 1750 // SwitchCases. 1751 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1752 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1753 1754 SwitchCases.clear(); 1755 } 1756 } 1757 1758 // Create a CaseBlock record representing this branch. 1759 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1760 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1761 1762 // Use visitSwitchCase to actually insert the fast branch sequence for this 1763 // cond branch. 1764 visitSwitchCase(CB, BrMBB); 1765 } 1766 1767 /// visitSwitchCase - Emits the necessary code to represent a single node in 1768 /// the binary search tree resulting from lowering a switch instruction. 1769 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1770 MachineBasicBlock *SwitchBB) { 1771 SDValue Cond; 1772 SDValue CondLHS = getValue(CB.CmpLHS); 1773 SDLoc dl = getCurSDLoc(); 1774 1775 // Build the setcc now. 1776 if (!CB.CmpMHS) { 1777 // Fold "(X == true)" to X and "(X == false)" to !X to 1778 // handle common cases produced by branch lowering. 1779 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1780 CB.CC == ISD::SETEQ) 1781 Cond = CondLHS; 1782 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1783 CB.CC == ISD::SETEQ) { 1784 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1785 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1786 } else 1787 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1788 } else { 1789 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1790 1791 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1792 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1793 1794 SDValue CmpOp = getValue(CB.CmpMHS); 1795 EVT VT = CmpOp.getValueType(); 1796 1797 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1798 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1799 ISD::SETLE); 1800 } else { 1801 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1802 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1803 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1804 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1805 } 1806 } 1807 1808 // Update successor info 1809 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1810 // TrueBB and FalseBB are always different unless the incoming IR is 1811 // degenerate. This only happens when running llc on weird IR. 1812 if (CB.TrueBB != CB.FalseBB) 1813 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1814 SwitchBB->normalizeSuccProbs(); 1815 1816 // If the lhs block is the next block, invert the condition so that we can 1817 // fall through to the lhs instead of the rhs block. 1818 if (CB.TrueBB == NextBlock(SwitchBB)) { 1819 std::swap(CB.TrueBB, CB.FalseBB); 1820 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1821 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1822 } 1823 1824 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1825 MVT::Other, getControlRoot(), Cond, 1826 DAG.getBasicBlock(CB.TrueBB)); 1827 1828 // Insert the false branch. Do this even if it's a fall through branch, 1829 // this makes it easier to do DAG optimizations which require inverting 1830 // the branch condition. 1831 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1832 DAG.getBasicBlock(CB.FalseBB)); 1833 1834 DAG.setRoot(BrCond); 1835 } 1836 1837 /// visitJumpTable - Emit JumpTable node in the current MBB 1838 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1839 // Emit the code for the jump table 1840 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1841 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1842 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1843 JT.Reg, PTy); 1844 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1845 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1846 MVT::Other, Index.getValue(1), 1847 Table, Index); 1848 DAG.setRoot(BrJumpTable); 1849 } 1850 1851 /// visitJumpTableHeader - This function emits necessary code to produce index 1852 /// in the JumpTable from switch case. 1853 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1854 JumpTableHeader &JTH, 1855 MachineBasicBlock *SwitchBB) { 1856 SDLoc dl = getCurSDLoc(); 1857 1858 // Subtract the lowest switch case value from the value being switched on and 1859 // conditional branch to default mbb if the result is greater than the 1860 // difference between smallest and largest cases. 1861 SDValue SwitchOp = getValue(JTH.SValue); 1862 EVT VT = SwitchOp.getValueType(); 1863 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1864 DAG.getConstant(JTH.First, dl, VT)); 1865 1866 // The SDNode we just created, which holds the value being switched on minus 1867 // the smallest case value, needs to be copied to a virtual register so it 1868 // can be used as an index into the jump table in a subsequent basic block. 1869 // This value may be smaller or larger than the target's pointer type, and 1870 // therefore require extension or truncating. 1871 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1872 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1873 1874 unsigned JumpTableReg = 1875 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1876 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1877 JumpTableReg, SwitchOp); 1878 JT.Reg = JumpTableReg; 1879 1880 // Emit the range check for the jump table, and branch to the default block 1881 // for the switch statement if the value being switched on exceeds the largest 1882 // case in the switch. 1883 SDValue CMP = DAG.getSetCC( 1884 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1885 Sub.getValueType()), 1886 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1887 1888 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1889 MVT::Other, CopyTo, CMP, 1890 DAG.getBasicBlock(JT.Default)); 1891 1892 // Avoid emitting unnecessary branches to the next block. 1893 if (JT.MBB != NextBlock(SwitchBB)) 1894 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1895 DAG.getBasicBlock(JT.MBB)); 1896 1897 DAG.setRoot(BrCond); 1898 } 1899 1900 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1901 /// tail spliced into a stack protector check success bb. 1902 /// 1903 /// For a high level explanation of how this fits into the stack protector 1904 /// generation see the comment on the declaration of class 1905 /// StackProtectorDescriptor. 1906 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1907 MachineBasicBlock *ParentBB) { 1908 1909 // First create the loads to the guard/stack slot for the comparison. 1910 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1911 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1912 1913 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1914 int FI = MFI->getStackProtectorIndex(); 1915 1916 const Value *IRGuard = SPD.getGuard(); 1917 SDValue GuardPtr = getValue(IRGuard); 1918 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1919 1920 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1921 1922 SDValue Guard; 1923 SDLoc dl = getCurSDLoc(); 1924 1925 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1926 // guard value from the virtual register holding the value. Otherwise, emit a 1927 // volatile load to retrieve the stack guard value. 1928 unsigned GuardReg = SPD.getGuardReg(); 1929 1930 if (GuardReg && TLI.useLoadStackGuardNode()) 1931 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1932 PtrTy); 1933 else 1934 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1935 GuardPtr, MachinePointerInfo(IRGuard, 0), 1936 true, false, false, Align); 1937 1938 SDValue StackSlot = DAG.getLoad( 1939 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1940 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1941 false, false, Align); 1942 1943 // Perform the comparison via a subtract/getsetcc. 1944 EVT VT = Guard.getValueType(); 1945 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1946 1947 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1948 *DAG.getContext(), 1949 Sub.getValueType()), 1950 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1951 1952 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1953 // branch to failure MBB. 1954 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1955 MVT::Other, StackSlot.getOperand(0), 1956 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1957 // Otherwise branch to success MBB. 1958 SDValue Br = DAG.getNode(ISD::BR, dl, 1959 MVT::Other, BrCond, 1960 DAG.getBasicBlock(SPD.getSuccessMBB())); 1961 1962 DAG.setRoot(Br); 1963 } 1964 1965 /// Codegen the failure basic block for a stack protector check. 1966 /// 1967 /// A failure stack protector machine basic block consists simply of a call to 1968 /// __stack_chk_fail(). 1969 /// 1970 /// For a high level explanation of how this fits into the stack protector 1971 /// generation see the comment on the declaration of class 1972 /// StackProtectorDescriptor. 1973 void 1974 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1975 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1976 SDValue Chain = 1977 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1978 None, false, getCurSDLoc(), false, false).second; 1979 DAG.setRoot(Chain); 1980 } 1981 1982 /// visitBitTestHeader - This function emits necessary code to produce value 1983 /// suitable for "bit tests" 1984 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1985 MachineBasicBlock *SwitchBB) { 1986 SDLoc dl = getCurSDLoc(); 1987 1988 // Subtract the minimum value 1989 SDValue SwitchOp = getValue(B.SValue); 1990 EVT VT = SwitchOp.getValueType(); 1991 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1992 DAG.getConstant(B.First, dl, VT)); 1993 1994 // Check range 1995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1996 SDValue RangeCmp = DAG.getSetCC( 1997 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1998 Sub.getValueType()), 1999 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2000 2001 // Determine the type of the test operands. 2002 bool UsePtrType = false; 2003 if (!TLI.isTypeLegal(VT)) 2004 UsePtrType = true; 2005 else { 2006 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2007 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2008 // Switch table case range are encoded into series of masks. 2009 // Just use pointer type, it's guaranteed to fit. 2010 UsePtrType = true; 2011 break; 2012 } 2013 } 2014 if (UsePtrType) { 2015 VT = TLI.getPointerTy(DAG.getDataLayout()); 2016 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2017 } 2018 2019 B.RegVT = VT.getSimpleVT(); 2020 B.Reg = FuncInfo.CreateReg(B.RegVT); 2021 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2022 2023 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2024 2025 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2026 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2027 SwitchBB->normalizeSuccProbs(); 2028 2029 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2030 MVT::Other, CopyTo, RangeCmp, 2031 DAG.getBasicBlock(B.Default)); 2032 2033 // Avoid emitting unnecessary branches to the next block. 2034 if (MBB != NextBlock(SwitchBB)) 2035 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2036 DAG.getBasicBlock(MBB)); 2037 2038 DAG.setRoot(BrRange); 2039 } 2040 2041 /// visitBitTestCase - this function produces one "bit test" 2042 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2043 MachineBasicBlock* NextMBB, 2044 BranchProbability BranchProbToNext, 2045 unsigned Reg, 2046 BitTestCase &B, 2047 MachineBasicBlock *SwitchBB) { 2048 SDLoc dl = getCurSDLoc(); 2049 MVT VT = BB.RegVT; 2050 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2051 SDValue Cmp; 2052 unsigned PopCount = countPopulation(B.Mask); 2053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2054 if (PopCount == 1) { 2055 // Testing for a single bit; just compare the shift count with what it 2056 // would need to be to shift a 1 bit in that position. 2057 Cmp = DAG.getSetCC( 2058 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2059 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2060 ISD::SETEQ); 2061 } else if (PopCount == BB.Range) { 2062 // There is only one zero bit in the range, test for it directly. 2063 Cmp = DAG.getSetCC( 2064 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2065 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2066 ISD::SETNE); 2067 } else { 2068 // Make desired shift 2069 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2070 DAG.getConstant(1, dl, VT), ShiftOp); 2071 2072 // Emit bit tests and jumps 2073 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2074 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2075 Cmp = DAG.getSetCC( 2076 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2077 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2078 } 2079 2080 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2081 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2082 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2083 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2084 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2085 // one as they are relative probabilities (and thus work more like weights), 2086 // and hence we need to normalize them to let the sum of them become one. 2087 SwitchBB->normalizeSuccProbs(); 2088 2089 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2090 MVT::Other, getControlRoot(), 2091 Cmp, DAG.getBasicBlock(B.TargetBB)); 2092 2093 // Avoid emitting unnecessary branches to the next block. 2094 if (NextMBB != NextBlock(SwitchBB)) 2095 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2096 DAG.getBasicBlock(NextMBB)); 2097 2098 DAG.setRoot(BrAnd); 2099 } 2100 2101 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2102 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2103 2104 // Retrieve successors. Look through artificial IR level blocks like 2105 // catchswitch for successors. 2106 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2107 const BasicBlock *EHPadBB = I.getSuccessor(1); 2108 2109 const Value *Callee(I.getCalledValue()); 2110 const Function *Fn = dyn_cast<Function>(Callee); 2111 if (isa<InlineAsm>(Callee)) 2112 visitInlineAsm(&I); 2113 else if (Fn && Fn->isIntrinsic()) { 2114 switch (Fn->getIntrinsicID()) { 2115 default: 2116 llvm_unreachable("Cannot invoke this intrinsic"); 2117 case Intrinsic::donothing: 2118 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2119 break; 2120 case Intrinsic::experimental_patchpoint_void: 2121 case Intrinsic::experimental_patchpoint_i64: 2122 visitPatchpoint(&I, EHPadBB); 2123 break; 2124 case Intrinsic::experimental_gc_statepoint: 2125 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2126 break; 2127 } 2128 } else 2129 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2130 2131 // If the value of the invoke is used outside of its defining block, make it 2132 // available as a virtual register. 2133 // We already took care of the exported value for the statepoint instruction 2134 // during call to the LowerStatepoint. 2135 if (!isStatepoint(I)) { 2136 CopyToExportRegsIfNeeded(&I); 2137 } 2138 2139 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2140 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2141 BranchProbability EHPadBBProb = 2142 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2143 : BranchProbability::getZero(); 2144 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2145 2146 // Update successor info. 2147 addSuccessorWithProb(InvokeMBB, Return); 2148 for (auto &UnwindDest : UnwindDests) { 2149 UnwindDest.first->setIsEHPad(); 2150 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2151 } 2152 InvokeMBB->normalizeSuccProbs(); 2153 2154 // Drop into normal successor. 2155 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2156 MVT::Other, getControlRoot(), 2157 DAG.getBasicBlock(Return))); 2158 } 2159 2160 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2161 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2162 } 2163 2164 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2165 assert(FuncInfo.MBB->isEHPad() && 2166 "Call to landingpad not in landing pad!"); 2167 2168 MachineBasicBlock *MBB = FuncInfo.MBB; 2169 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2170 AddLandingPadInfo(LP, MMI, MBB); 2171 2172 // If there aren't registers to copy the values into (e.g., during SjLj 2173 // exceptions), then don't bother to create these DAG nodes. 2174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2175 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2176 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2177 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2178 return; 2179 2180 // If landingpad's return type is token type, we don't create DAG nodes 2181 // for its exception pointer and selector value. The extraction of exception 2182 // pointer or selector value from token type landingpads is not currently 2183 // supported. 2184 if (LP.getType()->isTokenTy()) 2185 return; 2186 2187 SmallVector<EVT, 2> ValueVTs; 2188 SDLoc dl = getCurSDLoc(); 2189 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2190 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2191 2192 // Get the two live-in registers as SDValues. The physregs have already been 2193 // copied into virtual registers. 2194 SDValue Ops[2]; 2195 if (FuncInfo.ExceptionPointerVirtReg) { 2196 Ops[0] = DAG.getZExtOrTrunc( 2197 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2198 FuncInfo.ExceptionPointerVirtReg, 2199 TLI.getPointerTy(DAG.getDataLayout())), 2200 dl, ValueVTs[0]); 2201 } else { 2202 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2203 } 2204 Ops[1] = DAG.getZExtOrTrunc( 2205 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2206 FuncInfo.ExceptionSelectorVirtReg, 2207 TLI.getPointerTy(DAG.getDataLayout())), 2208 dl, ValueVTs[1]); 2209 2210 // Merge into one. 2211 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2212 DAG.getVTList(ValueVTs), Ops); 2213 setValue(&LP, Res); 2214 } 2215 2216 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2217 #ifndef NDEBUG 2218 for (const CaseCluster &CC : Clusters) 2219 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2220 #endif 2221 2222 std::sort(Clusters.begin(), Clusters.end(), 2223 [](const CaseCluster &a, const CaseCluster &b) { 2224 return a.Low->getValue().slt(b.Low->getValue()); 2225 }); 2226 2227 // Merge adjacent clusters with the same destination. 2228 const unsigned N = Clusters.size(); 2229 unsigned DstIndex = 0; 2230 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2231 CaseCluster &CC = Clusters[SrcIndex]; 2232 const ConstantInt *CaseVal = CC.Low; 2233 MachineBasicBlock *Succ = CC.MBB; 2234 2235 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2236 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2237 // If this case has the same successor and is a neighbour, merge it into 2238 // the previous cluster. 2239 Clusters[DstIndex - 1].High = CaseVal; 2240 Clusters[DstIndex - 1].Prob += CC.Prob; 2241 } else { 2242 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2243 sizeof(Clusters[SrcIndex])); 2244 } 2245 } 2246 Clusters.resize(DstIndex); 2247 } 2248 2249 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2250 MachineBasicBlock *Last) { 2251 // Update JTCases. 2252 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2253 if (JTCases[i].first.HeaderBB == First) 2254 JTCases[i].first.HeaderBB = Last; 2255 2256 // Update BitTestCases. 2257 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2258 if (BitTestCases[i].Parent == First) 2259 BitTestCases[i].Parent = Last; 2260 } 2261 2262 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2263 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2264 2265 // Update machine-CFG edges with unique successors. 2266 SmallSet<BasicBlock*, 32> Done; 2267 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2268 BasicBlock *BB = I.getSuccessor(i); 2269 bool Inserted = Done.insert(BB).second; 2270 if (!Inserted) 2271 continue; 2272 2273 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2274 addSuccessorWithProb(IndirectBrMBB, Succ); 2275 } 2276 IndirectBrMBB->normalizeSuccProbs(); 2277 2278 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2279 MVT::Other, getControlRoot(), 2280 getValue(I.getAddress()))); 2281 } 2282 2283 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2284 if (DAG.getTarget().Options.TrapUnreachable) 2285 DAG.setRoot( 2286 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2287 } 2288 2289 void SelectionDAGBuilder::visitFSub(const User &I) { 2290 // -0.0 - X --> fneg 2291 Type *Ty = I.getType(); 2292 if (isa<Constant>(I.getOperand(0)) && 2293 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2294 SDValue Op2 = getValue(I.getOperand(1)); 2295 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2296 Op2.getValueType(), Op2)); 2297 return; 2298 } 2299 2300 visitBinary(I, ISD::FSUB); 2301 } 2302 2303 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2304 SDValue Op1 = getValue(I.getOperand(0)); 2305 SDValue Op2 = getValue(I.getOperand(1)); 2306 2307 bool nuw = false; 2308 bool nsw = false; 2309 bool exact = false; 2310 FastMathFlags FMF; 2311 2312 if (const OverflowingBinaryOperator *OFBinOp = 2313 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2314 nuw = OFBinOp->hasNoUnsignedWrap(); 2315 nsw = OFBinOp->hasNoSignedWrap(); 2316 } 2317 if (const PossiblyExactOperator *ExactOp = 2318 dyn_cast<const PossiblyExactOperator>(&I)) 2319 exact = ExactOp->isExact(); 2320 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2321 FMF = FPOp->getFastMathFlags(); 2322 2323 SDNodeFlags Flags; 2324 Flags.setExact(exact); 2325 Flags.setNoSignedWrap(nsw); 2326 Flags.setNoUnsignedWrap(nuw); 2327 if (EnableFMFInDAG) { 2328 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2329 Flags.setNoInfs(FMF.noInfs()); 2330 Flags.setNoNaNs(FMF.noNaNs()); 2331 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2332 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2333 } 2334 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2335 Op1, Op2, &Flags); 2336 setValue(&I, BinNodeValue); 2337 } 2338 2339 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2340 SDValue Op1 = getValue(I.getOperand(0)); 2341 SDValue Op2 = getValue(I.getOperand(1)); 2342 2343 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2344 Op2.getValueType(), DAG.getDataLayout()); 2345 2346 // Coerce the shift amount to the right type if we can. 2347 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2348 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2349 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2350 SDLoc DL = getCurSDLoc(); 2351 2352 // If the operand is smaller than the shift count type, promote it. 2353 if (ShiftSize > Op2Size) 2354 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2355 2356 // If the operand is larger than the shift count type but the shift 2357 // count type has enough bits to represent any shift value, truncate 2358 // it now. This is a common case and it exposes the truncate to 2359 // optimization early. 2360 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2361 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2362 // Otherwise we'll need to temporarily settle for some other convenient 2363 // type. Type legalization will make adjustments once the shiftee is split. 2364 else 2365 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2366 } 2367 2368 bool nuw = false; 2369 bool nsw = false; 2370 bool exact = false; 2371 2372 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2373 2374 if (const OverflowingBinaryOperator *OFBinOp = 2375 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2376 nuw = OFBinOp->hasNoUnsignedWrap(); 2377 nsw = OFBinOp->hasNoSignedWrap(); 2378 } 2379 if (const PossiblyExactOperator *ExactOp = 2380 dyn_cast<const PossiblyExactOperator>(&I)) 2381 exact = ExactOp->isExact(); 2382 } 2383 SDNodeFlags Flags; 2384 Flags.setExact(exact); 2385 Flags.setNoSignedWrap(nsw); 2386 Flags.setNoUnsignedWrap(nuw); 2387 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2388 &Flags); 2389 setValue(&I, Res); 2390 } 2391 2392 void SelectionDAGBuilder::visitSDiv(const User &I) { 2393 SDValue Op1 = getValue(I.getOperand(0)); 2394 SDValue Op2 = getValue(I.getOperand(1)); 2395 2396 SDNodeFlags Flags; 2397 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2398 cast<PossiblyExactOperator>(&I)->isExact()); 2399 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2400 Op2, &Flags)); 2401 } 2402 2403 void SelectionDAGBuilder::visitICmp(const User &I) { 2404 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2405 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2406 predicate = IC->getPredicate(); 2407 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2408 predicate = ICmpInst::Predicate(IC->getPredicate()); 2409 SDValue Op1 = getValue(I.getOperand(0)); 2410 SDValue Op2 = getValue(I.getOperand(1)); 2411 ISD::CondCode Opcode = getICmpCondCode(predicate); 2412 2413 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2414 I.getType()); 2415 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2416 } 2417 2418 void SelectionDAGBuilder::visitFCmp(const User &I) { 2419 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2420 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2421 predicate = FC->getPredicate(); 2422 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2423 predicate = FCmpInst::Predicate(FC->getPredicate()); 2424 SDValue Op1 = getValue(I.getOperand(0)); 2425 SDValue Op2 = getValue(I.getOperand(1)); 2426 ISD::CondCode Condition = getFCmpCondCode(predicate); 2427 2428 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2429 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2430 // further optimization, but currently FMF is only applicable to binary nodes. 2431 if (TM.Options.NoNaNsFPMath) 2432 Condition = getFCmpCodeWithoutNaN(Condition); 2433 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2434 I.getType()); 2435 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2436 } 2437 2438 void SelectionDAGBuilder::visitSelect(const User &I) { 2439 SmallVector<EVT, 4> ValueVTs; 2440 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2441 ValueVTs); 2442 unsigned NumValues = ValueVTs.size(); 2443 if (NumValues == 0) return; 2444 2445 SmallVector<SDValue, 4> Values(NumValues); 2446 SDValue Cond = getValue(I.getOperand(0)); 2447 SDValue LHSVal = getValue(I.getOperand(1)); 2448 SDValue RHSVal = getValue(I.getOperand(2)); 2449 auto BaseOps = {Cond}; 2450 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2451 ISD::VSELECT : ISD::SELECT; 2452 2453 // Min/max matching is only viable if all output VTs are the same. 2454 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2455 EVT VT = ValueVTs[0]; 2456 LLVMContext &Ctx = *DAG.getContext(); 2457 auto &TLI = DAG.getTargetLoweringInfo(); 2458 2459 // We care about the legality of the operation after it has been type 2460 // legalized. 2461 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2462 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2463 VT = TLI.getTypeToTransformTo(Ctx, VT); 2464 2465 // If the vselect is legal, assume we want to leave this as a vector setcc + 2466 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2467 // min/max is legal on the scalar type. 2468 bool UseScalarMinMax = VT.isVector() && 2469 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2470 2471 Value *LHS, *RHS; 2472 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2473 ISD::NodeType Opc = ISD::DELETED_NODE; 2474 switch (SPR.Flavor) { 2475 case SPF_UMAX: Opc = ISD::UMAX; break; 2476 case SPF_UMIN: Opc = ISD::UMIN; break; 2477 case SPF_SMAX: Opc = ISD::SMAX; break; 2478 case SPF_SMIN: Opc = ISD::SMIN; break; 2479 case SPF_FMINNUM: 2480 switch (SPR.NaNBehavior) { 2481 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2482 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2483 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2484 case SPNB_RETURNS_ANY: { 2485 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2486 Opc = ISD::FMINNUM; 2487 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2488 Opc = ISD::FMINNAN; 2489 else if (UseScalarMinMax) 2490 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2491 ISD::FMINNUM : ISD::FMINNAN; 2492 break; 2493 } 2494 } 2495 break; 2496 case SPF_FMAXNUM: 2497 switch (SPR.NaNBehavior) { 2498 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2499 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2500 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2501 case SPNB_RETURNS_ANY: 2502 2503 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2504 Opc = ISD::FMAXNUM; 2505 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2506 Opc = ISD::FMAXNAN; 2507 else if (UseScalarMinMax) 2508 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2509 ISD::FMAXNUM : ISD::FMAXNAN; 2510 break; 2511 } 2512 break; 2513 default: break; 2514 } 2515 2516 if (Opc != ISD::DELETED_NODE && 2517 (TLI.isOperationLegalOrCustom(Opc, VT) || 2518 (UseScalarMinMax && 2519 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2520 // If the underlying comparison instruction is used by any other 2521 // instruction, the consumed instructions won't be destroyed, so it is 2522 // not profitable to convert to a min/max. 2523 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2524 OpCode = Opc; 2525 LHSVal = getValue(LHS); 2526 RHSVal = getValue(RHS); 2527 BaseOps = {}; 2528 } 2529 } 2530 2531 for (unsigned i = 0; i != NumValues; ++i) { 2532 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2533 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2534 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2535 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2536 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2537 Ops); 2538 } 2539 2540 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2541 DAG.getVTList(ValueVTs), Values)); 2542 } 2543 2544 void SelectionDAGBuilder::visitTrunc(const User &I) { 2545 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2546 SDValue N = getValue(I.getOperand(0)); 2547 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2548 I.getType()); 2549 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2550 } 2551 2552 void SelectionDAGBuilder::visitZExt(const User &I) { 2553 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2554 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2555 SDValue N = getValue(I.getOperand(0)); 2556 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2557 I.getType()); 2558 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2559 } 2560 2561 void SelectionDAGBuilder::visitSExt(const User &I) { 2562 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2563 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2564 SDValue N = getValue(I.getOperand(0)); 2565 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2566 I.getType()); 2567 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2568 } 2569 2570 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2571 // FPTrunc is never a no-op cast, no need to check 2572 SDValue N = getValue(I.getOperand(0)); 2573 SDLoc dl = getCurSDLoc(); 2574 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2575 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2576 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2577 DAG.getTargetConstant( 2578 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2579 } 2580 2581 void SelectionDAGBuilder::visitFPExt(const User &I) { 2582 // FPExt is never a no-op cast, no need to check 2583 SDValue N = getValue(I.getOperand(0)); 2584 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2585 I.getType()); 2586 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2587 } 2588 2589 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2590 // FPToUI is never a no-op cast, no need to check 2591 SDValue N = getValue(I.getOperand(0)); 2592 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2593 I.getType()); 2594 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2595 } 2596 2597 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2598 // FPToSI is never a no-op cast, no need to check 2599 SDValue N = getValue(I.getOperand(0)); 2600 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2601 I.getType()); 2602 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2603 } 2604 2605 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2606 // UIToFP is never a no-op cast, no need to check 2607 SDValue N = getValue(I.getOperand(0)); 2608 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2609 I.getType()); 2610 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2611 } 2612 2613 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2614 // SIToFP is never a no-op cast, no need to check 2615 SDValue N = getValue(I.getOperand(0)); 2616 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2617 I.getType()); 2618 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2619 } 2620 2621 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2622 // What to do depends on the size of the integer and the size of the pointer. 