xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 3d943bcd223e5b97179840c2f5885fe341e51747)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/CodeGen/Analysis.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineMemOperand.h"
46 #include "llvm/CodeGen/MachineModuleInfo.h"
47 #include "llvm/CodeGen/MachineOperand.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/CodeGen/RuntimeLibcalls.h"
50 #include "llvm/CodeGen/SelectionDAG.h"
51 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
54 #include "llvm/CodeGen/TargetFrameLowering.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetOpcodes.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/WinEHFuncInfo.h"
60 #include "llvm/IR/Argument.h"
61 #include "llvm/IR/Attributes.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/CFG.h"
64 #include "llvm/IR/CallingConv.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/ConstantRange.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugInfoMetadata.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/IntrinsicsAArch64.h"
79 #include "llvm/IR/IntrinsicsWebAssembly.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PatternMatch.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/MC/MCSymbol.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/Casting.h"
92 #include "llvm/Support/CommandLine.h"
93 #include "llvm/Support/Compiler.h"
94 #include "llvm/Support/Debug.h"
95 #include "llvm/Support/MathExtras.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Target/TargetIntrinsicInfo.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetOptions.h"
100 #include "llvm/Transforms/Utils/Local.h"
101 #include <cstddef>
102 #include <cstring>
103 #include <iterator>
104 #include <limits>
105 #include <numeric>
106 #include <tuple>
107 
108 using namespace llvm;
109 using namespace PatternMatch;
110 using namespace SwitchCG;
111 
112 #define DEBUG_TYPE "isel"
113 
114 /// LimitFloatPrecision - Generate low-precision inline sequences for
115 /// some float libcalls (6, 8 or 12 bits).
116 static unsigned LimitFloatPrecision;
117 
118 static cl::opt<bool>
119     InsertAssertAlign("insert-assert-align", cl::init(true),
120                       cl::desc("Insert the experimental `assertalign` node."),
121                       cl::ReallyHidden);
122 
123 static cl::opt<unsigned, true>
124     LimitFPPrecision("limit-float-precision",
125                      cl::desc("Generate low-precision inline sequences "
126                               "for some float libcalls"),
127                      cl::location(LimitFloatPrecision), cl::Hidden,
128                      cl::init(0));
129 
130 static cl::opt<unsigned> SwitchPeelThreshold(
131     "switch-peel-threshold", cl::Hidden, cl::init(66),
132     cl::desc("Set the case probability threshold for peeling the case from a "
133              "switch statement. A value greater than 100 will void this "
134              "optimization"));
135 
136 // Limit the width of DAG chains. This is important in general to prevent
137 // DAG-based analysis from blowing up. For example, alias analysis and
138 // load clustering may not complete in reasonable time. It is difficult to
139 // recognize and avoid this situation within each individual analysis, and
140 // future analyses are likely to have the same behavior. Limiting DAG width is
141 // the safe approach and will be especially important with global DAGs.
142 //
143 // MaxParallelChains default is arbitrarily high to avoid affecting
144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
145 // sequence over this should have been converted to llvm.memcpy by the
146 // frontend. It is easy to induce this behavior with .ll code such as:
147 // %buffer = alloca [4096 x i8]
148 // %data = load [4096 x i8]* %argPtr
149 // store [4096 x i8] %data, [4096 x i8]* %buffer
150 static const unsigned MaxParallelChains = 64;
151 
152 // Return the calling convention if the Value passed requires ABI mangling as it
153 // is a parameter to a function or a return value from a function which is not
154 // an intrinsic.
155 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
156   if (auto *R = dyn_cast<ReturnInst>(V))
157     return R->getParent()->getParent()->getCallingConv();
158 
159   if (auto *CI = dyn_cast<CallInst>(V)) {
160     const bool IsInlineAsm = CI->isInlineAsm();
161     const bool IsIndirectFunctionCall =
162         !IsInlineAsm && !CI->getCalledFunction();
163 
164     // It is possible that the call instruction is an inline asm statement or an
165     // indirect function call in which case the return value of
166     // getCalledFunction() would be nullptr.
167     const bool IsInstrinsicCall =
168         !IsInlineAsm && !IsIndirectFunctionCall &&
169         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
170 
171     if (!IsInlineAsm && !IsInstrinsicCall)
172       return CI->getCallingConv();
173   }
174 
175   return None;
176 }
177 
178 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
179                                       const SDValue *Parts, unsigned NumParts,
180                                       MVT PartVT, EVT ValueVT, const Value *V,
181                                       Optional<CallingConv::ID> CC);
182 
183 /// getCopyFromParts - Create a value that contains the specified legal parts
184 /// combined into the value they represent.  If the parts combine to a type
185 /// larger than ValueVT then AssertOp can be used to specify whether the extra
186 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
187 /// (ISD::AssertSext).
188 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
189                                 const SDValue *Parts, unsigned NumParts,
190                                 MVT PartVT, EVT ValueVT, const Value *V,
191                                 Optional<CallingConv::ID> CC = None,
192                                 Optional<ISD::NodeType> AssertOp = None) {
193   // Let the target assemble the parts if it wants to
194   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
195   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
196                                                    PartVT, ValueVT, CC))
197     return Val;
198 
199   if (ValueVT.isVector())
200     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
201                                   CC);
202 
203   assert(NumParts > 0 && "No parts to assemble!");
204   SDValue Val = Parts[0];
205 
206   if (NumParts > 1) {
207     // Assemble the value from multiple parts.
208     if (ValueVT.isInteger()) {
209       unsigned PartBits = PartVT.getSizeInBits();
210       unsigned ValueBits = ValueVT.getSizeInBits();
211 
212       // Assemble the power of 2 part.
213       unsigned RoundParts =
214           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
215       unsigned RoundBits = PartBits * RoundParts;
216       EVT RoundVT = RoundBits == ValueBits ?
217         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
218       SDValue Lo, Hi;
219 
220       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
221 
222       if (RoundParts > 2) {
223         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
224                               PartVT, HalfVT, V);
225         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
226                               RoundParts / 2, PartVT, HalfVT, V);
227       } else {
228         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
229         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
230       }
231 
232       if (DAG.getDataLayout().isBigEndian())
233         std::swap(Lo, Hi);
234 
235       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
236 
237       if (RoundParts < NumParts) {
238         // Assemble the trailing non-power-of-2 part.
239         unsigned OddParts = NumParts - RoundParts;
240         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
241         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
242                               OddVT, V, CC);
243 
244         // Combine the round and odd parts.
245         Lo = Val;
246         if (DAG.getDataLayout().isBigEndian())
247           std::swap(Lo, Hi);
248         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
249         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
250         Hi =
251             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
252                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
253                                         TLI.getPointerTy(DAG.getDataLayout())));
254         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
255         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
256       }
257     } else if (PartVT.isFloatingPoint()) {
258       // FP split into multiple FP parts (for ppcf128)
259       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
260              "Unexpected split");
261       SDValue Lo, Hi;
262       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
263       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
264       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
265         std::swap(Lo, Hi);
266       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
267     } else {
268       // FP split into integer parts (soft fp)
269       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
270              !PartVT.isVector() && "Unexpected split");
271       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
272       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
273     }
274   }
275 
276   // There is now one part, held in Val.  Correct it to match ValueVT.
277   // PartEVT is the type of the register class that holds the value.
278   // ValueVT is the type of the inline asm operation.
279   EVT PartEVT = Val.getValueType();
280 
281   if (PartEVT == ValueVT)
282     return Val;
283 
284   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
285       ValueVT.bitsLT(PartEVT)) {
286     // For an FP value in an integer part, we need to truncate to the right
287     // width first.
288     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
289     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
290   }
291 
292   // Handle types that have the same size.
293   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
294     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
295 
296   // Handle types with different sizes.
297   if (PartEVT.isInteger() && ValueVT.isInteger()) {
298     if (ValueVT.bitsLT(PartEVT)) {
299       // For a truncate, see if we have any information to
300       // indicate whether the truncated bits will always be
301       // zero or sign-extension.
302       if (AssertOp.hasValue())
303         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
304                           DAG.getValueType(ValueVT));
305       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
306     }
307     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
308   }
309 
310   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
311     // FP_ROUND's are always exact here.
312     if (ValueVT.bitsLT(Val.getValueType()))
313       return DAG.getNode(
314           ISD::FP_ROUND, DL, ValueVT, Val,
315           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
316 
317     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
318   }
319 
320   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
321   // then truncating.
322   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
323       ValueVT.bitsLT(PartEVT)) {
324     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
325     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
326   }
327 
328   report_fatal_error("Unknown mismatch in getCopyFromParts!");
329 }
330 
331 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
332                                               const Twine &ErrMsg) {
333   const Instruction *I = dyn_cast_or_null<Instruction>(V);
334   if (!V)
335     return Ctx.emitError(ErrMsg);
336 
337   const char *AsmError = ", possible invalid constraint for vector type";
338   if (const CallInst *CI = dyn_cast<CallInst>(I))
339     if (CI->isInlineAsm())
340       return Ctx.emitError(I, ErrMsg + AsmError);
341 
342   return Ctx.emitError(I, ErrMsg);
343 }
344 
345 /// getCopyFromPartsVector - Create a value that contains the specified legal
346 /// parts combined into the value they represent.  If the parts combine to a
347 /// type larger than ValueVT then AssertOp can be used to specify whether the
348 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
349 /// ValueVT (ISD::AssertSext).
350 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
351                                       const SDValue *Parts, unsigned NumParts,
352                                       MVT PartVT, EVT ValueVT, const Value *V,
353                                       Optional<CallingConv::ID> CallConv) {
354   assert(ValueVT.isVector() && "Not a vector value");
355   assert(NumParts > 0 && "No parts to assemble!");
356   const bool IsABIRegCopy = CallConv.hasValue();
357 
358   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
359   SDValue Val = Parts[0];
360 
361   // Handle a multi-element vector.
362   if (NumParts > 1) {
363     EVT IntermediateVT;
364     MVT RegisterVT;
365     unsigned NumIntermediates;
366     unsigned NumRegs;
367 
368     if (IsABIRegCopy) {
369       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
370           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
371           NumIntermediates, RegisterVT);
372     } else {
373       NumRegs =
374           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
375                                      NumIntermediates, RegisterVT);
376     }
377 
378     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
379     NumParts = NumRegs; // Silence a compiler warning.
380     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
381     assert(RegisterVT.getSizeInBits() ==
382            Parts[0].getSimpleValueType().getSizeInBits() &&
383            "Part type sizes don't match!");
384 
385     // Assemble the parts into intermediate operands.
386     SmallVector<SDValue, 8> Ops(NumIntermediates);
387     if (NumIntermediates == NumParts) {
388       // If the register was not expanded, truncate or copy the value,
389       // as appropriate.
390       for (unsigned i = 0; i != NumParts; ++i)
391         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
392                                   PartVT, IntermediateVT, V, CallConv);
393     } else if (NumParts > 0) {
394       // If the intermediate type was expanded, build the intermediate
395       // operands from the parts.
396       assert(NumParts % NumIntermediates == 0 &&
397              "Must expand into a divisible number of parts!");
398       unsigned Factor = NumParts / NumIntermediates;
399       for (unsigned i = 0; i != NumIntermediates; ++i)
400         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
401                                   PartVT, IntermediateVT, V, CallConv);
402     }
403 
404     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
405     // intermediate operands.
406     EVT BuiltVectorTy =
407         IntermediateVT.isVector()
408             ? EVT::getVectorVT(
409                   *DAG.getContext(), IntermediateVT.getScalarType(),
410                   IntermediateVT.getVectorElementCount() * NumParts)
411             : EVT::getVectorVT(*DAG.getContext(),
412                                IntermediateVT.getScalarType(),
413                                NumIntermediates);
414     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
415                                                 : ISD::BUILD_VECTOR,
416                       DL, BuiltVectorTy, Ops);
417   }
418 
419   // There is now one part, held in Val.  Correct it to match ValueVT.
420   EVT PartEVT = Val.getValueType();
421 
422   if (PartEVT == ValueVT)
423     return Val;
424 
425   if (PartEVT.isVector()) {
426     // If the element type of the source/dest vectors are the same, but the
427     // parts vector has more elements than the value vector, then we have a
428     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
429     // elements we want.
430     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
431       assert((PartEVT.getVectorElementCount().Min >
432               ValueVT.getVectorElementCount().Min) &&
433              (PartEVT.getVectorElementCount().Scalable ==
434               ValueVT.getVectorElementCount().Scalable) &&
435              "Cannot narrow, it would be a lossy transformation");
436       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
437                          DAG.getVectorIdxConstant(0, DL));
438     }
439 
440     // Vector/Vector bitcast.
441     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
442       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
443 
444     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
445       "Cannot handle this kind of promotion");
446     // Promoted vector extract
447     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
448 
449   }
450 
451   // Trivial bitcast if the types are the same size and the destination
452   // vector type is legal.
453   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
454       TLI.isTypeLegal(ValueVT))
455     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
456 
457   if (ValueVT.getVectorNumElements() != 1) {
458      // Certain ABIs require that vectors are passed as integers. For vectors
459      // are the same size, this is an obvious bitcast.
460      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
461        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
462      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
463        // Bitcast Val back the original type and extract the corresponding
464        // vector we want.
465        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
466        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
467                                            ValueVT.getVectorElementType(), Elts);
468        Val = DAG.getBitcast(WiderVecType, Val);
469        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
470                           DAG.getVectorIdxConstant(0, DL));
471      }
472 
473      diagnosePossiblyInvalidConstraint(
474          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
475      return DAG.getUNDEF(ValueVT);
476   }
477 
478   // Handle cases such as i8 -> <1 x i1>
479   EVT ValueSVT = ValueVT.getVectorElementType();
480   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
481     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
482       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
483     else
484       Val = ValueVT.isFloatingPoint()
485                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
486                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
487   }
488 
489   return DAG.getBuildVector(ValueVT, DL, Val);
490 }
491 
492 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
493                                  SDValue Val, SDValue *Parts, unsigned NumParts,
494                                  MVT PartVT, const Value *V,
495                                  Optional<CallingConv::ID> CallConv);
496 
497 /// getCopyToParts - Create a series of nodes that contain the specified value
498 /// split into legal parts.  If the parts contain more bits than Val, then, for
499 /// integers, ExtendKind can be used to specify how to generate the extra bits.
500 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
501                            SDValue *Parts, unsigned NumParts, MVT PartVT,
502                            const Value *V,
503                            Optional<CallingConv::ID> CallConv = None,
504                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
505   // Let the target split the parts if it wants to
506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
507   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
508                                       CallConv))
509     return;
510   EVT ValueVT = Val.getValueType();
511 
512   // Handle the vector case separately.
513   if (ValueVT.isVector())
514     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
515                                 CallConv);
516 
517   unsigned PartBits = PartVT.getSizeInBits();
518   unsigned OrigNumParts = NumParts;
519   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
520          "Copying to an illegal type!");
521 
522   if (NumParts == 0)
523     return;
524 
525   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
526   EVT PartEVT = PartVT;
527   if (PartEVT == ValueVT) {
528     assert(NumParts == 1 && "No-op copy with multiple parts!");
529     Parts[0] = Val;
530     return;
531   }
532 
533   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
534     // If the parts cover more bits than the value has, promote the value.
535     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
536       assert(NumParts == 1 && "Do not know what to promote to!");
537       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
538     } else {
539       if (ValueVT.isFloatingPoint()) {
540         // FP values need to be bitcast, then extended if they are being put
541         // into a larger container.
542         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
543         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
544       }
545       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
546              ValueVT.isInteger() &&
547              "Unknown mismatch!");
548       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
549       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
550       if (PartVT == MVT::x86mmx)
551         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
552     }
553   } else if (PartBits == ValueVT.getSizeInBits()) {
554     // Different types of the same size.
555     assert(NumParts == 1 && PartEVT != ValueVT);
556     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
557   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
558     // If the parts cover less bits than value has, truncate the value.
559     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
560            ValueVT.isInteger() &&
561            "Unknown mismatch!");
562     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
563     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
564     if (PartVT == MVT::x86mmx)
565       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
566   }
567 
568   // The value may have changed - recompute ValueVT.
569   ValueVT = Val.getValueType();
570   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
571          "Failed to tile the value with PartVT!");
572 
573   if (NumParts == 1) {
574     if (PartEVT != ValueVT) {
575       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
576                                         "scalar-to-vector conversion failed");
577       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
578     }
579 
580     Parts[0] = Val;
581     return;
582   }
583 
584   // Expand the value into multiple parts.
585   if (NumParts & (NumParts - 1)) {
586     // The number of parts is not a power of 2.  Split off and copy the tail.
587     assert(PartVT.isInteger() && ValueVT.isInteger() &&
588            "Do not know what to expand to!");
589     unsigned RoundParts = 1 << Log2_32(NumParts);
590     unsigned RoundBits = RoundParts * PartBits;
591     unsigned OddParts = NumParts - RoundParts;
592     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
593       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
594 
595     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
596                    CallConv);
597 
598     if (DAG.getDataLayout().isBigEndian())
599       // The odd parts were reversed by getCopyToParts - unreverse them.
600       std::reverse(Parts + RoundParts, Parts + NumParts);
601 
602     NumParts = RoundParts;
603     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
604     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
605   }
606 
607   // The number of parts is a power of 2.  Repeatedly bisect the value using
608   // EXTRACT_ELEMENT.
609   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
610                          EVT::getIntegerVT(*DAG.getContext(),
611                                            ValueVT.getSizeInBits()),
612                          Val);
613 
614   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
615     for (unsigned i = 0; i < NumParts; i += StepSize) {
616       unsigned ThisBits = StepSize * PartBits / 2;
617       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
618       SDValue &Part0 = Parts[i];
619       SDValue &Part1 = Parts[i+StepSize/2];
620 
621       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
622                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
623       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
624                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
625 
626       if (ThisBits == PartBits && ThisVT != PartVT) {
627         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
628         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
629       }
630     }
631   }
632 
633   if (DAG.getDataLayout().isBigEndian())
634     std::reverse(Parts, Parts + OrigNumParts);
635 }
636 
637 static SDValue widenVectorToPartType(SelectionDAG &DAG,
638                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
639   if (!PartVT.isFixedLengthVector())
640     return SDValue();
641 
642   EVT ValueVT = Val.getValueType();
643   unsigned PartNumElts = PartVT.getVectorNumElements();
644   unsigned ValueNumElts = ValueVT.getVectorNumElements();
645   if (PartNumElts > ValueNumElts &&
646       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
647     EVT ElementVT = PartVT.getVectorElementType();
648     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
649     // undef elements.
650     SmallVector<SDValue, 16> Ops;
651     DAG.ExtractVectorElements(Val, Ops);
652     SDValue EltUndef = DAG.getUNDEF(ElementVT);
653     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
654       Ops.push_back(EltUndef);
655 
656     // FIXME: Use CONCAT for 2x -> 4x.
657     return DAG.getBuildVector(PartVT, DL, Ops);
658   }
659 
660   return SDValue();
661 }
662 
663 /// getCopyToPartsVector - Create a series of nodes that contain the specified
664 /// value split into legal parts.
665 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
666                                  SDValue Val, SDValue *Parts, unsigned NumParts,
667                                  MVT PartVT, const Value *V,
668                                  Optional<CallingConv::ID> CallConv) {
669   EVT ValueVT = Val.getValueType();
670   assert(ValueVT.isVector() && "Not a vector");
671   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
672   const bool IsABIRegCopy = CallConv.hasValue();
673 
674   if (NumParts == 1) {
675     EVT PartEVT = PartVT;
676     if (PartEVT == ValueVT) {
677       // Nothing to do.
678     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
679       // Bitconvert vector->vector case.
680       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
681     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
682       Val = Widened;
683     } else if (PartVT.isVector() &&
684                PartEVT.getVectorElementType().bitsGE(
685                    ValueVT.getVectorElementType()) &&
686                PartEVT.getVectorElementCount() ==
687                    ValueVT.getVectorElementCount()) {
688 
689       // Promoted vector extract
690       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
691     } else {
692       if (ValueVT.getVectorNumElements() == 1) {
693         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
694                           DAG.getVectorIdxConstant(0, DL));
695       } else {
696         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
697                "lossy conversion of vector to scalar type");
698         EVT IntermediateType =
699             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
700         Val = DAG.getBitcast(IntermediateType, Val);
701         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
702       }
703     }
704 
705     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
706     Parts[0] = Val;
707     return;
708   }
709 
710   // Handle a multi-element vector.
711   EVT IntermediateVT;
712   MVT RegisterVT;
713   unsigned NumIntermediates;
714   unsigned NumRegs;
715   if (IsABIRegCopy) {
716     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
717         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
718         NumIntermediates, RegisterVT);
719   } else {
720     NumRegs =
721         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
722                                    NumIntermediates, RegisterVT);
723   }
724 
725   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
726   NumParts = NumRegs; // Silence a compiler warning.
727   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
728 
729   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
730          "Mixing scalable and fixed vectors when copying in parts");
731 
732   Optional<ElementCount> DestEltCnt;
733 
734   if (IntermediateVT.isVector())
735     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
736   else
737     DestEltCnt = ElementCount::getFixed(NumIntermediates);
738 
739   EVT BuiltVectorTy = EVT::getVectorVT(
740       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
741   if (ValueVT != BuiltVectorTy) {
742     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
743       Val = Widened;
744 
745     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
746   }
747 
748   // Split the vector into intermediate operands.
749   SmallVector<SDValue, 8> Ops(NumIntermediates);
750   for (unsigned i = 0; i != NumIntermediates; ++i) {
751     if (IntermediateVT.isVector()) {
752       // This does something sensible for scalable vectors - see the
753       // definition of EXTRACT_SUBVECTOR for further details.
754       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
755       Ops[i] =
756           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
757                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
758     } else {
759       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
760                            DAG.getVectorIdxConstant(i, DL));
761     }
762   }
763 
764   // Split the intermediate operands into legal parts.
765   if (NumParts == NumIntermediates) {
766     // If the register was not expanded, promote or copy the value,
767     // as appropriate.
768     for (unsigned i = 0; i != NumParts; ++i)
769       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
770   } else if (NumParts > 0) {
771     // If the intermediate type was expanded, split each the value into
772     // legal parts.
773     assert(NumIntermediates != 0 && "division by zero");
774     assert(NumParts % NumIntermediates == 0 &&
775            "Must expand into a divisible number of parts!");
776     unsigned Factor = NumParts / NumIntermediates;
777     for (unsigned i = 0; i != NumIntermediates; ++i)
778       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
779                      CallConv);
780   }
781 }
782 
783 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
784                            EVT valuevt, Optional<CallingConv::ID> CC)
785     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
786       RegCount(1, regs.size()), CallConv(CC) {}
787 
788 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
789                            const DataLayout &DL, unsigned Reg, Type *Ty,
790                            Optional<CallingConv::ID> CC) {
791   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
792 
793   CallConv = CC;
794 
795   for (EVT ValueVT : ValueVTs) {
796     unsigned NumRegs =
797         isABIMangled()
798             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
799             : TLI.getNumRegisters(Context, ValueVT);
800     MVT RegisterVT =
801         isABIMangled()
802             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
803             : TLI.getRegisterType(Context, ValueVT);
804     for (unsigned i = 0; i != NumRegs; ++i)
805       Regs.push_back(Reg + i);
806     RegVTs.push_back(RegisterVT);
807     RegCount.push_back(NumRegs);
808     Reg += NumRegs;
809   }
810 }
811 
812 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
813                                       FunctionLoweringInfo &FuncInfo,
814                                       const SDLoc &dl, SDValue &Chain,
815                                       SDValue *Flag, const Value *V) const {
816   // A Value with type {} or [0 x %t] needs no registers.
817   if (ValueVTs.empty())
818     return SDValue();
819 
820   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
821 
822   // Assemble the legal parts into the final values.
823   SmallVector<SDValue, 4> Values(ValueVTs.size());
824   SmallVector<SDValue, 8> Parts;
825   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
826     // Copy the legal parts from the registers.
827     EVT ValueVT = ValueVTs[Value];
828     unsigned NumRegs = RegCount[Value];
829     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
830                                           *DAG.getContext(),
831                                           CallConv.getValue(), RegVTs[Value])
832                                     : RegVTs[Value];
833 
834     Parts.resize(NumRegs);
835     for (unsigned i = 0; i != NumRegs; ++i) {
836       SDValue P;
837       if (!Flag) {
838         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
839       } else {
840         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
841         *Flag = P.getValue(2);
842       }
843 
844       Chain = P.getValue(1);
845       Parts[i] = P;
846 
847       // If the source register was virtual and if we know something about it,
848       // add an assert node.
849       if (!Register::isVirtualRegister(Regs[Part + i]) ||
850           !RegisterVT.isInteger())
851         continue;
852 
853       const FunctionLoweringInfo::LiveOutInfo *LOI =
854         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
855       if (!LOI)
856         continue;
857 
858       unsigned RegSize = RegisterVT.getScalarSizeInBits();
859       unsigned NumSignBits = LOI->NumSignBits;
860       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
861 
862       if (NumZeroBits == RegSize) {
863         // The current value is a zero.
864         // Explicitly express that as it would be easier for
865         // optimizations to kick in.
866         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
867         continue;
868       }
869 
870       // FIXME: We capture more information than the dag can represent.  For
871       // now, just use the tightest assertzext/assertsext possible.
872       bool isSExt;
873       EVT FromVT(MVT::Other);
874       if (NumZeroBits) {
875         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
876         isSExt = false;
877       } else if (NumSignBits > 1) {
878         FromVT =
879             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
880         isSExt = true;
881       } else {
882         continue;
883       }
884       // Add an assertion node.
885       assert(FromVT != MVT::Other);
886       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
887                              RegisterVT, P, DAG.getValueType(FromVT));
888     }
889 
890     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
891                                      RegisterVT, ValueVT, V, CallConv);
892     Part += NumRegs;
893     Parts.clear();
894   }
895 
896   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
897 }
898 
899 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
900                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
901                                  const Value *V,
902                                  ISD::NodeType PreferredExtendType) const {
903   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
904   ISD::NodeType ExtendKind = PreferredExtendType;
905 
906   // Get the list of the values's legal parts.
907   unsigned NumRegs = Regs.size();
908   SmallVector<SDValue, 8> Parts(NumRegs);
909   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
910     unsigned NumParts = RegCount[Value];
911 
912     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
913                                           *DAG.getContext(),
914                                           CallConv.getValue(), RegVTs[Value])
915                                     : RegVTs[Value];
916 
917     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
918       ExtendKind = ISD::ZERO_EXTEND;
919 
920     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
921                    NumParts, RegisterVT, V, CallConv, ExtendKind);
922     Part += NumParts;
923   }
924 
925   // Copy the parts into the registers.
926   SmallVector<SDValue, 8> Chains(NumRegs);
927   for (unsigned i = 0; i != NumRegs; ++i) {
928     SDValue Part;
929     if (!Flag) {
930       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
931     } else {
932       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
933       *Flag = Part.getValue(1);
934     }
935 
936     Chains[i] = Part.getValue(0);
937   }
938 
939   if (NumRegs == 1 || Flag)
940     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
941     // flagged to it. That is the CopyToReg nodes and the user are considered
942     // a single scheduling unit. If we create a TokenFactor and return it as
943     // chain, then the TokenFactor is both a predecessor (operand) of the
944     // user as well as a successor (the TF operands are flagged to the user).
945     // c1, f1 = CopyToReg
946     // c2, f2 = CopyToReg
947     // c3     = TokenFactor c1, c2
948     // ...
949     //        = op c3, ..., f2
950     Chain = Chains[NumRegs-1];
951   else
952     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
953 }
954 
955 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
956                                         unsigned MatchingIdx, const SDLoc &dl,
957                                         SelectionDAG &DAG,
958                                         std::vector<SDValue> &Ops) const {
959   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
960 
961   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
962   if (HasMatching)
963     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
964   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
965     // Put the register class of the virtual registers in the flag word.  That
966     // way, later passes can recompute register class constraints for inline
967     // assembly as well as normal instructions.
968     // Don't do this for tied operands that can use the regclass information
969     // from the def.
970     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
971     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
972     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
973   }
974 
975   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
976   Ops.push_back(Res);
977 
978   if (Code == InlineAsm::Kind_Clobber) {
979     // Clobbers should always have a 1:1 mapping with registers, and may
980     // reference registers that have illegal (e.g. vector) types. Hence, we
981     // shouldn't try to apply any sort of splitting logic to them.
982     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
983            "No 1:1 mapping from clobbers to regs?");
984     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
985     (void)SP;
986     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
987       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
988       assert(
989           (Regs[I] != SP ||
990            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
991           "If we clobbered the stack pointer, MFI should know about it.");
992     }
993     return;
994   }
995 
996   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
997     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
998     MVT RegisterVT = RegVTs[Value];
999     for (unsigned i = 0; i != NumRegs; ++i) {
1000       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1001       unsigned TheReg = Regs[Reg++];
1002       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1003     }
1004   }
1005 }
1006 
1007 SmallVector<std::pair<unsigned, unsigned>, 4>
1008 RegsForValue::getRegsAndSizes() const {
1009   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1010   unsigned I = 0;
1011   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1012     unsigned RegCount = std::get<0>(CountAndVT);
1013     MVT RegisterVT = std::get<1>(CountAndVT);
1014     unsigned RegisterSize = RegisterVT.getSizeInBits();
1015     for (unsigned E = I + RegCount; I != E; ++I)
1016       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1017   }
1018   return OutVec;
1019 }
1020 
1021 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1022                                const TargetLibraryInfo *li) {
1023   AA = aa;
1024   GFI = gfi;
1025   LibInfo = li;
1026   DL = &DAG.getDataLayout();
1027   Context = DAG.getContext();
1028   LPadToCallSiteMap.clear();
1029   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1030 }
1031 
1032 void SelectionDAGBuilder::clear() {
1033   NodeMap.clear();
1034   UnusedArgNodeMap.clear();
1035   PendingLoads.clear();
1036   PendingExports.clear();
1037   PendingConstrainedFP.clear();
1038   PendingConstrainedFPStrict.clear();
1039   CurInst = nullptr;
1040   HasTailCall = false;
1041   SDNodeOrder = LowestSDNodeOrder;
1042   StatepointLowering.clear();
1043 }
1044 
1045 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1046   DanglingDebugInfoMap.clear();
1047 }
1048 
1049 // Update DAG root to include dependencies on Pending chains.
