xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 3e7ca5f1efabb488663caec371e408d74c634d84)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/EHPersonalities.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsAMDGPU.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Operator.h"
87 #include "llvm/IR/PatternMatch.h"
88 #include "llvm/IR/Statepoint.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/User.h"
91 #include "llvm/IR/Value.h"
92 #include "llvm/MC/MCContext.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/InstructionCost.h"
99 #include "llvm/Support/MathExtras.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetIntrinsicInfo.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include "llvm/TargetParser/Triple.h"
105 #include "llvm/Transforms/Utils/Local.h"
106 #include <cstddef>
107 #include <deque>
108 #include <iterator>
109 #include <limits>
110 #include <optional>
111 #include <tuple>
112 
113 using namespace llvm;
114 using namespace PatternMatch;
115 using namespace SwitchCG;
116 
117 #define DEBUG_TYPE "isel"
118 
119 /// LimitFloatPrecision - Generate low-precision inline sequences for
120 /// some float libcalls (6, 8 or 12 bits).
121 static unsigned LimitFloatPrecision;
122 
123 static cl::opt<bool>
124     InsertAssertAlign("insert-assert-align", cl::init(true),
125                       cl::desc("Insert the experimental `assertalign` node."),
126                       cl::ReallyHidden);
127 
128 static cl::opt<unsigned, true>
129     LimitFPPrecision("limit-float-precision",
130                      cl::desc("Generate low-precision inline sequences "
131                               "for some float libcalls"),
132                      cl::location(LimitFloatPrecision), cl::Hidden,
133                      cl::init(0));
134 
135 static cl::opt<unsigned> SwitchPeelThreshold(
136     "switch-peel-threshold", cl::Hidden, cl::init(66),
137     cl::desc("Set the case probability threshold for peeling the case from a "
138              "switch statement. A value greater than 100 will void this "
139              "optimization"));
140 
141 // Limit the width of DAG chains. This is important in general to prevent
142 // DAG-based analysis from blowing up. For example, alias analysis and
143 // load clustering may not complete in reasonable time. It is difficult to
144 // recognize and avoid this situation within each individual analysis, and
145 // future analyses are likely to have the same behavior. Limiting DAG width is
146 // the safe approach and will be especially important with global DAGs.
147 //
148 // MaxParallelChains default is arbitrarily high to avoid affecting
149 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
150 // sequence over this should have been converted to llvm.memcpy by the
151 // frontend. It is easy to induce this behavior with .ll code such as:
152 // %buffer = alloca [4096 x i8]
153 // %data = load [4096 x i8]* %argPtr
154 // store [4096 x i8] %data, [4096 x i8]* %buffer
155 static const unsigned MaxParallelChains = 64;
156 
157 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
158                                       const SDValue *Parts, unsigned NumParts,
159                                       MVT PartVT, EVT ValueVT, const Value *V,
160                                       SDValue InChain,
161                                       std::optional<CallingConv::ID> CC);
162 
163 /// getCopyFromParts - Create a value that contains the specified legal parts
164 /// combined into the value they represent.  If the parts combine to a type
165 /// larger than ValueVT then AssertOp can be used to specify whether the extra
166 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
167 /// (ISD::AssertSext).
168 static SDValue
169 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
170                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
171                  SDValue InChain,
172                  std::optional<CallingConv::ID> CC = std::nullopt,
173                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
174   // Let the target assemble the parts if it wants to
175   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
176   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
177                                                    PartVT, ValueVT, CC))
178     return Val;
179 
180   if (ValueVT.isVector())
181     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
182                                   InChain, CC);
183 
184   assert(NumParts > 0 && "No parts to assemble!");
185   SDValue Val = Parts[0];
186 
187   if (NumParts > 1) {
188     // Assemble the value from multiple parts.
189     if (ValueVT.isInteger()) {
190       unsigned PartBits = PartVT.getSizeInBits();
191       unsigned ValueBits = ValueVT.getSizeInBits();
192 
193       // Assemble the power of 2 part.
194       unsigned RoundParts = llvm::bit_floor(NumParts);
195       unsigned RoundBits = PartBits * RoundParts;
196       EVT RoundVT = RoundBits == ValueBits ?
197         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
198       SDValue Lo, Hi;
199 
200       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
201 
202       if (RoundParts > 2) {
203         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
204                               InChain);
205         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
206                               PartVT, HalfVT, V, InChain);
207       } else {
208         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
209         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
210       }
211 
212       if (DAG.getDataLayout().isBigEndian())
213         std::swap(Lo, Hi);
214 
215       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
216 
217       if (RoundParts < NumParts) {
218         // Assemble the trailing non-power-of-2 part.
219         unsigned OddParts = NumParts - RoundParts;
220         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
221         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
222                               OddVT, V, InChain, CC);
223 
224         // Combine the round and odd parts.
225         Lo = Val;
226         if (DAG.getDataLayout().isBigEndian())
227           std::swap(Lo, Hi);
228         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
229         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
230         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
231                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
232                                          TLI.getShiftAmountTy(
233                                              TotalVT, DAG.getDataLayout())));
234         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
235         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
236       }
237     } else if (PartVT.isFloatingPoint()) {
238       // FP split into multiple FP parts (for ppcf128)
239       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
240              "Unexpected split");
241       SDValue Lo, Hi;
242       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
243       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
244       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
245         std::swap(Lo, Hi);
246       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
247     } else {
248       // FP split into integer parts (soft fp)
249       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
250              !PartVT.isVector() && "Unexpected split");
251       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
252       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
253                              InChain, CC);
254     }
255   }
256 
257   // There is now one part, held in Val.  Correct it to match ValueVT.
258   // PartEVT is the type of the register class that holds the value.
259   // ValueVT is the type of the inline asm operation.
260   EVT PartEVT = Val.getValueType();
261 
262   if (PartEVT == ValueVT)
263     return Val;
264 
265   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
266       ValueVT.bitsLT(PartEVT)) {
267     // For an FP value in an integer part, we need to truncate to the right
268     // width first.
269     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
270     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
271   }
272 
273   // Handle types that have the same size.
274   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
275     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
276 
277   // Handle types with different sizes.
278   if (PartEVT.isInteger() && ValueVT.isInteger()) {
279     if (ValueVT.bitsLT(PartEVT)) {
280       // For a truncate, see if we have any information to
281       // indicate whether the truncated bits will always be
282       // zero or sign-extension.
283       if (AssertOp)
284         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
285                           DAG.getValueType(ValueVT));
286       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
287     }
288     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
289   }
290 
291   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
292     // FP_ROUND's are always exact here.
293     if (ValueVT.bitsLT(Val.getValueType())) {
294 
295       SDValue NoChange =
296           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
297 
298       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
299               llvm::Attribute::StrictFP)) {
300         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
301                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
302                            NoChange);
303       }
304 
305       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
306     }
307 
308     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
309   }
310 
311   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
312   // then truncating.
313   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
314       ValueVT.bitsLT(PartEVT)) {
315     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
316     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
317   }
318 
319   report_fatal_error("Unknown mismatch in getCopyFromParts!");
320 }
321 
322 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
323                                               const Twine &ErrMsg) {
324   const Instruction *I = dyn_cast_or_null<Instruction>(V);
325   if (!V)
326     return Ctx.emitError(ErrMsg);
327 
328   const char *AsmError = ", possible invalid constraint for vector type";
329   if (const CallInst *CI = dyn_cast<CallInst>(I))
330     if (CI->isInlineAsm())
331       return Ctx.emitError(I, ErrMsg + AsmError);
332 
333   return Ctx.emitError(I, ErrMsg);
334 }
335 
336 /// getCopyFromPartsVector - Create a value that contains the specified legal
337 /// parts combined into the value they represent.  If the parts combine to a
338 /// type larger than ValueVT then AssertOp can be used to specify whether the
339 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
340 /// ValueVT (ISD::AssertSext).
341 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
342                                       const SDValue *Parts, unsigned NumParts,
343                                       MVT PartVT, EVT ValueVT, const Value *V,
344                                       SDValue InChain,
345                                       std::optional<CallingConv::ID> CallConv) {
346   assert(ValueVT.isVector() && "Not a vector value");
347   assert(NumParts > 0 && "No parts to assemble!");
348   const bool IsABIRegCopy = CallConv.has_value();
349 
350   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
351   SDValue Val = Parts[0];
352 
353   // Handle a multi-element vector.
354   if (NumParts > 1) {
355     EVT IntermediateVT;
356     MVT RegisterVT;
357     unsigned NumIntermediates;
358     unsigned NumRegs;
359 
360     if (IsABIRegCopy) {
361       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
362           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
363           NumIntermediates, RegisterVT);
364     } else {
365       NumRegs =
366           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
367                                      NumIntermediates, RegisterVT);
368     }
369 
370     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
371     NumParts = NumRegs; // Silence a compiler warning.
372     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
373     assert(RegisterVT.getSizeInBits() ==
374            Parts[0].getSimpleValueType().getSizeInBits() &&
375            "Part type sizes don't match!");
376 
377     // Assemble the parts into intermediate operands.
378     SmallVector<SDValue, 8> Ops(NumIntermediates);
379     if (NumIntermediates == NumParts) {
380       // If the register was not expanded, truncate or copy the value,
381       // as appropriate.
382       for (unsigned i = 0; i != NumParts; ++i)
383         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
384                                   V, InChain, CallConv);
385     } else if (NumParts > 0) {
386       // If the intermediate type was expanded, build the intermediate
387       // operands from the parts.
388       assert(NumParts % NumIntermediates == 0 &&
389              "Must expand into a divisible number of parts!");
390       unsigned Factor = NumParts / NumIntermediates;
391       for (unsigned i = 0; i != NumIntermediates; ++i)
392         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
393                                   IntermediateVT, V, InChain, CallConv);
394     }
395 
396     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
397     // intermediate operands.
398     EVT BuiltVectorTy =
399         IntermediateVT.isVector()
400             ? EVT::getVectorVT(
401                   *DAG.getContext(), IntermediateVT.getScalarType(),
402                   IntermediateVT.getVectorElementCount() * NumParts)
403             : EVT::getVectorVT(*DAG.getContext(),
404                                IntermediateVT.getScalarType(),
405                                NumIntermediates);
406     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
407                                                 : ISD::BUILD_VECTOR,
408                       DL, BuiltVectorTy, Ops);
409   }
410 
411   // There is now one part, held in Val.  Correct it to match ValueVT.
412   EVT PartEVT = Val.getValueType();
413 
414   if (PartEVT == ValueVT)
415     return Val;
416 
417   if (PartEVT.isVector()) {
418     // Vector/Vector bitcast.
419     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
420       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
421 
422     // If the parts vector has more elements than the value vector, then we
423     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
424     // Extract the elements we want.
425     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
426       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
427               ValueVT.getVectorElementCount().getKnownMinValue()) &&
428              (PartEVT.getVectorElementCount().isScalable() ==
429               ValueVT.getVectorElementCount().isScalable()) &&
430              "Cannot narrow, it would be a lossy transformation");
431       PartEVT =
432           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
433                            ValueVT.getVectorElementCount());
434       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
435                         DAG.getVectorIdxConstant(0, DL));
436       if (PartEVT == ValueVT)
437         return Val;
438       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
439         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
440 
441       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
442       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
443         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
444     }
445 
446     // Promoted vector extract
447     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
448   }
449 
450   // Trivial bitcast if the types are the same size and the destination
451   // vector type is legal.
452   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
453       TLI.isTypeLegal(ValueVT))
454     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
455 
456   if (ValueVT.getVectorNumElements() != 1) {
457      // Certain ABIs require that vectors are passed as integers. For vectors
458      // are the same size, this is an obvious bitcast.
459      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
460        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
461      } else if (ValueVT.bitsLT(PartEVT)) {
462        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
463        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
464        // Drop the extra bits.
465        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
466        return DAG.getBitcast(ValueVT, Val);
467      }
468 
469      diagnosePossiblyInvalidConstraint(
470          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
471      return DAG.getUNDEF(ValueVT);
472   }
473 
474   // Handle cases such as i8 -> <1 x i1>
475   EVT ValueSVT = ValueVT.getVectorElementType();
476   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
477     unsigned ValueSize = ValueSVT.getSizeInBits();
478     if (ValueSize == PartEVT.getSizeInBits()) {
479       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
480     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
481       // It's possible a scalar floating point type gets softened to integer and
482       // then promoted to a larger integer. If PartEVT is the larger integer
483       // we need to truncate it and then bitcast to the FP type.
484       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
485       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
486       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
487       Val = DAG.getBitcast(ValueSVT, Val);
488     } else {
489       Val = ValueVT.isFloatingPoint()
490                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
491                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
492     }
493   }
494 
495   return DAG.getBuildVector(ValueVT, DL, Val);
496 }
497 
498 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
499                                  SDValue Val, SDValue *Parts, unsigned NumParts,
500                                  MVT PartVT, const Value *V,
501                                  std::optional<CallingConv::ID> CallConv);
502 
503 /// getCopyToParts - Create a series of nodes that contain the specified value
504 /// split into legal parts.  If the parts contain more bits than Val, then, for
505 /// integers, ExtendKind can be used to specify how to generate the extra bits.
506 static void
507 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
508                unsigned NumParts, MVT PartVT, const Value *V,
509                std::optional<CallingConv::ID> CallConv = std::nullopt,
510                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
511   // Let the target split the parts if it wants to
512   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
513   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
514                                       CallConv))
515     return;
516   EVT ValueVT = Val.getValueType();
517 
518   // Handle the vector case separately.
519   if (ValueVT.isVector())
520     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
521                                 CallConv);
522 
523   unsigned OrigNumParts = NumParts;
524   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
525          "Copying to an illegal type!");
526 
527   if (NumParts == 0)
528     return;
529 
530   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
531   EVT PartEVT = PartVT;
532   if (PartEVT == ValueVT) {
533     assert(NumParts == 1 && "No-op copy with multiple parts!");
534     Parts[0] = Val;
535     return;
536   }
537 
538   unsigned PartBits = PartVT.getSizeInBits();
539   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
540     // If the parts cover more bits than the value has, promote the value.
541     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
542       assert(NumParts == 1 && "Do not know what to promote to!");
543       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
544     } else {
545       if (ValueVT.isFloatingPoint()) {
546         // FP values need to be bitcast, then extended if they are being put
547         // into a larger container.
548         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
549         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
550       }
551       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
552              ValueVT.isInteger() &&
553              "Unknown mismatch!");
554       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
555       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
556       if (PartVT == MVT::x86mmx)
557         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
558     }
559   } else if (PartBits == ValueVT.getSizeInBits()) {
560     // Different types of the same size.
561     assert(NumParts == 1 && PartEVT != ValueVT);
562     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
563   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
564     // If the parts cover less bits than value has, truncate the value.
565     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
566            ValueVT.isInteger() &&
567            "Unknown mismatch!");
568     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
569     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
570     if (PartVT == MVT::x86mmx)
571       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
572   }
573 
574   // The value may have changed - recompute ValueVT.
575   ValueVT = Val.getValueType();
576   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
577          "Failed to tile the value with PartVT!");
578 
579   if (NumParts == 1) {
580     if (PartEVT != ValueVT) {
581       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
582                                         "scalar-to-vector conversion failed");
583       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
584     }
585 
586     Parts[0] = Val;
587     return;
588   }
589 
590   // Expand the value into multiple parts.
591   if (NumParts & (NumParts - 1)) {
592     // The number of parts is not a power of 2.  Split off and copy the tail.
593     assert(PartVT.isInteger() && ValueVT.isInteger() &&
594            "Do not know what to expand to!");
595     unsigned RoundParts = llvm::bit_floor(NumParts);
596     unsigned RoundBits = RoundParts * PartBits;
597     unsigned OddParts = NumParts - RoundParts;
598     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
599       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
600 
601     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
602                    CallConv);
603 
604     if (DAG.getDataLayout().isBigEndian())
605       // The odd parts were reversed by getCopyToParts - unreverse them.
606       std::reverse(Parts + RoundParts, Parts + NumParts);
607 
608     NumParts = RoundParts;
609     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
610     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
611   }
612 
613   // The number of parts is a power of 2.  Repeatedly bisect the value using
614   // EXTRACT_ELEMENT.
615   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
616                          EVT::getIntegerVT(*DAG.getContext(),
617                                            ValueVT.getSizeInBits()),
618                          Val);
619 
620   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
621     for (unsigned i = 0; i < NumParts; i += StepSize) {
622       unsigned ThisBits = StepSize * PartBits / 2;
623       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
624       SDValue &Part0 = Parts[i];
625       SDValue &Part1 = Parts[i+StepSize/2];
626 
627       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
628                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
629       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
630                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
631 
632       if (ThisBits == PartBits && ThisVT != PartVT) {
633         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
634         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
635       }
636     }
637   }
638 
639   if (DAG.getDataLayout().isBigEndian())
640     std::reverse(Parts, Parts + OrigNumParts);
641 }
642 
643 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
644                                      const SDLoc &DL, EVT PartVT) {
645   if (!PartVT.isVector())
646     return SDValue();
647 
648   EVT ValueVT = Val.getValueType();
649   EVT PartEVT = PartVT.getVectorElementType();
650   EVT ValueEVT = ValueVT.getVectorElementType();
651   ElementCount PartNumElts = PartVT.getVectorElementCount();
652   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
653 
654   // We only support widening vectors with equivalent element types and
655   // fixed/scalable properties. If a target needs to widen a fixed-length type
656   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
657   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
658       PartNumElts.isScalable() != ValueNumElts.isScalable())
659     return SDValue();
660 
661   // Have a try for bf16 because some targets share its ABI with fp16.
662   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
663     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
664            "Cannot widen to illegal type");
665     Val = DAG.getNode(ISD::BITCAST, DL,
666                       ValueVT.changeVectorElementType(MVT::f16), Val);
667   } else if (PartEVT != ValueEVT) {
668     return SDValue();
669   }
670 
671   // Widening a scalable vector to another scalable vector is done by inserting
672   // the vector into a larger undef one.
673   if (PartNumElts.isScalable())
674     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
675                        Val, DAG.getVectorIdxConstant(0, DL));
676 
677   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
678   // undef elements.
679   SmallVector<SDValue, 16> Ops;
680   DAG.ExtractVectorElements(Val, Ops);
681   SDValue EltUndef = DAG.getUNDEF(PartEVT);
682   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
683 
684   // FIXME: Use CONCAT for 2x -> 4x.
685   return DAG.getBuildVector(PartVT, DL, Ops);
686 }
687 
688 /// getCopyToPartsVector - Create a series of nodes that contain the specified
689 /// value split into legal parts.
690 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
691                                  SDValue Val, SDValue *Parts, unsigned NumParts,
692                                  MVT PartVT, const Value *V,
693                                  std::optional<CallingConv::ID> CallConv) {
694   EVT ValueVT = Val.getValueType();
695   assert(ValueVT.isVector() && "Not a vector");
696   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
697   const bool IsABIRegCopy = CallConv.has_value();
698 
699   if (NumParts == 1) {
700     EVT PartEVT = PartVT;
701     if (PartEVT == ValueVT) {
702       // Nothing to do.
703     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
704       // Bitconvert vector->vector case.
705       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
706     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
707       Val = Widened;
708     } else if (PartVT.isVector() &&
709                PartEVT.getVectorElementType().bitsGE(
710                    ValueVT.getVectorElementType()) &&
711                PartEVT.getVectorElementCount() ==
712                    ValueVT.getVectorElementCount()) {
713 
714       // Promoted vector extract
715       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
716     } else if (PartEVT.isVector() &&
717                PartEVT.getVectorElementType() !=
718                    ValueVT.getVectorElementType() &&
719                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
720                    TargetLowering::TypeWidenVector) {
721       // Combination of widening and promotion.
722       EVT WidenVT =
723           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
724                            PartVT.getVectorElementCount());
725       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
726       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
727     } else {
728       // Don't extract an integer from a float vector. This can happen if the
729       // FP type gets softened to integer and then promoted. The promotion
730       // prevents it from being picked up by the earlier bitcast case.
731       if (ValueVT.getVectorElementCount().isScalar() &&
732           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
733         // If we reach this condition and PartVT is FP, this means that
734         // ValueVT is also FP and both have a different size, otherwise we
735         // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here
736         // would be invalid since that would mean the smaller FP type has to
737         // be extended to the larger one.
738         if (PartVT.isFloatingPoint()) {
739           Val = DAG.getBitcast(ValueVT.getScalarType(), Val);
740           Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
741         } else
742           Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
743                             DAG.getVectorIdxConstant(0, DL));
744       } else {
745         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
746         assert(PartVT.getFixedSizeInBits() > ValueSize &&
747                "lossy conversion of vector to scalar type");
748         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
749         Val = DAG.getBitcast(IntermediateType, Val);
750         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
751       }
752     }
753 
754     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
755     Parts[0] = Val;
756     return;
757   }
758 
759   // Handle a multi-element vector.
760   EVT IntermediateVT;
761   MVT RegisterVT;
762   unsigned NumIntermediates;
763   unsigned NumRegs;
764   if (IsABIRegCopy) {
765     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
766         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
767         RegisterVT);
768   } else {
769     NumRegs =
770         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
771                                    NumIntermediates, RegisterVT);
772   }
773 
774   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
775   NumParts = NumRegs; // Silence a compiler warning.
776   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
777 
778   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
779          "Mixing scalable and fixed vectors when copying in parts");
780 
781   std::optional<ElementCount> DestEltCnt;
782 
783   if (IntermediateVT.isVector())
784     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
785   else
786     DestEltCnt = ElementCount::getFixed(NumIntermediates);
787 
788   EVT BuiltVectorTy = EVT::getVectorVT(
789       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
790 
791   if (ValueVT == BuiltVectorTy) {
792     // Nothing to do.
793   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
794     // Bitconvert vector->vector case.
795     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
796   } else {
797     if (BuiltVectorTy.getVectorElementType().bitsGT(
798             ValueVT.getVectorElementType())) {
799       // Integer promotion.
800       ValueVT = EVT::getVectorVT(*DAG.getContext(),
801                                  BuiltVectorTy.getVectorElementType(),
802                                  ValueVT.getVectorElementCount());
803       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
804     }
805 
806     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
807       Val = Widened;
808     }
809   }
810 
811   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
812 
813   // Split the vector into intermediate operands.
814   SmallVector<SDValue, 8> Ops(NumIntermediates);
815   for (unsigned i = 0; i != NumIntermediates; ++i) {
816     if (IntermediateVT.isVector()) {
817       // This does something sensible for scalable vectors - see the
818       // definition of EXTRACT_SUBVECTOR for further details.
819       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
820       Ops[i] =
821           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
822                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
823     } else {
824       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
825                            DAG.getVectorIdxConstant(i, DL));
826     }
827   }
828 
829   // Split the intermediate operands into legal parts.
830   if (NumParts == NumIntermediates) {
831     // If the register was not expanded, promote or copy the value,
832     // as appropriate.
833     for (unsigned i = 0; i != NumParts; ++i)
834       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
835   } else if (NumParts > 0) {
836     // If the intermediate type was expanded, split each the value into
837     // legal parts.
838     assert(NumIntermediates != 0 && "division by zero");
839     assert(NumParts % NumIntermediates == 0 &&
840            "Must expand into a divisible number of parts!");
841     unsigned Factor = NumParts / NumIntermediates;
842     for (unsigned i = 0; i != NumIntermediates; ++i)
843       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
844                      CallConv);
845   }
846 }
847 
848 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
849                            EVT valuevt, std::optional<CallingConv::ID> CC)
850     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
851       RegCount(1, regs.size()), CallConv(CC) {}
852 
853 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
854                            const DataLayout &DL, unsigned Reg, Type *Ty,
855                            std::optional<CallingConv::ID> CC) {
856   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
857 
858   CallConv = CC;
859 
860   for (EVT ValueVT : ValueVTs) {
861     unsigned NumRegs =
862         isABIMangled()
863             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
864             : TLI.getNumRegisters(Context, ValueVT);
865     MVT RegisterVT =
866         isABIMangled()
867             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
868             : TLI.getRegisterType(Context, ValueVT);
869     for (unsigned i = 0; i != NumRegs; ++i)
870       Regs.push_back(Reg + i);
871     RegVTs.push_back(RegisterVT);
872     RegCount.push_back(NumRegs);
873     Reg += NumRegs;
874   }
875 }
876 
877 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
878                                       FunctionLoweringInfo &FuncInfo,
879                                       const SDLoc &dl, SDValue &Chain,
880                                       SDValue *Glue, const Value *V) const {
881   // A Value with type {} or [0 x %t] needs no registers.
882   if (ValueVTs.empty())
883     return SDValue();
884 
885   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
886 
887   // Assemble the legal parts into the final values.
888   SmallVector<SDValue, 4> Values(ValueVTs.size());
889   SmallVector<SDValue, 8> Parts;
890   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
891     // Copy the legal parts from the registers.
892     EVT ValueVT = ValueVTs[Value];
893     unsigned NumRegs = RegCount[Value];
894     MVT RegisterVT = isABIMangled()
895                          ? TLI.getRegisterTypeForCallingConv(
896                                *DAG.getContext(), *CallConv, RegVTs[Value])
897                          : RegVTs[Value];
898 
899     Parts.resize(NumRegs);
900     for (unsigned i = 0; i != NumRegs; ++i) {
901       SDValue P;
902       if (!Glue) {
903         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
904       } else {
905         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
906         *Glue = P.getValue(2);
907       }
908 
909       Chain = P.getValue(1);
910       Parts[i] = P;
911 
912       // If the source register was virtual and if we know something about it,
913       // add an assert node.
914       if (!Register::isVirtualRegister(Regs[Part + i]) ||
915           !RegisterVT.isInteger())
916         continue;
917 
918       const FunctionLoweringInfo::LiveOutInfo *LOI =
919         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
920       if (!LOI)
921         continue;
922 
923       unsigned RegSize = RegisterVT.getScalarSizeInBits();
924       unsigned NumSignBits = LOI->NumSignBits;
925       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
926 
927       if (NumZeroBits == RegSize) {
928         // The current value is a zero.
929         // Explicitly express that as it would be easier for
930         // optimizations to kick in.
931         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
932         continue;
933       }
934 
935       // FIXME: We capture more information than the dag can represent.  For
936       // now, just use the tightest assertzext/assertsext possible.
937       bool isSExt;
938       EVT FromVT(MVT::Other);
939       if (NumZeroBits) {
940         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
941         isSExt = false;
942       } else if (NumSignBits > 1) {
943         FromVT =
944             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
945         isSExt = true;
946       } else {
947         continue;
948       }
949       // Add an assertion node.
950       assert(FromVT != MVT::Other);
951       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
952                              RegisterVT, P, DAG.getValueType(FromVT));
953     }
954 
955     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
956                                      RegisterVT, ValueVT, V, Chain, CallConv);
957     Part += NumRegs;
958     Parts.clear();
959   }
960 
961   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
962 }
963 
964 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
965                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
966                                  const Value *V,
967                                  ISD::NodeType PreferredExtendType) const {
968   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
969   ISD::NodeType ExtendKind = PreferredExtendType;
970 
971   // Get the list of the values's legal parts.
972   unsigned NumRegs = Regs.size();
973   SmallVector<SDValue, 8> Parts(NumRegs);
974   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
975     unsigned NumParts = RegCount[Value];
976 
977     MVT RegisterVT = isABIMangled()
978                          ? TLI.getRegisterTypeForCallingConv(
979                                *DAG.getContext(), *CallConv, RegVTs[Value])
980                          : RegVTs[Value];
981 
982     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
983       ExtendKind = ISD::ZERO_EXTEND;
984 
985     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
986                    NumParts, RegisterVT, V, CallConv, ExtendKind);
987     Part += NumParts;
988   }
989 
990   // Copy the parts into the registers.
991   SmallVector<SDValue, 8> Chains(NumRegs);
992   for (unsigned i = 0; i != NumRegs; ++i) {
993     SDValue Part;
994     if (!Glue) {
995       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
996     } else {
997       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
998       *Glue = Part.getValue(1);
999     }
1000 
1001     Chains[i] = Part.getValue(0);
1002   }
1003 
1004   if (NumRegs == 1 || Glue)
1005     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
1006     // flagged to it. That is the CopyToReg nodes and the user are considered
1007     // a single scheduling unit. If we create a TokenFactor and return it as
1008     // chain, then the TokenFactor is both a predecessor (operand) of the
1009     // user as well as a successor (the TF operands are flagged to the user).
1010     // c1, f1 = CopyToReg
1011     // c2, f2 = CopyToReg
1012     // c3     = TokenFactor c1, c2
1013     // ...
1014     //        = op c3, ..., f2
1015     Chain = Chains[NumRegs-1];
1016   else
1017     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1018 }
1019 
1020 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1021                                         unsigned MatchingIdx, const SDLoc &dl,
1022                                         SelectionDAG &DAG,
1023                                         std::vector<SDValue> &Ops) const {
1024   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1025 
1026   InlineAsm::Flag Flag(Code, Regs.size());
1027   if (HasMatching)
1028     Flag.setMatchingOp(MatchingIdx);
1029   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1030     // Put the register class of the virtual registers in the flag word.  That
1031     // way, later passes can recompute register class constraints for inline
1032     // assembly as well as normal instructions.
1033     // Don't do this for tied operands that can use the regclass information
1034     // from the def.
1035     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1036     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1037     Flag.setRegClass(RC->getID());
1038   }
1039 
1040   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1041   Ops.push_back(Res);
1042 
1043   if (Code == InlineAsm::Kind::Clobber) {
1044     // Clobbers should always have a 1:1 mapping with registers, and may
1045     // reference registers that have illegal (e.g. vector) types. Hence, we
1046     // shouldn't try to apply any sort of splitting logic to them.
1047     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1048            "No 1:1 mapping from clobbers to regs?");
1049     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1050     (void)SP;
1051     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1052       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1053       assert(
1054           (Regs[I] != SP ||
1055            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1056           "If we clobbered the stack pointer, MFI should know about it.");
1057     }
1058     return;
1059   }
1060 
1061   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1062     MVT RegisterVT = RegVTs[Value];
1063     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1064                                            RegisterVT);
1065     for (unsigned i = 0; i != NumRegs; ++i) {
1066       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1067       unsigned TheReg = Regs[Reg++];
1068       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1069     }
1070   }
1071 }
1072 
1073 SmallVector<std::pair<unsigned, TypeSize>, 4>
1074 RegsForValue::getRegsAndSizes() const {
1075   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1076   unsigned I = 0;
1077   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1078     unsigned RegCount = std::get<0>(CountAndVT);
1079     MVT RegisterVT = std::get<1>(CountAndVT);
1080     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1081     for (unsigned E = I + RegCount; I != E; ++I)
1082       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1083   }
1084   return OutVec;
1085 }
1086 
1087 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1088                                AssumptionCache *ac,
1089                                const TargetLibraryInfo *li) {
1090   AA = aa;
1091   AC = ac;
1092   GFI = gfi;
1093   LibInfo = li;
1094   Context = DAG.getContext();
1095   LPadToCallSiteMap.clear();
1096   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1097   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1098       *DAG.getMachineFunction().getFunction().getParent());
1099 }
1100 
1101 void SelectionDAGBuilder::clear() {
1102   NodeMap.clear();
1103   UnusedArgNodeMap.clear();
1104   PendingLoads.clear();
1105   PendingExports.clear();
1106   PendingConstrainedFP.clear();
1107   PendingConstrainedFPStrict.clear();
1108   CurInst = nullptr;
1109   HasTailCall = false;
1110   SDNodeOrder = LowestSDNodeOrder;
1111   StatepointLowering.clear();
1112 }
1113 
1114 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1115   DanglingDebugInfoMap.clear();
1116 }
1117 
1118 // Update DAG root to include dependencies on Pending chains.
1119 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1120   SDValue Root = DAG.getRoot();
1121 
1122   if (Pending.empty())
1123     return Root;
1124 
1125   // Add current root to PendingChains, unless we already indirectly
1126   // depend on it.
1127   if (Root.getOpcode() != ISD::EntryToken) {
1128     unsigned i = 0, e = Pending.size();
1129     for (; i != e; ++i) {
1130       assert(Pending[i].getNode()->getNumOperands() > 1);
1131       if (Pending[i].getNode()->getOperand(0) == Root)
1132         break;  // Don't add the root if we already indirectly depend on it.
1133     }
1134 
1135     if (i == e)
1136       Pending.push_back(Root);
1137   }
1138 
1139   if (Pending.size() == 1)
1140     Root = Pending[0];
1141   else
1142     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1143 
1144   DAG.setRoot(Root);
1145   Pending.clear();
1146   return Root;
1147 }
1148 
1149 SDValue SelectionDAGBuilder::getMemoryRoot() {
1150   return updateRoot(PendingLoads);
1151 }
1152 
1153 SDValue SelectionDAGBuilder::getRoot() {
1154   // Chain up all pending constrained intrinsics together with all
1155   // pending loads, by simply appending them to PendingLoads and
1156   // then calling getMemoryRoot().
1157   PendingLoads.reserve(PendingLoads.size() +
1158                        PendingConstrainedFP.size() +
1159                        PendingConstrainedFPStrict.size());
1160   PendingLoads.append(PendingConstrainedFP.begin(),
1161                       PendingConstrainedFP.end());
1162   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1163                       PendingConstrainedFPStrict.end());
1164   PendingConstrainedFP.clear();
1165   PendingConstrainedFPStrict.clear();
1166   return getMemoryRoot();
1167 }
1168 
1169 SDValue SelectionDAGBuilder::getControlRoot() {
1170   // We need to emit pending fpexcept.strict constrained intrinsics,
1171   // so append them to the PendingExports list.
1172   PendingExports.append(PendingConstrainedFPStrict.begin(),
1173                         PendingConstrainedFPStrict.end());
1174   PendingConstrainedFPStrict.clear();
1175   return updateRoot(PendingExports);
1176 }
1177 
1178 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1179                                              DILocalVariable *Variable,
1180                                              DIExpression *Expression,
1181                                              DebugLoc DL) {
1182   assert(Variable && "Missing variable");
1183 
1184   // Check if address has undef value.
1185   if (!Address || isa<UndefValue>(Address) ||
1186       (Address->use_empty() && !isa<Argument>(Address))) {
1187     LLVM_DEBUG(
1188         dbgs()
1189         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1190     return;
1191   }
1192 
1193   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1194 
1195   SDValue &N = NodeMap[Address];
1196   if (!N.getNode() && isa<Argument>(Address))
1197     // Check unused arguments map.
1198     N = UnusedArgNodeMap[Address];
1199   SDDbgValue *SDV;
1200   if (N.getNode()) {
1201     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1202       Address = BCI->getOperand(0);
1203     // Parameters are handled specially.
1204     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1205     if (IsParameter && FINode) {
1206       // Byval parameter. We have a frame index at this point.
1207       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1208                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1209     } else if (isa<Argument>(Address)) {
1210       // Address is an argument, so try to emit its dbg value using
1211       // virtual register info from the FuncInfo.ValueMap.
1212       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1213                                FuncArgumentDbgValueKind::Declare, N);
1214       return;
1215     } else {
1216       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1217                             true, DL, SDNodeOrder);
1218     }
1219     DAG.AddDbgValue(SDV, IsParameter);
1220   } else {
1221     // If Address is an argument then try to emit its dbg value using
1222     // virtual register info from the FuncInfo.ValueMap.
1223     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1224                                   FuncArgumentDbgValueKind::Declare, N)) {
1225       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1226                         << " (could not emit func-arg dbg_value)\n");
1227     }
1228   }
1229   return;
1230 }
1231 
1232 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1233   // Add SDDbgValue nodes for any var locs here. Do so before updating
1234   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1235   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1236     // Add SDDbgValue nodes for any var locs here. Do so before updating
1237     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1238     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1239          It != End; ++It) {
1240       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1241       dropDanglingDebugInfo(Var, It->Expr);
1242       if (It->Values.isKillLocation(It->Expr)) {
1243         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1244         continue;
1245       }
1246       SmallVector<Value *> Values(It->Values.location_ops());
1247       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1248                             It->Values.hasArgList())) {
1249         SmallVector<Value *, 4> Vals(It->Values.location_ops());
1250         addDanglingDebugInfo(Vals,
1251                              FnVarLocs->getDILocalVariable(It->VariableID),
1252                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1253       }
1254     }
1255   }
1256 
1257   // We must skip DbgVariableRecords if they've already been processed above as
1258   // we have just emitted the debug values resulting from assignment tracking
1259   // analysis, making any existing DbgVariableRecords redundant (and probably
1260   // less correct). We still need to process DbgLabelRecords. This does sink
1261   // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1262   // be important as it does so deterministcally and ordering between
1263   // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1264   // printing).
1265   bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1266   // Is there is any debug-info attached to this instruction, in the form of
1267   // DbgRecord non-instruction debug-info records.
1268   for (DbgRecord &DR : I.getDbgRecordRange()) {
1269     if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1270       assert(DLR->getLabel() && "Missing label");
1271       SDDbgLabel *SDV =
1272           DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1273       DAG.AddDbgLabel(SDV);
1274       continue;
1275     }
1276 
1277     if (SkipDbgVariableRecords)
1278       continue;
1279     DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1280     DILocalVariable *Variable = DVR.getVariable();
1281     DIExpression *Expression = DVR.getExpression();
1282     dropDanglingDebugInfo(Variable, Expression);
1283 
1284     if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
1285       if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1286         continue;
1287       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1288                         << "\n");
1289       handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression,
1290                          DVR.getDebugLoc());
1291       continue;
1292     }
1293 
1294     // A DbgVariableRecord with no locations is a kill location.
1295     SmallVector<Value *, 4> Values(DVR.location_ops());
1296     if (Values.empty()) {
1297       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1298                            SDNodeOrder);
1299       continue;
1300     }
1301 
1302     // A DbgVariableRecord with an undef or absent location is also a kill
1303     // location.
1304     if (llvm::any_of(Values,
1305                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1306       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1307                            SDNodeOrder);
1308       continue;
1309     }
1310 
1311     bool IsVariadic = DVR.hasArgList();
1312     if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1313                           SDNodeOrder, IsVariadic)) {
1314       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1315                            DVR.getDebugLoc(), SDNodeOrder);
1316     }
1317   }
1318 }
1319 
1320 void SelectionDAGBuilder::visit(const Instruction &I) {
1321   visitDbgInfo(I);
1322 
1323   // Set up outgoing PHI node register values before emitting the terminator.
1324   if (I.isTerminator()) {
1325     HandlePHINodesInSuccessorBlocks(I.getParent());
1326   }
1327 
1328   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1329   if (!isa<DbgInfoIntrinsic>(I))
1330     ++SDNodeOrder;
1331 
1332   CurInst = &I;
1333 
1334   // Set inserted listener only if required.
1335   bool NodeInserted = false;
1336   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1337   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1338   MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1339   if (PCSectionsMD || MMRA) {
1340     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1341         DAG, [&](SDNode *) { NodeInserted = true; });
1342   }
1343 
1344   visit(I.getOpcode(), I);
1345 
1346   if (!I.isTerminator() && !HasTailCall &&
1347       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1348     CopyToExportRegsIfNeeded(&I);
1349 
1350   // Handle metadata.
1351   if (PCSectionsMD || MMRA) {
1352     auto It = NodeMap.find(&I);
1353     if (It != NodeMap.end()) {
1354       if (PCSectionsMD)
1355         DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1356       if (MMRA)
1357         DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1358     } else if (NodeInserted) {
1359       // This should not happen; if it does, don't let it go unnoticed so we can
1360       // fix it. Relevant visit*() function is probably missing a setValue().
1361       errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1362              << I.getModule()->getName() << "]\n";
1363       LLVM_DEBUG(I.dump());
1364       assert(false);
1365     }
1366   }
1367 
1368   CurInst = nullptr;
1369 }
1370 
1371 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1372   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1373 }
1374 
1375 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1376   // Note: this doesn't use InstVisitor, because it has to work with
1377   // ConstantExpr's in addition to instructions.
1378   switch (Opcode) {
1379   default: llvm_unreachable("Unknown instruction type encountered!");
1380     // Build the switch statement using the Instruction.def file.
1381 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1382     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1383 #include "llvm/IR/Instruction.def"
1384   }
1385 }
1386 
1387 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1388                                             DILocalVariable *Variable,
1389                                             DebugLoc DL, unsigned Order,
1390                                             SmallVectorImpl<Value *> &Values,
1391                                             DIExpression *Expression) {
1392   // For variadic dbg_values we will now insert an undef.
1393   // FIXME: We can potentially recover these!
1394   SmallVector<SDDbgOperand, 2> Locs;
1395   for (const Value *V : Values) {
1396     auto *Undef = UndefValue::get(V->getType());
1397     Locs.push_back(SDDbgOperand::fromConst(Undef));
1398   }
1399   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1400                                         /*IsIndirect=*/false, DL, Order,
1401                                         /*IsVariadic=*/true);
1402   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1403   return true;
1404 }
1405 
1406 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1407                                                DILocalVariable *Var,
1408                                                DIExpression *Expr,
1409                                                bool IsVariadic, DebugLoc DL,
1410                                                unsigned Order) {
1411   if (IsVariadic) {
1412     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1413     return;
1414   }
1415   // TODO: Dangling debug info will eventually either be resolved or produce
1416   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1417   // between the original dbg.value location and its resolved DBG_VALUE,
1418   // which we should ideally fill with an extra Undef DBG_VALUE.
1419   assert(Values.size() == 1);
1420   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1421 }
1422 
1423 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1424                                                 const DIExpression *Expr) {
1425   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1426     DIVariable *DanglingVariable = DDI.getVariable();
1427     DIExpression *DanglingExpr = DDI.getExpression();
1428     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1429       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1430                         << printDDI(nullptr, DDI) << "\n");
1431       return true;
1432     }
1433     return false;
1434   };
1435 
1436   for (auto &DDIMI : DanglingDebugInfoMap) {
1437     DanglingDebugInfoVector &DDIV = DDIMI.second;
1438 
1439     // If debug info is to be dropped, run it through final checks to see
1440     // whether it can be salvaged.
1441     for (auto &DDI : DDIV)
1442       if (isMatchingDbgValue(DDI))
1443         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1444 
1445     erase_if(DDIV, isMatchingDbgValue);
1446   }
1447 }
1448 
1449 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1450 // generate the debug data structures now that we've seen its definition.
1451 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1452                                                    SDValue Val) {
1453   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1454   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1455     return;
1456 
1457   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1458   for (auto &DDI : DDIV) {
1459     DebugLoc DL = DDI.getDebugLoc();
1460     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1461     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1462     DILocalVariable *Variable = DDI.getVariable();
1463     DIExpression *Expr = DDI.getExpression();
1464     assert(Variable->isValidLocationForIntrinsic(DL) &&
1465            "Expected inlined-at fields to agree");
1466     SDDbgValue *SDV;
1467     if (Val.getNode()) {
1468       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1469       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1470       // we couldn't resolve it directly when examining the DbgValue intrinsic
1471       // in the first place we should not be more successful here). Unless we
1472       // have some test case that prove this to be correct we should avoid
1473       // calling EmitFuncArgumentDbgValue here.
1474       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1475                                     FuncArgumentDbgValueKind::Value, Val)) {
1476         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1477                           << printDDI(V, DDI) << "\n");
1478         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1479         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1480         // inserted after the definition of Val when emitting the instructions
1481         // after ISel. An alternative could be to teach
1482         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1483         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1484                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1485                    << ValSDNodeOrder << "\n");
1486         SDV = getDbgValue(Val, Variable, Expr, DL,
1487                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1488         DAG.AddDbgValue(SDV, false);
1489       } else
1490         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1491                           << printDDI(V, DDI)
1492                           << " in EmitFuncArgumentDbgValue\n");
1493     } else {
1494       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1495                         << "\n");
1496       auto Undef = UndefValue::get(V->getType());
1497       auto SDV =
1498           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1499       DAG.AddDbgValue(SDV, false);
1500     }
1501   }
1502   DDIV.clear();
1503 }
1504 
1505 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1506                                                     DanglingDebugInfo &DDI) {
1507   // TODO: For the variadic implementation, instead of only checking the fail
1508   // state of `handleDebugValue`, we need know specifically which values were
1509   // invalid, so that we attempt to salvage only those values when processing
1510   // a DIArgList.
1511   const Value *OrigV = V;
1512   DILocalVariable *Var = DDI.getVariable();
1513   DIExpression *Expr = DDI.getExpression();
1514   DebugLoc DL = DDI.getDebugLoc();
1515   unsigned SDOrder = DDI.getSDNodeOrder();
1516 
1517   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1518   // that DW_OP_stack_value is desired.
1519   bool StackValue = true;
1520 
1521   // Can this Value can be encoded without any further work?
1522   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1523     return;
1524 
1525   // Attempt to salvage back through as many instructions as possible. Bail if
1526   // a non-instruction is seen, such as a constant expression or global
1527   // variable. FIXME: Further work could recover those too.
1528   while (isa<Instruction>(V)) {
1529     const Instruction &VAsInst = *cast<const Instruction>(V);
1530     // Temporary "0", awaiting real implementation.
1531     SmallVector<uint64_t, 16> Ops;
1532     SmallVector<Value *, 4> AdditionalValues;
1533     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1534                              Expr->getNumLocationOperands(), Ops,
1535                              AdditionalValues);
1536     // If we cannot salvage any further, and haven't yet found a suitable debug
1537     // expression, bail out.
1538     if (!V)
1539       break;
1540 
1541     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1542     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1543     // here for variadic dbg_values, remove that condition.
1544     if (!AdditionalValues.empty())
1545       break;
1546 
1547     // New value and expr now represent this debuginfo.
1548     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1549 
1550     // Some kind of simplification occurred: check whether the operand of the
1551     // salvaged debug expression can be encoded in this DAG.
1552     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1553       LLVM_DEBUG(
1554           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1555                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1556       return;
1557     }
1558   }
1559 
1560   // This was the final opportunity to salvage this debug information, and it
1561   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1562   // any earlier variable location.
1563   assert(OrigV && "V shouldn't be null");
1564   auto *Undef = UndefValue::get(OrigV->getType());
1565   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1566   DAG.AddDbgValue(SDV, false);
1567   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1568                     << printDDI(OrigV, DDI) << "\n");
1569 }
1570 
1571 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1572                                                DIExpression *Expr,
1573                                                DebugLoc DbgLoc,
1574                                                unsigned Order) {
1575   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1576   DIExpression *NewExpr =
1577       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1578   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1579                    /*IsVariadic*/ false);
1580 }
1581 
1582 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1583                                            DILocalVariable *Var,
1584                                            DIExpression *Expr, DebugLoc DbgLoc,
1585                                            unsigned Order, bool IsVariadic) {
1586   if (Values.empty())
1587     return true;
1588 
1589   // Filter EntryValue locations out early.
1590   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1591     return true;
1592 
1593   SmallVector<SDDbgOperand> LocationOps;
1594   SmallVector<SDNode *> Dependencies;
1595   for (const Value *V : Values) {
1596     // Constant value.
1597     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1598         isa<ConstantPointerNull>(V)) {
1599       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1600       continue;
1601     }
1602 
1603     // Look through IntToPtr constants.
1604     if (auto *CE = dyn_cast<ConstantExpr>(V))
1605       if (CE->getOpcode() == Instruction::IntToPtr) {
1606         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1607         continue;
1608       }
1609 
1610     // If the Value is a frame index, we can create a FrameIndex debug value
1611     // without relying on the DAG at all.
1612     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1613       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1614       if (SI != FuncInfo.StaticAllocaMap.end()) {
1615         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1616         continue;
1617       }
1618     }
1619 
1620     // Do not use getValue() in here; we don't want to generate code at
1621     // this point if it hasn't been done yet.
1622     SDValue N = NodeMap[V];
1623     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1624       N = UnusedArgNodeMap[V];
1625     if (N.getNode()) {
1626       // Only emit func arg dbg value for non-variadic dbg.values for now.
1627       if (!IsVariadic &&
1628           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1629                                    FuncArgumentDbgValueKind::Value, N))
1630         return true;
1631       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1632         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1633         // describe stack slot locations.
1634         //
1635         // Consider "int x = 0; int *px = &x;". There are two kinds of
1636         // interesting debug values here after optimization:
1637         //
1638         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1639         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1640         //
1641         // Both describe the direct values of their associated variables.
1642         Dependencies.push_back(N.getNode());
1643         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1644         continue;
1645       }
1646       LocationOps.emplace_back(
1647           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1648       continue;
1649     }
1650 
1651     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1652     // Special rules apply for the first dbg.values of parameter variables in a
1653     // function. Identify them by the fact they reference Argument Values, that
1654     // they're parameters, and they are parameters of the current function. We
1655     // need to let them dangle until they get an SDNode.
1656     bool IsParamOfFunc =
1657         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1658     if (IsParamOfFunc)
1659       return false;
1660 
1661     // The value is not used in this block yet (or it would have an SDNode).
1662     // We still want the value to appear for the user if possible -- if it has
1663     // an associated VReg, we can refer to that instead.
1664     auto VMI = FuncInfo.ValueMap.find(V);
1665     if (VMI != FuncInfo.ValueMap.end()) {
1666       unsigned Reg = VMI->second;
1667       // If this is a PHI node, it may be split up into several MI PHI nodes
1668       // (in FunctionLoweringInfo::set).
1669       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1670                        V->getType(), std::nullopt);
1671       if (RFV.occupiesMultipleRegs()) {
1672         // FIXME: We could potentially support variadic dbg_values here.
1673         if (IsVariadic)
1674           return false;
1675         unsigned Offset = 0;
1676         unsigned BitsToDescribe = 0;
1677         if (auto VarSize = Var->getSizeInBits())
1678           BitsToDescribe = *VarSize;
1679         if (auto Fragment = Expr->getFragmentInfo())
1680           BitsToDescribe = Fragment->SizeInBits;
1681         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1682           // Bail out if all bits are described already.
1683           if (Offset >= BitsToDescribe)
1684             break;
1685           // TODO: handle scalable vectors.
1686           unsigned RegisterSize = RegAndSize.second;
1687           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1688                                       ? BitsToDescribe - Offset
1689                                       : RegisterSize;
1690           auto FragmentExpr = DIExpression::createFragmentExpression(
1691               Expr, Offset, FragmentSize);
1692           if (!FragmentExpr)
1693             continue;
1694           SDDbgValue *SDV = DAG.getVRegDbgValue(
1695               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order);
1696           DAG.AddDbgValue(SDV, false);
1697           Offset += RegisterSize;
1698         }
1699         return true;
1700       }
1701       // We can use simple vreg locations for variadic dbg_values as well.