2623 // We can either truncate, zero extend, or no-op, accordingly. 2624 SDValue N = getValue(I.getOperand(0)); 2625 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2626 I.getType()); 2627 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2628 } 2629 2630 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2631 // What to do depends on the size of the integer and the size of the pointer. 2632 // We can either truncate, zero extend, or no-op, accordingly. 2633 SDValue N = getValue(I.getOperand(0)); 2634 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2635 I.getType()); 2636 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2637 } 2638 2639 void SelectionDAGBuilder::visitBitCast(const User &I) { 2640 SDValue N = getValue(I.getOperand(0)); 2641 SDLoc dl = getCurSDLoc(); 2642 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2643 I.getType()); 2644 2645 // BitCast assures us that source and destination are the same size so this is 2646 // either a BITCAST or a no-op. 2647 if (DestVT != N.getValueType()) 2648 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2649 DestVT, N)); // convert types. 2650 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2651 // might fold any kind of constant expression to an integer constant and that 2652 // is not what we are looking for. Only regcognize a bitcast of a genuine 2653 // constant integer as an opaque constant. 2654 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2655 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2656 /*isOpaque*/true)); 2657 else 2658 setValue(&I, N); // noop cast. 2659 } 2660 2661 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2663 const Value *SV = I.getOperand(0); 2664 SDValue N = getValue(SV); 2665 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2666 2667 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2668 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2669 2670 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2671 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2672 2673 setValue(&I, N); 2674 } 2675 2676 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2678 SDValue InVec = getValue(I.getOperand(0)); 2679 SDValue InVal = getValue(I.getOperand(1)); 2680 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2681 TLI.getVectorIdxTy(DAG.getDataLayout())); 2682 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2683 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2684 InVec, InVal, InIdx)); 2685 } 2686 2687 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2688 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2689 SDValue InVec = getValue(I.getOperand(0)); 2690 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2691 TLI.getVectorIdxTy(DAG.getDataLayout())); 2692 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2693 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2694 InVec, InIdx)); 2695 } 2696 2697 // Utility for visitShuffleVector - Return true if every element in Mask, 2698 // beginning from position Pos and ending in Pos+Size, falls within the 2699 // specified sequential range [L, L+Pos). or is undef. 2700 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2701 unsigned Pos, unsigned Size, int Low) { 2702 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2703 if (Mask[i] >= 0 && Mask[i] != Low) 2704 return false; 2705 return true; 2706 } 2707 2708 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2709 SDValue Src1 = getValue(I.getOperand(0)); 2710 SDValue Src2 = getValue(I.getOperand(1)); 2711 2712 SmallVector<int, 8> Mask; 2713 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2714 unsigned MaskNumElts = Mask.size(); 2715 2716 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2717 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2718 EVT SrcVT = Src1.getValueType(); 2719 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2720 2721 if (SrcNumElts == MaskNumElts) { 2722 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2723 &Mask[0])); 2724 return; 2725 } 2726 2727 // Normalize the shuffle vector since mask and vector length don't match. 2728 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2729 // Mask is longer than the source vectors and is a multiple of the source 2730 // vectors. We can use concatenate vector to make the mask and vectors 2731 // lengths match. 2732 if (SrcNumElts*2 == MaskNumElts) { 2733 // First check for Src1 in low and Src2 in high 2734 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2735 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2736 // The shuffle is concatenating two vectors together. 2737 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2738 VT, Src1, Src2)); 2739 return; 2740 } 2741 // Then check for Src2 in low and Src1 in high 2742 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2743 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2744 // The shuffle is concatenating two vectors together. 2745 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2746 VT, Src2, Src1)); 2747 return; 2748 } 2749 } 2750 2751 // Pad both vectors with undefs to make them the same length as the mask. 2752 unsigned NumConcat = MaskNumElts / SrcNumElts; 2753 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2754 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2755 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2756 2757 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2758 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2759 MOps1[0] = Src1; 2760 MOps2[0] = Src2; 2761 2762 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2763 getCurSDLoc(), VT, MOps1); 2764 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2765 getCurSDLoc(), VT, MOps2); 2766 2767 // Readjust mask for new input vector length. 2768 SmallVector<int, 8> MappedOps; 2769 for (unsigned i = 0; i != MaskNumElts; ++i) { 2770 int Idx = Mask[i]; 2771 if (Idx >= (int)SrcNumElts) 2772 Idx -= SrcNumElts - MaskNumElts; 2773 MappedOps.push_back(Idx); 2774 } 2775 2776 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2777 &MappedOps[0])); 2778 return; 2779 } 2780 2781 if (SrcNumElts > MaskNumElts) { 2782 // Analyze the access pattern of the vector to see if we can extract 2783 // two subvectors and do the shuffle. The analysis is done by calculating 2784 // the range of elements the mask access on both vectors. 2785 int MinRange[2] = { static_cast<int>(SrcNumElts), 2786 static_cast<int>(SrcNumElts)}; 2787 int MaxRange[2] = {-1, -1}; 2788 2789 for (unsigned i = 0; i != MaskNumElts; ++i) { 2790 int Idx = Mask[i]; 2791 unsigned Input = 0; 2792 if (Idx < 0) 2793 continue; 2794 2795 if (Idx >= (int)SrcNumElts) { 2796 Input = 1; 2797 Idx -= SrcNumElts; 2798 } 2799 if (Idx > MaxRange[Input]) 2800 MaxRange[Input] = Idx; 2801 if (Idx < MinRange[Input]) 2802 MinRange[Input] = Idx; 2803 } 2804 2805 // Check if the access is smaller than the vector size and can we find 2806 // a reasonable extract index. 2807 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2808 // Extract. 2809 int StartIdx[2]; // StartIdx to extract from 2810 for (unsigned Input = 0; Input < 2; ++Input) { 2811 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2812 RangeUse[Input] = 0; // Unused 2813 StartIdx[Input] = 0; 2814 continue; 2815 } 2816 2817 // Find a good start index that is a multiple of the mask length. Then 2818 // see if the rest of the elements are in range. 2819 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2820 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2821 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2822 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2823 } 2824 2825 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2826 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2827 return; 2828 } 2829 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2830 // Extract appropriate subvector and generate a vector shuffle 2831 for (unsigned Input = 0; Input < 2; ++Input) { 2832 SDValue &Src = Input == 0 ? Src1 : Src2; 2833 if (RangeUse[Input] == 0) 2834 Src = DAG.getUNDEF(VT); 2835 else { 2836 SDLoc dl = getCurSDLoc(); 2837 Src = DAG.getNode( 2838 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2839 DAG.getConstant(StartIdx[Input], dl, 2840 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2841 } 2842 } 2843 2844 // Calculate new mask. 2845 SmallVector<int, 8> MappedOps; 2846 for (unsigned i = 0; i != MaskNumElts; ++i) { 2847 int Idx = Mask[i]; 2848 if (Idx >= 0) { 2849 if (Idx < (int)SrcNumElts) 2850 Idx -= StartIdx[0]; 2851 else 2852 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2853 } 2854 MappedOps.push_back(Idx); 2855 } 2856 2857 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2858 &MappedOps[0])); 2859 return; 2860 } 2861 } 2862 2863 // We can't use either concat vectors or extract subvectors so fall back to 2864 // replacing the shuffle with extract and build vector. 2865 // to insert and build vector. 2866 EVT EltVT = VT.getVectorElementType(); 2867 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2868 SDLoc dl = getCurSDLoc(); 2869 SmallVector<SDValue,8> Ops; 2870 for (unsigned i = 0; i != MaskNumElts; ++i) { 2871 int Idx = Mask[i]; 2872 SDValue Res; 2873 2874 if (Idx < 0) { 2875 Res = DAG.getUNDEF(EltVT); 2876 } else { 2877 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2878 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2879 2880 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2881 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2882 } 2883 2884 Ops.push_back(Res); 2885 } 2886 2887 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2888 } 2889 2890 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2891 const Value *Op0 = I.getOperand(0); 2892 const Value *Op1 = I.getOperand(1); 2893 Type *AggTy = I.getType(); 2894 Type *ValTy = Op1->getType(); 2895 bool IntoUndef = isa<UndefValue>(Op0); 2896 bool FromUndef = isa<UndefValue>(Op1); 2897 2898 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2899 2900 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2901 SmallVector<EVT, 4> AggValueVTs; 2902 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2903 SmallVector<EVT, 4> ValValueVTs; 2904 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2905 2906 unsigned NumAggValues = AggValueVTs.size(); 2907 unsigned NumValValues = ValValueVTs.size(); 2908 SmallVector<SDValue, 4> Values(NumAggValues); 2909 2910 // Ignore an insertvalue that produces an empty object 2911 if (!NumAggValues) { 2912 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2913 return; 2914 } 2915 2916 SDValue Agg = getValue(Op0); 2917 unsigned i = 0; 2918 // Copy the beginning value(s) from the original aggregate. 2919 for (; i != LinearIndex; ++i) 2920 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2921 SDValue(Agg.getNode(), Agg.getResNo() + i); 2922 // Copy values from the inserted value(s). 2923 if (NumValValues) { 2924 SDValue Val = getValue(Op1); 2925 for (; i != LinearIndex + NumValValues; ++i) 2926 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2927 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2928 } 2929 // Copy remaining value(s) from the original aggregate. 2930 for (; i != NumAggValues; ++i) 2931 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2932 SDValue(Agg.getNode(), Agg.getResNo() + i); 2933 2934 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2935 DAG.getVTList(AggValueVTs), Values)); 2936 } 2937 2938 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2939 const Value *Op0 = I.getOperand(0); 2940 Type *AggTy = Op0->getType(); 2941 Type *ValTy = I.getType(); 2942 bool OutOfUndef = isa<UndefValue>(Op0); 2943 2944 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2945 2946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2947 SmallVector<EVT, 4> ValValueVTs; 2948 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2949 2950 unsigned NumValValues = ValValueVTs.size(); 2951 2952 // Ignore a extractvalue that produces an empty object 2953 if (!NumValValues) { 2954 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2955 return; 2956 } 2957 2958 SmallVector<SDValue, 4> Values(NumValValues); 2959 2960 SDValue Agg = getValue(Op0); 2961 // Copy out the selected value(s). 2962 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2963 Values[i - LinearIndex] = 2964 OutOfUndef ? 2965 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2966 SDValue(Agg.getNode(), Agg.getResNo() + i); 2967 2968 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2969 DAG.getVTList(ValValueVTs), Values)); 2970 } 2971 2972 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2973 Value *Op0 = I.getOperand(0); 2974 // Note that the pointer operand may be a vector of pointers. Take the scalar 2975 // element which holds a pointer. 2976 Type *Ty = Op0->getType()->getScalarType(); 2977 unsigned AS = Ty->getPointerAddressSpace(); 2978 SDValue N = getValue(Op0); 2979 SDLoc dl = getCurSDLoc(); 2980 2981 // Normalize Vector GEP - all scalar operands should be converted to the 2982 // splat vector. 2983 unsigned VectorWidth = I.getType()->isVectorTy() ? 2984 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2985 2986 if (VectorWidth && !N.getValueType().isVector()) { 2987 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2988 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2989 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2990 } 2991 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2992 OI != E; ++OI) { 2993 const Value *Idx = *OI; 2994 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2995 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2996 if (Field) { 2997 // N = N + Offset 2998 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2999 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3000 DAG.getConstant(Offset, dl, N.getValueType())); 3001 } 3002 3003 Ty = StTy->getElementType(Field); 3004 } else { 3005 Ty = cast<SequentialType>(Ty)->getElementType(); 3006 MVT PtrTy = 3007 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3008 unsigned PtrSize = PtrTy.getSizeInBits(); 3009 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3010 3011 // If this is a scalar constant or a splat vector of constants, 3012 // handle it quickly. 3013 const auto *CI = dyn_cast<ConstantInt>(Idx); 3014 if (!CI && isa<ConstantDataVector>(Idx) && 3015 cast<ConstantDataVector>(Idx)->getSplatValue()) 3016 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3017 3018 if (CI) { 3019 if (CI->isZero()) 3020 continue; 3021 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3022 SDValue OffsVal = VectorWidth ? 3023 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3024 DAG.getConstant(Offs, dl, PtrTy); 3025 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3026 continue; 3027 } 3028 3029 // N = N + Idx * ElementSize; 3030 SDValue IdxN = getValue(Idx); 3031 3032 if (!IdxN.getValueType().isVector() && VectorWidth) { 3033 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3034 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3035 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3036 } 3037 // If the index is smaller or larger than intptr_t, truncate or extend 3038 // it. 3039 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3040 3041 // If this is a multiply by a power of two, turn it into a shl 3042 // immediately. This is a very common case. 3043 if (ElementSize != 1) { 3044 if (ElementSize.isPowerOf2()) { 3045 unsigned Amt = ElementSize.logBase2(); 3046 IdxN = DAG.getNode(ISD::SHL, dl, 3047 N.getValueType(), IdxN, 3048 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3049 } else { 3050 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3051 IdxN = DAG.getNode(ISD::MUL, dl, 3052 N.getValueType(), IdxN, Scale); 3053 } 3054 } 3055 3056 N = DAG.getNode(ISD::ADD, dl, 3057 N.getValueType(), N, IdxN); 3058 } 3059 } 3060 3061 setValue(&I, N); 3062 } 3063 3064 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3065 // If this is a fixed sized alloca in the entry block of the function, 3066 // allocate it statically on the stack. 3067 if (FuncInfo.StaticAllocaMap.count(&I)) 3068 return; // getValue will auto-populate this. 3069 3070 SDLoc dl = getCurSDLoc(); 3071 Type *Ty = I.getAllocatedType(); 3072 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3073 auto &DL = DAG.getDataLayout(); 3074 uint64_t TySize = DL.getTypeAllocSize(Ty); 3075 unsigned Align = 3076 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3077 3078 SDValue AllocSize = getValue(I.getArraySize()); 3079 3080 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3081 if (AllocSize.getValueType() != IntPtr) 3082 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3083 3084 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3085 AllocSize, 3086 DAG.getConstant(TySize, dl, IntPtr)); 3087 3088 // Handle alignment. If the requested alignment is less than or equal to 3089 // the stack alignment, ignore it. If the size is greater than or equal to 3090 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3091 unsigned StackAlign = 3092 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3093 if (Align <= StackAlign) 3094 Align = 0; 3095 3096 // Round the size of the allocation up to the stack alignment size 3097 // by add SA-1 to the size. 3098 AllocSize = DAG.getNode(ISD::ADD, dl, 3099 AllocSize.getValueType(), AllocSize, 3100 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3101 3102 // Mask out the low bits for alignment purposes. 3103 AllocSize = DAG.getNode(ISD::AND, dl, 3104 AllocSize.getValueType(), AllocSize, 3105 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3106 dl)); 3107 3108 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3109 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3110 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3111 setValue(&I, DSA); 3112 DAG.setRoot(DSA.getValue(1)); 3113 3114 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3115 } 3116 3117 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3118 if (I.isAtomic()) 3119 return visitAtomicLoad(I); 3120 3121 const Value *SV = I.getOperand(0); 3122 SDValue Ptr = getValue(SV); 3123 3124 Type *Ty = I.getType(); 3125 3126 bool isVolatile = I.isVolatile(); 3127 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3128 3129 // The IR notion of invariant_load only guarantees that all *non-faulting* 3130 // invariant loads result in the same value. The MI notion of invariant load 3131 // guarantees that the load can be legally moved to any location within its 3132 // containing function. The MI notion of invariant_load is stronger than the 3133 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3134 // with a guarantee that the location being loaded from is dereferenceable 3135 // throughout the function's lifetime. 3136 3137 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3138 isDereferenceablePointer(SV, DAG.getDataLayout()); 3139 unsigned Alignment = I.getAlignment(); 3140 3141 AAMDNodes AAInfo; 3142 I.getAAMetadata(AAInfo); 3143 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3144 3145 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3146 SmallVector<EVT, 4> ValueVTs; 3147 SmallVector<uint64_t, 4> Offsets; 3148 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3149 unsigned NumValues = ValueVTs.size(); 3150 if (NumValues == 0) 3151 return; 3152 3153 SDValue Root; 3154 bool ConstantMemory = false; 3155 if (isVolatile || NumValues > MaxParallelChains) 3156 // Serialize volatile loads with other side effects. 3157 Root = getRoot(); 3158 else if (AA->pointsToConstantMemory(MemoryLocation( 3159 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3160 // Do not serialize (non-volatile) loads of constant memory with anything. 3161 Root = DAG.getEntryNode(); 3162 ConstantMemory = true; 3163 } else { 3164 // Do not serialize non-volatile loads against each other. 3165 Root = DAG.getRoot(); 3166 } 3167 3168 SDLoc dl = getCurSDLoc(); 3169 3170 if (isVolatile) 3171 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3172 3173 SmallVector<SDValue, 4> Values(NumValues); 3174 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3175 EVT PtrVT = Ptr.getValueType(); 3176 unsigned ChainI = 0; 3177 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3178 // Serializing loads here may result in excessive register pressure, and 3179 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3180 // could recover a bit by hoisting nodes upward in the chain by recognizing 3181 // they are side-effect free or do not alias. The optimizer should really 3182 // avoid this case by converting large object/array copies to llvm.memcpy 3183 // (MaxParallelChains should always remain as failsafe). 3184 if (ChainI == MaxParallelChains) { 3185 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3186 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3187 makeArrayRef(Chains.data(), ChainI)); 3188 Root = Chain; 3189 ChainI = 0; 3190 } 3191 SDValue A = DAG.getNode(ISD::ADD, dl, 3192 PtrVT, Ptr, 3193 DAG.getConstant(Offsets[i], dl, PtrVT)); 3194 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3195 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3196 isNonTemporal, isInvariant, Alignment, AAInfo, 3197 Ranges); 3198 3199 Values[i] = L; 3200 Chains[ChainI] = L.getValue(1); 3201 } 3202 3203 if (!ConstantMemory) { 3204 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3205 makeArrayRef(Chains.data(), ChainI)); 3206 if (isVolatile) 3207 DAG.setRoot(Chain); 3208 else 3209 PendingLoads.push_back(Chain); 3210 } 3211 3212 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3213 DAG.getVTList(ValueVTs), Values)); 3214 } 3215 3216 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3217 if (I.isAtomic()) 3218 return visitAtomicStore(I); 3219 3220 const Value *SrcV = I.getOperand(0); 3221 const Value *PtrV = I.getOperand(1); 3222 3223 SmallVector<EVT, 4> ValueVTs; 3224 SmallVector<uint64_t, 4> Offsets; 3225 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3226 SrcV->getType(), ValueVTs, &Offsets); 3227 unsigned NumValues = ValueVTs.size(); 3228 if (NumValues == 0) 3229 return; 3230 3231 // Get the lowered operands. Note that we do this after 3232 // checking if NumResults is zero, because with zero results 3233 // the operands won't have values in the map. 3234 SDValue Src = getValue(SrcV); 3235 SDValue Ptr = getValue(PtrV); 3236 3237 SDValue Root = getRoot(); 3238 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3239 EVT PtrVT = Ptr.getValueType(); 3240 bool isVolatile = I.isVolatile(); 3241 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3242 unsigned Alignment = I.getAlignment(); 3243 SDLoc dl = getCurSDLoc(); 3244 3245 AAMDNodes AAInfo; 3246 I.getAAMetadata(AAInfo); 3247 3248 unsigned ChainI = 0; 3249 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3250 // See visitLoad comments. 3251 if (ChainI == MaxParallelChains) { 3252 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3253 makeArrayRef(Chains.data(), ChainI)); 3254 Root = Chain; 3255 ChainI = 0; 3256 } 3257 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3258 DAG.getConstant(Offsets[i], dl, PtrVT)); 3259 SDValue St = DAG.getStore(Root, dl, 3260 SDValue(Src.getNode(), Src.getResNo() + i), 3261 Add, MachinePointerInfo(PtrV, Offsets[i]), 3262 isVolatile, isNonTemporal, Alignment, AAInfo); 3263 Chains[ChainI] = St; 3264 } 3265 3266 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3267 makeArrayRef(Chains.data(), ChainI)); 3268 DAG.setRoot(StoreNode); 3269 } 3270 3271 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3272 SDLoc sdl = getCurSDLoc(); 3273 3274 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3275 Value *PtrOperand = I.getArgOperand(1); 3276 SDValue Ptr = getValue(PtrOperand); 3277 SDValue Src0 = getValue(I.getArgOperand(0)); 3278 SDValue Mask = getValue(I.getArgOperand(3)); 3279 EVT VT = Src0.getValueType(); 3280 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3281 if (!Alignment) 3282 Alignment = DAG.getEVTAlignment(VT); 3283 3284 AAMDNodes AAInfo; 3285 I.getAAMetadata(AAInfo); 3286 3287 MachineMemOperand *MMO = 3288 DAG.getMachineFunction(). 3289 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3290 MachineMemOperand::MOStore, VT.getStoreSize(), 3291 Alignment, AAInfo); 3292 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3293 MMO, false); 3294 DAG.setRoot(StoreNode); 3295 setValue(&I, StoreNode); 3296 } 3297 3298 // Get a uniform base for the Gather/Scatter intrinsic. 3299 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3300 // We try to represent it as a base pointer + vector of indices. 3301 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3302 // The first operand of the GEP may be a single pointer or a vector of pointers 3303 // Example: 3304 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3305 // or 3306 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3307 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3308 // 3309 // When the first GEP operand is a single pointer - it is the uniform base we 3310 // are looking for. If first operand of the GEP is a splat vector - we 3311 // extract the spalt value and use it as a uniform base. 3312 // In all other cases the function returns 'false'. 3313 // 3314 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3315 SelectionDAGBuilder* SDB) { 3316 3317 SelectionDAG& DAG = SDB->DAG; 3318 LLVMContext &Context = *DAG.getContext(); 3319 3320 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3321 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3322 if (!GEP || GEP->getNumOperands() > 2) 3323 return false; 3324 3325 const Value *GEPPtr = GEP->getPointerOperand(); 3326 if (!GEPPtr->getType()->isVectorTy()) 3327 Ptr = GEPPtr; 3328 else if (!(Ptr = getSplatValue(GEPPtr))) 3329 return false; 3330 3331 Value *IndexVal = GEP->getOperand(1); 3332 3333 // The operands of the GEP may be defined in another basic block. 3334 // In this case we'll not find nodes for the operands. 3335 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3336 return false; 3337 3338 Base = SDB->getValue(Ptr); 3339 Index = SDB->getValue(IndexVal); 3340 3341 // Suppress sign extension. 3342 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3343 if (SDB->findValue(Sext->getOperand(0))) { 3344 IndexVal = Sext->getOperand(0); 3345 Index = SDB->getValue(IndexVal); 3346 } 3347 } 3348 if (!Index.getValueType().isVector()) { 3349 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3350 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3351 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3352 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3353 } 3354 return true; 3355 } 3356 3357 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3358 SDLoc sdl = getCurSDLoc(); 3359 3360 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3361 const Value *Ptr = I.getArgOperand(1); 3362 SDValue Src0 = getValue(I.getArgOperand(0)); 3363 SDValue Mask = getValue(I.getArgOperand(3)); 3364 EVT VT = Src0.getValueType(); 3365 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3366 if (!Alignment) 3367 Alignment = DAG.getEVTAlignment(VT); 3368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3369 3370 AAMDNodes AAInfo; 3371 I.getAAMetadata(AAInfo); 3372 3373 SDValue Base; 3374 SDValue Index; 3375 const Value *BasePtr = Ptr; 3376 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3377 3378 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3379 MachineMemOperand *MMO = DAG.getMachineFunction(). 3380 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3381 MachineMemOperand::MOStore, VT.getStoreSize(), 3382 Alignment, AAInfo); 3383 if (!UniformBase) { 3384 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3385 Index = getValue(Ptr); 3386 } 3387 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3388 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3389 Ops, MMO); 3390 DAG.setRoot(Scatter); 3391 setValue(&I, Scatter); 3392 } 3393 3394 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3395 SDLoc sdl = getCurSDLoc(); 3396 3397 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3398 Value *PtrOperand = I.getArgOperand(0); 3399 SDValue Ptr = getValue(PtrOperand); 3400 SDValue Src0 = getValue(I.getArgOperand(3)); 3401 SDValue Mask = getValue(I.getArgOperand(2)); 3402 3403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3404 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3405 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3406 if (!Alignment) 3407 Alignment = DAG.getEVTAlignment(VT); 3408 3409 AAMDNodes AAInfo; 3410 I.getAAMetadata(AAInfo); 3411 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3412 3413 SDValue InChain = DAG.getRoot(); 3414 if (AA->pointsToConstantMemory(MemoryLocation( 3415 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3416 AAInfo))) { 3417 // Do not serialize (non-volatile) loads of constant memory with anything. 3418 InChain = DAG.getEntryNode(); 3419 } 3420 3421 MachineMemOperand *MMO = 3422 DAG.getMachineFunction(). 3423 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3424 MachineMemOperand::MOLoad, VT.getStoreSize(), 3425 Alignment, AAInfo, Ranges); 3426 3427 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3428 ISD::NON_EXTLOAD); 3429 SDValue OutChain = Load.getValue(1); 3430 DAG.setRoot(OutChain); 3431 setValue(&I, Load); 3432 } 3433 3434 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3435 SDLoc sdl = getCurSDLoc(); 3436 3437 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3438 const Value *Ptr = I.getArgOperand(0); 3439 SDValue Src0 = getValue(I.getArgOperand(3)); 3440 SDValue Mask = getValue(I.getArgOperand(2)); 3441 3442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3443 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3444 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3445 if (!Alignment) 3446 Alignment = DAG.getEVTAlignment(VT); 3447 3448 AAMDNodes AAInfo; 3449 I.getAAMetadata(AAInfo); 3450 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3451 3452 SDValue Root = DAG.getRoot(); 3453 SDValue Base; 3454 SDValue Index; 3455 const Value *BasePtr = Ptr; 3456 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3457 bool ConstantMemory = false; 3458 if (UniformBase && 3459 AA->pointsToConstantMemory(MemoryLocation( 3460 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3461 AAInfo))) { 3462 // Do not serialize (non-volatile) loads of constant memory with anything. 