1050 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1051   SDValue Root = DAG.getRoot();
1052 
1053   if (Pending.empty())
1054     return Root;
1055 
1056   // Add current root to PendingChains, unless we already indirectly
1057   // depend on it.
1058   if (Root.getOpcode() != ISD::EntryToken) {
1059     unsigned i = 0, e = Pending.size();
1060     for (; i != e; ++i) {
1061       assert(Pending[i].getNode()->getNumOperands() > 1);
1062       if (Pending[i].getNode()->getOperand(0) == Root)
1063         break;  // Don't add the root if we already indirectly depend on it.
1064     }
1065 
1066     if (i == e)
1067       Pending.push_back(Root);
1068   }
1069 
1070   if (Pending.size() == 1)
1071     Root = Pending[0];
1072   else
1073     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1074 
1075   DAG.setRoot(Root);
1076   Pending.clear();
1077   return Root;
1078 }
1079 
1080 SDValue SelectionDAGBuilder::getMemoryRoot() {
1081   return updateRoot(PendingLoads);
1082 }
1083 
1084 SDValue SelectionDAGBuilder::getRoot() {
1085   // Chain up all pending constrained intrinsics together with all
1086   // pending loads, by simply appending them to PendingLoads and
1087   // then calling getMemoryRoot().
1088   PendingLoads.reserve(PendingLoads.size() +
1089                        PendingConstrainedFP.size() +
1090                        PendingConstrainedFPStrict.size());
1091   PendingLoads.append(PendingConstrainedFP.begin(),
1092                       PendingConstrainedFP.end());
1093   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1094                       PendingConstrainedFPStrict.end());
1095   PendingConstrainedFP.clear();
1096   PendingConstrainedFPStrict.clear();
1097   return getMemoryRoot();
1098 }
1099 
1100 SDValue SelectionDAGBuilder::getControlRoot() {
1101   // We need to emit pending fpexcept.strict constrained intrinsics,
1102   // so append them to the PendingExports list.
1103   PendingExports.append(PendingConstrainedFPStrict.begin(),
1104                         PendingConstrainedFPStrict.end());
1105   PendingConstrainedFPStrict.clear();
1106   return updateRoot(PendingExports);
1107 }
1108 
1109 void SelectionDAGBuilder::visit(const Instruction &I) {
1110   // Set up outgoing PHI node register values before emitting the terminator.
1111   if (I.isTerminator()) {
1112     HandlePHINodesInSuccessorBlocks(I.getParent());
1113   }
1114 
1115   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1116   if (!isa<DbgInfoIntrinsic>(I))
1117     ++SDNodeOrder;
1118 
1119   CurInst = &I;
1120 
1121   visit(I.getOpcode(), I);
1122 
1123   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1124     // ConstrainedFPIntrinsics handle their own FMF.
1125     if (!isa<ConstrainedFPIntrinsic>(&I)) {
1126       // Propagate the fast-math-flags of this IR instruction to the DAG node that
1127       // maps to this instruction.
1128       // TODO: We could handle all flags (nsw, etc) here.
1129       // TODO: If an IR instruction maps to >1 node, only the final node will have
1130       //       flags set.
1131       if (SDNode *Node = getNodeForIRValue(&I)) {
1132         SDNodeFlags IncomingFlags;
1133         IncomingFlags.copyFMF(*FPMO);
1134         if (!Node->getFlags().isDefined())
1135           Node->setFlags(IncomingFlags);
1136         else
1137           Node->intersectFlagsWith(IncomingFlags);
1138       }
1139     }
1140   }
1141 
1142   if (!I.isTerminator() && !HasTailCall &&
1143       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1144     CopyToExportRegsIfNeeded(&I);
1145 
1146   CurInst = nullptr;
1147 }
1148 
1149 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1150   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1151 }
1152 
1153 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1154   // Note: this doesn't use InstVisitor, because it has to work with
1155   // ConstantExpr's in addition to instructions.
1156   switch (Opcode) {
1157   default: llvm_unreachable("Unknown instruction type encountered!");
1158     // Build the switch statement using the Instruction.def file.
1159 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1160     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1161 #include "llvm/IR/Instruction.def"
1162   }
1163 }
1164 
1165 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1166                                                 const DIExpression *Expr) {
1167   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1168     const DbgValueInst *DI = DDI.getDI();
1169     DIVariable *DanglingVariable = DI->getVariable();
1170     DIExpression *DanglingExpr = DI->getExpression();
1171     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1172       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1173       return true;
1174     }
1175     return false;
1176   };
1177 
1178   for (auto &DDIMI : DanglingDebugInfoMap) {
1179     DanglingDebugInfoVector &DDIV = DDIMI.second;
1180 
1181     // If debug info is to be dropped, run it through final checks to see
1182     // whether it can be salvaged.
1183     for (auto &DDI : DDIV)
1184       if (isMatchingDbgValue(DDI))
1185         salvageUnresolvedDbgValue(DDI);
1186 
1187     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1188   }
1189 }
1190 
1191 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1192 // generate the debug data structures now that we've seen its definition.
1193 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1194                                                    SDValue Val) {
1195   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1196   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1197     return;
1198 
1199   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1200   for (auto &DDI : DDIV) {
1201     const DbgValueInst *DI = DDI.getDI();
1202     assert(DI && "Ill-formed DanglingDebugInfo");
1203     DebugLoc dl = DDI.getdl();
1204     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1205     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1206     DILocalVariable *Variable = DI->getVariable();
1207     DIExpression *Expr = DI->getExpression();
1208     assert(Variable->isValidLocationForIntrinsic(dl) &&
1209            "Expected inlined-at fields to agree");
1210     SDDbgValue *SDV;
1211     if (Val.getNode()) {
1212       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1213       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1214       // we couldn't resolve it directly when examining the DbgValue intrinsic
1215       // in the first place we should not be more successful here). Unless we
1216       // have some test case that prove this to be correct we should avoid
1217       // calling EmitFuncArgumentDbgValue here.
1218       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1219         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1220                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1221         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1222         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1223         // inserted after the definition of Val when emitting the instructions
1224         // after ISel. An alternative could be to teach
1225         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1226         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1227                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1228                    << ValSDNodeOrder << "\n");
1229         SDV = getDbgValue(Val, Variable, Expr, dl,
1230                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1231         DAG.AddDbgValue(SDV, Val.getNode(), false);
1232       } else
1233         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1234                           << "in EmitFuncArgumentDbgValue\n");
1235     } else {
1236       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1237       auto Undef =
1238           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1239       auto SDV =
1240           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1241       DAG.AddDbgValue(SDV, nullptr, false);
1242     }
1243   }
1244   DDIV.clear();
1245 }
1246 
1247 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1248   Value *V = DDI.getDI()->getValue();
1249   DILocalVariable *Var = DDI.getDI()->getVariable();
1250   DIExpression *Expr = DDI.getDI()->getExpression();
1251   DebugLoc DL = DDI.getdl();
1252   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1253   unsigned SDOrder = DDI.getSDNodeOrder();
1254 
1255   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1256   // that DW_OP_stack_value is desired.
1257   assert(isa<DbgValueInst>(DDI.getDI()));
1258   bool StackValue = true;
1259 
1260   // Can this Value can be encoded without any further work?
1261   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1262     return;
1263 
1264   // Attempt to salvage back through as many instructions as possible. Bail if
1265   // a non-instruction is seen, such as a constant expression or global
1266   // variable. FIXME: Further work could recover those too.
1267   while (isa<Instruction>(V)) {
1268     Instruction &VAsInst = *cast<Instruction>(V);
1269     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1270 
1271     // If we cannot salvage any further, and haven't yet found a suitable debug
1272     // expression, bail out.
1273     if (!NewExpr)
1274       break;
1275 
1276     // New value and expr now represent this debuginfo.
1277     V = VAsInst.getOperand(0);
1278     Expr = NewExpr;
1279 
1280     // Some kind of simplification occurred: check whether the operand of the
1281     // salvaged debug expression can be encoded in this DAG.
1282     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1283       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1284                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1285       return;
1286     }
1287   }
1288 
1289   // This was the final opportunity to salvage this debug information, and it
1290   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1291   // any earlier variable location.
1292   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1293   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1294   DAG.AddDbgValue(SDV, nullptr, false);
1295 
1296   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1297                     << "\n");
1298   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1299                     << "\n");
1300 }
1301 
1302 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1303                                            DIExpression *Expr, DebugLoc dl,
1304                                            DebugLoc InstDL, unsigned Order) {
1305   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1306   SDDbgValue *SDV;
1307   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1308       isa<ConstantPointerNull>(V)) {
1309     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1310     DAG.AddDbgValue(SDV, nullptr, false);
1311     return true;
1312   }
1313 
1314   // If the Value is a frame index, we can create a FrameIndex debug value
1315   // without relying on the DAG at all.
1316   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1317     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1318     if (SI != FuncInfo.StaticAllocaMap.end()) {
1319       auto SDV =
1320           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1321                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1322       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1323       // is still available even if the SDNode gets optimized out.
1324       DAG.AddDbgValue(SDV, nullptr, false);
1325       return true;
1326     }
1327   }
1328 
1329   // Do not use getValue() in here; we don't want to generate code at
1330   // this point if it hasn't been done yet.
1331   SDValue N = NodeMap[V];
1332   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1333     N = UnusedArgNodeMap[V];
1334   if (N.getNode()) {
1335     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1336       return true;
1337     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1338     DAG.AddDbgValue(SDV, N.getNode(), false);
1339     return true;
1340   }
1341 
1342   // Special rules apply for the first dbg.values of parameter variables in a
1343   // function. Identify them by the fact they reference Argument Values, that
1344   // they're parameters, and they are parameters of the current function. We
1345   // need to let them dangle until they get an SDNode.
1346   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1347                        !InstDL.getInlinedAt();
1348   if (!IsParamOfFunc) {
1349     // The value is not used in this block yet (or it would have an SDNode).
1350     // We still want the value to appear for the user if possible -- if it has
1351     // an associated VReg, we can refer to that instead.
1352     auto VMI = FuncInfo.ValueMap.find(V);
1353     if (VMI != FuncInfo.ValueMap.end()) {
1354       unsigned Reg = VMI->second;
1355       // If this is a PHI node, it may be split up into several MI PHI nodes
1356       // (in FunctionLoweringInfo::set).
1357       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1358                        V->getType(), None);
1359       if (RFV.occupiesMultipleRegs()) {
1360         unsigned Offset = 0;
1361         unsigned BitsToDescribe = 0;
1362         if (auto VarSize = Var->getSizeInBits())
1363           BitsToDescribe = *VarSize;
1364         if (auto Fragment = Expr->getFragmentInfo())
1365           BitsToDescribe = Fragment->SizeInBits;
1366         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1367           unsigned RegisterSize = RegAndSize.second;
1368           // Bail out if all bits are described already.
1369           if (Offset >= BitsToDescribe)
1370             break;
1371           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1372               ? BitsToDescribe - Offset
1373               : RegisterSize;
1374           auto FragmentExpr = DIExpression::createFragmentExpression(
1375               Expr, Offset, FragmentSize);
1376           if (!FragmentExpr)
1377               continue;
1378           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1379                                     false, dl, SDNodeOrder);
1380           DAG.AddDbgValue(SDV, nullptr, false);
1381           Offset += RegisterSize;
1382         }
1383       } else {
1384         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1385         DAG.AddDbgValue(SDV, nullptr, false);
1386       }
1387       return true;
1388     }
1389   }
1390 
1391   return false;
1392 }
1393 
1394 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1395   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1396   for (auto &Pair : DanglingDebugInfoMap)
1397     for (auto &DDI : Pair.second)
1398       salvageUnresolvedDbgValue(DDI);
1399   clearDanglingDebugInfo();
1400 }
1401 
1402 /// getCopyFromRegs - If there was virtual register allocated for the value V
1403 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1404 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1405   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1406   SDValue Result;
1407 
1408   if (It != FuncInfo.ValueMap.end()) {
1409     Register InReg = It->second;
1410 
1411     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1412                      DAG.getDataLayout(), InReg, Ty,
1413                      None); // This is not an ABI copy.
1414     SDValue Chain = DAG.getEntryNode();
1415     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1416                                  V);
1417     resolveDanglingDebugInfo(V, Result);
1418   }
1419 
1420   return Result;
1421 }
1422 
1423 /// getValue - Return an SDValue for the given Value.
1424 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1425   // If we already have an SDValue for this value, use it. It's important
1426   // to do this first, so that we don't create a CopyFromReg if we already
1427   // have a regular SDValue.
1428   SDValue &N = NodeMap[V];
1429   if (N.getNode()) return N;
1430 
1431   // If there's a virtual register allocated and initialized for this
1432   // value, use it.
1433   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1434     return copyFromReg;
1435 
1436   // Otherwise create a new SDValue and remember it.
1437   SDValue Val = getValueImpl(V);
1438   NodeMap[V] = Val;
1439   resolveDanglingDebugInfo(V, Val);
1440   return Val;
1441 }
1442 
1443 /// getNonRegisterValue - Return an SDValue for the given Value, but
1444 /// don't look in FuncInfo.ValueMap for a virtual register.
1445 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1446   // If we already have an SDValue for this value, use it.
1447   SDValue &N = NodeMap[V];
1448   if (N.getNode()) {
1449     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1450       // Remove the debug location from the node as the node is about to be used
1451       // in a location which may differ from the original debug location.  This
1452       // is relevant to Constant and ConstantFP nodes because they can appear
1453       // as constant expressions inside PHI nodes.
1454       N->setDebugLoc(DebugLoc());
1455     }
1456     return N;
1457   }
1458 
1459   // Otherwise create a new SDValue and remember it.
1460   SDValue Val = getValueImpl(V);
1461   NodeMap[V] = Val;
1462   resolveDanglingDebugInfo(V, Val);
1463   return Val;
1464 }
1465 
1466 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1467 /// Create an SDValue for the given value.
1468 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1469   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1470 
1471   if (const Constant *C = dyn_cast<Constant>(V)) {
1472     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1473 
1474     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1475       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1476 
1477     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1478       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1479 
1480     if (isa<ConstantPointerNull>(C)) {
1481       unsigned AS = V->getType()->getPointerAddressSpace();
1482       return DAG.getConstant(0, getCurSDLoc(),
1483                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1484     }
1485 
1486     if (match(C, m_VScale(DAG.getDataLayout())))
1487       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1488 
1489     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1490       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1491 
1492     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1493       return DAG.getUNDEF(VT);
1494 
1495     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1496       visit(CE->getOpcode(), *CE);
1497       SDValue N1 = NodeMap[V];
1498       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1499       return N1;
1500     }
1501 
1502     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1503       SmallVector<SDValue, 4> Constants;
1504       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1505            OI != OE; ++OI) {
1506         SDNode *Val = getValue(*OI).getNode();
1507         // If the operand is an empty aggregate, there are no values.
1508         if (!Val) continue;
1509         // Add each leaf value from the operand to the Constants list
1510         // to form a flattened list of all the values.
1511         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1512           Constants.push_back(SDValue(Val, i));
1513       }
1514 
1515       return DAG.getMergeValues(Constants, getCurSDLoc());
1516     }
1517 
1518     if (const ConstantDataSequential *CDS =
1519           dyn_cast<ConstantDataSequential>(C)) {
1520       SmallVector<SDValue, 4> Ops;
1521       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1522         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1523         // Add each leaf value from the operand to the Constants list
1524         // to form a flattened list of all the values.
1525         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1526           Ops.push_back(SDValue(Val, i));
1527       }
1528 
1529       if (isa<ArrayType>(CDS->getType()))
1530         return DAG.getMergeValues(Ops, getCurSDLoc());
1531       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1532     }
1533 
1534     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1535       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1536              "Unknown struct or array constant!");
1537 
1538       SmallVector<EVT, 4> ValueVTs;
1539       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1540       unsigned NumElts = ValueVTs.size();
1541       if (NumElts == 0)
1542         return SDValue(); // empty struct
1543       SmallVector<SDValue, 4> Constants(NumElts);
1544       for (unsigned i = 0; i != NumElts; ++i) {
1545         EVT EltVT = ValueVTs[i];
1546         if (isa<UndefValue>(C))
1547           Constants[i] = DAG.getUNDEF(EltVT);
1548         else if (EltVT.isFloatingPoint())
1549           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1550         else
1551           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1552       }
1553 
1554       return DAG.getMergeValues(Constants, getCurSDLoc());
1555     }
1556 
1557     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1558       return DAG.getBlockAddress(BA, VT);
1559 
1560     VectorType *VecTy = cast<VectorType>(V->getType());
1561 
1562     // Now that we know the number and type of the elements, get that number of
1563     // elements into the Ops array based on what kind of constant it is.
1564     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1565       SmallVector<SDValue, 16> Ops;
1566       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1567       for (unsigned i = 0; i != NumElements; ++i)
1568         Ops.push_back(getValue(CV->getOperand(i)));
1569 
1570       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1571     } else if (isa<ConstantAggregateZero>(C)) {
1572       EVT EltVT =
1573           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1574 
1575       SDValue Op;
1576       if (EltVT.isFloatingPoint())
1577         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1578       else
1579         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1580 
1581       if (isa<ScalableVectorType>(VecTy))
1582         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1583       else {
1584         SmallVector<SDValue, 16> Ops;
1585         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1586         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1587       }
1588     }
1589     llvm_unreachable("Unknown vector constant");
1590   }
1591 
1592   // If this is a static alloca, generate it as the frameindex instead of
1593   // computation.
1594   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1595     DenseMap<const AllocaInst*, int>::iterator SI =
1596       FuncInfo.StaticAllocaMap.find(AI);
1597     if (SI != FuncInfo.StaticAllocaMap.end())
1598       return DAG.getFrameIndex(SI->second,
1599                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1600   }
1601 
1602   // If this is an instruction which fast-isel has deferred, select it now.
1603   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1604     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1605 
1606     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1607                      Inst->getType(), getABIRegCopyCC(V));
1608     SDValue Chain = DAG.getEntryNode();
1609     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1610   }
1611 
1612   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1613     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1614   }
1615   llvm_unreachable("Can't get register for value!");
1616 }
1617 
1618 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1619   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1620   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1621   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1622   bool IsSEH = isAsynchronousEHPersonality(Pers);
1623   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1624   if (!IsSEH)
1625     CatchPadMBB->setIsEHScopeEntry();
1626   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1627   if (IsMSVCCXX || IsCoreCLR)
1628     CatchPadMBB->setIsEHFuncletEntry();
1629 }
1630 
1631 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1632   // Update machine-CFG edge.
1633   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1634   FuncInfo.MBB->addSuccessor(TargetMBB);
1635 
1636   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1637   bool IsSEH = isAsynchronousEHPersonality(Pers);
1638   if (IsSEH) {
1639     // If this is not a fall-through branch or optimizations are switched off,
1640     // emit the branch.
1641     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1642         TM.getOptLevel() == CodeGenOpt::None)
1643       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1644                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1645     return;
1646   }
1647 
1648   // Figure out the funclet membership for the catchret's successor.
1649   // This will be used by the FuncletLayout pass to determine how to order the
1650   // BB's.
1651   // A 'catchret' returns to the outer scope's color.
1652   Value *ParentPad = I.getCatchSwitchParentPad();
1653   const BasicBlock *SuccessorColor;
1654   if (isa<ConstantTokenNone>(ParentPad))
1655     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1656   else
1657     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1658   assert(SuccessorColor && "No parent funclet for catchret!");
1659   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1660   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1661 
1662   // Create the terminator node.
1663   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1664                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1665                             DAG.getBasicBlock(SuccessorColorMBB));
1666   DAG.setRoot(Ret);
1667 }
1668 
1669 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1670   // Don't emit any special code for the cleanuppad instruction. It just marks
1671   // the start of an EH scope/funclet.
1672   FuncInfo.MBB->setIsEHScopeEntry();
1673   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1674   if (Pers != EHPersonality::Wasm_CXX) {
1675     FuncInfo.MBB->setIsEHFuncletEntry();
1676     FuncInfo.MBB->setIsCleanupFuncletEntry();
1677   }
1678 }
1679 
1680 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1681 // the control flow always stops at the single catch pad, as it does for a
1682 // cleanup pad. In case the exception caught is not of the types the catch pad
1683 // catches, it will be rethrown by a rethrow.
1684 static void findWasmUnwindDestinations(
1685     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1686     BranchProbability Prob,
1687     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1688         &UnwindDests) {
1689   while (EHPadBB) {
1690     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1691     if (isa<CleanupPadInst>(Pad)) {
1692       // Stop on cleanup pads.
1693       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1694       UnwindDests.back().first->setIsEHScopeEntry();
1695       break;
1696     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1697       // Add the catchpad handlers to the possible destinations. We don't
1698       // continue to the unwind destination of the catchswitch for wasm.
1699       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1700         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1701         UnwindDests.back().first->setIsEHScopeEntry();
1702       }
1703       break;
1704     } else {
1705       continue;
1706     }
1707   }
1708 }
1709 
1710 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1711 /// many places it could ultimately go. In the IR, we have a single unwind
1712 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1713 /// This function skips over imaginary basic blocks that hold catchswitch
1714 /// instructions, and finds all the "real" machine
1715 /// basic block destinations. As those destinations may not be successors of
1716 /// EHPadBB, here we also calculate the edge probability to those destinations.
1717 /// The passed-in Prob is the edge probability to EHPadBB.
1718 static void findUnwindDestinations(
1719     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1720     BranchProbability Prob,
1721     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1722         &UnwindDests) {
1723   EHPersonality Personality =
1724     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1725   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1726   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1727   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1728   bool IsSEH = isAsynchronousEHPersonality(Personality);
1729 
1730   if (IsWasmCXX) {
1731     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1732     assert(UnwindDests.size() <= 1 &&
1733            "There should be at most one unwind destination for wasm");
1734     return;
1735   }
1736 
1737   while (EHPadBB) {
1738     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1739     BasicBlock *NewEHPadBB = nullptr;
1740     if (isa<LandingPadInst>(Pad)) {
1741       // Stop on landingpads. They are not funclets.
1742       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1743       break;
1744     } else if (isa<CleanupPadInst>(Pad)) {
1745       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1746       // personalities.
1747       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1748       UnwindDests.back().first->setIsEHScopeEntry();
1749       UnwindDests.back().first->setIsEHFuncletEntry();
1750       break;
1751     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1752       // Add the catchpad handlers to the possible destinations.
1753       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1754         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1755         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1756         if (IsMSVCCXX || IsCoreCLR)
1757           UnwindDests.back().first->setIsEHFuncletEntry();
1758         if (!IsSEH)
1759           UnwindDests.back().first->setIsEHScopeEntry();
1760       }
1761       NewEHPadBB = CatchSwitch->getUnwindDest();
1762     } else {
1763       continue;
1764     }
1765 
1766     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1767     if (BPI && NewEHPadBB)
1768       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1769     EHPadBB = NewEHPadBB;
1770   }
1771 }
1772 
1773 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1774   // Update successor info.
1775   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1776   auto UnwindDest = I.getUnwindDest();
1777   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1778   BranchProbability UnwindDestProb =
1779       (BPI && UnwindDest)
1780           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1781           : BranchProbability::getZero();
1782   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1783   for (auto &UnwindDest : UnwindDests) {
1784     UnwindDest.first->setIsEHPad();
1785     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1786   }
1787   FuncInfo.MBB->normalizeSuccProbs();
1788 
1789   // Create the terminator node.
1790   SDValue Ret =
1791       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1792   DAG.setRoot(Ret);
1793 }
1794 
1795 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1796   report_fatal_error("visitCatchSwitch not yet implemented!");
1797 }
1798 
1799 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1800   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1801   auto &DL = DAG.getDataLayout();
1802   SDValue Chain = getControlRoot();
1803   SmallVector<ISD::OutputArg, 8> Outs;
1804   SmallVector<SDValue, 8> OutVals;
1805 
1806   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1807   // lower
1808   //
1809   //   %val = call <ty> @llvm.experimental.deoptimize()
1810   //   ret <ty> %val
1811   //
1812   // differently.
1813   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1814     LowerDeoptimizingReturn();
1815     return;
1816   }
1817 
1818   if (!FuncInfo.CanLowerReturn) {
1819     unsigned DemoteReg = FuncInfo.DemoteRegister;
1820     const Function *F = I.getParent()->getParent();
1821 
1822     // Emit a store of the return value through the virtual register.
1823     // Leave Outs empty so that LowerReturn won't try to load return
1824     // registers the usual way.
1825     SmallVector<EVT, 1> PtrValueVTs;
1826     ComputeValueVTs(TLI, DL,
1827                     F->getReturnType()->getPointerTo(
1828                         DAG.getDataLayout().getAllocaAddrSpace()),
1829                     PtrValueVTs);
1830 
1831     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1832                                         DemoteReg, PtrValueVTs[0]);
1833     SDValue RetOp = getValue(I.getOperand(0));
1834 
1835     SmallVector<EVT, 4> ValueVTs, MemVTs;
1836     SmallVector<uint64_t, 4> Offsets;
1837     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1838                     &Offsets);
1839     unsigned NumValues = ValueVTs.size();
1840 
1841     SmallVector<SDValue, 4> Chains(NumValues);
1842     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1843     for (unsigned i = 0; i != NumValues; ++i) {
1844       // An aggregate return value cannot wrap around the address space, so
1845       // offsets to its parts don't wrap either.
1846       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1847                                            TypeSize::Fixed(Offsets[i]));
1848 
1849       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1850       if (MemVTs[i] != ValueVTs[i])
1851         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1852       Chains[i] = DAG.getStore(
1853           Chain, getCurSDLoc(), Val,
1854           // FIXME: better loc info would be nice.
1855           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1856           commonAlignment(BaseAlign, Offsets[i]));
1857     }
1858 
1859     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1860                         MVT::Other, Chains);
1861   } else if (I.getNumOperands() != 0) {
1862     SmallVector<EVT, 4> ValueVTs;
1863     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1864     unsigned NumValues = ValueVTs.size();
1865     if (NumValues) {
1866       SDValue RetOp = getValue(I.getOperand(0));
1867 
1868       const Function *F = I.getParent()->getParent();
1869 
1870       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1871           I.getOperand(0)->getType(), F->getCallingConv(),
1872           /*IsVarArg*/ false);
1873 
1874       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1875       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1876                                           Attribute::SExt))
1877         ExtendKind = ISD::SIGN_EXTEND;
1878       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1879                                                Attribute::ZExt))
1880         ExtendKind = ISD::ZERO_EXTEND;
1881 
1882       LLVMContext &Context = F->getContext();
1883       bool RetInReg = F->getAttributes().hasAttribute(
1884           AttributeList::ReturnIndex, Attribute::InReg);
1885 
1886       for (unsigned j = 0; j != NumValues; ++j) {
1887         EVT VT = ValueVTs[j];
1888 
1889         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1890           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1891 
1892         CallingConv::ID CC = F->getCallingConv();
1893 
1894         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1895         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1896         SmallVector<SDValue, 4> Parts(NumParts);
1897         getCopyToParts(DAG, getCurSDLoc(),
1898                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1899                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1900 
1901         // 'inreg' on function refers to return value
1902         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1903         if (RetInReg)
1904           Flags.setInReg();
1905 
1906         if (I.getOperand(0)->getType()->isPointerTy()) {
1907           Flags.setPointer();
1908           Flags.setPointerAddrSpace(
1909               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1910         }
1911 
1912         if (NeedsRegBlock) {
1913           Flags.setInConsecutiveRegs();
1914           if (j == NumValues - 1)
1915             Flags.setInConsecutiveRegsLast();
1916         }
1917 
1918         // Propagate extension type if any
1919         if (ExtendKind == ISD::SIGN_EXTEND)
1920           Flags.setSExt();
1921         else if (ExtendKind == ISD::ZERO_EXTEND)
1922           Flags.setZExt();
1923 
1924         for (unsigned i = 0; i < NumParts; ++i) {
1925           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1926                                         VT, /*isfixed=*/true, 0, 0));
1927           OutVals.push_back(Parts[i]);
1928         }
1929       }
1930     }
1931   }
1932 
1933   // Push in swifterror virtual register as the last element of Outs. This makes
1934   // sure swifterror virtual register will be returned in the swifterror
1935   // physical register.
1936   const Function *F = I.getParent()->getParent();
1937   if (TLI.supportSwiftError() &&
1938       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1939     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1940     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1941     Flags.setSwiftError();
1942     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1943                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1944                                   true /*isfixed*/, 1 /*origidx*/,
1945                                   0 /*partOffs*/));
1946     // Create SDNode for the swifterror virtual register.
1947     OutVals.push_back(
1948         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1949                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1950                         EVT(TLI.getPointerTy(DL))));
1951   }
1952 
1953   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1954   CallingConv::ID CallConv =
1955     DAG.getMachineFunction().getFunction().getCallingConv();
1956   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1957       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1958 
1959   // Verify that the target's LowerReturn behaved as expected.
1960   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1961          "LowerReturn didn't return a valid chain!");
1962 
1963   // Update the DAG with the new chain value resulting from return lowering.
1964   DAG.setRoot(Chain);
1965 }
1966 
1967 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1968 /// created for it, emit nodes to copy the value into the virtual
1969 /// registers.
1970 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1971   // Skip empty types
1972   if (V->getType()->isEmptyTy())
1973     return;
1974 
1975   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1976   if (VMI != FuncInfo.ValueMap.end()) {
1977     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1978     CopyValueToVirtualRegister(V, VMI->second);
1979   }
1980 }
1981 
1982 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1983 /// the current basic block, add it to ValueMap now so that we'll get a
1984 /// CopyTo/FromReg.
1985 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1986   // No need to export constants.
1987   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1988 
1989   // Already exported?
1990   if (FuncInfo.isExportedInst(V)) return;
1991 
1992   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1993   CopyValueToVirtualRegister(V, Reg);
1994 }
1995 
1996 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1997                                                      const BasicBlock *FromBB) {
1998   // The operands of the setcc have to be in this block.  We don't know
1999   // how to export them from some other block.
2000   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2001     // Can export from current BB.
2002     if (VI->getParent() == FromBB)
2003       return true;
2004 
2005     // Is already exported, noop.
2006     return FuncInfo.isExportedInst(V);
2007   }
2008 
2009   // If this is an argument, we can export it if the BB is the entry block or
2010   // if it is already exported.