1702       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1703       continue;
1704     }
1705     // We failed to create a SDDbgOperand for V.
1706     return false;
1707   }
1708 
1709   // We have created a SDDbgOperand for each Value in Values.
1710   assert(!LocationOps.empty());
1711   SDDbgValue *SDV =
1712       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1713                           /*IsIndirect=*/false, DbgLoc, Order, IsVariadic);
1714   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1715   return true;
1716 }
1717 
1718 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1719   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1720   for (auto &Pair : DanglingDebugInfoMap)
1721     for (auto &DDI : Pair.second)
1722       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1723   clearDanglingDebugInfo();
1724 }
1725 
1726 /// getCopyFromRegs - If there was virtual register allocated for the value V
1727 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1728 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1729   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1730   SDValue Result;
1731 
1732   if (It != FuncInfo.ValueMap.end()) {
1733     Register InReg = It->second;
1734 
1735     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1736                      DAG.getDataLayout(), InReg, Ty,
1737                      std::nullopt); // This is not an ABI copy.
1738     SDValue Chain = DAG.getEntryNode();
1739     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1740                                  V);
1741     resolveDanglingDebugInfo(V, Result);
1742   }
1743 
1744   return Result;
1745 }
1746 
1747 /// getValue - Return an SDValue for the given Value.
1748 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1749   // If we already have an SDValue for this value, use it. It's important
1750   // to do this first, so that we don't create a CopyFromReg if we already
1751   // have a regular SDValue.
1752   SDValue &N = NodeMap[V];
1753   if (N.getNode()) return N;
1754 
1755   // If there's a virtual register allocated and initialized for this
1756   // value, use it.
1757   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1758     return copyFromReg;
1759 
1760   // Otherwise create a new SDValue and remember it.
1761   SDValue Val = getValueImpl(V);
1762   NodeMap[V] = Val;
1763   resolveDanglingDebugInfo(V, Val);
1764   return Val;
1765 }
1766 
1767 /// getNonRegisterValue - Return an SDValue for the given Value, but
1768 /// don't look in FuncInfo.ValueMap for a virtual register.
1769 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1770   // If we already have an SDValue for this value, use it.
1771   SDValue &N = NodeMap[V];
1772   if (N.getNode()) {
1773     if (isIntOrFPConstant(N)) {
1774       // Remove the debug location from the node as the node is about to be used
1775       // in a location which may differ from the original debug location.  This
1776       // is relevant to Constant and ConstantFP nodes because they can appear
1777       // as constant expressions inside PHI nodes.
1778       N->setDebugLoc(DebugLoc());
1779     }
1780     return N;
1781   }
1782 
1783   // Otherwise create a new SDValue and remember it.
1784   SDValue Val = getValueImpl(V);
1785   NodeMap[V] = Val;
1786   resolveDanglingDebugInfo(V, Val);
1787   return Val;
1788 }
1789 
1790 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1791 /// Create an SDValue for the given value.
1792 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1793   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1794 
1795   if (const Constant *C = dyn_cast<Constant>(V)) {
1796     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1797 
1798     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1799       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1800 
1801     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1802       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1803 
1804     if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) {
1805       return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT,
1806                          getValue(CPA->getPointer()), getValue(CPA->getKey()),
1807                          getValue(CPA->getAddrDiscriminator()),
1808                          getValue(CPA->getDiscriminator()));
1809     }
1810 
1811     if (isa<ConstantPointerNull>(C)) {
1812       unsigned AS = V->getType()->getPointerAddressSpace();
1813       return DAG.getConstant(0, getCurSDLoc(),
1814                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1815     }
1816 
1817     if (match(C, m_VScale()))
1818       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1819 
1820     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1821       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1822 
1823     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1824       return DAG.getUNDEF(VT);
1825 
1826     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1827       visit(CE->getOpcode(), *CE);
1828       SDValue N1 = NodeMap[V];
1829       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1830       return N1;
1831     }
1832 
1833     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1834       SmallVector<SDValue, 4> Constants;
1835       for (const Use &U : C->operands()) {
1836         SDNode *Val = getValue(U).getNode();
1837         // If the operand is an empty aggregate, there are no values.
1838         if (!Val) continue;
1839         // Add each leaf value from the operand to the Constants list
1840         // to form a flattened list of all the values.
1841         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1842           Constants.push_back(SDValue(Val, i));
1843       }
1844 
1845       return DAG.getMergeValues(Constants, getCurSDLoc());
1846     }
1847 
1848     if (const ConstantDataSequential *CDS =
1849           dyn_cast<ConstantDataSequential>(C)) {
1850       SmallVector<SDValue, 4> Ops;
1851       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1852         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1853         // Add each leaf value from the operand to the Constants list
1854         // to form a flattened list of all the values.
1855         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1856           Ops.push_back(SDValue(Val, i));
1857       }
1858 
1859       if (isa<ArrayType>(CDS->getType()))
1860         return DAG.getMergeValues(Ops, getCurSDLoc());
1861       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1862     }
1863 
1864     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1865       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1866              "Unknown struct or array constant!");
1867 
1868       SmallVector<EVT, 4> ValueVTs;
1869       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1870       unsigned NumElts = ValueVTs.size();
1871       if (NumElts == 0)
1872         return SDValue(); // empty struct
1873       SmallVector<SDValue, 4> Constants(NumElts);
1874       for (unsigned i = 0; i != NumElts; ++i) {
1875         EVT EltVT = ValueVTs[i];
1876         if (isa<UndefValue>(C))
1877           Constants[i] = DAG.getUNDEF(EltVT);
1878         else if (EltVT.isFloatingPoint())
1879           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1880         else
1881           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1882       }
1883 
1884       return DAG.getMergeValues(Constants, getCurSDLoc());
1885     }
1886 
1887     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1888       return DAG.getBlockAddress(BA, VT);
1889 
1890     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1891       return getValue(Equiv->getGlobalValue());
1892 
1893     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1894       return getValue(NC->getGlobalValue());
1895 
1896     if (VT == MVT::aarch64svcount) {
1897       assert(C->isNullValue() && "Can only zero this target type!");
1898       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1899                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1900     }
1901 
1902     VectorType *VecTy = cast<VectorType>(V->getType());
1903 
1904     // Now that we know the number and type of the elements, get that number of
1905     // elements into the Ops array based on what kind of constant it is.
1906     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1907       SmallVector<SDValue, 16> Ops;
1908       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1909       for (unsigned i = 0; i != NumElements; ++i)
1910         Ops.push_back(getValue(CV->getOperand(i)));
1911 
1912       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1913     }
1914 
1915     if (isa<ConstantAggregateZero>(C)) {
1916       EVT EltVT =
1917           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1918 
1919       SDValue Op;
1920       if (EltVT.isFloatingPoint())
1921         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1922       else
1923         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1924 
1925       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1926     }
1927 
1928     llvm_unreachable("Unknown vector constant");
1929   }
1930 
1931   // If this is a static alloca, generate it as the frameindex instead of
1932   // computation.
1933   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1934     DenseMap<const AllocaInst*, int>::iterator SI =
1935       FuncInfo.StaticAllocaMap.find(AI);
1936     if (SI != FuncInfo.StaticAllocaMap.end())
1937       return DAG.getFrameIndex(
1938           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1939   }
1940 
1941   // If this is an instruction which fast-isel has deferred, select it now.
1942   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1943     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1944 
1945     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1946                      Inst->getType(), std::nullopt);
1947     SDValue Chain = DAG.getEntryNode();
1948     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1949   }
1950 
1951   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1952     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1953 
1954   if (const auto *BB = dyn_cast<BasicBlock>(V))
1955     return DAG.getBasicBlock(FuncInfo.getMBB(BB));
1956 
1957   llvm_unreachable("Can't get register for value!");
1958 }
1959 
1960 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1961   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1962   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1963   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1964   bool IsSEH = isAsynchronousEHPersonality(Pers);
1965   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1966   if (!IsSEH)
1967     CatchPadMBB->setIsEHScopeEntry();
1968   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1969   if (IsMSVCCXX || IsCoreCLR)
1970     CatchPadMBB->setIsEHFuncletEntry();
1971 }
1972 
1973 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1974   // Update machine-CFG edge.
1975   MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor());
1976   FuncInfo.MBB->addSuccessor(TargetMBB);
1977   TargetMBB->setIsEHCatchretTarget(true);
1978   DAG.getMachineFunction().setHasEHCatchret(true);
1979 
1980   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1981   bool IsSEH = isAsynchronousEHPersonality(Pers);
1982   if (IsSEH) {
1983     // If this is not a fall-through branch or optimizations are switched off,
1984     // emit the branch.
1985     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1986         TM.getOptLevel() == CodeGenOptLevel::None)
1987       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1988                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1989     return;
1990   }
1991 
1992   // Figure out the funclet membership for the catchret's successor.
1993   // This will be used by the FuncletLayout pass to determine how to order the
1994   // BB's.
1995   // A 'catchret' returns to the outer scope's color.
1996   Value *ParentPad = I.getCatchSwitchParentPad();
1997   const BasicBlock *SuccessorColor;
1998   if (isa<ConstantTokenNone>(ParentPad))
1999     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
2000   else
2001     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
2002   assert(SuccessorColor && "No parent funclet for catchret!");
2003   MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor);
2004   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
2005 
2006   // Create the terminator node.
2007   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
2008                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
2009                             DAG.getBasicBlock(SuccessorColorMBB));
2010   DAG.setRoot(Ret);
2011 }
2012 
2013 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2014   // Don't emit any special code for the cleanuppad instruction. It just marks
2015   // the start of an EH scope/funclet.
2016   FuncInfo.MBB->setIsEHScopeEntry();
2017   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2018   if (Pers != EHPersonality::Wasm_CXX) {
2019     FuncInfo.MBB->setIsEHFuncletEntry();
2020     FuncInfo.MBB->setIsCleanupFuncletEntry();
2021   }
2022 }
2023 
2024 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2025 // not match, it is OK to add only the first unwind destination catchpad to the
2026 // successors, because there will be at least one invoke instruction within the
2027 // catch scope that points to the next unwind destination, if one exists, so
2028 // CFGSort cannot mess up with BB sorting order.
2029 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2030 // call within them, and catchpads only consisting of 'catch (...)' have a
2031 // '__cxa_end_catch' call within them, both of which generate invokes in case
2032 // the next unwind destination exists, i.e., the next unwind destination is not
2033 // the caller.)
2034 //
2035 // Having at most one EH pad successor is also simpler and helps later
2036 // transformations.
2037 //
2038 // For example,
2039 // current:
2040 //   invoke void @foo to ... unwind label %catch.dispatch
2041 // catch.dispatch:
2042 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2043 // catch.start:
2044 //   ...
2045 //   ... in this BB or some other child BB dominated by this BB there will be an
2046 //   invoke that points to 'next' BB as an unwind destination
2047 //
2048 // next: ; We don't need to add this to 'current' BB's successor
2049 //   ...
2050 static void findWasmUnwindDestinations(
2051     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2052     BranchProbability Prob,
2053     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2054         &UnwindDests) {
2055   while (EHPadBB) {
2056     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2057     if (isa<CleanupPadInst>(Pad)) {
2058       // Stop on cleanup pads.
2059       UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2060       UnwindDests.back().first->setIsEHScopeEntry();
2061       break;
2062     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2063       // Add the catchpad handlers to the possible destinations. We don't
2064       // continue to the unwind destination of the catchswitch for wasm.
2065       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2066         UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2067         UnwindDests.back().first->setIsEHScopeEntry();
2068       }
2069       break;
2070     } else {
2071       continue;
2072     }
2073   }
2074 }
2075 
2076 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2077 /// many places it could ultimately go. In the IR, we have a single unwind
2078 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2079 /// This function skips over imaginary basic blocks that hold catchswitch
2080 /// instructions, and finds all the "real" machine
2081 /// basic block destinations. As those destinations may not be successors of
2082 /// EHPadBB, here we also calculate the edge probability to those destinations.
2083 /// The passed-in Prob is the edge probability to EHPadBB.
2084 static void findUnwindDestinations(
2085     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2086     BranchProbability Prob,
2087     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2088         &UnwindDests) {
2089   EHPersonality Personality =
2090     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2091   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2092   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2093   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2094   bool IsSEH = isAsynchronousEHPersonality(Personality);
2095 
2096   if (IsWasmCXX) {
2097     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2098     assert(UnwindDests.size() <= 1 &&
2099            "There should be at most one unwind destination for wasm");
2100     return;
2101   }
2102 
2103   while (EHPadBB) {
2104     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2105     BasicBlock *NewEHPadBB = nullptr;
2106     if (isa<LandingPadInst>(Pad)) {
2107       // Stop on landingpads. They are not funclets.
2108       UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2109       break;
2110     } else if (isa<CleanupPadInst>(Pad)) {
2111       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2112       // personalities.
2113       UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2114       UnwindDests.back().first->setIsEHScopeEntry();
2115       UnwindDests.back().first->setIsEHFuncletEntry();
2116       break;
2117     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2118       // Add the catchpad handlers to the possible destinations.
2119       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2120         UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2121         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2122         if (IsMSVCCXX || IsCoreCLR)
2123           UnwindDests.back().first->setIsEHFuncletEntry();
2124         if (!IsSEH)
2125           UnwindDests.back().first->setIsEHScopeEntry();
2126       }
2127       NewEHPadBB = CatchSwitch->getUnwindDest();
2128     } else {
2129       continue;
2130     }
2131 
2132     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2133     if (BPI && NewEHPadBB)
2134       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2135     EHPadBB = NewEHPadBB;
2136   }
2137 }
2138 
2139 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2140   // Update successor info.
2141   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2142   auto UnwindDest = I.getUnwindDest();
2143   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2144   BranchProbability UnwindDestProb =
2145       (BPI && UnwindDest)
2146           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2147           : BranchProbability::getZero();
2148   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2149   for (auto &UnwindDest : UnwindDests) {
2150     UnwindDest.first->setIsEHPad();
2151     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2152   }
2153   FuncInfo.MBB->normalizeSuccProbs();
2154 
2155   // Create the terminator node.
2156   SDValue Ret =
2157       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2158   DAG.setRoot(Ret);
2159 }
2160 
2161 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2162   report_fatal_error("visitCatchSwitch not yet implemented!");
2163 }
2164 
2165 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2167   auto &DL = DAG.getDataLayout();
2168   SDValue Chain = getControlRoot();
2169   SmallVector<ISD::OutputArg, 8> Outs;
2170   SmallVector<SDValue, 8> OutVals;
2171 
2172   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2173   // lower
2174   //
2175   //   %val = call <ty> @llvm.experimental.deoptimize()
2176   //   ret <ty> %val
2177   //
2178   // differently.
2179   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2180     LowerDeoptimizingReturn();
2181     return;
2182   }
2183 
2184   if (!FuncInfo.CanLowerReturn) {
2185     unsigned DemoteReg = FuncInfo.DemoteRegister;
2186     const Function *F = I.getParent()->getParent();
2187 
2188     // Emit a store of the return value through the virtual register.
2189     // Leave Outs empty so that LowerReturn won't try to load return
2190     // registers the usual way.
2191     SmallVector<EVT, 1> PtrValueVTs;
2192     ComputeValueVTs(TLI, DL,
2193                     PointerType::get(F->getContext(),
2194                                      DAG.getDataLayout().getAllocaAddrSpace()),
2195                     PtrValueVTs);
2196 
2197     SDValue RetPtr =
2198         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2199     SDValue RetOp = getValue(I.getOperand(0));
2200 
2201     SmallVector<EVT, 4> ValueVTs, MemVTs;
2202     SmallVector<uint64_t, 4> Offsets;
2203     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2204                     &Offsets, 0);
2205     unsigned NumValues = ValueVTs.size();
2206 
2207     SmallVector<SDValue, 4> Chains(NumValues);
2208     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2209     for (unsigned i = 0; i != NumValues; ++i) {
2210       // An aggregate return value cannot wrap around the address space, so
2211       // offsets to its parts don't wrap either.
2212       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2213                                            TypeSize::getFixed(Offsets[i]));
2214 
2215       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2216       if (MemVTs[i] != ValueVTs[i])
2217         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2218       Chains[i] = DAG.getStore(
2219           Chain, getCurSDLoc(), Val,
2220           // FIXME: better loc info would be nice.
2221           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2222           commonAlignment(BaseAlign, Offsets[i]));
2223     }
2224 
2225     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2226                         MVT::Other, Chains);
2227   } else if (I.getNumOperands() != 0) {
2228     SmallVector<EVT, 4> ValueVTs;
2229     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2230     unsigned NumValues = ValueVTs.size();
2231     if (NumValues) {
2232       SDValue RetOp = getValue(I.getOperand(0));
2233 
2234       const Function *F = I.getParent()->getParent();
2235 
2236       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2237           I.getOperand(0)->getType(), F->getCallingConv(),
2238           /*IsVarArg*/ false, DL);
2239 
2240       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2241       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2242         ExtendKind = ISD::SIGN_EXTEND;
2243       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2244         ExtendKind = ISD::ZERO_EXTEND;
2245 
2246       LLVMContext &Context = F->getContext();
2247       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2248 
2249       for (unsigned j = 0; j != NumValues; ++j) {
2250         EVT VT = ValueVTs[j];
2251 
2252         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2253           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2254 
2255         CallingConv::ID CC = F->getCallingConv();
2256 
2257         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2258         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2259         SmallVector<SDValue, 4> Parts(NumParts);
2260         getCopyToParts(DAG, getCurSDLoc(),
2261                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2262                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2263 
2264         // 'inreg' on function refers to return value
2265         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2266         if (RetInReg)
2267           Flags.setInReg();
2268 
2269         if (I.getOperand(0)->getType()->isPointerTy()) {
2270           Flags.setPointer();
2271           Flags.setPointerAddrSpace(
2272               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2273         }
2274 
2275         if (NeedsRegBlock) {
2276           Flags.setInConsecutiveRegs();
2277           if (j == NumValues - 1)
2278             Flags.setInConsecutiveRegsLast();
2279         }
2280 
2281         // Propagate extension type if any
2282         if (ExtendKind == ISD::SIGN_EXTEND)
2283           Flags.setSExt();
2284         else if (ExtendKind == ISD::ZERO_EXTEND)
2285           Flags.setZExt();
2286 
2287         for (unsigned i = 0; i < NumParts; ++i) {
2288           Outs.push_back(ISD::OutputArg(Flags,
2289                                         Parts[i].getValueType().getSimpleVT(),
2290                                         VT, /*isfixed=*/true, 0, 0));
2291           OutVals.push_back(Parts[i]);
2292         }
2293       }
2294     }
2295   }
2296 
2297   // Push in swifterror virtual register as the last element of Outs. This makes
2298   // sure swifterror virtual register will be returned in the swifterror
2299   // physical register.
2300   const Function *F = I.getParent()->getParent();
2301   if (TLI.supportSwiftError() &&
2302       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2303     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2304     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2305     Flags.setSwiftError();
2306     Outs.push_back(ISD::OutputArg(
2307         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2308         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2309     // Create SDNode for the swifterror virtual register.
2310     OutVals.push_back(
2311         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2312                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2313                         EVT(TLI.getPointerTy(DL))));
2314   }
2315 
2316   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2317   CallingConv::ID CallConv =
2318     DAG.getMachineFunction().getFunction().getCallingConv();
2319   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2320       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2321 
2322   // Verify that the target's LowerReturn behaved as expected.
2323   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2324          "LowerReturn didn't return a valid chain!");
2325 
2326   // Update the DAG with the new chain value resulting from return lowering.
2327   DAG.setRoot(Chain);
2328 }
2329 
2330 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2331 /// created for it, emit nodes to copy the value into the virtual
2332 /// registers.
2333 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2334   // Skip empty types
2335   if (V->getType()->isEmptyTy())
2336     return;
2337 
2338   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2339   if (VMI != FuncInfo.ValueMap.end()) {
2340     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2341            "Unused value assigned virtual registers!");
2342     CopyValueToVirtualRegister(V, VMI->second);
2343   }
2344 }
2345 
2346 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2347 /// the current basic block, add it to ValueMap now so that we'll get a
2348 /// CopyTo/FromReg.
2349 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2350   // No need to export constants.
2351   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2352 
2353   // Already exported?
2354   if (FuncInfo.isExportedInst(V)) return;
2355 
2356   Register Reg = FuncInfo.InitializeRegForValue(V);
2357   CopyValueToVirtualRegister(V, Reg);
2358 }
2359 
2360 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2361                                                      const BasicBlock *FromBB) {
2362   // The operands of the setcc have to be in this block.  We don't know
2363   // how to export them from some other block.
2364   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2365     // Can export from current BB.
2366     if (VI->getParent() == FromBB)
2367       return true;
2368 
2369     // Is already exported, noop.
2370     return FuncInfo.isExportedInst(V);
2371   }
2372 
2373   // If this is an argument, we can export it if the BB is the entry block or
2374   // if it is already exported.
2375   if (isa<Argument>(V)) {
2376     if (FromBB->isEntryBlock())
2377       return true;
2378 
2379     // Otherwise, can only export this if it is already exported.
2380     return FuncInfo.isExportedInst(V);
2381   }
2382 
2383   // Otherwise, constants can always be exported.
2384   return true;
2385 }
2386 
2387 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2388 BranchProbability
2389 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2390                                         const MachineBasicBlock *Dst) const {
2391   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2392   const BasicBlock *SrcBB = Src->getBasicBlock();
2393   const BasicBlock *DstBB = Dst->getBasicBlock();
2394   if (!BPI) {
2395     // If BPI is not available, set the default probability as 1 / N, where N is
2396     // the number of successors.
2397     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2398     return BranchProbability(1, SuccSize);
2399   }
2400   return BPI->getEdgeProbability(SrcBB, DstBB);
2401 }
2402 
2403 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2404                                                MachineBasicBlock *Dst,
2405                                                BranchProbability Prob) {
2406   if (!FuncInfo.BPI)
2407     Src->addSuccessorWithoutProb(Dst);
2408   else {
2409     if (Prob.isUnknown())
2410       Prob = getEdgeProbability(Src, Dst);
2411     Src->addSuccessor(Dst, Prob);
2412   }
2413 }
2414 
2415 static bool InBlock(const Value *V, const BasicBlock *BB) {
2416   if (const Instruction *I = dyn_cast<Instruction>(V))
2417     return I->getParent() == BB;
2418   return true;
2419 }
2420 
2421 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2422 /// This function emits a branch and is used at the leaves of an OR or an
2423 /// AND operator tree.
2424 void
2425 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2426                                                   MachineBasicBlock *TBB,
2427                                                   MachineBasicBlock *FBB,
2428                                                   MachineBasicBlock *CurBB,
2429                                                   MachineBasicBlock *SwitchBB,
2430                                                   BranchProbability TProb,
2431                                                   BranchProbability FProb,
2432                                                   bool InvertCond) {
2433   const BasicBlock *BB = CurBB->getBasicBlock();
2434 
2435   // If the leaf of the tree is a comparison, merge the condition into
2436   // the caseblock.
2437   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2438     // The operands of the cmp have to be in this block.  We don't know
2439     // how to export them from some other block.  If this is the first block
2440     // of the sequence, no exporting is needed.
2441     if (CurBB == SwitchBB ||
2442         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2443          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2444       ISD::CondCode Condition;
2445       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2446         ICmpInst::Predicate Pred =
2447             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2448         Condition = getICmpCondCode(Pred);
2449       } else {
2450         const FCmpInst *FC = cast<FCmpInst>(Cond);
2451         FCmpInst::Predicate Pred =
2452             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2453         Condition = getFCmpCondCode(Pred);
2454         if (TM.Options.NoNaNsFPMath)
2455           Condition = getFCmpCodeWithoutNaN(Condition);
2456       }
2457 
2458       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2459                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2460       SL->SwitchCases.push_back(CB);
2461       return;
2462     }
2463   }
2464 
2465   // Create a CaseBlock record representing this branch.
2466   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2467   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2468                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2469   SL->SwitchCases.push_back(CB);
2470 }
2471 
2472 // Collect dependencies on V recursively. This is used for the cost analysis in
2473 // `shouldKeepJumpConditionsTogether`.
2474 static bool collectInstructionDeps(
2475     SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2476     SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2477     unsigned Depth = 0) {
2478   // Return false if we have an incomplete count.
2479   if (Depth >= SelectionDAG::MaxRecursionDepth)
2480     return false;
2481 
2482   auto *I = dyn_cast<Instruction>(V);
2483   if (I == nullptr)
2484     return true;
2485 
2486   if (Necessary != nullptr) {
2487     // This instruction is necessary for the other side of the condition so
2488     // don't count it.
2489     if (Necessary->contains(I))
2490       return true;
2491   }
2492 
2493   // Already added this dep.
2494   if (!Deps->try_emplace(I, false).second)
2495     return true;
2496 
2497   for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2498     if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2499                                 Depth + 1))
2500       return false;
2501   return true;
2502 }
2503 
2504 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2505     const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2506     Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2507     TargetLoweringBase::CondMergingParams Params) const {
2508   if (I.getNumSuccessors() != 2)
2509     return false;
2510 
2511   if (!I.isConditional())
2512     return false;
2513 
2514   if (Params.BaseCost < 0)
2515     return false;
2516 
2517   // Baseline cost.
2518   InstructionCost CostThresh = Params.BaseCost;
2519 
2520   BranchProbabilityInfo *BPI = nullptr;
2521   if (Params.LikelyBias || Params.UnlikelyBias)
2522     BPI = FuncInfo.BPI;
2523   if (BPI != nullptr) {
2524     // See if we are either likely to get an early out or compute both lhs/rhs
2525     // of the condition.
2526     BasicBlock *IfFalse = I.getSuccessor(0);
2527     BasicBlock *IfTrue = I.getSuccessor(1);
2528 
2529     std::optional<bool> Likely;
2530     if (BPI->isEdgeHot(I.getParent(), IfTrue))
2531       Likely = true;
2532     else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2533       Likely = false;
2534 
2535     if (Likely) {
2536       if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2537         // Its likely we will have to compute both lhs and rhs of condition
2538         CostThresh += Params.LikelyBias;
2539       else {
2540         if (Params.UnlikelyBias < 0)
2541           return false;
2542         // Its likely we will get an early out.
2543         CostThresh -= Params.UnlikelyBias;
2544       }
2545     }
2546   }
2547 
2548   if (CostThresh <= 0)
2549     return false;
2550 
2551   // Collect "all" instructions that lhs condition is dependent on.
2552   // Use map for stable iteration (to avoid non-determanism of iteration of
2553   // SmallPtrSet). The `bool` value is just a dummy.
2554   SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2555   collectInstructionDeps(&LhsDeps, Lhs);
2556   // Collect "all" instructions that rhs condition is dependent on AND are
2557   // dependencies of lhs. This gives us an estimate on which instructions we
2558   // stand to save by splitting the condition.
2559   if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2560     return false;
2561   // Add the compare instruction itself unless its a dependency on the LHS.
2562   if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2563     if (!LhsDeps.contains(RhsI))
2564       RhsDeps.try_emplace(RhsI, false);
2565 
2566   const auto &TLI = DAG.getTargetLoweringInfo();
2567   const auto &TTI =
2568       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2569 
2570   InstructionCost CostOfIncluding = 0;
2571   // See if this instruction will need to computed independently of whether RHS
2572   // is.
2573   Value *BrCond = I.getCondition();
2574   auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2575     for (const auto *U : Ins->users()) {
2576       // If user is independent of RHS calculation we don't need to count it.
2577       if (auto *UIns = dyn_cast<Instruction>(U))
2578         if (UIns != BrCond && !RhsDeps.contains(UIns))
2579           return false;
2580     }
2581     return true;
2582   };
2583 
2584   // Prune instructions from RHS Deps that are dependencies of unrelated
2585   // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2586   // arbitrary and just meant to cap the how much time we spend in the pruning
2587   // loop. Its highly unlikely to come into affect.
2588   const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2589   // Stop after a certain point. No incorrectness from including too many
2590   // instructions.
2591   for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2592     const Instruction *ToDrop = nullptr;
2593     for (const auto &InsPair : RhsDeps) {
2594       if (!ShouldCountInsn(InsPair.first)) {
2595         ToDrop = InsPair.first;
2596         break;
2597       }
2598     }
2599     if (ToDrop == nullptr)
2600       break;
2601     RhsDeps.erase(ToDrop);
2602   }
2603 
2604   for (const auto &InsPair : RhsDeps) {
2605     // Finally accumulate latency that we can only attribute to computing the
2606     // RHS condition. Use latency because we are essentially trying to calculate
2607     // the cost of the dependency chain.
2608     // Possible TODO: We could try to estimate ILP and make this more precise.
2609     CostOfIncluding +=
2610         TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2611 
2612     if (CostOfIncluding > CostThresh)
2613       return false;
2614   }
2615   return true;
2616 }
2617 
2618 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2619                                                MachineBasicBlock *TBB,
2620                                                MachineBasicBlock *FBB,
2621                                                MachineBasicBlock *CurBB,
2622                                                MachineBasicBlock *SwitchBB,
2623                                                Instruction::BinaryOps Opc,
2624                                                BranchProbability TProb,
2625                                                BranchProbability FProb,
2626                                                bool InvertCond) {
2627   // Skip over not part of the tree and remember to invert op and operands at
2628   // next level.
2629   Value *NotCond;
2630   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2631       InBlock(NotCond, CurBB->getBasicBlock())) {
2632     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2633                          !InvertCond);
2634     return;
2635   }
2636 
2637   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2638   const Value *BOpOp0, *BOpOp1;
2639   // Compute the effective opcode for Cond, taking into account whether it needs
2640   // to be inverted, e.g.
2641   //   and (not (or A, B)), C
2642   // gets lowered as
2643   //   and (and (not A, not B), C)
2644   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2645   if (BOp) {
2646     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2647                ? Instruction::And
2648                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2649                       ? Instruction::Or
2650                       : (Instruction::BinaryOps)0);
2651     if (InvertCond) {
2652       if (BOpc == Instruction::And)
2653         BOpc = Instruction::Or;
2654       else if (BOpc == Instruction::Or)
2655         BOpc = Instruction::And;
2656     }
2657   }
2658 
2659   // If this node is not part of the or/and tree, emit it as a branch.
2660   // Note that all nodes in the tree should have same opcode.
2661   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2662   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2663       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2664       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2665     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2666                                  TProb, FProb, InvertCond);
2667     return;
2668   }
2669 
2670   //  Create TmpBB after CurBB.
2671   MachineFunction::iterator BBI(CurBB);
2672   MachineFunction &MF = DAG.getMachineFunction();
2673   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2674   CurBB->getParent()->insert(++BBI, TmpBB);
2675 
2676   if (Opc == Instruction::Or) {
2677     // Codegen X | Y as:
2678     // BB1:
2679     //   jmp_if_X TBB
2680     //   jmp TmpBB
2681     // TmpBB:
2682     //   jmp_if_Y TBB
2683     //   jmp FBB
2684     //
2685 
2686     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2687     // The requirement is that
2688     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2689     //     = TrueProb for original BB.
2690     // Assuming the original probabilities are A and B, one choice is to set
2691     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2692     // A/(1+B) and 2B/(1+B). This choice assumes that
2693     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2694     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2695     // TmpBB, but the math is more complicated.
2696 
2697     auto NewTrueProb = TProb / 2;
2698     auto NewFalseProb = TProb / 2 + FProb;
2699     // Emit the LHS condition.
2700     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2701                          NewFalseProb, InvertCond);
2702 
2703     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2704     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2705     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2706     // Emit the RHS condition into TmpBB.
2707     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2708                          Probs[1], InvertCond);
2709   } else {
2710     assert(Opc == Instruction::And && "Unknown merge op!");
2711     // Codegen X & Y as:
2712     // BB1:
2713     //   jmp_if_X TmpBB
2714     //   jmp FBB
2715     // TmpBB:
2716     //   jmp_if_Y TBB
2717     //   jmp FBB
2718     //
2719     //  This requires creation of TmpBB after CurBB.
2720 
2721     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2722     // The requirement is that
2723     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2724     //     = FalseProb for original BB.
2725     // Assuming the original probabilities are A and B, one choice is to set
2726     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2727     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2728     // TrueProb for BB1 * FalseProb for TmpBB.
2729 
2730     auto NewTrueProb = TProb + FProb / 2;
2731     auto NewFalseProb = FProb / 2;
2732     // Emit the LHS condition.
2733     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2734                          NewFalseProb, InvertCond);
2735 
2736     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2737     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2738     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2739     // Emit the RHS condition into TmpBB.
2740     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2741                          Probs[1], InvertCond);
2742   }
2743 }
2744 
2745 /// If the set of cases should be emitted as a series of branches, return true.
2746 /// If we should emit this as a bunch of and/or'd together conditions, return
2747 /// false.
2748 bool
2749 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2750   if (Cases.size() != 2) return true;
2751 
2752   // If this is two comparisons of the same values or'd or and'd together, they
2753   // will get folded into a single comparison, so don't emit two blocks.
2754   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2755        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2756       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2757        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2758     return false;
2759   }
2760 
2761   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2762   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2763   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2764       Cases[0].CC == Cases[1].CC &&
2765       isa<Constant>(Cases[0].CmpRHS) &&
2766       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2767     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2768       return false;
2769     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2770       return false;
2771   }
2772 
2773   return true;
2774 }
2775 
2776 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2777   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2778 
2779   // Update machine-CFG edges.
2780   MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0));
2781 
2782   if (I.isUnconditional()) {
2783     // Update machine-CFG edges.
2784     BrMBB->addSuccessor(Succ0MBB);
2785 
2786     // If this is not a fall-through branch or optimizations are switched off,
2787     // emit the branch.
2788     if (Succ0MBB != NextBlock(BrMBB) ||
2789         TM.getOptLevel() == CodeGenOptLevel::None) {
2790       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2791                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2792       setValue(&I, Br);
2793       DAG.setRoot(Br);
2794     }
2795 
2796     return;
2797   }
2798 
2799   // If this condition is one of the special cases we handle, do special stuff
2800   // now.
2801   const Value *CondVal = I.getCondition();
2802   MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1));
2803 
2804   // If this is a series of conditions that are or'd or and'd together, emit
2805   // this as a sequence of branches instead of setcc's with and/or operations.
2806   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2807   // unpredictable branches, and vector extracts because those jumps are likely
2808   // expensive for any target), this should improve performance.
2809   // For example, instead of something like:
2810   //     cmp A, B
2811   //     C = seteq
2812   //     cmp D, E
2813   //     F = setle
2814   //     or C, F
2815   //     jnz foo
2816   // Emit:
2817   //     cmp A, B
2818   //     je foo
2819   //     cmp D, E
2820   //     jle foo
2821   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2822   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2823       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2824     Value *Vec;
2825     const Value *BOp0, *BOp1;
2826     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2827     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2828       Opcode = Instruction::And;
2829     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2830       Opcode = Instruction::Or;
2831 
2832     if (Opcode &&
2833         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2834           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2835         !shouldKeepJumpConditionsTogether(
2836             FuncInfo, I, Opcode, BOp0, BOp1,
2837             DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2838                 Opcode, BOp0, BOp1))) {
2839       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2840                            getEdgeProbability(BrMBB, Succ0MBB),
2841                            getEdgeProbability(BrMBB, Succ1MBB),
2842                            /*InvertCond=*/false);
2843       // If the compares in later blocks need to use values not currently
2844       // exported from this block, export them now.  This block should always
2845       // be the first entry.
2846       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2847 
2848       // Allow some cases to be rejected.
2849       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2850         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2851           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2852           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2853         }
2854 
2855         // Emit the branch for this block.
2856         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2857         SL->SwitchCases.erase(SL->SwitchCases.begin());
2858         return;
2859       }
2860 
2861       // Okay, we decided not to do this, remove any inserted MBB's and clear
2862       // SwitchCases.
2863       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2864         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2865 
2866       SL->SwitchCases.clear();
2867     }
2868   }
2869 
2870   // Create a CaseBlock record representing this branch.
2871   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2872                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2873 
2874   // Use visitSwitchCase to actually insert the fast branch sequence for this
2875   // cond branch.
2876   visitSwitchCase(CB, BrMBB);
2877 }
2878 
2879 /// visitSwitchCase - Emits the necessary code to represent a single node in
2880 /// the binary search tree resulting from lowering a switch instruction.
2881 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2882                                           MachineBasicBlock *SwitchBB) {
2883   SDValue Cond;
2884   SDValue CondLHS = getValue(CB.CmpLHS);
2885   SDLoc dl = CB.DL;
2886 
2887   if (CB.CC == ISD::SETTRUE) {
2888     // Branch or fall through to TrueBB.
2889     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2890     SwitchBB->normalizeSuccProbs();
2891     if (CB.TrueBB != NextBlock(SwitchBB)) {
2892       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2893                               DAG.getBasicBlock(CB.TrueBB)));
2894     }
2895     return;
2896   }
2897 
2898   auto &TLI = DAG.getTargetLoweringInfo();
2899   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2900 
2901   // Build the setcc now.
2902   if (!CB.CmpMHS) {
2903     // Fold "(X == true)" to X and "(X == false)" to !X to
2904     // handle common cases produced by branch lowering.
2905     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2906         CB.CC == ISD::SETEQ)
2907       Cond = CondLHS;
2908     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2909              CB.CC == ISD::SETEQ) {
2910       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2911       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2912     } else {
2913       SDValue CondRHS = getValue(CB.CmpRHS);
2914 
2915       // If a pointer's DAG type is larger than its memory type then the DAG
2916       // values are zero-extended. This breaks signed comparisons so truncate
2917       // back to the underlying type before doing the compare.
2918       if (CondLHS.getValueType() != MemVT) {
2919         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2920         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2921       }
2922       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2923     }
2924   } else {
2925     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2926 
2927     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2928     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2929 
2930     SDValue CmpOp = getValue(CB.CmpMHS);
2931     EVT VT = CmpOp.getValueType();
2932 
2933     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2934       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2935                           ISD::SETLE);
2936     } else {
2937       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2938                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2939       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2940                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2941     }
2942   }
2943 
2944   // Update successor info
2945   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2946   // TrueBB and FalseBB are always different unless the incoming IR is
2947   // degenerate. This only happens when running llc on weird IR.
2948   if (CB.TrueBB != CB.FalseBB)
2949     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2950   SwitchBB->normalizeSuccProbs();
2951 
2952   // If the lhs block is the next block, invert the condition so that we can
2953   // fall through to the lhs instead of the rhs block.
2954   if (CB.TrueBB == NextBlock(SwitchBB)) {
2955     std::swap(CB.TrueBB, CB.FalseBB);
2956     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2957     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2958   }
2959 
2960   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2961                                MVT::Other, getControlRoot(), Cond,
2962                                DAG.getBasicBlock(CB.TrueBB));
2963 
2964   setValue(CurInst, BrCond);
2965 
2966   // Insert the false branch. Do this even if it's a fall through branch,
2967   // this makes it easier to do DAG optimizations which require inverting
2968   // the branch condition.
2969   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2970                        DAG.getBasicBlock(CB.FalseBB));
2971 
2972   DAG.setRoot(BrCond);
2973 }
2974 
2975 /// visitJumpTable - Emit JumpTable node in the current MBB
2976 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2977   // Emit the code for the jump table
2978   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2979   assert(JT.Reg != -1U && "Should lower JT Header first!");
2980   EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout());
2981   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2982   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2983   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2984                                     Index.getValue(1), Table, Index);
2985   DAG.setRoot(BrJumpTable);
2986 }
2987 
2988 /// visitJumpTableHeader - This function emits necessary code to produce index
2989 /// in the JumpTable from switch case.
2990 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2991                                                JumpTableHeader &JTH,
2992                                                MachineBasicBlock *SwitchBB) {
2993   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2994   const SDLoc &dl = *JT.SL;
2995 
2996   // Subtract the lowest switch case value from the value being switched on.
2997   SDValue SwitchOp = getValue(JTH.SValue);
2998   EVT VT = SwitchOp.getValueType();
2999   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
3000                             DAG.getConstant(JTH.First, dl, VT));
3001 
3002   // The SDNode we just created, which holds the value being switched on minus
3003   // the smallest case value, needs to be copied to a virtual register so it
3004   // can be used as an index into the jump table in a subsequent basic block.
3005   // This value may be smaller or larger than the target's pointer type, and
3006   // therefore require extension or truncating.
3007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3008   SwitchOp =
3009       DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout()));
3010 
3011   unsigned JumpTableReg =
3012       FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout()));
3013   SDValue CopyTo =
3014       DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp);
3015   JT.Reg = JumpTableReg;
3016 
3017   if (!JTH.FallthroughUnreachable) {
3018     // Emit the range check for the jump table, and branch to the default block
3019     // for the switch statement if the value being switched on exceeds the
3020     // largest case in the switch.
3021     SDValue CMP = DAG.getSetCC(
3022         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3023                                    Sub.getValueType()),
3024         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3025 
3026     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3027                                  MVT::Other, CopyTo, CMP,
3028                                  DAG.getBasicBlock(JT.Default));
3029 
3030     // Avoid emitting unnecessary branches to the next block.
3031     if (JT.MBB != NextBlock(SwitchBB))
3032       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3033                            DAG.getBasicBlock(JT.MBB));
3034 
3035     DAG.setRoot(BrCond);
3036   } else {
3037     // Avoid emitting unnecessary branches to the next block.
3038     if (JT.MBB != NextBlock(SwitchBB))
3039       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3040                               DAG.getBasicBlock(JT.MBB)));
3041     else
3042       DAG.setRoot(CopyTo);
3043   }
3044 }
3045 
3046 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3047 /// variable if there exists one.
3048 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3049                                  SDValue &Chain) {
3050   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3051   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3052   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3053   MachineFunction &MF = DAG.getMachineFunction();
3054   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3055   MachineSDNode *Node =
3056       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3057   if (Global) {
3058     MachinePointerInfo MPInfo(Global);
3059     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3060                  MachineMemOperand::MODereferenceable;
3061     MachineMemOperand *MemRef = MF.getMachineMemOperand(
3062         MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8),
3063         DAG.getEVTAlign(PtrTy));
3064     DAG.setNodeMemRefs(Node, {MemRef});
3065   }
3066   if (PtrTy != PtrMemTy)
3067     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3068   return SDValue(Node, 0);
3069 }
3070 
3071 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3072 /// tail spliced into a stack protector check success bb.
3073 ///
3074 /// For a high level explanation of how this fits into the stack protector
3075 /// generation see the comment on the declaration of class
3076 /// StackProtectorDescriptor.
3077 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3078                                                   MachineBasicBlock *ParentBB) {
3079 
3080   // First create the loads to the guard/stack slot for the comparison.
3081   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3082   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3083   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3084 
3085   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3086   int FI = MFI.getStackProtectorIndex();
3087 
3088   SDValue Guard;
3089   SDLoc dl = getCurSDLoc();
3090   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3091   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3092   Align Align =
3093       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3094 
3095   // Generate code to load the content of the guard slot.
3096   SDValue GuardVal = DAG.getLoad(
3097       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3098       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3099       MachineMemOperand::MOVolatile);
3100 
3101   if (TLI.useStackGuardXorFP())
3102     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3103 
3104   // Retrieve guard check function, nullptr if instrumentation is inlined.
3105   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3106     // The target provides a guard check function to validate the guard value.
3107     // Generate a call to that function with the content of the guard slot as
3108     // argument.
3109     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3110     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3111 
3112     TargetLowering::ArgListTy Args;
3113     TargetLowering::ArgListEntry Entry;
3114     Entry.Node = GuardVal;
3115     Entry.Ty = FnTy->getParamType(0);
3116     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3117       Entry.IsInReg = true;
3118     Args.push_back(Entry);
3119 
3120     TargetLowering::CallLoweringInfo CLI(DAG);
3121     CLI.setDebugLoc(getCurSDLoc())
3122         .setChain(DAG.getEntryNode())
3123         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3124                    getValue(GuardCheckFn), std::move(Args));
3125 
3126     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3127     DAG.setRoot(Result.second);
3128     return;
3129   }
3130 
3131   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3132   // Otherwise, emit a volatile load to retrieve the stack guard value.
3133   SDValue Chain = DAG.getEntryNode();
3134   if (TLI.useLoadStackGuardNode()) {
3135     Guard = getLoadStackGuard(DAG, dl, Chain);
3136   } else {
3137     const Value *IRGuard = TLI.getSDagStackGuard(M);
3138     SDValue GuardPtr = getValue(IRGuard);
3139 
3140     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3141                         MachinePointerInfo(IRGuard, 0), Align,
3142                         MachineMemOperand::MOVolatile);
3143   }
3144 
3145   // Perform the comparison via a getsetcc.
3146   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3147                                                         *DAG.getContext(),
3148                                                         Guard.getValueType()),
3149                              Guard, GuardVal, ISD::SETNE);
3150 
3151   // If the guard/stackslot do not equal, branch to failure MBB.
3152   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3153                                MVT::Other, GuardVal.getOperand(0),
3154                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3155   // Otherwise branch to success MBB.
3156   SDValue Br = DAG.getNode(ISD::BR, dl,
3157                            MVT::Other, BrCond,
3158                            DAG.getBasicBlock(SPD.getSuccessMBB()));
3159 
3160   DAG.setRoot(Br);
3161 }
3162 
3163 /// Codegen the failure basic block for a stack protector check.
3164 ///
3165 /// A failure stack protector machine basic block consists simply of a call to
3166 /// __stack_chk_fail().
3167 ///
3168 /// For a high level explanation of how this fits into the stack protector
3169 /// generation see the comment on the declaration of class
3170 /// StackProtectorDescriptor.
3171 void
3172 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3173   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3174   TargetLowering::MakeLibCallOptions CallOptions;
3175   CallOptions.setDiscardResult(true);
3176   SDValue Chain =
3177       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3178                       std::nullopt, CallOptions, getCurSDLoc())
3179           .second;
3180   // On PS4/PS5, the "return address" must still be within the calling
3181   // function, even if it's at the very end, so emit an explicit TRAP here.
3182   // Passing 'true' for doesNotReturn above won't generate the trap for us.
3183   if (TM.getTargetTriple().isPS())
3184     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3185   // WebAssembly needs an unreachable instruction after a non-returning call,
3186   // because the function return type can be different from __stack_chk_fail's
3187   // return type (void).
3188   if (TM.getTargetTriple().isWasm())
3189     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3190 
3191   DAG.setRoot(Chain);
3192 }
3193 
3194 /// visitBitTestHeader - This function emits necessary code to produce value
3195 /// suitable for "bit tests"
3196 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3197                                              MachineBasicBlock *SwitchBB) {
3198   SDLoc dl = getCurSDLoc();
3199 
3200   // Subtract the minimum value.
3201   SDValue SwitchOp = getValue(B.SValue);
3202   EVT VT = SwitchOp.getValueType();
3203   SDValue RangeSub =
3204       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3205 
3206   // Determine the type of the test operands.
3207   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3208   bool UsePtrType = false;
3209   if (!TLI.isTypeLegal(VT)) {
3210     UsePtrType = true;
3211   } else {
3212     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3213       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3214         // Switch table case range are encoded into series of masks.
3215         // Just use pointer type, it's guaranteed to fit.
3216         UsePtrType = true;
3217         break;
3218       }
3219   }
3220   SDValue Sub = RangeSub;
3221   if (UsePtrType) {
3222     VT = TLI.getPointerTy(DAG.getDataLayout());
3223     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3224   }
3225 
3226   B.RegVT = VT.getSimpleVT();
3227   B.Reg = FuncInfo.CreateReg(B.RegVT);
3228   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3229 
3230   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3231 
3232   if (!B.FallthroughUnreachable)
3233     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3234   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3235   SwitchBB->normalizeSuccProbs();
3236 
3237   SDValue Root = CopyTo;
3238   if (!B.FallthroughUnreachable) {
3239     // Conditional branch to the default block.
3240     SDValue RangeCmp = DAG.getSetCC(dl,
3241         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3242                                RangeSub.getValueType()),
3243         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3244         ISD::SETUGT);
3245 
3246     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3247                        DAG.getBasicBlock(B.Default));
3248   }
3249 
3250   // Avoid emitting unnecessary branches to the next block.
3251   if (MBB != NextBlock(SwitchBB))
3252     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3253 
3254   DAG.setRoot(Root);
3255 }
3256 
3257 /// visitBitTestCase - this function produces one "bit test"
3258 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3259                                            MachineBasicBlock* NextMBB,
3260                                            BranchProbability BranchProbToNext,
3261                                            unsigned Reg,
3262                                            BitTestCase &B,
3263                                            MachineBasicBlock *SwitchBB) {
3264   SDLoc dl = getCurSDLoc();
3265   MVT VT = BB.RegVT;
3266   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3267   SDValue Cmp;
3268   unsigned PopCount = llvm::popcount(B.Mask);
3269   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3270   if (PopCount == 1) {
3271     // Testing for a single bit; just compare the shift count with what it
3272     // would need to be to shift a 1 bit in that position.
3273     Cmp = DAG.getSetCC(
3274         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3275         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3276         ISD::SETEQ);
3277   } else if (PopCount == BB.Range) {
3278     // There is only one zero bit in the range, test for it directly.
3279     Cmp = DAG.getSetCC(
3280         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3281         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3282   } else {
3283     // Make desired shift
3284     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3285                                     DAG.getConstant(1, dl, VT), ShiftOp);
3286 
3287     // Emit bit tests and jumps
3288     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3289                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3290     Cmp = DAG.getSetCC(
3291         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3292         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3293   }
3294 
3295   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3296   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3297   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3298   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3299   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3300   // one as they are relative probabilities (and thus work more like weights),
3301   // and hence we need to normalize them to let the sum of them become one.
3302   SwitchBB->normalizeSuccProbs();
3303 
3304   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3305                               MVT::Other, getControlRoot(),
3306                               Cmp, DAG.getBasicBlock(B.TargetBB));
3307 
3308   // Avoid emitting unnecessary branches to the next block.
3309   if (NextMBB != NextBlock(SwitchBB))
3310     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3311                         DAG.getBasicBlock(NextMBB));
3312 
3313   DAG.setRoot(BrAnd);
3314 }
3315 
3316 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3317   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3318 
3319   // Retrieve successors. Look through artificial IR level blocks like
3320   // catchswitch for successors.