3463 Root = DAG.getEntryNode(); 3464 ConstantMemory = true; 3465 } 3466 3467 MachineMemOperand *MMO = 3468 DAG.getMachineFunction(). 3469 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3470 MachineMemOperand::MOLoad, VT.getStoreSize(), 3471 Alignment, AAInfo, Ranges); 3472 3473 if (!UniformBase) { 3474 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3475 Index = getValue(Ptr); 3476 } 3477 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3478 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3479 Ops, MMO); 3480 3481 SDValue OutChain = Gather.getValue(1); 3482 if (!ConstantMemory) 3483 PendingLoads.push_back(OutChain); 3484 setValue(&I, Gather); 3485 } 3486 3487 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3488 SDLoc dl = getCurSDLoc(); 3489 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3490 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3491 SynchronizationScope Scope = I.getSynchScope(); 3492 3493 SDValue InChain = getRoot(); 3494 3495 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3496 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3497 SDValue L = DAG.getAtomicCmpSwap( 3498 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3499 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3500 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3501 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3502 3503 SDValue OutChain = L.getValue(2); 3504 3505 setValue(&I, L); 3506 DAG.setRoot(OutChain); 3507 } 3508 3509 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3510 SDLoc dl = getCurSDLoc(); 3511 ISD::NodeType NT; 3512 switch (I.getOperation()) { 3513 default: llvm_unreachable("Unknown atomicrmw operation"); 3514 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3515 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3516 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3517 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3518 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3519 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3520 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3521 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3522 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3523 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3524 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3525 } 3526 AtomicOrdering Order = I.getOrdering(); 3527 SynchronizationScope Scope = I.getSynchScope(); 3528 3529 SDValue InChain = getRoot(); 3530 3531 SDValue L = 3532 DAG.getAtomic(NT, dl, 3533 getValue(I.getValOperand()).getSimpleValueType(), 3534 InChain, 3535 getValue(I.getPointerOperand()), 3536 getValue(I.getValOperand()), 3537 I.getPointerOperand(), 3538 /* Alignment=*/ 0, Order, Scope); 3539 3540 SDValue OutChain = L.getValue(1); 3541 3542 setValue(&I, L); 3543 DAG.setRoot(OutChain); 3544 } 3545 3546 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3547 SDLoc dl = getCurSDLoc(); 3548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3549 SDValue Ops[3]; 3550 Ops[0] = getRoot(); 3551 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3552 TLI.getPointerTy(DAG.getDataLayout())); 3553 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3554 TLI.getPointerTy(DAG.getDataLayout())); 3555 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3556 } 3557 3558 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3559 SDLoc dl = getCurSDLoc(); 3560 AtomicOrdering Order = I.getOrdering(); 3561 SynchronizationScope Scope = I.getSynchScope(); 3562 3563 SDValue InChain = getRoot(); 3564 3565 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3566 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3567 3568 if (I.getAlignment() < VT.getSizeInBits() / 8) 3569 report_fatal_error("Cannot generate unaligned atomic load"); 3570 3571 MachineMemOperand *MMO = 3572 DAG.getMachineFunction(). 3573 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3574 MachineMemOperand::MOVolatile | 3575 MachineMemOperand::MOLoad, 3576 VT.getStoreSize(), 3577 I.getAlignment() ? I.getAlignment() : 3578 DAG.getEVTAlignment(VT)); 3579 3580 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3581 SDValue L = 3582 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3583 getValue(I.getPointerOperand()), MMO, 3584 Order, Scope); 3585 3586 SDValue OutChain = L.getValue(1); 3587 3588 setValue(&I, L); 3589 DAG.setRoot(OutChain); 3590 } 3591 3592 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3593 SDLoc dl = getCurSDLoc(); 3594 3595 AtomicOrdering Order = I.getOrdering(); 3596 SynchronizationScope Scope = I.getSynchScope(); 3597 3598 SDValue InChain = getRoot(); 3599 3600 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3601 EVT VT = 3602 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3603 3604 if (I.getAlignment() < VT.getSizeInBits() / 8) 3605 report_fatal_error("Cannot generate unaligned atomic store"); 3606 3607 SDValue OutChain = 3608 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3609 InChain, 3610 getValue(I.getPointerOperand()), 3611 getValue(I.getValueOperand()), 3612 I.getPointerOperand(), I.getAlignment(), 3613 Order, Scope); 3614 3615 DAG.setRoot(OutChain); 3616 } 3617 3618 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3619 /// node. 3620 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3621 unsigned Intrinsic) { 3622 bool HasChain = !I.doesNotAccessMemory(); 3623 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3624 3625 // Build the operand list. 3626 SmallVector<SDValue, 8> Ops; 3627 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3628 if (OnlyLoad) { 3629 // We don't need to serialize loads against other loads. 3630 Ops.push_back(DAG.getRoot()); 3631 } else { 3632 Ops.push_back(getRoot()); 3633 } 3634 } 3635 3636 // Info is set by getTgtMemInstrinsic 3637 TargetLowering::IntrinsicInfo Info; 3638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3639 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3640 3641 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3642 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3643 Info.opc == ISD::INTRINSIC_W_CHAIN) 3644 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3645 TLI.getPointerTy(DAG.getDataLayout()))); 3646 3647 // Add all operands of the call to the operand list. 3648 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3649 SDValue Op = getValue(I.getArgOperand(i)); 3650 Ops.push_back(Op); 3651 } 3652 3653 SmallVector<EVT, 4> ValueVTs; 3654 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3655 3656 if (HasChain) 3657 ValueVTs.push_back(MVT::Other); 3658 3659 SDVTList VTs = DAG.getVTList(ValueVTs); 3660 3661 // Create the node. 3662 SDValue Result; 3663 if (IsTgtIntrinsic) { 3664 // This is target intrinsic that touches memory 3665 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3666 VTs, Ops, Info.memVT, 3667 MachinePointerInfo(Info.ptrVal, Info.offset), 3668 Info.align, Info.vol, 3669 Info.readMem, Info.writeMem, Info.size); 3670 } else if (!HasChain) { 3671 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3672 } else if (!I.getType()->isVoidTy()) { 3673 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3674 } else { 3675 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3676 } 3677 3678 if (HasChain) { 3679 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3680 if (OnlyLoad) 3681 PendingLoads.push_back(Chain); 3682 else 3683 DAG.setRoot(Chain); 3684 } 3685 3686 if (!I.getType()->isVoidTy()) { 3687 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3688 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3689 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3690 } 3691 3692 setValue(&I, Result); 3693 } 3694 } 3695 3696 /// GetSignificand - Get the significand and build it into a floating-point 3697 /// number with exponent of 1: 3698 /// 3699 /// Op = (Op & 0x007fffff) | 0x3f800000; 3700 /// 3701 /// where Op is the hexadecimal representation of floating point value. 3702 static SDValue 3703 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3704 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3705 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3706 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3707 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3708 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3709 } 3710 3711 /// GetExponent - Get the exponent: 3712 /// 3713 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3714 /// 3715 /// where Op is the hexadecimal representation of floating point value. 3716 static SDValue 3717 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3718 SDLoc dl) { 3719 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3720 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3721 SDValue t1 = DAG.getNode( 3722 ISD::SRL, dl, MVT::i32, t0, 3723 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3724 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3725 DAG.getConstant(127, dl, MVT::i32)); 3726 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3727 } 3728 3729 /// getF32Constant - Get 32-bit floating point constant. 3730 static SDValue 3731 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3732 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3733 MVT::f32); 3734 } 3735 3736 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3737 SelectionDAG &DAG) { 3738 // TODO: What fast-math-flags should be set on the floating-point nodes? 3739 3740 // IntegerPartOfX = ((int32_t)(t0); 3741 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3742 3743 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3744 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3745 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3746 3747 // IntegerPartOfX <<= 23; 3748 IntegerPartOfX = DAG.getNode( 3749 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3750 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3751 DAG.getDataLayout()))); 3752 3753 SDValue TwoToFractionalPartOfX; 3754 if (LimitFloatPrecision <= 6) { 3755 // For floating-point precision of 6: 3756 // 3757 // TwoToFractionalPartOfX = 3758 // 0.997535578f + 3759 // (0.735607626f + 0.252464424f * x) * x; 3760 // 3761 // error 0.0144103317, which is 6 bits 3762 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3763 getF32Constant(DAG, 0x3e814304, dl)); 3764 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3765 getF32Constant(DAG, 0x3f3c50c8, dl)); 3766 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3767 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3768 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3769 } else if (LimitFloatPrecision <= 12) { 3770 // For floating-point precision of 12: 3771 // 3772 // TwoToFractionalPartOfX = 3773 // 0.999892986f + 3774 // (0.696457318f + 3775 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3776 // 3777 // error 0.000107046256, which is 13 to 14 bits 3778 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3779 getF32Constant(DAG, 0x3da235e3, dl)); 3780 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3781 getF32Constant(DAG, 0x3e65b8f3, dl)); 3782 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3783 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3784 getF32Constant(DAG, 0x3f324b07, dl)); 3785 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3786 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3787 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3788 } else { // LimitFloatPrecision <= 18 3789 // For floating-point precision of 18: 3790 // 3791 // TwoToFractionalPartOfX = 3792 // 0.999999982f + 3793 // (0.693148872f + 3794 // (0.240227044f + 3795 // (0.554906021e-1f + 3796 // (0.961591928e-2f + 3797 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3798 // error 2.47208000*10^(-7), which is better than 18 bits 3799 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3800 getF32Constant(DAG, 0x3924b03e, dl)); 3801 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3802 getF32Constant(DAG, 0x3ab24b87, dl)); 3803 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3804 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3805 getF32Constant(DAG, 0x3c1d8c17, dl)); 3806 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3807 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3808 getF32Constant(DAG, 0x3d634a1d, dl)); 3809 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3810 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3811 getF32Constant(DAG, 0x3e75fe14, dl)); 3812 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3813 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3814 getF32Constant(DAG, 0x3f317234, dl)); 3815 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3816 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3817 getF32Constant(DAG, 0x3f800000, dl)); 3818 } 3819 3820 // Add the exponent into the result in integer domain. 3821 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3822 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3823 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3824 } 3825 3826 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3827 /// limited-precision mode. 3828 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3829 const TargetLowering &TLI) { 3830 if (Op.getValueType() == MVT::f32 && 3831 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3832 3833 // Put the exponent in the right bit position for later addition to the 3834 // final result: 3835 // 3836 // #define LOG2OFe 1.4426950f 3837 // t0 = Op * LOG2OFe 3838 3839 // TODO: What fast-math-flags should be set here? 3840 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3841 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3842 return getLimitedPrecisionExp2(t0, dl, DAG); 3843 } 3844 3845 // No special expansion. 3846 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3847 } 3848 3849 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3850 /// limited-precision mode. 3851 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3852 const TargetLowering &TLI) { 3853 3854 // TODO: What fast-math-flags should be set on the floating-point nodes? 3855 3856 if (Op.getValueType() == MVT::f32 && 3857 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3858 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3859 3860 // Scale the exponent by log(2) [0.69314718f]. 3861 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3862 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3863 getF32Constant(DAG, 0x3f317218, dl)); 3864 3865 // Get the significand and build it into a floating-point number with 3866 // exponent of 1. 3867 SDValue X = GetSignificand(DAG, Op1, dl); 3868 3869 SDValue LogOfMantissa; 3870 if (LimitFloatPrecision <= 6) { 3871 // For floating-point precision of 6: 3872 // 3873 // LogofMantissa = 3874 // -1.1609546f + 3875 // (1.4034025f - 0.23903021f * x) * x; 3876 // 3877 // error 0.0034276066, which is better than 8 bits 3878 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3879 getF32Constant(DAG, 0xbe74c456, dl)); 3880 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3881 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3882 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3883 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3884 getF32Constant(DAG, 0x3f949a29, dl)); 3885 } else if (LimitFloatPrecision <= 12) { 3886 // For floating-point precision of 12: 3887 // 3888 // LogOfMantissa = 3889 // -1.7417939f + 3890 // (2.8212026f + 3891 // (-1.4699568f + 3892 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3893 // 3894 // error 0.000061011436, which is 14 bits 3895 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3896 getF32Constant(DAG, 0xbd67b6d6, dl)); 3897 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3898 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3899 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3900 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3901 getF32Constant(DAG, 0x3fbc278b, dl)); 3902 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3903 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3904 getF32Constant(DAG, 0x40348e95, dl)); 3905 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3906 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3907 getF32Constant(DAG, 0x3fdef31a, dl)); 3908 } else { // LimitFloatPrecision <= 18 3909 // For floating-point precision of 18: 3910 // 3911 // LogOfMantissa = 3912 // -2.1072184f + 3913 // (4.2372794f + 3914 // (-3.7029485f + 3915 // (2.2781945f + 3916 // (-0.87823314f + 3917 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3918 // 3919 // error 0.0000023660568, which is better than 18 bits 3920 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3921 getF32Constant(DAG, 0xbc91e5ac, dl)); 3922 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3923 getF32Constant(DAG, 0x3e4350aa, dl)); 3924 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3925 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3926 getF32Constant(DAG, 0x3f60d3e3, dl)); 3927 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3928 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3929 getF32Constant(DAG, 0x4011cdf0, dl)); 3930 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3931 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3932 getF32Constant(DAG, 0x406cfd1c, dl)); 3933 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3934 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3935 getF32Constant(DAG, 0x408797cb, dl)); 3936 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3937 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3938 getF32Constant(DAG, 0x4006dcab, dl)); 3939 } 3940 3941 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3942 } 3943 3944 // No special expansion. 3945 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3946 } 3947 3948 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3949 /// limited-precision mode. 3950 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3951 const TargetLowering &TLI) { 3952 3953 // TODO: What fast-math-flags should be set on the floating-point nodes? 3954 3955 if (Op.getValueType() == MVT::f32 && 3956 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3957 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3958 3959 // Get the exponent. 3960 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3961 3962 // Get the significand and build it into a floating-point number with 3963 // exponent of 1. 3964 SDValue X = GetSignificand(DAG, Op1, dl); 3965 3966 // Different possible minimax approximations of significand in 3967 // floating-point for various degrees of accuracy over [1,2]. 3968 SDValue Log2ofMantissa; 3969 if (LimitFloatPrecision <= 6) { 3970 // For floating-point precision of 6: 3971 // 3972 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3973 // 3974 // error 0.0049451742, which is more than 7 bits 3975 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3976 getF32Constant(DAG, 0xbeb08fe0, dl)); 3977 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3978 getF32Constant(DAG, 0x40019463, dl)); 3979 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3980 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3981 getF32Constant(DAG, 0x3fd6633d, dl)); 3982 } else if (LimitFloatPrecision <= 12) { 3983 // For floating-point precision of 12: 3984 // 3985 // Log2ofMantissa = 3986 // -2.51285454f + 3987 // (4.07009056f + 3988 // (-2.12067489f + 3989 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3990 // 3991 // error 0.0000876136000, which is better than 13 bits 3992 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3993 getF32Constant(DAG, 0xbda7262e, dl)); 3994 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3995 getF32Constant(DAG, 0x3f25280b, dl)); 3996 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3997 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3998 getF32Constant(DAG, 0x4007b923, dl)); 3999 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4000 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4001 getF32Constant(DAG, 0x40823e2f, dl)); 4002 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4003 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4004 getF32Constant(DAG, 0x4020d29c, dl)); 4005 } else { // LimitFloatPrecision <= 18 4006 // For floating-point precision of 18: 4007 // 4008 // Log2ofMantissa = 4009 // -3.0400495f + 4010 // (6.1129976f + 4011 // (-5.3420409f + 4012 // (3.2865683f + 4013 // (-1.2669343f + 4014 // (0.27515199f - 4015 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4016 // 4017 // error 0.0000018516, which is better than 18 bits 4018 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4019 getF32Constant(DAG, 0xbcd2769e, dl)); 4020 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4021 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4022 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4023 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4024 getF32Constant(DAG, 0x3fa22ae7, dl)); 4025 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4026 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4027 getF32Constant(DAG, 0x40525723, dl)); 4028 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4029 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4030 getF32Constant(DAG, 0x40aaf200, dl)); 4031 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4032 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4033 getF32Constant(DAG, 0x40c39dad, dl)); 4034 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4035 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4036 getF32Constant(DAG, 0x4042902c, dl)); 4037 } 4038 4039 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4040 } 4041 4042 // No special expansion. 4043 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4044 } 4045 4046 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4047 /// limited-precision mode. 4048 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4049 const TargetLowering &TLI) { 4050 4051 // TODO: What fast-math-flags should be set on the floating-point nodes? 4052 4053 if (Op.getValueType() == MVT::f32 && 4054 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4055 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4056 4057 // Scale the exponent by log10(2) [0.30102999f]. 4058 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4059 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4060 getF32Constant(DAG, 0x3e9a209a, dl)); 4061 4062 // Get the significand and build it into a floating-point number with 4063 // exponent of 1. 4064 SDValue X = GetSignificand(DAG, Op1, dl); 4065 4066 SDValue Log10ofMantissa; 4067 if (LimitFloatPrecision <= 6) { 4068 // For floating-point precision of 6: 4069 // 4070 // Log10ofMantissa = 4071 // -0.50419619f + 4072 // (0.60948995f - 0.10380950f * x) * x; 4073 // 4074 // error 0.0014886165, which is 6 bits 4075 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4076 getF32Constant(DAG, 0xbdd49a13, dl)); 4077 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4078 getF32Constant(DAG, 0x3f1c0789, dl)); 4079 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4080 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4081 getF32Constant(DAG, 0x3f011300, dl)); 4082 } else if (LimitFloatPrecision <= 12) { 4083 // For floating-point precision of 12: 4084 // 4085 // Log10ofMantissa = 4086 // -0.64831180f + 4087 // (0.91751397f + 4088 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4089 // 4090 // error 0.00019228036, which is better than 12 bits 4091 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4092 getF32Constant(DAG, 0x3d431f31, dl)); 4093 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4094 getF32Constant(DAG, 0x3ea21fb2, dl)); 4095 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4096 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4097 getF32Constant(DAG, 0x3f6ae232, dl)); 4098 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4099 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4100 getF32Constant(DAG, 0x3f25f7c3, dl)); 4101 } else { // LimitFloatPrecision <= 18 4102 // For floating-point precision of 18: 4103 // 4104 // Log10ofMantissa = 4105 // -0.84299375f + 4106 // (1.5327582f + 4107 // (-1.0688956f + 4108 // (0.49102474f + 4109 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4110 // 4111 // error 0.0000037995730, which is better than 18 bits 4112 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4113 getF32Constant(DAG, 0x3c5d51ce, dl)); 4114 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4115 getF32Constant(DAG, 0x3e00685a, dl)); 4116 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4117 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4118 getF32Constant(DAG, 0x3efb6798, dl)); 4119 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4120 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4121 getF32Constant(DAG, 0x3f88d192, dl)); 4122 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4123 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4124 getF32Constant(DAG, 0x3fc4316c, dl)); 4125 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4126 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4127 getF32Constant(DAG, 0x3f57ce70, dl)); 4128 } 4129 4130 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4131 } 4132 4133 // No special expansion. 4134 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4135 } 4136 4137 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4138 /// limited-precision mode. 4139 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4140 const TargetLowering &TLI) { 4141 if (Op.getValueType() == MVT::f32 && 4142 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4143 return getLimitedPrecisionExp2(Op, dl, DAG); 4144 4145 // No special expansion. 4146 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4147 } 4148 4149 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4150 /// limited-precision mode with x == 10.0f. 4151 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4152 SelectionDAG &DAG, const TargetLowering &TLI) { 4153 bool IsExp10 = false; 4154 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4155 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4156 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4157 APFloat Ten(10.0f); 4158 IsExp10 = LHSC->isExactlyValue(Ten); 4159 } 4160 } 4161 4162 // TODO: What fast-math-flags should be set on the FMUL node? 4163 if (IsExp10) { 4164 // Put the exponent in the right bit position for later addition to the 4165 // final result: 4166 // 4167 // #define LOG2OF10 3.3219281f 4168 // t0 = Op * LOG2OF10; 4169 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4170 getF32Constant(DAG, 0x40549a78, dl)); 4171 return getLimitedPrecisionExp2(t0, dl, DAG); 4172 } 4173 4174 // No special expansion. 4175 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4176 } 4177 4178 4179 /// ExpandPowI - Expand a llvm.powi intrinsic. 4180 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4181 SelectionDAG &DAG) { 4182 // If RHS is a constant, we can expand this out to a multiplication tree, 4183 // otherwise we end up lowering to a call to __powidf2 (for example). When 4184 // optimizing for size, we only want to do this if the expansion would produce 4185 // a small number of multiplies, otherwise we do the full expansion. 4186 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4187 // Get the exponent as a positive value. 4188 unsigned Val = RHSC->getSExtValue(); 4189 if ((int)Val < 0) Val = -Val; 4190 4191 // powi(x, 0) -> 1.0 4192 if (Val == 0) 4193 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4194 4195 const Function *F = DAG.getMachineFunction().getFunction(); 4196 if (!F->optForSize() || 4197 // If optimizing for size, don't insert too many multiplies. 4198 // This inserts up to 5 multiplies. 4199 countPopulation(Val) + Log2_32(Val) < 7) { 4200 // We use the simple binary decomposition method to generate the multiply 4201 // sequence. There are more optimal ways to do this (for example, 4202 // powi(x,15) generates one more multiply than it should), but this has 4203 // the benefit of being both really simple and much better than a libcall. 4204 SDValue Res; // Logically starts equal to 1.0 4205 SDValue CurSquare = LHS; 4206 // TODO: Intrinsics should have fast-math-flags that propagate to these 4207 // nodes. 4208 while (Val) { 4209 if (Val & 1) { 4210 if (Res.getNode()) 4211 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4212 else 4213 Res = CurSquare; // 1.0*CurSquare. 4214 } 4215 4216 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4217 CurSquare, CurSquare); 4218 Val >>= 1; 4219 } 4220 4221 // If the original was negative, invert the result, producing 1/(x*x*x). 4222 if (RHSC->getSExtValue() < 0) 4223 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4224 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4225 return Res; 4226 } 4227 } 4228 4229 // Otherwise, expand to a libcall. 4230 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4231 } 4232 4233 // getUnderlyingArgReg - Find underlying register used for a truncated or 4234 // bitcasted argument. 4235 static unsigned getUnderlyingArgReg(const SDValue &N) { 4236 switch (N.getOpcode()) { 4237 case ISD::CopyFromReg: 4238 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4239 case ISD::BITCAST: 4240 case ISD::AssertZext: 4241 case ISD::AssertSext: 4242 case ISD::TRUNCATE: 4243 return getUnderlyingArgReg(N.getOperand(0)); 4244 default: 4245 return 0; 4246 } 4247 } 4248 4249 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4250 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4251 /// At the end of instruction selection, they will be inserted to the entry BB. 4252 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4253 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4254 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4255 const Argument *Arg = dyn_cast<Argument>(V); 4256 if (!Arg) 4257 return false; 4258 4259 MachineFunction &MF = DAG.getMachineFunction(); 4260 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4261 4262 // Ignore inlined function arguments here. 4263 // 4264 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4265 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4266 return false; 4267 4268 Optional<MachineOperand> Op; 4269 // Some arguments' frame index is recorded during argument lowering. 4270 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4271 Op = MachineOperand::CreateFI(FI); 4272 4273 if (!Op && N.getNode()) { 4274 unsigned Reg = getUnderlyingArgReg(N); 4275 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4276 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4277 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4278 if (PR) 4279 Reg = PR; 4280 } 4281 if (Reg) 4282 Op = MachineOperand::CreateReg(Reg, false); 4283 } 4284 4285 if (!Op) { 4286 // Check if ValueMap has reg number. 