2011   if (isa<Argument>(V)) {
2012     if (FromBB == &FromBB->getParent()->getEntryBlock())
2013       return true;
2014 
2015     // Otherwise, can only export this if it is already exported.
2016     return FuncInfo.isExportedInst(V);
2017   }
2018 
2019   // Otherwise, constants can always be exported.
2020   return true;
2021 }
2022 
2023 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2024 BranchProbability
2025 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2026                                         const MachineBasicBlock *Dst) const {
2027   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2028   const BasicBlock *SrcBB = Src->getBasicBlock();
2029   const BasicBlock *DstBB = Dst->getBasicBlock();
2030   if (!BPI) {
2031     // If BPI is not available, set the default probability as 1 / N, where N is
2032     // the number of successors.
2033     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2034     return BranchProbability(1, SuccSize);
2035   }
2036   return BPI->getEdgeProbability(SrcBB, DstBB);
2037 }
2038 
2039 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2040                                                MachineBasicBlock *Dst,
2041                                                BranchProbability Prob) {
2042   if (!FuncInfo.BPI)
2043     Src->addSuccessorWithoutProb(Dst);
2044   else {
2045     if (Prob.isUnknown())
2046       Prob = getEdgeProbability(Src, Dst);
2047     Src->addSuccessor(Dst, Prob);
2048   }
2049 }
2050 
2051 static bool InBlock(const Value *V, const BasicBlock *BB) {
2052   if (const Instruction *I = dyn_cast<Instruction>(V))
2053     return I->getParent() == BB;
2054   return true;
2055 }
2056 
2057 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2058 /// This function emits a branch and is used at the leaves of an OR or an
2059 /// AND operator tree.
2060 void
2061 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2062                                                   MachineBasicBlock *TBB,
2063                                                   MachineBasicBlock *FBB,
2064                                                   MachineBasicBlock *CurBB,
2065                                                   MachineBasicBlock *SwitchBB,
2066                                                   BranchProbability TProb,
2067                                                   BranchProbability FProb,
2068                                                   bool InvertCond) {
2069   const BasicBlock *BB = CurBB->getBasicBlock();
2070 
2071   // If the leaf of the tree is a comparison, merge the condition into
2072   // the caseblock.
2073   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2074     // The operands of the cmp have to be in this block.  We don't know
2075     // how to export them from some other block.  If this is the first block
2076     // of the sequence, no exporting is needed.
2077     if (CurBB == SwitchBB ||
2078         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2079          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2080       ISD::CondCode Condition;
2081       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2082         ICmpInst::Predicate Pred =
2083             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2084         Condition = getICmpCondCode(Pred);
2085       } else {
2086         const FCmpInst *FC = cast<FCmpInst>(Cond);
2087         FCmpInst::Predicate Pred =
2088             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2089         Condition = getFCmpCondCode(Pred);
2090         if (TM.Options.NoNaNsFPMath)
2091           Condition = getFCmpCodeWithoutNaN(Condition);
2092       }
2093 
2094       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2095                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2096       SL->SwitchCases.push_back(CB);
2097       return;
2098     }
2099   }
2100 
2101   // Create a CaseBlock record representing this branch.
2102   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2103   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2104                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2105   SL->SwitchCases.push_back(CB);
2106 }
2107 
2108 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2109                                                MachineBasicBlock *TBB,
2110                                                MachineBasicBlock *FBB,
2111                                                MachineBasicBlock *CurBB,
2112                                                MachineBasicBlock *SwitchBB,
2113                                                Instruction::BinaryOps Opc,
2114                                                BranchProbability TProb,
2115                                                BranchProbability FProb,
2116                                                bool InvertCond) {
2117   // Skip over not part of the tree and remember to invert op and operands at
2118   // next level.
2119   Value *NotCond;
2120   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2121       InBlock(NotCond, CurBB->getBasicBlock())) {
2122     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2123                          !InvertCond);
2124     return;
2125   }
2126 
2127   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2128   // Compute the effective opcode for Cond, taking into account whether it needs
2129   // to be inverted, e.g.
2130   //   and (not (or A, B)), C
2131   // gets lowered as
2132   //   and (and (not A, not B), C)
2133   unsigned BOpc = 0;
2134   if (BOp) {
2135     BOpc = BOp->getOpcode();
2136     if (InvertCond) {
2137       if (BOpc == Instruction::And)
2138         BOpc = Instruction::Or;
2139       else if (BOpc == Instruction::Or)
2140         BOpc = Instruction::And;
2141     }
2142   }
2143 
2144   // If this node is not part of the or/and tree, emit it as a branch.
2145   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2146       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2147       BOp->getParent() != CurBB->getBasicBlock() ||
2148       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2149       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2150     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2151                                  TProb, FProb, InvertCond);
2152     return;
2153   }
2154 
2155   //  Create TmpBB after CurBB.
2156   MachineFunction::iterator BBI(CurBB);
2157   MachineFunction &MF = DAG.getMachineFunction();
2158   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2159   CurBB->getParent()->insert(++BBI, TmpBB);
2160 
2161   if (Opc == Instruction::Or) {
2162     // Codegen X | Y as:
2163     // BB1:
2164     //   jmp_if_X TBB
2165     //   jmp TmpBB
2166     // TmpBB:
2167     //   jmp_if_Y TBB
2168     //   jmp FBB
2169     //
2170 
2171     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2172     // The requirement is that
2173     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2174     //     = TrueProb for original BB.
2175     // Assuming the original probabilities are A and B, one choice is to set
2176     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2177     // A/(1+B) and 2B/(1+B). This choice assumes that
2178     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2179     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2180     // TmpBB, but the math is more complicated.
2181 
2182     auto NewTrueProb = TProb / 2;
2183     auto NewFalseProb = TProb / 2 + FProb;
2184     // Emit the LHS condition.
2185     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2186                          NewTrueProb, NewFalseProb, InvertCond);
2187 
2188     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2189     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2190     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2191     // Emit the RHS condition into TmpBB.
2192     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2193                          Probs[0], Probs[1], InvertCond);
2194   } else {
2195     assert(Opc == Instruction::And && "Unknown merge op!");
2196     // Codegen X & Y as:
2197     // BB1:
2198     //   jmp_if_X TmpBB
2199     //   jmp FBB
2200     // TmpBB:
2201     //   jmp_if_Y TBB
2202     //   jmp FBB
2203     //
2204     //  This requires creation of TmpBB after CurBB.
2205 
2206     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2207     // The requirement is that
2208     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2209     //     = FalseProb for original BB.
2210     // Assuming the original probabilities are A and B, one choice is to set
2211     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2212     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2213     // TrueProb for BB1 * FalseProb for TmpBB.
2214 
2215     auto NewTrueProb = TProb + FProb / 2;
2216     auto NewFalseProb = FProb / 2;
2217     // Emit the LHS condition.
2218     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2219                          NewTrueProb, NewFalseProb, InvertCond);
2220 
2221     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2222     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2223     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2224     // Emit the RHS condition into TmpBB.
2225     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2226                          Probs[0], Probs[1], InvertCond);
2227   }
2228 }
2229 
2230 /// If the set of cases should be emitted as a series of branches, return true.
2231 /// If we should emit this as a bunch of and/or'd together conditions, return
2232 /// false.
2233 bool
2234 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2235   if (Cases.size() != 2) return true;
2236 
2237   // If this is two comparisons of the same values or'd or and'd together, they
2238   // will get folded into a single comparison, so don't emit two blocks.
2239   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2240        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2241       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2242        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2243     return false;
2244   }
2245 
2246   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2247   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2248   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2249       Cases[0].CC == Cases[1].CC &&
2250       isa<Constant>(Cases[0].CmpRHS) &&
2251       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2252     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2253       return false;
2254     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2255       return false;
2256   }
2257 
2258   return true;
2259 }
2260 
2261 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2262   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2263 
2264   // Update machine-CFG edges.
2265   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2266 
2267   if (I.isUnconditional()) {
2268     // Update machine-CFG edges.
2269     BrMBB->addSuccessor(Succ0MBB);
2270 
2271     // If this is not a fall-through branch or optimizations are switched off,
2272     // emit the branch.
2273     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2274       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2275                               MVT::Other, getControlRoot(),
2276                               DAG.getBasicBlock(Succ0MBB)));
2277 
2278     return;
2279   }
2280 
2281   // If this condition is one of the special cases we handle, do special stuff
2282   // now.
2283   const Value *CondVal = I.getCondition();
2284   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2285 
2286   // If this is a series of conditions that are or'd or and'd together, emit
2287   // this as a sequence of branches instead of setcc's with and/or operations.
2288   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2289   // unpredictable branches, and vector extracts because those jumps are likely
2290   // expensive for any target), this should improve performance.
2291   // For example, instead of something like:
2292   //     cmp A, B
2293   //     C = seteq
2294   //     cmp D, E
2295   //     F = setle
2296   //     or C, F
2297   //     jnz foo
2298   // Emit:
2299   //     cmp A, B
2300   //     je foo
2301   //     cmp D, E
2302   //     jle foo
2303   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2304     Instruction::BinaryOps Opcode = BOp->getOpcode();
2305     Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1);
2306     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2307         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2308         (Opcode == Instruction::And || Opcode == Instruction::Or) &&
2309         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2310           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2311       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2312                            Opcode,
2313                            getEdgeProbability(BrMBB, Succ0MBB),
2314                            getEdgeProbability(BrMBB, Succ1MBB),
2315                            /*InvertCond=*/false);
2316       // If the compares in later blocks need to use values not currently
2317       // exported from this block, export them now.  This block should always
2318       // be the first entry.
2319       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2320 
2321       // Allow some cases to be rejected.
2322       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2323         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2324           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2325           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2326         }
2327 
2328         // Emit the branch for this block.
2329         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2330         SL->SwitchCases.erase(SL->SwitchCases.begin());
2331         return;
2332       }
2333 
2334       // Okay, we decided not to do this, remove any inserted MBB's and clear
2335       // SwitchCases.
2336       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2337         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2338 
2339       SL->SwitchCases.clear();
2340     }
2341   }
2342 
2343   // Create a CaseBlock record representing this branch.
2344   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2345                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2346 
2347   // Use visitSwitchCase to actually insert the fast branch sequence for this
2348   // cond branch.
2349   visitSwitchCase(CB, BrMBB);
2350 }
2351 
2352 /// visitSwitchCase - Emits the necessary code to represent a single node in
2353 /// the binary search tree resulting from lowering a switch instruction.
2354 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2355                                           MachineBasicBlock *SwitchBB) {
2356   SDValue Cond;
2357   SDValue CondLHS = getValue(CB.CmpLHS);
2358   SDLoc dl = CB.DL;
2359 
2360   if (CB.CC == ISD::SETTRUE) {
2361     // Branch or fall through to TrueBB.
2362     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2363     SwitchBB->normalizeSuccProbs();
2364     if (CB.TrueBB != NextBlock(SwitchBB)) {
2365       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2366                               DAG.getBasicBlock(CB.TrueBB)));
2367     }
2368     return;
2369   }
2370 
2371   auto &TLI = DAG.getTargetLoweringInfo();
2372   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2373 
2374   // Build the setcc now.
2375   if (!CB.CmpMHS) {
2376     // Fold "(X == true)" to X and "(X == false)" to !X to
2377     // handle common cases produced by branch lowering.
2378     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2379         CB.CC == ISD::SETEQ)
2380       Cond = CondLHS;
2381     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2382              CB.CC == ISD::SETEQ) {
2383       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2384       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2385     } else {
2386       SDValue CondRHS = getValue(CB.CmpRHS);
2387 
2388       // If a pointer's DAG type is larger than its memory type then the DAG
2389       // values are zero-extended. This breaks signed comparisons so truncate
2390       // back to the underlying type before doing the compare.
2391       if (CondLHS.getValueType() != MemVT) {
2392         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2393         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2394       }
2395       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2396     }
2397   } else {
2398     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2399 
2400     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2401     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2402 
2403     SDValue CmpOp = getValue(CB.CmpMHS);
2404     EVT VT = CmpOp.getValueType();
2405 
2406     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2407       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2408                           ISD::SETLE);
2409     } else {
2410       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2411                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2412       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2413                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2414     }
2415   }
2416 
2417   // Update successor info
2418   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2419   // TrueBB and FalseBB are always different unless the incoming IR is
2420   // degenerate. This only happens when running llc on weird IR.
2421   if (CB.TrueBB != CB.FalseBB)
2422     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2423   SwitchBB->normalizeSuccProbs();
2424 
2425   // If the lhs block is the next block, invert the condition so that we can
2426   // fall through to the lhs instead of the rhs block.
2427   if (CB.TrueBB == NextBlock(SwitchBB)) {
2428     std::swap(CB.TrueBB, CB.FalseBB);
2429     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2430     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2431   }
2432 
2433   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2434                                MVT::Other, getControlRoot(), Cond,
2435                                DAG.getBasicBlock(CB.TrueBB));
2436 
2437   // Insert the false branch. Do this even if it's a fall through branch,
2438   // this makes it easier to do DAG optimizations which require inverting
2439   // the branch condition.
2440   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2441                        DAG.getBasicBlock(CB.FalseBB));
2442 
2443   DAG.setRoot(BrCond);
2444 }
2445 
2446 /// visitJumpTable - Emit JumpTable node in the current MBB
2447 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2448   // Emit the code for the jump table
2449   assert(JT.Reg != -1U && "Should lower JT Header first!");
2450   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2451   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2452                                      JT.Reg, PTy);
2453   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2454   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2455                                     MVT::Other, Index.getValue(1),
2456                                     Table, Index);
2457   DAG.setRoot(BrJumpTable);
2458 }
2459 
2460 /// visitJumpTableHeader - This function emits necessary code to produce index
2461 /// in the JumpTable from switch case.
2462 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2463                                                JumpTableHeader &JTH,
2464                                                MachineBasicBlock *SwitchBB) {
2465   SDLoc dl = getCurSDLoc();
2466 
2467   // Subtract the lowest switch case value from the value being switched on.
2468   SDValue SwitchOp = getValue(JTH.SValue);
2469   EVT VT = SwitchOp.getValueType();
2470   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2471                             DAG.getConstant(JTH.First, dl, VT));
2472 
2473   // The SDNode we just created, which holds the value being switched on minus
2474   // the smallest case value, needs to be copied to a virtual register so it
2475   // can be used as an index into the jump table in a subsequent basic block.
2476   // This value may be smaller or larger than the target's pointer type, and
2477   // therefore require extension or truncating.
2478   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2479   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2480 
2481   unsigned JumpTableReg =
2482       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2483   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2484                                     JumpTableReg, SwitchOp);
2485   JT.Reg = JumpTableReg;
2486 
2487   if (!JTH.OmitRangeCheck) {
2488     // Emit the range check for the jump table, and branch to the default block
2489     // for the switch statement if the value being switched on exceeds the
2490     // largest case in the switch.
2491     SDValue CMP = DAG.getSetCC(
2492         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2493                                    Sub.getValueType()),
2494         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2495 
2496     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2497                                  MVT::Other, CopyTo, CMP,
2498                                  DAG.getBasicBlock(JT.Default));
2499 
2500     // Avoid emitting unnecessary branches to the next block.
2501     if (JT.MBB != NextBlock(SwitchBB))
2502       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2503                            DAG.getBasicBlock(JT.MBB));
2504 
2505     DAG.setRoot(BrCond);
2506   } else {
2507     // Avoid emitting unnecessary branches to the next block.
2508     if (JT.MBB != NextBlock(SwitchBB))
2509       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2510                               DAG.getBasicBlock(JT.MBB)));
2511     else
2512       DAG.setRoot(CopyTo);
2513   }
2514 }
2515 
2516 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2517 /// variable if there exists one.
2518 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2519                                  SDValue &Chain) {
2520   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2521   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2522   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2523   MachineFunction &MF = DAG.getMachineFunction();
2524   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2525   MachineSDNode *Node =
2526       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2527   if (Global) {
2528     MachinePointerInfo MPInfo(Global);
2529     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2530                  MachineMemOperand::MODereferenceable;
2531     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2532         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2533     DAG.setNodeMemRefs(Node, {MemRef});
2534   }
2535   if (PtrTy != PtrMemTy)
2536     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2537   return SDValue(Node, 0);
2538 }
2539 
2540 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2541 /// tail spliced into a stack protector check success bb.
2542 ///
2543 /// For a high level explanation of how this fits into the stack protector
2544 /// generation see the comment on the declaration of class
2545 /// StackProtectorDescriptor.
2546 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2547                                                   MachineBasicBlock *ParentBB) {
2548 
2549   // First create the loads to the guard/stack slot for the comparison.
2550   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2551   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2552   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2553 
2554   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2555   int FI = MFI.getStackProtectorIndex();
2556 
2557   SDValue Guard;
2558   SDLoc dl = getCurSDLoc();
2559   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2560   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2561   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2562 
2563   // Generate code to load the content of the guard slot.
2564   SDValue GuardVal = DAG.getLoad(
2565       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2566       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2567       MachineMemOperand::MOVolatile);
2568 
2569   if (TLI.useStackGuardXorFP())
2570     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2571 
2572   // Retrieve guard check function, nullptr if instrumentation is inlined.
2573   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2574     // The target provides a guard check function to validate the guard value.
2575     // Generate a call to that function with the content of the guard slot as
2576     // argument.
2577     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2578     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2579 
2580     TargetLowering::ArgListTy Args;
2581     TargetLowering::ArgListEntry Entry;
2582     Entry.Node = GuardVal;
2583     Entry.Ty = FnTy->getParamType(0);
2584     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2585       Entry.IsInReg = true;
2586     Args.push_back(Entry);
2587 
2588     TargetLowering::CallLoweringInfo CLI(DAG);
2589     CLI.setDebugLoc(getCurSDLoc())
2590         .setChain(DAG.getEntryNode())
2591         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2592                    getValue(GuardCheckFn), std::move(Args));
2593 
2594     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2595     DAG.setRoot(Result.second);
2596     return;
2597   }
2598 
2599   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2600   // Otherwise, emit a volatile load to retrieve the stack guard value.
2601   SDValue Chain = DAG.getEntryNode();
2602   if (TLI.useLoadStackGuardNode()) {
2603     Guard = getLoadStackGuard(DAG, dl, Chain);
2604   } else {
2605     const Value *IRGuard = TLI.getSDagStackGuard(M);
2606     SDValue GuardPtr = getValue(IRGuard);
2607 
2608     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2609                         MachinePointerInfo(IRGuard, 0), Align,
2610                         MachineMemOperand::MOVolatile);
2611   }
2612 
2613   // Perform the comparison via a getsetcc.
2614   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2615                                                         *DAG.getContext(),
2616                                                         Guard.getValueType()),
2617                              Guard, GuardVal, ISD::SETNE);
2618 
2619   // If the guard/stackslot do not equal, branch to failure MBB.
2620   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2621                                MVT::Other, GuardVal.getOperand(0),
2622                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2623   // Otherwise branch to success MBB.
2624   SDValue Br = DAG.getNode(ISD::BR, dl,
2625                            MVT::Other, BrCond,
2626                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2627 
2628   DAG.setRoot(Br);
2629 }
2630 
2631 /// Codegen the failure basic block for a stack protector check.
2632 ///
2633 /// A failure stack protector machine basic block consists simply of a call to
2634 /// __stack_chk_fail().
2635 ///
2636 /// For a high level explanation of how this fits into the stack protector
2637 /// generation see the comment on the declaration of class
2638 /// StackProtectorDescriptor.
2639 void
2640 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2641   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2642   TargetLowering::MakeLibCallOptions CallOptions;
2643   CallOptions.setDiscardResult(true);
2644   SDValue Chain =
2645       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2646                       None, CallOptions, getCurSDLoc()).second;
2647   // On PS4, the "return address" must still be within the calling function,
2648   // even if it's at the very end, so emit an explicit TRAP here.
2649   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2650   if (TM.getTargetTriple().isPS4CPU())
2651     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2652   // WebAssembly needs an unreachable instruction after a non-returning call,
2653   // because the function return type can be different from __stack_chk_fail's
2654   // return type (void).
2655   if (TM.getTargetTriple().isWasm())
2656     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2657 
2658   DAG.setRoot(Chain);
2659 }
2660 
2661 /// visitBitTestHeader - This function emits necessary code to produce value
2662 /// suitable for "bit tests"
2663 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2664                                              MachineBasicBlock *SwitchBB) {
2665   SDLoc dl = getCurSDLoc();
2666 
2667   // Subtract the minimum value.
2668   SDValue SwitchOp = getValue(B.SValue);
2669   EVT VT = SwitchOp.getValueType();
2670   SDValue RangeSub =
2671       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2672 
2673   // Determine the type of the test operands.
2674   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2675   bool UsePtrType = false;
2676   if (!TLI.isTypeLegal(VT)) {
2677     UsePtrType = true;
2678   } else {
2679     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2680       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2681         // Switch table case range are encoded into series of masks.
2682         // Just use pointer type, it's guaranteed to fit.
2683         UsePtrType = true;
2684         break;
2685       }
2686   }
2687   SDValue Sub = RangeSub;
2688   if (UsePtrType) {
2689     VT = TLI.getPointerTy(DAG.getDataLayout());
2690     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2691   }
2692 
2693   B.RegVT = VT.getSimpleVT();
2694   B.Reg = FuncInfo.CreateReg(B.RegVT);
2695   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2696 
2697   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2698 
2699   if (!B.OmitRangeCheck)
2700     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2701   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2702   SwitchBB->normalizeSuccProbs();
2703 
2704   SDValue Root = CopyTo;
2705   if (!B.OmitRangeCheck) {
2706     // Conditional branch to the default block.
2707     SDValue RangeCmp = DAG.getSetCC(dl,
2708         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2709                                RangeSub.getValueType()),
2710         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2711         ISD::SETUGT);
2712 
2713     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2714                        DAG.getBasicBlock(B.Default));
2715   }
2716 
2717   // Avoid emitting unnecessary branches to the next block.
2718   if (MBB != NextBlock(SwitchBB))
2719     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2720 
2721   DAG.setRoot(Root);
2722 }
2723 
2724 /// visitBitTestCase - this function produces one "bit test"
2725 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2726                                            MachineBasicBlock* NextMBB,
2727                                            BranchProbability BranchProbToNext,
2728                                            unsigned Reg,
2729                                            BitTestCase &B,
2730                                            MachineBasicBlock *SwitchBB) {
2731   SDLoc dl = getCurSDLoc();
2732   MVT VT = BB.RegVT;
2733   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2734   SDValue Cmp;
2735   unsigned PopCount = countPopulation(B.Mask);
2736   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2737   if (PopCount == 1) {
2738     // Testing for a single bit; just compare the shift count with what it
2739     // would need to be to shift a 1 bit in that position.
2740     Cmp = DAG.getSetCC(
2741         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2742         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2743         ISD::SETEQ);
2744   } else if (PopCount == BB.Range) {
2745     // There is only one zero bit in the range, test for it directly.
2746     Cmp = DAG.getSetCC(
2747         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2748         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2749         ISD::SETNE);
2750   } else {
2751     // Make desired shift
2752     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2753                                     DAG.getConstant(1, dl, VT), ShiftOp);
2754 
2755     // Emit bit tests and jumps
2756     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2757                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2758     Cmp = DAG.getSetCC(
2759         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2760         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2761   }
2762 
2763   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2764   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2765   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2766   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2767   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2768   // one as they are relative probabilities (and thus work more like weights),
2769   // and hence we need to normalize them to let the sum of them become one.
2770   SwitchBB->normalizeSuccProbs();
2771 
2772   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2773                               MVT::Other, getControlRoot(),
2774                               Cmp, DAG.getBasicBlock(B.TargetBB));
2775 
2776   // Avoid emitting unnecessary branches to the next block.
2777   if (NextMBB != NextBlock(SwitchBB))
2778     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2779                         DAG.getBasicBlock(NextMBB));
2780 
2781   DAG.setRoot(BrAnd);
2782 }
2783 
2784 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2785   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2786 
2787   // Retrieve successors. Look through artificial IR level blocks like
2788   // catchswitch for successors.
2789   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2790   const BasicBlock *EHPadBB = I.getSuccessor(1);
2791 
2792   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2793   // have to do anything here to lower funclet bundles.
2794   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2795                                         LLVMContext::OB_gc_transition,
2796                                         LLVMContext::OB_gc_live,
2797                                         LLVMContext::OB_funclet,
2798                                         LLVMContext::OB_cfguardtarget}) &&
2799          "Cannot lower invokes with arbitrary operand bundles yet!");
2800 
2801   const Value *Callee(I.getCalledOperand());
2802   const Function *Fn = dyn_cast<Function>(Callee);
2803   if (isa<InlineAsm>(Callee))
2804     visitInlineAsm(I);
2805   else if (Fn && Fn->isIntrinsic()) {
2806     switch (Fn->getIntrinsicID()) {
2807     default:
2808       llvm_unreachable("Cannot invoke this intrinsic");
2809     case Intrinsic::donothing:
2810       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2811       break;
2812     case Intrinsic::experimental_patchpoint_void:
2813     case Intrinsic::experimental_patchpoint_i64:
2814       visitPatchpoint(I, EHPadBB);
2815       break;
2816     case Intrinsic::experimental_gc_statepoint:
2817       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2818       break;
2819     case Intrinsic::wasm_rethrow_in_catch: {
2820       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2821       // special because it can be invoked, so we manually lower it to a DAG
2822       // node here.
2823       SmallVector<SDValue, 8> Ops;
2824       Ops.push_back(getRoot()); // inchain
2825       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2826       Ops.push_back(
2827           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2828                                 TLI.getPointerTy(DAG.getDataLayout())));
2829       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2830       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2831       break;
2832     }
2833     }
2834   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2835     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2836     // Eventually we will support lowering the @llvm.experimental.deoptimize
2837     // intrinsic, and right now there are no plans to support other intrinsics
2838     // with deopt state.
2839     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2840   } else {
2841     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2842   }
2843 
2844   // If the value of the invoke is used outside of its defining block, make it
2845   // available as a virtual register.
2846   // We already took care of the exported value for the statepoint instruction
2847   // during call to the LowerStatepoint.
2848   if (!isa<GCStatepointInst>(I)) {
2849     CopyToExportRegsIfNeeded(&I);
2850   }
2851 
2852   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2853   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2854   BranchProbability EHPadBBProb =
2855       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2856           : BranchProbability::getZero();
2857   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2858 
2859   // Update successor info.
2860   addSuccessorWithProb(InvokeMBB, Return);
2861   for (auto &UnwindDest : UnwindDests) {
2862     UnwindDest.first->setIsEHPad();
2863     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2864   }
2865   InvokeMBB->normalizeSuccProbs();
2866 
2867   // Drop into normal successor.
2868   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2869                           DAG.getBasicBlock(Return)));
2870 }
2871 
2872 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2873   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2874 
2875   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2876   // have to do anything here to lower funclet bundles.
2877   assert(!I.hasOperandBundlesOtherThan(
2878              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2879          "Cannot lower callbrs with arbitrary operand bundles yet!");
2880 
2881   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2882   visitInlineAsm(I);
2883   CopyToExportRegsIfNeeded(&I);
2884 
2885   // Retrieve successors.
2886   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2887 
2888   // Update successor info.
2889   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2890   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2891     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2892     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2893     Target->setIsInlineAsmBrIndirectTarget();
2894   }
2895   CallBrMBB->normalizeSuccProbs();
2896 
2897   // Drop into default successor.
2898   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2899                           MVT::Other, getControlRoot(),
2900                           DAG.getBasicBlock(Return)));
2901 }
2902 
2903 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2904   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2905 }
2906 
2907 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2908   assert(FuncInfo.MBB->isEHPad() &&
2909          "Call to landingpad not in landing pad!");
2910 
2911   // If there aren't registers to copy the values into (e.g., during SjLj
2912   // exceptions), then don't bother to create these DAG nodes.
2913   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2914   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2915   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2916       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2917     return;
2918 
2919   // If landingpad's return type is token type, we don't create DAG nodes
2920   // for its exception pointer and selector value. The extraction of exception
2921   // pointer or selector value from token type landingpads is not currently
2922   // supported.
2923   if (LP.getType()->isTokenTy())
2924     return;
2925 
2926   SmallVector<EVT, 2> ValueVTs;
2927   SDLoc dl = getCurSDLoc();
2928   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2929   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2930 
2931   // Get the two live-in registers as SDValues. The physregs have already been
2932   // copied into virtual registers.
2933   SDValue Ops[2];
2934   if (FuncInfo.ExceptionPointerVirtReg) {
2935     Ops[0] = DAG.getZExtOrTrunc(
2936         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2937                            FuncInfo.ExceptionPointerVirtReg,
2938                            TLI.getPointerTy(DAG.getDataLayout())),
2939         dl, ValueVTs[0]);
2940   } else {
2941     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2942   }
2943   Ops[1] = DAG.getZExtOrTrunc(
2944       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2945                          FuncInfo.ExceptionSelectorVirtReg,
2946                          TLI.getPointerTy(DAG.getDataLayout())),
2947       dl, ValueVTs[1]);
2948 
2949   // Merge into one.
2950   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2951                             DAG.getVTList(ValueVTs), Ops);
2952   setValue(&LP, Res);
2953 }
2954 
2955 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2956                                            MachineBasicBlock *Last) {
2957   // Update JTCases.
2958   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2959     if (SL->JTCases[i].first.HeaderBB == First)
2960       SL->JTCases[i].first.HeaderBB = Last;
2961 
2962   // Update BitTestCases.
2963   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2964     if (SL->BitTestCases[i].Parent == First)
2965       SL->BitTestCases[i].Parent = Last;
2966 }
2967 
2968 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2969   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2970 
2971   // Update machine-CFG edges with unique successors.
2972   SmallSet<BasicBlock*, 32> Done;
2973   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2974     BasicBlock *BB = I.getSuccessor(i);
2975     bool Inserted = Done.insert(BB).second;
2976     if (!Inserted)
2977         continue;
2978 
2979     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2980     addSuccessorWithProb(IndirectBrMBB, Succ);
2981   }
2982   IndirectBrMBB->normalizeSuccProbs();
2983 
2984   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2985                           MVT::Other, getControlRoot(),
2986                           getValue(I.getAddress())));
2987 }
2988 
2989 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2990   if (!DAG.getTarget().Options.TrapUnreachable)
2991     return;
2992 
2993   // We may be able to ignore unreachable behind a noreturn call.