3321   MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0));
3322   const BasicBlock *EHPadBB = I.getSuccessor(1);
3323   MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB);
3324 
3325   // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3326   // have to do anything here to lower funclet bundles.
3327   assert(!I.hasOperandBundlesOtherThan(
3328              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3329               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3330               LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth,
3331               LLVMContext::OB_clang_arc_attachedcall}) &&
3332          "Cannot lower invokes with arbitrary operand bundles yet!");
3333 
3334   const Value *Callee(I.getCalledOperand());
3335   const Function *Fn = dyn_cast<Function>(Callee);
3336   if (isa<InlineAsm>(Callee))
3337     visitInlineAsm(I, EHPadBB);
3338   else if (Fn && Fn->isIntrinsic()) {
3339     switch (Fn->getIntrinsicID()) {
3340     default:
3341       llvm_unreachable("Cannot invoke this intrinsic");
3342     case Intrinsic::donothing:
3343       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3344     case Intrinsic::seh_try_begin:
3345     case Intrinsic::seh_scope_begin:
3346     case Intrinsic::seh_try_end:
3347     case Intrinsic::seh_scope_end:
3348       if (EHPadMBB)
3349           // a block referenced by EH table
3350           // so dtor-funclet not removed by opts
3351           EHPadMBB->setMachineBlockAddressTaken();
3352       break;
3353     case Intrinsic::experimental_patchpoint_void:
3354     case Intrinsic::experimental_patchpoint:
3355       visitPatchpoint(I, EHPadBB);
3356       break;
3357     case Intrinsic::experimental_gc_statepoint:
3358       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3359       break;
3360     case Intrinsic::wasm_rethrow: {
3361       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3362       // special because it can be invoked, so we manually lower it to a DAG
3363       // node here.
3364       SmallVector<SDValue, 8> Ops;
3365       Ops.push_back(getControlRoot()); // inchain for the terminator node
3366       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3367       Ops.push_back(
3368           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3369                                 TLI.getPointerTy(DAG.getDataLayout())));
3370       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3371       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3372       break;
3373     }
3374     }
3375   } else if (I.hasDeoptState()) {
3376     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3377     // Eventually we will support lowering the @llvm.experimental.deoptimize
3378     // intrinsic, and right now there are no plans to support other intrinsics
3379     // with deopt state.
3380     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3381   } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3382     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB);
3383   } else {
3384     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3385   }
3386 
3387   // If the value of the invoke is used outside of its defining block, make it
3388   // available as a virtual register.
3389   // We already took care of the exported value for the statepoint instruction
3390   // during call to the LowerStatepoint.
3391   if (!isa<GCStatepointInst>(I)) {
3392     CopyToExportRegsIfNeeded(&I);
3393   }
3394 
3395   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3396   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3397   BranchProbability EHPadBBProb =
3398       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3399           : BranchProbability::getZero();
3400   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3401 
3402   // Update successor info.
3403   addSuccessorWithProb(InvokeMBB, Return);
3404   for (auto &UnwindDest : UnwindDests) {
3405     UnwindDest.first->setIsEHPad();
3406     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3407   }
3408   InvokeMBB->normalizeSuccProbs();
3409 
3410   // Drop into normal successor.
3411   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3412                           DAG.getBasicBlock(Return)));
3413 }
3414 
3415 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3416   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3417 
3418   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3419   // have to do anything here to lower funclet bundles.
3420   assert(!I.hasOperandBundlesOtherThan(
3421              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3422          "Cannot lower callbrs with arbitrary operand bundles yet!");
3423 
3424   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3425   visitInlineAsm(I);
3426   CopyToExportRegsIfNeeded(&I);
3427 
3428   // Retrieve successors.
3429   SmallPtrSet<BasicBlock *, 8> Dests;
3430   Dests.insert(I.getDefaultDest());
3431   MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest());
3432 
3433   // Update successor info.
3434   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3435   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3436     BasicBlock *Dest = I.getIndirectDest(i);
3437     MachineBasicBlock *Target = FuncInfo.getMBB(Dest);
3438     Target->setIsInlineAsmBrIndirectTarget();
3439     Target->setMachineBlockAddressTaken();
3440     Target->setLabelMustBeEmitted();
3441     // Don't add duplicate machine successors.
3442     if (Dests.insert(Dest).second)
3443       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3444   }
3445   CallBrMBB->normalizeSuccProbs();
3446 
3447   // Drop into default successor.
3448   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3449                           MVT::Other, getControlRoot(),
3450                           DAG.getBasicBlock(Return)));
3451 }
3452 
3453 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3454   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3455 }
3456 
3457 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3458   assert(FuncInfo.MBB->isEHPad() &&
3459          "Call to landingpad not in landing pad!");
3460 
3461   // If there aren't registers to copy the values into (e.g., during SjLj
3462   // exceptions), then don't bother to create these DAG nodes.
3463   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3464   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3465   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3466       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3467     return;
3468 
3469   // If landingpad's return type is token type, we don't create DAG nodes
3470   // for its exception pointer and selector value. The extraction of exception
3471   // pointer or selector value from token type landingpads is not currently
3472   // supported.
3473   if (LP.getType()->isTokenTy())
3474     return;
3475 
3476   SmallVector<EVT, 2> ValueVTs;
3477   SDLoc dl = getCurSDLoc();
3478   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3479   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3480 
3481   // Get the two live-in registers as SDValues. The physregs have already been
3482   // copied into virtual registers.
3483   SDValue Ops[2];
3484   if (FuncInfo.ExceptionPointerVirtReg) {
3485     Ops[0] = DAG.getZExtOrTrunc(
3486         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3487                            FuncInfo.ExceptionPointerVirtReg,
3488                            TLI.getPointerTy(DAG.getDataLayout())),
3489         dl, ValueVTs[0]);
3490   } else {
3491     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3492   }
3493   Ops[1] = DAG.getZExtOrTrunc(
3494       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3495                          FuncInfo.ExceptionSelectorVirtReg,
3496                          TLI.getPointerTy(DAG.getDataLayout())),
3497       dl, ValueVTs[1]);
3498 
3499   // Merge into one.
3500   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3501                             DAG.getVTList(ValueVTs), Ops);
3502   setValue(&LP, Res);
3503 }
3504 
3505 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3506                                            MachineBasicBlock *Last) {
3507   // Update JTCases.
3508   for (JumpTableBlock &JTB : SL->JTCases)
3509     if (JTB.first.HeaderBB == First)
3510       JTB.first.HeaderBB = Last;
3511 
3512   // Update BitTestCases.
3513   for (BitTestBlock &BTB : SL->BitTestCases)
3514     if (BTB.Parent == First)
3515       BTB.Parent = Last;
3516 }
3517 
3518 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3519   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3520 
3521   // Update machine-CFG edges with unique successors.
3522   SmallSet<BasicBlock*, 32> Done;
3523   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3524     BasicBlock *BB = I.getSuccessor(i);
3525     bool Inserted = Done.insert(BB).second;
3526     if (!Inserted)
3527         continue;
3528 
3529     MachineBasicBlock *Succ = FuncInfo.getMBB(BB);
3530     addSuccessorWithProb(IndirectBrMBB, Succ);
3531   }
3532   IndirectBrMBB->normalizeSuccProbs();
3533 
3534   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3535                           MVT::Other, getControlRoot(),
3536                           getValue(I.getAddress())));
3537 }
3538 
3539 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3540   if (!DAG.getTarget().Options.TrapUnreachable)
3541     return;
3542 
3543   // We may be able to ignore unreachable behind a noreturn call.
3544   if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode());
3545       Call && Call->doesNotReturn()) {
3546     if (DAG.getTarget().Options.NoTrapAfterNoreturn)
3547       return;
3548     // Do not emit an additional trap instruction.
3549     if (Call->isNonContinuableTrap())
3550       return;
3551   }
3552 
3553   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3554 }
3555 
3556 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3557   SDNodeFlags Flags;
3558   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3559     Flags.copyFMF(*FPOp);
3560 
3561   SDValue Op = getValue(I.getOperand(0));
3562   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3563                                     Op, Flags);
3564   setValue(&I, UnNodeValue);
3565 }
3566 
3567 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3568   SDNodeFlags Flags;
3569   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3570     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3571     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3572   }
3573   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3574     Flags.setExact(ExactOp->isExact());
3575   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3576     Flags.setDisjoint(DisjointOp->isDisjoint());
3577   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3578     Flags.copyFMF(*FPOp);
3579 
3580   SDValue Op1 = getValue(I.getOperand(0));
3581   SDValue Op2 = getValue(I.getOperand(1));
3582   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3583                                      Op1, Op2, Flags);
3584   setValue(&I, BinNodeValue);
3585 }
3586 
3587 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3588   SDValue Op1 = getValue(I.getOperand(0));
3589   SDValue Op2 = getValue(I.getOperand(1));
3590 
3591   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3592       Op1.getValueType(), DAG.getDataLayout());
3593 
3594   // Coerce the shift amount to the right type if we can. This exposes the
3595   // truncate or zext to optimization early.
3596   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3597     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3598            "Unexpected shift type");
3599     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3600   }
3601 
3602   bool nuw = false;
3603   bool nsw = false;
3604   bool exact = false;
3605 
3606   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3607 
3608     if (const OverflowingBinaryOperator *OFBinOp =
3609             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3610       nuw = OFBinOp->hasNoUnsignedWrap();
3611       nsw = OFBinOp->hasNoSignedWrap();
3612     }
3613     if (const PossiblyExactOperator *ExactOp =
3614             dyn_cast<const PossiblyExactOperator>(&I))
3615       exact = ExactOp->isExact();
3616   }
3617   SDNodeFlags Flags;
3618   Flags.setExact(exact);
3619   Flags.setNoSignedWrap(nsw);
3620   Flags.setNoUnsignedWrap(nuw);
3621   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3622                             Flags);
3623   setValue(&I, Res);
3624 }
3625 
3626 void SelectionDAGBuilder::visitSDiv(const User &I) {
3627   SDValue Op1 = getValue(I.getOperand(0));
3628   SDValue Op2 = getValue(I.getOperand(1));
3629 
3630   SDNodeFlags Flags;
3631   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3632                  cast<PossiblyExactOperator>(&I)->isExact());
3633   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3634                            Op2, Flags));
3635 }
3636 
3637 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3638   ICmpInst::Predicate predicate = I.getPredicate();
3639   SDValue Op1 = getValue(I.getOperand(0));
3640   SDValue Op2 = getValue(I.getOperand(1));
3641   ISD::CondCode Opcode = getICmpCondCode(predicate);
3642 
3643   auto &TLI = DAG.getTargetLoweringInfo();
3644   EVT MemVT =
3645       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3646 
3647   // If a pointer's DAG type is larger than its memory type then the DAG values
3648   // are zero-extended. This breaks signed comparisons so truncate back to the
3649   // underlying type before doing the compare.
3650   if (Op1.getValueType() != MemVT) {
3651     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3652     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3653   }
3654 
3655   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3656                                                         I.getType());
3657   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3658 }
3659 
3660 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3661   FCmpInst::Predicate predicate = I.getPredicate();
3662   SDValue Op1 = getValue(I.getOperand(0));
3663   SDValue Op2 = getValue(I.getOperand(1));
3664 
3665   ISD::CondCode Condition = getFCmpCondCode(predicate);
3666   auto *FPMO = cast<FPMathOperator>(&I);
3667   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3668     Condition = getFCmpCodeWithoutNaN(Condition);
3669 
3670   SDNodeFlags Flags;
3671   Flags.copyFMF(*FPMO);
3672   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3673 
3674   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3675                                                         I.getType());
3676   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3677 }
3678 
3679 // Check if the condition of the select has one use or two users that are both
3680 // selects with the same condition.
3681 static bool hasOnlySelectUsers(const Value *Cond) {
3682   return llvm::all_of(Cond->users(), [](const Value *V) {
3683     return isa<SelectInst>(V);
3684   });
3685 }
3686 
3687 void SelectionDAGBuilder::visitSelect(const User &I) {
3688   SmallVector<EVT, 4> ValueVTs;
3689   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3690                   ValueVTs);
3691   unsigned NumValues = ValueVTs.size();
3692   if (NumValues == 0) return;
3693 
3694   SmallVector<SDValue, 4> Values(NumValues);
3695   SDValue Cond     = getValue(I.getOperand(0));
3696   SDValue LHSVal   = getValue(I.getOperand(1));
3697   SDValue RHSVal   = getValue(I.getOperand(2));
3698   SmallVector<SDValue, 1> BaseOps(1, Cond);
3699   ISD::NodeType OpCode =
3700       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3701 
3702   bool IsUnaryAbs = false;
3703   bool Negate = false;
3704 
3705   SDNodeFlags Flags;
3706   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3707     Flags.copyFMF(*FPOp);
3708 
3709   Flags.setUnpredictable(
3710       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3711 
3712   // Min/max matching is only viable if all output VTs are the same.
3713   if (all_equal(ValueVTs)) {
3714     EVT VT = ValueVTs[0];
3715     LLVMContext &Ctx = *DAG.getContext();
3716     auto &TLI = DAG.getTargetLoweringInfo();
3717 
3718     // We care about the legality of the operation after it has been type
3719     // legalized.
3720     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3721       VT = TLI.getTypeToTransformTo(Ctx, VT);
3722 
3723     // If the vselect is legal, assume we want to leave this as a vector setcc +
3724     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3725     // min/max is legal on the scalar type.
3726     bool UseScalarMinMax = VT.isVector() &&
3727       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3728 
3729     // ValueTracking's select pattern matching does not account for -0.0,
3730     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3731     // -0.0 is less than +0.0.
3732     const Value *LHS, *RHS;
3733     auto SPR = matchSelectPattern(&I, LHS, RHS);
3734     ISD::NodeType Opc = ISD::DELETED_NODE;
3735     switch (SPR.Flavor) {
3736     case SPF_UMAX:    Opc = ISD::UMAX; break;
3737     case SPF_UMIN:    Opc = ISD::UMIN; break;
3738     case SPF_SMAX:    Opc = ISD::SMAX; break;
3739     case SPF_SMIN:    Opc = ISD::SMIN; break;
3740     case SPF_FMINNUM:
3741       switch (SPR.NaNBehavior) {
3742       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3743       case SPNB_RETURNS_NAN: break;
3744       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3745       case SPNB_RETURNS_ANY:
3746         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3747             (UseScalarMinMax &&
3748              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3749           Opc = ISD::FMINNUM;
3750         break;
3751       }
3752       break;
3753     case SPF_FMAXNUM:
3754       switch (SPR.NaNBehavior) {
3755       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3756       case SPNB_RETURNS_NAN: break;
3757       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3758       case SPNB_RETURNS_ANY:
3759         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3760             (UseScalarMinMax &&
3761              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3762           Opc = ISD::FMAXNUM;
3763         break;
3764       }
3765       break;
3766     case SPF_NABS:
3767       Negate = true;
3768       [[fallthrough]];
3769     case SPF_ABS:
3770       IsUnaryAbs = true;
3771       Opc = ISD::ABS;
3772       break;
3773     default: break;
3774     }
3775 
3776     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3777         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3778          (UseScalarMinMax &&
3779           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3780         // If the underlying comparison instruction is used by any other
3781         // instruction, the consumed instructions won't be destroyed, so it is
3782         // not profitable to convert to a min/max.
3783         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3784       OpCode = Opc;
3785       LHSVal = getValue(LHS);
3786       RHSVal = getValue(RHS);
3787       BaseOps.clear();
3788     }
3789 
3790     if (IsUnaryAbs) {
3791       OpCode = Opc;
3792       LHSVal = getValue(LHS);
3793       BaseOps.clear();
3794     }
3795   }
3796 
3797   if (IsUnaryAbs) {
3798     for (unsigned i = 0; i != NumValues; ++i) {
3799       SDLoc dl = getCurSDLoc();
3800       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3801       Values[i] =
3802           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3803       if (Negate)
3804         Values[i] = DAG.getNegative(Values[i], dl, VT);
3805     }
3806   } else {
3807     for (unsigned i = 0; i != NumValues; ++i) {
3808       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3809       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3810       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3811       Values[i] = DAG.getNode(
3812           OpCode, getCurSDLoc(),
3813           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3814     }
3815   }
3816 
3817   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3818                            DAG.getVTList(ValueVTs), Values));
3819 }
3820 
3821 void SelectionDAGBuilder::visitTrunc(const User &I) {
3822   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3823   SDValue N = getValue(I.getOperand(0));
3824   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3825                                                         I.getType());
3826   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3827 }
3828 
3829 void SelectionDAGBuilder::visitZExt(const User &I) {
3830   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3831   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3832   SDValue N = getValue(I.getOperand(0));
3833   auto &TLI = DAG.getTargetLoweringInfo();
3834   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3835 
3836   SDNodeFlags Flags;
3837   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3838     Flags.setNonNeg(PNI->hasNonNeg());
3839 
3840   // Eagerly use nonneg information to canonicalize towards sign_extend if
3841   // that is the target's preference.
3842   // TODO: Let the target do this later.
3843   if (Flags.hasNonNeg() &&
3844       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3845     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3846     return;
3847   }
3848 
3849   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3850 }
3851 
3852 void SelectionDAGBuilder::visitSExt(const User &I) {
3853   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3854   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3855   SDValue N = getValue(I.getOperand(0));
3856   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3857                                                         I.getType());
3858   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3859 }
3860 
3861 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3862   // FPTrunc is never a no-op cast, no need to check
3863   SDValue N = getValue(I.getOperand(0));
3864   SDLoc dl = getCurSDLoc();
3865   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3866   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3867   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3868                            DAG.getTargetConstant(
3869                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3870 }
3871 
3872 void SelectionDAGBuilder::visitFPExt(const User &I) {
3873   // FPExt is never a no-op cast, no need to check
3874   SDValue N = getValue(I.getOperand(0));
3875   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3876                                                         I.getType());
3877   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3878 }
3879 
3880 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3881   // FPToUI is never a no-op cast, no need to check
3882   SDValue N = getValue(I.getOperand(0));
3883   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3884                                                         I.getType());
3885   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3886 }
3887 
3888 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3889   // FPToSI is never a no-op cast, no need to check
3890   SDValue N = getValue(I.getOperand(0));
3891   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3892                                                         I.getType());
3893   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3894 }
3895 
3896 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3897   // UIToFP is never a no-op cast, no need to check
3898   SDValue N = getValue(I.getOperand(0));
3899   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3900                                                         I.getType());
3901   SDNodeFlags Flags;
3902   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3903     Flags.setNonNeg(PNI->hasNonNeg());
3904 
3905   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
3906 }
3907 
3908 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3909   // SIToFP is never a no-op cast, no need to check
3910   SDValue N = getValue(I.getOperand(0));
3911   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3912                                                         I.getType());
3913   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3914 }
3915 
3916 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3917   // What to do depends on the size of the integer and the size of the pointer.
3918   // We can either truncate, zero extend, or no-op, accordingly.
3919   SDValue N = getValue(I.getOperand(0));
3920   auto &TLI = DAG.getTargetLoweringInfo();
3921   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3922                                                         I.getType());
3923   EVT PtrMemVT =
3924       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3925   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3926   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3927   setValue(&I, N);
3928 }
3929 
3930 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3931   // What to do depends on the size of the integer and the size of the pointer.
3932   // We can either truncate, zero extend, or no-op, accordingly.
3933   SDValue N = getValue(I.getOperand(0));
3934   auto &TLI = DAG.getTargetLoweringInfo();
3935   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3936   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3937   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3938   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3939   setValue(&I, N);
3940 }
3941 
3942 void SelectionDAGBuilder::visitBitCast(const User &I) {
3943   SDValue N = getValue(I.getOperand(0));
3944   SDLoc dl = getCurSDLoc();
3945   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3946                                                         I.getType());
3947 
3948   // BitCast assures us that source and destination are the same size so this is
3949   // either a BITCAST or a no-op.
3950   if (DestVT != N.getValueType())
3951     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3952                              DestVT, N)); // convert types.
3953   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3954   // might fold any kind of constant expression to an integer constant and that
3955   // is not what we are looking for. Only recognize a bitcast of a genuine
3956   // constant integer as an opaque constant.
3957   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3958     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3959                                  /*isOpaque*/true));
3960   else
3961     setValue(&I, N);            // noop cast.
3962 }
3963 
3964 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3965   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3966   const Value *SV = I.getOperand(0);
3967   SDValue N = getValue(SV);
3968   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3969 
3970   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3971   unsigned DestAS = I.getType()->getPointerAddressSpace();
3972 
3973   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3974     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3975 
3976   setValue(&I, N);
3977 }
3978 
3979 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3980   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3981   SDValue InVec = getValue(I.getOperand(0));
3982   SDValue InVal = getValue(I.getOperand(1));
3983   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3984                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3985   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3986                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3987                            InVec, InVal, InIdx));
3988 }
3989 
3990 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3991   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3992   SDValue InVec = getValue(I.getOperand(0));
3993   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3994                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3995   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3996                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3997                            InVec, InIdx));
3998 }
3999 
4000 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
4001   SDValue Src1 = getValue(I.getOperand(0));
4002   SDValue Src2 = getValue(I.getOperand(1));
4003   ArrayRef<int> Mask;
4004   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
4005     Mask = SVI->getShuffleMask();
4006   else
4007     Mask = cast<ConstantExpr>(I).getShuffleMask();
4008   SDLoc DL = getCurSDLoc();
4009   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4010   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4011   EVT SrcVT = Src1.getValueType();
4012 
4013   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
4014       VT.isScalableVector()) {
4015     // Canonical splat form of first element of first input vector.
4016     SDValue FirstElt =
4017         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4018                     DAG.getVectorIdxConstant(0, DL));
4019     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4020     return;
4021   }
4022 
4023   // For now, we only handle splats for scalable vectors.
4024   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4025   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4026   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4027 
4028   unsigned SrcNumElts = SrcVT.getVectorNumElements();
4029   unsigned MaskNumElts = Mask.size();
4030 
4031   if (SrcNumElts == MaskNumElts) {
4032     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4033     return;
4034   }
4035 
4036   // Normalize the shuffle vector since mask and vector length don't match.
4037   if (SrcNumElts < MaskNumElts) {
4038     // Mask is longer than the source vectors. We can use concatenate vector to
4039     // make the mask and vectors lengths match.
4040 
4041     if (MaskNumElts % SrcNumElts == 0) {
4042       // Mask length is a multiple of the source vector length.
4043       // Check if the shuffle is some kind of concatenation of the input
4044       // vectors.
4045       unsigned NumConcat = MaskNumElts / SrcNumElts;
4046       bool IsConcat = true;
4047       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4048       for (unsigned i = 0; i != MaskNumElts; ++i) {
4049         int Idx = Mask[i];
4050         if (Idx < 0)
4051           continue;
4052         // Ensure the indices in each SrcVT sized piece are sequential and that
4053         // the same source is used for the whole piece.
4054         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4055             (ConcatSrcs[i / SrcNumElts] >= 0 &&
4056              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4057           IsConcat = false;
4058           break;
4059         }
4060         // Remember which source this index came from.
4061         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4062       }
4063 
4064       // The shuffle is concatenating multiple vectors together. Just emit
4065       // a CONCAT_VECTORS operation.
4066       if (IsConcat) {
4067         SmallVector<SDValue, 8> ConcatOps;
4068         for (auto Src : ConcatSrcs) {
4069           if (Src < 0)
4070             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4071           else if (Src == 0)
4072             ConcatOps.push_back(Src1);
4073           else
4074             ConcatOps.push_back(Src2);
4075         }
4076         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4077         return;
4078       }
4079     }
4080 
4081     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4082     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4083     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4084                                     PaddedMaskNumElts);
4085 
4086     // Pad both vectors with undefs to make them the same length as the mask.
4087     SDValue UndefVal = DAG.getUNDEF(SrcVT);
4088 
4089     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4090     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4091     MOps1[0] = Src1;
4092     MOps2[0] = Src2;
4093 
4094     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4095     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4096 
4097     // Readjust mask for new input vector length.
4098     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4099     for (unsigned i = 0; i != MaskNumElts; ++i) {
4100       int Idx = Mask[i];
4101       if (Idx >= (int)SrcNumElts)
4102         Idx -= SrcNumElts - PaddedMaskNumElts;
4103       MappedOps[i] = Idx;
4104     }
4105 
4106     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4107 
4108     // If the concatenated vector was padded, extract a subvector with the
4109     // correct number of elements.
4110     if (MaskNumElts != PaddedMaskNumElts)
4111       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4112                            DAG.getVectorIdxConstant(0, DL));
4113 
4114     setValue(&I, Result);
4115     return;
4116   }
4117 
4118   if (SrcNumElts > MaskNumElts) {
4119     // Analyze the access pattern of the vector to see if we can extract
4120     // two subvectors and do the shuffle.
4121     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
4122     bool CanExtract = true;
4123     for (int Idx : Mask) {
4124       unsigned Input = 0;
4125       if (Idx < 0)
4126         continue;
4127 
4128       if (Idx >= (int)SrcNumElts) {
4129         Input = 1;
4130         Idx -= SrcNumElts;
4131       }
4132 
4133       // If all the indices come from the same MaskNumElts sized portion of
4134       // the sources we can use extract. Also make sure the extract wouldn't
4135       // extract past the end of the source.
4136       int NewStartIdx = alignDown(Idx, MaskNumElts);
4137       if (NewStartIdx + MaskNumElts > SrcNumElts ||
4138           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4139         CanExtract = false;
4140       // Make sure we always update StartIdx as we use it to track if all
4141       // elements are undef.
4142       StartIdx[Input] = NewStartIdx;
4143     }
4144 
4145     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4146       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4147       return;
4148     }
4149     if (CanExtract) {
4150       // Extract appropriate subvector and generate a vector shuffle
4151       for (unsigned Input = 0; Input < 2; ++Input) {
4152         SDValue &Src = Input == 0 ? Src1 : Src2;
4153         if (StartIdx[Input] < 0)
4154           Src = DAG.getUNDEF(VT);
4155         else {
4156           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4157                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
4158         }
4159       }
4160 
4161       // Calculate new mask.
4162       SmallVector<int, 8> MappedOps(Mask);
4163       for (int &Idx : MappedOps) {
4164         if (Idx >= (int)SrcNumElts)
4165           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4166         else if (Idx >= 0)
4167           Idx -= StartIdx[0];
4168       }
4169 
4170       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4171       return;
4172     }
4173   }
4174 
4175   // We can't use either concat vectors or extract subvectors so fall back to
4176   // replacing the shuffle with extract and build vector.
4177   // to insert and build vector.
4178   EVT EltVT = VT.getVectorElementType();
4179   SmallVector<SDValue,8> Ops;
4180   for (int Idx : Mask) {
4181     SDValue Res;
4182 
4183     if (Idx < 0) {
4184       Res = DAG.getUNDEF(EltVT);
4185     } else {
4186       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4187       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4188 
4189       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4190                         DAG.getVectorIdxConstant(Idx, DL));
4191     }
4192 
4193     Ops.push_back(Res);
4194   }
4195 
4196   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4197 }
4198 
4199 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4200   ArrayRef<unsigned> Indices = I.getIndices();
4201   const Value *Op0 = I.getOperand(0);
4202   const Value *Op1 = I.getOperand(1);
4203   Type *AggTy = I.getType();
4204   Type *ValTy = Op1->getType();
4205   bool IntoUndef = isa<UndefValue>(Op0);
4206   bool FromUndef = isa<UndefValue>(Op1);
4207 
4208   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4209 
4210   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4211   SmallVector<EVT, 4> AggValueVTs;
4212   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4213   SmallVector<EVT, 4> ValValueVTs;
4214   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4215 
4216   unsigned NumAggValues = AggValueVTs.size();
4217   unsigned NumValValues = ValValueVTs.size();
4218   SmallVector<SDValue, 4> Values(NumAggValues);
4219 
4220   // Ignore an insertvalue that produces an empty object
4221   if (!NumAggValues) {
4222     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4223     return;
4224   }
4225 
4226   SDValue Agg = getValue(Op0);
4227   unsigned i = 0;
4228   // Copy the beginning value(s) from the original aggregate.
4229   for (; i != LinearIndex; ++i)
4230     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4231                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4232   // Copy values from the inserted value(s).
4233   if (NumValValues) {
4234     SDValue Val = getValue(Op1);
4235     for (; i != LinearIndex + NumValValues; ++i)
4236       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4237                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4238   }
4239   // Copy remaining value(s) from the original aggregate.
4240   for (; i != NumAggValues; ++i)
4241     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4242                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4243 
4244   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4245                            DAG.getVTList(AggValueVTs), Values));
4246 }
4247 
4248 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4249   ArrayRef<unsigned> Indices = I.getIndices();
4250   const Value *Op0 = I.getOperand(0);
4251   Type *AggTy = Op0->getType();
4252   Type *ValTy = I.getType();
4253   bool OutOfUndef = isa<UndefValue>(Op0);
4254 
4255   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4256 
4257   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4258   SmallVector<EVT, 4> ValValueVTs;
4259   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4260 
4261   unsigned NumValValues = ValValueVTs.size();
4262 
4263   // Ignore a extractvalue that produces an empty object
4264   if (!NumValValues) {
4265     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4266     return;
4267   }
4268 
4269   SmallVector<SDValue, 4> Values(NumValValues);
4270 
4271   SDValue Agg = getValue(Op0);
4272   // Copy out the selected value(s).
4273   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4274     Values[i - LinearIndex] =
4275       OutOfUndef ?
4276         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4277         SDValue(Agg.getNode(), Agg.getResNo() + i);
4278 
4279   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4280                            DAG.getVTList(ValValueVTs), Values));
4281 }
4282 
4283 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4284   Value *Op0 = I.getOperand(0);
4285   // Note that the pointer operand may be a vector of pointers. Take the scalar
4286   // element which holds a pointer.
4287   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4288   SDValue N = getValue(Op0);
4289   SDLoc dl = getCurSDLoc();
4290   auto &TLI = DAG.getTargetLoweringInfo();
4291   GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags();
4292 
4293   // Normalize Vector GEP - all scalar operands should be converted to the
4294   // splat vector.
4295   bool IsVectorGEP = I.getType()->isVectorTy();
4296   ElementCount VectorElementCount =
4297       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4298                   : ElementCount::getFixed(0);
4299 
4300   if (IsVectorGEP && !N.getValueType().isVector()) {
4301     LLVMContext &Context = *DAG.getContext();
4302     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4303     N = DAG.getSplat(VT, dl, N);
4304   }
4305 
4306   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4307        GTI != E; ++GTI) {
4308     const Value *Idx = GTI.getOperand();
4309     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4310       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4311       if (Field) {
4312         // N = N + Offset
4313         uint64_t Offset =
4314             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4315 
4316         // In an inbounds GEP with an offset that is nonnegative even when
4317         // interpreted as signed, assume there is no unsigned overflow.
4318         SDNodeFlags Flags;
4319         if (NW.hasNoUnsignedWrap() ||
4320             (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap()))
4321           Flags.setNoUnsignedWrap(true);
4322 
4323         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4324                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4325       }
4326     } else {
4327       // IdxSize is the width of the arithmetic according to IR semantics.
4328       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4329       // (and fix up the result later).
4330       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4331       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4332       TypeSize ElementSize =
4333           GTI.getSequentialElementStride(DAG.getDataLayout());
4334       // We intentionally mask away the high bits here; ElementSize may not
4335       // fit in IdxTy.
4336       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4337       bool ElementScalable = ElementSize.isScalable();
4338 
4339       // If this is a scalar constant or a splat vector of constants,
4340       // handle it quickly.
4341       const auto *C = dyn_cast<Constant>(Idx);
4342       if (C && isa<VectorType>(C->getType()))
4343         C = C->getSplatValue();
4344 
4345       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4346       if (CI && CI->isZero())
4347         continue;
4348       if (CI && !ElementScalable) {
4349         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4350         LLVMContext &Context = *DAG.getContext();
4351         SDValue OffsVal;
4352         if (IsVectorGEP)
4353           OffsVal = DAG.getConstant(
4354               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4355         else
4356           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4357 
4358         // In an inbounds GEP with an offset that is nonnegative even when
4359         // interpreted as signed, assume there is no unsigned overflow.
4360         SDNodeFlags Flags;
4361         if (NW.hasNoUnsignedWrap() ||
4362             (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap()))
4363           Flags.setNoUnsignedWrap(true);
4364 
4365         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4366 
4367         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4368         continue;
4369       }
4370 
4371       // N = N + Idx * ElementMul;
4372       SDValue IdxN = getValue(Idx);
4373 
4374       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4375         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4376                                   VectorElementCount);
4377         IdxN = DAG.getSplat(VT, dl, IdxN);
4378       }
4379 
4380       // If the index is smaller or larger than intptr_t, truncate or extend
4381       // it.
4382       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4383 
4384       if (ElementScalable) {
4385         EVT VScaleTy = N.getValueType().getScalarType();
4386         SDValue VScale = DAG.getNode(
4387             ISD::VSCALE, dl, VScaleTy,
4388             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4389         if (IsVectorGEP)
4390           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4391         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4392       } else {
4393         // If this is a multiply by a power of two, turn it into a shl
4394         // immediately.  This is a very common case.
4395         if (ElementMul != 1) {
4396           if (ElementMul.isPowerOf2()) {
4397             unsigned Amt = ElementMul.logBase2();
4398             IdxN = DAG.getNode(ISD::SHL, dl,
4399                                N.getValueType(), IdxN,
4400                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4401           } else {
4402             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4403                                             IdxN.getValueType());
4404             IdxN = DAG.getNode(ISD::MUL, dl,
4405                                N.getValueType(), IdxN, Scale);
4406           }
4407         }
4408       }
4409 
4410       N = DAG.getNode(ISD::ADD, dl,
4411                       N.getValueType(), N, IdxN);
4412     }
4413   }
4414 
4415   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4416   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4417   if (IsVectorGEP) {
4418     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4419     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4420   }
4421 
4422   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4423     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4424 
4425   setValue(&I, N);
4426 }
4427 
4428 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4429   // If this is a fixed sized alloca in the entry block of the function,
4430   // allocate it statically on the stack.
4431   if (FuncInfo.StaticAllocaMap.count(&I))
4432     return;   // getValue will auto-populate this.
4433 
4434   SDLoc dl = getCurSDLoc();
4435   Type *Ty = I.getAllocatedType();
4436   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4437   auto &DL = DAG.getDataLayout();
4438   TypeSize TySize = DL.getTypeAllocSize(Ty);
4439   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4440 
4441   SDValue AllocSize = getValue(I.getArraySize());
4442 
4443   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4444   if (AllocSize.getValueType() != IntPtr)
4445     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4446 
4447   if (TySize.isScalable())
4448     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4449                             DAG.getVScale(dl, IntPtr,
4450                                           APInt(IntPtr.getScalarSizeInBits(),
4451                                                 TySize.getKnownMinValue())));
4452   else {
4453     SDValue TySizeValue =
4454         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4455     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4456                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4457   }
4458 
4459   // Handle alignment.  If the requested alignment is less than or equal to
4460   // the stack alignment, ignore it.  If the size is greater than or equal to
4461   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4462   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4463   if (*Alignment <= StackAlign)
4464     Alignment = std::nullopt;
4465 
4466   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4467   // Round the size of the allocation up to the stack alignment size
4468   // by add SA-1 to the size. This doesn't overflow because we're computing
4469   // an address inside an alloca.
4470   SDNodeFlags Flags;
4471   Flags.setNoUnsignedWrap(true);
4472   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4473                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4474 
4475   // Mask out the low bits for alignment purposes.
4476   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4477                           DAG.getSignedConstant(~StackAlignMask, dl, IntPtr));
4478 
4479   SDValue Ops[] = {
4480       getRoot(), AllocSize,
4481       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4482   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4483   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4484   setValue(&I, DSA);
4485   DAG.setRoot(DSA.getValue(1));
4486 
4487   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4488 }
4489 
4490 static const MDNode *getRangeMetadata(const Instruction &I) {
4491   // If !noundef is not present, then !range violation results in a poison
4492   // value rather than immediate undefined behavior. In theory, transferring
4493   // these annotations to SDAG is fine, but in practice there are key SDAG
4494   // transforms that are known not to be poison-safe, such as folding logical
4495   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4496   // also present.
4497   if (!I.hasMetadata(LLVMContext::MD_noundef))
4498     return nullptr;
4499   return I.getMetadata(LLVMContext::MD_range);
4500 }
4501 
4502 static std::optional<ConstantRange> getRange(const Instruction &I) {
4503   if (const auto *CB = dyn_cast<CallBase>(&I)) {
4504     // see comment in getRangeMetadata about this check
4505     if (CB->hasRetAttr(Attribute::NoUndef))
4506       return CB->getRange();
4507   }
4508   if (const MDNode *Range = getRangeMetadata(I))
4509     return getConstantRangeFromMetadata(*Range);
4510   return std::nullopt;
4511 }
4512 
4513 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4514   if (I.isAtomic())
4515     return visitAtomicLoad(I);
4516 
4517   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4518   const Value *SV = I.getOperand(0);
4519   if (TLI.supportSwiftError()) {
4520     // Swifterror values can come from either a function parameter with
4521     // swifterror attribute or an alloca with swifterror attribute.
4522     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4523       if (Arg->hasSwiftErrorAttr())
4524         return visitLoadFromSwiftError(I);
4525     }
4526 
4527     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4528       if (Alloca->isSwiftError())
4529         return visitLoadFromSwiftError(I);
4530     }
4531   }
4532 
4533   SDValue Ptr = getValue(SV);
4534 
4535   Type *Ty = I.getType();
4536   SmallVector<EVT, 4> ValueVTs, MemVTs;
4537   SmallVector<TypeSize, 4> Offsets;
4538   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4539   unsigned NumValues = ValueVTs.size();
4540   if (NumValues == 0)
4541     return;
4542 
4543   Align Alignment = I.getAlign();
4544   AAMDNodes AAInfo = I.getAAMetadata();
4545   const MDNode *Ranges = getRangeMetadata(I);
4546   bool isVolatile = I.isVolatile();
4547   MachineMemOperand::Flags MMOFlags =
4548       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4549 
4550   SDValue Root;
4551   bool ConstantMemory = false;
4552   if (isVolatile)
4553     // Serialize volatile loads with other side effects.
4554     Root = getRoot();
4555   else if (NumValues > MaxParallelChains)
4556     Root = getMemoryRoot();
4557   else if (AA &&
4558            AA->pointsToConstantMemory(MemoryLocation(
4559                SV,
4560                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4561                AAInfo))) {
4562     // Do not serialize (non-volatile) loads of constant memory with anything.
4563     Root = DAG.getEntryNode();
4564     ConstantMemory = true;
4565     MMOFlags |= MachineMemOperand::MOInvariant;
4566   } else {
4567     // Do not serialize non-volatile loads against each other.
4568     Root = DAG.getRoot();
4569   }
4570 
4571   SDLoc dl = getCurSDLoc();
4572 
4573   if (isVolatile)
4574     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4575 
4576   SmallVector<SDValue, 4> Values(NumValues);
4577   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4578 
4579   unsigned ChainI = 0;
4580   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4581     // Serializing loads here may result in excessive register pressure, and
4582     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4583     // could recover a bit by hoisting nodes upward in the chain by recognizing
4584     // they are side-effect free or do not alias. The optimizer should really
4585     // avoid this case by converting large object/array copies to llvm.memcpy
4586     // (MaxParallelChains should always remain as failsafe).
4587     if (ChainI == MaxParallelChains) {
4588       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4589       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4590                                   ArrayRef(Chains.data(), ChainI));
4591       Root = Chain;
4592       ChainI = 0;
4593     }
4594 
4595     // TODO: MachinePointerInfo only supports a fixed length offset.
4596     MachinePointerInfo PtrInfo =
4597         !Offsets[i].isScalable() || Offsets[i].isZero()
4598             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4599             : MachinePointerInfo();
4600 
4601     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4602     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4603                             MMOFlags, AAInfo, Ranges);
4604     Chains[ChainI] = L.getValue(1);
4605 
4606     if (MemVTs[i] != ValueVTs[i])
4607       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4608 
4609     Values[i] = L;
4610   }
4611 
4612   if (!ConstantMemory) {
4613     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4614                                 ArrayRef(Chains.data(), ChainI));
4615     if (isVolatile)
4616       DAG.setRoot(Chain);
4617     else
4618       PendingLoads.push_back(Chain);
4619   }
4620 
4621   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4622                            DAG.getVTList(ValueVTs), Values));
4623 }
4624 
4625 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4626   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4627          "call visitStoreToSwiftError when backend supports swifterror");
4628 
4629   SmallVector<EVT, 4> ValueVTs;
4630   SmallVector<uint64_t, 4> Offsets;
4631   const Value *SrcV = I.getOperand(0);
4632   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4633                   SrcV->getType(), ValueVTs, &Offsets, 0);
4634   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4635          "expect a single EVT for swifterror");
4636 
4637   SDValue Src = getValue(SrcV);
4638   // Create a virtual register, then update the virtual register.
4639   Register VReg =
4640       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4641   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4642   // Chain can be getRoot or getControlRoot.
4643   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4644                                       SDValue(Src.getNode(), Src.getResNo()));
4645   DAG.setRoot(CopyNode);
4646 }
4647 
4648 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4649   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4650          "call visitLoadFromSwiftError when backend supports swifterror");
4651 
4652   assert(!I.isVolatile() &&
4653          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4654          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4655          "Support volatile, non temporal, invariant for load_from_swift_error");
4656 
4657   const Value *SV = I.getOperand(0);
4658   Type *Ty = I.getType();
4659   assert(
4660       (!AA ||
4661        !AA->pointsToConstantMemory(MemoryLocation(
4662            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4663            I.getAAMetadata()))) &&
4664       "load_from_swift_error should not be constant memory");
4665 
4666   SmallVector<EVT, 4> ValueVTs;
4667   SmallVector<uint64_t, 4> Offsets;
4668   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4669                   ValueVTs, &Offsets, 0);
4670   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4671          "expect a single EVT for swifterror");
4672 
4673   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4674   SDValue L = DAG.getCopyFromReg(
4675       getRoot(), getCurSDLoc(),
4676       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4677 
4678   setValue(&I, L);
4679 }
4680 
4681 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4682   if (I.isAtomic())
4683     return visitAtomicStore(I);
4684 
4685   const Value *SrcV = I.getOperand(0);
4686   const Value *PtrV = I.getOperand(1);
4687 
4688   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4689   if (TLI.supportSwiftError()) {
4690     // Swifterror values can come from either a function parameter with
4691     // swifterror attribute or an alloca with swifterror attribute.
4692     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4693       if (Arg->hasSwiftErrorAttr())
4694         return visitStoreToSwiftError(I);
4695     }
4696 
4697     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4698       if (Alloca->isSwiftError())
4699         return visitStoreToSwiftError(I);
4700     }
4701   }
4702 
4703   SmallVector<EVT, 4> ValueVTs, MemVTs;
4704   SmallVector<TypeSize, 4> Offsets;
4705   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4706                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4707   unsigned NumValues = ValueVTs.size();
4708   if (NumValues == 0)
4709     return;
4710 
4711   // Get the lowered operands. Note that we do this after
4712   // checking if NumResults is zero, because with zero results
4713   // the operands won't have values in the map.
4714   SDValue Src = getValue(SrcV);
4715   SDValue Ptr = getValue(PtrV);
4716 
4717   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4718   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4719   SDLoc dl = getCurSDLoc();
4720   Align Alignment = I.getAlign();
4721   AAMDNodes AAInfo = I.getAAMetadata();
4722 
4723   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4724 
4725   unsigned ChainI = 0;
4726   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4727     // See visitLoad comments.
4728     if (ChainI == MaxParallelChains) {
4729       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4730                                   ArrayRef(Chains.data(), ChainI));
4731       Root = Chain;
4732       ChainI = 0;
4733     }
4734 
4735     // TODO: MachinePointerInfo only supports a fixed length offset.
4736     MachinePointerInfo PtrInfo =
4737         !Offsets[i].isScalable() || Offsets[i].isZero()
4738             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4739             : MachinePointerInfo();
4740 
4741     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4742     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4743     if (MemVTs[i] != ValueVTs[i])
4744       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4745     SDValue St =
4746         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4747     Chains[ChainI] = St;
4748   }
4749 
4750   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4751                                   ArrayRef(Chains.data(), ChainI));
4752   setValue(&I, StoreNode);
4753   DAG.setRoot(StoreNode);
4754 }
4755 
4756 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4757                                            bool IsCompressing) {
4758   SDLoc sdl = getCurSDLoc();
4759 
4760   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4761                                Align &Alignment) {
4762     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4763     Src0 = I.getArgOperand(0);
4764     Ptr = I.getArgOperand(1);
4765     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue();
4766     Mask = I.getArgOperand(3);
4767   };
4768   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4769                                     Align &Alignment) {
4770     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4771     Src0 = I.getArgOperand(0);
4772     Ptr = I.getArgOperand(1);
4773     Mask = I.getArgOperand(2);
4774     Alignment = I.getParamAlign(1).valueOrOne();
4775   };
4776 
4777   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4778   Align Alignment;
4779   if (IsCompressing)
4780     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4781   else
4782     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4783 
4784   SDValue Ptr = getValue(PtrOperand);
4785   SDValue Src0 = getValue(Src0Operand);
4786   SDValue Mask = getValue(MaskOperand);
4787   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4788 
4789   EVT VT = Src0.getValueType();
4790 
4791   auto MMOFlags = MachineMemOperand::MOStore;
4792   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4793     MMOFlags |= MachineMemOperand::MONonTemporal;
4794 
4795   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4796       MachinePointerInfo(PtrOperand), MMOFlags,
4797       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4798 
4799   const auto &TLI = DAG.getTargetLoweringInfo();
4800   const auto &TTI =
4801       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
4802   SDValue StoreNode =
4803       !IsCompressing &&
4804               TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType())
4805           ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0,
4806                                  Mask)
4807           : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask,
4808                                VT, MMO, ISD::UNINDEXED, /*Truncating=*/false,
4809                                IsCompressing);
4810   DAG.setRoot(StoreNode);
4811   setValue(&I, StoreNode);
4812 }
4813 
4814 // Get a uniform base for the Gather/Scatter intrinsic.
4815 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4816 // We try to represent it as a base pointer + vector of indices.
4817 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4818 // The first operand of the GEP may be a single pointer or a vector of pointers
4819 // Example:
4820 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4821 //  or
4822 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4823 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4824 //
4825 // When the first GEP operand is a single pointer - it is the uniform base we
4826 // are looking for. If first operand of the GEP is a splat vector - we
4827 // extract the splat value and use it as a uniform base.
4828 // In all other cases the function returns 'false'.
4829 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4830                            ISD::MemIndexType &IndexType, SDValue &Scale,
4831                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4832                            uint64_t ElemSize) {
4833   SelectionDAG& DAG = SDB->DAG;
4834   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4835   const DataLayout &DL = DAG.getDataLayout();
4836 
4837   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4838 
4839   // Handle splat constant pointer.
4840   if (auto *C = dyn_cast<Constant>(Ptr)) {
4841     C = C->getSplatValue();
4842     if (!C)
4843       return false;
4844 
4845     Base = SDB->getValue(C);
4846 
4847     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4848     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4849     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4850     IndexType = ISD::SIGNED_SCALED;
4851     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4852     return true;
4853   }
4854 
4855   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4856   if (!GEP || GEP->getParent() != CurBB)
4857     return false;
4858 
4859   if (GEP->getNumOperands() != 2)
4860     return false;
4861 
4862   const Value *BasePtr = GEP->getPointerOperand();
4863   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4864 
4865   // Make sure the base is scalar and the index is a vector.
4866   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4867     return false;
4868 
4869   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4870   if (ScaleVal.isScalable())
4871     return false;
4872 
4873   // Target may not support the required addressing mode.
4874   if (ScaleVal != 1 &&
4875       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4876     return false;
4877 
4878   Base = SDB->getValue(BasePtr);
4879   Index = SDB->getValue(IndexVal);
4880   IndexType = ISD::SIGNED_SCALED;
4881 
4882   Scale =
4883       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4884   return true;
4885 }
4886 
4887 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4888   SDLoc sdl = getCurSDLoc();
4889 
4890   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4891   const Value *Ptr = I.getArgOperand(1);
4892   SDValue Src0 = getValue(I.getArgOperand(0));
4893   SDValue Mask = getValue(I.getArgOperand(3));
4894   EVT VT = Src0.getValueType();
4895   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4896                         ->getMaybeAlignValue()
4897                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4898   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4899 
4900   SDValue Base;
4901   SDValue Index;
4902   ISD::MemIndexType IndexType;
4903   SDValue Scale;
4904   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4905                                     I.getParent(), VT.getScalarStoreSize());
4906 
4907   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4908   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4909       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4910       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4911   if (!UniformBase) {
4912     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4913     Index = getValue(Ptr);
4914     IndexType = ISD::SIGNED_SCALED;
4915     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4916   }
4917 
4918   EVT IdxVT = Index.getValueType();
4919   EVT EltTy = IdxVT.getVectorElementType();
4920   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4921     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4922     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4923   }
4924 
4925   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4926   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4927                                          Ops, MMO, IndexType, false);
4928   DAG.setRoot(Scatter);
4929   setValue(&I, Scatter);
4930 }
4931 
4932 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4933   SDLoc sdl = getCurSDLoc();
4934 
4935   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4936                               Align &Alignment) {
4937     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4938     Ptr = I.getArgOperand(0);
4939     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue();
4940     Mask = I.getArgOperand(2);
4941     Src0 = I.getArgOperand(3);
4942   };
4943   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4944                                  Align &Alignment) {
4945     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4946     Ptr = I.getArgOperand(0);
4947     Alignment = I.getParamAlign(0).valueOrOne();
4948     Mask = I.getArgOperand(1);
4949     Src0 = I.getArgOperand(2);
4950   };
4951 
4952   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4953   Align Alignment;
4954   if (IsExpanding)
4955     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4956   else
4957     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4958 
4959   SDValue Ptr = getValue(PtrOperand);
4960   SDValue Src0 = getValue(Src0Operand);
4961   SDValue Mask = getValue(MaskOperand);
4962   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4963 
4964   EVT VT = Src0.getValueType();
4965   AAMDNodes AAInfo = I.getAAMetadata();
4966   const MDNode *Ranges = getRangeMetadata(I);
4967 
4968   // Do not serialize masked loads of constant memory with anything.