4287 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4288 if (VMI != FuncInfo.ValueMap.end()) 4289 Op = MachineOperand::CreateReg(VMI->second, false); 4290 } 4291 4292 if (!Op && N.getNode()) 4293 // Check if frame index is available. 4294 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4295 if (FrameIndexSDNode *FINode = 4296 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4297 Op = MachineOperand::CreateFI(FINode->getIndex()); 4298 4299 if (!Op) 4300 return false; 4301 4302 assert(Variable->isValidLocationForIntrinsic(DL) && 4303 "Expected inlined-at fields to agree"); 4304 if (Op->isReg()) 4305 FuncInfo.ArgDbgValues.push_back( 4306 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4307 Op->getReg(), Offset, Variable, Expr)); 4308 else 4309 FuncInfo.ArgDbgValues.push_back( 4310 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4311 .addOperand(*Op) 4312 .addImm(Offset) 4313 .addMetadata(Variable) 4314 .addMetadata(Expr)); 4315 4316 return true; 4317 } 4318 4319 // VisualStudio defines setjmp as _setjmp 4320 #if defined(_MSC_VER) && defined(setjmp) && \ 4321 !defined(setjmp_undefined_for_msvc) 4322 # pragma push_macro("setjmp") 4323 # undef setjmp 4324 # define setjmp_undefined_for_msvc 4325 #endif 4326 4327 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4328 /// we want to emit this as a call to a named external function, return the name 4329 /// otherwise lower it and return null. 4330 const char * 4331 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4332 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4333 SDLoc sdl = getCurSDLoc(); 4334 DebugLoc dl = getCurDebugLoc(); 4335 SDValue Res; 4336 4337 switch (Intrinsic) { 4338 default: 4339 // By default, turn this into a target intrinsic node. 4340 visitTargetIntrinsic(I, Intrinsic); 4341 return nullptr; 4342 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4343 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4344 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4345 case Intrinsic::returnaddress: 4346 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4347 TLI.getPointerTy(DAG.getDataLayout()), 4348 getValue(I.getArgOperand(0)))); 4349 return nullptr; 4350 case Intrinsic::frameaddress: 4351 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4352 TLI.getPointerTy(DAG.getDataLayout()), 4353 getValue(I.getArgOperand(0)))); 4354 return nullptr; 4355 case Intrinsic::read_register: { 4356 Value *Reg = I.getArgOperand(0); 4357 SDValue Chain = getRoot(); 4358 SDValue RegName = 4359 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4360 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4361 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4362 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4363 setValue(&I, Res); 4364 DAG.setRoot(Res.getValue(1)); 4365 return nullptr; 4366 } 4367 case Intrinsic::write_register: { 4368 Value *Reg = I.getArgOperand(0); 4369 Value *RegValue = I.getArgOperand(1); 4370 SDValue Chain = getRoot(); 4371 SDValue RegName = 4372 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4373 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4374 RegName, getValue(RegValue))); 4375 return nullptr; 4376 } 4377 case Intrinsic::setjmp: 4378 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4379 case Intrinsic::longjmp: 4380 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4381 case Intrinsic::memcpy: { 4382 SDValue Op1 = getValue(I.getArgOperand(0)); 4383 SDValue Op2 = getValue(I.getArgOperand(1)); 4384 SDValue Op3 = getValue(I.getArgOperand(2)); 4385 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4386 if (!Align) 4387 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4388 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4389 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4390 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4391 false, isTC, 4392 MachinePointerInfo(I.getArgOperand(0)), 4393 MachinePointerInfo(I.getArgOperand(1))); 4394 updateDAGForMaybeTailCall(MC); 4395 return nullptr; 4396 } 4397 case Intrinsic::memset: { 4398 SDValue Op1 = getValue(I.getArgOperand(0)); 4399 SDValue Op2 = getValue(I.getArgOperand(1)); 4400 SDValue Op3 = getValue(I.getArgOperand(2)); 4401 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4402 if (!Align) 4403 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4404 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4405 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4406 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4407 isTC, MachinePointerInfo(I.getArgOperand(0))); 4408 updateDAGForMaybeTailCall(MS); 4409 return nullptr; 4410 } 4411 case Intrinsic::memmove: { 4412 SDValue Op1 = getValue(I.getArgOperand(0)); 4413 SDValue Op2 = getValue(I.getArgOperand(1)); 4414 SDValue Op3 = getValue(I.getArgOperand(2)); 4415 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4416 if (!Align) 4417 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4418 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4419 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4420 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4421 isTC, MachinePointerInfo(I.getArgOperand(0)), 4422 MachinePointerInfo(I.getArgOperand(1))); 4423 updateDAGForMaybeTailCall(MM); 4424 return nullptr; 4425 } 4426 case Intrinsic::dbg_declare: { 4427 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4428 DILocalVariable *Variable = DI.getVariable(); 4429 DIExpression *Expression = DI.getExpression(); 4430 const Value *Address = DI.getAddress(); 4431 assert(Variable && "Missing variable"); 4432 if (!Address) { 4433 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4434 return nullptr; 4435 } 4436 4437 // Check if address has undef value. 4438 if (isa<UndefValue>(Address) || 4439 (Address->use_empty() && !isa<Argument>(Address))) { 4440 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4441 return nullptr; 4442 } 4443 4444 SDValue &N = NodeMap[Address]; 4445 if (!N.getNode() && isa<Argument>(Address)) 4446 // Check unused arguments map. 4447 N = UnusedArgNodeMap[Address]; 4448 SDDbgValue *SDV; 4449 if (N.getNode()) { 4450 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4451 Address = BCI->getOperand(0); 4452 // Parameters are handled specially. 4453 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4454 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4455 if (isParameter && FINode) { 4456 // Byval parameter. We have a frame index at this point. 4457 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4458 FINode->getIndex(), 0, dl, SDNodeOrder); 4459 } else if (isa<Argument>(Address)) { 4460 // Address is an argument, so try to emit its dbg value using 4461 // virtual register info from the FuncInfo.ValueMap. 4462 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4463 N); 4464 return nullptr; 4465 } else { 4466 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4467 true, 0, dl, SDNodeOrder); 4468 } 4469 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4470 } else { 4471 // If Address is an argument then try to emit its dbg value using 4472 // virtual register info from the FuncInfo.ValueMap. 4473 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4474 N)) { 4475 // If variable is pinned by a alloca in dominating bb then 4476 // use StaticAllocaMap. 4477 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4478 if (AI->getParent() != DI.getParent()) { 4479 DenseMap<const AllocaInst*, int>::iterator SI = 4480 FuncInfo.StaticAllocaMap.find(AI); 4481 if (SI != FuncInfo.StaticAllocaMap.end()) { 4482 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4483 0, dl, SDNodeOrder); 4484 DAG.AddDbgValue(SDV, nullptr, false); 4485 return nullptr; 4486 } 4487 } 4488 } 4489 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4490 } 4491 } 4492 return nullptr; 4493 } 4494 case Intrinsic::dbg_value: { 4495 const DbgValueInst &DI = cast<DbgValueInst>(I); 4496 assert(DI.getVariable() && "Missing variable"); 4497 4498 DILocalVariable *Variable = DI.getVariable(); 4499 DIExpression *Expression = DI.getExpression(); 4500 uint64_t Offset = DI.getOffset(); 4501 const Value *V = DI.getValue(); 4502 if (!V) 4503 return nullptr; 4504 4505 SDDbgValue *SDV; 4506 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4507 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4508 SDNodeOrder); 4509 DAG.AddDbgValue(SDV, nullptr, false); 4510 } else { 4511 // Do not use getValue() in here; we don't want to generate code at 4512 // this point if it hasn't been done yet. 4513 SDValue N = NodeMap[V]; 4514 if (!N.getNode() && isa<Argument>(V)) 4515 // Check unused arguments map. 4516 N = UnusedArgNodeMap[V]; 4517 if (N.getNode()) { 4518 // A dbg.value for an alloca is always indirect. 4519 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4520 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4521 IsIndirect, N)) { 4522 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4523 IsIndirect, Offset, dl, SDNodeOrder); 4524 DAG.AddDbgValue(SDV, N.getNode(), false); 4525 } 4526 } else if (!V->use_empty() ) { 4527 // Do not call getValue(V) yet, as we don't want to generate code. 4528 // Remember it for later. 4529 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4530 DanglingDebugInfoMap[V] = DDI; 4531 } else { 4532 // We may expand this to cover more cases. One case where we have no 4533 // data available is an unreferenced parameter. 4534 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4535 } 4536 } 4537 4538 // Build a debug info table entry. 4539 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4540 V = BCI->getOperand(0); 4541 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4542 // Don't handle byval struct arguments or VLAs, for example. 4543 if (!AI) { 4544 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4545 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4546 return nullptr; 4547 } 4548 DenseMap<const AllocaInst*, int>::iterator SI = 4549 FuncInfo.StaticAllocaMap.find(AI); 4550 if (SI == FuncInfo.StaticAllocaMap.end()) 4551 return nullptr; // VLAs. 4552 return nullptr; 4553 } 4554 4555 case Intrinsic::eh_typeid_for: { 4556 // Find the type id for the given typeinfo. 4557 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4558 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4559 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4560 setValue(&I, Res); 4561 return nullptr; 4562 } 4563 4564 case Intrinsic::eh_return_i32: 4565 case Intrinsic::eh_return_i64: 4566 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4567 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4568 MVT::Other, 4569 getControlRoot(), 4570 getValue(I.getArgOperand(0)), 4571 getValue(I.getArgOperand(1)))); 4572 return nullptr; 4573 case Intrinsic::eh_unwind_init: 4574 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4575 return nullptr; 4576 case Intrinsic::eh_dwarf_cfa: { 4577 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4578 TLI.getPointerTy(DAG.getDataLayout())); 4579 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4580 CfaArg.getValueType(), 4581 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4582 CfaArg.getValueType()), 4583 CfaArg); 4584 SDValue FA = DAG.getNode( 4585 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4586 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4587 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4588 FA, Offset)); 4589 return nullptr; 4590 } 4591 case Intrinsic::eh_sjlj_callsite: { 4592 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4593 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4594 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4595 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4596 4597 MMI.setCurrentCallSite(CI->getZExtValue()); 4598 return nullptr; 4599 } 4600 case Intrinsic::eh_sjlj_functioncontext: { 4601 // Get and store the index of the function context. 4602 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4603 AllocaInst *FnCtx = 4604 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4605 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4606 MFI->setFunctionContextIndex(FI); 4607 return nullptr; 4608 } 4609 case Intrinsic::eh_sjlj_setjmp: { 4610 SDValue Ops[2]; 4611 Ops[0] = getRoot(); 4612 Ops[1] = getValue(I.getArgOperand(0)); 4613 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4614 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4615 setValue(&I, Op.getValue(0)); 4616 DAG.setRoot(Op.getValue(1)); 4617 return nullptr; 4618 } 4619 case Intrinsic::eh_sjlj_longjmp: { 4620 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4621 getRoot(), getValue(I.getArgOperand(0)))); 4622 return nullptr; 4623 } 4624 case Intrinsic::eh_sjlj_setup_dispatch: { 4625 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4626 getRoot())); 4627 return nullptr; 4628 } 4629 4630 case Intrinsic::masked_gather: 4631 visitMaskedGather(I); 4632 return nullptr; 4633 case Intrinsic::masked_load: 4634 visitMaskedLoad(I); 4635 return nullptr; 4636 case Intrinsic::masked_scatter: 4637 visitMaskedScatter(I); 4638 return nullptr; 4639 case Intrinsic::masked_store: 4640 visitMaskedStore(I); 4641 return nullptr; 4642 case Intrinsic::x86_mmx_pslli_w: 4643 case Intrinsic::x86_mmx_pslli_d: 4644 case Intrinsic::x86_mmx_pslli_q: 4645 case Intrinsic::x86_mmx_psrli_w: 4646 case Intrinsic::x86_mmx_psrli_d: 4647 case Intrinsic::x86_mmx_psrli_q: 4648 case Intrinsic::x86_mmx_psrai_w: 4649 case Intrinsic::x86_mmx_psrai_d: { 4650 SDValue ShAmt = getValue(I.getArgOperand(1)); 4651 if (isa<ConstantSDNode>(ShAmt)) { 4652 visitTargetIntrinsic(I, Intrinsic); 4653 return nullptr; 4654 } 4655 unsigned NewIntrinsic = 0; 4656 EVT ShAmtVT = MVT::v2i32; 4657 switch (Intrinsic) { 4658 case Intrinsic::x86_mmx_pslli_w: 4659 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4660 break; 4661 case Intrinsic::x86_mmx_pslli_d: 4662 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4663 break; 4664 case Intrinsic::x86_mmx_pslli_q: 4665 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4666 break; 4667 case Intrinsic::x86_mmx_psrli_w: 4668 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4669 break; 4670 case Intrinsic::x86_mmx_psrli_d: 4671 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4672 break; 4673 case Intrinsic::x86_mmx_psrli_q: 4674 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4675 break; 4676 case Intrinsic::x86_mmx_psrai_w: 4677 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4678 break; 4679 case Intrinsic::x86_mmx_psrai_d: 4680 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4681 break; 4682 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4683 } 4684 4685 // The vector shift intrinsics with scalars uses 32b shift amounts but 4686 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4687 // to be zero. 4688 // We must do this early because v2i32 is not a legal type. 4689 SDValue ShOps[2]; 4690 ShOps[0] = ShAmt; 4691 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4692 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4693 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4694 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4695 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4696 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4697 getValue(I.getArgOperand(0)), ShAmt); 4698 setValue(&I, Res); 4699 return nullptr; 4700 } 4701 case Intrinsic::convertff: 4702 case Intrinsic::convertfsi: 4703 case Intrinsic::convertfui: 4704 case Intrinsic::convertsif: 4705 case Intrinsic::convertuif: 4706 case Intrinsic::convertss: 4707 case Intrinsic::convertsu: 4708 case Intrinsic::convertus: 4709 case Intrinsic::convertuu: { 4710 ISD::CvtCode Code = ISD::CVT_INVALID; 4711 switch (Intrinsic) { 4712 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4713 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4714 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4715 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4716 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4717 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4718 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4719 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4720 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4721 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4722 } 4723 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4724 const Value *Op1 = I.getArgOperand(0); 4725 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4726 DAG.getValueType(DestVT), 4727 DAG.getValueType(getValue(Op1).getValueType()), 4728 getValue(I.getArgOperand(1)), 4729 getValue(I.getArgOperand(2)), 4730 Code); 4731 setValue(&I, Res); 4732 return nullptr; 4733 } 4734 case Intrinsic::powi: 4735 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4736 getValue(I.getArgOperand(1)), DAG)); 4737 return nullptr; 4738 case Intrinsic::log: 4739 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4740 return nullptr; 4741 case Intrinsic::log2: 4742 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4743 return nullptr; 4744 case Intrinsic::log10: 4745 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4746 return nullptr; 4747 case Intrinsic::exp: 4748 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4749 return nullptr; 4750 case Intrinsic::exp2: 4751 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4752 return nullptr; 4753 case Intrinsic::pow: 4754 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4755 getValue(I.getArgOperand(1)), DAG, TLI)); 4756 return nullptr; 4757 case Intrinsic::sqrt: 4758 case Intrinsic::fabs: 4759 case Intrinsic::sin: 4760 case Intrinsic::cos: 4761 case Intrinsic::floor: 4762 case Intrinsic::ceil: 4763 case Intrinsic::trunc: 4764 case Intrinsic::rint: 4765 case Intrinsic::nearbyint: 4766 case Intrinsic::round: { 4767 unsigned Opcode; 4768 switch (Intrinsic) { 4769 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4770 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4771 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4772 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4773 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4774 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4775 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4776 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4777 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4778 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4779 case Intrinsic::round: Opcode = ISD::FROUND; break; 4780 } 4781 4782 setValue(&I, DAG.getNode(Opcode, sdl, 4783 getValue(I.getArgOperand(0)).getValueType(), 4784 getValue(I.getArgOperand(0)))); 4785 return nullptr; 4786 } 4787 case Intrinsic::minnum: 4788 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4789 getValue(I.getArgOperand(0)).getValueType(), 4790 getValue(I.getArgOperand(0)), 4791 getValue(I.getArgOperand(1)))); 4792 return nullptr; 4793 case Intrinsic::maxnum: 4794 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4795 getValue(I.getArgOperand(0)).getValueType(), 4796 getValue(I.getArgOperand(0)), 4797 getValue(I.getArgOperand(1)))); 4798 return nullptr; 4799 case Intrinsic::copysign: 4800 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4801 getValue(I.getArgOperand(0)).getValueType(), 4802 getValue(I.getArgOperand(0)), 4803 getValue(I.getArgOperand(1)))); 4804 return nullptr; 4805 case Intrinsic::fma: 4806 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4807 getValue(I.getArgOperand(0)).getValueType(), 4808 getValue(I.getArgOperand(0)), 4809 getValue(I.getArgOperand(1)), 4810 getValue(I.getArgOperand(2)))); 4811 return nullptr; 4812 case Intrinsic::fmuladd: { 4813 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4814 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4815 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4816 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4817 getValue(I.getArgOperand(0)).getValueType(), 4818 getValue(I.getArgOperand(0)), 4819 getValue(I.getArgOperand(1)), 4820 getValue(I.getArgOperand(2)))); 4821 } else { 4822 // TODO: Intrinsic calls should have fast-math-flags. 4823 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4824 getValue(I.getArgOperand(0)).getValueType(), 4825 getValue(I.getArgOperand(0)), 4826 getValue(I.getArgOperand(1))); 4827 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4828 getValue(I.getArgOperand(0)).getValueType(), 4829 Mul, 4830 getValue(I.getArgOperand(2))); 4831 setValue(&I, Add); 4832 } 4833 return nullptr; 4834 } 4835 case Intrinsic::convert_to_fp16: 4836 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4837 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4838 getValue(I.getArgOperand(0)), 4839 DAG.getTargetConstant(0, sdl, 4840 MVT::i32)))); 4841 return nullptr; 4842 case Intrinsic::convert_from_fp16: 4843 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4844 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4845 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4846 getValue(I.getArgOperand(0))))); 4847 return nullptr; 4848 case Intrinsic::pcmarker: { 4849 SDValue Tmp = getValue(I.getArgOperand(0)); 4850 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4851 return nullptr; 4852 } 4853 case Intrinsic::readcyclecounter: { 4854 SDValue Op = getRoot(); 4855 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4856 DAG.getVTList(MVT::i64, MVT::Other), Op); 4857 setValue(&I, Res); 4858 DAG.setRoot(Res.getValue(1)); 4859 return nullptr; 4860 } 4861 case Intrinsic::bitreverse: 4862 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4863 getValue(I.getArgOperand(0)).getValueType(), 4864 getValue(I.getArgOperand(0)))); 4865 return nullptr; 4866 case Intrinsic::bswap: 4867 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4868 getValue(I.getArgOperand(0)).getValueType(), 4869 getValue(I.getArgOperand(0)))); 4870 return nullptr; 4871 case Intrinsic::cttz: { 4872 SDValue Arg = getValue(I.getArgOperand(0)); 4873 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4874 EVT Ty = Arg.getValueType(); 4875 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4876 sdl, Ty, Arg)); 4877 return nullptr; 4878 } 4879 case Intrinsic::ctlz: { 4880 SDValue Arg = getValue(I.getArgOperand(0)); 4881 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4882 EVT Ty = Arg.getValueType(); 4883 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4884 sdl, Ty, Arg)); 4885 return nullptr; 4886 } 4887 case Intrinsic::ctpop: { 4888 SDValue Arg = getValue(I.getArgOperand(0)); 4889 EVT Ty = Arg.getValueType(); 4890 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4891 return nullptr; 4892 } 4893 case Intrinsic::stacksave: { 4894 SDValue Op = getRoot(); 4895 Res = DAG.getNode( 4896 ISD::STACKSAVE, sdl, 4897 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4898 setValue(&I, Res); 4899 DAG.setRoot(Res.getValue(1)); 4900 return nullptr; 4901 } 4902 case Intrinsic::stackrestore: { 4903 Res = getValue(I.getArgOperand(0)); 4904 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4905 return nullptr; 4906 } 4907 case Intrinsic::get_dynamic_area_offset: { 4908 SDValue Op = getRoot(); 4909 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4910 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4911 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 4912 // target. 4913 if (PtrTy != ResTy) 4914 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 4915 " intrinsic!"); 4916 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 4917 Op); 4918 DAG.setRoot(Op); 4919 setValue(&I, Res); 4920 return nullptr; 4921 } 4922 case Intrinsic::stackprotector: { 4923 // Emit code into the DAG to store the stack guard onto the stack. 4924 MachineFunction &MF = DAG.getMachineFunction(); 4925 MachineFrameInfo *MFI = MF.getFrameInfo(); 4926 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4927 SDValue Src, Chain = getRoot(); 4928 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4929 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4930 4931 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4932 // global variable __stack_chk_guard. 4933 if (!GV) 4934 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4935 if (BC->getOpcode() == Instruction::BitCast) 4936 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4937 4938 if (GV && TLI.useLoadStackGuardNode()) { 4939 // Emit a LOAD_STACK_GUARD node. 4940 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4941 sdl, PtrTy, Chain); 4942 MachinePointerInfo MPInfo(GV); 4943 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4944 unsigned Flags = MachineMemOperand::MOLoad | 4945 MachineMemOperand::MOInvariant; 4946 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4947 PtrTy.getSizeInBits() / 8, 4948 DAG.getEVTAlignment(PtrTy)); 4949 Node->setMemRefs(MemRefs, MemRefs + 1); 4950 4951 // Copy the guard value to a virtual register so that it can be 4952 // retrieved in the epilogue. 4953 Src = SDValue(Node, 0); 4954 const TargetRegisterClass *RC = 4955 TLI.getRegClassFor(Src.getSimpleValueType()); 4956 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4957 4958 SPDescriptor.setGuardReg(Reg); 4959 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4960 } else { 4961 Src = getValue(I.getArgOperand(0)); // The guard's value. 4962 } 4963 4964 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4965 4966 int FI = FuncInfo.StaticAllocaMap[Slot]; 4967 MFI->setStackProtectorIndex(FI); 4968 4969 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4970 4971 // Store the stack protector onto the stack. 4972 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4973 DAG.getMachineFunction(), FI), 4974 true, false, 0); 4975 setValue(&I, Res); 4976 DAG.setRoot(Res); 4977 return nullptr; 4978 } 4979 case Intrinsic::objectsize: { 4980 // If we don't know by now, we're never going to know. 4981 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4982 4983 assert(CI && "Non-constant type in __builtin_object_size?"); 4984 4985 SDValue Arg = getValue(I.getCalledValue()); 4986 EVT Ty = Arg.getValueType(); 4987 4988 if (CI->isZero()) 4989 Res = DAG.getConstant(-1ULL, sdl, Ty); 4990 else 4991 Res = DAG.getConstant(0, sdl, Ty); 4992 4993 setValue(&I, Res); 4994 return nullptr; 4995 } 4996 case Intrinsic::annotation: 4997 case Intrinsic::ptr_annotation: 4998 // Drop the intrinsic, but forward the value 4999 setValue(&I, getValue(I.getOperand(0))); 5000 return nullptr; 5001 case Intrinsic::assume: 5002 case Intrinsic::var_annotation: 5003 // Discard annotate attributes and assumptions 5004 return nullptr; 5005 5006 case Intrinsic::init_trampoline: { 5007 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5008 5009 SDValue Ops[6]; 5010 Ops[0] = getRoot(); 5011 Ops[1] = getValue(I.getArgOperand(0)); 5012 Ops[2] = getValue(I.getArgOperand(1)); 5013 Ops[3] = getValue(I.getArgOperand(2)); 5014 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5015 Ops[5] = DAG.getSrcValue(F); 5016 5017 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5018 5019 DAG.setRoot(Res); 5020 return nullptr; 5021 } 5022 case Intrinsic::adjust_trampoline: { 5023 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5024 TLI.getPointerTy(DAG.getDataLayout()), 5025 getValue(I.getArgOperand(0)))); 5026 return nullptr; 5027 } 5028 case Intrinsic::gcroot: 5029 if (GFI) { 5030 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5031 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5032 5033 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5034 GFI->addStackRoot(FI->getIndex(), TypeMap); 5035 } 5036 return nullptr; 5037 case Intrinsic::gcread: 5038 case Intrinsic::gcwrite: 5039 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5040 case Intrinsic::flt_rounds: 5041 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5042 return nullptr; 5043 5044 case Intrinsic::expect: { 5045 // Just replace __builtin_expect(exp, c) with EXP. 5046 setValue(&I, getValue(I.getArgOperand(0))); 5047 return nullptr; 5048 } 5049 5050 case Intrinsic::debugtrap: 5051 case Intrinsic::trap: { 5052 StringRef TrapFuncName = 5053 I.getAttributes() 5054 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5055 .getValueAsString(); 5056 if (TrapFuncName.empty()) { 5057 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5058 ISD::TRAP : ISD::DEBUGTRAP; 5059 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5060 return nullptr; 5061 } 5062 TargetLowering::ArgListTy Args; 5063 5064 TargetLowering::CallLoweringInfo CLI(DAG); 5065 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5066 CallingConv::C, I.getType(), 5067 DAG.getExternalSymbol(TrapFuncName.data(), 5068 TLI.getPointerTy(DAG.getDataLayout())), 5069 std::move(Args), 0); 5070 5071 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5072 DAG.setRoot(Result.second); 5073 return nullptr; 5074 } 5075 5076 case Intrinsic::uadd_with_overflow: 5077 case Intrinsic::sadd_with_overflow: 5078 case Intrinsic::usub_with_overflow: 5079 case Intrinsic::ssub_with_overflow: 5080 case Intrinsic::umul_with_overflow: 5081 case Intrinsic::smul_with_overflow: { 5082 ISD::NodeType Op; 5083 switch (Intrinsic) { 5084 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5085 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5086 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5087 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5088 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5089 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5090 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5091 } 5092 SDValue Op1 = getValue(I.getArgOperand(0)); 5093 SDValue Op2 = getValue(I.getArgOperand(1)); 5094 5095 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5096 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5097 return nullptr; 5098 } 5099 case Intrinsic::prefetch: { 5100 SDValue Ops[5]; 5101 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5102 Ops[0] = getRoot(); 5103 Ops[1] = getValue(I.getArgOperand(0)); 5104 Ops[2] = getValue(I.getArgOperand(1)); 5105 Ops[3] = getValue(I.getArgOperand(2)); 5106 Ops[4] = getValue(I.getArgOperand(3)); 5107 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5108 DAG.getVTList(MVT::Other), Ops, 5109 EVT::getIntegerVT(*Context, 8), 5110 MachinePointerInfo(I.getArgOperand(0)), 5111 0, /* align */ 5112 false, /* volatile */ 5113 rw==0, /* read */ 5114 rw==1)); /* write */ 5115 return nullptr; 5116 } 5117 case Intrinsic::lifetime_start: 5118 case Intrinsic::lifetime_end: { 5119 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5120 // Stack coloring is not enabled in O0, discard region information. 5121 if (TM.getOptLevel() == CodeGenOpt::None) 5122 return nullptr; 5123 5124 SmallVector<Value *, 4> Allocas; 5125 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5126 5127 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5128 E = Allocas.end(); Object != E; ++Object) { 5129 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5130 5131 // Could not find an Alloca. 5132 if (!LifetimeObject) 5133 continue; 5134 5135 // First check that the Alloca is static, otherwise it won't have a 5136 // valid frame index. 