2994   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2995     const BasicBlock &BB = *I.getParent();
2996     if (&I != &BB.front()) {
2997       BasicBlock::const_iterator PredI =
2998         std::prev(BasicBlock::const_iterator(&I));
2999       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3000         if (Call->doesNotReturn())
3001           return;
3002       }
3003     }
3004   }
3005 
3006   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3007 }
3008 
3009 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3010   SDNodeFlags Flags;
3011 
3012   SDValue Op = getValue(I.getOperand(0));
3013   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3014                                     Op, Flags);
3015   setValue(&I, UnNodeValue);
3016 }
3017 
3018 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3019   SDNodeFlags Flags;
3020   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3021     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3022     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3023   }
3024   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3025     Flags.setExact(ExactOp->isExact());
3026   }
3027 
3028   SDValue Op1 = getValue(I.getOperand(0));
3029   SDValue Op2 = getValue(I.getOperand(1));
3030   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3031                                      Op1, Op2, Flags);
3032   setValue(&I, BinNodeValue);
3033 }
3034 
3035 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3036   SDValue Op1 = getValue(I.getOperand(0));
3037   SDValue Op2 = getValue(I.getOperand(1));
3038 
3039   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3040       Op1.getValueType(), DAG.getDataLayout());
3041 
3042   // Coerce the shift amount to the right type if we can.
3043   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3044     unsigned ShiftSize = ShiftTy.getSizeInBits();
3045     unsigned Op2Size = Op2.getValueSizeInBits();
3046     SDLoc DL = getCurSDLoc();
3047 
3048     // If the operand is smaller than the shift count type, promote it.
3049     if (ShiftSize > Op2Size)
3050       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3051 
3052     // If the operand is larger than the shift count type but the shift
3053     // count type has enough bits to represent any shift value, truncate
3054     // it now. This is a common case and it exposes the truncate to
3055     // optimization early.
3056     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3057       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3058     // Otherwise we'll need to temporarily settle for some other convenient
3059     // type.  Type legalization will make adjustments once the shiftee is split.
3060     else
3061       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3062   }
3063 
3064   bool nuw = false;
3065   bool nsw = false;
3066   bool exact = false;
3067 
3068   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3069 
3070     if (const OverflowingBinaryOperator *OFBinOp =
3071             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3072       nuw = OFBinOp->hasNoUnsignedWrap();
3073       nsw = OFBinOp->hasNoSignedWrap();
3074     }
3075     if (const PossiblyExactOperator *ExactOp =
3076             dyn_cast<const PossiblyExactOperator>(&I))
3077       exact = ExactOp->isExact();
3078   }
3079   SDNodeFlags Flags;
3080   Flags.setExact(exact);
3081   Flags.setNoSignedWrap(nsw);
3082   Flags.setNoUnsignedWrap(nuw);
3083   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3084                             Flags);
3085   setValue(&I, Res);
3086 }
3087 
3088 void SelectionDAGBuilder::visitSDiv(const User &I) {
3089   SDValue Op1 = getValue(I.getOperand(0));
3090   SDValue Op2 = getValue(I.getOperand(1));
3091 
3092   SDNodeFlags Flags;
3093   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3094                  cast<PossiblyExactOperator>(&I)->isExact());
3095   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3096                            Op2, Flags));
3097 }
3098 
3099 void SelectionDAGBuilder::visitICmp(const User &I) {
3100   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3101   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3102     predicate = IC->getPredicate();
3103   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3104     predicate = ICmpInst::Predicate(IC->getPredicate());
3105   SDValue Op1 = getValue(I.getOperand(0));
3106   SDValue Op2 = getValue(I.getOperand(1));
3107   ISD::CondCode Opcode = getICmpCondCode(predicate);
3108 
3109   auto &TLI = DAG.getTargetLoweringInfo();
3110   EVT MemVT =
3111       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3112 
3113   // If a pointer's DAG type is larger than its memory type then the DAG values
3114   // are zero-extended. This breaks signed comparisons so truncate back to the
3115   // underlying type before doing the compare.
3116   if (Op1.getValueType() != MemVT) {
3117     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3118     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3119   }
3120 
3121   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3122                                                         I.getType());
3123   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3124 }
3125 
3126 void SelectionDAGBuilder::visitFCmp(const User &I) {
3127   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3128   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3129     predicate = FC->getPredicate();
3130   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3131     predicate = FCmpInst::Predicate(FC->getPredicate());
3132   SDValue Op1 = getValue(I.getOperand(0));
3133   SDValue Op2 = getValue(I.getOperand(1));
3134 
3135   ISD::CondCode Condition = getFCmpCondCode(predicate);
3136   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3137   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3138     Condition = getFCmpCodeWithoutNaN(Condition);
3139 
3140   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3141                                                         I.getType());
3142   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3143 }
3144 
3145 // Check if the condition of the select has one use or two users that are both
3146 // selects with the same condition.
3147 static bool hasOnlySelectUsers(const Value *Cond) {
3148   return llvm::all_of(Cond->users(), [](const Value *V) {
3149     return isa<SelectInst>(V);
3150   });
3151 }
3152 
3153 void SelectionDAGBuilder::visitSelect(const User &I) {
3154   SmallVector<EVT, 4> ValueVTs;
3155   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3156                   ValueVTs);
3157   unsigned NumValues = ValueVTs.size();
3158   if (NumValues == 0) return;
3159 
3160   SmallVector<SDValue, 4> Values(NumValues);
3161   SDValue Cond     = getValue(I.getOperand(0));
3162   SDValue LHSVal   = getValue(I.getOperand(1));
3163   SDValue RHSVal   = getValue(I.getOperand(2));
3164   SmallVector<SDValue, 1> BaseOps(1, Cond);
3165   ISD::NodeType OpCode =
3166       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3167 
3168   bool IsUnaryAbs = false;
3169 
3170   // Min/max matching is only viable if all output VTs are the same.
3171   if (is_splat(ValueVTs)) {
3172     EVT VT = ValueVTs[0];
3173     LLVMContext &Ctx = *DAG.getContext();
3174     auto &TLI = DAG.getTargetLoweringInfo();
3175 
3176     // We care about the legality of the operation after it has been type
3177     // legalized.
3178     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3179       VT = TLI.getTypeToTransformTo(Ctx, VT);
3180 
3181     // If the vselect is legal, assume we want to leave this as a vector setcc +
3182     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3183     // min/max is legal on the scalar type.
3184     bool UseScalarMinMax = VT.isVector() &&
3185       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3186 
3187     Value *LHS, *RHS;
3188     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3189     ISD::NodeType Opc = ISD::DELETED_NODE;
3190     switch (SPR.Flavor) {
3191     case SPF_UMAX:    Opc = ISD::UMAX; break;
3192     case SPF_UMIN:    Opc = ISD::UMIN; break;
3193     case SPF_SMAX:    Opc = ISD::SMAX; break;
3194     case SPF_SMIN:    Opc = ISD::SMIN; break;
3195     case SPF_FMINNUM:
3196       switch (SPR.NaNBehavior) {
3197       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3198       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3199       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3200       case SPNB_RETURNS_ANY: {
3201         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3202           Opc = ISD::FMINNUM;
3203         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3204           Opc = ISD::FMINIMUM;
3205         else if (UseScalarMinMax)
3206           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3207             ISD::FMINNUM : ISD::FMINIMUM;
3208         break;
3209       }
3210       }
3211       break;
3212     case SPF_FMAXNUM:
3213       switch (SPR.NaNBehavior) {
3214       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3215       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3216       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3217       case SPNB_RETURNS_ANY:
3218 
3219         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3220           Opc = ISD::FMAXNUM;
3221         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3222           Opc = ISD::FMAXIMUM;
3223         else if (UseScalarMinMax)
3224           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3225             ISD::FMAXNUM : ISD::FMAXIMUM;
3226         break;
3227       }
3228       break;
3229     case SPF_ABS:
3230       IsUnaryAbs = true;
3231       Opc = ISD::ABS;
3232       break;
3233     case SPF_NABS:
3234       // TODO: we need to produce sub(0, abs(X)).
3235     default: break;
3236     }
3237 
3238     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3239         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3240          (UseScalarMinMax &&
3241           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3242         // If the underlying comparison instruction is used by any other
3243         // instruction, the consumed instructions won't be destroyed, so it is
3244         // not profitable to convert to a min/max.
3245         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3246       OpCode = Opc;
3247       LHSVal = getValue(LHS);
3248       RHSVal = getValue(RHS);
3249       BaseOps.clear();
3250     }
3251 
3252     if (IsUnaryAbs) {
3253       OpCode = Opc;
3254       LHSVal = getValue(LHS);
3255       BaseOps.clear();
3256     }
3257   }
3258 
3259   if (IsUnaryAbs) {
3260     for (unsigned i = 0; i != NumValues; ++i) {
3261       Values[i] =
3262           DAG.getNode(OpCode, getCurSDLoc(),
3263                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3264                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3265     }
3266   } else {
3267     for (unsigned i = 0; i != NumValues; ++i) {
3268       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3269       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3270       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3271       Values[i] = DAG.getNode(
3272           OpCode, getCurSDLoc(),
3273           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3274     }
3275   }
3276 
3277   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3278                            DAG.getVTList(ValueVTs), Values));
3279 }
3280 
3281 void SelectionDAGBuilder::visitTrunc(const User &I) {
3282   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3283   SDValue N = getValue(I.getOperand(0));
3284   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3285                                                         I.getType());
3286   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3287 }
3288 
3289 void SelectionDAGBuilder::visitZExt(const User &I) {
3290   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3291   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3292   SDValue N = getValue(I.getOperand(0));
3293   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3294                                                         I.getType());
3295   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3296 }
3297 
3298 void SelectionDAGBuilder::visitSExt(const User &I) {
3299   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3300   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3301   SDValue N = getValue(I.getOperand(0));
3302   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3303                                                         I.getType());
3304   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3305 }
3306 
3307 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3308   // FPTrunc is never a no-op cast, no need to check
3309   SDValue N = getValue(I.getOperand(0));
3310   SDLoc dl = getCurSDLoc();
3311   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3312   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3313   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3314                            DAG.getTargetConstant(
3315                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3316 }
3317 
3318 void SelectionDAGBuilder::visitFPExt(const User &I) {
3319   // FPExt is never a no-op cast, no need to check
3320   SDValue N = getValue(I.getOperand(0));
3321   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3322                                                         I.getType());
3323   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3324 }
3325 
3326 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3327   // FPToUI is never a no-op cast, no need to check
3328   SDValue N = getValue(I.getOperand(0));
3329   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3330                                                         I.getType());
3331   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3332 }
3333 
3334 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3335   // FPToSI is never a no-op cast, no need to check
3336   SDValue N = getValue(I.getOperand(0));
3337   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3338                                                         I.getType());
3339   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3340 }
3341 
3342 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3343   // UIToFP is never a no-op cast, no need to check
3344   SDValue N = getValue(I.getOperand(0));
3345   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3346                                                         I.getType());
3347   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3348 }
3349 
3350 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3351   // SIToFP is never a no-op cast, no need to check
3352   SDValue N = getValue(I.getOperand(0));
3353   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3354                                                         I.getType());
3355   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3356 }
3357 
3358 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3359   // What to do depends on the size of the integer and the size of the pointer.
3360   // We can either truncate, zero extend, or no-op, accordingly.
3361   SDValue N = getValue(I.getOperand(0));
3362   auto &TLI = DAG.getTargetLoweringInfo();
3363   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3364                                                         I.getType());
3365   EVT PtrMemVT =
3366       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3367   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3368   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3369   setValue(&I, N);
3370 }
3371 
3372 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3373   // What to do depends on the size of the integer and the size of the pointer.
3374   // We can either truncate, zero extend, or no-op, accordingly.
3375   SDValue N = getValue(I.getOperand(0));
3376   auto &TLI = DAG.getTargetLoweringInfo();
3377   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3378   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3379   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3380   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3381   setValue(&I, N);
3382 }
3383 
3384 void SelectionDAGBuilder::visitBitCast(const User &I) {
3385   SDValue N = getValue(I.getOperand(0));
3386   SDLoc dl = getCurSDLoc();
3387   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3388                                                         I.getType());
3389 
3390   // BitCast assures us that source and destination are the same size so this is
3391   // either a BITCAST or a no-op.
3392   if (DestVT != N.getValueType())
3393     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3394                              DestVT, N)); // convert types.
3395   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3396   // might fold any kind of constant expression to an integer constant and that
3397   // is not what we are looking for. Only recognize a bitcast of a genuine
3398   // constant integer as an opaque constant.
3399   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3400     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3401                                  /*isOpaque*/true));
3402   else
3403     setValue(&I, N);            // noop cast.
3404 }
3405 
3406 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3407   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3408   const Value *SV = I.getOperand(0);
3409   SDValue N = getValue(SV);
3410   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3411 
3412   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3413   unsigned DestAS = I.getType()->getPointerAddressSpace();
3414 
3415   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3416     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3417 
3418   setValue(&I, N);
3419 }
3420 
3421 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3422   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3423   SDValue InVec = getValue(I.getOperand(0));
3424   SDValue InVal = getValue(I.getOperand(1));
3425   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3426                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3427   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3428                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3429                            InVec, InVal, InIdx));
3430 }
3431 
3432 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3433   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3434   SDValue InVec = getValue(I.getOperand(0));
3435   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3436                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3437   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3438                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3439                            InVec, InIdx));
3440 }
3441 
3442 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3443   SDValue Src1 = getValue(I.getOperand(0));
3444   SDValue Src2 = getValue(I.getOperand(1));
3445   ArrayRef<int> Mask;
3446   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3447     Mask = SVI->getShuffleMask();
3448   else
3449     Mask = cast<ConstantExpr>(I).getShuffleMask();
3450   SDLoc DL = getCurSDLoc();
3451   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3452   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3453   EVT SrcVT = Src1.getValueType();
3454 
3455   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3456       VT.isScalableVector()) {
3457     // Canonical splat form of first element of first input vector.
3458     SDValue FirstElt =
3459         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3460                     DAG.getVectorIdxConstant(0, DL));
3461     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3462     return;
3463   }
3464 
3465   // For now, we only handle splats for scalable vectors.
3466   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3467   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3468   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3469 
3470   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3471   unsigned MaskNumElts = Mask.size();
3472 
3473   if (SrcNumElts == MaskNumElts) {
3474     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3475     return;
3476   }
3477 
3478   // Normalize the shuffle vector since mask and vector length don't match.
3479   if (SrcNumElts < MaskNumElts) {
3480     // Mask is longer than the source vectors. We can use concatenate vector to
3481     // make the mask and vectors lengths match.
3482 
3483     if (MaskNumElts % SrcNumElts == 0) {
3484       // Mask length is a multiple of the source vector length.
3485       // Check if the shuffle is some kind of concatenation of the input
3486       // vectors.
3487       unsigned NumConcat = MaskNumElts / SrcNumElts;
3488       bool IsConcat = true;
3489       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3490       for (unsigned i = 0; i != MaskNumElts; ++i) {
3491         int Idx = Mask[i];
3492         if (Idx < 0)
3493           continue;
3494         // Ensure the indices in each SrcVT sized piece are sequential and that
3495         // the same source is used for the whole piece.
3496         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3497             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3498              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3499           IsConcat = false;
3500           break;
3501         }
3502         // Remember which source this index came from.
3503         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3504       }
3505 
3506       // The shuffle is concatenating multiple vectors together. Just emit
3507       // a CONCAT_VECTORS operation.
3508       if (IsConcat) {
3509         SmallVector<SDValue, 8> ConcatOps;
3510         for (auto Src : ConcatSrcs) {
3511           if (Src < 0)
3512             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3513           else if (Src == 0)
3514             ConcatOps.push_back(Src1);
3515           else
3516             ConcatOps.push_back(Src2);
3517         }
3518         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3519         return;
3520       }
3521     }
3522 
3523     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3524     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3525     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3526                                     PaddedMaskNumElts);
3527 
3528     // Pad both vectors with undefs to make them the same length as the mask.
3529     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3530 
3531     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3532     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3533     MOps1[0] = Src1;
3534     MOps2[0] = Src2;
3535 
3536     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3537     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3538 
3539     // Readjust mask for new input vector length.
3540     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3541     for (unsigned i = 0; i != MaskNumElts; ++i) {
3542       int Idx = Mask[i];
3543       if (Idx >= (int)SrcNumElts)
3544         Idx -= SrcNumElts - PaddedMaskNumElts;
3545       MappedOps[i] = Idx;
3546     }
3547 
3548     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3549 
3550     // If the concatenated vector was padded, extract a subvector with the
3551     // correct number of elements.
3552     if (MaskNumElts != PaddedMaskNumElts)
3553       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3554                            DAG.getVectorIdxConstant(0, DL));
3555 
3556     setValue(&I, Result);
3557     return;
3558   }
3559 
3560   if (SrcNumElts > MaskNumElts) {
3561     // Analyze the access pattern of the vector to see if we can extract
3562     // two subvectors and do the shuffle.
3563     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3564     bool CanExtract = true;
3565     for (int Idx : Mask) {
3566       unsigned Input = 0;
3567       if (Idx < 0)
3568         continue;
3569 
3570       if (Idx >= (int)SrcNumElts) {
3571         Input = 1;
3572         Idx -= SrcNumElts;
3573       }
3574 
3575       // If all the indices come from the same MaskNumElts sized portion of
3576       // the sources we can use extract. Also make sure the extract wouldn't
3577       // extract past the end of the source.
3578       int NewStartIdx = alignDown(Idx, MaskNumElts);
3579       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3580           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3581         CanExtract = false;
3582       // Make sure we always update StartIdx as we use it to track if all
3583       // elements are undef.
3584       StartIdx[Input] = NewStartIdx;
3585     }
3586 
3587     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3588       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3589       return;
3590     }
3591     if (CanExtract) {
3592       // Extract appropriate subvector and generate a vector shuffle
3593       for (unsigned Input = 0; Input < 2; ++Input) {
3594         SDValue &Src = Input == 0 ? Src1 : Src2;
3595         if (StartIdx[Input] < 0)
3596           Src = DAG.getUNDEF(VT);
3597         else {
3598           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3599                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3600         }
3601       }
3602 
3603       // Calculate new mask.
3604       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3605       for (int &Idx : MappedOps) {
3606         if (Idx >= (int)SrcNumElts)
3607           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3608         else if (Idx >= 0)
3609           Idx -= StartIdx[0];
3610       }
3611 
3612       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3613       return;
3614     }
3615   }
3616 
3617   // We can't use either concat vectors or extract subvectors so fall back to
3618   // replacing the shuffle with extract and build vector.
3619   // to insert and build vector.
3620   EVT EltVT = VT.getVectorElementType();
3621   SmallVector<SDValue,8> Ops;
3622   for (int Idx : Mask) {
3623     SDValue Res;
3624 
3625     if (Idx < 0) {
3626       Res = DAG.getUNDEF(EltVT);
3627     } else {
3628       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3629       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3630 
3631       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3632                         DAG.getVectorIdxConstant(Idx, DL));
3633     }
3634 
3635     Ops.push_back(Res);
3636   }
3637 
3638   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3639 }
3640 
3641 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3642   ArrayRef<unsigned> Indices;
3643   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3644     Indices = IV->getIndices();
3645   else
3646     Indices = cast<ConstantExpr>(&I)->getIndices();
3647 
3648   const Value *Op0 = I.getOperand(0);
3649   const Value *Op1 = I.getOperand(1);
3650   Type *AggTy = I.getType();
3651   Type *ValTy = Op1->getType();
3652   bool IntoUndef = isa<UndefValue>(Op0);
3653   bool FromUndef = isa<UndefValue>(Op1);
3654 
3655   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3656 
3657   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3658   SmallVector<EVT, 4> AggValueVTs;
3659   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3660   SmallVector<EVT, 4> ValValueVTs;
3661   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3662 
3663   unsigned NumAggValues = AggValueVTs.size();
3664   unsigned NumValValues = ValValueVTs.size();
3665   SmallVector<SDValue, 4> Values(NumAggValues);
3666 
3667   // Ignore an insertvalue that produces an empty object
3668   if (!NumAggValues) {
3669     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3670     return;
3671   }
3672 
3673   SDValue Agg = getValue(Op0);
3674   unsigned i = 0;
3675   // Copy the beginning value(s) from the original aggregate.
3676   for (; i != LinearIndex; ++i)
3677     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3678                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3679   // Copy values from the inserted value(s).
3680   if (NumValValues) {
3681     SDValue Val = getValue(Op1);
3682     for (; i != LinearIndex + NumValValues; ++i)
3683       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3684                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3685   }
3686   // Copy remaining value(s) from the original aggregate.
3687   for (; i != NumAggValues; ++i)
3688     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3689                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3690 
3691   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3692                            DAG.getVTList(AggValueVTs), Values));
3693 }
3694 
3695 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3696   ArrayRef<unsigned> Indices;
3697   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3698     Indices = EV->getIndices();
3699   else
3700     Indices = cast<ConstantExpr>(&I)->getIndices();
3701 
3702   const Value *Op0 = I.getOperand(0);
3703   Type *AggTy = Op0->getType();
3704   Type *ValTy = I.getType();
3705   bool OutOfUndef = isa<UndefValue>(Op0);
3706 
3707   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3708 
3709   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3710   SmallVector<EVT, 4> ValValueVTs;
3711   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3712 
3713   unsigned NumValValues = ValValueVTs.size();
3714 
3715   // Ignore a extractvalue that produces an empty object
3716   if (!NumValValues) {
3717     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3718     return;
3719   }
3720 
3721   SmallVector<SDValue, 4> Values(NumValValues);
3722 
3723   SDValue Agg = getValue(Op0);
3724   // Copy out the selected value(s).
3725   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3726     Values[i - LinearIndex] =
3727       OutOfUndef ?
3728         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3729         SDValue(Agg.getNode(), Agg.getResNo() + i);
3730 
3731   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3732                            DAG.getVTList(ValValueVTs), Values));
3733 }
3734 
3735 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3736   Value *Op0 = I.getOperand(0);
3737   // Note that the pointer operand may be a vector of pointers. Take the scalar
3738   // element which holds a pointer.
3739   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3740   SDValue N = getValue(Op0);
3741   SDLoc dl = getCurSDLoc();
3742   auto &TLI = DAG.getTargetLoweringInfo();
3743 
3744   // Normalize Vector GEP - all scalar operands should be converted to the
3745   // splat vector.
3746   bool IsVectorGEP = I.getType()->isVectorTy();
3747   ElementCount VectorElementCount =
3748       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3749                   : ElementCount::getFixed(0);
3750 
3751   if (IsVectorGEP && !N.getValueType().isVector()) {
3752     LLVMContext &Context = *DAG.getContext();
3753     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3754     if (VectorElementCount.Scalable)
3755       N = DAG.getSplatVector(VT, dl, N);
3756     else
3757       N = DAG.getSplatBuildVector(VT, dl, N);
3758   }
3759 
3760   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3761        GTI != E; ++GTI) {
3762     const Value *Idx = GTI.getOperand();
3763     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3764       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3765       if (Field) {
3766         // N = N + Offset
3767         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3768 
3769         // In an inbounds GEP with an offset that is nonnegative even when
3770         // interpreted as signed, assume there is no unsigned overflow.
3771         SDNodeFlags Flags;
3772         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3773           Flags.setNoUnsignedWrap(true);
3774 
3775         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3776                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3777       }
3778     } else {
3779       // IdxSize is the width of the arithmetic according to IR semantics.
3780       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3781       // (and fix up the result later).
3782       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3783       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3784       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3785       // We intentionally mask away the high bits here; ElementSize may not
3786       // fit in IdxTy.
3787       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3788       bool ElementScalable = ElementSize.isScalable();
3789 
3790       // If this is a scalar constant or a splat vector of constants,
3791       // handle it quickly.
3792       const auto *C = dyn_cast<Constant>(Idx);
3793       if (C && isa<VectorType>(C->getType()))
3794         C = C->getSplatValue();
3795 
3796       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3797       if (CI && CI->isZero())
3798         continue;
3799       if (CI && !ElementScalable) {
3800         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3801         LLVMContext &Context = *DAG.getContext();
3802         SDValue OffsVal;
3803         if (IsVectorGEP)
3804           OffsVal = DAG.getConstant(
3805               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3806         else
3807           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3808 
3809         // In an inbounds GEP with an offset that is nonnegative even when
3810         // interpreted as signed, assume there is no unsigned overflow.
3811         SDNodeFlags Flags;
3812         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3813           Flags.setNoUnsignedWrap(true);
3814 
3815         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3816 
3817         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3818         continue;
3819       }
3820 
3821       // N = N + Idx * ElementMul;
3822       SDValue IdxN = getValue(Idx);
3823 
3824       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3825         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3826                                   VectorElementCount);
3827         if (VectorElementCount.Scalable)
3828           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3829         else
3830           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3831       }
3832 
3833       // If the index is smaller or larger than intptr_t, truncate or extend
3834       // it.
3835       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3836 
3837       if (ElementScalable) {
3838         EVT VScaleTy = N.getValueType().getScalarType();
3839         SDValue VScale = DAG.getNode(
3840             ISD::VSCALE, dl, VScaleTy,
3841             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3842         if (IsVectorGEP)
3843           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3844         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3845       } else {
3846         // If this is a multiply by a power of two, turn it into a shl
3847         // immediately.  This is a very common case.
3848         if (ElementMul != 1) {
3849           if (ElementMul.isPowerOf2()) {
3850             unsigned Amt = ElementMul.logBase2();
3851             IdxN = DAG.getNode(ISD::SHL, dl,
3852                                N.getValueType(), IdxN,
3853                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3854           } else {
3855             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3856                                             IdxN.getValueType());
3857             IdxN = DAG.getNode(ISD::MUL, dl,
3858                                N.getValueType(), IdxN, Scale);
3859           }
3860         }
3861       }
3862 
3863       N = DAG.getNode(ISD::ADD, dl,
3864                       N.getValueType(), N, IdxN);
3865     }
3866   }
3867 
3868   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3869   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3870   if (IsVectorGEP) {
3871     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3872     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3873   }
3874 
3875   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3876     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3877 
3878   setValue(&I, N);
3879 }
3880 
3881 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3882   // If this is a fixed sized alloca in the entry block of the function,
3883   // allocate it statically on the stack.
3884   if (FuncInfo.StaticAllocaMap.count(&I))
3885     return;   // getValue will auto-populate this.
3886 
3887   SDLoc dl = getCurSDLoc();
3888   Type *Ty = I.getAllocatedType();
3889   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3890   auto &DL = DAG.getDataLayout();
3891   uint64_t TySize = DL.getTypeAllocSize(Ty);
3892   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3893 
3894   SDValue AllocSize = getValue(I.getArraySize());
3895 
3896   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3897   if (AllocSize.getValueType() != IntPtr)
3898     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3899 
3900   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3901                           AllocSize,
3902                           DAG.getConstant(TySize, dl, IntPtr));
3903 
3904   // Handle alignment.  If the requested alignment is less than or equal to
3905   // the stack alignment, ignore it.  If the size is greater than or equal to
3906   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3907   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3908   if (*Alignment <= StackAlign)
3909     Alignment = None;
3910 
3911   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3912   // Round the size of the allocation up to the stack alignment size
3913   // by add SA-1 to the size. This doesn't overflow because we're computing
3914   // an address inside an alloca.
3915   SDNodeFlags Flags;
3916   Flags.setNoUnsignedWrap(true);
3917   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3918                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3919 
3920   // Mask out the low bits for alignment purposes.
3921   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3922                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3923 
3924   SDValue Ops[] = {
3925       getRoot(), AllocSize,
3926       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3927   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3928   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3929   setValue(&I, DSA);
3930   DAG.setRoot(DSA.getValue(1));
3931 
3932   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3933 }
3934 
3935 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3936   if (I.isAtomic())
3937     return visitAtomicLoad(I);
3938 
3939   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3940   const Value *SV = I.getOperand(0);
3941   if (TLI.supportSwiftError()) {
3942     // Swifterror values can come from either a function parameter with
3943     // swifterror attribute or an alloca with swifterror attribute.
3944     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3945       if (Arg->hasSwiftErrorAttr())
3946         return visitLoadFromSwiftError(I);
3947     }
3948 
3949     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3950       if (Alloca->isSwiftError())
3951         return visitLoadFromSwiftError(I);
3952     }
3953   }
3954 
3955   SDValue Ptr = getValue(SV);
3956 
3957   Type *Ty = I.getType();
3958   Align Alignment = I.getAlign();
3959 
3960   AAMDNodes AAInfo;
3961   I.getAAMetadata(AAInfo);
3962   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3963 
3964   SmallVector<EVT, 4> ValueVTs, MemVTs;
3965   SmallVector<uint64_t, 4> Offsets;
3966   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3967   unsigned NumValues = ValueVTs.size();
3968   if (NumValues == 0)
3969     return;
3970 
3971   bool isVolatile = I.isVolatile();
3972 
3973   SDValue Root;
3974   bool ConstantMemory = false;
3975   if (isVolatile)
3976     // Serialize volatile loads with other side effects.
3977     Root = getRoot();
3978   else if (NumValues > MaxParallelChains)
3979     Root = getMemoryRoot();
3980   else if (AA &&
3981            AA->pointsToConstantMemory(MemoryLocation(
3982                SV,
3983                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3984                AAInfo))) {
3985     // Do not serialize (non-volatile) loads of constant memory with anything.
3986     Root = DAG.getEntryNode();
3987     ConstantMemory = true;
3988   } else {
3989     // Do not serialize non-volatile loads against each other.
3990     Root = DAG.getRoot();
3991   }
3992 
3993   SDLoc dl = getCurSDLoc();
3994 
3995   if (isVolatile)
3996     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3997 
3998   // An aggregate load cannot wrap around the address space, so offsets to its
3999   // parts don't wrap either.
4000   SDNodeFlags Flags;
4001   Flags.setNoUnsignedWrap(true);
4002 
4003   SmallVector<SDValue, 4> Values(NumValues);
4004   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4005   EVT PtrVT = Ptr.getValueType();
4006 
4007   MachineMemOperand::Flags MMOFlags
4008     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4009 
4010   unsigned ChainI = 0;
4011   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4012     // Serializing loads here may result in excessive register pressure, and
4013     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4014     // could recover a bit by hoisting nodes upward in the chain by recognizing
4015     // they are side-effect free or do not alias. The optimizer should really
4016     // avoid this case by converting large object/array copies to llvm.memcpy
4017     // (MaxParallelChains should always remain as failsafe).