4969   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4970   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4971 
4972   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4973 
4974   auto MMOFlags = MachineMemOperand::MOLoad;
4975   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4976     MMOFlags |= MachineMemOperand::MONonTemporal;
4977 
4978   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4979       MachinePointerInfo(PtrOperand), MMOFlags,
4980       LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
4981 
4982   const auto &TLI = DAG.getTargetLoweringInfo();
4983   const auto &TTI =
4984       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
4985   // The Load/Res may point to different values and both of them are output
4986   // variables.
4987   SDValue Load;
4988   SDValue Res;
4989   if (!IsExpanding &&
4990       TTI.hasConditionalLoadStoreForType(Src0Operand->getType()))
4991     Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask);
4992   else
4993     Res = Load =
4994         DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4995                           ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4996   if (AddToChain)
4997     PendingLoads.push_back(Load.getValue(1));
4998   setValue(&I, Res);
4999 }
5000 
5001 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
5002   SDLoc sdl = getCurSDLoc();
5003 
5004   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
5005   const Value *Ptr = I.getArgOperand(0);
5006   SDValue Src0 = getValue(I.getArgOperand(3));
5007   SDValue Mask = getValue(I.getArgOperand(2));
5008 
5009   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5010   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5011   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
5012                         ->getMaybeAlignValue()
5013                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
5014 
5015   const MDNode *Ranges = getRangeMetadata(I);
5016 
5017   SDValue Root = DAG.getRoot();
5018   SDValue Base;
5019   SDValue Index;
5020   ISD::MemIndexType IndexType;
5021   SDValue Scale;
5022   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
5023                                     I.getParent(), VT.getScalarStoreSize());
5024   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5025   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5026       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
5027       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
5028       Ranges);
5029 
5030   if (!UniformBase) {
5031     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5032     Index = getValue(Ptr);
5033     IndexType = ISD::SIGNED_SCALED;
5034     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5035   }
5036 
5037   EVT IdxVT = Index.getValueType();
5038   EVT EltTy = IdxVT.getVectorElementType();
5039   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5040     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
5041     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5042   }
5043 
5044   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5045   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
5046                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
5047 
5048   PendingLoads.push_back(Gather.getValue(1));
5049   setValue(&I, Gather);
5050 }
5051 
5052 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5053   SDLoc dl = getCurSDLoc();
5054   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5055   AtomicOrdering FailureOrdering = I.getFailureOrdering();
5056   SyncScope::ID SSID = I.getSyncScopeID();
5057 
5058   SDValue InChain = getRoot();
5059 
5060   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5061   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5062 
5063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5064   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5065 
5066   MachineFunction &MF = DAG.getMachineFunction();
5067   MachineMemOperand *MMO = MF.getMachineMemOperand(
5068       MachinePointerInfo(I.getPointerOperand()), Flags,
5069       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5070       AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering);
5071 
5072   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5073                                    dl, MemVT, VTs, InChain,
5074                                    getValue(I.getPointerOperand()),
5075                                    getValue(I.getCompareOperand()),
5076                                    getValue(I.getNewValOperand()), MMO);
5077 
5078   SDValue OutChain = L.getValue(2);
5079 
5080   setValue(&I, L);
5081   DAG.setRoot(OutChain);
5082 }
5083 
5084 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5085   SDLoc dl = getCurSDLoc();
5086   ISD::NodeType NT;
5087   switch (I.getOperation()) {
5088   default: llvm_unreachable("Unknown atomicrmw operation");
5089   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5090   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
5091   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
5092   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
5093   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5094   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
5095   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
5096   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
5097   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
5098   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5099   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5100   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5101   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5102   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5103   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5104   case AtomicRMWInst::UIncWrap:
5105     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5106     break;
5107   case AtomicRMWInst::UDecWrap:
5108     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5109     break;
5110   }
5111   AtomicOrdering Ordering = I.getOrdering();
5112   SyncScope::ID SSID = I.getSyncScopeID();
5113 
5114   SDValue InChain = getRoot();
5115 
5116   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5117   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5118   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5119 
5120   MachineFunction &MF = DAG.getMachineFunction();
5121   MachineMemOperand *MMO = MF.getMachineMemOperand(
5122       MachinePointerInfo(I.getPointerOperand()), Flags,
5123       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5124       AAMDNodes(), nullptr, SSID, Ordering);
5125 
5126   SDValue L =
5127     DAG.getAtomic(NT, dl, MemVT, InChain,
5128                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5129                   MMO);
5130 
5131   SDValue OutChain = L.getValue(1);
5132 
5133   setValue(&I, L);
5134   DAG.setRoot(OutChain);
5135 }
5136 
5137 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5138   SDLoc dl = getCurSDLoc();
5139   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5140   SDValue Ops[3];
5141   Ops[0] = getRoot();
5142   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5143                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5144   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5145                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5146   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5147   setValue(&I, N);
5148   DAG.setRoot(N);
5149 }
5150 
5151 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5152   SDLoc dl = getCurSDLoc();
5153   AtomicOrdering Order = I.getOrdering();
5154   SyncScope::ID SSID = I.getSyncScopeID();
5155 
5156   SDValue InChain = getRoot();
5157 
5158   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5159   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5160   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5161 
5162   if (!TLI.supportsUnalignedAtomics() &&
5163       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5164     report_fatal_error("Cannot generate unaligned atomic load");
5165 
5166   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5167 
5168   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5169       MachinePointerInfo(I.getPointerOperand()), Flags,
5170       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5171       nullptr, SSID, Order);
5172 
5173   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5174 
5175   SDValue Ptr = getValue(I.getPointerOperand());
5176   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5177                             Ptr, MMO);
5178 
5179   SDValue OutChain = L.getValue(1);
5180   if (MemVT != VT)
5181     L = DAG.getPtrExtOrTrunc(L, dl, VT);
5182 
5183   setValue(&I, L);
5184   DAG.setRoot(OutChain);
5185 }
5186 
5187 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5188   SDLoc dl = getCurSDLoc();
5189 
5190   AtomicOrdering Ordering = I.getOrdering();
5191   SyncScope::ID SSID = I.getSyncScopeID();
5192 
5193   SDValue InChain = getRoot();
5194 
5195   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5196   EVT MemVT =
5197       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5198 
5199   if (!TLI.supportsUnalignedAtomics() &&
5200       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5201     report_fatal_error("Cannot generate unaligned atomic store");
5202 
5203   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5204 
5205   MachineFunction &MF = DAG.getMachineFunction();
5206   MachineMemOperand *MMO = MF.getMachineMemOperand(
5207       MachinePointerInfo(I.getPointerOperand()), Flags,
5208       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5209       nullptr, SSID, Ordering);
5210 
5211   SDValue Val = getValue(I.getValueOperand());
5212   if (Val.getValueType() != MemVT)
5213     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5214   SDValue Ptr = getValue(I.getPointerOperand());
5215 
5216   SDValue OutChain =
5217       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5218 
5219   setValue(&I, OutChain);
5220   DAG.setRoot(OutChain);
5221 }
5222 
5223 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5224 /// node.
5225 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5226                                                unsigned Intrinsic) {
5227   // Ignore the callsite's attributes. A specific call site may be marked with
5228   // readnone, but the lowering code will expect the chain based on the
5229   // definition.
5230   const Function *F = I.getCalledFunction();
5231   bool HasChain = !F->doesNotAccessMemory();
5232   bool OnlyLoad =
5233       HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow();
5234 
5235   // Build the operand list.
5236   SmallVector<SDValue, 8> Ops;
5237   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5238     if (OnlyLoad) {
5239       // We don't need to serialize loads against other loads.
5240       Ops.push_back(DAG.getRoot());
5241     } else {
5242       Ops.push_back(getRoot());
5243     }
5244   }
5245 
5246   // Info is set by getTgtMemIntrinsic
5247   TargetLowering::IntrinsicInfo Info;
5248   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5249   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5250                                                DAG.getMachineFunction(),
5251                                                Intrinsic);
5252 
5253   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5254   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5255       Info.opc == ISD::INTRINSIC_W_CHAIN)
5256     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5257                                         TLI.getPointerTy(DAG.getDataLayout())));
5258 
5259   // Add all operands of the call to the operand list.
5260   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5261     const Value *Arg = I.getArgOperand(i);
5262     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5263       Ops.push_back(getValue(Arg));
5264       continue;
5265     }
5266 
5267     // Use TargetConstant instead of a regular constant for immarg.
5268     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5269     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5270       assert(CI->getBitWidth() <= 64 &&
5271              "large intrinsic immediates not handled");
5272       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5273     } else {
5274       Ops.push_back(
5275           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5276     }
5277   }
5278 
5279   SmallVector<EVT, 4> ValueVTs;
5280   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5281 
5282   if (HasChain)
5283     ValueVTs.push_back(MVT::Other);
5284 
5285   SDVTList VTs = DAG.getVTList(ValueVTs);
5286 
5287   // Propagate fast-math-flags from IR to node(s).
5288   SDNodeFlags Flags;
5289   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5290     Flags.copyFMF(*FPMO);
5291   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5292 
5293   // Create the node.
5294   SDValue Result;
5295 
5296   if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5297     auto *Token = Bundle->Inputs[0].get();
5298     SDValue ConvControlToken = getValue(Token);
5299     assert(Ops.back().getValueType() != MVT::Glue &&
5300            "Did not expected another glue node here.");
5301     ConvControlToken =
5302         DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5303     Ops.push_back(ConvControlToken);
5304   }
5305 
5306   // In some cases, custom collection of operands from CallInst I may be needed.
5307   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5308   if (IsTgtIntrinsic) {
5309     // This is target intrinsic that touches memory
5310     //
5311     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5312     //       didn't yield anything useful.
5313     MachinePointerInfo MPI;
5314     if (Info.ptrVal)
5315       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5316     else if (Info.fallbackAddressSpace)
5317       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5318     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5319                                      Info.memVT, MPI, Info.align, Info.flags,
5320                                      Info.size, I.getAAMetadata());
5321   } else if (!HasChain) {
5322     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5323   } else if (!I.getType()->isVoidTy()) {
5324     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5325   } else {
5326     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5327   }
5328 
5329   if (HasChain) {
5330     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5331     if (OnlyLoad)
5332       PendingLoads.push_back(Chain);
5333     else
5334       DAG.setRoot(Chain);
5335   }
5336 
5337   if (!I.getType()->isVoidTy()) {
5338     if (!isa<VectorType>(I.getType()))
5339       Result = lowerRangeToAssertZExt(DAG, I, Result);
5340 
5341     MaybeAlign Alignment = I.getRetAlign();
5342 
5343     // Insert `assertalign` node if there's an alignment.
5344     if (InsertAssertAlign && Alignment) {
5345       Result =
5346           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5347     }
5348   }
5349 
5350   setValue(&I, Result);
5351 }
5352 
5353 /// GetSignificand - Get the significand and build it into a floating-point
5354 /// number with exponent of 1:
5355 ///
5356 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5357 ///
5358 /// where Op is the hexadecimal representation of floating point value.
5359 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5360   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5361                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5362   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5363                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5364   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5365 }
5366 
5367 /// GetExponent - Get the exponent:
5368 ///
5369 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5370 ///
5371 /// where Op is the hexadecimal representation of floating point value.
5372 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5373                            const TargetLowering &TLI, const SDLoc &dl) {
5374   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5375                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5376   SDValue t1 = DAG.getNode(
5377       ISD::SRL, dl, MVT::i32, t0,
5378       DAG.getConstant(23, dl,
5379                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5380   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5381                            DAG.getConstant(127, dl, MVT::i32));
5382   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5383 }
5384 
5385 /// getF32Constant - Get 32-bit floating point constant.
5386 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5387                               const SDLoc &dl) {
5388   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5389                            MVT::f32);
5390 }
5391 
5392 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5393                                        SelectionDAG &DAG) {
5394   // TODO: What fast-math-flags should be set on the floating-point nodes?
5395 
5396   //   IntegerPartOfX = ((int32_t)(t0);
5397   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5398 
5399   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5400   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5401   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5402 
5403   //   IntegerPartOfX <<= 23;
5404   IntegerPartOfX =
5405       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5406                   DAG.getConstant(23, dl,
5407                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5408                                       MVT::i32, DAG.getDataLayout())));
5409 
5410   SDValue TwoToFractionalPartOfX;
5411   if (LimitFloatPrecision <= 6) {
5412     // For floating-point precision of 6:
5413     //
5414     //   TwoToFractionalPartOfX =
5415     //     0.997535578f +
5416     //       (0.735607626f + 0.252464424f * x) * x;
5417     //
5418     // error 0.0144103317, which is 6 bits
5419     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5420                              getF32Constant(DAG, 0x3e814304, dl));
5421     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5422                              getF32Constant(DAG, 0x3f3c50c8, dl));
5423     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5424     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5425                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5426   } else if (LimitFloatPrecision <= 12) {
5427     // For floating-point precision of 12:
5428     //
5429     //   TwoToFractionalPartOfX =
5430     //     0.999892986f +
5431     //       (0.696457318f +
5432     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5433     //
5434     // error 0.000107046256, which is 13 to 14 bits
5435     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5436                              getF32Constant(DAG, 0x3da235e3, dl));
5437     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5438                              getF32Constant(DAG, 0x3e65b8f3, dl));
5439     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5440     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5441                              getF32Constant(DAG, 0x3f324b07, dl));
5442     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5443     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5444                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5445   } else { // LimitFloatPrecision <= 18
5446     // For floating-point precision of 18:
5447     //
5448     //   TwoToFractionalPartOfX =
5449     //     0.999999982f +
5450     //       (0.693148872f +
5451     //         (0.240227044f +
5452     //           (0.554906021e-1f +
5453     //             (0.961591928e-2f +
5454     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5455     // error 2.47208000*10^(-7), which is better than 18 bits
5456     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5457                              getF32Constant(DAG, 0x3924b03e, dl));
5458     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5459                              getF32Constant(DAG, 0x3ab24b87, dl));
5460     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5461     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5462                              getF32Constant(DAG, 0x3c1d8c17, dl));
5463     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5464     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5465                              getF32Constant(DAG, 0x3d634a1d, dl));
5466     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5467     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5468                              getF32Constant(DAG, 0x3e75fe14, dl));
5469     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5470     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5471                               getF32Constant(DAG, 0x3f317234, dl));
5472     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5473     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5474                                          getF32Constant(DAG, 0x3f800000, dl));
5475   }
5476 
5477   // Add the exponent into the result in integer domain.
5478   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5479   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5480                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5481 }
5482 
5483 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5484 /// limited-precision mode.
5485 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5486                          const TargetLowering &TLI, SDNodeFlags Flags) {
5487   if (Op.getValueType() == MVT::f32 &&
5488       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5489 
5490     // Put the exponent in the right bit position for later addition to the
5491     // final result:
5492     //
5493     // t0 = Op * log2(e)
5494 
5495     // TODO: What fast-math-flags should be set here?
5496     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5497                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5498     return getLimitedPrecisionExp2(t0, dl, DAG);
5499   }
5500 
5501   // No special expansion.
5502   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5503 }
5504 
5505 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5506 /// limited-precision mode.
5507 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5508                          const TargetLowering &TLI, SDNodeFlags Flags) {
5509   // TODO: What fast-math-flags should be set on the floating-point nodes?
5510 
5511   if (Op.getValueType() == MVT::f32 &&
5512       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5513     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5514 
5515     // Scale the exponent by log(2).
5516     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5517     SDValue LogOfExponent =
5518         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5519                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5520 
5521     // Get the significand and build it into a floating-point number with
5522     // exponent of 1.
5523     SDValue X = GetSignificand(DAG, Op1, dl);
5524 
5525     SDValue LogOfMantissa;
5526     if (LimitFloatPrecision <= 6) {
5527       // For floating-point precision of 6:
5528       //
5529       //   LogofMantissa =
5530       //     -1.1609546f +
5531       //       (1.4034025f - 0.23903021f * x) * x;
5532       //
5533       // error 0.0034276066, which is better than 8 bits
5534       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5535                                getF32Constant(DAG, 0xbe74c456, dl));
5536       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5537                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5538       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5539       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5540                                   getF32Constant(DAG, 0x3f949a29, dl));
5541     } else if (LimitFloatPrecision <= 12) {
5542       // For floating-point precision of 12:
5543       //
5544       //   LogOfMantissa =
5545       //     -1.7417939f +
5546       //       (2.8212026f +
5547       //         (-1.4699568f +
5548       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5549       //
5550       // error 0.000061011436, which is 14 bits
5551       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5552                                getF32Constant(DAG, 0xbd67b6d6, dl));
5553       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5554                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5555       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5556       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5557                                getF32Constant(DAG, 0x3fbc278b, dl));
5558       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5559       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5560                                getF32Constant(DAG, 0x40348e95, dl));
5561       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5562       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5563                                   getF32Constant(DAG, 0x3fdef31a, dl));
5564     } else { // LimitFloatPrecision <= 18
5565       // For floating-point precision of 18:
5566       //
5567       //   LogOfMantissa =
5568       //     -2.1072184f +
5569       //       (4.2372794f +
5570       //         (-3.7029485f +
5571       //           (2.2781945f +
5572       //             (-0.87823314f +
5573       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5574       //
5575       // error 0.0000023660568, which is better than 18 bits
5576       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5577                                getF32Constant(DAG, 0xbc91e5ac, dl));
5578       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5579                                getF32Constant(DAG, 0x3e4350aa, dl));
5580       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5581       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5582                                getF32Constant(DAG, 0x3f60d3e3, dl));
5583       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5584       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5585                                getF32Constant(DAG, 0x4011cdf0, dl));
5586       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5587       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5588                                getF32Constant(DAG, 0x406cfd1c, dl));
5589       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5590       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5591                                getF32Constant(DAG, 0x408797cb, dl));
5592       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5593       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5594                                   getF32Constant(DAG, 0x4006dcab, dl));
5595     }
5596 
5597     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5598   }
5599 
5600   // No special expansion.
5601   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5602 }
5603 
5604 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5605 /// limited-precision mode.
5606 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5607                           const TargetLowering &TLI, SDNodeFlags Flags) {
5608   // TODO: What fast-math-flags should be set on the floating-point nodes?
5609 
5610   if (Op.getValueType() == MVT::f32 &&
5611       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5612     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5613 
5614     // Get the exponent.
5615     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5616 
5617     // Get the significand and build it into a floating-point number with
5618     // exponent of 1.
5619     SDValue X = GetSignificand(DAG, Op1, dl);
5620 
5621     // Different possible minimax approximations of significand in
5622     // floating-point for various degrees of accuracy over [1,2].
5623     SDValue Log2ofMantissa;
5624     if (LimitFloatPrecision <= 6) {
5625       // For floating-point precision of 6:
5626       //
5627       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5628       //
5629       // error 0.0049451742, which is more than 7 bits
5630       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5631                                getF32Constant(DAG, 0xbeb08fe0, dl));
5632       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5633                                getF32Constant(DAG, 0x40019463, dl));
5634       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5635       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5636                                    getF32Constant(DAG, 0x3fd6633d, dl));
5637     } else if (LimitFloatPrecision <= 12) {
5638       // For floating-point precision of 12:
5639       //
5640       //   Log2ofMantissa =
5641       //     -2.51285454f +
5642       //       (4.07009056f +
5643       //         (-2.12067489f +
5644       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5645       //
5646       // error 0.0000876136000, which is better than 13 bits
5647       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5648                                getF32Constant(DAG, 0xbda7262e, dl));
5649       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5650                                getF32Constant(DAG, 0x3f25280b, dl));
5651       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5652       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5653                                getF32Constant(DAG, 0x4007b923, dl));
5654       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5655       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5656                                getF32Constant(DAG, 0x40823e2f, dl));
5657       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5658       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5659                                    getF32Constant(DAG, 0x4020d29c, dl));
5660     } else { // LimitFloatPrecision <= 18
5661       // For floating-point precision of 18:
5662       //
5663       //   Log2ofMantissa =
5664       //     -3.0400495f +
5665       //       (6.1129976f +
5666       //         (-5.3420409f +
5667       //           (3.2865683f +
5668       //             (-1.2669343f +
5669       //               (0.27515199f -
5670       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5671       //
5672       // error 0.0000018516, which is better than 18 bits
5673       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5674                                getF32Constant(DAG, 0xbcd2769e, dl));
5675       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5676                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5677       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5678       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5679                                getF32Constant(DAG, 0x3fa22ae7, dl));
5680       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5681       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5682                                getF32Constant(DAG, 0x40525723, dl));
5683       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5684       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5685                                getF32Constant(DAG, 0x40aaf200, dl));
5686       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5687       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5688                                getF32Constant(DAG, 0x40c39dad, dl));
5689       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5690       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5691                                    getF32Constant(DAG, 0x4042902c, dl));
5692     }
5693 
5694     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5695   }
5696 
5697   // No special expansion.
5698   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5699 }
5700 
5701 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5702 /// limited-precision mode.
5703 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5704                            const TargetLowering &TLI, SDNodeFlags Flags) {
5705   // TODO: What fast-math-flags should be set on the floating-point nodes?
5706 
5707   if (Op.getValueType() == MVT::f32 &&
5708       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5709     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5710 
5711     // Scale the exponent by log10(2) [0.30102999f].
5712     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5713     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5714                                         getF32Constant(DAG, 0x3e9a209a, dl));
5715 
5716     // Get the significand and build it into a floating-point number with
5717     // exponent of 1.
5718     SDValue X = GetSignificand(DAG, Op1, dl);
5719 
5720     SDValue Log10ofMantissa;
5721     if (LimitFloatPrecision <= 6) {
5722       // For floating-point precision of 6:
5723       //
5724       //   Log10ofMantissa =
5725       //     -0.50419619f +
5726       //       (0.60948995f - 0.10380950f * x) * x;
5727       //
5728       // error 0.0014886165, which is 6 bits
5729       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5730                                getF32Constant(DAG, 0xbdd49a13, dl));
5731       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5732                                getF32Constant(DAG, 0x3f1c0789, dl));
5733       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5734       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5735                                     getF32Constant(DAG, 0x3f011300, dl));
5736     } else if (LimitFloatPrecision <= 12) {
5737       // For floating-point precision of 12:
5738       //
5739       //   Log10ofMantissa =
5740       //     -0.64831180f +
5741       //       (0.91751397f +
5742       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5743       //
5744       // error 0.00019228036, which is better than 12 bits
5745       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5746                                getF32Constant(DAG, 0x3d431f31, dl));
5747       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5748                                getF32Constant(DAG, 0x3ea21fb2, dl));
5749       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5750       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5751                                getF32Constant(DAG, 0x3f6ae232, dl));
5752       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5753       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5754                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5755     } else { // LimitFloatPrecision <= 18
5756       // For floating-point precision of 18:
5757       //
5758       //   Log10ofMantissa =
5759       //     -0.84299375f +
5760       //       (1.5327582f +
5761       //         (-1.0688956f +
5762       //           (0.49102474f +
5763       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5764       //
5765       // error 0.0000037995730, which is better than 18 bits
5766       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5767                                getF32Constant(DAG, 0x3c5d51ce, dl));
5768       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5769                                getF32Constant(DAG, 0x3e00685a, dl));
5770       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5771       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5772                                getF32Constant(DAG, 0x3efb6798, dl));
5773       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5774       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5775                                getF32Constant(DAG, 0x3f88d192, dl));
5776       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5777       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5778                                getF32Constant(DAG, 0x3fc4316c, dl));
5779       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5780       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5781                                     getF32Constant(DAG, 0x3f57ce70, dl));
5782     }
5783 
5784     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5785   }
5786 
5787   // No special expansion.
5788   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5789 }
5790 
5791 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5792 /// limited-precision mode.
5793 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5794                           const TargetLowering &TLI, SDNodeFlags Flags) {
5795   if (Op.getValueType() == MVT::f32 &&
5796       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5797     return getLimitedPrecisionExp2(Op, dl, DAG);
5798 
5799   // No special expansion.
5800   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5801 }
5802 
5803 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5804 /// limited-precision mode with x == 10.0f.
5805 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5806                          SelectionDAG &DAG, const TargetLowering &TLI,
5807                          SDNodeFlags Flags) {
5808   bool IsExp10 = false;
5809   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5810       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5811     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5812       APFloat Ten(10.0f);
5813       IsExp10 = LHSC->isExactlyValue(Ten);
5814     }
5815   }
5816 
5817   // TODO: What fast-math-flags should be set on the FMUL node?
5818   if (IsExp10) {
5819     // Put the exponent in the right bit position for later addition to the
5820     // final result:
5821     //
5822     //   #define LOG2OF10 3.3219281f
5823     //   t0 = Op * LOG2OF10;
5824     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5825                              getF32Constant(DAG, 0x40549a78, dl));
5826     return getLimitedPrecisionExp2(t0, dl, DAG);
5827   }
5828 
5829   // No special expansion.
5830   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5831 }
5832 
5833 /// ExpandPowI - Expand a llvm.powi intrinsic.
5834 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5835                           SelectionDAG &DAG) {
5836   // If RHS is a constant, we can expand this out to a multiplication tree if
5837   // it's beneficial on the target, otherwise we end up lowering to a call to
5838   // __powidf2 (for example).
5839   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5840     unsigned Val = RHSC->getSExtValue();
5841 
5842     // powi(x, 0) -> 1.0
5843     if (Val == 0)
5844       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5845 
5846     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5847             Val, DAG.shouldOptForSize())) {
5848       // Get the exponent as a positive value.
5849       if ((int)Val < 0)
5850         Val = -Val;
5851       // We use the simple binary decomposition method to generate the multiply
5852       // sequence.  There are more optimal ways to do this (for example,
5853       // powi(x,15) generates one more multiply than it should), but this has
5854       // the benefit of being both really simple and much better than a libcall.
5855       SDValue Res; // Logically starts equal to 1.0
5856       SDValue CurSquare = LHS;
5857       // TODO: Intrinsics should have fast-math-flags that propagate to these
5858       // nodes.
5859       while (Val) {
5860         if (Val & 1) {
5861           if (Res.getNode())
5862             Res =
5863                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5864           else
5865             Res = CurSquare; // 1.0*CurSquare.
5866         }
5867 
5868         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5869                                 CurSquare, CurSquare);
5870         Val >>= 1;
5871       }
5872 
5873       // If the original was negative, invert the result, producing 1/(x*x*x).
5874       if (RHSC->getSExtValue() < 0)
5875         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5876                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5877       return Res;
5878     }
5879   }
5880 
5881   // Otherwise, expand to a libcall.
5882   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5883 }
5884 
5885 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5886                             SDValue LHS, SDValue RHS, SDValue Scale,
5887                             SelectionDAG &DAG, const TargetLowering &TLI) {
5888   EVT VT = LHS.getValueType();
5889   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5890   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5891   LLVMContext &Ctx = *DAG.getContext();
5892 
5893   // If the type is legal but the operation isn't, this node might survive all
5894   // the way to operation legalization. If we end up there and we do not have
5895   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5896   // node.
5897 
5898   // Coax the legalizer into expanding the node during type legalization instead
5899   // by bumping the size by one bit. This will force it to Promote, enabling the
5900   // early expansion and avoiding the need to expand later.
5901 
5902   // We don't have to do this if Scale is 0; that can always be expanded, unless
5903   // it's a saturating signed operation. Those can experience true integer
5904   // division overflow, a case which we must avoid.
5905 
5906   // FIXME: We wouldn't have to do this (or any of the early
5907   // expansion/promotion) if it was possible to expand a libcall of an
5908   // illegal type during operation legalization. But it's not, so things
5909   // get a bit hacky.
5910   unsigned ScaleInt = Scale->getAsZExtVal();
5911   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5912       (TLI.isTypeLegal(VT) ||
5913        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5914     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5915         Opcode, VT, ScaleInt);
5916     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5917       EVT PromVT;
5918       if (VT.isScalarInteger())
5919         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5920       else if (VT.isVector()) {
5921         PromVT = VT.getVectorElementType();
5922         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5923         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5924       } else
5925         llvm_unreachable("Wrong VT for DIVFIX?");
5926       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5927       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5928       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5929       // For saturating operations, we need to shift up the LHS to get the
5930       // proper saturation width, and then shift down again afterwards.
5931       if (Saturating)
5932         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5933                           DAG.getConstant(1, DL, ShiftTy));
5934       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5935       if (Saturating)
5936         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5937                           DAG.getConstant(1, DL, ShiftTy));
5938       return DAG.getZExtOrTrunc(Res, DL, VT);
5939     }
5940   }
5941 
5942   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5943 }
5944 
5945 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5946 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5947 static void
5948 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5949                      const SDValue &N) {
5950   switch (N.getOpcode()) {
5951   case ISD::CopyFromReg: {
5952     SDValue Op = N.getOperand(1);
5953     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5954                       Op.getValueType().getSizeInBits());
5955     return;
5956   }
5957   case ISD::BITCAST:
5958   case ISD::AssertZext:
5959   case ISD::AssertSext:
5960   case ISD::TRUNCATE:
5961     getUnderlyingArgRegs(Regs, N.getOperand(0));
5962     return;
5963   case ISD::BUILD_PAIR:
5964   case ISD::BUILD_VECTOR:
5965   case ISD::CONCAT_VECTORS:
5966     for (SDValue Op : N->op_values())
5967       getUnderlyingArgRegs(Regs, Op);
5968     return;
5969   default:
5970     return;
5971   }
5972 }
5973 
5974 /// If the DbgValueInst is a dbg_value of a function argument, create the
5975 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5976 /// instruction selection, they will be inserted to the entry BB.
5977 /// We don't currently support this for variadic dbg_values, as they shouldn't
5978 /// appear for function arguments or in the prologue.
5979 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5980     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5981     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5982   const Argument *Arg = dyn_cast<Argument>(V);
5983   if (!Arg)
5984     return false;
5985 
5986   MachineFunction &MF = DAG.getMachineFunction();
5987   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5988 
5989   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5990   // we've been asked to pursue.
5991   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5992                               bool Indirect) {
5993     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5994       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5995       // pointing at the VReg, which will be patched up later.
5996       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5997       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5998           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5999           /* isKill */ false, /* isDead */ false,
6000           /* isUndef */ false, /* isEarlyClobber */ false,
6001           /* SubReg */ 0, /* isDebug */ true)});
6002 
6003       auto *NewDIExpr = FragExpr;
6004       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
6005       // the DIExpression.
6006       if (Indirect)
6007         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
6008       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
6009       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
6010       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
6011     } else {
6012       // Create a completely standard DBG_VALUE.
6013       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
6014       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
6015     }
6016   };
6017 
6018   if (Kind == FuncArgumentDbgValueKind::Value) {
6019     // ArgDbgValues are hoisted to the beginning of the entry block. So we
6020     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
6021     // the entry block.
6022     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
6023     if (!IsInEntryBlock)
6024       return false;
6025 
6026     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
6027     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
6028     // variable that also is a param.
6029     //
6030     // Although, if we are at the top of the entry block already, we can still
6031     // emit using ArgDbgValue. This might catch some situations when the
6032     // dbg.value refers to an argument that isn't used in the entry block, so
6033     // any CopyToReg node would be optimized out and the only way to express
6034     // this DBG_VALUE is by using the physical reg (or FI) as done in this
6035     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
6036     // we should only emit as ArgDbgValue if the Variable is an argument to the
6037     // current function, and the dbg.value intrinsic is found in the entry
6038     // block.
6039     bool VariableIsFunctionInputArg = Variable->isParameter() &&
6040         !DL->getInlinedAt();
6041     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
6042     if (!IsInPrologue && !VariableIsFunctionInputArg)
6043       return false;
6044 
6045     // Here we assume that a function argument on IR level only can be used to
6046     // describe one input parameter on source level. If we for example have
6047     // source code like this
6048     //
6049     //    struct A { long x, y; };
6050     //    void foo(struct A a, long b) {
6051     //      ...
6052     //      b = a.x;
6053     //      ...
6054     //    }
6055     //
6056     // and IR like this
6057     //
6058     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
6059     //  entry:
6060     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6061     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6062     //    call void @llvm.dbg.value(metadata i32 %b, "b",
6063     //    ...
6064     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
6065     //    ...
6066     //
6067     // then the last dbg.value is describing a parameter "b" using a value that
6068     // is an argument. But since we already has used %a1 to describe a parameter
6069     // we should not handle that last dbg.value here (that would result in an
6070     // incorrect hoisting of the DBG_VALUE to the function entry).
6071     // Notice that we allow one dbg.value per IR level argument, to accommodate
6072     // for the situation with fragments above.
6073     // If there is no node for the value being handled, we return true to skip
6074     // the normal generation of debug info, as it would kill existing debug
6075     // info for the parameter in case of duplicates.
6076     if (VariableIsFunctionInputArg) {
6077       unsigned ArgNo = Arg->getArgNo();
6078       if (ArgNo >= FuncInfo.DescribedArgs.size())
6079         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6080       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6081         return !NodeMap[V].getNode();
6082       FuncInfo.DescribedArgs.set(ArgNo);
6083     }
6084   }
6085 
6086   bool IsIndirect = false;
6087   std::optional<MachineOperand> Op;
6088   // Some arguments' frame index is recorded during argument lowering.
6089   int FI = FuncInfo.getArgumentFrameIndex(Arg);
6090   if (FI != std::numeric_limits<int>::max())
6091     Op = MachineOperand::CreateFI(FI);
6092 
6093   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
6094   if (!Op && N.getNode()) {
6095     getUnderlyingArgRegs(ArgRegsAndSizes, N);
6096     Register Reg;
6097     if (ArgRegsAndSizes.size() == 1)
6098       Reg = ArgRegsAndSizes.front().first;
6099 
6100     if (Reg && Reg.isVirtual()) {
6101       MachineRegisterInfo &RegInfo = MF.getRegInfo();
6102       Register PR = RegInfo.getLiveInPhysReg(Reg);
6103       if (PR)
6104         Reg = PR;
6105     }
6106     if (Reg) {
6107       Op = MachineOperand::CreateReg(Reg, false);
6108       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6109     }
6110   }
6111 
6112   if (!Op && N.getNode()) {
6113     // Check if frame index is available.
6114     SDValue LCandidate = peekThroughBitcasts(N);
6115     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6116       if (FrameIndexSDNode *FINode =
6117           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6118         Op = MachineOperand::CreateFI(FINode->getIndex());
6119   }
6120 
6121   if (!Op) {
6122     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6123     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
6124                                          SplitRegs) {
6125       unsigned Offset = 0;
6126       for (const auto &RegAndSize : SplitRegs) {
6127         // If the expression is already a fragment, the current register
6128         // offset+size might extend beyond the fragment. In this case, only
6129         // the register bits that are inside the fragment are relevant.
6130         int RegFragmentSizeInBits = RegAndSize.second;
6131         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6132           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6133           // The register is entirely outside the expression fragment,
6134           // so is irrelevant for debug info.
6135           if (Offset >= ExprFragmentSizeInBits)
6136             break;
6137           // The register is partially outside the expression fragment, only
6138           // the low bits within the fragment are relevant for debug info.
6139           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6140             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6141           }
6142         }
6143 
6144         auto FragmentExpr = DIExpression::createFragmentExpression(
6145             Expr, Offset, RegFragmentSizeInBits);
6146         Offset += RegAndSize.second;
6147         // If a valid fragment expression cannot be created, the variable's
6148         // correct value cannot be determined and so it is set as Undef.
6149         if (!FragmentExpr) {
6150           SDDbgValue *SDV = DAG.getConstantDbgValue(
6151               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6152           DAG.AddDbgValue(SDV, false);
6153           continue;
6154         }
6155         MachineInstr *NewMI =
6156             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6157                              Kind != FuncArgumentDbgValueKind::Value);
6158         FuncInfo.ArgDbgValues.push_back(NewMI);
6159       }
6160     };
6161 
6162     // Check if ValueMap has reg number.
6163     DenseMap<const Value *, Register>::const_iterator
6164       VMI = FuncInfo.ValueMap.find(V);
6165     if (VMI != FuncInfo.ValueMap.end()) {
6166       const auto &TLI = DAG.getTargetLoweringInfo();
6167       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6168                        V->getType(), std::nullopt);
6169       if (RFV.occupiesMultipleRegs()) {
6170         splitMultiRegDbgValue(RFV.getRegsAndSizes());
6171         return true;
6172       }
6173 
6174       Op = MachineOperand::CreateReg(VMI->second, false);
6175       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6176     } else if (ArgRegsAndSizes.size() > 1) {
6177       // This was split due to the calling convention, and no virtual register
6178       // mapping exists for the value.
6179       splitMultiRegDbgValue(ArgRegsAndSizes);
6180       return true;
6181     }
6182   }
6183 
6184   if (!Op)
6185     return false;
6186 
6187   assert(Variable->isValidLocationForIntrinsic(DL) &&
6188          "Expected inlined-at fields to agree");
6189   MachineInstr *NewMI = nullptr;
6190 
6191   if (Op->isReg())
6192     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6193   else
6194     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6195                     Variable, Expr);
6196 
6197   // Otherwise, use ArgDbgValues.
6198   FuncInfo.ArgDbgValues.push_back(NewMI);
6199   return true;
6200 }
6201 
6202 /// Return the appropriate SDDbgValue based on N.
6203 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6204                                              DILocalVariable *Variable,
6205                                              DIExpression *Expr,
6206                                              const DebugLoc &dl,
6207                                              unsigned DbgSDNodeOrder) {
6208   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6209     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6210     // stack slot locations.
6211     //
6212     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6213     // debug values here after optimization:
6214     //
6215     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
6216     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6217     //
6218     // Both describe the direct values of their associated variables.
6219     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6220                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6221   }
6222   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6223                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6224 }
6225 
6226 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6227   switch (Intrinsic) {
6228   case Intrinsic::smul_fix:
6229     return ISD::SMULFIX;
6230   case Intrinsic::umul_fix:
6231     return ISD::UMULFIX;
6232   case Intrinsic::smul_fix_sat:
6233     return ISD::SMULFIXSAT;
6234   case Intrinsic::umul_fix_sat:
6235     return ISD::UMULFIXSAT;
6236   case Intrinsic::sdiv_fix:
6237     return ISD::SDIVFIX;
6238   case Intrinsic::udiv_fix:
6239     return ISD::UDIVFIX;
6240   case Intrinsic::sdiv_fix_sat:
6241     return ISD::SDIVFIXSAT;
6242   case Intrinsic::udiv_fix_sat:
6243     return ISD::UDIVFIXSAT;
6244   default:
6245     llvm_unreachable("Unhandled fixed point intrinsic");
6246   }
6247 }
6248 
6249 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6250                                            const char *FunctionName) {
6251   assert(FunctionName && "FunctionName must not be nullptr");
6252   SDValue Callee = DAG.getExternalSymbol(
6253       FunctionName,
6254       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6255   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6256 }
6257 
6258 /// Given a @llvm.call.preallocated.setup, return the corresponding
6259 /// preallocated call.
6260 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6261   assert(cast<CallBase>(PreallocatedSetup)
6262                  ->getCalledFunction()
6263                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6264          "expected call_preallocated_setup Value");
6265   for (const auto *U : PreallocatedSetup->users()) {
6266     auto *UseCall = cast<CallBase>(U);
6267     const Function *Fn = UseCall->getCalledFunction();
6268     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6269       return UseCall;
6270     }
6271   }
6272   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6273 }
6274 
6275 /// If DI is a debug value with an EntryValue expression, lower it using the
6276 /// corresponding physical register of the associated Argument value
6277 /// (guaranteed to exist by the verifier).
6278 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6279     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6280     DIExpression *Expr, DebugLoc DbgLoc) {
6281   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6282     return false;
6283 
6284   // These properties are guaranteed by the verifier.
6285   const Argument *Arg = cast<Argument>(Values[0]);
6286   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6287 
6288   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6289   if (ArgIt == FuncInfo.ValueMap.end()) {
6290     LLVM_DEBUG(
6291         dbgs() << "Dropping dbg.value: expression is entry_value but "
6292                   "couldn't find an associated register for the Argument\n");
6293     return true;
6294   }
6295   Register ArgVReg = ArgIt->getSecond();
6296 
6297   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6298     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6299       SDDbgValue *SDV = DAG.getVRegDbgValue(
6300           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6301       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6302       return true;
6303     }
6304   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6305                        "couldn't find a physical register\n");
6306   return true;
6307 }
6308 
6309 /// Lower the call to the specified intrinsic function.
6310 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6311                                                   unsigned Intrinsic) {
6312   SDLoc sdl = getCurSDLoc();
6313   switch (Intrinsic) {
6314   case Intrinsic::experimental_convergence_anchor:
6315     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6316     break;
6317   case Intrinsic::experimental_convergence_entry:
6318     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6319     break;
6320   case Intrinsic::experimental_convergence_loop: {
6321     auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6322     auto *Token = Bundle->Inputs[0].get();
6323     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6324                              getValue(Token)));
6325     break;
6326   }
6327   }
6328 }
6329 
6330 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6331                                                unsigned IntrinsicID) {
6332   // For now, we're only lowering an 'add' histogram.
6333   // We can add others later, e.g. saturating adds, min/max.
6334   assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6335          "Tried to lower unsupported histogram type");
6336   SDLoc sdl = getCurSDLoc();
6337   Value *Ptr = I.getOperand(0);
6338   SDValue Inc = getValue(I.getOperand(1));
6339   SDValue Mask = getValue(I.getOperand(2));
6340 
6341   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6342   DataLayout TargetDL = DAG.getDataLayout();
6343   EVT VT = Inc.getValueType();
6344   Align Alignment = DAG.getEVTAlign(VT);
6345 
6346   const MDNode *Ranges = getRangeMetadata(I);
6347 
6348   SDValue Root = DAG.getRoot();
6349   SDValue Base;
6350   SDValue Index;
6351   ISD::MemIndexType IndexType;
6352   SDValue Scale;
6353   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
6354                                     I.getParent(), VT.getScalarStoreSize());
6355 
6356   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6357 
6358   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6359       MachinePointerInfo(AS),
6360       MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
6361       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6362 
6363   if (!UniformBase) {
6364     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6365     Index = getValue(Ptr);
6366     IndexType = ISD::SIGNED_SCALED;
6367     Scale =
6368         DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6369   }
6370 
6371   EVT IdxVT = Index.getValueType();
6372   EVT EltTy = IdxVT.getVectorElementType();
6373   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6374     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
6375     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6376   }
6377 
6378   SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6379 
6380   SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6381   SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6382                                              Ops, MMO, IndexType);
6383 
6384   setValue(&I, Histogram);
6385   DAG.setRoot(Histogram);
6386 }
6387 
6388 /// Lower the call to the specified intrinsic function.
6389 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6390                                              unsigned Intrinsic) {
6391   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6392   SDLoc sdl = getCurSDLoc();
6393   DebugLoc dl = getCurDebugLoc();
6394   SDValue Res;
6395 
6396   SDNodeFlags Flags;
6397   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6398     Flags.copyFMF(*FPOp);
6399 
6400   switch (Intrinsic) {
6401   default:
6402     // By default, turn this into a target intrinsic node.
6403     visitTargetIntrinsic(I, Intrinsic);
6404     return;
6405   case Intrinsic::vscale: {
6406     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6407     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6408     return;
6409   }
6410   case Intrinsic::vastart:  visitVAStart(I); return;
6411   case Intrinsic::vaend:    visitVAEnd(I); return;
6412   case Intrinsic::vacopy:   visitVACopy(I); return;
6413   case Intrinsic::returnaddress:
6414     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6415                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6416                              getValue(I.getArgOperand(0))));
6417     return;
6418   case Intrinsic::addressofreturnaddress:
6419     setValue(&I,
6420              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6421                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6422     return;
6423   case Intrinsic::sponentry:
6424     setValue(&I,
6425              DAG.getNode(ISD::SPONENTRY, sdl,
6426                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6427     return;
6428   case Intrinsic::frameaddress:
6429     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6430                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6431                              getValue(I.getArgOperand(0))));
6432     return;
6433   case Intrinsic::read_volatile_register:
6434   case Intrinsic::read_register: {
6435     Value *Reg = I.getArgOperand(0);
6436     SDValue Chain = getRoot();
6437     SDValue RegName =
6438         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6439     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6440     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6441       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6442     setValue(&I, Res);
6443     DAG.setRoot(Res.getValue(1));
6444     return;
6445   }
6446   case Intrinsic::write_register: {
6447     Value *Reg = I.getArgOperand(0);
6448     Value *RegValue = I.getArgOperand(1);
6449     SDValue Chain = getRoot();
6450     SDValue RegName =
6451         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6452     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6453                             RegName, getValue(RegValue)));
6454     return;
6455   }
6456   case Intrinsic::memcpy: {
6457     const auto &MCI = cast<MemCpyInst>(I);
6458     SDValue Op1 = getValue(I.getArgOperand(0));
6459     SDValue Op2 = getValue(I.getArgOperand(1));
6460     SDValue Op3 = getValue(I.getArgOperand(2));
6461     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6462     Align DstAlign = MCI.getDestAlign().valueOrOne();
6463     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6464     Align Alignment = std::min(DstAlign, SrcAlign);
6465     bool isVol = MCI.isVolatile();
6466     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6467     // node.
6468     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6469     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6470                                /* AlwaysInline */ false, &I, std::nullopt,
6471                                MachinePointerInfo(I.getArgOperand(0)),
6472                                MachinePointerInfo(I.getArgOperand(1)),
6473                                I.getAAMetadata(), AA);
6474     updateDAGForMaybeTailCall(MC);
6475     return;
6476   }
6477   case Intrinsic::memcpy_inline: {
6478     const auto &MCI = cast<MemCpyInlineInst>(I);
6479     SDValue Dst = getValue(I.getArgOperand(0));
6480     SDValue Src = getValue(I.getArgOperand(1));
6481     SDValue Size = getValue(I.getArgOperand(2));
6482     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6483     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6484     Align DstAlign = MCI.getDestAlign().valueOrOne();
6485     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6486     Align Alignment = std::min(DstAlign, SrcAlign);
6487     bool isVol = MCI.isVolatile();
6488     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6489     // node.
6490     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6491                                /* AlwaysInline */ true, &I, std::nullopt,
6492                                MachinePointerInfo(I.getArgOperand(0)),
6493                                MachinePointerInfo(I.getArgOperand(1)),
6494                                I.getAAMetadata(), AA);
6495     updateDAGForMaybeTailCall(MC);
6496     return;
6497   }
6498   case Intrinsic::memset: {
6499     const auto &MSI = cast<MemSetInst>(I);
6500     SDValue Op1 = getValue(I.getArgOperand(0));
6501     SDValue Op2 = getValue(I.getArgOperand(1));
6502     SDValue Op3 = getValue(I.getArgOperand(2));
6503     // @llvm.memset defines 0 and 1 to both mean no alignment.
6504     Align Alignment = MSI.getDestAlign().valueOrOne();
6505     bool isVol = MSI.isVolatile();
6506     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6507     SDValue MS = DAG.getMemset(
6508         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6509         &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6510     updateDAGForMaybeTailCall(MS);
6511     return;
6512   }
6513   case Intrinsic::memset_inline: {
6514     const auto &MSII = cast<MemSetInlineInst>(I);
6515     SDValue Dst = getValue(I.getArgOperand(0));
6516     SDValue Value = getValue(I.getArgOperand(1));
6517     SDValue Size = getValue(I.getArgOperand(2));
6518     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6519     // @llvm.memset defines 0 and 1 to both mean no alignment.
6520     Align DstAlign = MSII.getDestAlign().valueOrOne();
6521     bool isVol = MSII.isVolatile();
6522     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6523     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6524                                /* AlwaysInline */ true, &I,
6525                                MachinePointerInfo(I.getArgOperand(0)),
6526                                I.getAAMetadata());
6527     updateDAGForMaybeTailCall(MC);
6528     return;
6529   }
6530   case Intrinsic::memmove: {
6531     const auto &MMI = cast<MemMoveInst>(I);
6532     SDValue Op1 = getValue(I.getArgOperand(0));
6533     SDValue Op2 = getValue(I.getArgOperand(1));
6534     SDValue Op3 = getValue(I.getArgOperand(2));
6535     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6536     Align DstAlign = MMI.getDestAlign().valueOrOne();
6537     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6538     Align Alignment = std::min(DstAlign, SrcAlign);
6539     bool isVol = MMI.isVolatile();
6540     // FIXME: Support passing different dest/src alignments to the memmove DAG
6541     // node.
6542     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6543     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I,
6544                                 /* OverrideTailCall */ std::nullopt,
6545                                 MachinePointerInfo(I.getArgOperand(0)),
6546                                 MachinePointerInfo(I.getArgOperand(1)),
6547                                 I.getAAMetadata(), AA);
6548     updateDAGForMaybeTailCall(MM);
6549     return;
6550   }
6551   case Intrinsic::memcpy_element_unordered_atomic: {
6552     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6553     SDValue Dst = getValue(MI.getRawDest());
6554     SDValue Src = getValue(MI.getRawSource());
6555     SDValue Length = getValue(MI.getLength());
6556 
6557     Type *LengthTy = MI.getLength()->getType();
6558     unsigned ElemSz = MI.getElementSizeInBytes();
6559     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6560     SDValue MC =
6561         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6562                             isTC, MachinePointerInfo(MI.getRawDest()),
6563                             MachinePointerInfo(MI.getRawSource()));
6564     updateDAGForMaybeTailCall(MC);
6565     return;
6566   }
6567   case Intrinsic::memmove_element_unordered_atomic: {
6568     auto &MI = cast<AtomicMemMoveInst>(I);
6569     SDValue Dst = getValue(MI.getRawDest());
6570     SDValue Src = getValue(MI.getRawSource());
6571     SDValue Length = getValue(MI.getLength());
6572 
6573     Type *LengthTy = MI.getLength()->getType();
6574     unsigned ElemSz = MI.getElementSizeInBytes();
6575     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6576     SDValue MC =
6577         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6578                              isTC, MachinePointerInfo(MI.getRawDest()),
6579                              MachinePointerInfo(MI.getRawSource()));
6580     updateDAGForMaybeTailCall(MC);
6581     return;
6582   }
6583   case Intrinsic::memset_element_unordered_atomic: {
6584     auto &MI = cast<AtomicMemSetInst>(I);
6585     SDValue Dst = getValue(MI.getRawDest());
6586     SDValue Val = getValue(MI.getValue());
6587     SDValue Length = getValue(MI.getLength());
6588 
6589     Type *LengthTy = MI.getLength()->getType();
6590     unsigned ElemSz = MI.getElementSizeInBytes();
6591     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6592     SDValue MC =
6593         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6594                             isTC, MachinePointerInfo(MI.getRawDest()));
6595     updateDAGForMaybeTailCall(MC);
6596     return;
6597   }
6598   case Intrinsic::call_preallocated_setup: {
6599     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6600     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6601     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6602                               getRoot(), SrcValue);
6603     setValue(&I, Res);
6604     DAG.setRoot(Res);
6605     return;
6606   }
6607   case Intrinsic::call_preallocated_arg: {
6608     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6609     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6610     SDValue Ops[3];
6611     Ops[0] = getRoot();
6612     Ops[1] = SrcValue;
6613     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6614                                    MVT::i32); // arg index
6615     SDValue Res = DAG.getNode(
6616         ISD::PREALLOCATED_ARG, sdl,
6617         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6618     setValue(&I, Res);
6619     DAG.setRoot(Res.getValue(1));
6620     return;
6621   }
6622   case Intrinsic::dbg_declare: {
6623     const auto &DI = cast<DbgDeclareInst>(I);
6624     // Debug intrinsics are handled separately in assignment tracking mode.