5137 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5138 if (SI == FuncInfo.StaticAllocaMap.end()) 5139 return nullptr; 5140 5141 int FI = SI->second; 5142 5143 SDValue Ops[2]; 5144 Ops[0] = getRoot(); 5145 Ops[1] = 5146 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5147 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5148 5149 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5150 DAG.setRoot(Res); 5151 } 5152 return nullptr; 5153 } 5154 case Intrinsic::invariant_start: 5155 // Discard region information. 5156 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5157 return nullptr; 5158 case Intrinsic::invariant_end: 5159 // Discard region information. 5160 return nullptr; 5161 case Intrinsic::stackprotectorcheck: { 5162 // Do not actually emit anything for this basic block. Instead we initialize 5163 // the stack protector descriptor and export the guard variable so we can 5164 // access it in FinishBasicBlock. 5165 const BasicBlock *BB = I.getParent(); 5166 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5167 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5168 5169 // Flush our exports since we are going to process a terminator. 5170 (void)getControlRoot(); 5171 return nullptr; 5172 } 5173 case Intrinsic::clear_cache: 5174 return TLI.getClearCacheBuiltinName(); 5175 case Intrinsic::donothing: 5176 // ignore 5177 return nullptr; 5178 case Intrinsic::experimental_stackmap: { 5179 visitStackmap(I); 5180 return nullptr; 5181 } 5182 case Intrinsic::experimental_patchpoint_void: 5183 case Intrinsic::experimental_patchpoint_i64: { 5184 visitPatchpoint(&I); 5185 return nullptr; 5186 } 5187 case Intrinsic::experimental_gc_statepoint: { 5188 visitStatepoint(I); 5189 return nullptr; 5190 } 5191 case Intrinsic::experimental_gc_result_int: 5192 case Intrinsic::experimental_gc_result_float: 5193 case Intrinsic::experimental_gc_result_ptr: 5194 case Intrinsic::experimental_gc_result: { 5195 visitGCResult(I); 5196 return nullptr; 5197 } 5198 case Intrinsic::experimental_gc_relocate: { 5199 visitGCRelocate(I); 5200 return nullptr; 5201 } 5202 case Intrinsic::instrprof_increment: 5203 llvm_unreachable("instrprof failed to lower an increment"); 5204 case Intrinsic::instrprof_value_profile: 5205 llvm_unreachable("instrprof failed to lower a value profiling call"); 5206 case Intrinsic::localescape: { 5207 MachineFunction &MF = DAG.getMachineFunction(); 5208 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5209 5210 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5211 // is the same on all targets. 5212 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5213 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5214 if (isa<ConstantPointerNull>(Arg)) 5215 continue; // Skip null pointers. They represent a hole in index space. 5216 AllocaInst *Slot = cast<AllocaInst>(Arg); 5217 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5218 "can only escape static allocas"); 5219 int FI = FuncInfo.StaticAllocaMap[Slot]; 5220 MCSymbol *FrameAllocSym = 5221 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5222 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5223 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5224 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5225 .addSym(FrameAllocSym) 5226 .addFrameIndex(FI); 5227 } 5228 5229 return nullptr; 5230 } 5231 5232 case Intrinsic::localrecover: { 5233 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5234 MachineFunction &MF = DAG.getMachineFunction(); 5235 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5236 5237 // Get the symbol that defines the frame offset. 5238 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5239 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5240 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5241 MCSymbol *FrameAllocSym = 5242 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5243 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5244 5245 // Create a MCSymbol for the label to avoid any target lowering 5246 // that would make this PC relative. 5247 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5248 SDValue OffsetVal = 5249 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5250 5251 // Add the offset to the FP. 5252 Value *FP = I.getArgOperand(1); 5253 SDValue FPVal = getValue(FP); 5254 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5255 setValue(&I, Add); 5256 5257 return nullptr; 5258 } 5259 5260 case Intrinsic::eh_exceptionpointer: 5261 case Intrinsic::eh_exceptioncode: { 5262 // Get the exception pointer vreg, copy from it, and resize it to fit. 5263 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5264 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5265 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5266 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5267 SDValue N = 5268 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5269 if (Intrinsic == Intrinsic::eh_exceptioncode) 5270 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5271 setValue(&I, N); 5272 return nullptr; 5273 } 5274 } 5275 } 5276 5277 std::pair<SDValue, SDValue> 5278 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5279 const BasicBlock *EHPadBB) { 5280 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5281 MCSymbol *BeginLabel = nullptr; 5282 5283 if (EHPadBB) { 5284 // Insert a label before the invoke call to mark the try range. This can be 5285 // used to detect deletion of the invoke via the MachineModuleInfo. 5286 BeginLabel = MMI.getContext().createTempSymbol(); 5287 5288 // For SjLj, keep track of which landing pads go with which invokes 5289 // so as to maintain the ordering of pads in the LSDA. 5290 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5291 if (CallSiteIndex) { 5292 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5293 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5294 5295 // Now that the call site is handled, stop tracking it. 5296 MMI.setCurrentCallSite(0); 5297 } 5298 5299 // Both PendingLoads and PendingExports must be flushed here; 5300 // this call might not return. 5301 (void)getRoot(); 5302 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5303 5304 CLI.setChain(getRoot()); 5305 } 5306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5307 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5308 5309 assert((CLI.IsTailCall || Result.second.getNode()) && 5310 "Non-null chain expected with non-tail call!"); 5311 assert((Result.second.getNode() || !Result.first.getNode()) && 5312 "Null value expected with tail call!"); 5313 5314 if (!Result.second.getNode()) { 5315 // As a special case, a null chain means that a tail call has been emitted 5316 // and the DAG root is already updated. 5317 HasTailCall = true; 5318 5319 // Since there's no actual continuation from this block, nothing can be 5320 // relying on us setting vregs for them. 5321 PendingExports.clear(); 5322 } else { 5323 DAG.setRoot(Result.second); 5324 } 5325 5326 if (EHPadBB) { 5327 // Insert a label at the end of the invoke call to mark the try range. This 5328 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5329 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5330 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5331 5332 // Inform MachineModuleInfo of range. 5333 if (MMI.hasEHFunclets()) { 5334 assert(CLI.CS); 5335 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5336 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5337 BeginLabel, EndLabel); 5338 } else { 5339 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5340 } 5341 } 5342 5343 return Result; 5344 } 5345 5346 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5347 bool isTailCall, 5348 const BasicBlock *EHPadBB) { 5349 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5350 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5351 Type *RetTy = FTy->getReturnType(); 5352 5353 TargetLowering::ArgListTy Args; 5354 TargetLowering::ArgListEntry Entry; 5355 Args.reserve(CS.arg_size()); 5356 5357 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5358 i != e; ++i) { 5359 const Value *V = *i; 5360 5361 // Skip empty types 5362 if (V->getType()->isEmptyTy()) 5363 continue; 5364 5365 SDValue ArgNode = getValue(V); 5366 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5367 5368 // Skip the first return-type Attribute to get to params. 5369 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5370 Args.push_back(Entry); 5371 5372 // If we have an explicit sret argument that is an Instruction, (i.e., it 5373 // might point to function-local memory), we can't meaningfully tail-call. 5374 if (Entry.isSRet && isa<Instruction>(V)) 5375 isTailCall = false; 5376 } 5377 5378 // Check if target-independent constraints permit a tail call here. 5379 // Target-dependent constraints are checked within TLI->LowerCallTo. 5380 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5381 isTailCall = false; 5382 5383 TargetLowering::CallLoweringInfo CLI(DAG); 5384 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5385 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5386 .setTailCall(isTailCall); 5387 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5388 5389 if (Result.first.getNode()) 5390 setValue(CS.getInstruction(), Result.first); 5391 } 5392 5393 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5394 /// value is equal or not-equal to zero. 5395 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5396 for (const User *U : V->users()) { 5397 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5398 if (IC->isEquality()) 5399 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5400 if (C->isNullValue()) 5401 continue; 5402 // Unknown instruction. 5403 return false; 5404 } 5405 return true; 5406 } 5407 5408 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5409 Type *LoadTy, 5410 SelectionDAGBuilder &Builder) { 5411 5412 // Check to see if this load can be trivially constant folded, e.g. if the 5413 // input is from a string literal. 5414 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5415 // Cast pointer to the type we really want to load. 5416 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5417 PointerType::getUnqual(LoadTy)); 5418 5419 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5420 const_cast<Constant *>(LoadInput), *Builder.DL)) 5421 return Builder.getValue(LoadCst); 5422 } 5423 5424 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5425 // still constant memory, the input chain can be the entry node. 5426 SDValue Root; 5427 bool ConstantMemory = false; 5428 5429 // Do not serialize (non-volatile) loads of constant memory with anything. 5430 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5431 Root = Builder.DAG.getEntryNode(); 5432 ConstantMemory = true; 5433 } else { 5434 // Do not serialize non-volatile loads against each other. 5435 Root = Builder.DAG.getRoot(); 5436 } 5437 5438 SDValue Ptr = Builder.getValue(PtrVal); 5439 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5440 Ptr, MachinePointerInfo(PtrVal), 5441 false /*volatile*/, 5442 false /*nontemporal*/, 5443 false /*isinvariant*/, 1 /* align=1 */); 5444 5445 if (!ConstantMemory) 5446 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5447 return LoadVal; 5448 } 5449 5450 /// processIntegerCallValue - Record the value for an instruction that 5451 /// produces an integer result, converting the type where necessary. 5452 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5453 SDValue Value, 5454 bool IsSigned) { 5455 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5456 I.getType(), true); 5457 if (IsSigned) 5458 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5459 else 5460 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5461 setValue(&I, Value); 5462 } 5463 5464 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5465 /// If so, return true and lower it, otherwise return false and it will be 5466 /// lowered like a normal call. 5467 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5468 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5469 if (I.getNumArgOperands() != 3) 5470 return false; 5471 5472 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5473 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5474 !I.getArgOperand(2)->getType()->isIntegerTy() || 5475 !I.getType()->isIntegerTy()) 5476 return false; 5477 5478 const Value *Size = I.getArgOperand(2); 5479 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5480 if (CSize && CSize->getZExtValue() == 0) { 5481 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5482 I.getType(), true); 5483 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5484 return true; 5485 } 5486 5487 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5488 std::pair<SDValue, SDValue> Res = 5489 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5490 getValue(LHS), getValue(RHS), getValue(Size), 5491 MachinePointerInfo(LHS), 5492 MachinePointerInfo(RHS)); 5493 if (Res.first.getNode()) { 5494 processIntegerCallValue(I, Res.first, true); 5495 PendingLoads.push_back(Res.second); 5496 return true; 5497 } 5498 5499 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5500 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5501 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5502 bool ActuallyDoIt = true; 5503 MVT LoadVT; 5504 Type *LoadTy; 5505 switch (CSize->getZExtValue()) { 5506 default: 5507 LoadVT = MVT::Other; 5508 LoadTy = nullptr; 5509 ActuallyDoIt = false; 5510 break; 5511 case 2: 5512 LoadVT = MVT::i16; 5513 LoadTy = Type::getInt16Ty(CSize->getContext()); 5514 break; 5515 case 4: 5516 LoadVT = MVT::i32; 5517 LoadTy = Type::getInt32Ty(CSize->getContext()); 5518 break; 5519 case 8: 5520 LoadVT = MVT::i64; 5521 LoadTy = Type::getInt64Ty(CSize->getContext()); 5522 break; 5523 /* 5524 case 16: 5525 LoadVT = MVT::v4i32; 5526 LoadTy = Type::getInt32Ty(CSize->getContext()); 5527 LoadTy = VectorType::get(LoadTy, 4); 5528 break; 5529 */ 5530 } 5531 5532 // This turns into unaligned loads. We only do this if the target natively 5533 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5534 // we'll only produce a small number of byte loads. 5535 5536 // Require that we can find a legal MVT, and only do this if the target 5537 // supports unaligned loads of that type. Expanding into byte loads would 5538 // bloat the code. 5539 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5540 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5541 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5542 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5543 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5544 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5545 // TODO: Check alignment of src and dest ptrs. 5546 if (!TLI.isTypeLegal(LoadVT) || 5547 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5548 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5549 ActuallyDoIt = false; 5550 } 5551 5552 if (ActuallyDoIt) { 5553 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5554 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5555 5556 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5557 ISD::SETNE); 5558 processIntegerCallValue(I, Res, false); 5559 return true; 5560 } 5561 } 5562 5563 5564 return false; 5565 } 5566 5567 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5568 /// form. If so, return true and lower it, otherwise return false and it 5569 /// will be lowered like a normal call. 5570 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5571 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5572 if (I.getNumArgOperands() != 3) 5573 return false; 5574 5575 const Value *Src = I.getArgOperand(0); 5576 const Value *Char = I.getArgOperand(1); 5577 const Value *Length = I.getArgOperand(2); 5578 if (!Src->getType()->isPointerTy() || 5579 !Char->getType()->isIntegerTy() || 5580 !Length->getType()->isIntegerTy() || 5581 !I.getType()->isPointerTy()) 5582 return false; 5583 5584 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5585 std::pair<SDValue, SDValue> Res = 5586 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5587 getValue(Src), getValue(Char), getValue(Length), 5588 MachinePointerInfo(Src)); 5589 if (Res.first.getNode()) { 5590 setValue(&I, Res.first); 5591 PendingLoads.push_back(Res.second); 5592 return true; 5593 } 5594 5595 return false; 5596 } 5597 5598 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5599 /// optimized form. If so, return true and lower it, otherwise return false 5600 /// and it will be lowered like a normal call. 5601 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5602 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5603 if (I.getNumArgOperands() != 2) 5604 return false; 5605 5606 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5607 if (!Arg0->getType()->isPointerTy() || 5608 !Arg1->getType()->isPointerTy() || 5609 !I.getType()->isPointerTy()) 5610 return false; 5611 5612 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5613 std::pair<SDValue, SDValue> Res = 5614 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5615 getValue(Arg0), getValue(Arg1), 5616 MachinePointerInfo(Arg0), 5617 MachinePointerInfo(Arg1), isStpcpy); 5618 if (Res.first.getNode()) { 5619 setValue(&I, Res.first); 5620 DAG.setRoot(Res.second); 5621 return true; 5622 } 5623 5624 return false; 5625 } 5626 5627 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5628 /// If so, return true and lower it, otherwise return false and it will be 5629 /// lowered like a normal call. 5630 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5631 // Verify that the prototype makes sense. int strcmp(void*,void*) 5632 if (I.getNumArgOperands() != 2) 5633 return false; 5634 5635 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5636 if (!Arg0->getType()->isPointerTy() || 5637 !Arg1->getType()->isPointerTy() || 5638 !I.getType()->isIntegerTy()) 5639 return false; 5640 5641 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5642 std::pair<SDValue, SDValue> Res = 5643 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5644 getValue(Arg0), getValue(Arg1), 5645 MachinePointerInfo(Arg0), 5646 MachinePointerInfo(Arg1)); 5647 if (Res.first.getNode()) { 5648 processIntegerCallValue(I, Res.first, true); 5649 PendingLoads.push_back(Res.second); 5650 return true; 5651 } 5652 5653 return false; 5654 } 5655 5656 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5657 /// form. If so, return true and lower it, otherwise return false and it 5658 /// will be lowered like a normal call. 5659 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5660 // Verify that the prototype makes sense. size_t strlen(char *) 5661 if (I.getNumArgOperands() != 1) 5662 return false; 5663 5664 const Value *Arg0 = I.getArgOperand(0); 5665 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5666 return false; 5667 5668 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5669 std::pair<SDValue, SDValue> Res = 5670 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5671 getValue(Arg0), MachinePointerInfo(Arg0)); 5672 if (Res.first.getNode()) { 5673 processIntegerCallValue(I, Res.first, false); 5674 PendingLoads.push_back(Res.second); 5675 return true; 5676 } 5677 5678 return false; 5679 } 5680 5681 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5682 /// form. If so, return true and lower it, otherwise return false and it 5683 /// will be lowered like a normal call. 5684 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5685 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5686 if (I.getNumArgOperands() != 2) 5687 return false; 5688 5689 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5690 if (!Arg0->getType()->isPointerTy() || 5691 !Arg1->getType()->isIntegerTy() || 5692 !I.getType()->isIntegerTy()) 5693 return false; 5694 5695 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5696 std::pair<SDValue, SDValue> Res = 5697 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5698 getValue(Arg0), getValue(Arg1), 5699 MachinePointerInfo(Arg0)); 5700 if (Res.first.getNode()) { 5701 processIntegerCallValue(I, Res.first, false); 5702 PendingLoads.push_back(Res.second); 5703 return true; 5704 } 5705 5706 return false; 5707 } 5708 5709 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5710 /// operation (as expected), translate it to an SDNode with the specified opcode 5711 /// and return true. 5712 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5713 unsigned Opcode) { 5714 // Sanity check that it really is a unary floating-point call. 5715 if (I.getNumArgOperands() != 1 || 5716 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5717 I.getType() != I.getArgOperand(0)->getType() || 5718 !I.onlyReadsMemory()) 5719 return false; 5720 5721 SDValue Tmp = getValue(I.getArgOperand(0)); 5722 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5723 return true; 5724 } 5725 5726 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5727 /// operation (as expected), translate it to an SDNode with the specified opcode 5728 /// and return true. 5729 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5730 unsigned Opcode) { 5731 // Sanity check that it really is a binary floating-point call. 5732 if (I.getNumArgOperands() != 2 || 5733 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5734 I.getType() != I.getArgOperand(0)->getType() || 5735 I.getType() != I.getArgOperand(1)->getType() || 5736 !I.onlyReadsMemory()) 5737 return false; 5738 5739 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5740 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5741 EVT VT = Tmp0.getValueType(); 5742 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5743 return true; 5744 } 5745 5746 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5747 // Handle inline assembly differently. 5748 if (isa<InlineAsm>(I.getCalledValue())) { 5749 visitInlineAsm(&I); 5750 return; 5751 } 5752 5753 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5754 ComputeUsesVAFloatArgument(I, &MMI); 5755 5756 const char *RenameFn = nullptr; 5757 if (Function *F = I.getCalledFunction()) { 5758 if (F->isDeclaration()) { 5759 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5760 if (unsigned IID = II->getIntrinsicID(F)) { 5761 RenameFn = visitIntrinsicCall(I, IID); 5762 if (!RenameFn) 5763 return; 5764 } 5765 } 5766 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5767 RenameFn = visitIntrinsicCall(I, IID); 5768 if (!RenameFn) 5769 return; 5770 } 5771 } 5772 5773 // Check for well-known libc/libm calls. If the function is internal, it 5774 // can't be a library call. 5775 LibFunc::Func Func; 5776 if (!F->hasLocalLinkage() && F->hasName() && 5777 LibInfo->getLibFunc(F->getName(), Func) && 5778 LibInfo->hasOptimizedCodeGen(Func)) { 5779 switch (Func) { 5780 default: break; 5781 case LibFunc::copysign: 5782 case LibFunc::copysignf: 5783 case LibFunc::copysignl: 5784 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5785 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5786 I.getType() == I.getArgOperand(0)->getType() && 5787 I.getType() == I.getArgOperand(1)->getType() && 5788 I.onlyReadsMemory()) { 5789 SDValue LHS = getValue(I.getArgOperand(0)); 5790 SDValue RHS = getValue(I.getArgOperand(1)); 5791 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5792 LHS.getValueType(), LHS, RHS)); 5793 return; 5794 } 5795 break; 5796 case LibFunc::fabs: 5797 case LibFunc::fabsf: 5798 case LibFunc::fabsl: 5799 if (visitUnaryFloatCall(I, ISD::FABS)) 5800 return; 5801 break; 5802 case LibFunc::fmin: 5803 case LibFunc::fminf: 5804 case LibFunc::fminl: 5805 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5806 return; 5807 break; 5808 case LibFunc::fmax: 5809 case LibFunc::fmaxf: 5810 case LibFunc::fmaxl: 5811 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5812 return; 5813 break; 5814 case LibFunc::sin: 5815 case LibFunc::sinf: 5816 case LibFunc::sinl: 5817 if (visitUnaryFloatCall(I, ISD::FSIN)) 5818 return; 5819 break; 5820 case LibFunc::cos: 5821 case LibFunc::cosf: 5822 case LibFunc::cosl: 5823 if (visitUnaryFloatCall(I, ISD::FCOS)) 5824 return; 5825 break; 5826 case LibFunc::sqrt: 5827 case LibFunc::sqrtf: 5828 case LibFunc::sqrtl: 5829 case LibFunc::sqrt_finite: 5830 case LibFunc::sqrtf_finite: 5831 case LibFunc::sqrtl_finite: 5832 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5833 return; 5834 break; 5835 case LibFunc::floor: 5836 case LibFunc::floorf: 5837 case LibFunc::floorl: 5838 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5839 return; 5840 break; 5841 case LibFunc::nearbyint: 5842 case LibFunc::nearbyintf: 5843 case LibFunc::nearbyintl: 5844 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5845 return; 5846 break; 5847 case LibFunc::ceil: 5848 case LibFunc::ceilf: 5849 case LibFunc::ceill: 5850 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5851 return; 5852 break; 5853 case LibFunc::rint: 5854 case LibFunc::rintf: 5855 case LibFunc::rintl: 5856 if (visitUnaryFloatCall(I, ISD::FRINT)) 5857 return; 5858 break; 5859 case LibFunc::round: 5860 case LibFunc::roundf: 5861 case LibFunc::roundl: 5862 if (visitUnaryFloatCall(I, ISD::FROUND)) 5863 return; 5864 break; 5865 case LibFunc::trunc: 5866 case LibFunc::truncf: 5867 case LibFunc::truncl: 5868 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5869 return; 5870 break; 5871 case LibFunc::log2: 5872 case LibFunc::log2f: 5873 case LibFunc::log2l: 5874 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5875 return; 5876 break; 5877 case LibFunc::exp2: 5878 case LibFunc::exp2f: 5879 case LibFunc::exp2l: 5880 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5881 return; 5882 break; 5883 case LibFunc::memcmp: 5884 if (visitMemCmpCall(I)) 5885 return; 5886 break; 5887 case LibFunc::memchr: 5888 if (visitMemChrCall(I)) 5889 return; 5890 break; 5891 case LibFunc::strcpy: 5892 if (visitStrCpyCall(I, false)) 5893 return; 5894 break; 5895 case LibFunc::stpcpy: 5896 if (visitStrCpyCall(I, true)) 5897 return; 5898 break; 5899 case LibFunc::strcmp: 5900 if (visitStrCmpCall(I)) 5901 return; 5902 break; 5903 case LibFunc::strlen: 5904 if (visitStrLenCall(I)) 5905 return; 5906 break; 5907 case LibFunc::strnlen: 5908 if (visitStrNLenCall(I)) 5909 return; 5910 break; 5911 } 5912 } 5913 } 5914 5915 SDValue Callee; 5916 if (!RenameFn) 5917 Callee = getValue(I.getCalledValue()); 5918 else 5919 Callee = DAG.getExternalSymbol( 5920 RenameFn, 5921 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5922 5923 // Check if we can potentially perform a tail call. More detailed checking is 5924 // be done within LowerCallTo, after more information about the call is known. 5925 LowerCallTo(&I, Callee, I.isTailCall()); 5926 } 5927 5928 namespace { 5929 5930 /// AsmOperandInfo - This contains information for each constraint that we are 5931 /// lowering. 5932 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5933 public: 5934 /// CallOperand - If this is the result output operand or a clobber 5935 /// this is null, otherwise it is the incoming operand to the CallInst. 5936 /// This gets modified as the asm is processed. 5937 SDValue CallOperand; 5938 5939 /// AssignedRegs - If this is a register or register class operand, this 5940 /// contains the set of register corresponding to the operand. 5941 RegsForValue AssignedRegs; 5942 5943 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5944 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5945 } 5946 5947 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5948 /// corresponds to. If there is no Value* for this operand, it returns 5949 /// MVT::Other. 5950 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5951 const DataLayout &DL) const { 5952 if (!CallOperandVal) return MVT::Other; 5953 5954 if (isa<BasicBlock>(CallOperandVal)) 5955 return TLI.getPointerTy(DL); 5956 5957 llvm::Type *OpTy = CallOperandVal->getType(); 5958 5959 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5960 // If this is an indirect operand, the operand is a pointer to the 5961 // accessed type. 5962 if (isIndirect) { 5963 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5964 if (!PtrTy) 5965 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5966 OpTy = PtrTy->getElementType(); 5967 } 5968 5969 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5970 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5971 if (STy->getNumElements() == 1) 5972 OpTy = STy->getElementType(0); 5973 5974 // If OpTy is not a single value, it may be a struct/union that we 5975 // can tile with integers. 5976 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5977 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5978 switch (BitSize) { 5979 default: break; 5980 case 1: 5981 case 8: 5982 case 16: 5983 case 32: 5984 case 64: 5985 case 128: 5986 OpTy = IntegerType::get(Context, BitSize); 5987 break; 5988 } 5989 } 5990 5991 return TLI.getValueType(DL, OpTy, true); 5992 } 5993 }; 5994 5995 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5996 5997 } // end anonymous namespace 5998 5999 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6000 /// specified operand. We prefer to assign virtual registers, to allow the 6001 /// register allocator to handle the assignment process. However, if the asm 6002 /// uses features that we can't model on machineinstrs, we have SDISel do the 6003 /// allocation. This produces generally horrible, but correct, code. 6004 /// 6005 /// OpInfo describes the operand. 6006 /// 6007 static void GetRegistersForValue(SelectionDAG &DAG, 6008 const TargetLowering &TLI, 6009 SDLoc DL, 6010 SDISelAsmOperandInfo &OpInfo) { 6011 LLVMContext &Context = *DAG.getContext(); 6012 6013 MachineFunction &MF = DAG.getMachineFunction(); 6014 SmallVector<unsigned, 4> Regs; 6015 6016 // If this is a constraint for a single physreg, or a constraint for a 6017 // register class, find it. 6018 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6019 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6020 OpInfo.ConstraintCode, 6021 OpInfo.ConstraintVT); 6022 6023 unsigned NumRegs = 1; 6024 if (OpInfo.ConstraintVT != MVT::Other) { 6025 // If this is a FP input in an integer register (or visa versa) insert a bit 6026 // cast of the input value. More generally, handle any case where the input 6027 // value disagrees with the register class we plan to stick this in. 6028 if (OpInfo.Type == InlineAsm::isInput && 6029 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6030 // Try to convert to the first EVT that the reg class contains. If the 6031 // types are identical size, use a bitcast to convert (e.g. two differing 6032 // vector types). 6033 MVT RegVT = *PhysReg.second->vt_begin(); 6034 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6035 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6036 RegVT, OpInfo.CallOperand); 6037 OpInfo.ConstraintVT = RegVT; 6038 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6039 // If the input is a FP value and we want it in FP registers, do a 6040 // bitcast to the corresponding integer type. This turns an f64 value 6041 // into i64, which can be passed with two i32 values on a 32-bit 6042 // machine. 6043 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6044 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6045 RegVT, OpInfo.CallOperand); 6046 OpInfo.ConstraintVT = RegVT; 6047 } 6048 } 6049 6050 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6051 } 6052 6053 MVT RegVT; 6054 EVT ValueVT = OpInfo.ConstraintVT; 6055 6056 // If this is a constraint for a specific physical register, like {r17}, 6057 // assign it now. 6058 if (unsigned AssignedReg = PhysReg.first) { 6059 const TargetRegisterClass *RC = PhysReg.second; 6060 if (OpInfo.ConstraintVT == MVT::Other) 6061 ValueVT = *RC->vt_begin(); 6062 6063 // Get the actual register value type. This is important, because the user 6064 // may have asked for (e.g.) the AX register in i32 type. We need to 6065 // remember that AX is actually i16 to get the right extension. 