4018     if (ChainI == MaxParallelChains) {
4019       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4020       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4021                                   makeArrayRef(Chains.data(), ChainI));
4022       Root = Chain;
4023       ChainI = 0;
4024     }
4025     SDValue A = DAG.getNode(ISD::ADD, dl,
4026                             PtrVT, Ptr,
4027                             DAG.getConstant(Offsets[i], dl, PtrVT),
4028                             Flags);
4029 
4030     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4031                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4032                             MMOFlags, AAInfo, Ranges);
4033     Chains[ChainI] = L.getValue(1);
4034 
4035     if (MemVTs[i] != ValueVTs[i])
4036       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4037 
4038     Values[i] = L;
4039   }
4040 
4041   if (!ConstantMemory) {
4042     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4043                                 makeArrayRef(Chains.data(), ChainI));
4044     if (isVolatile)
4045       DAG.setRoot(Chain);
4046     else
4047       PendingLoads.push_back(Chain);
4048   }
4049 
4050   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4051                            DAG.getVTList(ValueVTs), Values));
4052 }
4053 
4054 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4055   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4056          "call visitStoreToSwiftError when backend supports swifterror");
4057 
4058   SmallVector<EVT, 4> ValueVTs;
4059   SmallVector<uint64_t, 4> Offsets;
4060   const Value *SrcV = I.getOperand(0);
4061   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4062                   SrcV->getType(), ValueVTs, &Offsets);
4063   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4064          "expect a single EVT for swifterror");
4065 
4066   SDValue Src = getValue(SrcV);
4067   // Create a virtual register, then update the virtual register.
4068   Register VReg =
4069       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4070   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4071   // Chain can be getRoot or getControlRoot.
4072   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4073                                       SDValue(Src.getNode(), Src.getResNo()));
4074   DAG.setRoot(CopyNode);
4075 }
4076 
4077 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4078   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4079          "call visitLoadFromSwiftError when backend supports swifterror");
4080 
4081   assert(!I.isVolatile() &&
4082          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4083          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4084          "Support volatile, non temporal, invariant for load_from_swift_error");
4085 
4086   const Value *SV = I.getOperand(0);
4087   Type *Ty = I.getType();
4088   AAMDNodes AAInfo;
4089   I.getAAMetadata(AAInfo);
4090   assert(
4091       (!AA ||
4092        !AA->pointsToConstantMemory(MemoryLocation(
4093            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4094            AAInfo))) &&
4095       "load_from_swift_error should not be constant memory");
4096 
4097   SmallVector<EVT, 4> ValueVTs;
4098   SmallVector<uint64_t, 4> Offsets;
4099   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4100                   ValueVTs, &Offsets);
4101   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4102          "expect a single EVT for swifterror");
4103 
4104   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4105   SDValue L = DAG.getCopyFromReg(
4106       getRoot(), getCurSDLoc(),
4107       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4108 
4109   setValue(&I, L);
4110 }
4111 
4112 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4113   if (I.isAtomic())
4114     return visitAtomicStore(I);
4115 
4116   const Value *SrcV = I.getOperand(0);
4117   const Value *PtrV = I.getOperand(1);
4118 
4119   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4120   if (TLI.supportSwiftError()) {
4121     // Swifterror values can come from either a function parameter with
4122     // swifterror attribute or an alloca with swifterror attribute.
4123     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4124       if (Arg->hasSwiftErrorAttr())
4125         return visitStoreToSwiftError(I);
4126     }
4127 
4128     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4129       if (Alloca->isSwiftError())
4130         return visitStoreToSwiftError(I);
4131     }
4132   }
4133 
4134   SmallVector<EVT, 4> ValueVTs, MemVTs;
4135   SmallVector<uint64_t, 4> Offsets;
4136   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4137                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4138   unsigned NumValues = ValueVTs.size();
4139   if (NumValues == 0)
4140     return;
4141 
4142   // Get the lowered operands. Note that we do this after
4143   // checking if NumResults is zero, because with zero results
4144   // the operands won't have values in the map.
4145   SDValue Src = getValue(SrcV);
4146   SDValue Ptr = getValue(PtrV);
4147 
4148   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4149   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4150   SDLoc dl = getCurSDLoc();
4151   Align Alignment = I.getAlign();
4152   AAMDNodes AAInfo;
4153   I.getAAMetadata(AAInfo);
4154 
4155   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4156 
4157   // An aggregate load cannot wrap around the address space, so offsets to its
4158   // parts don't wrap either.
4159   SDNodeFlags Flags;
4160   Flags.setNoUnsignedWrap(true);
4161 
4162   unsigned ChainI = 0;
4163   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4164     // See visitLoad comments.
4165     if (ChainI == MaxParallelChains) {
4166       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4167                                   makeArrayRef(Chains.data(), ChainI));
4168       Root = Chain;
4169       ChainI = 0;
4170     }
4171     SDValue Add =
4172         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4173     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4174     if (MemVTs[i] != ValueVTs[i])
4175       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4176     SDValue St =
4177         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4178                      Alignment, MMOFlags, AAInfo);
4179     Chains[ChainI] = St;
4180   }
4181 
4182   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4183                                   makeArrayRef(Chains.data(), ChainI));
4184   DAG.setRoot(StoreNode);
4185 }
4186 
4187 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4188                                            bool IsCompressing) {
4189   SDLoc sdl = getCurSDLoc();
4190 
4191   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4192                                MaybeAlign &Alignment) {
4193     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4194     Src0 = I.getArgOperand(0);
4195     Ptr = I.getArgOperand(1);
4196     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4197     Mask = I.getArgOperand(3);
4198   };
4199   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4200                                     MaybeAlign &Alignment) {
4201     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4202     Src0 = I.getArgOperand(0);
4203     Ptr = I.getArgOperand(1);
4204     Mask = I.getArgOperand(2);
4205     Alignment = None;
4206   };
4207 
4208   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4209   MaybeAlign Alignment;
4210   if (IsCompressing)
4211     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4212   else
4213     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4214 
4215   SDValue Ptr = getValue(PtrOperand);
4216   SDValue Src0 = getValue(Src0Operand);
4217   SDValue Mask = getValue(MaskOperand);
4218   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4219 
4220   EVT VT = Src0.getValueType();
4221   if (!Alignment)
4222     Alignment = DAG.getEVTAlign(VT);
4223 
4224   AAMDNodes AAInfo;
4225   I.getAAMetadata(AAInfo);
4226 
4227   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4228       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4229       // TODO: Make MachineMemOperands aware of scalable
4230       // vectors.
4231       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4232   SDValue StoreNode =
4233       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4234                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4235   DAG.setRoot(StoreNode);
4236   setValue(&I, StoreNode);
4237 }
4238 
4239 // Get a uniform base for the Gather/Scatter intrinsic.
4240 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4241 // We try to represent it as a base pointer + vector of indices.
4242 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4243 // The first operand of the GEP may be a single pointer or a vector of pointers
4244 // Example:
4245 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4246 //  or
4247 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4248 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4249 //
4250 // When the first GEP operand is a single pointer - it is the uniform base we
4251 // are looking for. If first operand of the GEP is a splat vector - we
4252 // extract the splat value and use it as a uniform base.
4253 // In all other cases the function returns 'false'.
4254 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4255                            ISD::MemIndexType &IndexType, SDValue &Scale,
4256                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4257   SelectionDAG& DAG = SDB->DAG;
4258   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4259   const DataLayout &DL = DAG.getDataLayout();
4260 
4261   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4262 
4263   // Handle splat constant pointer.
4264   if (auto *C = dyn_cast<Constant>(Ptr)) {
4265     C = C->getSplatValue();
4266     if (!C)
4267       return false;
4268 
4269     Base = SDB->getValue(C);
4270 
4271     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4272     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4273     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4274     IndexType = ISD::SIGNED_SCALED;
4275     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4276     return true;
4277   }
4278 
4279   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4280   if (!GEP || GEP->getParent() != CurBB)
4281     return false;
4282 
4283   if (GEP->getNumOperands() != 2)
4284     return false;
4285 
4286   const Value *BasePtr = GEP->getPointerOperand();
4287   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4288 
4289   // Make sure the base is scalar and the index is a vector.
4290   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4291     return false;
4292 
4293   Base = SDB->getValue(BasePtr);
4294   Index = SDB->getValue(IndexVal);
4295   IndexType = ISD::SIGNED_SCALED;
4296   Scale = DAG.getTargetConstant(
4297               DL.getTypeAllocSize(GEP->getResultElementType()),
4298               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4299   return true;
4300 }
4301 
4302 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4303   SDLoc sdl = getCurSDLoc();
4304 
4305   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4306   const Value *Ptr = I.getArgOperand(1);
4307   SDValue Src0 = getValue(I.getArgOperand(0));
4308   SDValue Mask = getValue(I.getArgOperand(3));
4309   EVT VT = Src0.getValueType();
4310   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4311                         ->getMaybeAlignValue()
4312                         .getValueOr(DAG.getEVTAlign(VT));
4313   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4314 
4315   AAMDNodes AAInfo;
4316   I.getAAMetadata(AAInfo);
4317 
4318   SDValue Base;
4319   SDValue Index;
4320   ISD::MemIndexType IndexType;
4321   SDValue Scale;
4322   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4323                                     I.getParent());
4324 
4325   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4326   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4327       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4328       // TODO: Make MachineMemOperands aware of scalable
4329       // vectors.
4330       MemoryLocation::UnknownSize, Alignment, AAInfo);
4331   if (!UniformBase) {
4332     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4333     Index = getValue(Ptr);
4334     IndexType = ISD::SIGNED_SCALED;
4335     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4336   }
4337   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4338   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4339                                          Ops, MMO, IndexType);
4340   DAG.setRoot(Scatter);
4341   setValue(&I, Scatter);
4342 }
4343 
4344 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4345   SDLoc sdl = getCurSDLoc();
4346 
4347   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4348                               MaybeAlign &Alignment) {
4349     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4350     Ptr = I.getArgOperand(0);
4351     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4352     Mask = I.getArgOperand(2);
4353     Src0 = I.getArgOperand(3);
4354   };
4355   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4356                                  MaybeAlign &Alignment) {
4357     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4358     Ptr = I.getArgOperand(0);
4359     Alignment = None;
4360     Mask = I.getArgOperand(1);
4361     Src0 = I.getArgOperand(2);
4362   };
4363 
4364   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4365   MaybeAlign Alignment;
4366   if (IsExpanding)
4367     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4368   else
4369     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4370 
4371   SDValue Ptr = getValue(PtrOperand);
4372   SDValue Src0 = getValue(Src0Operand);
4373   SDValue Mask = getValue(MaskOperand);
4374   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4375 
4376   EVT VT = Src0.getValueType();
4377   if (!Alignment)
4378     Alignment = DAG.getEVTAlign(VT);
4379 
4380   AAMDNodes AAInfo;
4381   I.getAAMetadata(AAInfo);
4382   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4383 
4384   // Do not serialize masked loads of constant memory with anything.
4385   MemoryLocation ML;
4386   if (VT.isScalableVector())
4387     ML = MemoryLocation(PtrOperand);
4388   else
4389     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4390                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4391                            AAInfo);
4392   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4393 
4394   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4395 
4396   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4397       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4398       // TODO: Make MachineMemOperands aware of scalable
4399       // vectors.
4400       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4401 
4402   SDValue Load =
4403       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4404                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4405   if (AddToChain)
4406     PendingLoads.push_back(Load.getValue(1));
4407   setValue(&I, Load);
4408 }
4409 
4410 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4411   SDLoc sdl = getCurSDLoc();
4412 
4413   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4414   const Value *Ptr = I.getArgOperand(0);
4415   SDValue Src0 = getValue(I.getArgOperand(3));
4416   SDValue Mask = getValue(I.getArgOperand(2));
4417 
4418   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4419   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4420   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4421                         ->getMaybeAlignValue()
4422                         .getValueOr(DAG.getEVTAlign(VT));
4423 
4424   AAMDNodes AAInfo;
4425   I.getAAMetadata(AAInfo);
4426   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4427 
4428   SDValue Root = DAG.getRoot();
4429   SDValue Base;
4430   SDValue Index;
4431   ISD::MemIndexType IndexType;
4432   SDValue Scale;
4433   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4434                                     I.getParent());
4435   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4436   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4437       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4438       // TODO: Make MachineMemOperands aware of scalable
4439       // vectors.
4440       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4441 
4442   if (!UniformBase) {
4443     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4444     Index = getValue(Ptr);
4445     IndexType = ISD::SIGNED_SCALED;
4446     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4447   }
4448   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4449   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4450                                        Ops, MMO, IndexType);
4451 
4452   PendingLoads.push_back(Gather.getValue(1));
4453   setValue(&I, Gather);
4454 }
4455 
4456 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4457   SDLoc dl = getCurSDLoc();
4458   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4459   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4460   SyncScope::ID SSID = I.getSyncScopeID();
4461 
4462   SDValue InChain = getRoot();
4463 
4464   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4465   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4466 
4467   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4468   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4469 
4470   MachineFunction &MF = DAG.getMachineFunction();
4471   MachineMemOperand *MMO = MF.getMachineMemOperand(
4472       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4473       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4474       FailureOrdering);
4475 
4476   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4477                                    dl, MemVT, VTs, InChain,
4478                                    getValue(I.getPointerOperand()),
4479                                    getValue(I.getCompareOperand()),
4480                                    getValue(I.getNewValOperand()), MMO);
4481 
4482   SDValue OutChain = L.getValue(2);
4483 
4484   setValue(&I, L);
4485   DAG.setRoot(OutChain);
4486 }
4487 
4488 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4489   SDLoc dl = getCurSDLoc();
4490   ISD::NodeType NT;
4491   switch (I.getOperation()) {
4492   default: llvm_unreachable("Unknown atomicrmw operation");
4493   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4494   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4495   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4496   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4497   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4498   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4499   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4500   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4501   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4502   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4503   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4504   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4505   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4506   }
4507   AtomicOrdering Ordering = I.getOrdering();
4508   SyncScope::ID SSID = I.getSyncScopeID();
4509 
4510   SDValue InChain = getRoot();
4511 
4512   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4513   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4514   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4515 
4516   MachineFunction &MF = DAG.getMachineFunction();
4517   MachineMemOperand *MMO = MF.getMachineMemOperand(
4518       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4519       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4520 
4521   SDValue L =
4522     DAG.getAtomic(NT, dl, MemVT, InChain,
4523                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4524                   MMO);
4525 
4526   SDValue OutChain = L.getValue(1);
4527 
4528   setValue(&I, L);
4529   DAG.setRoot(OutChain);
4530 }
4531 
4532 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4533   SDLoc dl = getCurSDLoc();
4534   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4535   SDValue Ops[3];
4536   Ops[0] = getRoot();
4537   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4538                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4539   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4540                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4541   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4542 }
4543 
4544 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4545   SDLoc dl = getCurSDLoc();
4546   AtomicOrdering Order = I.getOrdering();
4547   SyncScope::ID SSID = I.getSyncScopeID();
4548 
4549   SDValue InChain = getRoot();
4550 
4551   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4552   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4553   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4554 
4555   if (!TLI.supportsUnalignedAtomics() &&
4556       I.getAlignment() < MemVT.getSizeInBits() / 8)
4557     report_fatal_error("Cannot generate unaligned atomic load");
4558 
4559   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4560 
4561   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4562       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4563       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4564 
4565   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4566 
4567   SDValue Ptr = getValue(I.getPointerOperand());
4568 
4569   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4570     // TODO: Once this is better exercised by tests, it should be merged with
4571     // the normal path for loads to prevent future divergence.
4572     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4573     if (MemVT != VT)
4574       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4575 
4576     setValue(&I, L);
4577     SDValue OutChain = L.getValue(1);
4578     if (!I.isUnordered())
4579       DAG.setRoot(OutChain);
4580     else
4581       PendingLoads.push_back(OutChain);
4582     return;
4583   }
4584 
4585   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4586                             Ptr, MMO);
4587 
4588   SDValue OutChain = L.getValue(1);
4589   if (MemVT != VT)
4590     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4591 
4592   setValue(&I, L);
4593   DAG.setRoot(OutChain);
4594 }
4595 
4596 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4597   SDLoc dl = getCurSDLoc();
4598 
4599   AtomicOrdering Ordering = I.getOrdering();
4600   SyncScope::ID SSID = I.getSyncScopeID();
4601 
4602   SDValue InChain = getRoot();
4603 
4604   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4605   EVT MemVT =
4606       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4607 
4608   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4609     report_fatal_error("Cannot generate unaligned atomic store");
4610 
4611   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4612 
4613   MachineFunction &MF = DAG.getMachineFunction();
4614   MachineMemOperand *MMO = MF.getMachineMemOperand(
4615       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4616       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4617 
4618   SDValue Val = getValue(I.getValueOperand());
4619   if (Val.getValueType() != MemVT)
4620     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4621   SDValue Ptr = getValue(I.getPointerOperand());
4622 
4623   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4624     // TODO: Once this is better exercised by tests, it should be merged with
4625     // the normal path for stores to prevent future divergence.
4626     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4627     DAG.setRoot(S);
4628     return;
4629   }
4630   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4631                                    Ptr, Val, MMO);
4632 
4633 
4634   DAG.setRoot(OutChain);
4635 }
4636 
4637 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4638 /// node.
4639 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4640                                                unsigned Intrinsic) {
4641   // Ignore the callsite's attributes. A specific call site may be marked with
4642   // readnone, but the lowering code will expect the chain based on the
4643   // definition.
4644   const Function *F = I.getCalledFunction();
4645   bool HasChain = !F->doesNotAccessMemory();
4646   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4647 
4648   // Build the operand list.
4649   SmallVector<SDValue, 8> Ops;
4650   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4651     if (OnlyLoad) {
4652       // We don't need to serialize loads against other loads.
4653       Ops.push_back(DAG.getRoot());
4654     } else {
4655       Ops.push_back(getRoot());
4656     }
4657   }
4658 
4659   // Info is set by getTgtMemInstrinsic
4660   TargetLowering::IntrinsicInfo Info;
4661   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4662   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4663                                                DAG.getMachineFunction(),
4664                                                Intrinsic);
4665 
4666   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4667   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4668       Info.opc == ISD::INTRINSIC_W_CHAIN)
4669     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4670                                         TLI.getPointerTy(DAG.getDataLayout())));
4671 
4672   // Add all operands of the call to the operand list.
4673   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4674     const Value *Arg = I.getArgOperand(i);
4675     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4676       Ops.push_back(getValue(Arg));
4677       continue;
4678     }
4679 
4680     // Use TargetConstant instead of a regular constant for immarg.
4681     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4682     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4683       assert(CI->getBitWidth() <= 64 &&
4684              "large intrinsic immediates not handled");
4685       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4686     } else {
4687       Ops.push_back(
4688           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4689     }
4690   }
4691 
4692   SmallVector<EVT, 4> ValueVTs;
4693   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4694 
4695   if (HasChain)
4696     ValueVTs.push_back(MVT::Other);
4697 
4698   SDVTList VTs = DAG.getVTList(ValueVTs);
4699 
4700   // Create the node.
4701   SDValue Result;
4702   if (IsTgtIntrinsic) {
4703     // This is target intrinsic that touches memory
4704     AAMDNodes AAInfo;
4705     I.getAAMetadata(AAInfo);
4706     Result =
4707         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4708                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4709                                 Info.align, Info.flags, Info.size, AAInfo);
4710   } else if (!HasChain) {
4711     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4712   } else if (!I.getType()->isVoidTy()) {
4713     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4714   } else {
4715     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4716   }
4717 
4718   if (HasChain) {
4719     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4720     if (OnlyLoad)
4721       PendingLoads.push_back(Chain);
4722     else
4723       DAG.setRoot(Chain);
4724   }
4725 
4726   if (!I.getType()->isVoidTy()) {
4727     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4728       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4729       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4730     } else
4731       Result = lowerRangeToAssertZExt(DAG, I, Result);
4732 
4733     MaybeAlign Alignment = I.getRetAlign();
4734     if (!Alignment)
4735       Alignment = F->getAttributes().getRetAlignment();
4736     // Insert `assertalign` node if there's an alignment.
4737     if (InsertAssertAlign && Alignment) {
4738       Result =
4739           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4740     }
4741 
4742     setValue(&I, Result);
4743   }
4744 }
4745 
4746 /// GetSignificand - Get the significand and build it into a floating-point
4747 /// number with exponent of 1:
4748 ///
4749 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4750 ///
4751 /// where Op is the hexadecimal representation of floating point value.
4752 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4753   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4754                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4755   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4756                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4757   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4758 }
4759 
4760 /// GetExponent - Get the exponent:
4761 ///
4762 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4763 ///
4764 /// where Op is the hexadecimal representation of floating point value.
4765 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4766                            const TargetLowering &TLI, const SDLoc &dl) {
4767   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4768                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4769   SDValue t1 = DAG.getNode(
4770       ISD::SRL, dl, MVT::i32, t0,
4771       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4772   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4773                            DAG.getConstant(127, dl, MVT::i32));
4774   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4775 }
4776 
4777 /// getF32Constant - Get 32-bit floating point constant.
4778 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4779                               const SDLoc &dl) {
4780   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4781                            MVT::f32);
4782 }
4783 
4784 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4785                                        SelectionDAG &DAG) {
4786   // TODO: What fast-math-flags should be set on the floating-point nodes?
4787 
4788   //   IntegerPartOfX = ((int32_t)(t0);
4789   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4790 
4791   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4792   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4793   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4794 
4795   //   IntegerPartOfX <<= 23;
4796   IntegerPartOfX = DAG.getNode(
4797       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4798       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4799                                   DAG.getDataLayout())));
4800 
4801   SDValue TwoToFractionalPartOfX;
4802   if (LimitFloatPrecision <= 6) {
4803     // For floating-point precision of 6:
4804     //
4805     //   TwoToFractionalPartOfX =
4806     //     0.997535578f +
4807     //       (0.735607626f + 0.252464424f * x) * x;
4808     //
4809     // error 0.0144103317, which is 6 bits
4810     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4811                              getF32Constant(DAG, 0x3e814304, dl));
4812     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4813                              getF32Constant(DAG, 0x3f3c50c8, dl));
4814     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4815     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4816                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4817   } else if (LimitFloatPrecision <= 12) {
4818     // For floating-point precision of 12:
4819     //
4820     //   TwoToFractionalPartOfX =
4821     //     0.999892986f +
4822     //       (0.696457318f +
4823     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4824     //
4825     // error 0.000107046256, which is 13 to 14 bits
4826     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4827                              getF32Constant(DAG, 0x3da235e3, dl));
4828     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4829                              getF32Constant(DAG, 0x3e65b8f3, dl));
4830     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4831     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4832                              getF32Constant(DAG, 0x3f324b07, dl));
4833     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4834     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4835                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4836   } else { // LimitFloatPrecision <= 18
4837     // For floating-point precision of 18:
4838     //
4839     //   TwoToFractionalPartOfX =
4840     //     0.999999982f +
4841     //       (0.693148872f +
4842     //         (0.240227044f +
4843     //           (0.554906021e-1f +
4844     //             (0.961591928e-2f +
4845     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4846     // error 2.47208000*10^(-7), which is better than 18 bits
4847     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4848                              getF32Constant(DAG, 0x3924b03e, dl));
4849     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4850                              getF32Constant(DAG, 0x3ab24b87, dl));
4851     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4852     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4853                              getF32Constant(DAG, 0x3c1d8c17, dl));
4854     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4855     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4856                              getF32Constant(DAG, 0x3d634a1d, dl));
4857     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4858     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4859                              getF32Constant(DAG, 0x3e75fe14, dl));
4860     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4861     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4862                               getF32Constant(DAG, 0x3f317234, dl));
4863     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4864     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4865                                          getF32Constant(DAG, 0x3f800000, dl));
4866   }
4867 
4868   // Add the exponent into the result in integer domain.
4869   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4870   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4871                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4872 }
4873 
4874 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4875 /// limited-precision mode.
4876 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4877                          const TargetLowering &TLI) {
4878   if (Op.getValueType() == MVT::f32 &&
4879       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4880 
4881     // Put the exponent in the right bit position for later addition to the
4882     // final result:
4883     //
4884     // t0 = Op * log2(e)
4885 
4886     // TODO: What fast-math-flags should be set here?
4887     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4888                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4889     return getLimitedPrecisionExp2(t0, dl, DAG);
4890   }
4891 
4892   // No special expansion.
4893   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4894 }
4895 
4896 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4897 /// limited-precision mode.
4898 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4899                          const TargetLowering &TLI) {
4900   // TODO: What fast-math-flags should be set on the floating-point nodes?
4901 
4902   if (Op.getValueType() == MVT::f32 &&
4903       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4904     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4905 
4906     // Scale the exponent by log(2).
4907     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4908     SDValue LogOfExponent =
4909         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4910                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4911 
4912     // Get the significand and build it into a floating-point number with
4913     // exponent of 1.
4914     SDValue X = GetSignificand(DAG, Op1, dl);
4915 
4916     SDValue LogOfMantissa;
4917     if (LimitFloatPrecision <= 6) {
4918       // For floating-point precision of 6:
4919       //
4920       //   LogofMantissa =
4921       //     -1.1609546f +
4922       //       (1.4034025f - 0.23903021f * x) * x;
4923       //
4924       // error 0.0034276066, which is better than 8 bits
4925       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4926                                getF32Constant(DAG, 0xbe74c456, dl));
4927       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4928                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4929       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4930       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4931                                   getF32Constant(DAG, 0x3f949a29, dl));
4932     } else if (LimitFloatPrecision <= 12) {
4933       // For floating-point precision of 12:
4934       //
4935       //   LogOfMantissa =
4936       //     -1.7417939f +
4937       //       (2.8212026f +
4938       //         (-1.4699568f +
4939       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4940       //
4941       // error 0.000061011436, which is 14 bits
4942       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4943                                getF32Constant(DAG, 0xbd67b6d6, dl));
4944       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4945                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4946       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4947       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4948                                getF32Constant(DAG, 0x3fbc278b, dl));
4949       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4950       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4951                                getF32Constant(DAG, 0x40348e95, dl));
4952       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4953       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4954                                   getF32Constant(DAG, 0x3fdef31a, dl));
4955     } else { // LimitFloatPrecision <= 18
4956       // For floating-point precision of 18:
4957       //
4958       //   LogOfMantissa =
4959       //     -2.1072184f +
4960       //       (4.2372794f +
4961       //         (-3.7029485f +
4962       //           (2.2781945f +
4963       //             (-0.87823314f +
4964       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4965       //
4966       // error 0.0000023660568, which is better than 18 bits
4967       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4968                                getF32Constant(DAG, 0xbc91e5ac, dl));
4969       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4970                                getF32Constant(DAG, 0x3e4350aa, dl));
4971       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4972       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4973                                getF32Constant(DAG, 0x3f60d3e3, dl));
4974       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4975       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4976                                getF32Constant(DAG, 0x4011cdf0, dl));
4977       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4978       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4979                                getF32Constant(DAG, 0x406cfd1c, dl));
4980       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4981       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4982                                getF32Constant(DAG, 0x408797cb, dl));
4983       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4984       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4985                                   getF32Constant(DAG, 0x4006dcab, dl));
4986     }
4987 
4988     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4989   }
4990 
4991   // No special expansion.
4992   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4993 }
4994 
4995 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4996 /// limited-precision mode.
4997 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4998                           const TargetLowering &TLI) {
4999   // TODO: What fast-math-flags should be set on the floating-point nodes?
5000 
5001   if (Op.getValueType() == MVT::f32 &&
5002       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5003     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5004 
5005     // Get the exponent.
5006     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5007 
5008     // Get the significand and build it into a floating-point number with
5009     // exponent of 1.
5010     SDValue X = GetSignificand(DAG, Op1, dl);
5011 
5012     // Different possible minimax approximations of significand in
5013     // floating-point for various degrees of accuracy over [1,2].
5014     SDValue Log2ofMantissa;
5015     if (LimitFloatPrecision <= 6) {
5016       // For floating-point precision of 6:
5017       //
5018       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5019       //
5020       // error 0.0049451742, which is more than 7 bits
5021       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5022                                getF32Constant(DAG, 0xbeb08fe0, dl));
5023       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5024                                getF32Constant(DAG, 0x40019463, dl));
5025       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5026       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5027                                    getF32Constant(DAG, 0x3fd6633d, dl));
5028     } else if (LimitFloatPrecision <= 12) {
5029       // For floating-point precision of 12:
5030       //
5031       //   Log2ofMantissa =
5032       //     -2.51285454f +
5033       //       (4.07009056f +
5034       //         (-2.12067489f +
5035       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5036       //
5037       // error 0.0000876136000, which is better than 13 bits
5038       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5039                                getF32Constant(DAG, 0xbda7262e, dl));
5040       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5041                                getF32Constant(DAG, 0x3f25280b, dl));
5042       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5043       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5044                                getF32Constant(DAG, 0x4007b923, dl));
5045       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5046       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5047                                getF32Constant(DAG, 0x40823e2f, dl));
5048       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5049       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5050                                    getF32Constant(DAG, 0x4020d29c, dl));
5051     } else { // LimitFloatPrecision <= 18
5052       // For floating-point precision of 18:
5053       //
5054       //   Log2ofMantissa =
5055       //     -3.0400495f +
5056       //       (6.1129976f +
5057       //         (-5.3420409f +
5058       //           (3.2865683f +
5059       //             (-1.2669343f +
5060       //               (0.27515199f -
5061       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5062       //
5063       // error 0.0000018516, which is better than 18 bits
5064       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5065                                getF32Constant(DAG, 0xbcd2769e, dl));
5066       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5067                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5068       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5069       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5070                                getF32Constant(DAG, 0x3fa22ae7, dl));
5071       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5072       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5073                                getF32Constant(DAG, 0x40525723, dl));
5074       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5075       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5076                                getF32Constant(DAG, 0x40aaf200, dl));
5077       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5078       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5079                                getF32Constant(DAG, 0x40c39dad, dl));
5080       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5081       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5082                                    getF32Constant(DAG, 0x4042902c, dl));
5083     }
5084 
5085     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5086   }
5087 
5088   // No special expansion.