6625     // Some intrinsics are handled right after Argument lowering.
6626     if (AssignmentTrackingEnabled ||
6627         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6628       return;
6629     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6630     DILocalVariable *Variable = DI.getVariable();
6631     DIExpression *Expression = DI.getExpression();
6632     dropDanglingDebugInfo(Variable, Expression);
6633     // Assume dbg.declare can not currently use DIArgList, i.e.
6634     // it is non-variadic.
6635     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6636     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6637                        DI.getDebugLoc());
6638     return;
6639   }
6640   case Intrinsic::dbg_label: {
6641     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6642     DILabel *Label = DI.getLabel();
6643     assert(Label && "Missing label");
6644 
6645     SDDbgLabel *SDV;
6646     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6647     DAG.AddDbgLabel(SDV);
6648     return;
6649   }
6650   case Intrinsic::dbg_assign: {
6651     // Debug intrinsics are handled separately in assignment tracking mode.
6652     if (AssignmentTrackingEnabled)
6653       return;
6654     // If assignment tracking hasn't been enabled then fall through and treat
6655     // the dbg.assign as a dbg.value.
6656     [[fallthrough]];
6657   }
6658   case Intrinsic::dbg_value: {
6659     // Debug intrinsics are handled separately in assignment tracking mode.
6660     if (AssignmentTrackingEnabled)
6661       return;
6662     const DbgValueInst &DI = cast<DbgValueInst>(I);
6663     assert(DI.getVariable() && "Missing variable");
6664 
6665     DILocalVariable *Variable = DI.getVariable();
6666     DIExpression *Expression = DI.getExpression();
6667     dropDanglingDebugInfo(Variable, Expression);
6668 
6669     if (DI.isKillLocation()) {
6670       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6671       return;
6672     }
6673 
6674     SmallVector<Value *, 4> Values(DI.getValues());
6675     if (Values.empty())
6676       return;
6677 
6678     bool IsVariadic = DI.hasArgList();
6679     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6680                           SDNodeOrder, IsVariadic))
6681       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6682                            DI.getDebugLoc(), SDNodeOrder);
6683     return;
6684   }
6685 
6686   case Intrinsic::eh_typeid_for: {
6687     // Find the type id for the given typeinfo.
6688     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6689     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6690     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6691     setValue(&I, Res);
6692     return;
6693   }
6694 
6695   case Intrinsic::eh_return_i32:
6696   case Intrinsic::eh_return_i64:
6697     DAG.getMachineFunction().setCallsEHReturn(true);
6698     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6699                             MVT::Other,
6700                             getControlRoot(),
6701                             getValue(I.getArgOperand(0)),
6702                             getValue(I.getArgOperand(1))));
6703     return;
6704   case Intrinsic::eh_unwind_init:
6705     DAG.getMachineFunction().setCallsUnwindInit(true);
6706     return;
6707   case Intrinsic::eh_dwarf_cfa:
6708     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6709                              TLI.getPointerTy(DAG.getDataLayout()),
6710                              getValue(I.getArgOperand(0))));
6711     return;
6712   case Intrinsic::eh_sjlj_callsite: {
6713     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6714     assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!");
6715 
6716     FuncInfo.setCurrentCallSite(CI->getZExtValue());
6717     return;
6718   }
6719   case Intrinsic::eh_sjlj_functioncontext: {
6720     // Get and store the index of the function context.
6721     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6722     AllocaInst *FnCtx =
6723       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6724     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6725     MFI.setFunctionContextIndex(FI);
6726     return;
6727   }
6728   case Intrinsic::eh_sjlj_setjmp: {
6729     SDValue Ops[2];
6730     Ops[0] = getRoot();
6731     Ops[1] = getValue(I.getArgOperand(0));
6732     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6733                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6734     setValue(&I, Op.getValue(0));
6735     DAG.setRoot(Op.getValue(1));
6736     return;
6737   }
6738   case Intrinsic::eh_sjlj_longjmp:
6739     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6740                             getRoot(), getValue(I.getArgOperand(0))));
6741     return;
6742   case Intrinsic::eh_sjlj_setup_dispatch:
6743     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6744                             getRoot()));
6745     return;
6746   case Intrinsic::masked_gather:
6747     visitMaskedGather(I);
6748     return;
6749   case Intrinsic::masked_load:
6750     visitMaskedLoad(I);
6751     return;
6752   case Intrinsic::masked_scatter:
6753     visitMaskedScatter(I);
6754     return;
6755   case Intrinsic::masked_store:
6756     visitMaskedStore(I);
6757     return;
6758   case Intrinsic::masked_expandload:
6759     visitMaskedLoad(I, true /* IsExpanding */);
6760     return;
6761   case Intrinsic::masked_compressstore:
6762     visitMaskedStore(I, true /* IsCompressing */);
6763     return;
6764   case Intrinsic::powi:
6765     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6766                             getValue(I.getArgOperand(1)), DAG));
6767     return;
6768   case Intrinsic::log:
6769     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6770     return;
6771   case Intrinsic::log2:
6772     setValue(&I,
6773              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6774     return;
6775   case Intrinsic::log10:
6776     setValue(&I,
6777              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6778     return;
6779   case Intrinsic::exp:
6780     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6781     return;
6782   case Intrinsic::exp2:
6783     setValue(&I,
6784              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6785     return;
6786   case Intrinsic::pow:
6787     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6788                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6789     return;
6790   case Intrinsic::sqrt:
6791   case Intrinsic::fabs:
6792   case Intrinsic::sin:
6793   case Intrinsic::cos:
6794   case Intrinsic::tan:
6795   case Intrinsic::asin:
6796   case Intrinsic::acos:
6797   case Intrinsic::atan:
6798   case Intrinsic::sinh:
6799   case Intrinsic::cosh:
6800   case Intrinsic::tanh:
6801   case Intrinsic::exp10:
6802   case Intrinsic::floor:
6803   case Intrinsic::ceil:
6804   case Intrinsic::trunc:
6805   case Intrinsic::rint:
6806   case Intrinsic::nearbyint:
6807   case Intrinsic::round:
6808   case Intrinsic::roundeven:
6809   case Intrinsic::canonicalize: {
6810     unsigned Opcode;
6811     // clang-format off
6812     switch (Intrinsic) {
6813     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6814     case Intrinsic::sqrt:         Opcode = ISD::FSQRT;         break;
6815     case Intrinsic::fabs:         Opcode = ISD::FABS;          break;
6816     case Intrinsic::sin:          Opcode = ISD::FSIN;          break;
6817     case Intrinsic::cos:          Opcode = ISD::FCOS;          break;
6818     case Intrinsic::tan:          Opcode = ISD::FTAN;          break;
6819     case Intrinsic::asin:         Opcode = ISD::FASIN;         break;
6820     case Intrinsic::acos:         Opcode = ISD::FACOS;         break;
6821     case Intrinsic::atan:         Opcode = ISD::FATAN;         break;
6822     case Intrinsic::sinh:         Opcode = ISD::FSINH;         break;
6823     case Intrinsic::cosh:         Opcode = ISD::FCOSH;         break;
6824     case Intrinsic::tanh:         Opcode = ISD::FTANH;         break;
6825     case Intrinsic::exp10:        Opcode = ISD::FEXP10;        break;
6826     case Intrinsic::floor:        Opcode = ISD::FFLOOR;        break;
6827     case Intrinsic::ceil:         Opcode = ISD::FCEIL;         break;
6828     case Intrinsic::trunc:        Opcode = ISD::FTRUNC;        break;
6829     case Intrinsic::rint:         Opcode = ISD::FRINT;         break;
6830     case Intrinsic::nearbyint:    Opcode = ISD::FNEARBYINT;    break;
6831     case Intrinsic::round:        Opcode = ISD::FROUND;        break;
6832     case Intrinsic::roundeven:    Opcode = ISD::FROUNDEVEN;    break;
6833     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6834     }
6835     // clang-format on
6836 
6837     setValue(&I, DAG.getNode(Opcode, sdl,
6838                              getValue(I.getArgOperand(0)).getValueType(),
6839                              getValue(I.getArgOperand(0)), Flags));
6840     return;
6841   }
6842   case Intrinsic::lround:
6843   case Intrinsic::llround:
6844   case Intrinsic::lrint:
6845   case Intrinsic::llrint: {
6846     unsigned Opcode;
6847     // clang-format off
6848     switch (Intrinsic) {
6849     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6850     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6851     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6852     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6853     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6854     }
6855     // clang-format on
6856 
6857     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6858     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6859                              getValue(I.getArgOperand(0))));
6860     return;
6861   }
6862   case Intrinsic::minnum:
6863     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6864                              getValue(I.getArgOperand(0)).getValueType(),
6865                              getValue(I.getArgOperand(0)),
6866                              getValue(I.getArgOperand(1)), Flags));
6867     return;
6868   case Intrinsic::maxnum:
6869     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6870                              getValue(I.getArgOperand(0)).getValueType(),
6871                              getValue(I.getArgOperand(0)),
6872                              getValue(I.getArgOperand(1)), Flags));
6873     return;
6874   case Intrinsic::minimum:
6875     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6876                              getValue(I.getArgOperand(0)).getValueType(),
6877                              getValue(I.getArgOperand(0)),
6878                              getValue(I.getArgOperand(1)), Flags));
6879     return;
6880   case Intrinsic::maximum:
6881     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6882                              getValue(I.getArgOperand(0)).getValueType(),
6883                              getValue(I.getArgOperand(0)),
6884                              getValue(I.getArgOperand(1)), Flags));
6885     return;
6886   case Intrinsic::minimumnum:
6887     setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl,
6888                              getValue(I.getArgOperand(0)).getValueType(),
6889                              getValue(I.getArgOperand(0)),
6890                              getValue(I.getArgOperand(1)), Flags));
6891     return;
6892   case Intrinsic::maximumnum:
6893     setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl,
6894                              getValue(I.getArgOperand(0)).getValueType(),
6895                              getValue(I.getArgOperand(0)),
6896                              getValue(I.getArgOperand(1)), Flags));
6897     return;
6898   case Intrinsic::copysign:
6899     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6900                              getValue(I.getArgOperand(0)).getValueType(),
6901                              getValue(I.getArgOperand(0)),
6902                              getValue(I.getArgOperand(1)), Flags));
6903     return;
6904   case Intrinsic::ldexp:
6905     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6906                              getValue(I.getArgOperand(0)).getValueType(),
6907                              getValue(I.getArgOperand(0)),
6908                              getValue(I.getArgOperand(1)), Flags));
6909     return;
6910   case Intrinsic::frexp: {
6911     SmallVector<EVT, 2> ValueVTs;
6912     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6913     SDVTList VTs = DAG.getVTList(ValueVTs);
6914     setValue(&I,
6915              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6916     return;
6917   }
6918   case Intrinsic::arithmetic_fence: {
6919     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6920                              getValue(I.getArgOperand(0)).getValueType(),
6921                              getValue(I.getArgOperand(0)), Flags));
6922     return;
6923   }
6924   case Intrinsic::fma:
6925     setValue(&I, DAG.getNode(
6926                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6927                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6928                      getValue(I.getArgOperand(2)), Flags));
6929     return;
6930 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6931   case Intrinsic::INTRINSIC:
6932 #include "llvm/IR/ConstrainedOps.def"
6933     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6934     return;
6935 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6936 #include "llvm/IR/VPIntrinsics.def"
6937     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6938     return;
6939   case Intrinsic::fptrunc_round: {
6940     // Get the last argument, the metadata and convert it to an integer in the
6941     // call
6942     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6943     std::optional<RoundingMode> RoundMode =
6944         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6945 
6946     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6947 
6948     // Propagate fast-math-flags from IR to node(s).
6949     SDNodeFlags Flags;
6950     Flags.copyFMF(*cast<FPMathOperator>(&I));
6951     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6952 
6953     SDValue Result;
6954     Result = DAG.getNode(
6955         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6956         DAG.getTargetConstant((int)*RoundMode, sdl,
6957                               TLI.getPointerTy(DAG.getDataLayout())));
6958     setValue(&I, Result);
6959 
6960     return;
6961   }
6962   case Intrinsic::fmuladd: {
6963     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6964     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6965         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6966       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6967                                getValue(I.getArgOperand(0)).getValueType(),
6968                                getValue(I.getArgOperand(0)),
6969                                getValue(I.getArgOperand(1)),
6970                                getValue(I.getArgOperand(2)), Flags));
6971     } else {
6972       // TODO: Intrinsic calls should have fast-math-flags.
6973       SDValue Mul = DAG.getNode(
6974           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6975           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6976       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6977                                 getValue(I.getArgOperand(0)).getValueType(),
6978                                 Mul, getValue(I.getArgOperand(2)), Flags);
6979       setValue(&I, Add);
6980     }
6981     return;
6982   }
6983   case Intrinsic::convert_to_fp16:
6984     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6985                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6986                                          getValue(I.getArgOperand(0)),
6987                                          DAG.getTargetConstant(0, sdl,
6988                                                                MVT::i32))));
6989     return;
6990   case Intrinsic::convert_from_fp16:
6991     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6992                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6993                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6994                                          getValue(I.getArgOperand(0)))));
6995     return;
6996   case Intrinsic::fptosi_sat: {
6997     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6998     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6999                              getValue(I.getArgOperand(0)),
7000                              DAG.getValueType(VT.getScalarType())));
7001     return;
7002   }
7003   case Intrinsic::fptoui_sat: {
7004     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7005     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
7006                              getValue(I.getArgOperand(0)),
7007                              DAG.getValueType(VT.getScalarType())));
7008     return;
7009   }
7010   case Intrinsic::set_rounding:
7011     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
7012                       {getRoot(), getValue(I.getArgOperand(0))});
7013     setValue(&I, Res);
7014     DAG.setRoot(Res.getValue(0));
7015     return;
7016   case Intrinsic::is_fpclass: {
7017     const DataLayout DLayout = DAG.getDataLayout();
7018     EVT DestVT = TLI.getValueType(DLayout, I.getType());
7019     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
7020     FPClassTest Test = static_cast<FPClassTest>(
7021         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
7022     MachineFunction &MF = DAG.getMachineFunction();
7023     const Function &F = MF.getFunction();
7024     SDValue Op = getValue(I.getArgOperand(0));
7025     SDNodeFlags Flags;
7026     Flags.setNoFPExcept(
7027         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7028     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
7029     // expansion can use illegal types. Making expansion early allows
7030     // legalizing these types prior to selection.
7031     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
7032       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
7033       setValue(&I, Result);
7034       return;
7035     }
7036 
7037     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
7038     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
7039     setValue(&I, V);
7040     return;
7041   }
7042   case Intrinsic::get_fpenv: {
7043     const DataLayout DLayout = DAG.getDataLayout();
7044     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
7045     Align TempAlign = DAG.getEVTAlign(EnvVT);
7046     SDValue Chain = getRoot();
7047     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
7048     // and temporary storage in stack.
7049     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
7050       Res = DAG.getNode(
7051           ISD::GET_FPENV, sdl,
7052           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7053                         MVT::Other),
7054           Chain);
7055     } else {
7056       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7057       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7058       auto MPI =
7059           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7060       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7061           MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
7062           TempAlign);
7063       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7064       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7065     }
7066     setValue(&I, Res);
7067     DAG.setRoot(Res.getValue(1));
7068     return;
7069   }
7070   case Intrinsic::set_fpenv: {
7071     const DataLayout DLayout = DAG.getDataLayout();
7072     SDValue Env = getValue(I.getArgOperand(0));
7073     EVT EnvVT = Env.getValueType();
7074     Align TempAlign = DAG.getEVTAlign(EnvVT);
7075     SDValue Chain = getRoot();
7076     // If SET_FPENV is custom or legal, use it. Otherwise use loading
7077     // environment from memory.
7078     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7079       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7080     } else {
7081       // Allocate space in stack, copy environment bits into it and use this
7082       // memory in SET_FPENV_MEM.
7083       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7084       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7085       auto MPI =
7086           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7087       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7088                            MachineMemOperand::MOStore);
7089       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7090           MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
7091           TempAlign);
7092       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7093     }
7094     DAG.setRoot(Chain);
7095     return;
7096   }
7097   case Intrinsic::reset_fpenv:
7098     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7099     return;
7100   case Intrinsic::get_fpmode:
7101     Res = DAG.getNode(
7102         ISD::GET_FPMODE, sdl,
7103         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7104                       MVT::Other),
7105         DAG.getRoot());
7106     setValue(&I, Res);
7107     DAG.setRoot(Res.getValue(1));
7108     return;
7109   case Intrinsic::set_fpmode:
7110     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7111                       getValue(I.getArgOperand(0)));
7112     DAG.setRoot(Res);
7113     return;
7114   case Intrinsic::reset_fpmode: {
7115     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7116     DAG.setRoot(Res);
7117     return;
7118   }
7119   case Intrinsic::pcmarker: {
7120     SDValue Tmp = getValue(I.getArgOperand(0));
7121     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7122     return;
7123   }
7124   case Intrinsic::readcyclecounter: {
7125     SDValue Op = getRoot();
7126     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7127                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7128     setValue(&I, Res);
7129     DAG.setRoot(Res.getValue(1));
7130     return;
7131   }
7132   case Intrinsic::readsteadycounter: {
7133     SDValue Op = getRoot();
7134     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7135                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7136     setValue(&I, Res);
7137     DAG.setRoot(Res.getValue(1));
7138     return;
7139   }
7140   case Intrinsic::bitreverse:
7141     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7142                              getValue(I.getArgOperand(0)).getValueType(),
7143                              getValue(I.getArgOperand(0))));
7144     return;
7145   case Intrinsic::bswap:
7146     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7147                              getValue(I.getArgOperand(0)).getValueType(),
7148                              getValue(I.getArgOperand(0))));
7149     return;
7150   case Intrinsic::cttz: {
7151     SDValue Arg = getValue(I.getArgOperand(0));
7152     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7153     EVT Ty = Arg.getValueType();
7154     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7155                              sdl, Ty, Arg));
7156     return;
7157   }
7158   case Intrinsic::ctlz: {
7159     SDValue Arg = getValue(I.getArgOperand(0));
7160     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7161     EVT Ty = Arg.getValueType();
7162     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7163                              sdl, Ty, Arg));
7164     return;
7165   }
7166   case Intrinsic::ctpop: {
7167     SDValue Arg = getValue(I.getArgOperand(0));
7168     EVT Ty = Arg.getValueType();
7169     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7170     return;
7171   }
7172   case Intrinsic::fshl:
7173   case Intrinsic::fshr: {
7174     bool IsFSHL = Intrinsic == Intrinsic::fshl;
7175     SDValue X = getValue(I.getArgOperand(0));
7176     SDValue Y = getValue(I.getArgOperand(1));
7177     SDValue Z = getValue(I.getArgOperand(2));
7178     EVT VT = X.getValueType();
7179 
7180     if (X == Y) {
7181       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7182       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7183     } else {
7184       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7185       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7186     }
7187     return;
7188   }
7189   case Intrinsic::sadd_sat: {
7190     SDValue Op1 = getValue(I.getArgOperand(0));
7191     SDValue Op2 = getValue(I.getArgOperand(1));
7192     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7193     return;
7194   }
7195   case Intrinsic::uadd_sat: {
7196     SDValue Op1 = getValue(I.getArgOperand(0));
7197     SDValue Op2 = getValue(I.getArgOperand(1));
7198     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7199     return;
7200   }
7201   case Intrinsic::ssub_sat: {
7202     SDValue Op1 = getValue(I.getArgOperand(0));
7203     SDValue Op2 = getValue(I.getArgOperand(1));
7204     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7205     return;
7206   }
7207   case Intrinsic::usub_sat: {
7208     SDValue Op1 = getValue(I.getArgOperand(0));
7209     SDValue Op2 = getValue(I.getArgOperand(1));
7210     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7211     return;
7212   }
7213   case Intrinsic::sshl_sat: {
7214     SDValue Op1 = getValue(I.getArgOperand(0));
7215     SDValue Op2 = getValue(I.getArgOperand(1));
7216     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7217     return;
7218   }
7219   case Intrinsic::ushl_sat: {
7220     SDValue Op1 = getValue(I.getArgOperand(0));
7221     SDValue Op2 = getValue(I.getArgOperand(1));
7222     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7223     return;
7224   }
7225   case Intrinsic::smul_fix:
7226   case Intrinsic::umul_fix:
7227   case Intrinsic::smul_fix_sat:
7228   case Intrinsic::umul_fix_sat: {
7229     SDValue Op1 = getValue(I.getArgOperand(0));
7230     SDValue Op2 = getValue(I.getArgOperand(1));
7231     SDValue Op3 = getValue(I.getArgOperand(2));
7232     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7233                              Op1.getValueType(), Op1, Op2, Op3));
7234     return;
7235   }
7236   case Intrinsic::sdiv_fix:
7237   case Intrinsic::udiv_fix:
7238   case Intrinsic::sdiv_fix_sat:
7239   case Intrinsic::udiv_fix_sat: {
7240     SDValue Op1 = getValue(I.getArgOperand(0));
7241     SDValue Op2 = getValue(I.getArgOperand(1));
7242     SDValue Op3 = getValue(I.getArgOperand(2));
7243     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7244                               Op1, Op2, Op3, DAG, TLI));
7245     return;
7246   }
7247   case Intrinsic::smax: {
7248     SDValue Op1 = getValue(I.getArgOperand(0));
7249     SDValue Op2 = getValue(I.getArgOperand(1));
7250     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7251     return;
7252   }
7253   case Intrinsic::smin: {
7254     SDValue Op1 = getValue(I.getArgOperand(0));
7255     SDValue Op2 = getValue(I.getArgOperand(1));
7256     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7257     return;
7258   }
7259   case Intrinsic::umax: {
7260     SDValue Op1 = getValue(I.getArgOperand(0));
7261     SDValue Op2 = getValue(I.getArgOperand(1));
7262     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7263     return;
7264   }
7265   case Intrinsic::umin: {
7266     SDValue Op1 = getValue(I.getArgOperand(0));
7267     SDValue Op2 = getValue(I.getArgOperand(1));
7268     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7269     return;
7270   }
7271   case Intrinsic::abs: {
7272     // TODO: Preserve "int min is poison" arg in SDAG?
7273     SDValue Op1 = getValue(I.getArgOperand(0));
7274     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7275     return;
7276   }
7277   case Intrinsic::scmp: {
7278     SDValue Op1 = getValue(I.getArgOperand(0));
7279     SDValue Op2 = getValue(I.getArgOperand(1));
7280     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7281     setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2));
7282     break;
7283   }
7284   case Intrinsic::ucmp: {
7285     SDValue Op1 = getValue(I.getArgOperand(0));
7286     SDValue Op2 = getValue(I.getArgOperand(1));
7287     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7288     setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2));
7289     break;
7290   }
7291   case Intrinsic::stacksave: {
7292     SDValue Op = getRoot();
7293     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7294     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7295     setValue(&I, Res);
7296     DAG.setRoot(Res.getValue(1));
7297     return;
7298   }
7299   case Intrinsic::stackrestore:
7300     Res = getValue(I.getArgOperand(0));
7301     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7302     return;
7303   case Intrinsic::get_dynamic_area_offset: {
7304     SDValue Op = getRoot();
7305     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7306     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7307     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7308     // target.
7309     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7310       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7311                          " intrinsic!");
7312     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7313                       Op);
7314     DAG.setRoot(Op);
7315     setValue(&I, Res);
7316     return;
7317   }
7318   case Intrinsic::stackguard: {
7319     MachineFunction &MF = DAG.getMachineFunction();
7320     const Module &M = *MF.getFunction().getParent();
7321     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7322     SDValue Chain = getRoot();
7323     if (TLI.useLoadStackGuardNode()) {
7324       Res = getLoadStackGuard(DAG, sdl, Chain);
7325       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7326     } else {
7327       const Value *Global = TLI.getSDagStackGuard(M);
7328       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7329       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7330                         MachinePointerInfo(Global, 0), Align,
7331                         MachineMemOperand::MOVolatile);
7332     }
7333     if (TLI.useStackGuardXorFP())
7334       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7335     DAG.setRoot(Chain);
7336     setValue(&I, Res);
7337     return;
7338   }
7339   case Intrinsic::stackprotector: {
7340     // Emit code into the DAG to store the stack guard onto the stack.
7341     MachineFunction &MF = DAG.getMachineFunction();
7342     MachineFrameInfo &MFI = MF.getFrameInfo();
7343     SDValue Src, Chain = getRoot();
7344 
7345     if (TLI.useLoadStackGuardNode())
7346       Src = getLoadStackGuard(DAG, sdl, Chain);
7347     else
7348       Src = getValue(I.getArgOperand(0));   // The guard's value.
7349 
7350     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7351 
7352     int FI = FuncInfo.StaticAllocaMap[Slot];
7353     MFI.setStackProtectorIndex(FI);
7354     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7355 
7356     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7357 
7358     // Store the stack protector onto the stack.
7359     Res = DAG.getStore(
7360         Chain, sdl, Src, FIN,
7361         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7362         MaybeAlign(), MachineMemOperand::MOVolatile);
7363     setValue(&I, Res);
7364     DAG.setRoot(Res);
7365     return;
7366   }
7367   case Intrinsic::objectsize:
7368     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7369 
7370   case Intrinsic::is_constant:
7371     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7372 
7373   case Intrinsic::annotation:
7374   case Intrinsic::ptr_annotation:
7375   case Intrinsic::launder_invariant_group:
7376   case Intrinsic::strip_invariant_group:
7377     // Drop the intrinsic, but forward the value
7378     setValue(&I, getValue(I.getOperand(0)));
7379     return;
7380 
7381   case Intrinsic::assume:
7382   case Intrinsic::experimental_noalias_scope_decl:
7383   case Intrinsic::var_annotation:
7384   case Intrinsic::sideeffect:
7385     // Discard annotate attributes, noalias scope declarations, assumptions, and
7386     // artificial side-effects.
7387     return;
7388 
7389   case Intrinsic::codeview_annotation: {
7390     // Emit a label associated with this metadata.
7391     MachineFunction &MF = DAG.getMachineFunction();
7392     MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true);
7393     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7394     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7395     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7396     DAG.setRoot(Res);
7397     return;
7398   }
7399 
7400   case Intrinsic::init_trampoline: {
7401     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7402 
7403     SDValue Ops[6];
7404     Ops[0] = getRoot();
7405     Ops[1] = getValue(I.getArgOperand(0));
7406     Ops[2] = getValue(I.getArgOperand(1));
7407     Ops[3] = getValue(I.getArgOperand(2));
7408     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7409     Ops[5] = DAG.getSrcValue(F);
7410 
7411     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7412 
7413     DAG.setRoot(Res);
7414     return;
7415   }
7416   case Intrinsic::adjust_trampoline:
7417     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7418                              TLI.getPointerTy(DAG.getDataLayout()),
7419                              getValue(I.getArgOperand(0))));
7420     return;
7421   case Intrinsic::gcroot: {
7422     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7423            "only valid in functions with gc specified, enforced by Verifier");
7424     assert(GFI && "implied by previous");
7425     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7426     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7427 
7428     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7429     GFI->addStackRoot(FI->getIndex(), TypeMap);
7430     return;
7431   }
7432   case Intrinsic::gcread:
7433   case Intrinsic::gcwrite:
7434     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7435   case Intrinsic::get_rounding:
7436     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7437     setValue(&I, Res);
7438     DAG.setRoot(Res.getValue(1));
7439     return;
7440 
7441   case Intrinsic::expect:
7442     // Just replace __builtin_expect(exp, c) with EXP.
7443     setValue(&I, getValue(I.getArgOperand(0)));
7444     return;
7445 
7446   case Intrinsic::ubsantrap:
7447   case Intrinsic::debugtrap:
7448   case Intrinsic::trap: {
7449     StringRef TrapFuncName =
7450         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7451     if (TrapFuncName.empty()) {
7452       switch (Intrinsic) {
7453       case Intrinsic::trap:
7454         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7455         break;
7456       case Intrinsic::debugtrap:
7457         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7458         break;
7459       case Intrinsic::ubsantrap:
7460         DAG.setRoot(DAG.getNode(
7461             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7462             DAG.getTargetConstant(
7463                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7464                 MVT::i32)));
7465         break;
7466       default: llvm_unreachable("unknown trap intrinsic");
7467       }
7468       DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(),
7469                              I.hasFnAttr(Attribute::NoMerge));
7470       return;
7471     }
7472     TargetLowering::ArgListTy Args;
7473     if (Intrinsic == Intrinsic::ubsantrap) {
7474       Args.push_back(TargetLoweringBase::ArgListEntry());
7475       Args[0].Val = I.getArgOperand(0);
7476       Args[0].Node = getValue(Args[0].Val);
7477       Args[0].Ty = Args[0].Val->getType();
7478     }
7479 
7480     TargetLowering::CallLoweringInfo CLI(DAG);
7481     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7482         CallingConv::C, I.getType(),
7483         DAG.getExternalSymbol(TrapFuncName.data(),
7484                               TLI.getPointerTy(DAG.getDataLayout())),
7485         std::move(Args));
7486     CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge);
7487     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7488     DAG.setRoot(Result.second);
7489     return;
7490   }
7491 
7492   case Intrinsic::allow_runtime_check:
7493   case Intrinsic::allow_ubsan_check:
7494     setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7495     return;
7496 
7497   case Intrinsic::uadd_with_overflow:
7498   case Intrinsic::sadd_with_overflow:
7499   case Intrinsic::usub_with_overflow:
7500   case Intrinsic::ssub_with_overflow:
7501   case Intrinsic::umul_with_overflow:
7502   case Intrinsic::smul_with_overflow: {
7503     ISD::NodeType Op;
7504     switch (Intrinsic) {
7505     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7506     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7507     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7508     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7509     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7510     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7511     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7512     }
7513     SDValue Op1 = getValue(I.getArgOperand(0));
7514     SDValue Op2 = getValue(I.getArgOperand(1));
7515 
7516     EVT ResultVT = Op1.getValueType();
7517     EVT OverflowVT = MVT::i1;
7518     if (ResultVT.isVector())
7519       OverflowVT = EVT::getVectorVT(
7520           *Context, OverflowVT, ResultVT.getVectorElementCount());
7521 
7522     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7523     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7524     return;
7525   }
7526   case Intrinsic::prefetch: {
7527     SDValue Ops[5];
7528     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7529     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7530     Ops[0] = DAG.getRoot();
7531     Ops[1] = getValue(I.getArgOperand(0));
7532     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7533                                    MVT::i32);
7534     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7535                                    MVT::i32);
7536     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7537                                    MVT::i32);
7538     SDValue Result = DAG.getMemIntrinsicNode(
7539         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7540         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7541         /* align */ std::nullopt, Flags);
7542 
7543     // Chain the prefetch in parallel with any pending loads, to stay out of
7544     // the way of later optimizations.
7545     PendingLoads.push_back(Result);
7546     Result = getRoot();
7547     DAG.setRoot(Result);
7548     return;
7549   }
7550   case Intrinsic::lifetime_start:
7551   case Intrinsic::lifetime_end: {
7552     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7553     // Stack coloring is not enabled in O0, discard region information.
7554     if (TM.getOptLevel() == CodeGenOptLevel::None)
7555       return;
7556 
7557     const int64_t ObjectSize =
7558         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7559     Value *const ObjectPtr = I.getArgOperand(1);
7560     SmallVector<const Value *, 4> Allocas;
7561     getUnderlyingObjects(ObjectPtr, Allocas);
7562 
7563     for (const Value *Alloca : Allocas) {
7564       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7565 
7566       // Could not find an Alloca.
7567       if (!LifetimeObject)
7568         continue;
7569 
7570       // First check that the Alloca is static, otherwise it won't have a
7571       // valid frame index.
7572       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7573       if (SI == FuncInfo.StaticAllocaMap.end())
7574         return;
7575 
7576       const int FrameIndex = SI->second;
7577       int64_t Offset;
7578       if (GetPointerBaseWithConstantOffset(
7579               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7580         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7581       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7582                                 Offset);
7583       DAG.setRoot(Res);
7584     }
7585     return;
7586   }
7587   case Intrinsic::pseudoprobe: {
7588     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7589     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7590     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7591     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7592     DAG.setRoot(Res);
7593     return;
7594   }
7595   case Intrinsic::invariant_start:
7596     // Discard region information.
7597     setValue(&I,
7598              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7599     return;
7600   case Intrinsic::invariant_end:
7601     // Discard region information.
7602     return;
7603   case Intrinsic::clear_cache: {
7604     SDValue InputChain = DAG.getRoot();
7605     SDValue StartVal = getValue(I.getArgOperand(0));
7606     SDValue EndVal = getValue(I.getArgOperand(1));
7607     Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7608                       {InputChain, StartVal, EndVal});
7609     setValue(&I, Res);
7610     DAG.setRoot(Res);
7611     return;
7612   }
7613   case Intrinsic::donothing:
7614   case Intrinsic::seh_try_begin:
7615   case Intrinsic::seh_scope_begin:
7616   case Intrinsic::seh_try_end:
7617   case Intrinsic::seh_scope_end:
7618     // ignore
7619     return;
7620   case Intrinsic::experimental_stackmap:
7621     visitStackmap(I);
7622     return;
7623   case Intrinsic::experimental_patchpoint_void:
7624   case Intrinsic::experimental_patchpoint:
7625     visitPatchpoint(I);
7626     return;
7627   case Intrinsic::experimental_gc_statepoint:
7628     LowerStatepoint(cast<GCStatepointInst>(I));
7629     return;
7630   case Intrinsic::experimental_gc_result:
7631     visitGCResult(cast<GCResultInst>(I));
7632     return;
7633   case Intrinsic::experimental_gc_relocate:
7634     visitGCRelocate(cast<GCRelocateInst>(I));
7635     return;
7636   case Intrinsic::instrprof_cover:
7637     llvm_unreachable("instrprof failed to lower a cover");
7638   case Intrinsic::instrprof_increment:
7639     llvm_unreachable("instrprof failed to lower an increment");
7640   case Intrinsic::instrprof_timestamp:
7641     llvm_unreachable("instrprof failed to lower a timestamp");
7642   case Intrinsic::instrprof_value_profile:
7643     llvm_unreachable("instrprof failed to lower a value profiling call");
7644   case Intrinsic::instrprof_mcdc_parameters:
7645     llvm_unreachable("instrprof failed to lower mcdc parameters");
7646   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7647     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7648   case Intrinsic::localescape: {
7649     MachineFunction &MF = DAG.getMachineFunction();
7650     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7651 
7652     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7653     // is the same on all targets.
7654     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7655       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7656       if (isa<ConstantPointerNull>(Arg))
7657         continue; // Skip null pointers. They represent a hole in index space.
7658       AllocaInst *Slot = cast<AllocaInst>(Arg);
7659       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7660              "can only escape static allocas");
7661       int FI = FuncInfo.StaticAllocaMap[Slot];
7662       MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7663           GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7664       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7665               TII->get(TargetOpcode::LOCAL_ESCAPE))
7666           .addSym(FrameAllocSym)
7667           .addFrameIndex(FI);
7668     }
7669 
7670     return;
7671   }
7672 
7673   case Intrinsic::localrecover: {
7674     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7675     MachineFunction &MF = DAG.getMachineFunction();
7676 
7677     // Get the symbol that defines the frame offset.
7678     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7679     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7680     unsigned IdxVal =
7681         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7682     MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7683         GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7684 
7685     Value *FP = I.getArgOperand(1);
7686     SDValue FPVal = getValue(FP);
7687     EVT PtrVT = FPVal.getValueType();
7688 
7689     // Create a MCSymbol for the label to avoid any target lowering
7690     // that would make this PC relative.
7691     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7692     SDValue OffsetVal =
7693         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7694 
7695     // Add the offset to the FP.
7696     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7697     setValue(&I, Add);
7698 
7699     return;
7700   }
7701 
7702   case Intrinsic::eh_exceptionpointer:
7703   case Intrinsic::eh_exceptioncode: {
7704     // Get the exception pointer vreg, copy from it, and resize it to fit.
7705     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7706     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7707     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7708     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7709     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7710     if (Intrinsic == Intrinsic::eh_exceptioncode)
7711       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7712     setValue(&I, N);
7713     return;
7714   }
7715   case Intrinsic::xray_customevent: {
7716     // Here we want to make sure that the intrinsic behaves as if it has a
7717     // specific calling convention.
7718     const auto &Triple = DAG.getTarget().getTargetTriple();
7719     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7720       return;
7721 
7722     SmallVector<SDValue, 8> Ops;
7723 
7724     // We want to say that we always want the arguments in registers.
7725     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7726     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7727     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7728     SDValue Chain = getRoot();
7729     Ops.push_back(LogEntryVal);
7730     Ops.push_back(StrSizeVal);
7731     Ops.push_back(Chain);
7732 
7733     // We need to enforce the calling convention for the callsite, so that
7734     // argument ordering is enforced correctly, and that register allocation can
7735     // see that some registers may be assumed clobbered and have to preserve
7736     // them across calls to the intrinsic.
7737     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7738                                            sdl, NodeTys, Ops);
7739     SDValue patchableNode = SDValue(MN, 0);
7740     DAG.setRoot(patchableNode);
7741     setValue(&I, patchableNode);
7742     return;
7743   }
7744   case Intrinsic::xray_typedevent: {
7745     // Here we want to make sure that the intrinsic behaves as if it has a
7746     // specific calling convention.
7747     const auto &Triple = DAG.getTarget().getTargetTriple();
7748     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7749       return;
7750 
7751     SmallVector<SDValue, 8> Ops;
7752 
7753     // We want to say that we always want the arguments in registers.
7754     // It's unclear to me how manipulating the selection DAG here forces callers
7755     // to provide arguments in registers instead of on the stack.
7756     SDValue LogTypeId = getValue(I.getArgOperand(0));
7757     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7758     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7759     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7760     SDValue Chain = getRoot();
7761     Ops.push_back(LogTypeId);
7762     Ops.push_back(LogEntryVal);
7763     Ops.push_back(StrSizeVal);
7764     Ops.push_back(Chain);
7765 
7766     // We need to enforce the calling convention for the callsite, so that
7767     // argument ordering is enforced correctly, and that register allocation can
7768     // see that some registers may be assumed clobbered and have to preserve
7769     // them across calls to the intrinsic.
7770     MachineSDNode *MN = DAG.getMachineNode(
7771         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7772     SDValue patchableNode = SDValue(MN, 0);
7773     DAG.setRoot(patchableNode);
7774     setValue(&I, patchableNode);
7775     return;
7776   }
7777   case Intrinsic::experimental_deoptimize:
7778     LowerDeoptimizeCall(&I);
7779     return;
7780   case Intrinsic::experimental_stepvector:
7781     visitStepVector(I);
7782     return;
7783   case Intrinsic::vector_reduce_fadd:
7784   case Intrinsic::vector_reduce_fmul:
7785   case Intrinsic::vector_reduce_add:
7786   case Intrinsic::vector_reduce_mul:
7787   case Intrinsic::vector_reduce_and:
7788   case Intrinsic::vector_reduce_or:
7789   case Intrinsic::vector_reduce_xor:
7790   case Intrinsic::vector_reduce_smax:
7791   case Intrinsic::vector_reduce_smin:
7792   case Intrinsic::vector_reduce_umax:
7793   case Intrinsic::vector_reduce_umin:
7794   case Intrinsic::vector_reduce_fmax:
7795   case Intrinsic::vector_reduce_fmin:
7796   case Intrinsic::vector_reduce_fmaximum:
7797   case Intrinsic::vector_reduce_fminimum:
7798     visitVectorReduce(I, Intrinsic);
7799     return;
7800 
7801   case Intrinsic::icall_branch_funnel: {
7802     SmallVector<SDValue, 16> Ops;
7803     Ops.push_back(getValue(I.getArgOperand(0)));
7804 
7805     int64_t Offset;
7806     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7807         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7808     if (!Base)
7809       report_fatal_error(
7810           "llvm.icall.branch.funnel operand must be a GlobalValue");
7811     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7812 
7813     struct BranchFunnelTarget {
7814       int64_t Offset;
7815       SDValue Target;
7816     };
7817     SmallVector<BranchFunnelTarget, 8> Targets;
7818 
7819     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7820       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7821           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7822       if (ElemBase != Base)
7823         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7824                            "to the same GlobalValue");
7825 
7826       SDValue Val = getValue(I.getArgOperand(Op + 1));
7827       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7828       if (!GA)
7829         report_fatal_error(
7830             "llvm.icall.branch.funnel operand must be a GlobalValue");
7831       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7832                                      GA->getGlobal(), sdl, Val.getValueType(),
7833                                      GA->getOffset())});
7834     }
7835     llvm::sort(Targets,
7836                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7837                  return T1.Offset < T2.Offset;
7838                });
7839 
7840     for (auto &T : Targets) {
7841       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7842       Ops.push_back(T.Target);
7843     }
7844 
7845     Ops.push_back(DAG.getRoot()); // Chain
7846     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7847                                  MVT::Other, Ops),
7848               0);
7849     DAG.setRoot(N);
7850     setValue(&I, N);
7851     HasTailCall = true;
7852     return;
7853   }
7854 
7855   case Intrinsic::wasm_landingpad_index:
7856     // Information this intrinsic contained has been transferred to
7857     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7858     // delete it now.
7859     return;
7860 
7861   case Intrinsic::aarch64_settag:
7862   case Intrinsic::aarch64_settag_zero: {
7863     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7864     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7865     SDValue Val = TSI.EmitTargetCodeForSetTag(
7866         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7867         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7868         ZeroMemory);
7869     DAG.setRoot(Val);
7870     setValue(&I, Val);
7871     return;
7872   }
7873   case Intrinsic::amdgcn_cs_chain: {
7874     assert(I.arg_size() == 5 && "Additional args not supported yet");
7875     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7876            "Non-zero flags not supported yet");
7877 
7878     // At this point we don't care if it's amdgpu_cs_chain or
7879     // amdgpu_cs_chain_preserve.
7880     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7881 
7882     Type *RetTy = I.getType();
7883     assert(RetTy->isVoidTy() && "Should not return");
7884 
7885     SDValue Callee = getValue(I.getOperand(0));
7886 
7887     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7888     // We'll also tack the value of the EXEC mask at the end.
7889     TargetLowering::ArgListTy Args;
7890     Args.reserve(3);
7891 
7892     for (unsigned Idx : {2, 3, 1}) {
7893       TargetLowering::ArgListEntry Arg;
7894       Arg.Node = getValue(I.getOperand(Idx));
7895       Arg.Ty = I.getOperand(Idx)->getType();
7896       Arg.setAttributes(&I, Idx);
7897       Args.push_back(Arg);
7898     }
7899 
7900     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7901     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7902     Args[2].IsInReg = true; // EXEC should be inreg
7903 
7904     TargetLowering::CallLoweringInfo CLI(DAG);
7905     CLI.setDebugLoc(getCurSDLoc())
7906         .setChain(getRoot())
7907         .setCallee(CC, RetTy, Callee, std::move(Args))
7908         .setNoReturn(true)
7909         .setTailCall(true)
7910         .setConvergent(I.isConvergent());
7911     CLI.CB = &I;
7912     std::pair<SDValue, SDValue> Result =
7913         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7914     (void)Result;
7915     assert(!Result.first.getNode() && !Result.second.getNode() &&
7916            "Should've lowered as tail call");
7917 
7918     HasTailCall = true;
7919     return;
7920   }
7921   case Intrinsic::ptrmask: {
7922     SDValue Ptr = getValue(I.getOperand(0));
7923     SDValue Mask = getValue(I.getOperand(1));
7924 
7925     // On arm64_32, pointers are 32 bits when stored in memory, but
7926     // zero-extended to 64 bits when in registers.  Thus the mask is 32 bits to
7927     // match the index type, but the pointer is 64 bits, so the the mask must be
7928     // zero-extended up to 64 bits to match the pointer.
7929     EVT PtrVT =
7930         TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7931     EVT MemVT =
7932         TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7933     assert(PtrVT == Ptr.getValueType());
7934     assert(MemVT == Mask.getValueType());
7935     if (MemVT != PtrVT)
7936       Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
7937 
7938     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7939     return;
7940   }
7941   case Intrinsic::threadlocal_address: {
7942     setValue(&I, getValue(I.getOperand(0)));
7943     return;
7944   }
7945   case Intrinsic::get_active_lane_mask: {
7946     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7947     SDValue Index = getValue(I.getOperand(0));
7948     EVT ElementVT = Index.getValueType();
7949 
7950     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7951       visitTargetIntrinsic(I, Intrinsic);
7952       return;
7953     }
7954 
7955     SDValue TripCount = getValue(I.getOperand(1));
7956     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7957                                  CCVT.getVectorElementCount());
7958 
7959     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7960     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7961     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7962     SDValue VectorInduction = DAG.getNode(
7963         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7964     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7965                                  VectorTripCount, ISD::CondCode::SETULT);
7966     setValue(&I, SetCC);
7967     return;
7968   }
7969   case Intrinsic::experimental_get_vector_length: {
7970     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7971            "Expected positive VF");
7972     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7973     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7974 
7975     SDValue Count = getValue(I.getOperand(0));
7976     EVT CountVT = Count.getValueType();
7977 
7978     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7979       visitTargetIntrinsic(I, Intrinsic);
7980       return;
7981     }
7982 
7983     // Expand to a umin between the trip count and the maximum elements the type
7984     // can hold.
7985     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7986 
7987     // Extend the trip count to at least the result VT.
7988     if (CountVT.bitsLT(VT)) {
7989       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7990       CountVT = VT;
7991     }
7992 
7993     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7994                                          ElementCount::get(VF, IsScalable));
7995 
7996     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7997     // Clip to the result type if needed.
7998     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7999 
8000     setValue(&I, Trunc);
8001     return;
8002   }
8003   case Intrinsic::experimental_vector_partial_reduce_add: {
8004     SDValue OpNode = getValue(I.getOperand(1));
8005     EVT ReducedTy = EVT::getEVT(I.getType());
8006     EVT FullTy = OpNode.getValueType();
8007 
8008     unsigned Stride = ReducedTy.getVectorMinNumElements();
8009     unsigned ScaleFactor = FullTy.getVectorMinNumElements() / Stride;
8010 
8011     // Collect all of the subvectors
8012     std::deque<SDValue> Subvectors;
8013     Subvectors.push_back(getValue(I.getOperand(0)));
8014     for (unsigned i = 0; i < ScaleFactor; i++) {
8015       auto SourceIndex = DAG.getVectorIdxConstant(i * Stride, sdl);
8016       Subvectors.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ReducedTy,
8017                                        {OpNode, SourceIndex}));
8018     }
8019 
8020     // Flatten the subvector tree
8021     while (Subvectors.size() > 1) {
8022       Subvectors.push_back(DAG.getNode(ISD::ADD, sdl, ReducedTy,
8023                                        {Subvectors[0], Subvectors[1]}));
8024       Subvectors.pop_front();
8025       Subvectors.pop_front();
8026     }
8027 
8028     assert(Subvectors.size() == 1 &&
8029            "There should only be one subvector after tree flattening");
8030 
8031     setValue(&I, Subvectors[0]);
8032     return;
8033   }
8034   case Intrinsic::experimental_cttz_elts: {
8035     auto DL = getCurSDLoc();
8036     SDValue Op = getValue(I.getOperand(0));
8037     EVT OpVT = Op.getValueType();
8038 
8039     if (!TLI.shouldExpandCttzElements(OpVT)) {
8040       visitTargetIntrinsic(I, Intrinsic);
8041       return;
8042     }
8043 
8044     if (OpVT.getScalarType() != MVT::i1) {
8045       // Compare the input vector elements to zero & use to count trailing zeros
8046       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
8047       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
8048                               OpVT.getVectorElementCount());
8049       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
8050     }
8051 
8052     // If the zero-is-poison flag is set, we can assume the upper limit
8053     // of the result is VF-1.
8054     bool ZeroIsPoison =
8055         !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
8056     ConstantRange VScaleRange(1, true); // Dummy value.
8057     if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
8058       VScaleRange = getVScaleRange(I.getCaller(), 64);
8059     unsigned EltWidth = TLI.getBitWidthForCttzElements(
8060         I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
8061 
8062     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
8063 
8064     // Create the new vector type & get the vector length
8065     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
8066                                  OpVT.getVectorElementCount());
8067 
8068     SDValue VL =
8069         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
8070 
8071     SDValue StepVec = DAG.getStepVector(DL, NewVT);
8072     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
8073     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
8074     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
8075     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
8076     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
8077     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
8078 
8079     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
8080     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
8081 
8082     setValue(&I, Ret);
8083     return;
8084   }
8085   case Intrinsic::vector_insert: {
8086     SDValue Vec = getValue(I.getOperand(0));
8087     SDValue SubVec = getValue(I.getOperand(1));
8088     SDValue Index = getValue(I.getOperand(2));
8089 
8090     // The intrinsic's index type is i64, but the SDNode requires an index type
8091     // suitable for the target. Convert the index as required.