6066 RegVT = *RC->vt_begin(); 6067 6068 // This is a explicit reference to a physical register. 6069 Regs.push_back(AssignedReg); 6070 6071 // If this is an expanded reference, add the rest of the regs to Regs. 6072 if (NumRegs != 1) { 6073 TargetRegisterClass::iterator I = RC->begin(); 6074 for (; *I != AssignedReg; ++I) 6075 assert(I != RC->end() && "Didn't find reg!"); 6076 6077 // Already added the first reg. 6078 --NumRegs; ++I; 6079 for (; NumRegs; --NumRegs, ++I) { 6080 assert(I != RC->end() && "Ran out of registers to allocate!"); 6081 Regs.push_back(*I); 6082 } 6083 } 6084 6085 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6086 return; 6087 } 6088 6089 // Otherwise, if this was a reference to an LLVM register class, create vregs 6090 // for this reference. 6091 if (const TargetRegisterClass *RC = PhysReg.second) { 6092 RegVT = *RC->vt_begin(); 6093 if (OpInfo.ConstraintVT == MVT::Other) 6094 ValueVT = RegVT; 6095 6096 // Create the appropriate number of virtual registers. 6097 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6098 for (; NumRegs; --NumRegs) 6099 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6100 6101 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6102 return; 6103 } 6104 6105 // Otherwise, we couldn't allocate enough registers for this. 6106 } 6107 6108 /// visitInlineAsm - Handle a call to an InlineAsm object. 6109 /// 6110 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6111 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6112 6113 /// ConstraintOperands - Information about all of the constraints. 6114 SDISelAsmOperandInfoVector ConstraintOperands; 6115 6116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6117 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6118 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6119 6120 bool hasMemory = false; 6121 6122 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6123 unsigned ResNo = 0; // ResNo - The result number of the next output. 6124 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6125 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6126 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6127 6128 MVT OpVT = MVT::Other; 6129 6130 // Compute the value type for each operand. 6131 switch (OpInfo.Type) { 6132 case InlineAsm::isOutput: 6133 // Indirect outputs just consume an argument. 6134 if (OpInfo.isIndirect) { 6135 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6136 break; 6137 } 6138 6139 // The return value of the call is this value. As such, there is no 6140 // corresponding argument. 6141 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6142 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6143 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6144 STy->getElementType(ResNo)); 6145 } else { 6146 assert(ResNo == 0 && "Asm only has one result!"); 6147 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6148 } 6149 ++ResNo; 6150 break; 6151 case InlineAsm::isInput: 6152 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6153 break; 6154 case InlineAsm::isClobber: 6155 // Nothing to do. 6156 break; 6157 } 6158 6159 // If this is an input or an indirect output, process the call argument. 6160 // BasicBlocks are labels, currently appearing only in asm's. 6161 if (OpInfo.CallOperandVal) { 6162 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6163 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6164 } else { 6165 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6166 } 6167 6168 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6169 DAG.getDataLayout()).getSimpleVT(); 6170 } 6171 6172 OpInfo.ConstraintVT = OpVT; 6173 6174 // Indirect operand accesses access memory. 6175 if (OpInfo.isIndirect) 6176 hasMemory = true; 6177 else { 6178 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6179 TargetLowering::ConstraintType 6180 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6181 if (CType == TargetLowering::C_Memory) { 6182 hasMemory = true; 6183 break; 6184 } 6185 } 6186 } 6187 } 6188 6189 SDValue Chain, Flag; 6190 6191 // We won't need to flush pending loads if this asm doesn't touch 6192 // memory and is nonvolatile. 6193 if (hasMemory || IA->hasSideEffects()) 6194 Chain = getRoot(); 6195 else 6196 Chain = DAG.getRoot(); 6197 6198 // Second pass over the constraints: compute which constraint option to use 6199 // and assign registers to constraints that want a specific physreg. 6200 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6201 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6202 6203 // If this is an output operand with a matching input operand, look up the 6204 // matching input. If their types mismatch, e.g. one is an integer, the 6205 // other is floating point, or their sizes are different, flag it as an 6206 // error. 6207 if (OpInfo.hasMatchingInput()) { 6208 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6209 6210 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6211 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6212 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6213 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6214 OpInfo.ConstraintVT); 6215 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6216 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6217 Input.ConstraintVT); 6218 if ((OpInfo.ConstraintVT.isInteger() != 6219 Input.ConstraintVT.isInteger()) || 6220 (MatchRC.second != InputRC.second)) { 6221 report_fatal_error("Unsupported asm: input constraint" 6222 " with a matching output constraint of" 6223 " incompatible type!"); 6224 } 6225 Input.ConstraintVT = OpInfo.ConstraintVT; 6226 } 6227 } 6228 6229 // Compute the constraint code and ConstraintType to use. 6230 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6231 6232 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6233 OpInfo.Type == InlineAsm::isClobber) 6234 continue; 6235 6236 // If this is a memory input, and if the operand is not indirect, do what we 6237 // need to to provide an address for the memory input. 6238 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6239 !OpInfo.isIndirect) { 6240 assert((OpInfo.isMultipleAlternative || 6241 (OpInfo.Type == InlineAsm::isInput)) && 6242 "Can only indirectify direct input operands!"); 6243 6244 // Memory operands really want the address of the value. If we don't have 6245 // an indirect input, put it in the constpool if we can, otherwise spill 6246 // it to a stack slot. 6247 // TODO: This isn't quite right. We need to handle these according to 6248 // the addressing mode that the constraint wants. Also, this may take 6249 // an additional register for the computation and we don't want that 6250 // either. 6251 6252 // If the operand is a float, integer, or vector constant, spill to a 6253 // constant pool entry to get its address. 6254 const Value *OpVal = OpInfo.CallOperandVal; 6255 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6256 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6257 OpInfo.CallOperand = DAG.getConstantPool( 6258 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6259 } else { 6260 // Otherwise, create a stack slot and emit a store to it before the 6261 // asm. 6262 Type *Ty = OpVal->getType(); 6263 auto &DL = DAG.getDataLayout(); 6264 uint64_t TySize = DL.getTypeAllocSize(Ty); 6265 unsigned Align = DL.getPrefTypeAlignment(Ty); 6266 MachineFunction &MF = DAG.getMachineFunction(); 6267 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6268 SDValue StackSlot = 6269 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6270 Chain = DAG.getStore( 6271 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6272 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6273 false, false, 0); 6274 OpInfo.CallOperand = StackSlot; 6275 } 6276 6277 // There is no longer a Value* corresponding to this operand. 6278 OpInfo.CallOperandVal = nullptr; 6279 6280 // It is now an indirect operand. 6281 OpInfo.isIndirect = true; 6282 } 6283 6284 // If this constraint is for a specific register, allocate it before 6285 // anything else. 6286 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6287 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6288 } 6289 6290 // Second pass - Loop over all of the operands, assigning virtual or physregs 6291 // to register class operands. 6292 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6293 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6294 6295 // C_Register operands have already been allocated, Other/Memory don't need 6296 // to be. 6297 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6298 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6299 } 6300 6301 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6302 std::vector<SDValue> AsmNodeOperands; 6303 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6304 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6305 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6306 6307 // If we have a !srcloc metadata node associated with it, we want to attach 6308 // this to the ultimately generated inline asm machineinstr. To do this, we 6309 // pass in the third operand as this (potentially null) inline asm MDNode. 6310 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6311 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6312 6313 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6314 // bits as operand 3. 6315 unsigned ExtraInfo = 0; 6316 if (IA->hasSideEffects()) 6317 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6318 if (IA->isAlignStack()) 6319 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6320 // Set the asm dialect. 6321 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6322 6323 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6324 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6325 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6326 6327 // Compute the constraint code and ConstraintType to use. 6328 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6329 6330 // Ideally, we would only check against memory constraints. However, the 6331 // meaning of an other constraint can be target-specific and we can't easily 6332 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6333 // for other constriants as well. 6334 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6335 OpInfo.ConstraintType == TargetLowering::C_Other) { 6336 if (OpInfo.Type == InlineAsm::isInput) 6337 ExtraInfo |= InlineAsm::Extra_MayLoad; 6338 else if (OpInfo.Type == InlineAsm::isOutput) 6339 ExtraInfo |= InlineAsm::Extra_MayStore; 6340 else if (OpInfo.Type == InlineAsm::isClobber) 6341 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6342 } 6343 } 6344 6345 AsmNodeOperands.push_back(DAG.getTargetConstant( 6346 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6347 6348 // Loop over all of the inputs, copying the operand values into the 6349 // appropriate registers and processing the output regs. 6350 RegsForValue RetValRegs; 6351 6352 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6353 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6354 6355 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6356 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6357 6358 switch (OpInfo.Type) { 6359 case InlineAsm::isOutput: { 6360 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6361 OpInfo.ConstraintType != TargetLowering::C_Register) { 6362 // Memory output, or 'other' output (e.g. 'X' constraint). 6363 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6364 6365 unsigned ConstraintID = 6366 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6367 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6368 "Failed to convert memory constraint code to constraint id."); 6369 6370 // Add information to the INLINEASM node to know about this output. 6371 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6372 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6373 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6374 MVT::i32)); 6375 AsmNodeOperands.push_back(OpInfo.CallOperand); 6376 break; 6377 } 6378 6379 // Otherwise, this is a register or register class output. 6380 6381 // Copy the output from the appropriate register. Find a register that 6382 // we can use. 6383 if (OpInfo.AssignedRegs.Regs.empty()) { 6384 LLVMContext &Ctx = *DAG.getContext(); 6385 Ctx.emitError(CS.getInstruction(), 6386 "couldn't allocate output register for constraint '" + 6387 Twine(OpInfo.ConstraintCode) + "'"); 6388 return; 6389 } 6390 6391 // If this is an indirect operand, store through the pointer after the 6392 // asm. 6393 if (OpInfo.isIndirect) { 6394 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6395 OpInfo.CallOperandVal)); 6396 } else { 6397 // This is the result value of the call. 6398 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6399 // Concatenate this output onto the outputs list. 6400 RetValRegs.append(OpInfo.AssignedRegs); 6401 } 6402 6403 // Add information to the INLINEASM node to know that this register is 6404 // set. 6405 OpInfo.AssignedRegs 6406 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6407 ? InlineAsm::Kind_RegDefEarlyClobber 6408 : InlineAsm::Kind_RegDef, 6409 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6410 break; 6411 } 6412 case InlineAsm::isInput: { 6413 SDValue InOperandVal = OpInfo.CallOperand; 6414 6415 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6416 // If this is required to match an output register we have already set, 6417 // just use its register. 6418 unsigned OperandNo = OpInfo.getMatchedOperand(); 6419 6420 // Scan until we find the definition we already emitted of this operand. 6421 // When we find it, create a RegsForValue operand. 6422 unsigned CurOp = InlineAsm::Op_FirstOperand; 6423 for (; OperandNo; --OperandNo) { 6424 // Advance to the next operand. 6425 unsigned OpFlag = 6426 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6427 assert((InlineAsm::isRegDefKind(OpFlag) || 6428 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6429 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6430 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6431 } 6432 6433 unsigned OpFlag = 6434 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6435 if (InlineAsm::isRegDefKind(OpFlag) || 6436 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6437 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6438 if (OpInfo.isIndirect) { 6439 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6440 LLVMContext &Ctx = *DAG.getContext(); 6441 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6442 " don't know how to handle tied " 6443 "indirect register inputs"); 6444 return; 6445 } 6446 6447 RegsForValue MatchedRegs; 6448 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6449 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6450 MatchedRegs.RegVTs.push_back(RegVT); 6451 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6452 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6453 i != e; ++i) { 6454 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6455 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6456 else { 6457 LLVMContext &Ctx = *DAG.getContext(); 6458 Ctx.emitError(CS.getInstruction(), 6459 "inline asm error: This value" 6460 " type register class is not natively supported!"); 6461 return; 6462 } 6463 } 6464 SDLoc dl = getCurSDLoc(); 6465 // Use the produced MatchedRegs object to 6466 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6467 Chain, &Flag, CS.getInstruction()); 6468 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6469 true, OpInfo.getMatchedOperand(), dl, 6470 DAG, AsmNodeOperands); 6471 break; 6472 } 6473 6474 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6475 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6476 "Unexpected number of operands"); 6477 // Add information to the INLINEASM node to know about this input. 6478 // See InlineAsm.h isUseOperandTiedToDef. 6479 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6480 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6481 OpInfo.getMatchedOperand()); 6482 AsmNodeOperands.push_back(DAG.getTargetConstant( 6483 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6484 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6485 break; 6486 } 6487 6488 // Treat indirect 'X' constraint as memory. 6489 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6490 OpInfo.isIndirect) 6491 OpInfo.ConstraintType = TargetLowering::C_Memory; 6492 6493 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6494 std::vector<SDValue> Ops; 6495 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6496 Ops, DAG); 6497 if (Ops.empty()) { 6498 LLVMContext &Ctx = *DAG.getContext(); 6499 Ctx.emitError(CS.getInstruction(), 6500 "invalid operand for inline asm constraint '" + 6501 Twine(OpInfo.ConstraintCode) + "'"); 6502 return; 6503 } 6504 6505 // Add information to the INLINEASM node to know about this input. 6506 unsigned ResOpType = 6507 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6508 AsmNodeOperands.push_back(DAG.getTargetConstant( 6509 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6510 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6511 break; 6512 } 6513 6514 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6515 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6516 assert(InOperandVal.getValueType() == 6517 TLI.getPointerTy(DAG.getDataLayout()) && 6518 "Memory operands expect pointer values"); 6519 6520 unsigned ConstraintID = 6521 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6522 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6523 "Failed to convert memory constraint code to constraint id."); 6524 6525 // Add information to the INLINEASM node to know about this input. 6526 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6527 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6528 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6529 getCurSDLoc(), 6530 MVT::i32)); 6531 AsmNodeOperands.push_back(InOperandVal); 6532 break; 6533 } 6534 6535 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6536 OpInfo.ConstraintType == TargetLowering::C_Register) && 6537 "Unknown constraint type!"); 6538 6539 // TODO: Support this. 6540 if (OpInfo.isIndirect) { 6541 LLVMContext &Ctx = *DAG.getContext(); 6542 Ctx.emitError(CS.getInstruction(), 6543 "Don't know how to handle indirect register inputs yet " 6544 "for constraint '" + 6545 Twine(OpInfo.ConstraintCode) + "'"); 6546 return; 6547 } 6548 6549 // Copy the input into the appropriate registers. 6550 if (OpInfo.AssignedRegs.Regs.empty()) { 6551 LLVMContext &Ctx = *DAG.getContext(); 6552 Ctx.emitError(CS.getInstruction(), 6553 "couldn't allocate input reg for constraint '" + 6554 Twine(OpInfo.ConstraintCode) + "'"); 6555 return; 6556 } 6557 6558 SDLoc dl = getCurSDLoc(); 6559 6560 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6561 Chain, &Flag, CS.getInstruction()); 6562 6563 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6564 dl, DAG, AsmNodeOperands); 6565 break; 6566 } 6567 case InlineAsm::isClobber: { 6568 // Add the clobbered value to the operand list, so that the register 6569 // allocator is aware that the physreg got clobbered. 6570 if (!OpInfo.AssignedRegs.Regs.empty()) 6571 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6572 false, 0, getCurSDLoc(), DAG, 6573 AsmNodeOperands); 6574 break; 6575 } 6576 } 6577 } 6578 6579 // Finish up input operands. Set the input chain and add the flag last. 6580 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6581 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6582 6583 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6584 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6585 Flag = Chain.getValue(1); 6586 6587 // If this asm returns a register value, copy the result from that register 6588 // and set it as the value of the call. 6589 if (!RetValRegs.Regs.empty()) { 6590 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6591 Chain, &Flag, CS.getInstruction()); 6592 6593 // FIXME: Why don't we do this for inline asms with MRVs? 6594 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6595 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6596 6597 // If any of the results of the inline asm is a vector, it may have the 6598 // wrong width/num elts. This can happen for register classes that can 6599 // contain multiple different value types. The preg or vreg allocated may 6600 // not have the same VT as was expected. Convert it to the right type 6601 // with bit_convert. 6602 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6603 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6604 ResultType, Val); 6605 6606 } else if (ResultType != Val.getValueType() && 6607 ResultType.isInteger() && Val.getValueType().isInteger()) { 6608 // If a result value was tied to an input value, the computed result may 6609 // have a wider width than the expected result. Extract the relevant 6610 // portion. 6611 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6612 } 6613 6614 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6615 } 6616 6617 setValue(CS.getInstruction(), Val); 6618 // Don't need to use this as a chain in this case. 6619 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6620 return; 6621 } 6622 6623 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6624 6625 // Process indirect outputs, first output all of the flagged copies out of 6626 // physregs. 6627 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6628 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6629 const Value *Ptr = IndirectStoresToEmit[i].second; 6630 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6631 Chain, &Flag, IA); 6632 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6633 } 6634 6635 // Emit the non-flagged stores from the physregs. 6636 SmallVector<SDValue, 8> OutChains; 6637 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6638 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6639 StoresToEmit[i].first, 6640 getValue(StoresToEmit[i].second), 6641 MachinePointerInfo(StoresToEmit[i].second), 6642 false, false, 0); 6643 OutChains.push_back(Val); 6644 } 6645 6646 if (!OutChains.empty()) 6647 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6648 6649 DAG.setRoot(Chain); 6650 } 6651 6652 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6653 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6654 MVT::Other, getRoot(), 6655 getValue(I.getArgOperand(0)), 6656 DAG.getSrcValue(I.getArgOperand(0)))); 6657 } 6658 6659 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6661 const DataLayout &DL = DAG.getDataLayout(); 6662 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6663 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6664 DAG.getSrcValue(I.getOperand(0)), 6665 DL.getABITypeAlignment(I.getType())); 6666 setValue(&I, V); 6667 DAG.setRoot(V.getValue(1)); 6668 } 6669 6670 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6671 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6672 MVT::Other, getRoot(), 6673 getValue(I.getArgOperand(0)), 6674 DAG.getSrcValue(I.getArgOperand(0)))); 6675 } 6676 6677 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6678 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6679 MVT::Other, getRoot(), 6680 getValue(I.getArgOperand(0)), 6681 getValue(I.getArgOperand(1)), 6682 DAG.getSrcValue(I.getArgOperand(0)), 6683 DAG.getSrcValue(I.getArgOperand(1)))); 6684 } 6685 6686 /// \brief Lower an argument list according to the target calling convention. 6687 /// 6688 /// \return A tuple of <return-value, token-chain> 6689 /// 6690 /// This is a helper for lowering intrinsics that follow a target calling 6691 /// convention or require stack pointer adjustment. Only a subset of the 6692 /// intrinsic's operands need to participate in the calling convention. 6693 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6694 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6695 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6696 TargetLowering::ArgListTy Args; 6697 Args.reserve(NumArgs); 6698 6699 // Populate the argument list. 6700 // Attributes for args start at offset 1, after the return attribute. 6701 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6702 ArgI != ArgE; ++ArgI) { 6703 const Value *V = CS->getOperand(ArgI); 6704 6705 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6706 6707 TargetLowering::ArgListEntry Entry; 6708 Entry.Node = getValue(V); 6709 Entry.Ty = V->getType(); 6710 Entry.setAttributes(&CS, AttrI); 6711 Args.push_back(Entry); 6712 } 6713 6714 TargetLowering::CallLoweringInfo CLI(DAG); 6715 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6716 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6717 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6718 6719 return lowerInvokable(CLI, EHPadBB); 6720 } 6721 6722 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6723 /// or patchpoint target node's operand list. 6724 /// 6725 /// Constants are converted to TargetConstants purely as an optimization to 6726 /// avoid constant materialization and register allocation. 6727 /// 6728 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6729 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6730 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6731 /// address materialization and register allocation, but may also be required 6732 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6733 /// alloca in the entry block, then the runtime may assume that the alloca's 6734 /// StackMap location can be read immediately after compilation and that the 6735 /// location is valid at any point during execution (this is similar to the 6736 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6737 /// only available in a register, then the runtime would need to trap when 6738 /// execution reaches the StackMap in order to read the alloca's location. 6739 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6740 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6741 SelectionDAGBuilder &Builder) { 6742 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6743 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6744 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6745 Ops.push_back( 6746 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6747 Ops.push_back( 6748 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6749 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6750 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6751 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6752 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6753 } else 6754 Ops.push_back(OpVal); 6755 } 6756 } 6757 6758 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6759 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6760 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6761 // [live variables...]) 6762 6763 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6764 6765 SDValue Chain, InFlag, Callee, NullPtr; 6766 SmallVector<SDValue, 32> Ops; 6767 6768 SDLoc DL = getCurSDLoc(); 6769 Callee = getValue(CI.getCalledValue()); 6770 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6771 6772 // The stackmap intrinsic only records the live variables (the arguemnts 6773 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6774 // intrinsic, this won't be lowered to a function call. This means we don't 6775 // have to worry about calling conventions and target specific lowering code. 6776 // Instead we perform the call lowering right here. 6777 // 6778 // chain, flag = CALLSEQ_START(chain, 0) 6779 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6780 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6781 // 6782 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6783 InFlag = Chain.getValue(1); 6784 6785 // Add the <id> and <numBytes> constants. 6786 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6787 Ops.push_back(DAG.getTargetConstant( 6788 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6789 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6790 Ops.push_back(DAG.getTargetConstant( 6791 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6792 MVT::i32)); 6793 6794 // Push live variables for the stack map. 6795 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6796 6797 // We are not pushing any register mask info here on the operands list, 6798 // because the stackmap doesn't clobber anything. 6799 6800 // Push the chain and the glue flag. 6801 Ops.push_back(Chain); 6802 Ops.push_back(InFlag); 6803 6804 // Create the STACKMAP node. 6805 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6806 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6807 Chain = SDValue(SM, 0); 6808 InFlag = Chain.getValue(1); 6809 6810 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6811 6812 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6813 6814 // Set the root to the target-lowered call chain. 6815 DAG.setRoot(Chain); 6816 6817 // Inform the Frame Information that we have a stackmap in this function. 6818 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6819 } 6820 6821 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6822 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6823 const BasicBlock *EHPadBB) { 6824 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6825 // i32 <numBytes>, 6826 // i8* <target>, 6827 // i32 <numArgs>, 6828 // [Args...], 6829 // [live variables...]) 6830 6831 CallingConv::ID CC = CS.getCallingConv(); 6832 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6833 bool HasDef = !CS->getType()->isVoidTy(); 6834 SDLoc dl = getCurSDLoc(); 6835 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6836 6837 // Handle immediate and symbolic callees. 6838 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6839 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6840 /*isTarget=*/true); 6841 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6842 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6843 SDLoc(SymbolicCallee), 6844 SymbolicCallee->getValueType(0)); 6845 6846 // Get the real number of arguments participating in the call <numArgs> 6847 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6848 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6849 6850 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6851 // Intrinsics include all meta-operands up to but not including CC. 6852 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6853 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6854 "Not enough arguments provided to the patchpoint intrinsic"); 6855 6856 // For AnyRegCC the arguments are lowered later on manually. 6857 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6858 Type *ReturnTy = 6859 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6860 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6861 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6862 6863 SDNode *CallEnd = Result.second.getNode(); 6864 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6865 CallEnd = CallEnd->getOperand(0).getNode(); 6866 6867 /// Get a call instruction from the call sequence chain. 