5089   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5090 }
5091 
5092 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5093 /// limited-precision mode.
5094 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5095                            const TargetLowering &TLI) {
5096   // TODO: What fast-math-flags should be set on the floating-point nodes?
5097 
5098   if (Op.getValueType() == MVT::f32 &&
5099       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5100     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5101 
5102     // Scale the exponent by log10(2) [0.30102999f].
5103     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5104     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5105                                         getF32Constant(DAG, 0x3e9a209a, dl));
5106 
5107     // Get the significand and build it into a floating-point number with
5108     // exponent of 1.
5109     SDValue X = GetSignificand(DAG, Op1, dl);
5110 
5111     SDValue Log10ofMantissa;
5112     if (LimitFloatPrecision <= 6) {
5113       // For floating-point precision of 6:
5114       //
5115       //   Log10ofMantissa =
5116       //     -0.50419619f +
5117       //       (0.60948995f - 0.10380950f * x) * x;
5118       //
5119       // error 0.0014886165, which is 6 bits
5120       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5121                                getF32Constant(DAG, 0xbdd49a13, dl));
5122       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5123                                getF32Constant(DAG, 0x3f1c0789, dl));
5124       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5125       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5126                                     getF32Constant(DAG, 0x3f011300, dl));
5127     } else if (LimitFloatPrecision <= 12) {
5128       // For floating-point precision of 12:
5129       //
5130       //   Log10ofMantissa =
5131       //     -0.64831180f +
5132       //       (0.91751397f +
5133       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5134       //
5135       // error 0.00019228036, which is better than 12 bits
5136       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5137                                getF32Constant(DAG, 0x3d431f31, dl));
5138       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5139                                getF32Constant(DAG, 0x3ea21fb2, dl));
5140       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5141       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5142                                getF32Constant(DAG, 0x3f6ae232, dl));
5143       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5144       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5145                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5146     } else { // LimitFloatPrecision <= 18
5147       // For floating-point precision of 18:
5148       //
5149       //   Log10ofMantissa =
5150       //     -0.84299375f +
5151       //       (1.5327582f +
5152       //         (-1.0688956f +
5153       //           (0.49102474f +
5154       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5155       //
5156       // error 0.0000037995730, which is better than 18 bits
5157       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5158                                getF32Constant(DAG, 0x3c5d51ce, dl));
5159       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5160                                getF32Constant(DAG, 0x3e00685a, dl));
5161       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5162       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5163                                getF32Constant(DAG, 0x3efb6798, dl));
5164       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5165       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5166                                getF32Constant(DAG, 0x3f88d192, dl));
5167       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5168       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5169                                getF32Constant(DAG, 0x3fc4316c, dl));
5170       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5171       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5172                                     getF32Constant(DAG, 0x3f57ce70, dl));
5173     }
5174 
5175     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5176   }
5177 
5178   // No special expansion.
5179   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5180 }
5181 
5182 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5183 /// limited-precision mode.
5184 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5185                           const TargetLowering &TLI) {
5186   if (Op.getValueType() == MVT::f32 &&
5187       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5188     return getLimitedPrecisionExp2(Op, dl, DAG);
5189 
5190   // No special expansion.
5191   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5192 }
5193 
5194 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5195 /// limited-precision mode with x == 10.0f.
5196 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5197                          SelectionDAG &DAG, const TargetLowering &TLI) {
5198   bool IsExp10 = false;
5199   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5200       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5201     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5202       APFloat Ten(10.0f);
5203       IsExp10 = LHSC->isExactlyValue(Ten);
5204     }
5205   }
5206 
5207   // TODO: What fast-math-flags should be set on the FMUL node?
5208   if (IsExp10) {
5209     // Put the exponent in the right bit position for later addition to the
5210     // final result:
5211     //
5212     //   #define LOG2OF10 3.3219281f
5213     //   t0 = Op * LOG2OF10;
5214     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5215                              getF32Constant(DAG, 0x40549a78, dl));
5216     return getLimitedPrecisionExp2(t0, dl, DAG);
5217   }
5218 
5219   // No special expansion.
5220   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5221 }
5222 
5223 /// ExpandPowI - Expand a llvm.powi intrinsic.
5224 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5225                           SelectionDAG &DAG) {
5226   // If RHS is a constant, we can expand this out to a multiplication tree,
5227   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5228   // optimizing for size, we only want to do this if the expansion would produce
5229   // a small number of multiplies, otherwise we do the full expansion.
5230   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5231     // Get the exponent as a positive value.
5232     unsigned Val = RHSC->getSExtValue();
5233     if ((int)Val < 0) Val = -Val;
5234 
5235     // powi(x, 0) -> 1.0
5236     if (Val == 0)
5237       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5238 
5239     bool OptForSize = DAG.shouldOptForSize();
5240     if (!OptForSize ||
5241         // If optimizing for size, don't insert too many multiplies.
5242         // This inserts up to 5 multiplies.
5243         countPopulation(Val) + Log2_32(Val) < 7) {
5244       // We use the simple binary decomposition method to generate the multiply
5245       // sequence.  There are more optimal ways to do this (for example,
5246       // powi(x,15) generates one more multiply than it should), but this has
5247       // the benefit of being both really simple and much better than a libcall.
5248       SDValue Res;  // Logically starts equal to 1.0
5249       SDValue CurSquare = LHS;
5250       // TODO: Intrinsics should have fast-math-flags that propagate to these
5251       // nodes.
5252       while (Val) {
5253         if (Val & 1) {
5254           if (Res.getNode())
5255             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5256           else
5257             Res = CurSquare;  // 1.0*CurSquare.
5258         }
5259 
5260         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5261                                 CurSquare, CurSquare);
5262         Val >>= 1;
5263       }
5264 
5265       // If the original was negative, invert the result, producing 1/(x*x*x).
5266       if (RHSC->getSExtValue() < 0)
5267         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5268                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5269       return Res;
5270     }
5271   }
5272 
5273   // Otherwise, expand to a libcall.
5274   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5275 }
5276 
5277 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5278                             SDValue LHS, SDValue RHS, SDValue Scale,
5279                             SelectionDAG &DAG, const TargetLowering &TLI) {
5280   EVT VT = LHS.getValueType();
5281   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5282   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5283   LLVMContext &Ctx = *DAG.getContext();
5284 
5285   // If the type is legal but the operation isn't, this node might survive all
5286   // the way to operation legalization. If we end up there and we do not have
5287   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5288   // node.
5289 
5290   // Coax the legalizer into expanding the node during type legalization instead
5291   // by bumping the size by one bit. This will force it to Promote, enabling the
5292   // early expansion and avoiding the need to expand later.
5293 
5294   // We don't have to do this if Scale is 0; that can always be expanded, unless
5295   // it's a saturating signed operation. Those can experience true integer
5296   // division overflow, a case which we must avoid.
5297 
5298   // FIXME: We wouldn't have to do this (or any of the early
5299   // expansion/promotion) if it was possible to expand a libcall of an
5300   // illegal type during operation legalization. But it's not, so things
5301   // get a bit hacky.
5302   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5303   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5304       (TLI.isTypeLegal(VT) ||
5305        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5306     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5307         Opcode, VT, ScaleInt);
5308     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5309       EVT PromVT;
5310       if (VT.isScalarInteger())
5311         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5312       else if (VT.isVector()) {
5313         PromVT = VT.getVectorElementType();
5314         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5315         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5316       } else
5317         llvm_unreachable("Wrong VT for DIVFIX?");
5318       if (Signed) {
5319         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5320         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5321       } else {
5322         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5323         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5324       }
5325       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5326       // For saturating operations, we need to shift up the LHS to get the
5327       // proper saturation width, and then shift down again afterwards.
5328       if (Saturating)
5329         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5330                           DAG.getConstant(1, DL, ShiftTy));
5331       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5332       if (Saturating)
5333         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5334                           DAG.getConstant(1, DL, ShiftTy));
5335       return DAG.getZExtOrTrunc(Res, DL, VT);
5336     }
5337   }
5338 
5339   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5340 }
5341 
5342 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5343 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5344 static void
5345 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5346                      const SDValue &N) {
5347   switch (N.getOpcode()) {
5348   case ISD::CopyFromReg: {
5349     SDValue Op = N.getOperand(1);
5350     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5351                       Op.getValueType().getSizeInBits());
5352     return;
5353   }
5354   case ISD::BITCAST:
5355   case ISD::AssertZext:
5356   case ISD::AssertSext:
5357   case ISD::TRUNCATE:
5358     getUnderlyingArgRegs(Regs, N.getOperand(0));
5359     return;
5360   case ISD::BUILD_PAIR:
5361   case ISD::BUILD_VECTOR:
5362   case ISD::CONCAT_VECTORS:
5363     for (SDValue Op : N->op_values())
5364       getUnderlyingArgRegs(Regs, Op);
5365     return;
5366   default:
5367     return;
5368   }
5369 }
5370 
5371 /// If the DbgValueInst is a dbg_value of a function argument, create the
5372 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5373 /// instruction selection, they will be inserted to the entry BB.
5374 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5375     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5376     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5377   const Argument *Arg = dyn_cast<Argument>(V);
5378   if (!Arg)
5379     return false;
5380 
5381   if (!IsDbgDeclare) {
5382     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5383     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5384     // the entry block.
5385     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5386     if (!IsInEntryBlock)
5387       return false;
5388 
5389     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5390     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5391     // variable that also is a param.
5392     //
5393     // Although, if we are at the top of the entry block already, we can still
5394     // emit using ArgDbgValue. This might catch some situations when the
5395     // dbg.value refers to an argument that isn't used in the entry block, so
5396     // any CopyToReg node would be optimized out and the only way to express
5397     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5398     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5399     // we should only emit as ArgDbgValue if the Variable is an argument to the
5400     // current function, and the dbg.value intrinsic is found in the entry
5401     // block.
5402     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5403         !DL->getInlinedAt();
5404     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5405     if (!IsInPrologue && !VariableIsFunctionInputArg)
5406       return false;
5407 
5408     // Here we assume that a function argument on IR level only can be used to
5409     // describe one input parameter on source level. If we for example have
5410     // source code like this
5411     //
5412     //    struct A { long x, y; };
5413     //    void foo(struct A a, long b) {
5414     //      ...
5415     //      b = a.x;
5416     //      ...
5417     //    }
5418     //
5419     // and IR like this
5420     //
5421     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5422     //  entry:
5423     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5424     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5425     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5426     //    ...
5427     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5428     //    ...
5429     //
5430     // then the last dbg.value is describing a parameter "b" using a value that
5431     // is an argument. But since we already has used %a1 to describe a parameter
5432     // we should not handle that last dbg.value here (that would result in an
5433     // incorrect hoisting of the DBG_VALUE to the function entry).
5434     // Notice that we allow one dbg.value per IR level argument, to accommodate
5435     // for the situation with fragments above.
5436     if (VariableIsFunctionInputArg) {
5437       unsigned ArgNo = Arg->getArgNo();
5438       if (ArgNo >= FuncInfo.DescribedArgs.size())
5439         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5440       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5441         return false;
5442       FuncInfo.DescribedArgs.set(ArgNo);
5443     }
5444   }
5445 
5446   MachineFunction &MF = DAG.getMachineFunction();
5447   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5448 
5449   bool IsIndirect = false;
5450   Optional<MachineOperand> Op;
5451   // Some arguments' frame index is recorded during argument lowering.
5452   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5453   if (FI != std::numeric_limits<int>::max())
5454     Op = MachineOperand::CreateFI(FI);
5455 
5456   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5457   if (!Op && N.getNode()) {
5458     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5459     Register Reg;
5460     if (ArgRegsAndSizes.size() == 1)
5461       Reg = ArgRegsAndSizes.front().first;
5462 
5463     if (Reg && Reg.isVirtual()) {
5464       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5465       Register PR = RegInfo.getLiveInPhysReg(Reg);
5466       if (PR)
5467         Reg = PR;
5468     }
5469     if (Reg) {
5470       Op = MachineOperand::CreateReg(Reg, false);
5471       IsIndirect = IsDbgDeclare;
5472     }
5473   }
5474 
5475   if (!Op && N.getNode()) {
5476     // Check if frame index is available.
5477     SDValue LCandidate = peekThroughBitcasts(N);
5478     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5479       if (FrameIndexSDNode *FINode =
5480           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5481         Op = MachineOperand::CreateFI(FINode->getIndex());
5482   }
5483 
5484   if (!Op) {
5485     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5486     auto splitMultiRegDbgValue
5487       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5488       unsigned Offset = 0;
5489       for (auto RegAndSize : SplitRegs) {
5490         // If the expression is already a fragment, the current register
5491         // offset+size might extend beyond the fragment. In this case, only
5492         // the register bits that are inside the fragment are relevant.
5493         int RegFragmentSizeInBits = RegAndSize.second;
5494         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5495           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5496           // The register is entirely outside the expression fragment,
5497           // so is irrelevant for debug info.
5498           if (Offset >= ExprFragmentSizeInBits)
5499             break;
5500           // The register is partially outside the expression fragment, only
5501           // the low bits within the fragment are relevant for debug info.
5502           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5503             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5504           }
5505         }
5506 
5507         auto FragmentExpr = DIExpression::createFragmentExpression(
5508             Expr, Offset, RegFragmentSizeInBits);
5509         Offset += RegAndSize.second;
5510         // If a valid fragment expression cannot be created, the variable's
5511         // correct value cannot be determined and so it is set as Undef.
5512         if (!FragmentExpr) {
5513           SDDbgValue *SDV = DAG.getConstantDbgValue(
5514               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5515           DAG.AddDbgValue(SDV, nullptr, false);
5516           continue;
5517         }
5518         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5519         FuncInfo.ArgDbgValues.push_back(
5520           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5521                   RegAndSize.first, Variable, *FragmentExpr));
5522       }
5523     };
5524 
5525     // Check if ValueMap has reg number.
5526     DenseMap<const Value *, Register>::const_iterator
5527       VMI = FuncInfo.ValueMap.find(V);
5528     if (VMI != FuncInfo.ValueMap.end()) {
5529       const auto &TLI = DAG.getTargetLoweringInfo();
5530       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5531                        V->getType(), getABIRegCopyCC(V));
5532       if (RFV.occupiesMultipleRegs()) {
5533         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5534         return true;
5535       }
5536 
5537       Op = MachineOperand::CreateReg(VMI->second, false);
5538       IsIndirect = IsDbgDeclare;
5539     } else if (ArgRegsAndSizes.size() > 1) {
5540       // This was split due to the calling convention, and no virtual register
5541       // mapping exists for the value.
5542       splitMultiRegDbgValue(ArgRegsAndSizes);
5543       return true;
5544     }
5545   }
5546 
5547   if (!Op)
5548     return false;
5549 
5550   assert(Variable->isValidLocationForIntrinsic(DL) &&
5551          "Expected inlined-at fields to agree");
5552   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5553   FuncInfo.ArgDbgValues.push_back(
5554       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5555               *Op, Variable, Expr));
5556 
5557   return true;
5558 }
5559 
5560 /// Return the appropriate SDDbgValue based on N.
5561 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5562                                              DILocalVariable *Variable,
5563                                              DIExpression *Expr,
5564                                              const DebugLoc &dl,
5565                                              unsigned DbgSDNodeOrder) {
5566   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5567     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5568     // stack slot locations.
5569     //
5570     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5571     // debug values here after optimization:
5572     //
5573     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5574     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5575     //
5576     // Both describe the direct values of their associated variables.
5577     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5578                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5579   }
5580   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5581                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5582 }
5583 
5584 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5585   switch (Intrinsic) {
5586   case Intrinsic::smul_fix:
5587     return ISD::SMULFIX;
5588   case Intrinsic::umul_fix:
5589     return ISD::UMULFIX;
5590   case Intrinsic::smul_fix_sat:
5591     return ISD::SMULFIXSAT;
5592   case Intrinsic::umul_fix_sat:
5593     return ISD::UMULFIXSAT;
5594   case Intrinsic::sdiv_fix:
5595     return ISD::SDIVFIX;
5596   case Intrinsic::udiv_fix:
5597     return ISD::UDIVFIX;
5598   case Intrinsic::sdiv_fix_sat:
5599     return ISD::SDIVFIXSAT;
5600   case Intrinsic::udiv_fix_sat:
5601     return ISD::UDIVFIXSAT;
5602   default:
5603     llvm_unreachable("Unhandled fixed point intrinsic");
5604   }
5605 }
5606 
5607 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5608                                            const char *FunctionName) {
5609   assert(FunctionName && "FunctionName must not be nullptr");
5610   SDValue Callee = DAG.getExternalSymbol(
5611       FunctionName,
5612       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5613   LowerCallTo(I, Callee, I.isTailCall());
5614 }
5615 
5616 /// Given a @llvm.call.preallocated.setup, return the corresponding
5617 /// preallocated call.
5618 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5619   assert(cast<CallBase>(PreallocatedSetup)
5620                  ->getCalledFunction()
5621                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5622          "expected call_preallocated_setup Value");
5623   for (auto *U : PreallocatedSetup->users()) {
5624     auto *UseCall = cast<CallBase>(U);
5625     const Function *Fn = UseCall->getCalledFunction();
5626     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5627       return UseCall;
5628     }
5629   }
5630   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5631 }
5632 
5633 /// Lower the call to the specified intrinsic function.
5634 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5635                                              unsigned Intrinsic) {
5636   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5637   SDLoc sdl = getCurSDLoc();
5638   DebugLoc dl = getCurDebugLoc();
5639   SDValue Res;
5640 
5641   switch (Intrinsic) {
5642   default:
5643     // By default, turn this into a target intrinsic node.
5644     visitTargetIntrinsic(I, Intrinsic);
5645     return;
5646   case Intrinsic::vscale: {
5647     match(&I, m_VScale(DAG.getDataLayout()));
5648     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5649     setValue(&I,
5650              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5651     return;
5652   }
5653   case Intrinsic::vastart:  visitVAStart(I); return;
5654   case Intrinsic::vaend:    visitVAEnd(I); return;
5655   case Intrinsic::vacopy:   visitVACopy(I); return;
5656   case Intrinsic::returnaddress:
5657     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5658                              TLI.getPointerTy(DAG.getDataLayout()),
5659                              getValue(I.getArgOperand(0))));
5660     return;
5661   case Intrinsic::addressofreturnaddress:
5662     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5663                              TLI.getPointerTy(DAG.getDataLayout())));
5664     return;
5665   case Intrinsic::sponentry:
5666     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5667                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5668     return;
5669   case Intrinsic::frameaddress:
5670     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5671                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5672                              getValue(I.getArgOperand(0))));
5673     return;
5674   case Intrinsic::read_volatile_register:
5675   case Intrinsic::read_register: {
5676     Value *Reg = I.getArgOperand(0);
5677     SDValue Chain = getRoot();
5678     SDValue RegName =
5679         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5680     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5681     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5682       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5683     setValue(&I, Res);
5684     DAG.setRoot(Res.getValue(1));
5685     return;
5686   }
5687   case Intrinsic::write_register: {
5688     Value *Reg = I.getArgOperand(0);
5689     Value *RegValue = I.getArgOperand(1);
5690     SDValue Chain = getRoot();
5691     SDValue RegName =
5692         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5693     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5694                             RegName, getValue(RegValue)));
5695     return;
5696   }
5697   case Intrinsic::memcpy: {
5698     const auto &MCI = cast<MemCpyInst>(I);
5699     SDValue Op1 = getValue(I.getArgOperand(0));
5700     SDValue Op2 = getValue(I.getArgOperand(1));
5701     SDValue Op3 = getValue(I.getArgOperand(2));
5702     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5703     Align DstAlign = MCI.getDestAlign().valueOrOne();
5704     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5705     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5706     bool isVol = MCI.isVolatile();
5707     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5708     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5709     // node.
5710     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5711     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5712                                /* AlwaysInline */ false, isTC,
5713                                MachinePointerInfo(I.getArgOperand(0)),
5714                                MachinePointerInfo(I.getArgOperand(1)));
5715     updateDAGForMaybeTailCall(MC);
5716     return;
5717   }
5718   case Intrinsic::memcpy_inline: {
5719     const auto &MCI = cast<MemCpyInlineInst>(I);
5720     SDValue Dst = getValue(I.getArgOperand(0));
5721     SDValue Src = getValue(I.getArgOperand(1));
5722     SDValue Size = getValue(I.getArgOperand(2));
5723     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5724     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5725     Align DstAlign = MCI.getDestAlign().valueOrOne();
5726     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5727     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5728     bool isVol = MCI.isVolatile();
5729     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5730     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5731     // node.
5732     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5733                                /* AlwaysInline */ true, isTC,
5734                                MachinePointerInfo(I.getArgOperand(0)),
5735                                MachinePointerInfo(I.getArgOperand(1)));
5736     updateDAGForMaybeTailCall(MC);
5737     return;
5738   }
5739   case Intrinsic::memset: {
5740     const auto &MSI = cast<MemSetInst>(I);
5741     SDValue Op1 = getValue(I.getArgOperand(0));
5742     SDValue Op2 = getValue(I.getArgOperand(1));
5743     SDValue Op3 = getValue(I.getArgOperand(2));
5744     // @llvm.memset defines 0 and 1 to both mean no alignment.
5745     Align Alignment = MSI.getDestAlign().valueOrOne();
5746     bool isVol = MSI.isVolatile();
5747     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5748     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5749     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5750                                MachinePointerInfo(I.getArgOperand(0)));
5751     updateDAGForMaybeTailCall(MS);
5752     return;
5753   }
5754   case Intrinsic::memmove: {
5755     const auto &MMI = cast<MemMoveInst>(I);
5756     SDValue Op1 = getValue(I.getArgOperand(0));
5757     SDValue Op2 = getValue(I.getArgOperand(1));
5758     SDValue Op3 = getValue(I.getArgOperand(2));
5759     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5760     Align DstAlign = MMI.getDestAlign().valueOrOne();
5761     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5762     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5763     bool isVol = MMI.isVolatile();
5764     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5765     // FIXME: Support passing different dest/src alignments to the memmove DAG
5766     // node.
5767     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5768     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5769                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5770                                 MachinePointerInfo(I.getArgOperand(1)));
5771     updateDAGForMaybeTailCall(MM);
5772     return;
5773   }
5774   case Intrinsic::memcpy_element_unordered_atomic: {
5775     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5776     SDValue Dst = getValue(MI.getRawDest());
5777     SDValue Src = getValue(MI.getRawSource());
5778     SDValue Length = getValue(MI.getLength());
5779 
5780     unsigned DstAlign = MI.getDestAlignment();
5781     unsigned SrcAlign = MI.getSourceAlignment();
5782     Type *LengthTy = MI.getLength()->getType();
5783     unsigned ElemSz = MI.getElementSizeInBytes();
5784     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5785     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5786                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5787                                      MachinePointerInfo(MI.getRawDest()),
5788                                      MachinePointerInfo(MI.getRawSource()));
5789     updateDAGForMaybeTailCall(MC);
5790     return;
5791   }
5792   case Intrinsic::memmove_element_unordered_atomic: {
5793     auto &MI = cast<AtomicMemMoveInst>(I);
5794     SDValue Dst = getValue(MI.getRawDest());
5795     SDValue Src = getValue(MI.getRawSource());
5796     SDValue Length = getValue(MI.getLength());
5797 
5798     unsigned DstAlign = MI.getDestAlignment();
5799     unsigned SrcAlign = MI.getSourceAlignment();
5800     Type *LengthTy = MI.getLength()->getType();
5801     unsigned ElemSz = MI.getElementSizeInBytes();
5802     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5803     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5804                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5805                                       MachinePointerInfo(MI.getRawDest()),
5806                                       MachinePointerInfo(MI.getRawSource()));
5807     updateDAGForMaybeTailCall(MC);
5808     return;
5809   }
5810   case Intrinsic::memset_element_unordered_atomic: {
5811     auto &MI = cast<AtomicMemSetInst>(I);
5812     SDValue Dst = getValue(MI.getRawDest());
5813     SDValue Val = getValue(MI.getValue());
5814     SDValue Length = getValue(MI.getLength());
5815 
5816     unsigned DstAlign = MI.getDestAlignment();
5817     Type *LengthTy = MI.getLength()->getType();
5818     unsigned ElemSz = MI.getElementSizeInBytes();
5819     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5820     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5821                                      LengthTy, ElemSz, isTC,
5822                                      MachinePointerInfo(MI.getRawDest()));
5823     updateDAGForMaybeTailCall(MC);
5824     return;
5825   }
5826   case Intrinsic::call_preallocated_setup: {
5827     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5828     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5829     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5830                               getRoot(), SrcValue);
5831     setValue(&I, Res);
5832     DAG.setRoot(Res);
5833     return;
5834   }
5835   case Intrinsic::call_preallocated_arg: {
5836     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5837     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5838     SDValue Ops[3];
5839     Ops[0] = getRoot();
5840     Ops[1] = SrcValue;
5841     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5842                                    MVT::i32); // arg index
5843     SDValue Res = DAG.getNode(
5844         ISD::PREALLOCATED_ARG, sdl,
5845         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5846     setValue(&I, Res);
5847     DAG.setRoot(Res.getValue(1));
5848     return;
5849   }
5850   case Intrinsic::dbg_addr:
5851   case Intrinsic::dbg_declare: {
5852     const auto &DI = cast<DbgVariableIntrinsic>(I);
5853     DILocalVariable *Variable = DI.getVariable();
5854     DIExpression *Expression = DI.getExpression();
5855     dropDanglingDebugInfo(Variable, Expression);
5856     assert(Variable && "Missing variable");
5857     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5858                       << "\n");
5859     // Check if address has undef value.
5860     const Value *Address = DI.getVariableLocation();
5861     if (!Address || isa<UndefValue>(Address) ||
5862         (Address->use_empty() && !isa<Argument>(Address))) {
5863       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5864                         << " (bad/undef/unused-arg address)\n");
5865       return;
5866     }
5867 
5868     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5869 
5870     // Check if this variable can be described by a frame index, typically
5871     // either as a static alloca or a byval parameter.
5872     int FI = std::numeric_limits<int>::max();
5873     if (const auto *AI =
5874             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5875       if (AI->isStaticAlloca()) {
5876         auto I = FuncInfo.StaticAllocaMap.find(AI);
5877         if (I != FuncInfo.StaticAllocaMap.end())
5878           FI = I->second;
5879       }
5880     } else if (const auto *Arg = dyn_cast<Argument>(
5881                    Address->stripInBoundsConstantOffsets())) {
5882       FI = FuncInfo.getArgumentFrameIndex(Arg);
5883     }
5884 
5885     // llvm.dbg.addr is control dependent and always generates indirect
5886     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5887     // the MachineFunction variable table.
5888     if (FI != std::numeric_limits<int>::max()) {
5889       if (Intrinsic == Intrinsic::dbg_addr) {
5890         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5891             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5892         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5893       } else {
5894         LLVM_DEBUG(dbgs() << "Skipping " << DI
5895                           << " (variable info stashed in MF side table)\n");
5896       }
5897       return;
5898     }
5899 
5900     SDValue &N = NodeMap[Address];
5901     if (!N.getNode() && isa<Argument>(Address))
5902       // Check unused arguments map.
5903       N = UnusedArgNodeMap[Address];
5904     SDDbgValue *SDV;
5905     if (N.getNode()) {
5906       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5907         Address = BCI->getOperand(0);
5908       // Parameters are handled specially.
5909       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5910       if (isParameter && FINode) {
5911         // Byval parameter. We have a frame index at this point.
5912         SDV =
5913             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5914                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5915       } else if (isa<Argument>(Address)) {
5916         // Address is an argument, so try to emit its dbg value using
5917         // virtual register info from the FuncInfo.ValueMap.
5918         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5919         return;
5920       } else {
5921         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5922                               true, dl, SDNodeOrder);
5923       }
5924       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5925     } else {
5926       // If Address is an argument then try to emit its dbg value using
5927       // virtual register info from the FuncInfo.ValueMap.
5928       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5929                                     N)) {
5930         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5931                           << " (could not emit func-arg dbg_value)\n");
5932       }
5933     }
5934     return;
5935   }
5936   case Intrinsic::dbg_label: {
5937     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5938     DILabel *Label = DI.getLabel();
5939     assert(Label && "Missing label");
5940 
5941     SDDbgLabel *SDV;
5942     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5943     DAG.AddDbgLabel(SDV);
5944     return;
5945   }
5946   case Intrinsic::dbg_value: {
5947     const DbgValueInst &DI = cast<DbgValueInst>(I);
5948     assert(DI.getVariable() && "Missing variable");
5949 
5950     DILocalVariable *Variable = DI.getVariable();
5951     DIExpression *Expression = DI.getExpression();
5952     dropDanglingDebugInfo(Variable, Expression);
5953     const Value *V = DI.getValue();
5954     if (!V)
5955       return;
5956 
5957     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5958         SDNodeOrder))
5959       return;
5960 
5961     // TODO: Dangling debug info will eventually either be resolved or produce
5962     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5963     // between the original dbg.value location and its resolved DBG_VALUE, which
5964     // we should ideally fill with an extra Undef DBG_VALUE.
5965 
5966     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5967     return;
5968   }
5969 
5970   case Intrinsic::eh_typeid_for: {
5971     // Find the type id for the given typeinfo.
5972     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5973     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5974     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5975     setValue(&I, Res);
5976     return;
5977   }
5978 
5979   case Intrinsic::eh_return_i32:
5980   case Intrinsic::eh_return_i64:
5981     DAG.getMachineFunction().setCallsEHReturn(true);
5982     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5983                             MVT::Other,
5984                             getControlRoot(),
5985                             getValue(I.getArgOperand(0)),
5986                             getValue(I.getArgOperand(1))));
5987     return;
5988   case Intrinsic::eh_unwind_init:
5989     DAG.getMachineFunction().setCallsUnwindInit(true);
5990     return;
5991   case Intrinsic::eh_dwarf_cfa:
5992     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5993                              TLI.getPointerTy(DAG.getDataLayout()),
5994                              getValue(I.getArgOperand(0))));
5995     return;
5996   case Intrinsic::eh_sjlj_callsite: {
5997     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5998     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5999     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6000     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6001 
6002     MMI.setCurrentCallSite(CI->getZExtValue());
6003     return;
6004   }
6005   case Intrinsic::eh_sjlj_functioncontext: {
6006     // Get and store the index of the function context.