8092     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8093     if (Index.getValueType() != VectorIdxTy)
8094       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8095 
8096     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8097     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
8098                              Index));
8099     return;
8100   }
8101   case Intrinsic::vector_extract: {
8102     SDValue Vec = getValue(I.getOperand(0));
8103     SDValue Index = getValue(I.getOperand(1));
8104     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8105 
8106     // The intrinsic's index type is i64, but the SDNode requires an index type
8107     // suitable for the target. Convert the index as required.
8108     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8109     if (Index.getValueType() != VectorIdxTy)
8110       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8111 
8112     setValue(&I,
8113              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8114     return;
8115   }
8116   case Intrinsic::vector_reverse:
8117     visitVectorReverse(I);
8118     return;
8119   case Intrinsic::vector_splice:
8120     visitVectorSplice(I);
8121     return;
8122   case Intrinsic::callbr_landingpad:
8123     visitCallBrLandingPad(I);
8124     return;
8125   case Intrinsic::vector_interleave2:
8126     visitVectorInterleave(I);
8127     return;
8128   case Intrinsic::vector_deinterleave2:
8129     visitVectorDeinterleave(I);
8130     return;
8131   case Intrinsic::experimental_vector_compress:
8132     setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl,
8133                              getValue(I.getArgOperand(0)).getValueType(),
8134                              getValue(I.getArgOperand(0)),
8135                              getValue(I.getArgOperand(1)),
8136                              getValue(I.getArgOperand(2)), Flags));
8137     return;
8138   case Intrinsic::experimental_convergence_anchor:
8139   case Intrinsic::experimental_convergence_entry:
8140   case Intrinsic::experimental_convergence_loop:
8141     visitConvergenceControl(I, Intrinsic);
8142     return;
8143   case Intrinsic::experimental_vector_histogram_add: {
8144     visitVectorHistogram(I, Intrinsic);
8145     return;
8146   }
8147   }
8148 }
8149 
8150 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8151     const ConstrainedFPIntrinsic &FPI) {
8152   SDLoc sdl = getCurSDLoc();
8153 
8154   // We do not need to serialize constrained FP intrinsics against
8155   // each other or against (nonvolatile) loads, so they can be
8156   // chained like loads.
8157   SDValue Chain = DAG.getRoot();
8158   SmallVector<SDValue, 4> Opers;
8159   Opers.push_back(Chain);
8160   for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8161     Opers.push_back(getValue(FPI.getArgOperand(I)));
8162 
8163   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
8164     assert(Result.getNode()->getNumValues() == 2);
8165 
8166     // Push node to the appropriate list so that future instructions can be
8167     // chained up correctly.
8168     SDValue OutChain = Result.getValue(1);
8169     switch (EB) {
8170     case fp::ExceptionBehavior::ebIgnore:
8171       // The only reason why ebIgnore nodes still need to be chained is that
8172       // they might depend on the current rounding mode, and therefore must
8173       // not be moved across instruction that may change that mode.
8174       [[fallthrough]];
8175     case fp::ExceptionBehavior::ebMayTrap:
8176       // These must not be moved across calls or instructions that may change
8177       // floating-point exception masks.
8178       PendingConstrainedFP.push_back(OutChain);
8179       break;
8180     case fp::ExceptionBehavior::ebStrict:
8181       // These must not be moved across calls or instructions that may change
8182       // floating-point exception masks or read floating-point exception flags.
8183       // In addition, they cannot be optimized out even if unused.
8184       PendingConstrainedFPStrict.push_back(OutChain);
8185       break;
8186     }
8187   };
8188 
8189   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8190   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8191   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8192   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
8193 
8194   SDNodeFlags Flags;
8195   if (EB == fp::ExceptionBehavior::ebIgnore)
8196     Flags.setNoFPExcept(true);
8197 
8198   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8199     Flags.copyFMF(*FPOp);
8200 
8201   unsigned Opcode;
8202   switch (FPI.getIntrinsicID()) {
8203   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8204 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8205   case Intrinsic::INTRINSIC:                                                   \
8206     Opcode = ISD::STRICT_##DAGN;                                               \
8207     break;
8208 #include "llvm/IR/ConstrainedOps.def"
8209   case Intrinsic::experimental_constrained_fmuladd: {
8210     Opcode = ISD::STRICT_FMA;
8211     // Break fmuladd into fmul and fadd.
8212     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8213         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8214       Opers.pop_back();
8215       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8216       pushOutChain(Mul, EB);
8217       Opcode = ISD::STRICT_FADD;
8218       Opers.clear();
8219       Opers.push_back(Mul.getValue(1));
8220       Opers.push_back(Mul.getValue(0));
8221       Opers.push_back(getValue(FPI.getArgOperand(2)));
8222     }
8223     break;
8224   }
8225   }
8226 
8227   // A few strict DAG nodes carry additional operands that are not
8228   // set up by the default code above.
8229   switch (Opcode) {
8230   default: break;
8231   case ISD::STRICT_FP_ROUND:
8232     Opers.push_back(
8233         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8234     break;
8235   case ISD::STRICT_FSETCC:
8236   case ISD::STRICT_FSETCCS: {
8237     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8238     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8239     if (TM.Options.NoNaNsFPMath)
8240       Condition = getFCmpCodeWithoutNaN(Condition);
8241     Opers.push_back(DAG.getCondCode(Condition));
8242     break;
8243   }
8244   }
8245 
8246   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8247   pushOutChain(Result, EB);
8248 
8249   SDValue FPResult = Result.getValue(0);
8250   setValue(&FPI, FPResult);
8251 }
8252 
8253 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8254   std::optional<unsigned> ResOPC;
8255   switch (VPIntrin.getIntrinsicID()) {
8256   case Intrinsic::vp_ctlz: {
8257     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8258     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8259     break;
8260   }
8261   case Intrinsic::vp_cttz: {
8262     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8263     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8264     break;
8265   }
8266   case Intrinsic::vp_cttz_elts: {
8267     bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8268     ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8269     break;
8270   }
8271 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
8272   case Intrinsic::VPID:                                                        \
8273     ResOPC = ISD::VPSD;                                                        \
8274     break;
8275 #include "llvm/IR/VPIntrinsics.def"
8276   }
8277 
8278   if (!ResOPC)
8279     llvm_unreachable(
8280         "Inconsistency: no SDNode available for this VPIntrinsic!");
8281 
8282   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8283       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8284     if (VPIntrin.getFastMathFlags().allowReassoc())
8285       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8286                                                 : ISD::VP_REDUCE_FMUL;
8287   }
8288 
8289   return *ResOPC;
8290 }
8291 
8292 void SelectionDAGBuilder::visitVPLoad(
8293     const VPIntrinsic &VPIntrin, EVT VT,
8294     const SmallVectorImpl<SDValue> &OpValues) {
8295   SDLoc DL = getCurSDLoc();
8296   Value *PtrOperand = VPIntrin.getArgOperand(0);
8297   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8298   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8299   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8300   SDValue LD;
8301   // Do not serialize variable-length loads of constant memory with
8302   // anything.
8303   if (!Alignment)
8304     Alignment = DAG.getEVTAlign(VT);
8305   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8306   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8307   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8308   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8309       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8310       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8311   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8312                      MMO, false /*IsExpanding */);
8313   if (AddToChain)
8314     PendingLoads.push_back(LD.getValue(1));
8315   setValue(&VPIntrin, LD);
8316 }
8317 
8318 void SelectionDAGBuilder::visitVPGather(
8319     const VPIntrinsic &VPIntrin, EVT VT,
8320     const SmallVectorImpl<SDValue> &OpValues) {
8321   SDLoc DL = getCurSDLoc();
8322   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8323   Value *PtrOperand = VPIntrin.getArgOperand(0);
8324   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8325   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8326   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8327   SDValue LD;
8328   if (!Alignment)
8329     Alignment = DAG.getEVTAlign(VT.getScalarType());
8330   unsigned AS =
8331     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8332   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8333       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8334       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8335   SDValue Base, Index, Scale;
8336   ISD::MemIndexType IndexType;
8337   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8338                                     this, VPIntrin.getParent(),
8339                                     VT.getScalarStoreSize());
8340   if (!UniformBase) {
8341     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8342     Index = getValue(PtrOperand);
8343     IndexType = ISD::SIGNED_SCALED;
8344     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8345   }
8346   EVT IdxVT = Index.getValueType();
8347   EVT EltTy = IdxVT.getVectorElementType();
8348   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8349     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8350     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8351   }
8352   LD = DAG.getGatherVP(
8353       DAG.getVTList(VT, MVT::Other), VT, DL,
8354       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8355       IndexType);
8356   PendingLoads.push_back(LD.getValue(1));
8357   setValue(&VPIntrin, LD);
8358 }
8359 
8360 void SelectionDAGBuilder::visitVPStore(
8361     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8362   SDLoc DL = getCurSDLoc();
8363   Value *PtrOperand = VPIntrin.getArgOperand(1);
8364   EVT VT = OpValues[0].getValueType();
8365   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8366   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8367   SDValue ST;
8368   if (!Alignment)
8369     Alignment = DAG.getEVTAlign(VT);
8370   SDValue Ptr = OpValues[1];
8371   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8372   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8373       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8374       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8375   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8376                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8377                       /* IsTruncating */ false, /*IsCompressing*/ false);
8378   DAG.setRoot(ST);
8379   setValue(&VPIntrin, ST);
8380 }
8381 
8382 void SelectionDAGBuilder::visitVPScatter(
8383     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8384   SDLoc DL = getCurSDLoc();
8385   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8386   Value *PtrOperand = VPIntrin.getArgOperand(1);
8387   EVT VT = OpValues[0].getValueType();
8388   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8389   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8390   SDValue ST;
8391   if (!Alignment)
8392     Alignment = DAG.getEVTAlign(VT.getScalarType());
8393   unsigned AS =
8394       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8395   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8396       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8397       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8398   SDValue Base, Index, Scale;
8399   ISD::MemIndexType IndexType;
8400   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8401                                     this, VPIntrin.getParent(),
8402                                     VT.getScalarStoreSize());
8403   if (!UniformBase) {
8404     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8405     Index = getValue(PtrOperand);
8406     IndexType = ISD::SIGNED_SCALED;
8407     Scale =
8408       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8409   }
8410   EVT IdxVT = Index.getValueType();
8411   EVT EltTy = IdxVT.getVectorElementType();
8412   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8413     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8414     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8415   }
8416   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8417                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8418                          OpValues[2], OpValues[3]},
8419                         MMO, IndexType);
8420   DAG.setRoot(ST);
8421   setValue(&VPIntrin, ST);
8422 }
8423 
8424 void SelectionDAGBuilder::visitVPStridedLoad(
8425     const VPIntrinsic &VPIntrin, EVT VT,
8426     const SmallVectorImpl<SDValue> &OpValues) {
8427   SDLoc DL = getCurSDLoc();
8428   Value *PtrOperand = VPIntrin.getArgOperand(0);
8429   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8430   if (!Alignment)
8431     Alignment = DAG.getEVTAlign(VT.getScalarType());
8432   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8433   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8434   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8435   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8436   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8437   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8438   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8439       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8440       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8441 
8442   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8443                                     OpValues[2], OpValues[3], MMO,
8444                                     false /*IsExpanding*/);
8445 
8446   if (AddToChain)
8447     PendingLoads.push_back(LD.getValue(1));
8448   setValue(&VPIntrin, LD);
8449 }
8450 
8451 void SelectionDAGBuilder::visitVPStridedStore(
8452     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8453   SDLoc DL = getCurSDLoc();
8454   Value *PtrOperand = VPIntrin.getArgOperand(1);
8455   EVT VT = OpValues[0].getValueType();
8456   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8457   if (!Alignment)
8458     Alignment = DAG.getEVTAlign(VT.getScalarType());
8459   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8460   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8461   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8462       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8463       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8464 
8465   SDValue ST = DAG.getStridedStoreVP(
8466       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8467       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8468       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8469       /*IsCompressing*/ false);
8470 
8471   DAG.setRoot(ST);
8472   setValue(&VPIntrin, ST);
8473 }
8474 
8475 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8476   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8477   SDLoc DL = getCurSDLoc();
8478 
8479   ISD::CondCode Condition;
8480   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8481   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8482   if (IsFP) {
8483     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8484     // flags, but calls that don't return floating-point types can't be
8485     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8486     Condition = getFCmpCondCode(CondCode);
8487     if (TM.Options.NoNaNsFPMath)
8488       Condition = getFCmpCodeWithoutNaN(Condition);
8489   } else {
8490     Condition = getICmpCondCode(CondCode);
8491   }
8492 
8493   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8494   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8495   // #2 is the condition code
8496   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8497   SDValue EVL = getValue(VPIntrin.getOperand(4));
8498   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8499   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8500          "Unexpected target EVL type");
8501   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8502 
8503   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8504                                                         VPIntrin.getType());
8505   setValue(&VPIntrin,
8506            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8507 }
8508 
8509 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8510     const VPIntrinsic &VPIntrin) {
8511   SDLoc DL = getCurSDLoc();
8512   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8513 
8514   auto IID = VPIntrin.getIntrinsicID();
8515 
8516   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8517     return visitVPCmp(*CmpI);
8518 
8519   SmallVector<EVT, 4> ValueVTs;
8520   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8521   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8522   SDVTList VTs = DAG.getVTList(ValueVTs);
8523 
8524   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8525 
8526   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8527   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8528          "Unexpected target EVL type");
8529 
8530   // Request operands.
8531   SmallVector<SDValue, 7> OpValues;
8532   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8533     auto Op = getValue(VPIntrin.getArgOperand(I));
8534     if (I == EVLParamPos)
8535       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8536     OpValues.push_back(Op);
8537   }
8538 
8539   switch (Opcode) {
8540   default: {
8541     SDNodeFlags SDFlags;
8542     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8543       SDFlags.copyFMF(*FPMO);
8544     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8545     setValue(&VPIntrin, Result);
8546     break;
8547   }
8548   case ISD::VP_LOAD:
8549     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8550     break;
8551   case ISD::VP_GATHER:
8552     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8553     break;
8554   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8555     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8556     break;
8557   case ISD::VP_STORE:
8558     visitVPStore(VPIntrin, OpValues);
8559     break;
8560   case ISD::VP_SCATTER:
8561     visitVPScatter(VPIntrin, OpValues);
8562     break;
8563   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8564     visitVPStridedStore(VPIntrin, OpValues);
8565     break;
8566   case ISD::VP_FMULADD: {
8567     assert(OpValues.size() == 5 && "Unexpected number of operands");
8568     SDNodeFlags SDFlags;
8569     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8570       SDFlags.copyFMF(*FPMO);
8571     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8572         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8573       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8574     } else {
8575       SDValue Mul = DAG.getNode(
8576           ISD::VP_FMUL, DL, VTs,
8577           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8578       SDValue Add =
8579           DAG.getNode(ISD::VP_FADD, DL, VTs,
8580                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8581       setValue(&VPIntrin, Add);
8582     }
8583     break;
8584   }
8585   case ISD::VP_IS_FPCLASS: {
8586     const DataLayout DLayout = DAG.getDataLayout();
8587     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8588     auto Constant = OpValues[1]->getAsZExtVal();
8589     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8590     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8591                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8592     setValue(&VPIntrin, V);
8593     return;
8594   }
8595   case ISD::VP_INTTOPTR: {
8596     SDValue N = OpValues[0];
8597     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8598     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8599     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8600                                OpValues[2]);
8601     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8602                              OpValues[2]);
8603     setValue(&VPIntrin, N);
8604     break;
8605   }
8606   case ISD::VP_PTRTOINT: {
8607     SDValue N = OpValues[0];
8608     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8609                                                           VPIntrin.getType());
8610     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8611                                        VPIntrin.getOperand(0)->getType());
8612     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8613                                OpValues[2]);
8614     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8615                              OpValues[2]);
8616     setValue(&VPIntrin, N);
8617     break;
8618   }
8619   case ISD::VP_ABS:
8620   case ISD::VP_CTLZ:
8621   case ISD::VP_CTLZ_ZERO_UNDEF:
8622   case ISD::VP_CTTZ:
8623   case ISD::VP_CTTZ_ZERO_UNDEF:
8624   case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8625   case ISD::VP_CTTZ_ELTS: {
8626     SDValue Result =
8627         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8628     setValue(&VPIntrin, Result);
8629     break;
8630   }
8631   }
8632 }
8633 
8634 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8635                                           const BasicBlock *EHPadBB,
8636                                           MCSymbol *&BeginLabel) {
8637   MachineFunction &MF = DAG.getMachineFunction();
8638 
8639   // Insert a label before the invoke call to mark the try range.  This can be
8640   // used to detect deletion of the invoke via the MachineModuleInfo.
8641   BeginLabel = MF.getContext().createTempSymbol();
8642 
8643   // For SjLj, keep track of which landing pads go with which invokes
8644   // so as to maintain the ordering of pads in the LSDA.
8645   unsigned CallSiteIndex = FuncInfo.getCurrentCallSite();
8646   if (CallSiteIndex) {
8647     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8648     LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex);
8649 
8650     // Now that the call site is handled, stop tracking it.
8651     FuncInfo.setCurrentCallSite(0);
8652   }
8653 
8654   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8655 }
8656 
8657 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8658                                         const BasicBlock *EHPadBB,
8659                                         MCSymbol *BeginLabel) {
8660   assert(BeginLabel && "BeginLabel should've been set");
8661 
8662   MachineFunction &MF = DAG.getMachineFunction();
8663 
8664   // Insert a label at the end of the invoke call to mark the try range.  This
8665   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8666   MCSymbol *EndLabel = MF.getContext().createTempSymbol();
8667   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8668 
8669   // Inform MachineModuleInfo of range.
8670   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8671   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8672   // actually use outlined funclets and their LSDA info style.
8673   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8674     assert(II && "II should've been set");
8675     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8676     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8677   } else if (!isScopedEHPersonality(Pers)) {
8678     assert(EHPadBB);
8679     MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel);
8680   }
8681 
8682   return Chain;
8683 }
8684 
8685 std::pair<SDValue, SDValue>
8686 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8687                                     const BasicBlock *EHPadBB) {
8688   MCSymbol *BeginLabel = nullptr;
8689 
8690   if (EHPadBB) {
8691     // Both PendingLoads and PendingExports must be flushed here;
8692     // this call might not return.
8693     (void)getRoot();
8694     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8695     CLI.setChain(getRoot());
8696   }
8697 
8698   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8699   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8700 
8701   assert((CLI.IsTailCall || Result.second.getNode()) &&
8702          "Non-null chain expected with non-tail call!");
8703   assert((Result.second.getNode() || !Result.first.getNode()) &&
8704          "Null value expected with tail call!");
8705 
8706   if (!Result.second.getNode()) {
8707     // As a special case, a null chain means that a tail call has been emitted
8708     // and the DAG root is already updated.
8709     HasTailCall = true;
8710 
8711     // Since there's no actual continuation from this block, nothing can be
8712     // relying on us setting vregs for them.
8713     PendingExports.clear();
8714   } else {
8715     DAG.setRoot(Result.second);
8716   }
8717 
8718   if (EHPadBB) {
8719     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8720                            BeginLabel));
8721     Result.second = getRoot();
8722   }
8723 
8724   return Result;
8725 }
8726 
8727 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8728                                       bool isTailCall, bool isMustTailCall,
8729                                       const BasicBlock *EHPadBB,
8730                                       const TargetLowering::PtrAuthInfo *PAI) {
8731   auto &DL = DAG.getDataLayout();
8732   FunctionType *FTy = CB.getFunctionType();
8733   Type *RetTy = CB.getType();
8734 
8735   TargetLowering::ArgListTy Args;
8736   Args.reserve(CB.arg_size());
8737 
8738   const Value *SwiftErrorVal = nullptr;
8739   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8740 
8741   if (isTailCall) {
8742     // Avoid emitting tail calls in functions with the disable-tail-calls
8743     // attribute.
8744     auto *Caller = CB.getParent()->getParent();
8745     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8746         "true" && !isMustTailCall)
8747       isTailCall = false;
8748 
8749     // We can't tail call inside a function with a swifterror argument. Lowering
8750     // does not support this yet. It would have to move into the swifterror
8751     // register before the call.
8752     if (TLI.supportSwiftError() &&
8753         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8754       isTailCall = false;
8755   }
8756 
8757   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8758     TargetLowering::ArgListEntry Entry;
8759     const Value *V = *I;
8760 
8761     // Skip empty types
8762     if (V->getType()->isEmptyTy())
8763       continue;
8764 
8765     SDValue ArgNode = getValue(V);
8766     Entry.Node = ArgNode; Entry.Ty = V->getType();
8767 
8768     Entry.setAttributes(&CB, I - CB.arg_begin());
8769 
8770     // Use swifterror virtual register as input to the call.
8771     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8772       SwiftErrorVal = V;
8773       // We find the virtual register for the actual swifterror argument.
8774       // Instead of using the Value, we use the virtual register instead.
8775       Entry.Node =
8776           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8777                           EVT(TLI.getPointerTy(DL)));
8778     }
8779 
8780     Args.push_back(Entry);
8781 
8782     // If we have an explicit sret argument that is an Instruction, (i.e., it
8783     // might point to function-local memory), we can't meaningfully tail-call.
8784     if (Entry.IsSRet && isa<Instruction>(V))
8785       isTailCall = false;
8786   }
8787 
8788   // If call site has a cfguardtarget operand bundle, create and add an
8789   // additional ArgListEntry.
8790   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8791     TargetLowering::ArgListEntry Entry;
8792     Value *V = Bundle->Inputs[0];
8793     SDValue ArgNode = getValue(V);
8794     Entry.Node = ArgNode;
8795     Entry.Ty = V->getType();
8796     Entry.IsCFGuardTarget = true;
8797     Args.push_back(Entry);
8798   }
8799 
8800   // Check if target-independent constraints permit a tail call here.
8801   // Target-dependent constraints are checked within TLI->LowerCallTo.
8802   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8803     isTailCall = false;
8804 
8805   // Disable tail calls if there is an swifterror argument. Targets have not
8806   // been updated to support tail calls.
8807   if (TLI.supportSwiftError() && SwiftErrorVal)
8808     isTailCall = false;
8809 
8810   ConstantInt *CFIType = nullptr;
8811   if (CB.isIndirectCall()) {
8812     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8813       if (!TLI.supportKCFIBundles())
8814         report_fatal_error(
8815             "Target doesn't support calls with kcfi operand bundles.");
8816       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8817       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8818     }
8819   }
8820 
8821   SDValue ConvControlToken;
8822   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8823     auto *Token = Bundle->Inputs[0].get();
8824     ConvControlToken = getValue(Token);
8825   }
8826 
8827   TargetLowering::CallLoweringInfo CLI(DAG);
8828   CLI.setDebugLoc(getCurSDLoc())
8829       .setChain(getRoot())
8830       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8831       .setTailCall(isTailCall)
8832       .setConvergent(CB.isConvergent())
8833       .setIsPreallocated(
8834           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8835       .setCFIType(CFIType)
8836       .setConvergenceControlToken(ConvControlToken);
8837 
8838   // Set the pointer authentication info if we have it.
8839   if (PAI) {
8840     if (!TLI.supportPtrAuthBundles())
8841       report_fatal_error(
8842           "This target doesn't support calls with ptrauth operand bundles.");
8843     CLI.setPtrAuth(*PAI);
8844   }
8845 
8846   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8847 
8848   if (Result.first.getNode()) {
8849     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8850     setValue(&CB, Result.first);
8851   }
8852 
8853   // The last element of CLI.InVals has the SDValue for swifterror return.
8854   // Here we copy it to a virtual register and update SwiftErrorMap for
8855   // book-keeping.
8856   if (SwiftErrorVal && TLI.supportSwiftError()) {
8857     // Get the last element of InVals.
8858     SDValue Src = CLI.InVals.back();
8859     Register VReg =
8860         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8861     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8862     DAG.setRoot(CopyNode);
8863   }
8864 }
8865 
8866 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8867                              SelectionDAGBuilder &Builder) {
8868   // Check to see if this load can be trivially constant folded, e.g. if the
8869   // input is from a string literal.
8870   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8871     // Cast pointer to the type we really want to load.
8872     Type *LoadTy =
8873         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8874     if (LoadVT.isVector())
8875       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8876 
8877     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8878                                          PointerType::getUnqual(LoadTy));
8879 
8880     if (const Constant *LoadCst =
8881             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8882                                          LoadTy, Builder.DAG.getDataLayout()))
8883       return Builder.getValue(LoadCst);
8884   }
8885 
8886   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8887   // still constant memory, the input chain can be the entry node.
8888   SDValue Root;
8889   bool ConstantMemory = false;
8890 
8891   // Do not serialize (non-volatile) loads of constant memory with anything.
8892   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8893     Root = Builder.DAG.getEntryNode();
8894     ConstantMemory = true;
8895   } else {
8896     // Do not serialize non-volatile loads against each other.
8897     Root = Builder.DAG.getRoot();
8898   }
8899 
8900   SDValue Ptr = Builder.getValue(PtrVal);
8901   SDValue LoadVal =
8902       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8903                           MachinePointerInfo(PtrVal), Align(1));
8904 
8905   if (!ConstantMemory)
8906     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8907   return LoadVal;
8908 }
8909 
8910 /// Record the value for an instruction that produces an integer result,
8911 /// converting the type where necessary.
8912 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8913                                                   SDValue Value,
8914                                                   bool IsSigned) {
8915   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8916                                                     I.getType(), true);
8917   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8918   setValue(&I, Value);
8919 }
8920 
8921 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8922 /// true and lower it. Otherwise return false, and it will be lowered like a
8923 /// normal call.
8924 /// The caller already checked that \p I calls the appropriate LibFunc with a
8925 /// correct prototype.
8926 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8927   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8928   const Value *Size = I.getArgOperand(2);
8929   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8930   if (CSize && CSize->getZExtValue() == 0) {
8931     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8932                                                           I.getType(), true);
8933     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8934     return true;
8935   }
8936 
8937   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8938   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8939       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8940       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8941   if (Res.first.getNode()) {
8942     processIntegerCallValue(I, Res.first, true);
8943     PendingLoads.push_back(Res.second);
8944     return true;
8945   }
8946 
8947   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8948   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8949   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8950     return false;
8951 
8952   // If the target has a fast compare for the given size, it will return a
8953   // preferred load type for that size. Require that the load VT is legal and
8954   // that the target supports unaligned loads of that type. Otherwise, return
8955   // INVALID.
8956   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8957     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8958     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8959     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8960       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8961       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8962       // TODO: Check alignment of src and dest ptrs.
8963       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8964       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8965       if (!TLI.isTypeLegal(LVT) ||
8966           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8967           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8968         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8969     }
8970 
8971     return LVT;
8972   };
8973 
8974   // This turns into unaligned loads. We only do this if the target natively
8975   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8976   // we'll only produce a small number of byte loads.
8977   MVT LoadVT;
8978   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8979   switch (NumBitsToCompare) {
8980   default:
8981     return false;
8982   case 16:
8983     LoadVT = MVT::i16;
8984     break;
8985   case 32:
8986     LoadVT = MVT::i32;
8987     break;
8988   case 64:
8989   case 128:
8990   case 256:
8991     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8992     break;
8993   }
8994 
8995   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8996     return false;
8997 
8998   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8999   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
9000 
9001   // Bitcast to a wide integer type if the loads are vectors.
9002   if (LoadVT.isVector()) {
9003     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
9004     LoadL = DAG.getBitcast(CmpVT, LoadL);
9005     LoadR = DAG.getBitcast(CmpVT, LoadR);
9006   }
9007 
9008   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
9009   processIntegerCallValue(I, Cmp, false);
9010   return true;
9011 }
9012 
9013 /// See if we can lower a memchr call into an optimized form. If so, return
9014 /// true and lower it. Otherwise return false, and it will be lowered like a
9015 /// normal call.
9016 /// The caller already checked that \p I calls the appropriate LibFunc with a
9017 /// correct prototype.
9018 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
9019   const Value *Src = I.getArgOperand(0);
9020   const Value *Char = I.getArgOperand(1);
9021   const Value *Length = I.getArgOperand(2);
9022 
9023   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9024   std::pair<SDValue, SDValue> Res =
9025     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
9026                                 getValue(Src), getValue(Char), getValue(Length),
9027                                 MachinePointerInfo(Src));
9028   if (Res.first.getNode()) {
9029     setValue(&I, Res.first);
9030     PendingLoads.push_back(Res.second);
9031     return true;
9032   }
9033 
9034   return false;
9035 }
9036 
9037 /// See if we can lower a mempcpy call into an optimized form. If so, return
9038 /// true and lower it. Otherwise return false, and it will be lowered like a
9039 /// normal call.
9040 /// The caller already checked that \p I calls the appropriate LibFunc with a
9041 /// correct prototype.
9042 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
9043   SDValue Dst = getValue(I.getArgOperand(0));
9044   SDValue Src = getValue(I.getArgOperand(1));
9045   SDValue Size = getValue(I.getArgOperand(2));
9046 
9047   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
9048   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
9049   // DAG::getMemcpy needs Alignment to be defined.
9050   Align Alignment = std::min(DstAlign, SrcAlign);
9051 
9052   SDLoc sdl = getCurSDLoc();
9053 
9054   // In the mempcpy context we need to pass in a false value for isTailCall
9055   // because the return pointer needs to be adjusted by the size of
9056   // the copied memory.
9057   SDValue Root = getMemoryRoot();
9058   SDValue MC = DAG.getMemcpy(
9059       Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr,
9060       std::nullopt, MachinePointerInfo(I.getArgOperand(0)),
9061       MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata());
9062   assert(MC.getNode() != nullptr &&
9063          "** memcpy should not be lowered as TailCall in mempcpy context **");
9064   DAG.setRoot(MC);
9065 
9066   // Check if Size needs to be truncated or extended.
9067   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
9068 
9069   // Adjust return pointer to point just past the last dst byte.
9070   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
9071                                     Dst, Size);
9072   setValue(&I, DstPlusSize);
9073   return true;
9074 }
9075 
9076 /// See if we can lower a strcpy call into an optimized form.  If so, return
9077 /// true and lower it, otherwise return false and it will be lowered like a
9078 /// normal call.
9079 /// The caller already checked that \p I calls the appropriate LibFunc with a
9080 /// correct prototype.
9081 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
9082   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9083 
9084   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9085   std::pair<SDValue, SDValue> Res =
9086     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
9087                                 getValue(Arg0), getValue(Arg1),
9088                                 MachinePointerInfo(Arg0),
9089                                 MachinePointerInfo(Arg1), isStpcpy);
9090   if (Res.first.getNode()) {
9091     setValue(&I, Res.first);
9092     DAG.setRoot(Res.second);
9093     return true;
9094   }
9095 
9096   return false;
9097 }
9098 
9099 /// See if we can lower a strcmp call into an optimized form.  If so, return
9100 /// true and lower it, otherwise return false and it will be lowered like a
9101 /// normal call.
9102 /// The caller already checked that \p I calls the appropriate LibFunc with a
9103 /// correct prototype.
9104 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
9105   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9106 
9107   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9108   std::pair<SDValue, SDValue> Res =
9109     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
9110                                 getValue(Arg0), getValue(Arg1),
9111                                 MachinePointerInfo(Arg0),
9112                                 MachinePointerInfo(Arg1));
9113   if (Res.first.getNode()) {
9114     processIntegerCallValue(I, Res.first, true);
9115     PendingLoads.push_back(Res.second);
9116     return true;
9117   }
9118 
9119   return false;
9120 }
9121 
9122 /// See if we can lower a strlen call into an optimized form.  If so, return
9123 /// true and lower it, otherwise return false and it will be lowered like a
9124 /// normal call.
9125 /// The caller already checked that \p I calls the appropriate LibFunc with a
9126 /// correct prototype.
9127 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9128   const Value *Arg0 = I.getArgOperand(0);
9129 
9130   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9131   std::pair<SDValue, SDValue> Res =
9132     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
9133                                 getValue(Arg0), MachinePointerInfo(Arg0));
9134   if (Res.first.getNode()) {
9135     processIntegerCallValue(I, Res.first, false);
9136     PendingLoads.push_back(Res.second);
9137     return true;
9138   }
9139 
9140   return false;
9141 }
9142 
9143 /// See if we can lower a strnlen call into an optimized form.  If so, return
9144 /// true and lower it, otherwise return false and it will be lowered like a
9145 /// normal call.
9146 /// The caller already checked that \p I calls the appropriate LibFunc with a
9147 /// correct prototype.
9148 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9149   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9150 
9151   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9152   std::pair<SDValue, SDValue> Res =
9153     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9154                                  getValue(Arg0), getValue(Arg1),
9155                                  MachinePointerInfo(Arg0));
9156   if (Res.first.getNode()) {
9157     processIntegerCallValue(I, Res.first, false);
9158     PendingLoads.push_back(Res.second);
9159     return true;
9160   }
9161 
9162   return false;
9163 }
9164 
9165 /// See if we can lower a unary floating-point operation into an SDNode with
9166 /// the specified Opcode.  If so, return true and lower it, otherwise return
9167 /// false and it will be lowered like a normal call.
9168 /// The caller already checked that \p I calls the appropriate LibFunc with a
9169 /// correct prototype.
9170 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9171                                               unsigned Opcode) {
9172   // We already checked this call's prototype; verify it doesn't modify errno.
9173   if (!I.onlyReadsMemory())
9174     return false;
9175 
9176   SDNodeFlags Flags;
9177   Flags.copyFMF(cast<FPMathOperator>(I));
9178 
9179   SDValue Tmp = getValue(I.getArgOperand(0));
9180   setValue(&I,
9181            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9182   return true;
9183 }
9184 
9185 /// See if we can lower a binary floating-point operation into an SDNode with
9186 /// the specified Opcode. If so, return true and lower it. Otherwise return
9187 /// false, and it will be lowered like a normal call.
9188 /// The caller already checked that \p I calls the appropriate LibFunc with a
9189 /// correct prototype.
9190 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9191                                                unsigned Opcode) {
9192   // We already checked this call's prototype; verify it doesn't modify errno.
9193   if (!I.onlyReadsMemory())
9194     return false;
9195 
9196   SDNodeFlags Flags;
9197   Flags.copyFMF(cast<FPMathOperator>(I));
9198 
9199   SDValue Tmp0 = getValue(I.getArgOperand(0));
9200   SDValue Tmp1 = getValue(I.getArgOperand(1));
9201   EVT VT = Tmp0.getValueType();
9202   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9203   return true;
9204 }
9205 
9206 void SelectionDAGBuilder::visitCall(const CallInst &I) {
9207   // Handle inline assembly differently.
9208   if (I.isInlineAsm()) {
9209     visitInlineAsm(I);
9210     return;
9211   }
9212 
9213   diagnoseDontCall(I);
9214 
9215   if (Function *F = I.getCalledFunction()) {
9216     if (F->isDeclaration()) {
9217       // Is this an LLVM intrinsic or a target-specific intrinsic?
9218       unsigned IID = F->getIntrinsicID();
9219       if (!IID)
9220         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
9221           IID = II->getIntrinsicID(F);
9222 
9223       if (IID) {
9224         visitIntrinsicCall(I, IID);
9225         return;
9226       }
9227     }
9228 
9229     // Check for well-known libc/libm calls.  If the function is internal, it
9230     // can't be a library call.  Don't do the check if marked as nobuiltin for
9231     // some reason or the call site requires strict floating point semantics.
9232     LibFunc Func;
9233     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9234         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9235         LibInfo->hasOptimizedCodeGen(Func)) {
9236       switch (Func) {
9237       default: break;
9238       case LibFunc_bcmp:
9239         if (visitMemCmpBCmpCall(I))
9240           return;
9241         break;
9242       case LibFunc_copysign:
9243       case LibFunc_copysignf:
9244       case LibFunc_copysignl:
9245         // We already checked this call's prototype; verify it doesn't modify
9246         // errno.
9247         if (I.onlyReadsMemory()) {
9248           SDValue LHS = getValue(I.getArgOperand(0));
9249           SDValue RHS = getValue(I.getArgOperand(1));
9250           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
9251                                    LHS.getValueType(), LHS, RHS));
9252           return;
9253         }
9254         break;
9255       case LibFunc_fabs:
9256       case LibFunc_fabsf:
9257       case LibFunc_fabsl:
9258         if (visitUnaryFloatCall(I, ISD::FABS))
9259           return;
9260         break;
9261       case LibFunc_fmin:
9262       case LibFunc_fminf:
9263       case LibFunc_fminl:
9264         if (visitBinaryFloatCall(I, ISD::FMINNUM))
9265           return;
9266         break;
9267       case LibFunc_fmax:
9268       case LibFunc_fmaxf:
9269       case LibFunc_fmaxl:
9270         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9271           return;
9272         break;
9273       case LibFunc_fminimum_num:
9274       case LibFunc_fminimum_numf:
9275       case LibFunc_fminimum_numl:
9276         if (visitBinaryFloatCall(I, ISD::FMINIMUMNUM))
9277           return;
9278         break;
9279       case LibFunc_fmaximum_num:
9280       case LibFunc_fmaximum_numf:
9281       case LibFunc_fmaximum_numl:
9282         if (visitBinaryFloatCall(I, ISD::FMAXIMUMNUM))
9283           return;
9284         break;
9285       case LibFunc_sin:
9286       case LibFunc_sinf:
9287       case LibFunc_sinl:
9288         if (visitUnaryFloatCall(I, ISD::FSIN))
9289           return;
9290         break;
9291       case LibFunc_cos:
9292       case LibFunc_cosf:
9293       case LibFunc_cosl:
9294         if (visitUnaryFloatCall(I, ISD::FCOS))
9295           return;
9296         break;
9297       case LibFunc_tan:
9298       case LibFunc_tanf:
9299       case LibFunc_tanl:
9300         if (visitUnaryFloatCall(I, ISD::FTAN))
9301           return;
9302         break;
9303       case LibFunc_asin:
9304       case LibFunc_asinf:
9305       case LibFunc_asinl:
9306         if (visitUnaryFloatCall(I, ISD::FASIN))
9307           return;
9308         break;
9309       case LibFunc_acos:
9310       case LibFunc_acosf:
9311       case LibFunc_acosl:
9312         if (visitUnaryFloatCall(I, ISD::FACOS))
9313           return;
9314         break;
9315       case LibFunc_atan:
9316       case LibFunc_atanf:
9317       case LibFunc_atanl:
9318         if (visitUnaryFloatCall(I, ISD::FATAN))
9319           return;
9320         break;
9321       case LibFunc_sinh:
9322       case LibFunc_sinhf:
9323       case LibFunc_sinhl:
9324         if (visitUnaryFloatCall(I, ISD::FSINH))
9325           return;
9326         break;
9327       case LibFunc_cosh:
9328       case LibFunc_coshf:
9329       case LibFunc_coshl:
9330         if (visitUnaryFloatCall(I, ISD::FCOSH))
9331           return;
9332         break;
9333       case LibFunc_tanh:
9334       case LibFunc_tanhf:
9335       case LibFunc_tanhl:
9336         if (visitUnaryFloatCall(I, ISD::FTANH))
9337           return;
9338         break;
9339       case LibFunc_sqrt:
9340       case LibFunc_sqrtf:
9341       case LibFunc_sqrtl:
9342       case LibFunc_sqrt_finite:
9343       case LibFunc_sqrtf_finite:
9344       case LibFunc_sqrtl_finite:
9345         if (visitUnaryFloatCall(I, ISD::FSQRT))
9346           return;
9347         break;
9348       case LibFunc_floor:
9349       case LibFunc_floorf:
9350       case LibFunc_floorl:
9351         if (visitUnaryFloatCall(I, ISD::FFLOOR))
9352           return;
9353         break;
9354       case LibFunc_nearbyint:
9355       case LibFunc_nearbyintf:
9356       case LibFunc_nearbyintl:
9357         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9358           return;
9359         break;
9360       case LibFunc_ceil:
9361       case LibFunc_ceilf:
9362       case LibFunc_ceill:
9363         if (visitUnaryFloatCall(I, ISD::FCEIL))
9364           return;
9365         break;
9366       case LibFunc_rint:
9367       case LibFunc_rintf:
9368       case LibFunc_rintl:
9369         if (visitUnaryFloatCall(I, ISD::FRINT))
9370           return;
9371         break;
9372       case LibFunc_round:
9373       case LibFunc_roundf:
9374       case LibFunc_roundl:
9375         if (visitUnaryFloatCall(I, ISD::FROUND))
9376           return;
9377         break;
9378       case LibFunc_trunc:
9379       case LibFunc_truncf:
9380       case LibFunc_truncl:
9381         if (visitUnaryFloatCall(I, ISD::FTRUNC))
9382           return;
9383         break;
9384       case LibFunc_log2:
9385       case LibFunc_log2f:
9386       case LibFunc_log2l:
9387         if (visitUnaryFloatCall(I, ISD::FLOG2))
9388           return;
9389         break;
9390       case LibFunc_exp2:
9391       case LibFunc_exp2f:
9392       case LibFunc_exp2l:
9393         if (visitUnaryFloatCall(I, ISD::FEXP2))
9394           return;
9395         break;
9396       case LibFunc_exp10:
9397       case LibFunc_exp10f:
9398       case LibFunc_exp10l:
9399         if (visitUnaryFloatCall(I, ISD::FEXP10))
9400           return;
9401         break;
9402       case LibFunc_ldexp:
9403       case LibFunc_ldexpf:
9404       case LibFunc_ldexpl:
9405         if (visitBinaryFloatCall(I, ISD::FLDEXP))
9406           return;
9407         break;
9408       case LibFunc_memcmp:
9409         if (visitMemCmpBCmpCall(I))
9410           return;
9411         break;
9412       case LibFunc_mempcpy:
9413         if (visitMemPCpyCall(I))
9414           return;
9415         break;
9416       case LibFunc_memchr:
9417         if (visitMemChrCall(I))
9418           return;
9419         break;
9420       case LibFunc_strcpy:
9421         if (visitStrCpyCall(I, false))
9422           return;
9423         break;
9424       case LibFunc_stpcpy:
9425         if (visitStrCpyCall(I, true))
9426           return;
9427         break;
9428       case LibFunc_strcmp:
9429         if (visitStrCmpCall(I))
9430           return;
9431         break;
9432       case LibFunc_strlen:
9433         if (visitStrLenCall(I))
9434           return;
9435         break;
9436       case LibFunc_strnlen:
9437         if (visitStrNLenCall(I))
9438           return;
9439         break;
9440       }
9441     }
9442   }
9443 
9444   if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9445     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9446     return;
9447   }
9448 
9449   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9450   // have to do anything here to lower funclet bundles.
9451   // CFGuardTarget bundles are lowered in LowerCallTo.
9452   assert(!I.hasOperandBundlesOtherThan(
9453              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9454               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9455               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9456               LLVMContext::OB_convergencectrl}) &&
9457          "Cannot lower calls with arbitrary operand bundles!");
9458 
9459   SDValue Callee = getValue(I.getCalledOperand());
9460 
9461   if (I.hasDeoptState())
9462     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9463   else
9464     // Check if we can potentially perform a tail call. More detailed checking
9465     // is be done within LowerCallTo, after more information about the call is
9466     // known.
9467     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9468 }
9469 
9470 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle(
9471     const CallBase &CB, const BasicBlock *EHPadBB) {
9472   auto PAB = CB.getOperandBundle("ptrauth");
9473   const Value *CalleeV = CB.getCalledOperand();
9474 
9475   // Gather the call ptrauth data from the operand bundle:
9476   //   [ i32 <key>, i64 <discriminator> ]
9477   const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9478   const Value *Discriminator = PAB->Inputs[1];
9479 
9480   assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9481   assert(Discriminator->getType()->isIntegerTy(64) &&
9482          "Invalid ptrauth discriminator");
9483 
9484   // Look through ptrauth constants to find the raw callee.
9485   // Do a direct unauthenticated call if we found it and everything matches.
9486   if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV))
9487     if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator,
9488                                          DAG.getDataLayout()))
9489       return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(),
9490                          CB.isMustTailCall(), EHPadBB);
9491 
9492   // Functions should never be ptrauth-called directly.
9493   assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9494 
9495   // Otherwise, do an authenticated indirect call.
9496   TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9497                                      getValue(Discriminator)};
9498 
9499   LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9500               EHPadBB, &PAI);
9501 }
9502 
9503 namespace {
9504 
9505 /// AsmOperandInfo - This contains information for each constraint that we are
9506 /// lowering.
9507 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9508 public:
9509   /// CallOperand - If this is the result output operand or a clobber
9510   /// this is null, otherwise it is the incoming operand to the CallInst.
9511   /// This gets modified as the asm is processed.
9512   SDValue CallOperand;
9513 
9514   /// AssignedRegs - If this is a register or register class operand, this
9515   /// contains the set of register corresponding to the operand.
9516   RegsForValue AssignedRegs;
9517 
9518   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9519     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9520   }
9521 
9522   /// Whether or not this operand accesses memory
9523   bool hasMemory(const TargetLowering &TLI) const {
9524     // Indirect operand accesses access memory.
9525     if (isIndirect)
9526       return true;
9527 
9528     for (const auto &Code : Codes)
9529       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9530         return true;
9531 
9532     return false;
9533   }
9534 };
9535 
9536 
9537 } // end anonymous namespace
9538 
9539 /// Make sure that the output operand \p OpInfo and its corresponding input
9540 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9541 /// out).
9542 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9543                                SDISelAsmOperandInfo &MatchingOpInfo,
9544                                SelectionDAG &DAG) {
9545   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9546     return;
9547 
9548   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9549   const auto &TLI = DAG.getTargetLoweringInfo();
9550 
9551   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9552       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9553                                        OpInfo.ConstraintVT);
9554   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9555       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9556                                        MatchingOpInfo.ConstraintVT);
9557   if ((OpInfo.ConstraintVT.isInteger() !=
9558        MatchingOpInfo.ConstraintVT.isInteger()) ||
9559       (MatchRC.second != InputRC.second)) {
9560     // FIXME: error out in a more elegant fashion
9561     report_fatal_error("Unsupported asm: input constraint"
9562                        " with a matching output constraint of"
9563                        " incompatible type!");
9564   }
9565   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9566 }
9567 
9568 /// Get a direct memory input to behave well as an indirect operand.
9569 /// This may introduce stores, hence the need for a \p Chain.
9570 /// \return The (possibly updated) chain.
9571 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9572                                         SDISelAsmOperandInfo &OpInfo,
9573                                         SelectionDAG &DAG) {
9574   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9575 
9576   // If we don't have an indirect input, put it in the constpool if we can,
9577   // otherwise spill it to a stack slot.
9578   // TODO: This isn't quite right. We need to handle these according to
9579   // the addressing mode that the constraint wants. Also, this may take
9580   // an additional register for the computation and we don't want that
9581   // either.
9582 
9583   // If the operand is a float, integer, or vector constant, spill to a
9584   // constant pool entry to get its address.
9585   const Value *OpVal = OpInfo.CallOperandVal;
9586   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9587       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9588     OpInfo.CallOperand = DAG.getConstantPool(
9589         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9590     return Chain;
9591   }
9592 
9593   // Otherwise, create a stack slot and emit a store to it before the asm.
9594   Type *Ty = OpVal->getType();
9595   auto &DL = DAG.getDataLayout();
9596   TypeSize TySize = DL.getTypeAllocSize(Ty);
9597   MachineFunction &MF = DAG.getMachineFunction();
9598   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
9599   int StackID = 0;
9600   if (TySize.isScalable())
9601     StackID = TFI->getStackIDForScalableVectors();
9602   int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(),
9603                                                  DL.getPrefTypeAlign(Ty), false,
9604                                                  nullptr, StackID);
9605   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9606   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9607                             MachinePointerInfo::getFixedStack(MF, SSFI),
9608                             TLI.getMemValueType(DL, Ty));
9609   OpInfo.CallOperand = StackSlot;
9610 
9611   return Chain;
9612 }
9613 
9614 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9615 /// specified operand.  We prefer to assign virtual registers, to allow the
9616 /// register allocator to handle the assignment process.  However, if the asm
9617 /// uses features that we can't model on machineinstrs, we have SDISel do the
9618 /// allocation.  This produces generally horrible, but correct, code.
9619 ///
9620 ///   OpInfo describes the operand
9621 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9622 static std::optional<unsigned>
9623 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9624                      SDISelAsmOperandInfo &OpInfo,
9625                      SDISelAsmOperandInfo &RefOpInfo) {
9626   LLVMContext &Context = *DAG.getContext();
9627   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9628 
9629   MachineFunction &MF = DAG.getMachineFunction();
9630   SmallVector<unsigned, 4> Regs;
9631   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9632 
9633   // No work to do for memory/address operands.
9634   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9635       OpInfo.ConstraintType == TargetLowering::C_Address)
9636     return std::nullopt;
9637 
9638   // If this is a constraint for a single physreg, or a constraint for a
9639   // register class, find it.
9640   unsigned AssignedReg;
9641   const TargetRegisterClass *RC;
9642   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9643       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9644   // RC is unset only on failure. Return immediately.
9645   if (!RC)
9646     return std::nullopt;
9647 
9648   // Get the actual register value type.  This is important, because the user
9649   // may have asked for (e.g.) the AX register in i32 type.  We need to
9650   // remember that AX is actually i16 to get the right extension.
9651   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9652 
9653   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9654     // If this is an FP operand in an integer register (or visa versa), or more
9655     // generally if the operand value disagrees with the register class we plan
9656     // to stick it in, fix the operand type.
9657     //
9658     // If this is an input value, the bitcast to the new type is done now.
9659     // Bitcast for output value is done at the end of visitInlineAsm().
9660     if ((OpInfo.Type == InlineAsm::isOutput ||
9661          OpInfo.Type == InlineAsm::isInput) &&
9662         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9663       // Try to convert to the first EVT that the reg class contains.  If the
9664       // types are identical size, use a bitcast to convert (e.g. two differing
9665       // vector types).  Note: output bitcast is done at the end of
9666       // visitInlineAsm().
9667       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9668         // Exclude indirect inputs while they are unsupported because the code
9669         // to perform the load is missing and thus OpInfo.CallOperand still
9670         // refers to the input address rather than the pointed-to value.
9671         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9672           OpInfo.CallOperand =
9673               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9674         OpInfo.ConstraintVT = RegVT;
9675         // If the operand is an FP value and we want it in integer registers,
9676         // use the corresponding integer type. This turns an f64 value into
9677         // i64, which can be passed with two i32 values on a 32-bit machine.