6868 /// Tail calls are not allowed. 6869 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6870 "Expected a callseq node."); 6871 SDNode *Call = CallEnd->getOperand(0).getNode(); 6872 bool HasGlue = Call->getGluedNode(); 6873 6874 // Replace the target specific call node with the patchable intrinsic. 6875 SmallVector<SDValue, 8> Ops; 6876 6877 // Add the <id> and <numBytes> constants. 6878 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6879 Ops.push_back(DAG.getTargetConstant( 6880 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6881 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6882 Ops.push_back(DAG.getTargetConstant( 6883 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6884 MVT::i32)); 6885 6886 // Add the callee. 6887 Ops.push_back(Callee); 6888 6889 // Adjust <numArgs> to account for any arguments that have been passed on the 6890 // stack instead. 6891 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6892 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6893 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6894 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6895 6896 // Add the calling convention 6897 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6898 6899 // Add the arguments we omitted previously. The register allocator should 6900 // place these in any free register. 6901 if (IsAnyRegCC) 6902 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6903 Ops.push_back(getValue(CS.getArgument(i))); 6904 6905 // Push the arguments from the call instruction up to the register mask. 6906 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6907 Ops.append(Call->op_begin() + 2, e); 6908 6909 // Push live variables for the stack map. 6910 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6911 6912 // Push the register mask info. 6913 if (HasGlue) 6914 Ops.push_back(*(Call->op_end()-2)); 6915 else 6916 Ops.push_back(*(Call->op_end()-1)); 6917 6918 // Push the chain (this is originally the first operand of the call, but 6919 // becomes now the last or second to last operand). 6920 Ops.push_back(*(Call->op_begin())); 6921 6922 // Push the glue flag (last operand). 6923 if (HasGlue) 6924 Ops.push_back(*(Call->op_end()-1)); 6925 6926 SDVTList NodeTys; 6927 if (IsAnyRegCC && HasDef) { 6928 // Create the return types based on the intrinsic definition 6929 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6930 SmallVector<EVT, 3> ValueVTs; 6931 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6932 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6933 6934 // There is always a chain and a glue type at the end 6935 ValueVTs.push_back(MVT::Other); 6936 ValueVTs.push_back(MVT::Glue); 6937 NodeTys = DAG.getVTList(ValueVTs); 6938 } else 6939 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6940 6941 // Replace the target specific call node with a PATCHPOINT node. 6942 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6943 dl, NodeTys, Ops); 6944 6945 // Update the NodeMap. 6946 if (HasDef) { 6947 if (IsAnyRegCC) 6948 setValue(CS.getInstruction(), SDValue(MN, 0)); 6949 else 6950 setValue(CS.getInstruction(), Result.first); 6951 } 6952 6953 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6954 // call sequence. Furthermore the location of the chain and glue can change 6955 // when the AnyReg calling convention is used and the intrinsic returns a 6956 // value. 6957 if (IsAnyRegCC && HasDef) { 6958 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6959 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6960 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6961 } else 6962 DAG.ReplaceAllUsesWith(Call, MN); 6963 DAG.DeleteNode(Call); 6964 6965 // Inform the Frame Information that we have a patchpoint in this function. 6966 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6967 } 6968 6969 /// Returns an AttributeSet representing the attributes applied to the return 6970 /// value of the given call. 6971 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6972 SmallVector<Attribute::AttrKind, 2> Attrs; 6973 if (CLI.RetSExt) 6974 Attrs.push_back(Attribute::SExt); 6975 if (CLI.RetZExt) 6976 Attrs.push_back(Attribute::ZExt); 6977 if (CLI.IsInReg) 6978 Attrs.push_back(Attribute::InReg); 6979 6980 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6981 Attrs); 6982 } 6983 6984 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6985 /// implementation, which just calls LowerCall. 6986 /// FIXME: When all targets are 6987 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6988 std::pair<SDValue, SDValue> 6989 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6990 // Handle the incoming return values from the call. 6991 CLI.Ins.clear(); 6992 Type *OrigRetTy = CLI.RetTy; 6993 SmallVector<EVT, 4> RetTys; 6994 SmallVector<uint64_t, 4> Offsets; 6995 auto &DL = CLI.DAG.getDataLayout(); 6996 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6997 6998 SmallVector<ISD::OutputArg, 4> Outs; 6999 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7000 7001 bool CanLowerReturn = 7002 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7003 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7004 7005 SDValue DemoteStackSlot; 7006 int DemoteStackIdx = -100; 7007 if (!CanLowerReturn) { 7008 // FIXME: equivalent assert? 7009 // assert(!CS.hasInAllocaArgument() && 7010 // "sret demotion is incompatible with inalloca"); 7011 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7012 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7013 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7014 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7015 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7016 7017 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7018 ArgListEntry Entry; 7019 Entry.Node = DemoteStackSlot; 7020 Entry.Ty = StackSlotPtrType; 7021 Entry.isSExt = false; 7022 Entry.isZExt = false; 7023 Entry.isInReg = false; 7024 Entry.isSRet = true; 7025 Entry.isNest = false; 7026 Entry.isByVal = false; 7027 Entry.isReturned = false; 7028 Entry.Alignment = Align; 7029 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7030 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7031 7032 // sret demotion isn't compatible with tail-calls, since the sret argument 7033 // points into the callers stack frame. 7034 CLI.IsTailCall = false; 7035 } else { 7036 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7037 EVT VT = RetTys[I]; 7038 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7039 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7040 for (unsigned i = 0; i != NumRegs; ++i) { 7041 ISD::InputArg MyFlags; 7042 MyFlags.VT = RegisterVT; 7043 MyFlags.ArgVT = VT; 7044 MyFlags.Used = CLI.IsReturnValueUsed; 7045 if (CLI.RetSExt) 7046 MyFlags.Flags.setSExt(); 7047 if (CLI.RetZExt) 7048 MyFlags.Flags.setZExt(); 7049 if (CLI.IsInReg) 7050 MyFlags.Flags.setInReg(); 7051 CLI.Ins.push_back(MyFlags); 7052 } 7053 } 7054 } 7055 7056 // Handle all of the outgoing arguments. 7057 CLI.Outs.clear(); 7058 CLI.OutVals.clear(); 7059 ArgListTy &Args = CLI.getArgs(); 7060 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7061 SmallVector<EVT, 4> ValueVTs; 7062 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7063 Type *FinalType = Args[i].Ty; 7064 if (Args[i].isByVal) 7065 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7066 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7067 FinalType, CLI.CallConv, CLI.IsVarArg); 7068 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7069 ++Value) { 7070 EVT VT = ValueVTs[Value]; 7071 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7072 SDValue Op = SDValue(Args[i].Node.getNode(), 7073 Args[i].Node.getResNo() + Value); 7074 ISD::ArgFlagsTy Flags; 7075 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7076 7077 if (Args[i].isZExt) 7078 Flags.setZExt(); 7079 if (Args[i].isSExt) 7080 Flags.setSExt(); 7081 if (Args[i].isInReg) 7082 Flags.setInReg(); 7083 if (Args[i].isSRet) 7084 Flags.setSRet(); 7085 if (Args[i].isByVal) 7086 Flags.setByVal(); 7087 if (Args[i].isInAlloca) { 7088 Flags.setInAlloca(); 7089 // Set the byval flag for CCAssignFn callbacks that don't know about 7090 // inalloca. This way we can know how many bytes we should've allocated 7091 // and how many bytes a callee cleanup function will pop. If we port 7092 // inalloca to more targets, we'll have to add custom inalloca handling 7093 // in the various CC lowering callbacks. 7094 Flags.setByVal(); 7095 } 7096 if (Args[i].isByVal || Args[i].isInAlloca) { 7097 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7098 Type *ElementTy = Ty->getElementType(); 7099 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7100 // For ByVal, alignment should come from FE. BE will guess if this 7101 // info is not there but there are cases it cannot get right. 7102 unsigned FrameAlign; 7103 if (Args[i].Alignment) 7104 FrameAlign = Args[i].Alignment; 7105 else 7106 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7107 Flags.setByValAlign(FrameAlign); 7108 } 7109 if (Args[i].isNest) 7110 Flags.setNest(); 7111 if (NeedsRegBlock) 7112 Flags.setInConsecutiveRegs(); 7113 Flags.setOrigAlign(OriginalAlignment); 7114 7115 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7116 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7117 SmallVector<SDValue, 4> Parts(NumParts); 7118 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7119 7120 if (Args[i].isSExt) 7121 ExtendKind = ISD::SIGN_EXTEND; 7122 else if (Args[i].isZExt) 7123 ExtendKind = ISD::ZERO_EXTEND; 7124 7125 // Conservatively only handle 'returned' on non-vectors for now 7126 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7127 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7128 "unexpected use of 'returned'"); 7129 // Before passing 'returned' to the target lowering code, ensure that 7130 // either the register MVT and the actual EVT are the same size or that 7131 // the return value and argument are extended in the same way; in these 7132 // cases it's safe to pass the argument register value unchanged as the 7133 // return register value (although it's at the target's option whether 7134 // to do so) 7135 // TODO: allow code generation to take advantage of partially preserved 7136 // registers rather than clobbering the entire register when the 7137 // parameter extension method is not compatible with the return 7138 // extension method 7139 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7140 (ExtendKind != ISD::ANY_EXTEND && 7141 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7142 Flags.setReturned(); 7143 } 7144 7145 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7146 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7147 7148 for (unsigned j = 0; j != NumParts; ++j) { 7149 // if it isn't first piece, alignment must be 1 7150 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7151 i < CLI.NumFixedArgs, 7152 i, j*Parts[j].getValueType().getStoreSize()); 7153 if (NumParts > 1 && j == 0) 7154 MyFlags.Flags.setSplit(); 7155 else if (j != 0) 7156 MyFlags.Flags.setOrigAlign(1); 7157 7158 CLI.Outs.push_back(MyFlags); 7159 CLI.OutVals.push_back(Parts[j]); 7160 } 7161 7162 if (NeedsRegBlock && Value == NumValues - 1) 7163 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7164 } 7165 } 7166 7167 SmallVector<SDValue, 4> InVals; 7168 CLI.Chain = LowerCall(CLI, InVals); 7169 7170 // Verify that the target's LowerCall behaved as expected. 7171 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7172 "LowerCall didn't return a valid chain!"); 7173 assert((!CLI.IsTailCall || InVals.empty()) && 7174 "LowerCall emitted a return value for a tail call!"); 7175 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7176 "LowerCall didn't emit the correct number of values!"); 7177 7178 // For a tail call, the return value is merely live-out and there aren't 7179 // any nodes in the DAG representing it. Return a special value to 7180 // indicate that a tail call has been emitted and no more Instructions 7181 // should be processed in the current block. 7182 if (CLI.IsTailCall) { 7183 CLI.DAG.setRoot(CLI.Chain); 7184 return std::make_pair(SDValue(), SDValue()); 7185 } 7186 7187 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7188 assert(InVals[i].getNode() && 7189 "LowerCall emitted a null value!"); 7190 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7191 "LowerCall emitted a value with the wrong type!"); 7192 }); 7193 7194 SmallVector<SDValue, 4> ReturnValues; 7195 if (!CanLowerReturn) { 7196 // The instruction result is the result of loading from the 7197 // hidden sret parameter. 7198 SmallVector<EVT, 1> PVTs; 7199 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7200 7201 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7202 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7203 EVT PtrVT = PVTs[0]; 7204 7205 unsigned NumValues = RetTys.size(); 7206 ReturnValues.resize(NumValues); 7207 SmallVector<SDValue, 4> Chains(NumValues); 7208 7209 for (unsigned i = 0; i < NumValues; ++i) { 7210 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7211 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7212 PtrVT)); 7213 SDValue L = CLI.DAG.getLoad( 7214 RetTys[i], CLI.DL, CLI.Chain, Add, 7215 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7216 DemoteStackIdx, Offsets[i]), 7217 false, false, false, 1); 7218 ReturnValues[i] = L; 7219 Chains[i] = L.getValue(1); 7220 } 7221 7222 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7223 } else { 7224 // Collect the legal value parts into potentially illegal values 7225 // that correspond to the original function's return values. 7226 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7227 if (CLI.RetSExt) 7228 AssertOp = ISD::AssertSext; 7229 else if (CLI.RetZExt) 7230 AssertOp = ISD::AssertZext; 7231 unsigned CurReg = 0; 7232 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7233 EVT VT = RetTys[I]; 7234 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7235 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7236 7237 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7238 NumRegs, RegisterVT, VT, nullptr, 7239 AssertOp)); 7240 CurReg += NumRegs; 7241 } 7242 7243 // For a function returning void, there is no return value. We can't create 7244 // such a node, so we just return a null return value in that case. In 7245 // that case, nothing will actually look at the value. 7246 if (ReturnValues.empty()) 7247 return std::make_pair(SDValue(), CLI.Chain); 7248 } 7249 7250 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7251 CLI.DAG.getVTList(RetTys), ReturnValues); 7252 return std::make_pair(Res, CLI.Chain); 7253 } 7254 7255 void TargetLowering::LowerOperationWrapper(SDNode *N, 7256 SmallVectorImpl<SDValue> &Results, 7257 SelectionDAG &DAG) const { 7258 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7259 if (Res.getNode()) 7260 Results.push_back(Res); 7261 } 7262 7263 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7264 llvm_unreachable("LowerOperation not implemented for this target!"); 7265 } 7266 7267 void 7268 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7269 SDValue Op = getNonRegisterValue(V); 7270 assert((Op.getOpcode() != ISD::CopyFromReg || 7271 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7272 "Copy from a reg to the same reg!"); 7273 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7274 7275 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7276 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7277 V->getType()); 7278 SDValue Chain = DAG.getEntryNode(); 7279 7280 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7281 FuncInfo.PreferredExtendType.end()) 7282 ? ISD::ANY_EXTEND 7283 : FuncInfo.PreferredExtendType[V]; 7284 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7285 PendingExports.push_back(Chain); 7286 } 7287 7288 #include "llvm/CodeGen/SelectionDAGISel.h" 7289 7290 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7291 /// entry block, return true. This includes arguments used by switches, since 7292 /// the switch may expand into multiple basic blocks. 7293 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7294 // With FastISel active, we may be splitting blocks, so force creation 7295 // of virtual registers for all non-dead arguments. 7296 if (FastISel) 7297 return A->use_empty(); 7298 7299 const BasicBlock &Entry = A->getParent()->front(); 7300 for (const User *U : A->users()) 7301 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7302 return false; // Use not in entry block. 7303 7304 return true; 7305 } 7306 7307 void SelectionDAGISel::LowerArguments(const Function &F) { 7308 SelectionDAG &DAG = SDB->DAG; 7309 SDLoc dl = SDB->getCurSDLoc(); 7310 const DataLayout &DL = DAG.getDataLayout(); 7311 SmallVector<ISD::InputArg, 16> Ins; 7312 7313 if (!FuncInfo->CanLowerReturn) { 7314 // Put in an sret pointer parameter before all the other parameters. 7315 SmallVector<EVT, 1> ValueVTs; 7316 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7317 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7318 7319 // NOTE: Assuming that a pointer will never break down to more than one VT 7320 // or one register. 7321 ISD::ArgFlagsTy Flags; 7322 Flags.setSRet(); 7323 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7324 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7325 ISD::InputArg::NoArgIndex, 0); 7326 Ins.push_back(RetArg); 7327 } 7328 7329 // Set up the incoming argument description vector. 7330 unsigned Idx = 1; 7331 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7332 I != E; ++I, ++Idx) { 7333 SmallVector<EVT, 4> ValueVTs; 7334 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7335 bool isArgValueUsed = !I->use_empty(); 7336 unsigned PartBase = 0; 7337 Type *FinalType = I->getType(); 7338 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7339 FinalType = cast<PointerType>(FinalType)->getElementType(); 7340 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7341 FinalType, F.getCallingConv(), F.isVarArg()); 7342 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7343 Value != NumValues; ++Value) { 7344 EVT VT = ValueVTs[Value]; 7345 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7346 ISD::ArgFlagsTy Flags; 7347 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7348 7349 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7350 Flags.setZExt(); 7351 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7352 Flags.setSExt(); 7353 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7354 Flags.setInReg(); 7355 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7356 Flags.setSRet(); 7357 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7358 Flags.setByVal(); 7359 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7360 Flags.setInAlloca(); 7361 // Set the byval flag for CCAssignFn callbacks that don't know about 7362 // inalloca. This way we can know how many bytes we should've allocated 7363 // and how many bytes a callee cleanup function will pop. If we port 7364 // inalloca to more targets, we'll have to add custom inalloca handling 7365 // in the various CC lowering callbacks. 7366 Flags.setByVal(); 7367 } 7368 if (Flags.isByVal() || Flags.isInAlloca()) { 7369 PointerType *Ty = cast<PointerType>(I->getType()); 7370 Type *ElementTy = Ty->getElementType(); 7371 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7372 // For ByVal, alignment should be passed from FE. BE will guess if 7373 // this info is not there but there are cases it cannot get right. 7374 unsigned FrameAlign; 7375 if (F.getParamAlignment(Idx)) 7376 FrameAlign = F.getParamAlignment(Idx); 7377 else 7378 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7379 Flags.setByValAlign(FrameAlign); 7380 } 7381 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7382 Flags.setNest(); 7383 if (NeedsRegBlock) 7384 Flags.setInConsecutiveRegs(); 7385 Flags.setOrigAlign(OriginalAlignment); 7386 7387 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7388 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7389 for (unsigned i = 0; i != NumRegs; ++i) { 7390 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7391 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7392 if (NumRegs > 1 && i == 0) 7393 MyFlags.Flags.setSplit(); 7394 // if it isn't first piece, alignment must be 1 7395 else if (i > 0) 7396 MyFlags.Flags.setOrigAlign(1); 7397 Ins.push_back(MyFlags); 7398 } 7399 if (NeedsRegBlock && Value == NumValues - 1) 7400 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7401 PartBase += VT.getStoreSize(); 7402 } 7403 } 7404 7405 // Call the target to set up the argument values. 7406 SmallVector<SDValue, 8> InVals; 7407 SDValue NewRoot = TLI->LowerFormalArguments( 7408 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7409 7410 // Verify that the target's LowerFormalArguments behaved as expected. 7411 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7412 "LowerFormalArguments didn't return a valid chain!"); 7413 assert(InVals.size() == Ins.size() && 7414 "LowerFormalArguments didn't emit the correct number of values!"); 7415 DEBUG({ 7416 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7417 assert(InVals[i].getNode() && 7418 "LowerFormalArguments emitted a null value!"); 7419 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7420 "LowerFormalArguments emitted a value with the wrong type!"); 7421 } 7422 }); 7423 7424 // Update the DAG with the new chain value resulting from argument lowering. 7425 DAG.setRoot(NewRoot); 7426 7427 // Set up the argument values. 7428 unsigned i = 0; 7429 Idx = 1; 7430 if (!FuncInfo->CanLowerReturn) { 7431 // Create a virtual register for the sret pointer, and put in a copy 7432 // from the sret argument into it. 7433 SmallVector<EVT, 1> ValueVTs; 7434 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7435 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7436 MVT VT = ValueVTs[0].getSimpleVT(); 7437 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7438 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7439 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7440 RegVT, VT, nullptr, AssertOp); 7441 7442 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7443 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7444 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7445 FuncInfo->DemoteRegister = SRetReg; 7446 NewRoot = 7447 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7448 DAG.setRoot(NewRoot); 7449 7450 // i indexes lowered arguments. Bump it past the hidden sret argument. 7451 // Idx indexes LLVM arguments. Don't touch it. 7452 ++i; 7453 } 7454 7455 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7456 ++I, ++Idx) { 7457 SmallVector<SDValue, 4> ArgValues; 7458 SmallVector<EVT, 4> ValueVTs; 7459 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7460 unsigned NumValues = ValueVTs.size(); 7461 7462 // If this argument is unused then remember its value. It is used to generate 7463 // debugging information. 7464 if (I->use_empty() && NumValues) { 7465 SDB->setUnusedArgValue(&*I, InVals[i]); 7466 7467 // Also remember any frame index for use in FastISel. 7468 if (FrameIndexSDNode *FI = 7469 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7470 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7471 } 7472 7473 for (unsigned Val = 0; Val != NumValues; ++Val) { 7474 EVT VT = ValueVTs[Val]; 7475 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7476 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7477 7478 if (!I->use_empty()) { 7479 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7480 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7481 AssertOp = ISD::AssertSext; 7482 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7483 AssertOp = ISD::AssertZext; 7484 7485 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7486 NumParts, PartVT, VT, 7487 nullptr, AssertOp)); 7488 } 7489 7490 i += NumParts; 7491 } 7492 7493 // We don't need to do anything else for unused arguments. 7494 if (ArgValues.empty()) 7495 continue; 7496 7497 // Note down frame index. 7498 if (FrameIndexSDNode *FI = 7499 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7500 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7501 7502 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7503 SDB->getCurSDLoc()); 7504 7505 SDB->setValue(&*I, Res); 7506 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7507 if (LoadSDNode *LNode = 7508 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7509 if (FrameIndexSDNode *FI = 7510 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7511 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7512 } 7513 7514 // If this argument is live outside of the entry block, insert a copy from 7515 // wherever we got it to the vreg that other BB's will reference it as. 7516 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7517 // If we can, though, try to skip creating an unnecessary vreg. 7518 // FIXME: This isn't very clean... it would be nice to make this more 7519 // general. It's also subtly incompatible with the hacks FastISel 7520 // uses with vregs. 7521 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7522 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7523 FuncInfo->ValueMap[&*I] = Reg; 7524 continue; 7525 } 7526 } 7527 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7528 FuncInfo->InitializeRegForValue(&*I); 7529 SDB->CopyToExportRegsIfNeeded(&*I); 7530 } 7531 } 7532 7533 assert(i == InVals.size() && "Argument register count mismatch!"); 7534 7535 // Finally, if the target has anything special to do, allow it to do so. 7536 EmitFunctionEntryCode(); 7537 } 7538 7539 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7540 /// ensure constants are generated when needed. Remember the virtual registers 7541 /// that need to be added to the Machine PHI nodes as input. We cannot just 7542 /// directly add them, because expansion might result in multiple MBB's for one 7543 /// BB. As such, the start of the BB might correspond to a different MBB than 7544 /// the end. 7545 /// 7546 void 7547 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7548 const TerminatorInst *TI = LLVMBB->getTerminator(); 7549 7550 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7551 7552 // Check PHI nodes in successors that expect a value to be available from this 7553 // block. 7554 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7555 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7556 if (!isa<PHINode>(SuccBB->begin())) continue; 7557 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7558 7559 // If this terminator has multiple identical successors (common for 7560 // switches), only handle each succ once. 7561 if (!SuccsHandled.insert(SuccMBB).second) 7562 continue; 7563 7564 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7565 7566 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7567 // nodes and Machine PHI nodes, but the incoming operands have not been 7568 // emitted yet. 7569 for (BasicBlock::const_iterator I = SuccBB->begin(); 7570 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7571 // Ignore dead phi's. 7572 if (PN->use_empty()) continue; 7573 7574 // Skip empty types 7575 if (PN->getType()->isEmptyTy()) 7576 continue; 7577 7578 unsigned Reg; 7579 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7580 7581 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7582 unsigned &RegOut = ConstantsOut[C]; 7583 if (RegOut == 0) { 7584 RegOut = FuncInfo.CreateRegs(C->getType()); 7585 CopyValueToVirtualRegister(C, RegOut); 7586 } 7587 Reg = RegOut; 7588 } else { 7589 DenseMap<const Value *, unsigned>::iterator I = 7590 FuncInfo.ValueMap.find(PHIOp); 7591 if (I != FuncInfo.ValueMap.end()) 7592 Reg = I->second; 7593 else { 7594 assert(isa<AllocaInst>(PHIOp) && 7595 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7596 "Didn't codegen value into a register!??"); 7597 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7598 CopyValueToVirtualRegister(PHIOp, Reg); 7599 } 7600 } 7601 7602 // Remember that this register needs to added to the machine PHI node as 7603 // the input for this MBB. 7604 SmallVector<EVT, 4> ValueVTs; 7605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7606 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7607 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7608 EVT VT = ValueVTs[vti]; 7609 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7610 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7611 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7612 Reg += NumRegisters; 7613 } 7614 } 7615 } 7616 7617 ConstantsOut.clear(); 7618 } 7619 7620 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7621 /// is 0. 7622 MachineBasicBlock * 7623 SelectionDAGBuilder::StackProtectorDescriptor:: 7624 AddSuccessorMBB(const BasicBlock *BB, 7625 MachineBasicBlock *ParentMBB, 7626 bool IsLikely, 7627 MachineBasicBlock *SuccMBB) { 7628 // If SuccBB has not been created yet, create it. 7629 if (!SuccMBB) { 7630 MachineFunction *MF = ParentMBB->getParent(); 7631 MachineFunction::iterator BBI(ParentMBB); 7632 SuccMBB = MF->CreateMachineBasicBlock(BB); 7633 MF->insert(++BBI, SuccMBB); 7634 } 7635 // Add it as a successor of ParentMBB. 7636 ParentMBB->addSuccessor( 7637 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7638 return SuccMBB; 7639 } 7640 7641 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7642 MachineFunction::iterator I(MBB); 7643 if (++I == FuncInfo.MF->end()) 7644 return nullptr; 7645 return &*I; 7646 } 7647 7648 /// During lowering new call nodes can be created (such as memset, etc.). 7649 /// Those will become new roots of the current DAG, but complications arise 7650 /// when they are tail calls. In such cases, the call lowering will update 7651 /// the root, but the builder still needs to know that a tail call has been 7652 /// lowered in order to avoid generating an additional return. 7653 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7654 // If the node is null, we do have a tail call. 7655 if (MaybeTC.getNode() != nullptr) 7656 DAG.setRoot(MaybeTC); 7657 else 7658 HasTailCall = true; 7659 } 7660 7661 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7662 unsigned *TotalCases, unsigned First, 7663 unsigned Last) { 7664 assert(Last >= First); 7665 assert(TotalCases[Last] >= TotalCases[First]); 7666 7667 APInt LowCase = Clusters[First].Low->getValue(); 7668 APInt HighCase = Clusters[Last].High->getValue(); 7669 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7670 7671 // FIXME: A range of consecutive cases has 100% density, but only requires one 7672 // comparison to lower. We should discriminate against such consecutive ranges 7673 // in jump tables. 7674 7675 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7676 uint64_t Range = Diff + 1; 7677 7678 uint64_t NumCases = 7679 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7680 7681 assert(NumCases < UINT64_MAX / 100); 7682 assert(Range >= NumCases); 7683 7684 return NumCases * 100 >= Range * MinJumpTableDensity; 7685 } 7686 7687 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7688 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7689 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7690 } 7691 7692 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7693 unsigned First, unsigned Last, 7694 const SwitchInst *SI, 7695 MachineBasicBlock *DefaultMBB, 7696 CaseCluster &JTCluster) { 7697 assert(First <= Last); 7698 7699 auto Prob = BranchProbability::getZero(); 7700 unsigned NumCmps = 0; 7701 std::vector<MachineBasicBlock*> Table; 7702 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7703 7704 // Initialize probabilities in JTProbs. 