6007     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6008     AllocaInst *FnCtx =
6009       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6010     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6011     MFI.setFunctionContextIndex(FI);
6012     return;
6013   }
6014   case Intrinsic::eh_sjlj_setjmp: {
6015     SDValue Ops[2];
6016     Ops[0] = getRoot();
6017     Ops[1] = getValue(I.getArgOperand(0));
6018     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6019                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6020     setValue(&I, Op.getValue(0));
6021     DAG.setRoot(Op.getValue(1));
6022     return;
6023   }
6024   case Intrinsic::eh_sjlj_longjmp:
6025     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6026                             getRoot(), getValue(I.getArgOperand(0))));
6027     return;
6028   case Intrinsic::eh_sjlj_setup_dispatch:
6029     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6030                             getRoot()));
6031     return;
6032   case Intrinsic::masked_gather:
6033     visitMaskedGather(I);
6034     return;
6035   case Intrinsic::masked_load:
6036     visitMaskedLoad(I);
6037     return;
6038   case Intrinsic::masked_scatter:
6039     visitMaskedScatter(I);
6040     return;
6041   case Intrinsic::masked_store:
6042     visitMaskedStore(I);
6043     return;
6044   case Intrinsic::masked_expandload:
6045     visitMaskedLoad(I, true /* IsExpanding */);
6046     return;
6047   case Intrinsic::masked_compressstore:
6048     visitMaskedStore(I, true /* IsCompressing */);
6049     return;
6050   case Intrinsic::powi:
6051     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6052                             getValue(I.getArgOperand(1)), DAG));
6053     return;
6054   case Intrinsic::log:
6055     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6056     return;
6057   case Intrinsic::log2:
6058     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6059     return;
6060   case Intrinsic::log10:
6061     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6062     return;
6063   case Intrinsic::exp:
6064     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6065     return;
6066   case Intrinsic::exp2:
6067     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6068     return;
6069   case Intrinsic::pow:
6070     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6071                            getValue(I.getArgOperand(1)), DAG, TLI));
6072     return;
6073   case Intrinsic::sqrt:
6074   case Intrinsic::fabs:
6075   case Intrinsic::sin:
6076   case Intrinsic::cos:
6077   case Intrinsic::floor:
6078   case Intrinsic::ceil:
6079   case Intrinsic::trunc:
6080   case Intrinsic::rint:
6081   case Intrinsic::nearbyint:
6082   case Intrinsic::round:
6083   case Intrinsic::roundeven:
6084   case Intrinsic::canonicalize: {
6085     unsigned Opcode;
6086     switch (Intrinsic) {
6087     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6088     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6089     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6090     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6091     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6092     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6093     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6094     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6095     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6096     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6097     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6098     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6099     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6100     }
6101 
6102     setValue(&I, DAG.getNode(Opcode, sdl,
6103                              getValue(I.getArgOperand(0)).getValueType(),
6104                              getValue(I.getArgOperand(0))));
6105     return;
6106   }
6107   case Intrinsic::lround:
6108   case Intrinsic::llround:
6109   case Intrinsic::lrint:
6110   case Intrinsic::llrint: {
6111     unsigned Opcode;
6112     switch (Intrinsic) {
6113     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6114     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6115     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6116     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6117     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6118     }
6119 
6120     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6121     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6122                              getValue(I.getArgOperand(0))));
6123     return;
6124   }
6125   case Intrinsic::minnum:
6126     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6127                              getValue(I.getArgOperand(0)).getValueType(),
6128                              getValue(I.getArgOperand(0)),
6129                              getValue(I.getArgOperand(1))));
6130     return;
6131   case Intrinsic::maxnum:
6132     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6133                              getValue(I.getArgOperand(0)).getValueType(),
6134                              getValue(I.getArgOperand(0)),
6135                              getValue(I.getArgOperand(1))));
6136     return;
6137   case Intrinsic::minimum:
6138     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6139                              getValue(I.getArgOperand(0)).getValueType(),
6140                              getValue(I.getArgOperand(0)),
6141                              getValue(I.getArgOperand(1))));
6142     return;
6143   case Intrinsic::maximum:
6144     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6145                              getValue(I.getArgOperand(0)).getValueType(),
6146                              getValue(I.getArgOperand(0)),
6147                              getValue(I.getArgOperand(1))));
6148     return;
6149   case Intrinsic::copysign:
6150     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6151                              getValue(I.getArgOperand(0)).getValueType(),
6152                              getValue(I.getArgOperand(0)),
6153                              getValue(I.getArgOperand(1))));
6154     return;
6155   case Intrinsic::fma:
6156     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6157                              getValue(I.getArgOperand(0)).getValueType(),
6158                              getValue(I.getArgOperand(0)),
6159                              getValue(I.getArgOperand(1)),
6160                              getValue(I.getArgOperand(2))));
6161     return;
6162 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6163   case Intrinsic::INTRINSIC:
6164 #include "llvm/IR/ConstrainedOps.def"
6165     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6166     return;
6167   case Intrinsic::fmuladd: {
6168     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6169     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6170         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6171       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6172                                getValue(I.getArgOperand(0)).getValueType(),
6173                                getValue(I.getArgOperand(0)),
6174                                getValue(I.getArgOperand(1)),
6175                                getValue(I.getArgOperand(2))));
6176     } else {
6177       // TODO: Intrinsic calls should have fast-math-flags.
6178       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6179                                 getValue(I.getArgOperand(0)).getValueType(),
6180                                 getValue(I.getArgOperand(0)),
6181                                 getValue(I.getArgOperand(1)));
6182       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6183                                 getValue(I.getArgOperand(0)).getValueType(),
6184                                 Mul,
6185                                 getValue(I.getArgOperand(2)));
6186       setValue(&I, Add);
6187     }
6188     return;
6189   }
6190   case Intrinsic::convert_to_fp16:
6191     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6192                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6193                                          getValue(I.getArgOperand(0)),
6194                                          DAG.getTargetConstant(0, sdl,
6195                                                                MVT::i32))));
6196     return;
6197   case Intrinsic::convert_from_fp16:
6198     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6199                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6200                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6201                                          getValue(I.getArgOperand(0)))));
6202     return;
6203   case Intrinsic::pcmarker: {
6204     SDValue Tmp = getValue(I.getArgOperand(0));
6205     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6206     return;
6207   }
6208   case Intrinsic::readcyclecounter: {
6209     SDValue Op = getRoot();
6210     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6211                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6212     setValue(&I, Res);
6213     DAG.setRoot(Res.getValue(1));
6214     return;
6215   }
6216   case Intrinsic::bitreverse:
6217     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6218                              getValue(I.getArgOperand(0)).getValueType(),
6219                              getValue(I.getArgOperand(0))));
6220     return;
6221   case Intrinsic::bswap:
6222     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6223                              getValue(I.getArgOperand(0)).getValueType(),
6224                              getValue(I.getArgOperand(0))));
6225     return;
6226   case Intrinsic::cttz: {
6227     SDValue Arg = getValue(I.getArgOperand(0));
6228     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6229     EVT Ty = Arg.getValueType();
6230     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6231                              sdl, Ty, Arg));
6232     return;
6233   }
6234   case Intrinsic::ctlz: {
6235     SDValue Arg = getValue(I.getArgOperand(0));
6236     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6237     EVT Ty = Arg.getValueType();
6238     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6239                              sdl, Ty, Arg));
6240     return;
6241   }
6242   case Intrinsic::ctpop: {
6243     SDValue Arg = getValue(I.getArgOperand(0));
6244     EVT Ty = Arg.getValueType();
6245     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6246     return;
6247   }
6248   case Intrinsic::fshl:
6249   case Intrinsic::fshr: {
6250     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6251     SDValue X = getValue(I.getArgOperand(0));
6252     SDValue Y = getValue(I.getArgOperand(1));
6253     SDValue Z = getValue(I.getArgOperand(2));
6254     EVT VT = X.getValueType();
6255 
6256     if (X == Y) {
6257       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6258       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6259     } else {
6260       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6261       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6262     }
6263     return;
6264   }
6265   case Intrinsic::sadd_sat: {
6266     SDValue Op1 = getValue(I.getArgOperand(0));
6267     SDValue Op2 = getValue(I.getArgOperand(1));
6268     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6269     return;
6270   }
6271   case Intrinsic::uadd_sat: {
6272     SDValue Op1 = getValue(I.getArgOperand(0));
6273     SDValue Op2 = getValue(I.getArgOperand(1));
6274     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6275     return;
6276   }
6277   case Intrinsic::ssub_sat: {
6278     SDValue Op1 = getValue(I.getArgOperand(0));
6279     SDValue Op2 = getValue(I.getArgOperand(1));
6280     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6281     return;
6282   }
6283   case Intrinsic::usub_sat: {
6284     SDValue Op1 = getValue(I.getArgOperand(0));
6285     SDValue Op2 = getValue(I.getArgOperand(1));
6286     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6287     return;
6288   }
6289   case Intrinsic::sshl_sat: {
6290     SDValue Op1 = getValue(I.getArgOperand(0));
6291     SDValue Op2 = getValue(I.getArgOperand(1));
6292     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6293     return;
6294   }
6295   case Intrinsic::ushl_sat: {
6296     SDValue Op1 = getValue(I.getArgOperand(0));
6297     SDValue Op2 = getValue(I.getArgOperand(1));
6298     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6299     return;
6300   }
6301   case Intrinsic::smul_fix:
6302   case Intrinsic::umul_fix:
6303   case Intrinsic::smul_fix_sat:
6304   case Intrinsic::umul_fix_sat: {
6305     SDValue Op1 = getValue(I.getArgOperand(0));
6306     SDValue Op2 = getValue(I.getArgOperand(1));
6307     SDValue Op3 = getValue(I.getArgOperand(2));
6308     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6309                              Op1.getValueType(), Op1, Op2, Op3));
6310     return;
6311   }
6312   case Intrinsic::sdiv_fix:
6313   case Intrinsic::udiv_fix:
6314   case Intrinsic::sdiv_fix_sat:
6315   case Intrinsic::udiv_fix_sat: {
6316     SDValue Op1 = getValue(I.getArgOperand(0));
6317     SDValue Op2 = getValue(I.getArgOperand(1));
6318     SDValue Op3 = getValue(I.getArgOperand(2));
6319     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6320                               Op1, Op2, Op3, DAG, TLI));
6321     return;
6322   }
6323   case Intrinsic::smax: {
6324     SDValue Op1 = getValue(I.getArgOperand(0));
6325     SDValue Op2 = getValue(I.getArgOperand(1));
6326     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6327     return;
6328   }
6329   case Intrinsic::smin: {
6330     SDValue Op1 = getValue(I.getArgOperand(0));
6331     SDValue Op2 = getValue(I.getArgOperand(1));
6332     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6333     return;
6334   }
6335   case Intrinsic::umax: {
6336     SDValue Op1 = getValue(I.getArgOperand(0));
6337     SDValue Op2 = getValue(I.getArgOperand(1));
6338     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6339     return;
6340   }
6341   case Intrinsic::umin: {
6342     SDValue Op1 = getValue(I.getArgOperand(0));
6343     SDValue Op2 = getValue(I.getArgOperand(1));
6344     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6345     return;
6346   }
6347   case Intrinsic::abs: {
6348     // TODO: Preserve "int min is poison" arg in SDAG?
6349     SDValue Op1 = getValue(I.getArgOperand(0));
6350     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6351     return;
6352   }
6353   case Intrinsic::stacksave: {
6354     SDValue Op = getRoot();
6355     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6356     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6357     setValue(&I, Res);
6358     DAG.setRoot(Res.getValue(1));
6359     return;
6360   }
6361   case Intrinsic::stackrestore:
6362     Res = getValue(I.getArgOperand(0));
6363     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6364     return;
6365   case Intrinsic::get_dynamic_area_offset: {
6366     SDValue Op = getRoot();
6367     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6368     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6369     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6370     // target.
6371     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6372       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6373                          " intrinsic!");
6374     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6375                       Op);
6376     DAG.setRoot(Op);
6377     setValue(&I, Res);
6378     return;
6379   }
6380   case Intrinsic::stackguard: {
6381     MachineFunction &MF = DAG.getMachineFunction();
6382     const Module &M = *MF.getFunction().getParent();
6383     SDValue Chain = getRoot();
6384     if (TLI.useLoadStackGuardNode()) {
6385       Res = getLoadStackGuard(DAG, sdl, Chain);
6386     } else {
6387       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6388       const Value *Global = TLI.getSDagStackGuard(M);
6389       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6390       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6391                         MachinePointerInfo(Global, 0), Align,
6392                         MachineMemOperand::MOVolatile);
6393     }
6394     if (TLI.useStackGuardXorFP())
6395       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6396     DAG.setRoot(Chain);
6397     setValue(&I, Res);
6398     return;
6399   }
6400   case Intrinsic::stackprotector: {
6401     // Emit code into the DAG to store the stack guard onto the stack.
6402     MachineFunction &MF = DAG.getMachineFunction();
6403     MachineFrameInfo &MFI = MF.getFrameInfo();
6404     SDValue Src, Chain = getRoot();
6405 
6406     if (TLI.useLoadStackGuardNode())
6407       Src = getLoadStackGuard(DAG, sdl, Chain);
6408     else
6409       Src = getValue(I.getArgOperand(0));   // The guard's value.
6410 
6411     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6412 
6413     int FI = FuncInfo.StaticAllocaMap[Slot];
6414     MFI.setStackProtectorIndex(FI);
6415     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6416 
6417     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6418 
6419     // Store the stack protector onto the stack.
6420     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6421                                                  DAG.getMachineFunction(), FI),
6422                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6423     setValue(&I, Res);
6424     DAG.setRoot(Res);
6425     return;
6426   }
6427   case Intrinsic::objectsize:
6428     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6429 
6430   case Intrinsic::is_constant:
6431     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6432 
6433   case Intrinsic::annotation:
6434   case Intrinsic::ptr_annotation:
6435   case Intrinsic::launder_invariant_group:
6436   case Intrinsic::strip_invariant_group:
6437     // Drop the intrinsic, but forward the value
6438     setValue(&I, getValue(I.getOperand(0)));
6439     return;
6440   case Intrinsic::assume:
6441   case Intrinsic::var_annotation:
6442   case Intrinsic::sideeffect:
6443     // Discard annotate attributes, assumptions, and artificial side-effects.
6444     return;
6445 
6446   case Intrinsic::codeview_annotation: {
6447     // Emit a label associated with this metadata.
6448     MachineFunction &MF = DAG.getMachineFunction();
6449     MCSymbol *Label =
6450         MF.getMMI().getContext().createTempSymbol("annotation", true);
6451     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6452     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6453     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6454     DAG.setRoot(Res);
6455     return;
6456   }
6457 
6458   case Intrinsic::init_trampoline: {
6459     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6460 
6461     SDValue Ops[6];
6462     Ops[0] = getRoot();
6463     Ops[1] = getValue(I.getArgOperand(0));
6464     Ops[2] = getValue(I.getArgOperand(1));
6465     Ops[3] = getValue(I.getArgOperand(2));
6466     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6467     Ops[5] = DAG.getSrcValue(F);
6468 
6469     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6470 
6471     DAG.setRoot(Res);
6472     return;
6473   }
6474   case Intrinsic::adjust_trampoline:
6475     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6476                              TLI.getPointerTy(DAG.getDataLayout()),
6477                              getValue(I.getArgOperand(0))));
6478     return;
6479   case Intrinsic::gcroot: {
6480     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6481            "only valid in functions with gc specified, enforced by Verifier");
6482     assert(GFI && "implied by previous");
6483     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6484     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6485 
6486     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6487     GFI->addStackRoot(FI->getIndex(), TypeMap);
6488     return;
6489   }
6490   case Intrinsic::gcread:
6491   case Intrinsic::gcwrite:
6492     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6493   case Intrinsic::flt_rounds:
6494     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6495     setValue(&I, Res);
6496     DAG.setRoot(Res.getValue(1));
6497     return;
6498 
6499   case Intrinsic::expect:
6500     // Just replace __builtin_expect(exp, c) with EXP.
6501     setValue(&I, getValue(I.getArgOperand(0)));
6502     return;
6503 
6504   case Intrinsic::debugtrap:
6505   case Intrinsic::trap: {
6506     StringRef TrapFuncName =
6507         I.getAttributes()
6508             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6509             .getValueAsString();
6510     if (TrapFuncName.empty()) {
6511       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6512         ISD::TRAP : ISD::DEBUGTRAP;
6513       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6514       return;
6515     }
6516     TargetLowering::ArgListTy Args;
6517 
6518     TargetLowering::CallLoweringInfo CLI(DAG);
6519     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6520         CallingConv::C, I.getType(),
6521         DAG.getExternalSymbol(TrapFuncName.data(),
6522                               TLI.getPointerTy(DAG.getDataLayout())),
6523         std::move(Args));
6524 
6525     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6526     DAG.setRoot(Result.second);
6527     return;
6528   }
6529 
6530   case Intrinsic::uadd_with_overflow:
6531   case Intrinsic::sadd_with_overflow:
6532   case Intrinsic::usub_with_overflow:
6533   case Intrinsic::ssub_with_overflow:
6534   case Intrinsic::umul_with_overflow:
6535   case Intrinsic::smul_with_overflow: {
6536     ISD::NodeType Op;
6537     switch (Intrinsic) {
6538     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6539     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6540     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6541     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6542     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6543     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6544     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6545     }
6546     SDValue Op1 = getValue(I.getArgOperand(0));
6547     SDValue Op2 = getValue(I.getArgOperand(1));
6548 
6549     EVT ResultVT = Op1.getValueType();
6550     EVT OverflowVT = MVT::i1;
6551     if (ResultVT.isVector())
6552       OverflowVT = EVT::getVectorVT(
6553           *Context, OverflowVT, ResultVT.getVectorNumElements());
6554 
6555     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6556     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6557     return;
6558   }
6559   case Intrinsic::prefetch: {
6560     SDValue Ops[5];
6561     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6562     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6563     Ops[0] = DAG.getRoot();
6564     Ops[1] = getValue(I.getArgOperand(0));
6565     Ops[2] = getValue(I.getArgOperand(1));
6566     Ops[3] = getValue(I.getArgOperand(2));
6567     Ops[4] = getValue(I.getArgOperand(3));
6568     SDValue Result = DAG.getMemIntrinsicNode(
6569         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6570         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6571         /* align */ None, Flags);
6572 
6573     // Chain the prefetch in parallell with any pending loads, to stay out of
6574     // the way of later optimizations.
6575     PendingLoads.push_back(Result);
6576     Result = getRoot();
6577     DAG.setRoot(Result);
6578     return;
6579   }
6580   case Intrinsic::lifetime_start:
6581   case Intrinsic::lifetime_end: {
6582     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6583     // Stack coloring is not enabled in O0, discard region information.
6584     if (TM.getOptLevel() == CodeGenOpt::None)
6585       return;
6586 
6587     const int64_t ObjectSize =
6588         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6589     Value *const ObjectPtr = I.getArgOperand(1);
6590     SmallVector<const Value *, 4> Allocas;
6591     getUnderlyingObjects(ObjectPtr, Allocas);
6592 
6593     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6594            E = Allocas.end(); Object != E; ++Object) {
6595       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6596 
6597       // Could not find an Alloca.
6598       if (!LifetimeObject)
6599         continue;
6600 
6601       // First check that the Alloca is static, otherwise it won't have a
6602       // valid frame index.
6603       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6604       if (SI == FuncInfo.StaticAllocaMap.end())
6605         return;
6606 
6607       const int FrameIndex = SI->second;
6608       int64_t Offset;
6609       if (GetPointerBaseWithConstantOffset(
6610               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6611         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6612       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6613                                 Offset);
6614       DAG.setRoot(Res);
6615     }
6616     return;
6617   }
6618   case Intrinsic::invariant_start:
6619     // Discard region information.
6620     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6621     return;
6622   case Intrinsic::invariant_end:
6623     // Discard region information.
6624     return;
6625   case Intrinsic::clear_cache:
6626     /// FunctionName may be null.
6627     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6628       lowerCallToExternalSymbol(I, FunctionName);
6629     return;
6630   case Intrinsic::donothing:
6631     // ignore
6632     return;
6633   case Intrinsic::experimental_stackmap:
6634     visitStackmap(I);
6635     return;
6636   case Intrinsic::experimental_patchpoint_void:
6637   case Intrinsic::experimental_patchpoint_i64:
6638     visitPatchpoint(I);
6639     return;
6640   case Intrinsic::experimental_gc_statepoint:
6641     LowerStatepoint(cast<GCStatepointInst>(I));
6642     return;
6643   case Intrinsic::experimental_gc_result:
6644     visitGCResult(cast<GCResultInst>(I));
6645     return;
6646   case Intrinsic::experimental_gc_relocate:
6647     visitGCRelocate(cast<GCRelocateInst>(I));
6648     return;
6649   case Intrinsic::instrprof_increment:
6650     llvm_unreachable("instrprof failed to lower an increment");
6651   case Intrinsic::instrprof_value_profile:
6652     llvm_unreachable("instrprof failed to lower a value profiling call");
6653   case Intrinsic::localescape: {
6654     MachineFunction &MF = DAG.getMachineFunction();
6655     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6656 
6657     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6658     // is the same on all targets.
6659     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6660       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6661       if (isa<ConstantPointerNull>(Arg))
6662         continue; // Skip null pointers. They represent a hole in index space.
6663       AllocaInst *Slot = cast<AllocaInst>(Arg);
6664       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6665              "can only escape static allocas");
6666       int FI = FuncInfo.StaticAllocaMap[Slot];
6667       MCSymbol *FrameAllocSym =
6668           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6669               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6670       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6671               TII->get(TargetOpcode::LOCAL_ESCAPE))
6672           .addSym(FrameAllocSym)
6673           .addFrameIndex(FI);
6674     }
6675 
6676     return;
6677   }
6678 
6679   case Intrinsic::localrecover: {
6680     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6681     MachineFunction &MF = DAG.getMachineFunction();
6682 
6683     // Get the symbol that defines the frame offset.
6684     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6685     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6686     unsigned IdxVal =
6687         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6688     MCSymbol *FrameAllocSym =
6689         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6690             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6691 
6692     Value *FP = I.getArgOperand(1);
6693     SDValue FPVal = getValue(FP);
6694     EVT PtrVT = FPVal.getValueType();
6695 
6696     // Create a MCSymbol for the label to avoid any target lowering
6697     // that would make this PC relative.
6698     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6699     SDValue OffsetVal =
6700         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6701 
6702     // Add the offset to the FP.
6703     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6704     setValue(&I, Add);
6705 
6706     return;
6707   }
6708 
6709   case Intrinsic::eh_exceptionpointer:
6710   case Intrinsic::eh_exceptioncode: {
6711     // Get the exception pointer vreg, copy from it, and resize it to fit.
6712     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6713     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6714     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6715     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6716     SDValue N =
6717         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6718     if (Intrinsic == Intrinsic::eh_exceptioncode)
6719       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6720     setValue(&I, N);
6721     return;
6722   }
6723   case Intrinsic::xray_customevent: {
6724     // Here we want to make sure that the intrinsic behaves as if it has a
6725     // specific calling convention, and only for x86_64.
6726     // FIXME: Support other platforms later.
6727     const auto &Triple = DAG.getTarget().getTargetTriple();
6728     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6729       return;
6730 
6731     SDLoc DL = getCurSDLoc();
6732     SmallVector<SDValue, 8> Ops;
6733 
6734     // We want to say that we always want the arguments in registers.
6735     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6736     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6737     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6738     SDValue Chain = getRoot();
6739     Ops.push_back(LogEntryVal);
6740     Ops.push_back(StrSizeVal);
6741     Ops.push_back(Chain);
6742 
6743     // We need to enforce the calling convention for the callsite, so that
6744     // argument ordering is enforced correctly, and that register allocation can
6745     // see that some registers may be assumed clobbered and have to preserve
6746     // them across calls to the intrinsic.
6747     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6748                                            DL, NodeTys, Ops);
6749     SDValue patchableNode = SDValue(MN, 0);
6750     DAG.setRoot(patchableNode);
6751     setValue(&I, patchableNode);
6752     return;
6753   }
6754   case Intrinsic::xray_typedevent: {
6755     // Here we want to make sure that the intrinsic behaves as if it has a
6756     // specific calling convention, and only for x86_64.
6757     // FIXME: Support other platforms later.
6758     const auto &Triple = DAG.getTarget().getTargetTriple();
6759     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6760       return;
6761 
6762     SDLoc DL = getCurSDLoc();
6763     SmallVector<SDValue, 8> Ops;
6764 
6765     // We want to say that we always want the arguments in registers.
6766     // It's unclear to me how manipulating the selection DAG here forces callers
6767     // to provide arguments in registers instead of on the stack.
6768     SDValue LogTypeId = getValue(I.getArgOperand(0));
6769     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6770     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6771     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6772     SDValue Chain = getRoot();
6773     Ops.push_back(LogTypeId);
6774     Ops.push_back(LogEntryVal);
6775     Ops.push_back(StrSizeVal);
6776     Ops.push_back(Chain);
6777 
6778     // We need to enforce the calling convention for the callsite, so that
6779     // argument ordering is enforced correctly, and that register allocation can
6780     // see that some registers may be assumed clobbered and have to preserve
6781     // them across calls to the intrinsic.
6782     MachineSDNode *MN = DAG.getMachineNode(
6783         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6784     SDValue patchableNode = SDValue(MN, 0);
6785     DAG.setRoot(patchableNode);
6786     setValue(&I, patchableNode);
6787     return;
6788   }
6789   case Intrinsic::experimental_deoptimize:
6790     LowerDeoptimizeCall(&I);
6791     return;
6792 
6793   case Intrinsic::experimental_vector_reduce_v2_fadd:
6794   case Intrinsic::experimental_vector_reduce_v2_fmul:
6795   case Intrinsic::experimental_vector_reduce_add:
6796   case Intrinsic::experimental_vector_reduce_mul:
6797   case Intrinsic::experimental_vector_reduce_and:
6798   case Intrinsic::experimental_vector_reduce_or:
6799   case Intrinsic::experimental_vector_reduce_xor:
6800   case Intrinsic::experimental_vector_reduce_smax:
6801   case Intrinsic::experimental_vector_reduce_smin:
6802   case Intrinsic::experimental_vector_reduce_umax:
6803   case Intrinsic::experimental_vector_reduce_umin:
6804   case Intrinsic::experimental_vector_reduce_fmax:
6805   case Intrinsic::experimental_vector_reduce_fmin:
6806     visitVectorReduce(I, Intrinsic);
6807     return;
6808 
6809   case Intrinsic::icall_branch_funnel: {
6810     SmallVector<SDValue, 16> Ops;
6811     Ops.push_back(getValue(I.getArgOperand(0)));
6812 
6813     int64_t Offset;
6814     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6815         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6816     if (!Base)
6817       report_fatal_error(
6818           "llvm.icall.branch.funnel operand must be a GlobalValue");
6819     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6820 
6821     struct BranchFunnelTarget {
6822       int64_t Offset;
6823       SDValue Target;
6824     };
6825     SmallVector<BranchFunnelTarget, 8> Targets;
6826 
6827     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6828       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6829           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6830       if (ElemBase != Base)
6831         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6832                            "to the same GlobalValue");
6833 
6834       SDValue Val = getValue(I.getArgOperand(Op + 1));
6835       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6836       if (!GA)
6837         report_fatal_error(
6838             "llvm.icall.branch.funnel operand must be a GlobalValue");
6839       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6840                                      GA->getGlobal(), getCurSDLoc(),
6841                                      Val.getValueType(), GA->getOffset())});
6842     }
6843     llvm::sort(Targets,
6844                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6845                  return T1.Offset < T2.Offset;
6846                });
6847 
6848     for (auto &T : Targets) {
6849       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6850       Ops.push_back(T.Target);
6851     }
6852 
6853     Ops.push_back(DAG.getRoot()); // Chain
6854     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6855                                  getCurSDLoc(), MVT::Other, Ops),
6856               0);
6857     DAG.setRoot(N);
6858     setValue(&I, N);
6859     HasTailCall = true;
6860     return;
6861   }
6862 
6863   case Intrinsic::wasm_landingpad_index:
6864     // Information this intrinsic contained has been transferred to
6865     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6866     // delete it now.
6867     return;
6868 
6869   case Intrinsic::aarch64_settag:
6870   case Intrinsic::aarch64_settag_zero: {
6871     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6872     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6873     SDValue Val = TSI.EmitTargetCodeForSetTag(
6874         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6875         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6876         ZeroMemory);
6877     DAG.setRoot(Val);
6878     setValue(&I, Val);
6879     return;
6880   }
6881   case Intrinsic::ptrmask: {
6882     SDValue Ptr = getValue(I.getOperand(0));
6883     SDValue Const = getValue(I.getOperand(1));
6884 
6885     EVT PtrVT = Ptr.getValueType();
6886     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
6887                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
6888     return;
6889   }
6890   case Intrinsic::get_active_lane_mask: {
6891     auto DL = getCurSDLoc();
6892     SDValue Index = getValue(I.getOperand(0));
6893     SDValue TripCount = getValue(I.getOperand(1));
6894     Type *ElementTy = I.getOperand(0)->getType();
6895     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6896     unsigned VecWidth = VT.getVectorNumElements();
6897 
6898     SmallVector<SDValue, 16> OpsTripCount;
6899     SmallVector<SDValue, 16> OpsIndex;
6900     SmallVector<SDValue, 16> OpsStepConstants;
6901     for (unsigned i = 0; i < VecWidth; i++) {
6902       OpsTripCount.push_back(TripCount);
6903       OpsIndex.push_back(Index);
6904       OpsStepConstants.push_back(
6905           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
6906     }
6907 
6908     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
6909 
6910     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
6911     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
6912     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
6913     SDValue VectorInduction = DAG.getNode(
6914        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
6915     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
6916     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
6917                                  VectorTripCount, ISD::CondCode::SETULT);
6918     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
6919                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
6920                              SetCC));
6921     return;
6922   }
6923   }
6924 }
6925 
6926 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6927     const ConstrainedFPIntrinsic &FPI) {
6928   SDLoc sdl = getCurSDLoc();
6929 
6930   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6931   SmallVector<EVT, 4> ValueVTs;
6932   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6933   ValueVTs.push_back(MVT::Other); // Out chain
6934 
6935   // We do not need to serialize constrained FP intrinsics against
6936   // each other or against (nonvolatile) loads, so they can be
6937   // chained like loads.