9678       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9679         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9680         if (OpInfo.Type == InlineAsm::isInput)
9681           OpInfo.CallOperand =
9682               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9683         OpInfo.ConstraintVT = VT;
9684       }
9685     }
9686   }
9687 
9688   // No need to allocate a matching input constraint since the constraint it's
9689   // matching to has already been allocated.
9690   if (OpInfo.isMatchingInputConstraint())
9691     return std::nullopt;
9692 
9693   EVT ValueVT = OpInfo.ConstraintVT;
9694   if (OpInfo.ConstraintVT == MVT::Other)
9695     ValueVT = RegVT;
9696 
9697   // Initialize NumRegs.
9698   unsigned NumRegs = 1;
9699   if (OpInfo.ConstraintVT != MVT::Other)
9700     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9701 
9702   // If this is a constraint for a specific physical register, like {r17},
9703   // assign it now.
9704 
9705   // If this associated to a specific register, initialize iterator to correct
9706   // place. If virtual, make sure we have enough registers
9707 
9708   // Initialize iterator if necessary
9709   TargetRegisterClass::iterator I = RC->begin();
9710   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9711 
9712   // Do not check for single registers.
9713   if (AssignedReg) {
9714     I = std::find(I, RC->end(), AssignedReg);
9715     if (I == RC->end()) {
9716       // RC does not contain the selected register, which indicates a
9717       // mismatch between the register and the required type/bitwidth.
9718       return {AssignedReg};
9719     }
9720   }
9721 
9722   for (; NumRegs; --NumRegs, ++I) {
9723     assert(I != RC->end() && "Ran out of registers to allocate!");
9724     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9725     Regs.push_back(R);
9726   }
9727 
9728   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9729   return std::nullopt;
9730 }
9731 
9732 static unsigned
9733 findMatchingInlineAsmOperand(unsigned OperandNo,
9734                              const std::vector<SDValue> &AsmNodeOperands) {
9735   // Scan until we find the definition we already emitted of this operand.
9736   unsigned CurOp = InlineAsm::Op_FirstOperand;
9737   for (; OperandNo; --OperandNo) {
9738     // Advance to the next operand.
9739     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9740     const InlineAsm::Flag F(OpFlag);
9741     assert(
9742         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9743         "Skipped past definitions?");
9744     CurOp += F.getNumOperandRegisters() + 1;
9745   }
9746   return CurOp;
9747 }
9748 
9749 namespace {
9750 
9751 class ExtraFlags {
9752   unsigned Flags = 0;
9753 
9754 public:
9755   explicit ExtraFlags(const CallBase &Call) {
9756     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9757     if (IA->hasSideEffects())
9758       Flags |= InlineAsm::Extra_HasSideEffects;
9759     if (IA->isAlignStack())
9760       Flags |= InlineAsm::Extra_IsAlignStack;
9761     if (Call.isConvergent())
9762       Flags |= InlineAsm::Extra_IsConvergent;
9763     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9764   }
9765 
9766   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9767     // Ideally, we would only check against memory constraints.  However, the
9768     // meaning of an Other constraint can be target-specific and we can't easily
9769     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9770     // for Other constraints as well.
9771     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9772         OpInfo.ConstraintType == TargetLowering::C_Other) {
9773       if (OpInfo.Type == InlineAsm::isInput)
9774         Flags |= InlineAsm::Extra_MayLoad;
9775       else if (OpInfo.Type == InlineAsm::isOutput)
9776         Flags |= InlineAsm::Extra_MayStore;
9777       else if (OpInfo.Type == InlineAsm::isClobber)
9778         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9779     }
9780   }
9781 
9782   unsigned get() const { return Flags; }
9783 };
9784 
9785 } // end anonymous namespace
9786 
9787 static bool isFunction(SDValue Op) {
9788   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9789     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9790       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9791 
9792       // In normal "call dllimport func" instruction (non-inlineasm) it force
9793       // indirect access by specifing call opcode. And usually specially print
9794       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9795       // not do in this way now. (In fact, this is similar with "Data Access"
9796       // action). So here we ignore dllimport function.
9797       if (Fn && !Fn->hasDLLImportStorageClass())
9798         return true;
9799     }
9800   }
9801   return false;
9802 }
9803 
9804 /// visitInlineAsm - Handle a call to an InlineAsm object.
9805 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9806                                          const BasicBlock *EHPadBB) {
9807   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9808 
9809   /// ConstraintOperands - Information about all of the constraints.
9810   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9811 
9812   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9813   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9814       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9815 
9816   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9817   // AsmDialect, MayLoad, MayStore).
9818   bool HasSideEffect = IA->hasSideEffects();
9819   ExtraFlags ExtraInfo(Call);
9820 
9821   for (auto &T : TargetConstraints) {
9822     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9823     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9824 
9825     if (OpInfo.CallOperandVal)
9826       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9827 
9828     if (!HasSideEffect)
9829       HasSideEffect = OpInfo.hasMemory(TLI);
9830 
9831     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9832     // FIXME: Could we compute this on OpInfo rather than T?
9833 
9834     // Compute the constraint code and ConstraintType to use.
9835     TLI.ComputeConstraintToUse(T, SDValue());
9836 
9837     if (T.ConstraintType == TargetLowering::C_Immediate &&
9838         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9839       // We've delayed emitting a diagnostic like the "n" constraint because
9840       // inlining could cause an integer showing up.
9841       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9842                                           "' expects an integer constant "
9843                                           "expression");
9844 
9845     ExtraInfo.update(T);
9846   }
9847 
9848   // We won't need to flush pending loads if this asm doesn't touch
9849   // memory and is nonvolatile.
9850   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9851 
9852   bool EmitEHLabels = isa<InvokeInst>(Call);
9853   if (EmitEHLabels) {
9854     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9855   }
9856   bool IsCallBr = isa<CallBrInst>(Call);
9857 
9858   if (IsCallBr || EmitEHLabels) {
9859     // If this is a callbr or invoke we need to flush pending exports since
9860     // inlineasm_br and invoke are terminators.
9861     // We need to do this before nodes are glued to the inlineasm_br node.
9862     Chain = getControlRoot();
9863   }
9864 
9865   MCSymbol *BeginLabel = nullptr;
9866   if (EmitEHLabels) {
9867     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9868   }
9869 
9870   int OpNo = -1;
9871   SmallVector<StringRef> AsmStrs;
9872   IA->collectAsmStrs(AsmStrs);
9873 
9874   // Second pass over the constraints: compute which constraint option to use.
9875   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9876     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9877       OpNo++;
9878 
9879     // If this is an output operand with a matching input operand, look up the
9880     // matching input. If their types mismatch, e.g. one is an integer, the
9881     // other is floating point, or their sizes are different, flag it as an
9882     // error.
9883     if (OpInfo.hasMatchingInput()) {
9884       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9885       patchMatchingInput(OpInfo, Input, DAG);
9886     }
9887 
9888     // Compute the constraint code and ConstraintType to use.
9889     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9890 
9891     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9892          OpInfo.Type == InlineAsm::isClobber) ||
9893         OpInfo.ConstraintType == TargetLowering::C_Address)
9894       continue;
9895 
9896     // In Linux PIC model, there are 4 cases about value/label addressing:
9897     //
9898     // 1: Function call or Label jmp inside the module.
9899     // 2: Data access (such as global variable, static variable) inside module.
9900     // 3: Function call or Label jmp outside the module.
9901     // 4: Data access (such as global variable) outside the module.
9902     //
9903     // Due to current llvm inline asm architecture designed to not "recognize"
9904     // the asm code, there are quite troubles for us to treat mem addressing
9905     // differently for same value/adress used in different instuctions.
9906     // For example, in pic model, call a func may in plt way or direclty
9907     // pc-related, but lea/mov a function adress may use got.
9908     //
9909     // Here we try to "recognize" function call for the case 1 and case 3 in
9910     // inline asm. And try to adjust the constraint for them.
9911     //
9912     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9913     // label, so here we don't handle jmp function label now, but we need to
9914     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9915     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9916         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9917         TM.getCodeModel() != CodeModel::Large) {
9918       OpInfo.isIndirect = false;
9919       OpInfo.ConstraintType = TargetLowering::C_Address;
9920     }
9921 
9922     // If this is a memory input, and if the operand is not indirect, do what we
9923     // need to provide an address for the memory input.
9924     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9925         !OpInfo.isIndirect) {
9926       assert((OpInfo.isMultipleAlternative ||
9927               (OpInfo.Type == InlineAsm::isInput)) &&
9928              "Can only indirectify direct input operands!");
9929 
9930       // Memory operands really want the address of the value.
9931       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9932 
9933       // There is no longer a Value* corresponding to this operand.
9934       OpInfo.CallOperandVal = nullptr;
9935 
9936       // It is now an indirect operand.
9937       OpInfo.isIndirect = true;
9938     }
9939 
9940   }
9941 
9942   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9943   std::vector<SDValue> AsmNodeOperands;
9944   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9945   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9946       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9947 
9948   // If we have a !srcloc metadata node associated with it, we want to attach
9949   // this to the ultimately generated inline asm machineinstr.  To do this, we
9950   // pass in the third operand as this (potentially null) inline asm MDNode.
9951   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9952   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9953 
9954   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9955   // bits as operand 3.
9956   AsmNodeOperands.push_back(DAG.getTargetConstant(
9957       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9958 
9959   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9960   // this, assign virtual and physical registers for inputs and otput.
9961   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9962     // Assign Registers.
9963     SDISelAsmOperandInfo &RefOpInfo =
9964         OpInfo.isMatchingInputConstraint()
9965             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9966             : OpInfo;
9967     const auto RegError =
9968         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9969     if (RegError) {
9970       const MachineFunction &MF = DAG.getMachineFunction();
9971       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9972       const char *RegName = TRI.getName(*RegError);
9973       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9974                                    "' allocated for constraint '" +
9975                                    Twine(OpInfo.ConstraintCode) +
9976                                    "' does not match required type");
9977       return;
9978     }
9979 
9980     auto DetectWriteToReservedRegister = [&]() {
9981       const MachineFunction &MF = DAG.getMachineFunction();
9982       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9983       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9984         if (Register::isPhysicalRegister(Reg) &&
9985             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9986           const char *RegName = TRI.getName(Reg);
9987           emitInlineAsmError(Call, "write to reserved register '" +
9988                                        Twine(RegName) + "'");
9989           return true;
9990         }
9991       }
9992       return false;
9993     };
9994     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9995             (OpInfo.Type == InlineAsm::isInput &&
9996              !OpInfo.isMatchingInputConstraint())) &&
9997            "Only address as input operand is allowed.");
9998 
9999     switch (OpInfo.Type) {
10000     case InlineAsm::isOutput:
10001       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10002         const InlineAsm::ConstraintCode ConstraintID =
10003             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10004         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10005                "Failed to convert memory constraint code to constraint id.");
10006 
10007         // Add information to the INLINEASM node to know about this output.
10008         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
10009         OpFlags.setMemConstraint(ConstraintID);
10010         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
10011                                                         MVT::i32));
10012         AsmNodeOperands.push_back(OpInfo.CallOperand);
10013       } else {
10014         // Otherwise, this outputs to a register (directly for C_Register /
10015         // C_RegisterClass, and a target-defined fashion for
10016         // C_Immediate/C_Other). Find a register that we can use.
10017         if (OpInfo.AssignedRegs.Regs.empty()) {
10018           emitInlineAsmError(
10019               Call, "couldn't allocate output register for constraint '" +
10020                         Twine(OpInfo.ConstraintCode) + "'");
10021           return;
10022         }
10023 
10024         if (DetectWriteToReservedRegister())
10025           return;
10026 
10027         // Add information to the INLINEASM node to know that this register is
10028         // set.
10029         OpInfo.AssignedRegs.AddInlineAsmOperands(
10030             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
10031                                   : InlineAsm::Kind::RegDef,
10032             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
10033       }
10034       break;
10035 
10036     case InlineAsm::isInput:
10037     case InlineAsm::isLabel: {
10038       SDValue InOperandVal = OpInfo.CallOperand;
10039 
10040       if (OpInfo.isMatchingInputConstraint()) {
10041         // If this is required to match an output register we have already set,
10042         // just use its register.
10043         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
10044                                                   AsmNodeOperands);
10045         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10046         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
10047           if (OpInfo.isIndirect) {
10048             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
10049             emitInlineAsmError(Call, "inline asm not supported yet: "
10050                                      "don't know how to handle tied "
10051                                      "indirect register inputs");
10052             return;
10053           }
10054 
10055           SmallVector<unsigned, 4> Regs;
10056           MachineFunction &MF = DAG.getMachineFunction();
10057           MachineRegisterInfo &MRI = MF.getRegInfo();
10058           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10059           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
10060           Register TiedReg = R->getReg();
10061           MVT RegVT = R->getSimpleValueType(0);
10062           const TargetRegisterClass *RC =
10063               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
10064               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
10065                                       : TRI.getMinimalPhysRegClass(TiedReg);
10066           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
10067             Regs.push_back(MRI.createVirtualRegister(RC));
10068 
10069           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
10070 
10071           SDLoc dl = getCurSDLoc();
10072           // Use the produced MatchedRegs object to
10073           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
10074           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
10075                                            OpInfo.getMatchedOperand(), dl, DAG,
10076                                            AsmNodeOperands);
10077           break;
10078         }
10079 
10080         assert(Flag.isMemKind() && "Unknown matching constraint!");
10081         assert(Flag.getNumOperandRegisters() == 1 &&
10082                "Unexpected number of operands");
10083         // Add information to the INLINEASM node to know about this input.
10084         // See InlineAsm.h isUseOperandTiedToDef.
10085         Flag.clearMemConstraint();
10086         Flag.setMatchingOp(OpInfo.getMatchedOperand());
10087         AsmNodeOperands.push_back(DAG.getTargetConstant(
10088             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10089         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10090         break;
10091       }
10092 
10093       // Treat indirect 'X' constraint as memory.
10094       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
10095           OpInfo.isIndirect)
10096         OpInfo.ConstraintType = TargetLowering::C_Memory;
10097 
10098       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
10099           OpInfo.ConstraintType == TargetLowering::C_Other) {
10100         std::vector<SDValue> Ops;
10101         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
10102                                           Ops, DAG);
10103         if (Ops.empty()) {
10104           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
10105             if (isa<ConstantSDNode>(InOperandVal)) {
10106               emitInlineAsmError(Call, "value out of range for constraint '" +
10107                                            Twine(OpInfo.ConstraintCode) + "'");
10108               return;
10109             }
10110 
10111           emitInlineAsmError(Call,
10112                              "invalid operand for inline asm constraint '" +
10113                                  Twine(OpInfo.ConstraintCode) + "'");
10114           return;
10115         }
10116 
10117         // Add information to the INLINEASM node to know about this input.
10118         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
10119         AsmNodeOperands.push_back(DAG.getTargetConstant(
10120             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10121         llvm::append_range(AsmNodeOperands, Ops);
10122         break;
10123       }
10124 
10125       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10126         assert((OpInfo.isIndirect ||
10127                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
10128                "Operand must be indirect to be a mem!");
10129         assert(InOperandVal.getValueType() ==
10130                    TLI.getPointerTy(DAG.getDataLayout()) &&
10131                "Memory operands expect pointer values");
10132 
10133         const InlineAsm::ConstraintCode ConstraintID =
10134             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10135         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10136                "Failed to convert memory constraint code to constraint id.");
10137 
10138         // Add information to the INLINEASM node to know about this input.
10139         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10140         ResOpType.setMemConstraint(ConstraintID);
10141         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
10142                                                         getCurSDLoc(),
10143                                                         MVT::i32));
10144         AsmNodeOperands.push_back(InOperandVal);
10145         break;
10146       }
10147 
10148       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
10149         const InlineAsm::ConstraintCode ConstraintID =
10150             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10151         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10152                "Failed to convert memory constraint code to constraint id.");
10153 
10154         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10155 
10156         SDValue AsmOp = InOperandVal;
10157         if (isFunction(InOperandVal)) {
10158           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
10159           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
10160           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
10161                                              InOperandVal.getValueType(),
10162                                              GA->getOffset());
10163         }
10164 
10165         // Add information to the INLINEASM node to know about this input.
10166         ResOpType.setMemConstraint(ConstraintID);
10167 
10168         AsmNodeOperands.push_back(
10169             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
10170 
10171         AsmNodeOperands.push_back(AsmOp);
10172         break;
10173       }
10174 
10175       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
10176           OpInfo.ConstraintType != TargetLowering::C_Register) {
10177         emitInlineAsmError(Call, "unknown asm constraint '" +
10178                                      Twine(OpInfo.ConstraintCode) + "'");
10179         return;
10180       }
10181 
10182       // TODO: Support this.
10183       if (OpInfo.isIndirect) {
10184         emitInlineAsmError(
10185             Call, "Don't know how to handle indirect register inputs yet "
10186                   "for constraint '" +
10187                       Twine(OpInfo.ConstraintCode) + "'");
10188         return;
10189       }
10190 
10191       // Copy the input into the appropriate registers.
10192       if (OpInfo.AssignedRegs.Regs.empty()) {
10193         emitInlineAsmError(Call,
10194                            "couldn't allocate input reg for constraint '" +
10195                                Twine(OpInfo.ConstraintCode) + "'");
10196         return;
10197       }
10198 
10199       if (DetectWriteToReservedRegister())
10200         return;
10201 
10202       SDLoc dl = getCurSDLoc();
10203 
10204       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10205                                         &Call);
10206 
10207       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10208                                                0, dl, DAG, AsmNodeOperands);
10209       break;
10210     }
10211     case InlineAsm::isClobber:
10212       // Add the clobbered value to the operand list, so that the register
10213       // allocator is aware that the physreg got clobbered.
10214       if (!OpInfo.AssignedRegs.Regs.empty())
10215         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
10216                                                  false, 0, getCurSDLoc(), DAG,
10217                                                  AsmNodeOperands);
10218       break;
10219     }
10220   }
10221 
10222   // Finish up input operands.  Set the input chain and add the flag last.
10223   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10224   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10225 
10226   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10227   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10228                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10229   Glue = Chain.getValue(1);
10230 
10231   // Do additional work to generate outputs.
10232 
10233   SmallVector<EVT, 1> ResultVTs;
10234   SmallVector<SDValue, 1> ResultValues;
10235   SmallVector<SDValue, 8> OutChains;
10236 
10237   llvm::Type *CallResultType = Call.getType();
10238   ArrayRef<Type *> ResultTypes;
10239   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10240     ResultTypes = StructResult->elements();
10241   else if (!CallResultType->isVoidTy())
10242     ResultTypes = ArrayRef(CallResultType);
10243 
10244   auto CurResultType = ResultTypes.begin();
10245   auto handleRegAssign = [&](SDValue V) {
10246     assert(CurResultType != ResultTypes.end() && "Unexpected value");
10247     assert((*CurResultType)->isSized() && "Unexpected unsized type");
10248     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10249     ++CurResultType;
10250     // If the type of the inline asm call site return value is different but has
10251     // same size as the type of the asm output bitcast it.  One example of this
10252     // is for vectors with different width / number of elements.  This can
10253     // happen for register classes that can contain multiple different value
10254     // types.  The preg or vreg allocated may not have the same VT as was
10255     // expected.
10256     //
10257     // This can also happen for a return value that disagrees with the register
10258     // class it is put in, eg. a double in a general-purpose register on a
10259     // 32-bit machine.
10260     if (ResultVT != V.getValueType() &&
10261         ResultVT.getSizeInBits() == V.getValueSizeInBits())
10262       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10263     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10264              V.getValueType().isInteger()) {
10265       // If a result value was tied to an input value, the computed result
10266       // may have a wider width than the expected result.  Extract the
10267       // relevant portion.
10268       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10269     }
10270     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10271     ResultVTs.push_back(ResultVT);
10272     ResultValues.push_back(V);
10273   };
10274 
10275   // Deal with output operands.
10276   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10277     if (OpInfo.Type == InlineAsm::isOutput) {
10278       SDValue Val;
10279       // Skip trivial output operands.
10280       if (OpInfo.AssignedRegs.Regs.empty())
10281         continue;
10282 
10283       switch (OpInfo.ConstraintType) {
10284       case TargetLowering::C_Register:
10285       case TargetLowering::C_RegisterClass:
10286         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10287                                                   Chain, &Glue, &Call);
10288         break;
10289       case TargetLowering::C_Immediate:
10290       case TargetLowering::C_Other:
10291         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10292                                               OpInfo, DAG);
10293         break;
10294       case TargetLowering::C_Memory:
10295         break; // Already handled.
10296       case TargetLowering::C_Address:
10297         break; // Silence warning.
10298       case TargetLowering::C_Unknown:
10299         assert(false && "Unexpected unknown constraint");
10300       }
10301 
10302       // Indirect output manifest as stores. Record output chains.
10303       if (OpInfo.isIndirect) {
10304         const Value *Ptr = OpInfo.CallOperandVal;
10305         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10306         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10307                                      MachinePointerInfo(Ptr));
10308         OutChains.push_back(Store);
10309       } else {
10310         // generate CopyFromRegs to associated registers.
10311         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10312         if (Val.getOpcode() == ISD::MERGE_VALUES) {
10313           for (const SDValue &V : Val->op_values())
10314             handleRegAssign(V);
10315         } else
10316           handleRegAssign(Val);
10317       }
10318     }
10319   }
10320 
10321   // Set results.
10322   if (!ResultValues.empty()) {
10323     assert(CurResultType == ResultTypes.end() &&
10324            "Mismatch in number of ResultTypes");
10325     assert(ResultValues.size() == ResultTypes.size() &&
10326            "Mismatch in number of output operands in asm result");
10327 
10328     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10329                             DAG.getVTList(ResultVTs), ResultValues);
10330     setValue(&Call, V);
10331   }
10332 
10333   // Collect store chains.
10334   if (!OutChains.empty())
10335     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10336 
10337   if (EmitEHLabels) {
10338     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10339   }
10340 
10341   // Only Update Root if inline assembly has a memory effect.
10342   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10343       EmitEHLabels)
10344     DAG.setRoot(Chain);
10345 }
10346 
10347 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10348                                              const Twine &Message) {
10349   LLVMContext &Ctx = *DAG.getContext();
10350   Ctx.emitError(&Call, Message);
10351 
10352   // Make sure we leave the DAG in a valid state
10353   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10354   SmallVector<EVT, 1> ValueVTs;
10355   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10356 
10357   if (ValueVTs.empty())
10358     return;
10359 
10360   SmallVector<SDValue, 1> Ops;
10361   for (const EVT &VT : ValueVTs)
10362     Ops.push_back(DAG.getUNDEF(VT));
10363 
10364   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10365 }
10366 
10367 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10368   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10369                           MVT::Other, getRoot(),
10370                           getValue(I.getArgOperand(0)),
10371                           DAG.getSrcValue(I.getArgOperand(0))));
10372 }
10373 
10374 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10375   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10376   const DataLayout &DL = DAG.getDataLayout();
10377   SDValue V = DAG.getVAArg(
10378       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10379       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10380       DL.getABITypeAlign(I.getType()).value());
10381   DAG.setRoot(V.getValue(1));
10382 
10383   if (I.getType()->isPointerTy())
10384     V = DAG.getPtrExtOrTrunc(
10385         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10386   setValue(&I, V);
10387 }
10388 
10389 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10390   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10391                           MVT::Other, getRoot(),
10392                           getValue(I.getArgOperand(0)),
10393                           DAG.getSrcValue(I.getArgOperand(0))));
10394 }
10395 
10396 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10397   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10398                           MVT::Other, getRoot(),
10399                           getValue(I.getArgOperand(0)),
10400                           getValue(I.getArgOperand(1)),
10401                           DAG.getSrcValue(I.getArgOperand(0)),
10402                           DAG.getSrcValue(I.getArgOperand(1))));
10403 }
10404 
10405 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10406                                                     const Instruction &I,
10407                                                     SDValue Op) {
10408   std::optional<ConstantRange> CR = getRange(I);
10409 
10410   if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10411     return Op;
10412 
10413   APInt Lo = CR->getUnsignedMin();
10414   if (!Lo.isMinValue())
10415     return Op;
10416 
10417   APInt Hi = CR->getUnsignedMax();
10418   unsigned Bits = std::max(Hi.getActiveBits(),
10419                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10420 
10421   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10422 
10423   SDLoc SL = getCurSDLoc();
10424 
10425   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10426                              DAG.getValueType(SmallVT));
10427   unsigned NumVals = Op.getNode()->getNumValues();
10428   if (NumVals == 1)
10429     return ZExt;
10430 
10431   SmallVector<SDValue, 4> Ops;
10432 
10433   Ops.push_back(ZExt);
10434   for (unsigned I = 1; I != NumVals; ++I)
10435     Ops.push_back(Op.getValue(I));
10436 
10437   return DAG.getMergeValues(Ops, SL);
10438 }
10439 
10440 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10441 /// the call being lowered.
10442 ///
10443 /// This is a helper for lowering intrinsics that follow a target calling
10444 /// convention or require stack pointer adjustment. Only a subset of the
10445 /// intrinsic's operands need to participate in the calling convention.
10446 void SelectionDAGBuilder::populateCallLoweringInfo(
10447     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10448     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10449     AttributeSet RetAttrs, bool IsPatchPoint) {
10450   TargetLowering::ArgListTy Args;
10451   Args.reserve(NumArgs);
10452 
10453   // Populate the argument list.
10454   // Attributes for args start at offset 1, after the return attribute.
10455   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10456        ArgI != ArgE; ++ArgI) {
10457     const Value *V = Call->getOperand(ArgI);
10458 
10459     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10460 
10461     TargetLowering::ArgListEntry Entry;
10462     Entry.Node = getValue(V);
10463     Entry.Ty = V->getType();
10464     Entry.setAttributes(Call, ArgI);
10465     Args.push_back(Entry);
10466   }
10467 
10468   CLI.setDebugLoc(getCurSDLoc())
10469       .setChain(getRoot())
10470       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10471                  RetAttrs)
10472       .setDiscardResult(Call->use_empty())
10473       .setIsPatchPoint(IsPatchPoint)
10474       .setIsPreallocated(
10475           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10476 }
10477 
10478 /// Add a stack map intrinsic call's live variable operands to a stackmap
10479 /// or patchpoint target node's operand list.
10480 ///
10481 /// Constants are converted to TargetConstants purely as an optimization to
10482 /// avoid constant materialization and register allocation.
10483 ///
10484 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10485 /// generate addess computation nodes, and so FinalizeISel can convert the
10486 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10487 /// address materialization and register allocation, but may also be required
10488 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10489 /// alloca in the entry block, then the runtime may assume that the alloca's
10490 /// StackMap location can be read immediately after compilation and that the
10491 /// location is valid at any point during execution (this is similar to the
10492 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10493 /// only available in a register, then the runtime would need to trap when
10494 /// execution reaches the StackMap in order to read the alloca's location.
10495 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10496                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10497                                 SelectionDAGBuilder &Builder) {
10498   SelectionDAG &DAG = Builder.DAG;
10499   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10500     SDValue Op = Builder.getValue(Call.getArgOperand(I));
10501 
10502     // Things on the stack are pointer-typed, meaning that they are already
10503     // legal and can be emitted directly to target nodes.
10504     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10505       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10506     } else {
10507       // Otherwise emit a target independent node to be legalised.
10508       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10509     }
10510   }
10511 }
10512 
10513 /// Lower llvm.experimental.stackmap.
10514 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10515   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10516   //                                  [live variables...])
10517 
10518   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10519 
10520   SDValue Chain, InGlue, Callee;
10521   SmallVector<SDValue, 32> Ops;
10522 
10523   SDLoc DL = getCurSDLoc();
10524   Callee = getValue(CI.getCalledOperand());
10525 
10526   // The stackmap intrinsic only records the live variables (the arguments
10527   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10528   // intrinsic, this won't be lowered to a function call. This means we don't
10529   // have to worry about calling conventions and target specific lowering code.
10530   // Instead we perform the call lowering right here.
10531   //
10532   // chain, flag = CALLSEQ_START(chain, 0, 0)
10533   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10534   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10535   //
10536   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10537   InGlue = Chain.getValue(1);
10538 
10539   // Add the STACKMAP operands, starting with DAG house-keeping.
10540   Ops.push_back(Chain);
10541   Ops.push_back(InGlue);
10542 
10543   // Add the <id>, <numShadowBytes> operands.
10544   //
10545   // These do not require legalisation, and can be emitted directly to target
10546   // constant nodes.
10547   SDValue ID = getValue(CI.getArgOperand(0));
10548   assert(ID.getValueType() == MVT::i64);
10549   SDValue IDConst =
10550       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10551   Ops.push_back(IDConst);
10552 
10553   SDValue Shad = getValue(CI.getArgOperand(1));
10554   assert(Shad.getValueType() == MVT::i32);
10555   SDValue ShadConst =
10556       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10557   Ops.push_back(ShadConst);
10558 
10559   // Add the live variables.
10560   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10561 
10562   // Create the STACKMAP node.
10563   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10564   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10565   InGlue = Chain.getValue(1);
10566 
10567   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10568 
10569   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10570 
10571   // Set the root to the target-lowered call chain.
10572   DAG.setRoot(Chain);
10573 
10574   // Inform the Frame Information that we have a stackmap in this function.
10575   FuncInfo.MF->getFrameInfo().setHasStackMap();
10576 }
10577 
10578 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10579 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10580                                           const BasicBlock *EHPadBB) {
10581   // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10582   //                                         i32 <numBytes>,
10583   //                                         i8* <target>,
10584   //                                         i32 <numArgs>,
10585   //                                         [Args...],
10586   //                                         [live variables...])
10587 
10588   CallingConv::ID CC = CB.getCallingConv();
10589   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10590   bool HasDef = !CB.getType()->isVoidTy();
10591   SDLoc dl = getCurSDLoc();
10592   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10593 
10594   // Handle immediate and symbolic callees.
10595   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10596     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10597                                    /*isTarget=*/true);
10598   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10599     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10600                                          SDLoc(SymbolicCallee),
10601                                          SymbolicCallee->getValueType(0));
10602 
10603   // Get the real number of arguments participating in the call <numArgs>
10604   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10605   unsigned NumArgs = NArgVal->getAsZExtVal();
10606 
10607   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10608   // Intrinsics include all meta-operands up to but not including CC.
10609   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10610   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10611          "Not enough arguments provided to the patchpoint intrinsic");
10612 
10613   // For AnyRegCC the arguments are lowered later on manually.
10614   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10615   Type *ReturnTy =
10616       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10617 
10618   TargetLowering::CallLoweringInfo CLI(DAG);
10619   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10620                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10621   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10622 
10623   SDNode *CallEnd = Result.second.getNode();
10624   if (CallEnd->getOpcode() == ISD::EH_LABEL)
10625     CallEnd = CallEnd->getOperand(0).getNode();
10626   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10627     CallEnd = CallEnd->getOperand(0).getNode();
10628 
10629   /// Get a call instruction from the call sequence chain.
10630   /// Tail calls are not allowed.
10631   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10632          "Expected a callseq node.");
10633   SDNode *Call = CallEnd->getOperand(0).getNode();
10634   bool HasGlue = Call->getGluedNode();
10635 
10636   // Replace the target specific call node with the patchable intrinsic.
10637   SmallVector<SDValue, 8> Ops;
10638 
10639   // Push the chain.
10640   Ops.push_back(*(Call->op_begin()));
10641 
10642   // Optionally, push the glue (if any).
10643   if (HasGlue)
10644     Ops.push_back(*(Call->op_end() - 1));
10645 
10646   // Push the register mask info.
10647   if (HasGlue)
10648     Ops.push_back(*(Call->op_end() - 2));
10649   else
10650     Ops.push_back(*(Call->op_end() - 1));
10651 
10652   // Add the <id> and <numBytes> constants.
10653   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10654   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10655   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10656   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10657 
10658   // Add the callee.
10659   Ops.push_back(Callee);
10660 
10661   // Adjust <numArgs> to account for any arguments that have been passed on the
10662   // stack instead.
10663   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10664   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10665   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10666   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10667 
10668   // Add the calling convention
10669   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10670 
10671   // Add the arguments we omitted previously. The register allocator should
10672   // place these in any free register.
10673   if (IsAnyRegCC)
10674     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10675       Ops.push_back(getValue(CB.getArgOperand(i)));
10676 
10677   // Push the arguments from the call instruction.
10678   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10679   Ops.append(Call->op_begin() + 2, e);
10680 
10681   // Push live variables for the stack map.
10682   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10683 
10684   SDVTList NodeTys;
10685   if (IsAnyRegCC && HasDef) {
10686     // Create the return types based on the intrinsic definition
10687     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10688     SmallVector<EVT, 3> ValueVTs;
10689     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10690     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10691 
10692     // There is always a chain and a glue type at the end
10693     ValueVTs.push_back(MVT::Other);
10694     ValueVTs.push_back(MVT::Glue);
10695     NodeTys = DAG.getVTList(ValueVTs);
10696   } else
10697     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10698 
10699   // Replace the target specific call node with a PATCHPOINT node.
10700   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10701 
10702   // Update the NodeMap.
10703   if (HasDef) {
10704     if (IsAnyRegCC)
10705       setValue(&CB, SDValue(PPV.getNode(), 0));
10706     else
10707       setValue(&CB, Result.first);
10708   }
10709 
10710   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10711   // call sequence. Furthermore the location of the chain and glue can change
10712   // when the AnyReg calling convention is used and the intrinsic returns a
10713   // value.
10714   if (IsAnyRegCC && HasDef) {
10715     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10716     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10717     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10718   } else
10719     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10720   DAG.DeleteNode(Call);
10721 
10722   // Inform the Frame Information that we have a patchpoint in this function.
10723   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10724 }
10725 
10726 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10727                                             unsigned Intrinsic) {
10728   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10729   SDValue Op1 = getValue(I.getArgOperand(0));
10730   SDValue Op2;
10731   if (I.arg_size() > 1)
10732     Op2 = getValue(I.getArgOperand(1));
10733   SDLoc dl = getCurSDLoc();
10734   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10735   SDValue Res;
10736   SDNodeFlags SDFlags;
10737   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10738     SDFlags.copyFMF(*FPMO);
10739 
10740   switch (Intrinsic) {
10741   case Intrinsic::vector_reduce_fadd:
10742     if (SDFlags.hasAllowReassociation())
10743       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10744                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10745                         SDFlags);
10746     else
10747       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10748     break;
10749   case Intrinsic::vector_reduce_fmul:
10750     if (SDFlags.hasAllowReassociation())
10751       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10752                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10753                         SDFlags);
10754     else
10755       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10756     break;
10757   case Intrinsic::vector_reduce_add:
10758     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10759     break;
10760   case Intrinsic::vector_reduce_mul:
10761     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10762     break;
10763   case Intrinsic::vector_reduce_and:
10764     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10765     break;
10766   case Intrinsic::vector_reduce_or:
10767     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10768     break;
10769   case Intrinsic::vector_reduce_xor:
10770     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10771     break;
10772   case Intrinsic::vector_reduce_smax:
10773     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10774     break;
10775   case Intrinsic::vector_reduce_smin:
10776     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10777     break;
10778   case Intrinsic::vector_reduce_umax:
10779     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10780     break;
10781   case Intrinsic::vector_reduce_umin:
10782     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10783     break;
10784   case Intrinsic::vector_reduce_fmax:
10785     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10786     break;
10787   case Intrinsic::vector_reduce_fmin:
10788     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10789     break;
10790   case Intrinsic::vector_reduce_fmaximum:
10791     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10792     break;
10793   case Intrinsic::vector_reduce_fminimum:
10794     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10795     break;
10796   default:
10797     llvm_unreachable("Unhandled vector reduce intrinsic");
10798   }
10799   setValue(&I, Res);
10800 }
10801 
10802 /// Returns an AttributeList representing the attributes applied to the return
10803 /// value of the given call.
10804 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10805   SmallVector<Attribute::AttrKind, 2> Attrs;
10806   if (CLI.RetSExt)
10807     Attrs.push_back(Attribute::SExt);
10808   if (CLI.RetZExt)
10809     Attrs.push_back(Attribute::ZExt);
10810   if (CLI.IsInReg)
10811     Attrs.push_back(Attribute::InReg);
10812 
10813   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10814                             Attrs);
10815 }
10816 
10817 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10818 /// implementation, which just calls LowerCall.
10819 /// FIXME: When all targets are
10820 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10821 std::pair<SDValue, SDValue>
10822 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10823   // Handle the incoming return values from the call.
10824   CLI.Ins.clear();
10825   Type *OrigRetTy = CLI.RetTy;
10826   SmallVector<EVT, 4> RetTys;
10827   SmallVector<TypeSize, 4> Offsets;
10828   auto &DL = CLI.DAG.getDataLayout();
10829   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
10830 
10831   if (CLI.IsPostTypeLegalization) {
10832     // If we are lowering a libcall after legalization, split the return type.
10833     SmallVector<EVT, 4> OldRetTys;
10834     SmallVector<TypeSize, 4> OldOffsets;
10835     RetTys.swap(OldRetTys);
10836     Offsets.swap(OldOffsets);
10837 
10838     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10839       EVT RetVT = OldRetTys[i];
10840       uint64_t Offset = OldOffsets[i];
10841       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10842       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10843       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10844       RetTys.append(NumRegs, RegisterVT);
10845       for (unsigned j = 0; j != NumRegs; ++j)
10846         Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
10847     }
10848   }
10849 
10850   SmallVector<ISD::OutputArg, 4> Outs;
10851   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10852 
10853   bool CanLowerReturn =
10854       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10855                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10856 
10857   SDValue DemoteStackSlot;
10858   int DemoteStackIdx = -100;
10859   if (!CanLowerReturn) {
10860     // FIXME: equivalent assert?
10861     // assert(!CS.hasInAllocaArgument() &&
10862     //        "sret demotion is incompatible with inalloca");
10863     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10864     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10865     MachineFunction &MF = CLI.DAG.getMachineFunction();
10866     DemoteStackIdx =
10867         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10868     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10869                                               DL.getAllocaAddrSpace());
10870 
10871     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10872     ArgListEntry Entry;
10873     Entry.Node = DemoteStackSlot;
10874     Entry.Ty = StackSlotPtrType;
10875     Entry.IsSExt = false;
10876     Entry.IsZExt = false;
10877     Entry.IsInReg = false;
10878     Entry.IsSRet = true;
10879     Entry.IsNest = false;
10880     Entry.IsByVal = false;
10881     Entry.IsByRef = false;
10882     Entry.IsReturned = false;
10883     Entry.IsSwiftSelf = false;
10884     Entry.IsSwiftAsync = false;
10885     Entry.IsSwiftError = false;
10886     Entry.IsCFGuardTarget = false;
10887     Entry.Alignment = Alignment;
10888     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10889     CLI.NumFixedArgs += 1;
10890     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10891     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10892 
10893     // sret demotion isn't compatible with tail-calls, since the sret argument
10894     // points into the callers stack frame.
10895     CLI.IsTailCall = false;
10896   } else {
10897     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10898         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10899     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10900       ISD::ArgFlagsTy Flags;
10901       if (NeedsRegBlock) {
10902         Flags.setInConsecutiveRegs();
10903         if (I == RetTys.size() - 1)
10904           Flags.setInConsecutiveRegsLast();
10905       }
10906       EVT VT = RetTys[I];
10907       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10908                                                      CLI.CallConv, VT);
10909       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10910                                                        CLI.CallConv, VT);
10911       for (unsigned i = 0; i != NumRegs; ++i) {
10912         ISD::InputArg MyFlags;
10913         MyFlags.Flags = Flags;
10914         MyFlags.VT = RegisterVT;
10915         MyFlags.ArgVT = VT;
10916         MyFlags.Used = CLI.IsReturnValueUsed;
10917         if (CLI.RetTy->isPointerTy()) {
10918           MyFlags.Flags.setPointer();
10919           MyFlags.Flags.setPointerAddrSpace(
10920               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10921         }
10922         if (CLI.RetSExt)
10923           MyFlags.Flags.setSExt();
10924         if (CLI.RetZExt)
10925           MyFlags.Flags.setZExt();
10926         if (CLI.IsInReg)
10927           MyFlags.Flags.setInReg();
10928         CLI.Ins.push_back(MyFlags);
10929       }
10930     }
10931   }
10932 
10933   // We push in swifterror return as the last element of CLI.Ins.
10934   ArgListTy &Args = CLI.getArgs();
10935   if (supportSwiftError()) {
10936     for (const ArgListEntry &Arg : Args) {
10937       if (Arg.IsSwiftError) {
10938         ISD::InputArg MyFlags;
10939         MyFlags.VT = getPointerTy(DL);
10940         MyFlags.ArgVT = EVT(getPointerTy(DL));
10941         MyFlags.Flags.setSwiftError();
10942         CLI.Ins.push_back(MyFlags);
10943       }
10944     }
10945   }
10946 
10947   // Handle all of the outgoing arguments.
10948   CLI.Outs.clear();
10949   CLI.OutVals.clear();
10950   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10951     SmallVector<EVT, 4> ValueVTs;
10952     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10953     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10954     Type *FinalType = Args[i].Ty;
10955     if (Args[i].IsByVal)
10956       FinalType = Args[i].IndirectType;
10957     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10958         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10959     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10960          ++Value) {
10961       EVT VT = ValueVTs[Value];
10962       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10963       SDValue Op = SDValue(Args[i].Node.getNode(),
10964                            Args[i].Node.getResNo() + Value);
10965       ISD::ArgFlagsTy Flags;
10966 
10967       // Certain targets (such as MIPS), may have a different ABI alignment
10968       // for a type depending on the context. Give the target a chance to
10969       // specify the alignment it wants.
10970       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10971       Flags.setOrigAlign(OriginalAlignment);
10972 
10973       if (Args[i].Ty->isPointerTy()) {
10974         Flags.setPointer();
10975         Flags.setPointerAddrSpace(
10976             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10977       }
10978       if (Args[i].IsZExt)
10979         Flags.setZExt();
10980       if (Args[i].IsSExt)
10981         Flags.setSExt();
10982       if (Args[i].IsInReg) {
10983         // If we are using vectorcall calling convention, a structure that is
10984         // passed InReg - is surely an HVA
10985         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10986             isa<StructType>(FinalType)) {
10987           // The first value of a structure is marked
10988           if (0 == Value)
10989             Flags.setHvaStart();
10990           Flags.setHva();
10991         }
10992         // Set InReg Flag
10993         Flags.setInReg();
10994       }
10995       if (Args[i].IsSRet)
10996         Flags.setSRet();
10997       if (Args[i].IsSwiftSelf)
10998         Flags.setSwiftSelf();
10999       if (Args[i].IsSwiftAsync)
11000         Flags.setSwiftAsync();
11001       if (Args[i].IsSwiftError)
11002         Flags.setSwiftError();
11003       if (Args[i].IsCFGuardTarget)
11004         Flags.setCFGuardTarget();
11005       if (Args[i].IsByVal)
11006         Flags.setByVal();
11007       if (Args[i].IsByRef)
11008         Flags.setByRef();
11009       if (Args[i].IsPreallocated) {
11010         Flags.setPreallocated();
11011         // Set the byval flag for CCAssignFn callbacks that don't know about
11012         // preallocated.  This way we can know how many bytes we should've
11013         // allocated and how many bytes a callee cleanup function will pop.  If
11014         // we port preallocated to more targets, we'll have to add custom
11015         // preallocated handling in the various CC lowering callbacks.
11016         Flags.setByVal();
11017       }
11018       if (Args[i].IsInAlloca) {
11019         Flags.setInAlloca();
11020         // Set the byval flag for CCAssignFn callbacks that don't know about
11021         // inalloca.  This way we can know how many bytes we should've allocated
11022         // and how many bytes a callee cleanup function will pop.  If we port
11023         // inalloca to more targets, we'll have to add custom inalloca handling
11024         // in the various CC lowering callbacks.
11025         Flags.setByVal();
11026       }
11027       Align MemAlign;
11028       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11029         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
11030         Flags.setByValSize(FrameSize);
11031 
11032         // info is not there but there are cases it cannot get right.
11033         if (auto MA = Args[i].Alignment)
11034           MemAlign = *MA;
11035         else
11036           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
11037       } else if (auto MA = Args[i].Alignment) {
11038         MemAlign = *MA;
11039       } else {
11040         MemAlign = OriginalAlignment;
11041       }
11042       Flags.setMemAlign(MemAlign);
11043       if (Args[i].IsNest)
11044         Flags.setNest();
11045       if (NeedsRegBlock)
11046         Flags.setInConsecutiveRegs();
11047 
11048       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11049                                                  CLI.CallConv, VT);
11050       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11051                                                         CLI.CallConv, VT);
11052       SmallVector<SDValue, 4> Parts(NumParts);
11053       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
11054 
11055       if (Args[i].IsSExt)
11056         ExtendKind = ISD::SIGN_EXTEND;
11057       else if (Args[i].IsZExt)
11058         ExtendKind = ISD::ZERO_EXTEND;
11059 
11060       // Conservatively only handle 'returned' on non-vectors that can be lowered,
11061       // for now.
11062       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
11063           CanLowerReturn) {
11064         assert((CLI.RetTy == Args[i].Ty ||
11065                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
11066                  CLI.RetTy->getPointerAddressSpace() ==
11067                      Args[i].Ty->getPointerAddressSpace())) &&
11068                RetTys.size() == NumValues && "unexpected use of 'returned'");
11069         // Before passing 'returned' to the target lowering code, ensure that
11070         // either the register MVT and the actual EVT are the same size or that
11071         // the return value and argument are extended in the same way; in these
11072         // cases it's safe to pass the argument register value unchanged as the
11073         // return register value (although it's at the target's option whether
11074         // to do so)
11075         // TODO: allow code generation to take advantage of partially preserved
11076         // registers rather than clobbering the entire register when the
11077         // parameter extension method is not compatible with the return
11078         // extension method
11079         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
11080             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
11081              CLI.RetZExt == Args[i].IsZExt))
11082           Flags.setReturned();
11083       }
11084 
11085       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
11086                      CLI.CallConv, ExtendKind);
11087 
11088       for (unsigned j = 0; j != NumParts; ++j) {
11089         // if it isn't first piece, alignment must be 1
11090         // For scalable vectors the scalable part is currently handled
11091         // by individual targets, so we just use the known minimum size here.
11092         ISD::OutputArg MyFlags(
11093             Flags, Parts[j].getValueType().getSimpleVT(), VT,
11094             i < CLI.NumFixedArgs, i,
11095             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
11096         if (NumParts > 1 && j == 0)
11097           MyFlags.Flags.setSplit();
11098         else if (j != 0) {
11099           MyFlags.Flags.setOrigAlign(Align(1));
11100           if (j == NumParts - 1)
11101             MyFlags.Flags.setSplitEnd();
11102         }
11103 
11104         CLI.Outs.push_back(MyFlags);
11105         CLI.OutVals.push_back(Parts[j]);
11106       }
11107 
11108       if (NeedsRegBlock && Value == NumValues - 1)
11109         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11110     }
11111   }
11112 
11113   SmallVector<SDValue, 4> InVals;
11114   CLI.Chain = LowerCall(CLI, InVals);
11115 
11116   // Update CLI.InVals to use outside of this function.
11117   CLI.InVals = InVals;
11118 
11119   // Verify that the target's LowerCall behaved as expected.
11120   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
11121          "LowerCall didn't return a valid chain!");
11122   assert((!CLI.IsTailCall || InVals.empty()) &&
11123          "LowerCall emitted a return value for a tail call!");
11124   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
11125          "LowerCall didn't emit the correct number of values!");
11126 
11127   // For a tail call, the return value is merely live-out and there aren't
11128   // any nodes in the DAG representing it. Return a special value to
11129   // indicate that a tail call has been emitted and no more Instructions
11130   // should be processed in the current block.
11131   if (CLI.IsTailCall) {
11132     CLI.DAG.setRoot(CLI.Chain);
11133     return std::make_pair(SDValue(), SDValue());
11134   }
11135 
11136 #ifndef NDEBUG
11137   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
11138     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
11139     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
11140            "LowerCall emitted a value with the wrong type!");
11141   }
11142 #endif
11143 
11144   SmallVector<SDValue, 4> ReturnValues;
11145   if (!CanLowerReturn) {
11146     // The instruction result is the result of loading from the
11147     // hidden sret parameter.
11148     SmallVector<EVT, 1> PVTs;
11149     Type *PtrRetTy =
11150         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
11151 
11152     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
11153     assert(PVTs.size() == 1 && "Pointers should fit in one register");
11154     EVT PtrVT = PVTs[0];
11155 
11156     unsigned NumValues = RetTys.size();
11157     ReturnValues.resize(NumValues);
11158     SmallVector<SDValue, 4> Chains(NumValues);
11159 
11160     // An aggregate return value cannot wrap around the address space, so
11161     // offsets to its parts don't wrap either.
11162     SDNodeFlags Flags;
11163     Flags.setNoUnsignedWrap(true);
11164 
11165     MachineFunction &MF = CLI.DAG.getMachineFunction();
11166     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
11167     for (unsigned i = 0; i < NumValues; ++i) {
11168       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
11169                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
11170                                                         PtrVT), Flags);
11171       SDValue L = CLI.DAG.getLoad(
11172           RetTys[i], CLI.DL, CLI.Chain, Add,
11173           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
11174                                             DemoteStackIdx, Offsets[i]),
11175           HiddenSRetAlign);
11176       ReturnValues[i] = L;
11177       Chains[i] = L.getValue(1);
11178     }
11179 
11180     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
11181   } else {
11182     // Collect the legal value parts into potentially illegal values
11183     // that correspond to the original function's return values.
11184     std::optional<ISD::NodeType> AssertOp;
11185     if (CLI.RetSExt)
11186       AssertOp = ISD::AssertSext;
11187     else if (CLI.RetZExt)
11188       AssertOp = ISD::AssertZext;
11189     unsigned CurReg = 0;
11190     for (EVT VT : RetTys) {
11191       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11192                                                      CLI.CallConv, VT);
11193       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11194                                                        CLI.CallConv, VT);
11195 
11196       ReturnValues.push_back(getCopyFromParts(
11197           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11198           CLI.Chain, CLI.CallConv, AssertOp));
11199       CurReg += NumRegs;
11200     }
11201 
11202     // For a function returning void, there is no return value. We can't create
11203     // such a node, so we just return a null return value in that case. In
11204     // that case, nothing will actually look at the value.