7705 for (unsigned I = First; I <= Last; ++I) 7706 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7707 7708 for (unsigned I = First; I <= Last; ++I) { 7709 assert(Clusters[I].Kind == CC_Range); 7710 Prob += Clusters[I].Prob; 7711 APInt Low = Clusters[I].Low->getValue(); 7712 APInt High = Clusters[I].High->getValue(); 7713 NumCmps += (Low == High) ? 1 : 2; 7714 if (I != First) { 7715 // Fill the gap between this and the previous cluster. 7716 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7717 assert(PreviousHigh.slt(Low)); 7718 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7719 for (uint64_t J = 0; J < Gap; J++) 7720 Table.push_back(DefaultMBB); 7721 } 7722 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7723 for (uint64_t J = 0; J < ClusterSize; ++J) 7724 Table.push_back(Clusters[I].MBB); 7725 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7726 } 7727 7728 unsigned NumDests = JTProbs.size(); 7729 if (isSuitableForBitTests(NumDests, NumCmps, 7730 Clusters[First].Low->getValue(), 7731 Clusters[Last].High->getValue())) { 7732 // Clusters[First..Last] should be lowered as bit tests instead. 7733 return false; 7734 } 7735 7736 // Create the MBB that will load from and jump through the table. 7737 // Note: We create it here, but it's not inserted into the function yet. 7738 MachineFunction *CurMF = FuncInfo.MF; 7739 MachineBasicBlock *JumpTableMBB = 7740 CurMF->CreateMachineBasicBlock(SI->getParent()); 7741 7742 // Add successors. Note: use table order for determinism. 7743 SmallPtrSet<MachineBasicBlock *, 8> Done; 7744 for (MachineBasicBlock *Succ : Table) { 7745 if (Done.count(Succ)) 7746 continue; 7747 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 7748 Done.insert(Succ); 7749 } 7750 JumpTableMBB->normalizeSuccProbs(); 7751 7752 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7753 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7754 ->createJumpTableIndex(Table); 7755 7756 // Set up the jump table info. 7757 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7758 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7759 Clusters[Last].High->getValue(), SI->getCondition(), 7760 nullptr, false); 7761 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7762 7763 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7764 JTCases.size() - 1, Prob); 7765 return true; 7766 } 7767 7768 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7769 const SwitchInst *SI, 7770 MachineBasicBlock *DefaultMBB) { 7771 #ifndef NDEBUG 7772 // Clusters must be non-empty, sorted, and only contain Range clusters. 7773 assert(!Clusters.empty()); 7774 for (CaseCluster &C : Clusters) 7775 assert(C.Kind == CC_Range); 7776 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7777 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7778 #endif 7779 7780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7781 if (!areJTsAllowed(TLI)) 7782 return; 7783 7784 const int64_t N = Clusters.size(); 7785 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7786 7787 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7788 SmallVector<unsigned, 8> TotalCases(N); 7789 7790 for (unsigned i = 0; i < N; ++i) { 7791 APInt Hi = Clusters[i].High->getValue(); 7792 APInt Lo = Clusters[i].Low->getValue(); 7793 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7794 if (i != 0) 7795 TotalCases[i] += TotalCases[i - 1]; 7796 } 7797 7798 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7799 // Cheap case: the whole range might be suitable for jump table. 7800 CaseCluster JTCluster; 7801 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7802 Clusters[0] = JTCluster; 7803 Clusters.resize(1); 7804 return; 7805 } 7806 } 7807 7808 // The algorithm below is not suitable for -O0. 7809 if (TM.getOptLevel() == CodeGenOpt::None) 7810 return; 7811 7812 // Split Clusters into minimum number of dense partitions. The algorithm uses 7813 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7814 // for the Case Statement'" (1994), but builds the MinPartitions array in 7815 // reverse order to make it easier to reconstruct the partitions in ascending 7816 // order. In the choice between two optimal partitionings, it picks the one 7817 // which yields more jump tables. 7818 7819 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7820 SmallVector<unsigned, 8> MinPartitions(N); 7821 // LastElement[i] is the last element of the partition starting at i. 7822 SmallVector<unsigned, 8> LastElement(N); 7823 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7824 SmallVector<unsigned, 8> NumTables(N); 7825 7826 // Base case: There is only one way to partition Clusters[N-1]. 7827 MinPartitions[N - 1] = 1; 7828 LastElement[N - 1] = N - 1; 7829 assert(MinJumpTableSize > 1); 7830 NumTables[N - 1] = 0; 7831 7832 // Note: loop indexes are signed to avoid underflow. 7833 for (int64_t i = N - 2; i >= 0; i--) { 7834 // Find optimal partitioning of Clusters[i..N-1]. 7835 // Baseline: Put Clusters[i] into a partition on its own. 7836 MinPartitions[i] = MinPartitions[i + 1] + 1; 7837 LastElement[i] = i; 7838 NumTables[i] = NumTables[i + 1]; 7839 7840 // Search for a solution that results in fewer partitions. 7841 for (int64_t j = N - 1; j > i; j--) { 7842 // Try building a partition from Clusters[i..j]. 7843 if (isDense(Clusters, &TotalCases[0], i, j)) { 7844 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7845 bool IsTable = j - i + 1 >= MinJumpTableSize; 7846 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7847 7848 // If this j leads to fewer partitions, or same number of partitions 7849 // with more lookup tables, it is a better partitioning. 7850 if (NumPartitions < MinPartitions[i] || 7851 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7852 MinPartitions[i] = NumPartitions; 7853 LastElement[i] = j; 7854 NumTables[i] = Tables; 7855 } 7856 } 7857 } 7858 } 7859 7860 // Iterate over the partitions, replacing some with jump tables in-place. 7861 unsigned DstIndex = 0; 7862 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7863 Last = LastElement[First]; 7864 assert(Last >= First); 7865 assert(DstIndex <= First); 7866 unsigned NumClusters = Last - First + 1; 7867 7868 CaseCluster JTCluster; 7869 if (NumClusters >= MinJumpTableSize && 7870 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7871 Clusters[DstIndex++] = JTCluster; 7872 } else { 7873 for (unsigned I = First; I <= Last; ++I) 7874 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7875 } 7876 } 7877 Clusters.resize(DstIndex); 7878 } 7879 7880 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7881 // FIXME: Using the pointer type doesn't seem ideal. 7882 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7883 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7884 return Range <= BW; 7885 } 7886 7887 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7888 unsigned NumCmps, 7889 const APInt &Low, 7890 const APInt &High) { 7891 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7892 // range of cases both require only one branch to lower. Just looking at the 7893 // number of clusters and destinations should be enough to decide whether to 7894 // build bit tests. 7895 7896 // To lower a range with bit tests, the range must fit the bitwidth of a 7897 // machine word. 7898 if (!rangeFitsInWord(Low, High)) 7899 return false; 7900 7901 // Decide whether it's profitable to lower this range with bit tests. Each 7902 // destination requires a bit test and branch, and there is an overall range 7903 // check branch. For a small number of clusters, separate comparisons might be 7904 // cheaper, and for many destinations, splitting the range might be better. 7905 return (NumDests == 1 && NumCmps >= 3) || 7906 (NumDests == 2 && NumCmps >= 5) || 7907 (NumDests == 3 && NumCmps >= 6); 7908 } 7909 7910 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7911 unsigned First, unsigned Last, 7912 const SwitchInst *SI, 7913 CaseCluster &BTCluster) { 7914 assert(First <= Last); 7915 if (First == Last) 7916 return false; 7917 7918 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7919 unsigned NumCmps = 0; 7920 for (int64_t I = First; I <= Last; ++I) { 7921 assert(Clusters[I].Kind == CC_Range); 7922 Dests.set(Clusters[I].MBB->getNumber()); 7923 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7924 } 7925 unsigned NumDests = Dests.count(); 7926 7927 APInt Low = Clusters[First].Low->getValue(); 7928 APInt High = Clusters[Last].High->getValue(); 7929 assert(Low.slt(High)); 7930 7931 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7932 return false; 7933 7934 APInt LowBound; 7935 APInt CmpRange; 7936 7937 const int BitWidth = DAG.getTargetLoweringInfo() 7938 .getPointerTy(DAG.getDataLayout()) 7939 .getSizeInBits(); 7940 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7941 7942 // Check if the clusters cover a contiguous range such that no value in the 7943 // range will jump to the default statement. 7944 bool ContiguousRange = true; 7945 for (int64_t I = First + 1; I <= Last; ++I) { 7946 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7947 ContiguousRange = false; 7948 break; 7949 } 7950 } 7951 7952 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7953 // Optimize the case where all the case values fit in a word without having 7954 // to subtract minValue. In this case, we can optimize away the subtraction. 7955 LowBound = APInt::getNullValue(Low.getBitWidth()); 7956 CmpRange = High; 7957 ContiguousRange = false; 7958 } else { 7959 LowBound = Low; 7960 CmpRange = High - Low; 7961 } 7962 7963 CaseBitsVector CBV; 7964 auto TotalProb = BranchProbability::getZero(); 7965 for (unsigned i = First; i <= Last; ++i) { 7966 // Find the CaseBits for this destination. 7967 unsigned j; 7968 for (j = 0; j < CBV.size(); ++j) 7969 if (CBV[j].BB == Clusters[i].MBB) 7970 break; 7971 if (j == CBV.size()) 7972 CBV.push_back( 7973 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 7974 CaseBits *CB = &CBV[j]; 7975 7976 // Update Mask, Bits and ExtraProb. 7977 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7978 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7979 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7980 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7981 CB->Bits += Hi - Lo + 1; 7982 CB->ExtraProb += Clusters[i].Prob; 7983 TotalProb += Clusters[i].Prob; 7984 } 7985 7986 BitTestInfo BTI; 7987 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7988 // Sort by probability first, number of bits second. 7989 if (a.ExtraProb != b.ExtraProb) 7990 return a.ExtraProb > b.ExtraProb; 7991 return a.Bits > b.Bits; 7992 }); 7993 7994 for (auto &CB : CBV) { 7995 MachineBasicBlock *BitTestBB = 7996 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7997 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 7998 } 7999 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8000 SI->getCondition(), -1U, MVT::Other, false, 8001 ContiguousRange, nullptr, nullptr, std::move(BTI), 8002 TotalProb); 8003 8004 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8005 BitTestCases.size() - 1, TotalProb); 8006 return true; 8007 } 8008 8009 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8010 const SwitchInst *SI) { 8011 // Partition Clusters into as few subsets as possible, where each subset has a 8012 // range that fits in a machine word and has <= 3 unique destinations. 8013 8014 #ifndef NDEBUG 8015 // Clusters must be sorted and contain Range or JumpTable clusters. 8016 assert(!Clusters.empty()); 8017 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8018 for (const CaseCluster &C : Clusters) 8019 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8020 for (unsigned i = 1; i < Clusters.size(); ++i) 8021 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8022 #endif 8023 8024 // The algorithm below is not suitable for -O0. 8025 if (TM.getOptLevel() == CodeGenOpt::None) 8026 return; 8027 8028 // If target does not have legal shift left, do not emit bit tests at all. 8029 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8030 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8031 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8032 return; 8033 8034 int BitWidth = PTy.getSizeInBits(); 8035 const int64_t N = Clusters.size(); 8036 8037 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8038 SmallVector<unsigned, 8> MinPartitions(N); 8039 // LastElement[i] is the last element of the partition starting at i. 8040 SmallVector<unsigned, 8> LastElement(N); 8041 8042 // FIXME: This might not be the best algorithm for finding bit test clusters. 8043 8044 // Base case: There is only one way to partition Clusters[N-1]. 8045 MinPartitions[N - 1] = 1; 8046 LastElement[N - 1] = N - 1; 8047 8048 // Note: loop indexes are signed to avoid underflow. 8049 for (int64_t i = N - 2; i >= 0; --i) { 8050 // Find optimal partitioning of Clusters[i..N-1]. 8051 // Baseline: Put Clusters[i] into a partition on its own. 8052 MinPartitions[i] = MinPartitions[i + 1] + 1; 8053 LastElement[i] = i; 8054 8055 // Search for a solution that results in fewer partitions. 8056 // Note: the search is limited by BitWidth, reducing time complexity. 8057 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8058 // Try building a partition from Clusters[i..j]. 8059 8060 // Check the range. 8061 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8062 Clusters[j].High->getValue())) 8063 continue; 8064 8065 // Check nbr of destinations and cluster types. 8066 // FIXME: This works, but doesn't seem very efficient. 8067 bool RangesOnly = true; 8068 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8069 for (int64_t k = i; k <= j; k++) { 8070 if (Clusters[k].Kind != CC_Range) { 8071 RangesOnly = false; 8072 break; 8073 } 8074 Dests.set(Clusters[k].MBB->getNumber()); 8075 } 8076 if (!RangesOnly || Dests.count() > 3) 8077 break; 8078 8079 // Check if it's a better partition. 8080 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8081 if (NumPartitions < MinPartitions[i]) { 8082 // Found a better partition. 8083 MinPartitions[i] = NumPartitions; 8084 LastElement[i] = j; 8085 } 8086 } 8087 } 8088 8089 // Iterate over the partitions, replacing with bit-test clusters in-place. 8090 unsigned DstIndex = 0; 8091 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8092 Last = LastElement[First]; 8093 assert(First <= Last); 8094 assert(DstIndex <= First); 8095 8096 CaseCluster BitTestCluster; 8097 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8098 Clusters[DstIndex++] = BitTestCluster; 8099 } else { 8100 size_t NumClusters = Last - First + 1; 8101 std::memmove(&Clusters[DstIndex], &Clusters[First], 8102 sizeof(Clusters[0]) * NumClusters); 8103 DstIndex += NumClusters; 8104 } 8105 } 8106 Clusters.resize(DstIndex); 8107 } 8108 8109 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8110 MachineBasicBlock *SwitchMBB, 8111 MachineBasicBlock *DefaultMBB) { 8112 MachineFunction *CurMF = FuncInfo.MF; 8113 MachineBasicBlock *NextMBB = nullptr; 8114 MachineFunction::iterator BBI(W.MBB); 8115 if (++BBI != FuncInfo.MF->end()) 8116 NextMBB = &*BBI; 8117 8118 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8119 8120 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8121 8122 if (Size == 2 && W.MBB == SwitchMBB) { 8123 // If any two of the cases has the same destination, and if one value 8124 // is the same as the other, but has one bit unset that the other has set, 8125 // use bit manipulation to do two compares at once. For example: 8126 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8127 // TODO: This could be extended to merge any 2 cases in switches with 3 8128 // cases. 8129 // TODO: Handle cases where W.CaseBB != SwitchBB. 8130 CaseCluster &Small = *W.FirstCluster; 8131 CaseCluster &Big = *W.LastCluster; 8132 8133 if (Small.Low == Small.High && Big.Low == Big.High && 8134 Small.MBB == Big.MBB) { 8135 const APInt &SmallValue = Small.Low->getValue(); 8136 const APInt &BigValue = Big.Low->getValue(); 8137 8138 // Check that there is only one bit different. 8139 APInt CommonBit = BigValue ^ SmallValue; 8140 if (CommonBit.isPowerOf2()) { 8141 SDValue CondLHS = getValue(Cond); 8142 EVT VT = CondLHS.getValueType(); 8143 SDLoc DL = getCurSDLoc(); 8144 8145 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8146 DAG.getConstant(CommonBit, DL, VT)); 8147 SDValue Cond = DAG.getSetCC( 8148 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8149 ISD::SETEQ); 8150 8151 // Update successor info. 8152 // Both Small and Big will jump to Small.BB, so we sum up the 8153 // probabilities. 8154 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8155 if (BPI) 8156 addSuccessorWithProb( 8157 SwitchMBB, DefaultMBB, 8158 // The default destination is the first successor in IR. 8159 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8160 else 8161 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8162 8163 // Insert the true branch. 8164 SDValue BrCond = 8165 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8166 DAG.getBasicBlock(Small.MBB)); 8167 // Insert the false branch. 8168 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8169 DAG.getBasicBlock(DefaultMBB)); 8170 8171 DAG.setRoot(BrCond); 8172 return; 8173 } 8174 } 8175 } 8176 8177 if (TM.getOptLevel() != CodeGenOpt::None) { 8178 // Order cases by probability so the most likely case will be checked first. 8179 std::sort(W.FirstCluster, W.LastCluster + 1, 8180 [](const CaseCluster &a, const CaseCluster &b) { 8181 return a.Prob > b.Prob; 8182 }); 8183 8184 // Rearrange the case blocks so that the last one falls through if possible 8185 // without without changing the order of probabilities. 8186 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8187 --I; 8188 if (I->Prob > W.LastCluster->Prob) 8189 break; 8190 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8191 std::swap(*I, *W.LastCluster); 8192 break; 8193 } 8194 } 8195 } 8196 8197 // Compute total probability. 8198 BranchProbability DefaultProb = W.DefaultProb; 8199 BranchProbability UnhandledProbs = DefaultProb; 8200 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8201 UnhandledProbs += I->Prob; 8202 8203 MachineBasicBlock *CurMBB = W.MBB; 8204 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8205 MachineBasicBlock *Fallthrough; 8206 if (I == W.LastCluster) { 8207 // For the last cluster, fall through to the default destination. 8208 Fallthrough = DefaultMBB; 8209 } else { 8210 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8211 CurMF->insert(BBI, Fallthrough); 8212 // Put Cond in a virtual register to make it available from the new blocks. 8213 ExportFromCurrentBlock(Cond); 8214 } 8215 UnhandledProbs -= I->Prob; 8216 8217 switch (I->Kind) { 8218 case CC_JumpTable: { 8219 // FIXME: Optimize away range check based on pivot comparisons. 8220 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8221 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8222 8223 // The jump block hasn't been inserted yet; insert it here. 8224 MachineBasicBlock *JumpMBB = JT->MBB; 8225 CurMF->insert(BBI, JumpMBB); 8226 8227 auto JumpProb = I->Prob; 8228 auto FallthroughProb = UnhandledProbs; 8229 8230 // If the default statement is a target of the jump table, we evenly 8231 // distribute the default probability to successors of CurMBB. Also 8232 // update the probability on the edge from JumpMBB to Fallthrough. 8233 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8234 SE = JumpMBB->succ_end(); 8235 SI != SE; ++SI) { 8236 if (*SI == DefaultMBB) { 8237 JumpProb += DefaultProb / 2; 8238 FallthroughProb -= DefaultProb / 2; 8239 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8240 JumpMBB->normalizeSuccProbs(); 8241 break; 8242 } 8243 } 8244 8245 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8246 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8247 CurMBB->normalizeSuccProbs(); 8248 8249 // The jump table header will be inserted in our current block, do the 8250 // range check, and fall through to our fallthrough block. 8251 JTH->HeaderBB = CurMBB; 8252 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8253 8254 // If we're in the right place, emit the jump table header right now. 8255 if (CurMBB == SwitchMBB) { 8256 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8257 JTH->Emitted = true; 8258 } 8259 break; 8260 } 8261 case CC_BitTests: { 8262 // FIXME: Optimize away range check based on pivot comparisons. 8263 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8264 8265 // The bit test blocks haven't been inserted yet; insert them here. 8266 for (BitTestCase &BTC : BTB->Cases) 8267 CurMF->insert(BBI, BTC.ThisBB); 8268 8269 // Fill in fields of the BitTestBlock. 8270 BTB->Parent = CurMBB; 8271 BTB->Default = Fallthrough; 8272 8273 BTB->DefaultProb = UnhandledProbs; 8274 // If the cases in bit test don't form a contiguous range, we evenly 8275 // distribute the probability on the edge to Fallthrough to two 8276 // successors of CurMBB. 8277 if (!BTB->ContiguousRange) { 8278 BTB->Prob += DefaultProb / 2; 8279 BTB->DefaultProb -= DefaultProb / 2; 8280 } 8281 8282 // If we're in the right place, emit the bit test header right now. 8283 if (CurMBB == SwitchMBB) { 8284 visitBitTestHeader(*BTB, SwitchMBB); 8285 BTB->Emitted = true; 8286 } 8287 break; 8288 } 8289 case CC_Range: { 8290 const Value *RHS, *LHS, *MHS; 8291 ISD::CondCode CC; 8292 if (I->Low == I->High) { 8293 // Check Cond == I->Low. 8294 CC = ISD::SETEQ; 8295 LHS = Cond; 8296 RHS=I->Low; 8297 MHS = nullptr; 8298 } else { 8299 // Check I->Low <= Cond <= I->High. 8300 CC = ISD::SETLE; 8301 LHS = I->Low; 8302 MHS = Cond; 8303 RHS = I->High; 8304 } 8305 8306 // The false probability is the sum of all unhandled cases. 8307 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8308 UnhandledProbs); 8309 8310 if (CurMBB == SwitchMBB) 8311 visitSwitchCase(CB, SwitchMBB); 8312 else 8313 SwitchCases.push_back(CB); 8314 8315 break; 8316 } 8317 } 8318 CurMBB = Fallthrough; 8319 } 8320 } 8321 8322 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8323 CaseClusterIt First, 8324 CaseClusterIt Last) { 8325 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8326 if (X.Prob != CC.Prob) 8327 return X.Prob > CC.Prob; 8328 8329 // Ties are broken by comparing the case value. 8330 return X.Low->getValue().slt(CC.Low->getValue()); 8331 }); 8332 } 8333 8334 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8335 const SwitchWorkListItem &W, 8336 Value *Cond, 8337 MachineBasicBlock *SwitchMBB) { 8338 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8339 "Clusters not sorted?"); 8340 8341 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8342 8343 // Balance the tree based on branch probabilities to create a near-optimal (in 8344 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8345 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8346 CaseClusterIt LastLeft = W.FirstCluster; 8347 CaseClusterIt FirstRight = W.LastCluster; 8348 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8349 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8350 8351 // Move LastLeft and FirstRight towards each other from opposite directions to 8352 // find a partitioning of the clusters which balances the probability on both 8353 // sides. If LeftProb and RightProb are equal, alternate which side is 8354 // taken to ensure 0-probability nodes are distributed evenly. 8355 unsigned I = 0; 8356 while (LastLeft + 1 < FirstRight) { 8357 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8358 LeftProb += (++LastLeft)->Prob; 8359 else 8360 RightProb += (--FirstRight)->Prob; 8361 I++; 8362 } 8363 8364 for (;;) { 8365 // Our binary search tree differs from a typical BST in that ours can have up 8366 // to three values in each leaf. The pivot selection above doesn't take that 8367 // into account, which means the tree might require more nodes and be less 8368 // efficient. We compensate for this here. 8369 8370 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8371 unsigned NumRight = W.LastCluster - FirstRight + 1; 8372 8373 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8374 // If one side has less than 3 clusters, and the other has more than 3, 8375 // consider taking a cluster from the other side. 8376 8377 if (NumLeft < NumRight) { 8378 // Consider moving the first cluster on the right to the left side. 8379 CaseCluster &CC = *FirstRight; 8380 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8381 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8382 if (LeftSideRank <= RightSideRank) { 8383 // Moving the cluster to the left does not demote it. 8384 ++LastLeft; 8385 ++FirstRight; 8386 continue; 8387 } 8388 } else { 8389 assert(NumRight < NumLeft); 8390 // Consider moving the last element on the left to the right side. 8391 CaseCluster &CC = *LastLeft; 8392 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8393 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8394 if (RightSideRank <= LeftSideRank) { 8395 // Moving the cluster to the right does not demot it. 8396 --LastLeft; 8397 --FirstRight; 8398 continue; 8399 } 8400 } 8401 } 8402 break; 8403 } 8404 8405 assert(LastLeft + 1 == FirstRight); 8406 assert(LastLeft >= W.FirstCluster); 8407 assert(FirstRight <= W.LastCluster); 8408 8409 // Use the first element on the right as pivot since we will make less-than 8410 // comparisons against it. 8411 CaseClusterIt PivotCluster = FirstRight; 8412 assert(PivotCluster > W.FirstCluster); 8413 assert(PivotCluster <= W.LastCluster); 8414 8415 CaseClusterIt FirstLeft = W.FirstCluster; 8416 CaseClusterIt LastRight = W.LastCluster; 8417 8418 const ConstantInt *Pivot = PivotCluster->Low; 8419 8420 // New blocks will be inserted immediately after the current one. 8421 MachineFunction::iterator BBI(W.MBB); 8422 ++BBI; 8423 8424 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8425 // we can branch to its destination directly if it's squeezed exactly in 8426 // between the known lower bound and Pivot - 1. 8427 MachineBasicBlock *LeftMBB; 8428 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8429 FirstLeft->Low == W.GE && 8430 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8431 LeftMBB = FirstLeft->MBB; 8432 } else { 8433 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8434 FuncInfo.MF->insert(BBI, LeftMBB); 8435 WorkList.push_back( 8436 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8437 // Put Cond in a virtual register to make it available from the new blocks. 8438 ExportFromCurrentBlock(Cond); 8439 } 8440 8441 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8442 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8443 // directly if RHS.High equals the current upper bound. 8444 MachineBasicBlock *RightMBB; 8445 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8446 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8447 RightMBB = FirstRight->MBB; 8448 } else { 8449 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8450 FuncInfo.MF->insert(BBI, RightMBB); 8451 WorkList.push_back( 8452 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8453 // Put Cond in a virtual register to make it available from the new blocks. 8454 ExportFromCurrentBlock(Cond); 8455 } 8456 8457 // Create the CaseBlock record that will be used to lower the branch. 8458 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8459 LeftProb, RightProb); 8460 8461 if (W.MBB == SwitchMBB) 8462 visitSwitchCase(CB, SwitchMBB); 8463 else 8464 SwitchCases.push_back(CB); 8465 } 8466 8467 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8468 // Extract cases from the switch. 8469 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8470 CaseClusterVector Clusters; 8471 Clusters.reserve(SI.getNumCases()); 8472 for (auto I : SI.cases()) { 8473 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8474 const ConstantInt *CaseVal = I.getCaseValue(); 8475 BranchProbability Prob = 8476 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8477 : BranchProbability(1, SI.getNumCases() + 1); 8478 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8479 } 8480 8481 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8482 8483 // Cluster adjacent cases with the same destination. We do this at all 8484 // optimization levels because it's cheap to do and will make codegen faster 8485 // if there are many clusters. 8486 sortAndRangeify(Clusters); 8487 8488 if (TM.getOptLevel() != CodeGenOpt::None) { 8489 // Replace an unreachable default with the most popular destination. 8490 // FIXME: Exploit unreachable default more aggressively. 8491 bool UnreachableDefault = 8492 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8493 if (UnreachableDefault && !Clusters.empty()) { 8494 DenseMap<const BasicBlock *, unsigned> Popularity; 8495 unsigned MaxPop = 0; 8496 const BasicBlock *MaxBB = nullptr; 8497 for (auto I : SI.cases()) { 8498 const BasicBlock *BB = I.getCaseSuccessor(); 8499 if (++Popularity[BB] > MaxPop) { 8500 MaxPop = Popularity[BB]; 8501 MaxBB = BB; 8502 } 8503 } 8504 // Set new default. 8505 assert(MaxPop > 0 && MaxBB); 8506 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8507 8508 // Remove cases that were pointing to the destination that is now the 8509 // default. 8510 CaseClusterVector New; 8511 New.reserve(Clusters.size()); 8512 for (CaseCluster &CC : Clusters) { 8513 if (CC.MBB != DefaultMBB) 8514 New.push_back(CC); 8515 } 8516 Clusters = std::move(New); 8517 } 8518 } 8519 8520 // If there is only the default destination, jump there directly. 8521 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8522 if (Clusters.empty()) { 8523 SwitchMBB->addSuccessor(DefaultMBB); 8524 if (DefaultMBB != NextBlock(SwitchMBB)) { 8525 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8526 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8527 } 8528 return; 8529 } 8530 8531 findJumpTables(Clusters, &SI, DefaultMBB); 8532 findBitTestClusters(Clusters, &SI); 8533 8534 DEBUG({ 8535 dbgs() << "Case clusters: "; 8536 for (const CaseCluster &C : Clusters) { 8537 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8538 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8539 8540 C.Low->getValue().print(dbgs(), true); 8541 if (C.Low != C.High) { 8542 dbgs() << '-'; 8543 C.High->getValue().print(dbgs(), true); 8544 } 8545 dbgs() << ' '; 8546 } 8547 dbgs() << '\n'; 8548 }); 8549 8550 assert(!Clusters.empty()); 8551 SwitchWorkList WorkList; 8552 CaseClusterIt First = Clusters.begin(); 8553 CaseClusterIt Last = Clusters.end() - 1; 8554 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8555 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8556 8557 while (!WorkList.empty()) { 8558 SwitchWorkListItem W = WorkList.back(); 8559 WorkList.pop_back(); 8560 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8561 8562 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8563 // For optimized builds, lower large range as a balanced binary tree. 8564 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8565 continue; 8566 } 8567 8568 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8569 } 8570 } 8571