11205     if (ReturnValues.empty())
11206       return std::make_pair(SDValue(), CLI.Chain);
11207   }
11208 
11209   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11210                                 CLI.DAG.getVTList(RetTys), ReturnValues);
11211   return std::make_pair(Res, CLI.Chain);
11212 }
11213 
11214 /// Places new result values for the node in Results (their number
11215 /// and types must exactly match those of the original return values of
11216 /// the node), or leaves Results empty, which indicates that the node is not
11217 /// to be custom lowered after all.
11218 void TargetLowering::LowerOperationWrapper(SDNode *N,
11219                                            SmallVectorImpl<SDValue> &Results,
11220                                            SelectionDAG &DAG) const {
11221   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11222 
11223   if (!Res.getNode())
11224     return;
11225 
11226   // If the original node has one result, take the return value from
11227   // LowerOperation as is. It might not be result number 0.
11228   if (N->getNumValues() == 1) {
11229     Results.push_back(Res);
11230     return;
11231   }
11232 
11233   // If the original node has multiple results, then the return node should
11234   // have the same number of results.
11235   assert((N->getNumValues() == Res->getNumValues()) &&
11236       "Lowering returned the wrong number of results!");
11237 
11238   // Places new result values base on N result number.
11239   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11240     Results.push_back(Res.getValue(I));
11241 }
11242 
11243 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11244   llvm_unreachable("LowerOperation not implemented for this target!");
11245 }
11246 
11247 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
11248                                                      unsigned Reg,
11249                                                      ISD::NodeType ExtendType) {
11250   SDValue Op = getNonRegisterValue(V);
11251   assert((Op.getOpcode() != ISD::CopyFromReg ||
11252           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11253          "Copy from a reg to the same reg!");
11254   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
11255 
11256   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11257   // If this is an InlineAsm we have to match the registers required, not the
11258   // notional registers required by the type.
11259 
11260   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11261                    std::nullopt); // This is not an ABI copy.
11262   SDValue Chain = DAG.getEntryNode();
11263 
11264   if (ExtendType == ISD::ANY_EXTEND) {
11265     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11266     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11267       ExtendType = PreferredExtendIt->second;
11268   }
11269   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11270   PendingExports.push_back(Chain);
11271 }
11272 
11273 #include "llvm/CodeGen/SelectionDAGISel.h"
11274 
11275 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11276 /// entry block, return true.  This includes arguments used by switches, since
11277 /// the switch may expand into multiple basic blocks.
11278 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11279   // With FastISel active, we may be splitting blocks, so force creation
11280   // of virtual registers for all non-dead arguments.
11281   if (FastISel)
11282     return A->use_empty();
11283 
11284   const BasicBlock &Entry = A->getParent()->front();
11285   for (const User *U : A->users())
11286     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11287       return false;  // Use not in entry block.
11288 
11289   return true;
11290 }
11291 
11292 using ArgCopyElisionMapTy =
11293     DenseMap<const Argument *,
11294              std::pair<const AllocaInst *, const StoreInst *>>;
11295 
11296 /// Scan the entry block of the function in FuncInfo for arguments that look
11297 /// like copies into a local alloca. Record any copied arguments in
11298 /// ArgCopyElisionCandidates.
11299 static void
11300 findArgumentCopyElisionCandidates(const DataLayout &DL,
11301                                   FunctionLoweringInfo *FuncInfo,
11302                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11303   // Record the state of every static alloca used in the entry block. Argument
11304   // allocas are all used in the entry block, so we need approximately as many
11305   // entries as we have arguments.
11306   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11307   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
11308   unsigned NumArgs = FuncInfo->Fn->arg_size();
11309   StaticAllocas.reserve(NumArgs * 2);
11310 
11311   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11312     if (!V)
11313       return nullptr;
11314     V = V->stripPointerCasts();
11315     const auto *AI = dyn_cast<AllocaInst>(V);
11316     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11317       return nullptr;
11318     auto Iter = StaticAllocas.insert({AI, Unknown});
11319     return &Iter.first->second;
11320   };
11321 
11322   // Look for stores of arguments to static allocas. Look through bitcasts and
11323   // GEPs to handle type coercions, as long as the alloca is fully initialized
11324   // by the store. Any non-store use of an alloca escapes it and any subsequent
11325   // unanalyzed store might write it.
11326   // FIXME: Handle structs initialized with multiple stores.
11327   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11328     // Look for stores, and handle non-store uses conservatively.
11329     const auto *SI = dyn_cast<StoreInst>(&I);
11330     if (!SI) {
11331       // We will look through cast uses, so ignore them completely.
11332       if (I.isCast())
11333         continue;
11334       // Ignore debug info and pseudo op intrinsics, they don't escape or store
11335       // to allocas.
11336       if (I.isDebugOrPseudoInst())
11337         continue;
11338       // This is an unknown instruction. Assume it escapes or writes to all
11339       // static alloca operands.
11340       for (const Use &U : I.operands()) {
11341         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11342           *Info = StaticAllocaInfo::Clobbered;
11343       }
11344       continue;
11345     }
11346 
11347     // If the stored value is a static alloca, mark it as escaped.
11348     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11349       *Info = StaticAllocaInfo::Clobbered;
11350 
11351     // Check if the destination is a static alloca.
11352     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11353     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11354     if (!Info)
11355       continue;
11356     const AllocaInst *AI = cast<AllocaInst>(Dst);
11357 
11358     // Skip allocas that have been initialized or clobbered.
11359     if (*Info != StaticAllocaInfo::Unknown)
11360       continue;
11361 
11362     // Check if the stored value is an argument, and that this store fully
11363     // initializes the alloca.
11364     // If the argument type has padding bits we can't directly forward a pointer
11365     // as the upper bits may contain garbage.
11366     // Don't elide copies from the same argument twice.
11367     const Value *Val = SI->getValueOperand()->stripPointerCasts();
11368     const auto *Arg = dyn_cast<Argument>(Val);
11369     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11370         Arg->getType()->isEmptyTy() ||
11371         DL.getTypeStoreSize(Arg->getType()) !=
11372             DL.getTypeAllocSize(AI->getAllocatedType()) ||
11373         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11374         ArgCopyElisionCandidates.count(Arg)) {
11375       *Info = StaticAllocaInfo::Clobbered;
11376       continue;
11377     }
11378 
11379     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11380                       << '\n');
11381 
11382     // Mark this alloca and store for argument copy elision.
11383     *Info = StaticAllocaInfo::Elidable;
11384     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11385 
11386     // Stop scanning if we've seen all arguments. This will happen early in -O0
11387     // builds, which is useful, because -O0 builds have large entry blocks and
11388     // many allocas.
11389     if (ArgCopyElisionCandidates.size() == NumArgs)
11390       break;
11391   }
11392 }
11393 
11394 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11395 /// ArgVal is a load from a suitable fixed stack object.
11396 static void tryToElideArgumentCopy(
11397     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11398     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11399     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11400     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11401     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11402   // Check if this is a load from a fixed stack object.
11403   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11404   if (!LNode)
11405     return;
11406   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11407   if (!FINode)
11408     return;
11409 
11410   // Check that the fixed stack object is the right size and alignment.
11411   // Look at the alignment that the user wrote on the alloca instead of looking
11412   // at the stack object.
11413   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11414   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11415   const AllocaInst *AI = ArgCopyIter->second.first;
11416   int FixedIndex = FINode->getIndex();
11417   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11418   int OldIndex = AllocaIndex;
11419   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11420   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11421     LLVM_DEBUG(
11422         dbgs() << "  argument copy elision failed due to bad fixed stack "
11423                   "object size\n");
11424     return;
11425   }
11426   Align RequiredAlignment = AI->getAlign();
11427   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11428     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
11429                          "greater than stack argument alignment ("
11430                       << DebugStr(RequiredAlignment) << " vs "
11431                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11432     return;
11433   }
11434 
11435   // Perform the elision. Delete the old stack object and replace its only use
11436   // in the variable info map. Mark the stack object as mutable and aliased.
11437   LLVM_DEBUG({
11438     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11439            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
11440            << '\n';
11441   });
11442   MFI.RemoveStackObject(OldIndex);
11443   MFI.setIsImmutableObjectIndex(FixedIndex, false);
11444   MFI.setIsAliasedObjectIndex(FixedIndex, true);
11445   AllocaIndex = FixedIndex;
11446   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11447   for (SDValue ArgVal : ArgVals)
11448     Chains.push_back(ArgVal.getValue(1));
11449 
11450   // Avoid emitting code for the store implementing the copy.
11451   const StoreInst *SI = ArgCopyIter->second.second;
11452   ElidedArgCopyInstrs.insert(SI);
11453 
11454   // Check for uses of the argument again so that we can avoid exporting ArgVal
11455   // if it is't used by anything other than the store.
11456   for (const Value *U : Arg.users()) {
11457     if (U != SI) {
11458       ArgHasUses = true;
11459       break;
11460     }
11461   }
11462 }
11463 
11464 void SelectionDAGISel::LowerArguments(const Function &F) {
11465   SelectionDAG &DAG = SDB->DAG;
11466   SDLoc dl = SDB->getCurSDLoc();
11467   const DataLayout &DL = DAG.getDataLayout();
11468   SmallVector<ISD::InputArg, 16> Ins;
11469 
11470   // In Naked functions we aren't going to save any registers.
11471   if (F.hasFnAttribute(Attribute::Naked))
11472     return;
11473 
11474   if (!FuncInfo->CanLowerReturn) {
11475     // Put in an sret pointer parameter before all the other parameters.
11476     SmallVector<EVT, 1> ValueVTs;
11477     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11478                     PointerType::get(F.getContext(),
11479                                      DAG.getDataLayout().getAllocaAddrSpace()),
11480                     ValueVTs);
11481 
11482     // NOTE: Assuming that a pointer will never break down to more than one VT
11483     // or one register.
11484     ISD::ArgFlagsTy Flags;
11485     Flags.setSRet();
11486     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11487     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11488                          ISD::InputArg::NoArgIndex, 0);
11489     Ins.push_back(RetArg);
11490   }
11491 
11492   // Look for stores of arguments to static allocas. Mark such arguments with a
11493   // flag to ask the target to give us the memory location of that argument if
11494   // available.
11495   ArgCopyElisionMapTy ArgCopyElisionCandidates;
11496   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11497                                     ArgCopyElisionCandidates);
11498 
11499   // Set up the incoming argument description vector.
11500   for (const Argument &Arg : F.args()) {
11501     unsigned ArgNo = Arg.getArgNo();
11502     SmallVector<EVT, 4> ValueVTs;
11503     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11504     bool isArgValueUsed = !Arg.use_empty();
11505     unsigned PartBase = 0;
11506     Type *FinalType = Arg.getType();
11507     if (Arg.hasAttribute(Attribute::ByVal))
11508       FinalType = Arg.getParamByValType();
11509     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11510         FinalType, F.getCallingConv(), F.isVarArg(), DL);
11511     for (unsigned Value = 0, NumValues = ValueVTs.size();
11512          Value != NumValues; ++Value) {
11513       EVT VT = ValueVTs[Value];
11514       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11515       ISD::ArgFlagsTy Flags;
11516 
11517 
11518       if (Arg.getType()->isPointerTy()) {
11519         Flags.setPointer();
11520         Flags.setPointerAddrSpace(
11521             cast<PointerType>(Arg.getType())->getAddressSpace());
11522       }
11523       if (Arg.hasAttribute(Attribute::ZExt))
11524         Flags.setZExt();
11525       if (Arg.hasAttribute(Attribute::SExt))
11526         Flags.setSExt();
11527       if (Arg.hasAttribute(Attribute::InReg)) {
11528         // If we are using vectorcall calling convention, a structure that is
11529         // passed InReg - is surely an HVA
11530         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11531             isa<StructType>(Arg.getType())) {
11532           // The first value of a structure is marked
11533           if (0 == Value)
11534             Flags.setHvaStart();
11535           Flags.setHva();
11536         }
11537         // Set InReg Flag
11538         Flags.setInReg();
11539       }
11540       if (Arg.hasAttribute(Attribute::StructRet))
11541         Flags.setSRet();
11542       if (Arg.hasAttribute(Attribute::SwiftSelf))
11543         Flags.setSwiftSelf();
11544       if (Arg.hasAttribute(Attribute::SwiftAsync))
11545         Flags.setSwiftAsync();
11546       if (Arg.hasAttribute(Attribute::SwiftError))
11547         Flags.setSwiftError();
11548       if (Arg.hasAttribute(Attribute::ByVal))
11549         Flags.setByVal();
11550       if (Arg.hasAttribute(Attribute::ByRef))
11551         Flags.setByRef();
11552       if (Arg.hasAttribute(Attribute::InAlloca)) {
11553         Flags.setInAlloca();
11554         // Set the byval flag for CCAssignFn callbacks that don't know about
11555         // inalloca.  This way we can know how many bytes we should've allocated
11556         // and how many bytes a callee cleanup function will pop.  If we port
11557         // inalloca to more targets, we'll have to add custom inalloca handling
11558         // in the various CC lowering callbacks.
11559         Flags.setByVal();
11560       }
11561       if (Arg.hasAttribute(Attribute::Preallocated)) {
11562         Flags.setPreallocated();
11563         // Set the byval flag for CCAssignFn callbacks that don't know about
11564         // preallocated.  This way we can know how many bytes we should've
11565         // allocated and how many bytes a callee cleanup function will pop.  If
11566         // we port preallocated to more targets, we'll have to add custom
11567         // preallocated handling in the various CC lowering callbacks.
11568         Flags.setByVal();
11569       }
11570 
11571       // Certain targets (such as MIPS), may have a different ABI alignment
11572       // for a type depending on the context. Give the target a chance to
11573       // specify the alignment it wants.
11574       const Align OriginalAlignment(
11575           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11576       Flags.setOrigAlign(OriginalAlignment);
11577 
11578       Align MemAlign;
11579       Type *ArgMemTy = nullptr;
11580       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11581           Flags.isByRef()) {
11582         if (!ArgMemTy)
11583           ArgMemTy = Arg.getPointeeInMemoryValueType();
11584 
11585         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11586 
11587         // For in-memory arguments, size and alignment should be passed from FE.
11588         // BE will guess if this info is not there but there are cases it cannot
11589         // get right.
11590         if (auto ParamAlign = Arg.getParamStackAlign())
11591           MemAlign = *ParamAlign;
11592         else if ((ParamAlign = Arg.getParamAlign()))
11593           MemAlign = *ParamAlign;
11594         else
11595           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11596         if (Flags.isByRef())
11597           Flags.setByRefSize(MemSize);
11598         else
11599           Flags.setByValSize(MemSize);
11600       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11601         MemAlign = *ParamAlign;
11602       } else {
11603         MemAlign = OriginalAlignment;
11604       }
11605       Flags.setMemAlign(MemAlign);
11606 
11607       if (Arg.hasAttribute(Attribute::Nest))
11608         Flags.setNest();
11609       if (NeedsRegBlock)
11610         Flags.setInConsecutiveRegs();
11611       if (ArgCopyElisionCandidates.count(&Arg))
11612         Flags.setCopyElisionCandidate();
11613       if (Arg.hasAttribute(Attribute::Returned))
11614         Flags.setReturned();
11615 
11616       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11617           *CurDAG->getContext(), F.getCallingConv(), VT);
11618       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11619           *CurDAG->getContext(), F.getCallingConv(), VT);
11620       for (unsigned i = 0; i != NumRegs; ++i) {
11621         // For scalable vectors, use the minimum size; individual targets
11622         // are responsible for handling scalable vector arguments and
11623         // return values.
11624         ISD::InputArg MyFlags(
11625             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11626             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11627         if (NumRegs > 1 && i == 0)
11628           MyFlags.Flags.setSplit();
11629         // if it isn't first piece, alignment must be 1
11630         else if (i > 0) {
11631           MyFlags.Flags.setOrigAlign(Align(1));
11632           if (i == NumRegs - 1)
11633             MyFlags.Flags.setSplitEnd();
11634         }
11635         Ins.push_back(MyFlags);
11636       }
11637       if (NeedsRegBlock && Value == NumValues - 1)
11638         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11639       PartBase += VT.getStoreSize().getKnownMinValue();
11640     }
11641   }
11642 
11643   // Call the target to set up the argument values.
11644   SmallVector<SDValue, 8> InVals;
11645   SDValue NewRoot = TLI->LowerFormalArguments(
11646       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11647 
11648   // Verify that the target's LowerFormalArguments behaved as expected.
11649   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11650          "LowerFormalArguments didn't return a valid chain!");
11651   assert(InVals.size() == Ins.size() &&
11652          "LowerFormalArguments didn't emit the correct number of values!");
11653   LLVM_DEBUG({
11654     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11655       assert(InVals[i].getNode() &&
11656              "LowerFormalArguments emitted a null value!");
11657       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11658              "LowerFormalArguments emitted a value with the wrong type!");
11659     }
11660   });
11661 
11662   // Update the DAG with the new chain value resulting from argument lowering.
11663   DAG.setRoot(NewRoot);
11664 
11665   // Set up the argument values.
11666   unsigned i = 0;
11667   if (!FuncInfo->CanLowerReturn) {
11668     // Create a virtual register for the sret pointer, and put in a copy
11669     // from the sret argument into it.
11670     SmallVector<EVT, 1> ValueVTs;
11671     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11672                     PointerType::get(F.getContext(),
11673                                      DAG.getDataLayout().getAllocaAddrSpace()),
11674                     ValueVTs);
11675     MVT VT = ValueVTs[0].getSimpleVT();
11676     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11677     std::optional<ISD::NodeType> AssertOp;
11678     SDValue ArgValue =
11679         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11680                          F.getCallingConv(), AssertOp);
11681 
11682     MachineFunction& MF = SDB->DAG.getMachineFunction();
11683     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11684     Register SRetReg =
11685         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11686     FuncInfo->DemoteRegister = SRetReg;
11687     NewRoot =
11688         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11689     DAG.setRoot(NewRoot);
11690 
11691     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11692     ++i;
11693   }
11694 
11695   SmallVector<SDValue, 4> Chains;
11696   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11697   for (const Argument &Arg : F.args()) {
11698     SmallVector<SDValue, 4> ArgValues;
11699     SmallVector<EVT, 4> ValueVTs;
11700     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11701     unsigned NumValues = ValueVTs.size();
11702     if (NumValues == 0)
11703       continue;
11704 
11705     bool ArgHasUses = !Arg.use_empty();
11706 
11707     // Elide the copying store if the target loaded this argument from a
11708     // suitable fixed stack object.
11709     if (Ins[i].Flags.isCopyElisionCandidate()) {
11710       unsigned NumParts = 0;
11711       for (EVT VT : ValueVTs)
11712         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11713                                                        F.getCallingConv(), VT);
11714 
11715       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11716                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11717                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11718     }
11719 
11720     // If this argument is unused then remember its value. It is used to generate
11721     // debugging information.
11722     bool isSwiftErrorArg =
11723         TLI->supportSwiftError() &&
11724         Arg.hasAttribute(Attribute::SwiftError);
11725     if (!ArgHasUses && !isSwiftErrorArg) {
11726       SDB->setUnusedArgValue(&Arg, InVals[i]);
11727 
11728       // Also remember any frame index for use in FastISel.
11729       if (FrameIndexSDNode *FI =
11730           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11731         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11732     }
11733 
11734     for (unsigned Val = 0; Val != NumValues; ++Val) {
11735       EVT VT = ValueVTs[Val];
11736       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11737                                                       F.getCallingConv(), VT);
11738       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11739           *CurDAG->getContext(), F.getCallingConv(), VT);
11740 
11741       // Even an apparent 'unused' swifterror argument needs to be returned. So
11742       // we do generate a copy for it that can be used on return from the
11743       // function.
11744       if (ArgHasUses || isSwiftErrorArg) {
11745         std::optional<ISD::NodeType> AssertOp;
11746         if (Arg.hasAttribute(Attribute::SExt))
11747           AssertOp = ISD::AssertSext;
11748         else if (Arg.hasAttribute(Attribute::ZExt))
11749           AssertOp = ISD::AssertZext;
11750 
11751         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11752                                              PartVT, VT, nullptr, NewRoot,
11753                                              F.getCallingConv(), AssertOp));
11754       }
11755 
11756       i += NumParts;
11757     }
11758 
11759     // We don't need to do anything else for unused arguments.
11760     if (ArgValues.empty())
11761       continue;
11762 
11763     // Note down frame index.
11764     if (FrameIndexSDNode *FI =
11765         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11766       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11767 
11768     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11769                                      SDB->getCurSDLoc());
11770 
11771     SDB->setValue(&Arg, Res);
11772     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11773       // We want to associate the argument with the frame index, among
11774       // involved operands, that correspond to the lowest address. The
11775       // getCopyFromParts function, called earlier, is swapping the order of
11776       // the operands to BUILD_PAIR depending on endianness. The result of
11777       // that swapping is that the least significant bits of the argument will
11778       // be in the first operand of the BUILD_PAIR node, and the most
11779       // significant bits will be in the second operand.
11780       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11781       if (LoadSDNode *LNode =
11782           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11783         if (FrameIndexSDNode *FI =
11784             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11785           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11786     }
11787 
11788     // Analyses past this point are naive and don't expect an assertion.
11789     if (Res.getOpcode() == ISD::AssertZext)
11790       Res = Res.getOperand(0);
11791 
11792     // Update the SwiftErrorVRegDefMap.
11793     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11794       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11795       if (Register::isVirtualRegister(Reg))
11796         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11797                                    Reg);
11798     }
11799 
11800     // If this argument is live outside of the entry block, insert a copy from
11801     // wherever we got it to the vreg that other BB's will reference it as.
11802     if (Res.getOpcode() == ISD::CopyFromReg) {
11803       // If we can, though, try to skip creating an unnecessary vreg.
11804       // FIXME: This isn't very clean... it would be nice to make this more
11805       // general.
11806       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11807       if (Register::isVirtualRegister(Reg)) {
11808         FuncInfo->ValueMap[&Arg] = Reg;
11809         continue;
11810       }
11811     }
11812     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11813       FuncInfo->InitializeRegForValue(&Arg);
11814       SDB->CopyToExportRegsIfNeeded(&Arg);
11815     }
11816   }
11817 
11818   if (!Chains.empty()) {
11819     Chains.push_back(NewRoot);
11820     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11821   }
11822 
11823   DAG.setRoot(NewRoot);
11824 
11825   assert(i == InVals.size() && "Argument register count mismatch!");
11826 
11827   // If any argument copy elisions occurred and we have debug info, update the
11828   // stale frame indices used in the dbg.declare variable info table.
11829   if (!ArgCopyElisionFrameIndexMap.empty()) {
11830     for (MachineFunction::VariableDbgInfo &VI :
11831          MF->getInStackSlotVariableDbgInfo()) {
11832       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11833       if (I != ArgCopyElisionFrameIndexMap.end())
11834         VI.updateStackSlot(I->second);
11835     }
11836   }
11837 
11838   // Finally, if the target has anything special to do, allow it to do so.
11839   emitFunctionEntryCode();
11840 }
11841 
11842 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11843 /// ensure constants are generated when needed.  Remember the virtual registers
11844 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11845 /// directly add them, because expansion might result in multiple MBB's for one
11846 /// BB.  As such, the start of the BB might correspond to a different MBB than
11847 /// the end.
11848 void
11849 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11850   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11851 
11852   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11853 
11854   // Check PHI nodes in successors that expect a value to be available from this
11855   // block.
11856   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11857     if (!isa<PHINode>(SuccBB->begin())) continue;
11858     MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB);
11859 
11860     // If this terminator has multiple identical successors (common for
11861     // switches), only handle each succ once.
11862     if (!SuccsHandled.insert(SuccMBB).second)
11863       continue;
11864 
11865     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11866 
11867     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11868     // nodes and Machine PHI nodes, but the incoming operands have not been
11869     // emitted yet.
11870     for (const PHINode &PN : SuccBB->phis()) {
11871       // Ignore dead phi's.
11872       if (PN.use_empty())
11873         continue;
11874 
11875       // Skip empty types
11876       if (PN.getType()->isEmptyTy())
11877         continue;
11878 
11879       unsigned Reg;
11880       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11881 
11882       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11883         unsigned &RegOut = ConstantsOut[C];
11884         if (RegOut == 0) {
11885           RegOut = FuncInfo.CreateRegs(C);
11886           // We need to zero/sign extend ConstantInt phi operands to match
11887           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11888           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11889           if (auto *CI = dyn_cast<ConstantInt>(C))
11890             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11891                                                     : ISD::ZERO_EXTEND;
11892           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11893         }
11894         Reg = RegOut;
11895       } else {
11896         DenseMap<const Value *, Register>::iterator I =
11897           FuncInfo.ValueMap.find(PHIOp);
11898         if (I != FuncInfo.ValueMap.end())
11899           Reg = I->second;
11900         else {
11901           assert(isa<AllocaInst>(PHIOp) &&
11902                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11903                  "Didn't codegen value into a register!??");
11904           Reg = FuncInfo.CreateRegs(PHIOp);
11905           CopyValueToVirtualRegister(PHIOp, Reg);
11906         }
11907       }
11908 
11909       // Remember that this register needs to added to the machine PHI node as
11910       // the input for this MBB.
11911       SmallVector<EVT, 4> ValueVTs;
11912       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11913       for (EVT VT : ValueVTs) {
11914         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11915         for (unsigned i = 0; i != NumRegisters; ++i)
11916           FuncInfo.PHINodesToUpdate.push_back(
11917               std::make_pair(&*MBBI++, Reg + i));
11918         Reg += NumRegisters;
11919       }
11920     }
11921   }
11922 
11923   ConstantsOut.clear();
11924 }
11925 
11926 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11927   MachineFunction::iterator I(MBB);
11928   if (++I == FuncInfo.MF->end())
11929     return nullptr;
11930   return &*I;
11931 }
11932 
11933 /// During lowering new call nodes can be created (such as memset, etc.).
11934 /// Those will become new roots of the current DAG, but complications arise
11935 /// when they are tail calls. In such cases, the call lowering will update
11936 /// the root, but the builder still needs to know that a tail call has been
11937 /// lowered in order to avoid generating an additional return.
11938 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11939   // If the node is null, we do have a tail call.
11940   if (MaybeTC.getNode() != nullptr)
11941     DAG.setRoot(MaybeTC);
11942   else
11943     HasTailCall = true;
11944 }
11945 
11946 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11947                                         MachineBasicBlock *SwitchMBB,
11948                                         MachineBasicBlock *DefaultMBB) {
11949   MachineFunction *CurMF = FuncInfo.MF;
11950   MachineBasicBlock *NextMBB = nullptr;
11951   MachineFunction::iterator BBI(W.MBB);
11952   if (++BBI != FuncInfo.MF->end())
11953     NextMBB = &*BBI;
11954 
11955   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11956 
11957   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11958 
11959   if (Size == 2 && W.MBB == SwitchMBB) {
11960     // If any two of the cases has the same destination, and if one value
11961     // is the same as the other, but has one bit unset that the other has set,
11962     // use bit manipulation to do two compares at once.  For example:
11963     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11964     // TODO: This could be extended to merge any 2 cases in switches with 3
11965     // cases.
11966     // TODO: Handle cases where W.CaseBB != SwitchBB.
11967     CaseCluster &Small = *W.FirstCluster;
11968     CaseCluster &Big = *W.LastCluster;
11969 
11970     if (Small.Low == Small.High && Big.Low == Big.High &&
11971         Small.MBB == Big.MBB) {
11972       const APInt &SmallValue = Small.Low->getValue();
11973       const APInt &BigValue = Big.Low->getValue();
11974 
11975       // Check that there is only one bit different.
11976       APInt CommonBit = BigValue ^ SmallValue;
11977       if (CommonBit.isPowerOf2()) {
11978         SDValue CondLHS = getValue(Cond);
11979         EVT VT = CondLHS.getValueType();
11980         SDLoc DL = getCurSDLoc();
11981 
11982         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11983                                  DAG.getConstant(CommonBit, DL, VT));
11984         SDValue Cond = DAG.getSetCC(
11985             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11986             ISD::SETEQ);
11987 
11988         // Update successor info.
11989         // Both Small and Big will jump to Small.BB, so we sum up the
11990         // probabilities.
11991         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11992         if (BPI)
11993           addSuccessorWithProb(
11994               SwitchMBB, DefaultMBB,
11995               // The default destination is the first successor in IR.
11996               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11997         else
11998           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11999 
12000         // Insert the true branch.
12001         SDValue BrCond =
12002             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
12003                         DAG.getBasicBlock(Small.MBB));
12004         // Insert the false branch.
12005         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
12006                              DAG.getBasicBlock(DefaultMBB));
12007 
12008         DAG.setRoot(BrCond);
12009         return;
12010       }
12011     }
12012   }
12013 
12014   if (TM.getOptLevel() != CodeGenOptLevel::None) {
12015     // Here, we order cases by probability so the most likely case will be
12016     // checked first. However, two clusters can have the same probability in
12017     // which case their relative ordering is non-deterministic. So we use Low
12018     // as a tie-breaker as clusters are guaranteed to never overlap.
12019     llvm::sort(W.FirstCluster, W.LastCluster + 1,
12020                [](const CaseCluster &a, const CaseCluster &b) {
12021       return a.Prob != b.Prob ?
12022              a.Prob > b.Prob :
12023              a.Low->getValue().slt(b.Low->getValue());
12024     });
12025 
12026     // Rearrange the case blocks so that the last one falls through if possible
12027     // without changing the order of probabilities.
12028     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
12029       --I;
12030       if (I->Prob > W.LastCluster->Prob)
12031         break;
12032       if (I->Kind == CC_Range && I->MBB == NextMBB) {
12033         std::swap(*I, *W.LastCluster);
12034         break;
12035       }
12036     }
12037   }
12038 
12039   // Compute total probability.
12040   BranchProbability DefaultProb = W.DefaultProb;
12041   BranchProbability UnhandledProbs = DefaultProb;
12042   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
12043     UnhandledProbs += I->Prob;
12044 
12045   MachineBasicBlock *CurMBB = W.MBB;
12046   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
12047     bool FallthroughUnreachable = false;
12048     MachineBasicBlock *Fallthrough;
12049     if (I == W.LastCluster) {
12050       // For the last cluster, fall through to the default destination.
12051       Fallthrough = DefaultMBB;
12052       FallthroughUnreachable = isa<UnreachableInst>(
12053           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
12054     } else {
12055       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
12056       CurMF->insert(BBI, Fallthrough);
12057       // Put Cond in a virtual register to make it available from the new blocks.
12058       ExportFromCurrentBlock(Cond);
12059     }
12060     UnhandledProbs -= I->Prob;
12061 
12062     switch (I->Kind) {
12063       case CC_JumpTable: {
12064         // FIXME: Optimize away range check based on pivot comparisons.
12065         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
12066         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
12067 
12068         // The jump block hasn't been inserted yet; insert it here.
12069         MachineBasicBlock *JumpMBB = JT->MBB;
12070         CurMF->insert(BBI, JumpMBB);
12071 
12072         auto JumpProb = I->Prob;
12073         auto FallthroughProb = UnhandledProbs;
12074 
12075         // If the default statement is a target of the jump table, we evenly
12076         // distribute the default probability to successors of CurMBB. Also
12077         // update the probability on the edge from JumpMBB to Fallthrough.
12078         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
12079                                               SE = JumpMBB->succ_end();
12080              SI != SE; ++SI) {
12081           if (*SI == DefaultMBB) {
12082             JumpProb += DefaultProb / 2;
12083             FallthroughProb -= DefaultProb / 2;
12084             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
12085             JumpMBB->normalizeSuccProbs();
12086             break;
12087           }
12088         }
12089 
12090         // If the default clause is unreachable, propagate that knowledge into
12091         // JTH->FallthroughUnreachable which will use it to suppress the range
12092         // check.
12093         //
12094         // However, don't do this if we're doing branch target enforcement,
12095         // because a table branch _without_ a range check can be a tempting JOP
12096         // gadget - out-of-bounds inputs that are impossible in correct
12097         // execution become possible again if an attacker can influence the
12098         // control flow. So if an attacker doesn't already have a BTI bypass
12099         // available, we don't want them to be able to get one out of this
12100         // table branch.
12101         if (FallthroughUnreachable) {
12102           Function &CurFunc = CurMF->getFunction();
12103           if (!CurFunc.hasFnAttribute("branch-target-enforcement"))
12104             JTH->FallthroughUnreachable = true;
12105         }
12106 
12107         if (!JTH->FallthroughUnreachable)
12108           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12109         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12110         CurMBB->normalizeSuccProbs();
12111 
12112         // The jump table header will be inserted in our current block, do the
12113         // range check, and fall through to our fallthrough block.
12114         JTH->HeaderBB = CurMBB;
12115         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
12116 
12117         // If we're in the right place, emit the jump table header right now.
12118         if (CurMBB == SwitchMBB) {
12119           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
12120           JTH->Emitted = true;
12121         }
12122         break;
12123       }
12124       case CC_BitTests: {
12125         // FIXME: Optimize away range check based on pivot comparisons.
12126         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
12127 
12128         // The bit test blocks haven't been inserted yet; insert them here.
12129         for (BitTestCase &BTC : BTB->Cases)
12130           CurMF->insert(BBI, BTC.ThisBB);
12131 
12132         // Fill in fields of the BitTestBlock.
12133         BTB->Parent = CurMBB;
12134         BTB->Default = Fallthrough;
12135 
12136         BTB->DefaultProb = UnhandledProbs;
12137         // If the cases in bit test don't form a contiguous range, we evenly
12138         // distribute the probability on the edge to Fallthrough to two
12139         // successors of CurMBB.
12140         if (!BTB->ContiguousRange) {
12141           BTB->Prob += DefaultProb / 2;
12142           BTB->DefaultProb -= DefaultProb / 2;
12143         }
12144 
12145         if (FallthroughUnreachable)
12146           BTB->FallthroughUnreachable = true;
12147 
12148         // If we're in the right place, emit the bit test header right now.
12149         if (CurMBB == SwitchMBB) {
12150           visitBitTestHeader(*BTB, SwitchMBB);
12151           BTB->Emitted = true;
12152         }
12153         break;
12154       }
12155       case CC_Range: {
12156         const Value *RHS, *LHS, *MHS;
12157         ISD::CondCode CC;
12158         if (I->Low == I->High) {
12159           // Check Cond == I->Low.
12160           CC = ISD::SETEQ;
12161           LHS = Cond;
12162           RHS=I->Low;
12163           MHS = nullptr;
12164         } else {
12165           // Check I->Low <= Cond <= I->High.
12166           CC = ISD::SETLE;
12167           LHS = I->Low;
12168           MHS = Cond;
12169           RHS = I->High;
12170         }
12171 
12172         // If Fallthrough is unreachable, fold away the comparison.
12173         if (FallthroughUnreachable)
12174           CC = ISD::SETTRUE;
12175 
12176         // The false probability is the sum of all unhandled cases.
12177         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12178                      getCurSDLoc(), I->Prob, UnhandledProbs);
12179 
12180         if (CurMBB == SwitchMBB)
12181           visitSwitchCase(CB, SwitchMBB);
12182         else
12183           SL->SwitchCases.push_back(CB);
12184 
12185         break;
12186       }
12187     }
12188     CurMBB = Fallthrough;
12189   }
12190 }
12191 
12192 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12193                                         const SwitchWorkListItem &W,
12194                                         Value *Cond,
12195                                         MachineBasicBlock *SwitchMBB) {
12196   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12197          "Clusters not sorted?");
12198   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12199 
12200   auto [LastLeft, FirstRight, LeftProb, RightProb] =
12201       SL->computeSplitWorkItemInfo(W);
12202 
12203   // Use the first element on the right as pivot since we will make less-than
12204   // comparisons against it.
12205   CaseClusterIt PivotCluster = FirstRight;
12206   assert(PivotCluster > W.FirstCluster);
12207   assert(PivotCluster <= W.LastCluster);
12208 
12209   CaseClusterIt FirstLeft = W.FirstCluster;
12210   CaseClusterIt LastRight = W.LastCluster;
12211 
12212   const ConstantInt *Pivot = PivotCluster->Low;
12213 
12214   // New blocks will be inserted immediately after the current one.
12215   MachineFunction::iterator BBI(W.MBB);
12216   ++BBI;
12217 
12218   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12219   // we can branch to its destination directly if it's squeezed exactly in
12220   // between the known lower bound and Pivot - 1.
12221   MachineBasicBlock *LeftMBB;
12222   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12223       FirstLeft->Low == W.GE &&
12224       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12225     LeftMBB = FirstLeft->MBB;
12226   } else {
12227     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12228     FuncInfo.MF->insert(BBI, LeftMBB);
12229     WorkList.push_back(
12230         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12231     // Put Cond in a virtual register to make it available from the new blocks.
12232     ExportFromCurrentBlock(Cond);
12233   }
12234 
12235   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12236   // single cluster, RHS.Low == Pivot, and we can branch to its destination
12237   // directly if RHS.High equals the current upper bound.
12238   MachineBasicBlock *RightMBB;
12239   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12240       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12241     RightMBB = FirstRight->MBB;
12242   } else {
12243     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12244     FuncInfo.MF->insert(BBI, RightMBB);
12245     WorkList.push_back(
12246         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12247     // Put Cond in a virtual register to make it available from the new blocks.
12248     ExportFromCurrentBlock(Cond);
12249   }
12250 
12251   // Create the CaseBlock record that will be used to lower the branch.
12252   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12253                getCurSDLoc(), LeftProb, RightProb);
12254 
12255   if (W.MBB == SwitchMBB)
12256     visitSwitchCase(CB, SwitchMBB);
12257   else
12258     SL->SwitchCases.push_back(CB);
12259 }
12260 
12261 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12262 // from the swith statement.
12263 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
12264                                             BranchProbability PeeledCaseProb) {
12265   if (PeeledCaseProb == BranchProbability::getOne())
12266     return BranchProbability::getZero();
12267   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12268 
12269   uint32_t Numerator = CaseProb.getNumerator();
12270   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12271   return BranchProbability(Numerator, std::max(Numerator, Denominator));
12272 }
12273 
12274 // Try to peel the top probability case if it exceeds the threshold.
12275 // Return current MachineBasicBlock for the switch statement if the peeling
12276 // does not occur.
12277 // If the peeling is performed, return the newly created MachineBasicBlock
12278 // for the peeled switch statement. Also update Clusters to remove the peeled
12279 // case. PeeledCaseProb is the BranchProbability for the peeled case.
12280 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12281     const SwitchInst &SI, CaseClusterVector &Clusters,
12282     BranchProbability &PeeledCaseProb) {
12283   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12284   // Don't perform if there is only one cluster or optimizing for size.
12285   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12286       TM.getOptLevel() == CodeGenOptLevel::None ||
12287       SwitchMBB->getParent()->getFunction().hasMinSize())
12288     return SwitchMBB;
12289 
12290   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12291   unsigned PeeledCaseIndex = 0;
12292   bool SwitchPeeled = false;
12293   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12294     CaseCluster &CC = Clusters[Index];
12295     if (CC.Prob < TopCaseProb)
12296       continue;
12297     TopCaseProb = CC.Prob;
12298     PeeledCaseIndex = Index;
12299     SwitchPeeled = true;
12300   }
12301   if (!SwitchPeeled)
12302     return SwitchMBB;
12303 
12304   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12305                     << TopCaseProb << "\n");
12306 
12307   // Record the MBB for the peeled switch statement.
12308   MachineFunction::iterator BBI(SwitchMBB);
12309   ++BBI;
12310   MachineBasicBlock *PeeledSwitchMBB =
12311       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12312   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12313 
12314   ExportFromCurrentBlock(SI.getCondition());
12315   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12316   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12317                           nullptr,   nullptr,      TopCaseProb.getCompl()};
12318   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12319 
12320   Clusters.erase(PeeledCaseIt);
12321   for (CaseCluster &CC : Clusters) {
12322     LLVM_DEBUG(
12323         dbgs() << "Scale the probablity for one cluster, before scaling: "
12324                << CC.Prob << "\n");
12325     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12326     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12327   }
12328   PeeledCaseProb = TopCaseProb;
12329   return PeeledSwitchMBB;
12330 }
12331 
12332 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12333   // Extract cases from the switch.
12334   BranchProbabilityInfo *BPI = FuncInfo.BPI;
12335   CaseClusterVector Clusters;
12336   Clusters.reserve(SI.getNumCases());
12337   for (auto I : SI.cases()) {
12338     MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor());
12339     const ConstantInt *CaseVal = I.getCaseValue();
12340     BranchProbability Prob =
12341         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12342             : BranchProbability(1, SI.getNumCases() + 1);
12343     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12344   }
12345 
12346   MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest());
12347 
12348   // Cluster adjacent cases with the same destination. We do this at all
12349   // optimization levels because it's cheap to do and will make codegen faster
12350   // if there are many clusters.
12351   sortAndRangeify(Clusters);
12352 
12353   // The branch probablity of the peeled case.
12354   BranchProbability PeeledCaseProb = BranchProbability::getZero();
12355   MachineBasicBlock *PeeledSwitchMBB =
12356       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12357 
12358   // If there is only the default destination, jump there directly.
12359   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12360   if (Clusters.empty()) {
12361     assert(PeeledSwitchMBB == SwitchMBB);
12362     SwitchMBB->addSuccessor(DefaultMBB);
12363     if (DefaultMBB != NextBlock(SwitchMBB)) {
12364       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12365                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12366     }
12367     return;
12368   }
12369 
12370   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12371                      DAG.getBFI());
12372   SL->findBitTestClusters(Clusters, &SI);
12373 
12374   LLVM_DEBUG({
12375     dbgs() << "Case clusters: ";
12376     for (const CaseCluster &C : Clusters) {
12377       if (C.Kind == CC_JumpTable)
12378         dbgs() << "JT:";
12379       if (C.Kind == CC_BitTests)
12380         dbgs() << "BT:";
12381 
12382       C.Low->getValue().print(dbgs(), true);
12383       if (C.Low != C.High) {
12384         dbgs() << '-';
12385         C.High->getValue().print(dbgs(), true);
12386       }
12387       dbgs() << ' ';
12388     }
12389     dbgs() << '\n';
12390   });
12391 
12392   assert(!Clusters.empty());
12393   SwitchWorkList WorkList;
12394   CaseClusterIt First = Clusters.begin();
12395   CaseClusterIt Last = Clusters.end() - 1;
12396   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12397   // Scale the branchprobability for DefaultMBB if the peel occurs and
12398   // DefaultMBB is not replaced.
12399   if (PeeledCaseProb != BranchProbability::getZero() &&
12400       DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest()))
12401     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12402   WorkList.push_back(
12403       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12404 
12405   while (!WorkList.empty()) {
12406     SwitchWorkListItem W = WorkList.pop_back_val();
12407     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12408 
12409     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12410         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12411       // For optimized builds, lower large range as a balanced binary tree.
12412       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12413       continue;
12414     }
12415 
12416     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12417   }
12418 }
12419 
12420 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12421   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12422   auto DL = getCurSDLoc();
12423   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12424   setValue(&I, DAG.getStepVector(DL, ResultVT));
12425 }
12426 
12427 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12428   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12429   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12430 
12431   SDLoc DL = getCurSDLoc();
12432   SDValue V = getValue(I.getOperand(0));
12433   assert(VT == V.getValueType() && "Malformed vector.reverse!");
12434 
12435   if (VT.isScalableVector()) {
12436     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12437     return;
12438   }
12439 
12440   // Use VECTOR_SHUFFLE for the fixed-length vector
12441   // to maintain existing behavior.
12442   SmallVector<int, 8> Mask;
12443   unsigned NumElts = VT.getVectorMinNumElements();
12444   for (unsigned i = 0; i != NumElts; ++i)
12445     Mask.push_back(NumElts - 1 - i);
12446 
12447   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12448 }
12449 
12450 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12451   auto DL = getCurSDLoc();
12452   SDValue InVec = getValue(I.getOperand(0));
12453   EVT OutVT =
12454       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12455 
12456   unsigned OutNumElts = OutVT.getVectorMinNumElements();
12457 
12458   // ISD Node needs the input vectors split into two equal parts
12459   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12460                            DAG.getVectorIdxConstant(0, DL));
12461   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12462                            DAG.getVectorIdxConstant(OutNumElts, DL));
12463 
12464   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12465   // legalisation and combines.
12466   if (OutVT.isFixedLengthVector()) {
12467     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12468                                         createStrideMask(0, 2, OutNumElts));
12469     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12470                                        createStrideMask(1, 2, OutNumElts));
12471     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12472     setValue(&I, Res);
12473     return;
12474   }
12475 
12476   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12477                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
12478   setValue(&I, Res);
12479 }
12480 
12481 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12482   auto DL = getCurSDLoc();
12483   EVT InVT = getValue(I.getOperand(0)).getValueType();
12484   SDValue InVec0 = getValue(I.getOperand(0));
12485   SDValue InVec1 = getValue(I.getOperand(1));
12486   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12487   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12488 
12489   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12490   // legalisation and combines.
12491   if (OutVT.isFixedLengthVector()) {
12492     unsigned NumElts = InVT.getVectorMinNumElements();
12493     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12494     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12495                                       createInterleaveMask(NumElts, 2)));
12496     return;
12497   }
12498 
12499   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12500                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12501   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12502                     Res.getValue(1));
12503   setValue(&I, Res);
12504 }
12505 
12506 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12507   SmallVector<EVT, 4> ValueVTs;
12508   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12509                   ValueVTs);
12510   unsigned NumValues = ValueVTs.size();
12511   if (NumValues == 0) return;
12512 
12513   SmallVector<SDValue, 4> Values(NumValues);
12514   SDValue Op = getValue(I.getOperand(0));
12515 
12516   for (unsigned i = 0; i != NumValues; ++i)
12517     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12518                             SDValue(Op.getNode(), Op.getResNo() + i));
12519 
12520   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12521                            DAG.getVTList(ValueVTs), Values));
12522 }
12523 
12524 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12525   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12526   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12527 
12528   SDLoc DL = getCurSDLoc();
12529   SDValue V1 = getValue(I.getOperand(0));
12530   SDValue V2 = getValue(I.getOperand(1));
12531   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12532 
12533   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12534   if (VT.isScalableVector()) {
12535     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12536                              DAG.getVectorIdxConstant(Imm, DL)));
12537     return;
12538   }
12539 
12540   unsigned NumElts = VT.getVectorNumElements();
12541 
12542   uint64_t Idx = (NumElts + Imm) % NumElts;
12543 
12544   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12545   SmallVector<int, 8> Mask;
12546   for (unsigned i = 0; i < NumElts; ++i)
12547     Mask.push_back(Idx + i);
12548   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12549 }
12550 
12551 // Consider the following MIR after SelectionDAG, which produces output in
12552 // phyregs in the first case or virtregs in the second case.
12553 //
12554 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12555 // %5:gr32 = COPY $ebx
12556 // %6:gr32 = COPY $edx
12557 // %1:gr32 = COPY %6:gr32
12558 // %0:gr32 = COPY %5:gr32
12559 //
12560 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12561 // %1:gr32 = COPY %6:gr32
12562 // %0:gr32 = COPY %5:gr32
12563 //
12564 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12565 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12566 //
12567 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12568 // to a single virtreg (such as %0). The remaining outputs monotonically
12569 // increase in virtreg number from there. If a callbr has no outputs, then it
12570 // should not have a corresponding callbr landingpad; in fact, the callbr
12571 // landingpad would not even be able to refer to such a callbr.
12572 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12573   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12574   // There is definitely at least one copy.
12575   assert(MI->getOpcode() == TargetOpcode::COPY &&
12576          "start of copy chain MUST be COPY");
12577   Reg = MI->getOperand(1).getReg();
12578   MI = MRI.def_begin(Reg)->getParent();
12579   // There may be an optional second copy.
12580   if (MI->getOpcode() == TargetOpcode::COPY) {
12581     assert(Reg.isVirtual() && "expected COPY of virtual register");
12582     Reg = MI->getOperand(1).getReg();
12583     assert(Reg.isPhysical() && "expected COPY of physical register");
12584     MI = MRI.def_begin(Reg)->getParent();
12585   }
12586   // The start of the chain must be an INLINEASM_BR.
12587   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12588          "end of copy chain MUST be INLINEASM_BR");
12589   return Reg;
12590 }
12591 
12592 // We must do this walk rather than the simpler
12593 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12594 // otherwise we will end up with copies of virtregs only valid along direct
12595 // edges.
12596 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12597   SmallVector<EVT, 8> ResultVTs;
12598   SmallVector<SDValue, 8> ResultValues;
12599   const auto *CBR =
12600       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12601 
12602   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12603   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12604   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12605 
12606   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12607   SDValue Chain = DAG.getRoot();
12608 
12609   // Re-parse the asm constraints string.
12610   TargetLowering::AsmOperandInfoVector TargetConstraints =
12611       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12612   for (auto &T : TargetConstraints) {
12613     SDISelAsmOperandInfo OpInfo(T);
12614     if (OpInfo.Type != InlineAsm::isOutput)
12615       continue;
12616 
12617     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12618     // individual constraint.
12619     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12620 
12621     switch (OpInfo.ConstraintType) {
12622     case TargetLowering::C_Register:
12623     case TargetLowering::C_RegisterClass: {
12624       // Fill in OpInfo.AssignedRegs.Regs.
12625       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12626 
12627       // getRegistersForValue may produce 1 to many registers based on whether
12628       // the OpInfo.ConstraintVT is legal on the target or not.
12629       for (unsigned &Reg : OpInfo.AssignedRegs.Regs) {
12630         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12631         if (Register::isPhysicalRegister(OriginalDef))
12632           FuncInfo.MBB->addLiveIn(OriginalDef);
12633         // Update the assigned registers to use the original defs.
12634         Reg = OriginalDef;
12635       }
12636 
12637       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12638           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12639       ResultValues.push_back(V);
12640       ResultVTs.push_back(OpInfo.ConstraintVT);
12641       break;
12642     }
12643     case TargetLowering::C_Other: {
12644       SDValue Flag;
12645       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12646                                                   OpInfo, DAG);
12647       ++InitialDef;
12648       ResultValues.push_back(V);
12649       ResultVTs.push_back(OpInfo.ConstraintVT);
12650       break;
12651     }
12652     default:
12653       break;
12654     }
12655   }
12656   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12657                           DAG.getVTList(ResultVTs), ResultValues);
12658   setValue(&I, V);
12659 }
12660