6938   SDValue Chain = DAG.getRoot();
6939   SmallVector<SDValue, 4> Opers;
6940   Opers.push_back(Chain);
6941   if (FPI.isUnaryOp()) {
6942     Opers.push_back(getValue(FPI.getArgOperand(0)));
6943   } else if (FPI.isTernaryOp()) {
6944     Opers.push_back(getValue(FPI.getArgOperand(0)));
6945     Opers.push_back(getValue(FPI.getArgOperand(1)));
6946     Opers.push_back(getValue(FPI.getArgOperand(2)));
6947   } else {
6948     Opers.push_back(getValue(FPI.getArgOperand(0)));
6949     Opers.push_back(getValue(FPI.getArgOperand(1)));
6950   }
6951 
6952   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
6953     assert(Result.getNode()->getNumValues() == 2);
6954 
6955     // Push node to the appropriate list so that future instructions can be
6956     // chained up correctly.
6957     SDValue OutChain = Result.getValue(1);
6958     switch (EB) {
6959     case fp::ExceptionBehavior::ebIgnore:
6960       // The only reason why ebIgnore nodes still need to be chained is that
6961       // they might depend on the current rounding mode, and therefore must
6962       // not be moved across instruction that may change that mode.
6963       LLVM_FALLTHROUGH;
6964     case fp::ExceptionBehavior::ebMayTrap:
6965       // These must not be moved across calls or instructions that may change
6966       // floating-point exception masks.
6967       PendingConstrainedFP.push_back(OutChain);
6968       break;
6969     case fp::ExceptionBehavior::ebStrict:
6970       // These must not be moved across calls or instructions that may change
6971       // floating-point exception masks or read floating-point exception flags.
6972       // In addition, they cannot be optimized out even if unused.
6973       PendingConstrainedFPStrict.push_back(OutChain);
6974       break;
6975     }
6976   };
6977 
6978   SDVTList VTs = DAG.getVTList(ValueVTs);
6979   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
6980 
6981   SDNodeFlags Flags;
6982   if (EB == fp::ExceptionBehavior::ebIgnore)
6983     Flags.setNoFPExcept(true);
6984 
6985   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
6986     Flags.copyFMF(*FPOp);
6987 
6988   unsigned Opcode;
6989   switch (FPI.getIntrinsicID()) {
6990   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6991 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
6992   case Intrinsic::INTRINSIC:                                                   \
6993     Opcode = ISD::STRICT_##DAGN;                                               \
6994     break;
6995 #include "llvm/IR/ConstrainedOps.def"
6996   case Intrinsic::experimental_constrained_fmuladd: {
6997     Opcode = ISD::STRICT_FMA;
6998     // Break fmuladd into fmul and fadd.
6999     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7000         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7001                                         ValueVTs[0])) {
7002       Opers.pop_back();
7003       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7004       pushOutChain(Mul, EB);
7005       Opcode = ISD::STRICT_FADD;
7006       Opers.clear();
7007       Opers.push_back(Mul.getValue(1));
7008       Opers.push_back(Mul.getValue(0));
7009       Opers.push_back(getValue(FPI.getArgOperand(2)));
7010     }
7011     break;
7012   }
7013   }
7014 
7015   // A few strict DAG nodes carry additional operands that are not
7016   // set up by the default code above.
7017   switch (Opcode) {
7018   default: break;
7019   case ISD::STRICT_FP_ROUND:
7020     Opers.push_back(
7021         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7022     break;
7023   case ISD::STRICT_FSETCC:
7024   case ISD::STRICT_FSETCCS: {
7025     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7026     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7027     break;
7028   }
7029   }
7030 
7031   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7032   pushOutChain(Result, EB);
7033 
7034   SDValue FPResult = Result.getValue(0);
7035   setValue(&FPI, FPResult);
7036 }
7037 
7038 std::pair<SDValue, SDValue>
7039 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7040                                     const BasicBlock *EHPadBB) {
7041   MachineFunction &MF = DAG.getMachineFunction();
7042   MachineModuleInfo &MMI = MF.getMMI();
7043   MCSymbol *BeginLabel = nullptr;
7044 
7045   if (EHPadBB) {
7046     // Insert a label before the invoke call to mark the try range.  This can be
7047     // used to detect deletion of the invoke via the MachineModuleInfo.
7048     BeginLabel = MMI.getContext().createTempSymbol();
7049 
7050     // For SjLj, keep track of which landing pads go with which invokes
7051     // so as to maintain the ordering of pads in the LSDA.
7052     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7053     if (CallSiteIndex) {
7054       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7055       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7056 
7057       // Now that the call site is handled, stop tracking it.
7058       MMI.setCurrentCallSite(0);
7059     }
7060 
7061     // Both PendingLoads and PendingExports must be flushed here;
7062     // this call might not return.
7063     (void)getRoot();
7064     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7065 
7066     CLI.setChain(getRoot());
7067   }
7068   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7069   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7070 
7071   assert((CLI.IsTailCall || Result.second.getNode()) &&
7072          "Non-null chain expected with non-tail call!");
7073   assert((Result.second.getNode() || !Result.first.getNode()) &&
7074          "Null value expected with tail call!");
7075 
7076   if (!Result.second.getNode()) {
7077     // As a special case, a null chain means that a tail call has been emitted
7078     // and the DAG root is already updated.
7079     HasTailCall = true;
7080 
7081     // Since there's no actual continuation from this block, nothing can be
7082     // relying on us setting vregs for them.
7083     PendingExports.clear();
7084   } else {
7085     DAG.setRoot(Result.second);
7086   }
7087 
7088   if (EHPadBB) {
7089     // Insert a label at the end of the invoke call to mark the try range.  This
7090     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7091     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7092     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7093 
7094     // Inform MachineModuleInfo of range.
7095     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7096     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7097     // actually use outlined funclets and their LSDA info style.
7098     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7099       assert(CLI.CB);
7100       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7101       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7102     } else if (!isScopedEHPersonality(Pers)) {
7103       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7104     }
7105   }
7106 
7107   return Result;
7108 }
7109 
7110 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7111                                       bool isTailCall,
7112                                       const BasicBlock *EHPadBB) {
7113   auto &DL = DAG.getDataLayout();
7114   FunctionType *FTy = CB.getFunctionType();
7115   Type *RetTy = CB.getType();
7116 
7117   TargetLowering::ArgListTy Args;
7118   Args.reserve(CB.arg_size());
7119 
7120   const Value *SwiftErrorVal = nullptr;
7121   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7122 
7123   if (isTailCall) {
7124     // Avoid emitting tail calls in functions with the disable-tail-calls
7125     // attribute.
7126     auto *Caller = CB.getParent()->getParent();
7127     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7128         "true")
7129       isTailCall = false;
7130 
7131     // We can't tail call inside a function with a swifterror argument. Lowering
7132     // does not support this yet. It would have to move into the swifterror
7133     // register before the call.
7134     if (TLI.supportSwiftError() &&
7135         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7136       isTailCall = false;
7137   }
7138 
7139   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7140     TargetLowering::ArgListEntry Entry;
7141     const Value *V = *I;
7142 
7143     // Skip empty types
7144     if (V->getType()->isEmptyTy())
7145       continue;
7146 
7147     SDValue ArgNode = getValue(V);
7148     Entry.Node = ArgNode; Entry.Ty = V->getType();
7149 
7150     Entry.setAttributes(&CB, I - CB.arg_begin());
7151 
7152     // Use swifterror virtual register as input to the call.
7153     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7154       SwiftErrorVal = V;
7155       // We find the virtual register for the actual swifterror argument.
7156       // Instead of using the Value, we use the virtual register instead.
7157       Entry.Node =
7158           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7159                           EVT(TLI.getPointerTy(DL)));
7160     }
7161 
7162     Args.push_back(Entry);
7163 
7164     // If we have an explicit sret argument that is an Instruction, (i.e., it
7165     // might point to function-local memory), we can't meaningfully tail-call.
7166     if (Entry.IsSRet && isa<Instruction>(V))
7167       isTailCall = false;
7168   }
7169 
7170   // If call site has a cfguardtarget operand bundle, create and add an
7171   // additional ArgListEntry.
7172   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7173     TargetLowering::ArgListEntry Entry;
7174     Value *V = Bundle->Inputs[0];
7175     SDValue ArgNode = getValue(V);
7176     Entry.Node = ArgNode;
7177     Entry.Ty = V->getType();
7178     Entry.IsCFGuardTarget = true;
7179     Args.push_back(Entry);
7180   }
7181 
7182   // Check if target-independent constraints permit a tail call here.
7183   // Target-dependent constraints are checked within TLI->LowerCallTo.
7184   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7185     isTailCall = false;
7186 
7187   // Disable tail calls if there is an swifterror argument. Targets have not
7188   // been updated to support tail calls.
7189   if (TLI.supportSwiftError() && SwiftErrorVal)
7190     isTailCall = false;
7191 
7192   TargetLowering::CallLoweringInfo CLI(DAG);
7193   CLI.setDebugLoc(getCurSDLoc())
7194       .setChain(getRoot())
7195       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7196       .setTailCall(isTailCall)
7197       .setConvergent(CB.isConvergent())
7198       .setIsPreallocated(
7199           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7200   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7201 
7202   if (Result.first.getNode()) {
7203     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7204     setValue(&CB, Result.first);
7205   }
7206 
7207   // The last element of CLI.InVals has the SDValue for swifterror return.
7208   // Here we copy it to a virtual register and update SwiftErrorMap for
7209   // book-keeping.
7210   if (SwiftErrorVal && TLI.supportSwiftError()) {
7211     // Get the last element of InVals.
7212     SDValue Src = CLI.InVals.back();
7213     Register VReg =
7214         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7215     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7216     DAG.setRoot(CopyNode);
7217   }
7218 }
7219 
7220 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7221                              SelectionDAGBuilder &Builder) {
7222   // Check to see if this load can be trivially constant folded, e.g. if the
7223   // input is from a string literal.
7224   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7225     // Cast pointer to the type we really want to load.
7226     Type *LoadTy =
7227         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7228     if (LoadVT.isVector())
7229       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7230 
7231     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7232                                          PointerType::getUnqual(LoadTy));
7233 
7234     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7235             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7236       return Builder.getValue(LoadCst);
7237   }
7238 
7239   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7240   // still constant memory, the input chain can be the entry node.
7241   SDValue Root;
7242   bool ConstantMemory = false;
7243 
7244   // Do not serialize (non-volatile) loads of constant memory with anything.
7245   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7246     Root = Builder.DAG.getEntryNode();
7247     ConstantMemory = true;
7248   } else {
7249     // Do not serialize non-volatile loads against each other.
7250     Root = Builder.DAG.getRoot();
7251   }
7252 
7253   SDValue Ptr = Builder.getValue(PtrVal);
7254   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7255                                         Ptr, MachinePointerInfo(PtrVal),
7256                                         /* Alignment = */ 1);
7257 
7258   if (!ConstantMemory)
7259     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7260   return LoadVal;
7261 }
7262 
7263 /// Record the value for an instruction that produces an integer result,
7264 /// converting the type where necessary.
7265 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7266                                                   SDValue Value,
7267                                                   bool IsSigned) {
7268   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7269                                                     I.getType(), true);
7270   if (IsSigned)
7271     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7272   else
7273     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7274   setValue(&I, Value);
7275 }
7276 
7277 /// See if we can lower a memcmp call into an optimized form. If so, return
7278 /// true and lower it. Otherwise return false, and it will be lowered like a
7279 /// normal call.
7280 /// The caller already checked that \p I calls the appropriate LibFunc with a
7281 /// correct prototype.
7282 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7283   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7284   const Value *Size = I.getArgOperand(2);
7285   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7286   if (CSize && CSize->getZExtValue() == 0) {
7287     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7288                                                           I.getType(), true);
7289     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7290     return true;
7291   }
7292 
7293   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7294   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7295       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7296       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7297   if (Res.first.getNode()) {
7298     processIntegerCallValue(I, Res.first, true);
7299     PendingLoads.push_back(Res.second);
7300     return true;
7301   }
7302 
7303   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7304   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7305   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7306     return false;
7307 
7308   // If the target has a fast compare for the given size, it will return a
7309   // preferred load type for that size. Require that the load VT is legal and
7310   // that the target supports unaligned loads of that type. Otherwise, return
7311   // INVALID.
7312   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7313     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7314     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7315     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7316       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7317       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7318       // TODO: Check alignment of src and dest ptrs.
7319       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7320       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7321       if (!TLI.isTypeLegal(LVT) ||
7322           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7323           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7324         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7325     }
7326 
7327     return LVT;
7328   };
7329 
7330   // This turns into unaligned loads. We only do this if the target natively
7331   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7332   // we'll only produce a small number of byte loads.
7333   MVT LoadVT;
7334   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7335   switch (NumBitsToCompare) {
7336   default:
7337     return false;
7338   case 16:
7339     LoadVT = MVT::i16;
7340     break;
7341   case 32:
7342     LoadVT = MVT::i32;
7343     break;
7344   case 64:
7345   case 128:
7346   case 256:
7347     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7348     break;
7349   }
7350 
7351   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7352     return false;
7353 
7354   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7355   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7356 
7357   // Bitcast to a wide integer type if the loads are vectors.
7358   if (LoadVT.isVector()) {
7359     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7360     LoadL = DAG.getBitcast(CmpVT, LoadL);
7361     LoadR = DAG.getBitcast(CmpVT, LoadR);
7362   }
7363 
7364   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7365   processIntegerCallValue(I, Cmp, false);
7366   return true;
7367 }
7368 
7369 /// See if we can lower a memchr call into an optimized form. If so, return
7370 /// true and lower it. Otherwise return false, and it will be lowered like a
7371 /// normal call.
7372 /// The caller already checked that \p I calls the appropriate LibFunc with a
7373 /// correct prototype.
7374 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7375   const Value *Src = I.getArgOperand(0);
7376   const Value *Char = I.getArgOperand(1);
7377   const Value *Length = I.getArgOperand(2);
7378 
7379   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7380   std::pair<SDValue, SDValue> Res =
7381     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7382                                 getValue(Src), getValue(Char), getValue(Length),
7383                                 MachinePointerInfo(Src));
7384   if (Res.first.getNode()) {
7385     setValue(&I, Res.first);
7386     PendingLoads.push_back(Res.second);
7387     return true;
7388   }
7389 
7390   return false;
7391 }
7392 
7393 /// See if we can lower a mempcpy call into an optimized form. If so, return
7394 /// true and lower it. Otherwise return false, and it will be lowered like a
7395 /// normal call.
7396 /// The caller already checked that \p I calls the appropriate LibFunc with a
7397 /// correct prototype.
7398 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7399   SDValue Dst = getValue(I.getArgOperand(0));
7400   SDValue Src = getValue(I.getArgOperand(1));
7401   SDValue Size = getValue(I.getArgOperand(2));
7402 
7403   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7404   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7405   // DAG::getMemcpy needs Alignment to be defined.
7406   Align Alignment = std::min(DstAlign, SrcAlign);
7407 
7408   bool isVol = false;
7409   SDLoc sdl = getCurSDLoc();
7410 
7411   // In the mempcpy context we need to pass in a false value for isTailCall
7412   // because the return pointer needs to be adjusted by the size of
7413   // the copied memory.
7414   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7415   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7416                              /*isTailCall=*/false,
7417                              MachinePointerInfo(I.getArgOperand(0)),
7418                              MachinePointerInfo(I.getArgOperand(1)));
7419   assert(MC.getNode() != nullptr &&
7420          "** memcpy should not be lowered as TailCall in mempcpy context **");
7421   DAG.setRoot(MC);
7422 
7423   // Check if Size needs to be truncated or extended.
7424   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7425 
7426   // Adjust return pointer to point just past the last dst byte.
7427   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7428                                     Dst, Size);
7429   setValue(&I, DstPlusSize);
7430   return true;
7431 }
7432 
7433 /// See if we can lower a strcpy call into an optimized form.  If so, return
7434 /// true and lower it, otherwise return false and it will be lowered like a
7435 /// normal call.
7436 /// The caller already checked that \p I calls the appropriate LibFunc with a
7437 /// correct prototype.
7438 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7439   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7440 
7441   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7442   std::pair<SDValue, SDValue> Res =
7443     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7444                                 getValue(Arg0), getValue(Arg1),
7445                                 MachinePointerInfo(Arg0),
7446                                 MachinePointerInfo(Arg1), isStpcpy);
7447   if (Res.first.getNode()) {
7448     setValue(&I, Res.first);
7449     DAG.setRoot(Res.second);
7450     return true;
7451   }
7452 
7453   return false;
7454 }
7455 
7456 /// See if we can lower a strcmp call into an optimized form.  If so, return
7457 /// true and lower it, otherwise return false and it will be lowered like a
7458 /// normal call.
7459 /// The caller already checked that \p I calls the appropriate LibFunc with a
7460 /// correct prototype.
7461 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7462   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7463 
7464   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7465   std::pair<SDValue, SDValue> Res =
7466     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7467                                 getValue(Arg0), getValue(Arg1),
7468                                 MachinePointerInfo(Arg0),
7469                                 MachinePointerInfo(Arg1));
7470   if (Res.first.getNode()) {
7471     processIntegerCallValue(I, Res.first, true);
7472     PendingLoads.push_back(Res.second);
7473     return true;
7474   }
7475 
7476   return false;
7477 }
7478 
7479 /// See if we can lower a strlen call into an optimized form.  If so, return
7480 /// true and lower it, otherwise return false and it will be lowered like a
7481 /// normal call.
7482 /// The caller already checked that \p I calls the appropriate LibFunc with a
7483 /// correct prototype.
7484 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7485   const Value *Arg0 = I.getArgOperand(0);
7486 
7487   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7488   std::pair<SDValue, SDValue> Res =
7489     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7490                                 getValue(Arg0), MachinePointerInfo(Arg0));
7491   if (Res.first.getNode()) {
7492     processIntegerCallValue(I, Res.first, false);
7493     PendingLoads.push_back(Res.second);
7494     return true;
7495   }
7496 
7497   return false;
7498 }
7499 
7500 /// See if we can lower a strnlen call into an optimized form.  If so, return
7501 /// true and lower it, otherwise return false and it will be lowered like a
7502 /// normal call.
7503 /// The caller already checked that \p I calls the appropriate LibFunc with a
7504 /// correct prototype.
7505 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7506   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7507 
7508   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7509   std::pair<SDValue, SDValue> Res =
7510     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7511                                  getValue(Arg0), getValue(Arg1),
7512                                  MachinePointerInfo(Arg0));
7513   if (Res.first.getNode()) {
7514     processIntegerCallValue(I, Res.first, false);
7515     PendingLoads.push_back(Res.second);
7516     return true;
7517   }
7518 
7519   return false;
7520 }
7521 
7522 /// See if we can lower a unary floating-point operation into an SDNode with
7523 /// the specified Opcode.  If so, return true and lower it, otherwise return
7524 /// false and it will be lowered like a normal call.
7525 /// The caller already checked that \p I calls the appropriate LibFunc with a
7526 /// correct prototype.
7527 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7528                                               unsigned Opcode) {
7529   // We already checked this call's prototype; verify it doesn't modify errno.
7530   if (!I.onlyReadsMemory())
7531     return false;
7532 
7533   SDValue Tmp = getValue(I.getArgOperand(0));
7534   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7535   return true;
7536 }
7537 
7538 /// See if we can lower a binary floating-point operation into an SDNode with
7539 /// the specified Opcode. If so, return true and lower it. Otherwise return
7540 /// false, and it will be lowered like a normal call.
7541 /// The caller already checked that \p I calls the appropriate LibFunc with a
7542 /// correct prototype.
7543 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7544                                                unsigned Opcode) {
7545   // We already checked this call's prototype; verify it doesn't modify errno.
7546   if (!I.onlyReadsMemory())
7547     return false;
7548 
7549   SDValue Tmp0 = getValue(I.getArgOperand(0));
7550   SDValue Tmp1 = getValue(I.getArgOperand(1));
7551   EVT VT = Tmp0.getValueType();
7552   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7553   return true;
7554 }
7555 
7556 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7557   // Handle inline assembly differently.
7558   if (I.isInlineAsm()) {
7559     visitInlineAsm(I);
7560     return;
7561   }
7562 
7563   if (Function *F = I.getCalledFunction()) {
7564     if (F->isDeclaration()) {
7565       // Is this an LLVM intrinsic or a target-specific intrinsic?
7566       unsigned IID = F->getIntrinsicID();
7567       if (!IID)
7568         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7569           IID = II->getIntrinsicID(F);
7570 
7571       if (IID) {
7572         visitIntrinsicCall(I, IID);
7573         return;
7574       }
7575     }
7576 
7577     // Check for well-known libc/libm calls.  If the function is internal, it
7578     // can't be a library call.  Don't do the check if marked as nobuiltin for
7579     // some reason or the call site requires strict floating point semantics.
7580     LibFunc Func;
7581     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7582         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7583         LibInfo->hasOptimizedCodeGen(Func)) {
7584       switch (Func) {
7585       default: break;
7586       case LibFunc_copysign:
7587       case LibFunc_copysignf:
7588       case LibFunc_copysignl:
7589         // We already checked this call's prototype; verify it doesn't modify
7590         // errno.
7591         if (I.onlyReadsMemory()) {
7592           SDValue LHS = getValue(I.getArgOperand(0));
7593           SDValue RHS = getValue(I.getArgOperand(1));
7594           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7595                                    LHS.getValueType(), LHS, RHS));
7596           return;
7597         }
7598         break;
7599       case LibFunc_fabs:
7600       case LibFunc_fabsf:
7601       case LibFunc_fabsl:
7602         if (visitUnaryFloatCall(I, ISD::FABS))
7603           return;
7604         break;
7605       case LibFunc_fmin:
7606       case LibFunc_fminf:
7607       case LibFunc_fminl:
7608         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7609           return;
7610         break;
7611       case LibFunc_fmax:
7612       case LibFunc_fmaxf:
7613       case LibFunc_fmaxl:
7614         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7615           return;
7616         break;
7617       case LibFunc_sin:
7618       case LibFunc_sinf:
7619       case LibFunc_sinl:
7620         if (visitUnaryFloatCall(I, ISD::FSIN))
7621           return;
7622         break;
7623       case LibFunc_cos:
7624       case LibFunc_cosf:
7625       case LibFunc_cosl:
7626         if (visitUnaryFloatCall(I, ISD::FCOS))
7627           return;
7628         break;
7629       case LibFunc_sqrt:
7630       case LibFunc_sqrtf:
7631       case LibFunc_sqrtl:
7632       case LibFunc_sqrt_finite:
7633       case LibFunc_sqrtf_finite:
7634       case LibFunc_sqrtl_finite:
7635         if (visitUnaryFloatCall(I, ISD::FSQRT))
7636           return;
7637         break;
7638       case LibFunc_floor:
7639       case LibFunc_floorf:
7640       case LibFunc_floorl:
7641         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7642           return;
7643         break;
7644       case LibFunc_nearbyint:
7645       case LibFunc_nearbyintf:
7646       case LibFunc_nearbyintl:
7647         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7648           return;
7649         break;
7650       case LibFunc_ceil:
7651       case LibFunc_ceilf:
7652       case LibFunc_ceill:
7653         if (visitUnaryFloatCall(I, ISD::FCEIL))
7654           return;
7655         break;
7656       case LibFunc_rint:
7657       case LibFunc_rintf:
7658       case LibFunc_rintl:
7659         if (visitUnaryFloatCall(I, ISD::FRINT))
7660           return;
7661         break;
7662       case LibFunc_round:
7663       case LibFunc_roundf:
7664       case LibFunc_roundl:
7665         if (visitUnaryFloatCall(I, ISD::FROUND))
7666           return;
7667         break;
7668       case LibFunc_trunc:
7669       case LibFunc_truncf:
7670       case LibFunc_truncl:
7671         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7672           return;
7673         break;
7674       case LibFunc_log2:
7675       case LibFunc_log2f:
7676       case LibFunc_log2l:
7677         if (visitUnaryFloatCall(I, ISD::FLOG2))
7678           return;
7679         break;
7680       case LibFunc_exp2:
7681       case LibFunc_exp2f:
7682       case LibFunc_exp2l:
7683         if (visitUnaryFloatCall(I, ISD::FEXP2))
7684           return;
7685         break;
7686       case LibFunc_memcmp:
7687         if (visitMemCmpCall(I))
7688           return;
7689         break;
7690       case LibFunc_mempcpy:
7691         if (visitMemPCpyCall(I))
7692           return;
7693         break;
7694       case LibFunc_memchr:
7695         if (visitMemChrCall(I))
7696           return;
7697         break;
7698       case LibFunc_strcpy:
7699         if (visitStrCpyCall(I, false))
7700           return;
7701         break;
7702       case LibFunc_stpcpy:
7703         if (visitStrCpyCall(I, true))
7704           return;
7705         break;
7706       case LibFunc_strcmp:
7707         if (visitStrCmpCall(I))
7708           return;
7709         break;
7710       case LibFunc_strlen:
7711         if (visitStrLenCall(I))
7712           return;
7713         break;
7714       case LibFunc_strnlen:
7715         if (visitStrNLenCall(I))
7716           return;
7717         break;
7718       }
7719     }
7720   }
7721 
7722   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7723   // have to do anything here to lower funclet bundles.
7724   // CFGuardTarget bundles are lowered in LowerCallTo.
7725   assert(!I.hasOperandBundlesOtherThan(
7726              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7727               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) &&
7728          "Cannot lower calls with arbitrary operand bundles!");
7729 
7730   SDValue Callee = getValue(I.getCalledOperand());
7731 
7732   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7733     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7734   else
7735     // Check if we can potentially perform a tail call. More detailed checking
7736     // is be done within LowerCallTo, after more information about the call is
7737     // known.
7738     LowerCallTo(I, Callee, I.isTailCall());
7739 }
7740 
7741 namespace {
7742 
7743 /// AsmOperandInfo - This contains information for each constraint that we are
7744 /// lowering.
7745 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7746 public:
7747   /// CallOperand - If this is the result output operand or a clobber
7748   /// this is null, otherwise it is the incoming operand to the CallInst.
7749   /// This gets modified as the asm is processed.
7750   SDValue CallOperand;
7751 
7752   /// AssignedRegs - If this is a register or register class operand, this
7753   /// contains the set of register corresponding to the operand.
7754   RegsForValue AssignedRegs;
7755 
7756   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7757     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7758   }
7759 
7760   /// Whether or not this operand accesses memory
7761   bool hasMemory(const TargetLowering &TLI) const {
7762     // Indirect operand accesses access memory.
7763     if (isIndirect)
7764       return true;
7765 
7766     for (const auto &Code : Codes)
7767       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7768         return true;
7769 
7770     return false;
7771   }
7772 
7773   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7774   /// corresponds to.  If there is no Value* for this operand, it returns
7775   /// MVT::Other.
7776   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7777                            const DataLayout &DL) const {
7778     if (!CallOperandVal) return MVT::Other;
7779 
7780     if (isa<BasicBlock>(CallOperandVal))
7781       return TLI.getProgramPointerTy(DL);
7782 
7783     llvm::Type *OpTy = CallOperandVal->getType();
7784 
7785     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7786     // If this is an indirect operand, the operand is a pointer to the
7787     // accessed type.
7788     if (isIndirect) {
7789       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7790       if (!PtrTy)
7791         report_fatal_error("Indirect operand for inline asm not a pointer!");
7792       OpTy = PtrTy->getElementType();
7793     }
7794 
7795     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7796     if (StructType *STy = dyn_cast<StructType>(OpTy))
7797       if (STy->getNumElements() == 1)
7798         OpTy = STy->getElementType(0);
7799 
7800     // If OpTy is not a single value, it may be a struct/union that we
7801     // can tile with integers.
7802     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7803       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7804       switch (BitSize) {
7805       default: break;
7806       case 1:
7807       case 8:
7808       case 16:
7809       case 32:
7810       case 64:
7811       case 128:
7812         OpTy = IntegerType::get(Context, BitSize);
7813         break;
7814       }
7815     }
7816 
7817     return TLI.getValueType(DL, OpTy, true);
7818   }
7819 };
7820 
7821 
7822 } // end anonymous namespace
7823 
7824 /// Make sure that the output operand \p OpInfo and its corresponding input
7825 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7826 /// out).
7827 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7828                                SDISelAsmOperandInfo &MatchingOpInfo,
7829                                SelectionDAG &DAG) {
7830   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7831     return;
7832 
7833   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7834   const auto &TLI = DAG.getTargetLoweringInfo();
7835 
7836   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7837       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7838                                        OpInfo.ConstraintVT);
7839   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7840       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7841                                        MatchingOpInfo.ConstraintVT);
7842   if ((OpInfo.ConstraintVT.isInteger() !=
7843        MatchingOpInfo.ConstraintVT.isInteger()) ||
7844       (MatchRC.second != InputRC.second)) {
7845     // FIXME: error out in a more elegant fashion
7846     report_fatal_error("Unsupported asm: input constraint"
7847                        " with a matching output constraint of"
7848                        " incompatible type!");
7849   }
7850   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7851 }
7852 
7853 /// Get a direct memory input to behave well as an indirect operand.
7854 /// This may introduce stores, hence the need for a \p Chain.
7855 /// \return The (possibly updated) chain.
7856 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7857                                         SDISelAsmOperandInfo &OpInfo,
7858                                         SelectionDAG &DAG) {
7859   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7860 
7861   // If we don't have an indirect input, put it in the constpool if we can,
7862   // otherwise spill it to a stack slot.
7863   // TODO: This isn't quite right. We need to handle these according to
7864   // the addressing mode that the constraint wants. Also, this may take
7865   // an additional register for the computation and we don't want that
7866   // either.
7867 
7868   // If the operand is a float, integer, or vector constant, spill to a
7869   // constant pool entry to get its address.
7870   const Value *OpVal = OpInfo.CallOperandVal;
7871   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7872       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7873     OpInfo.CallOperand = DAG.getConstantPool(
7874         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7875     return Chain;
7876   }
7877 
7878   // Otherwise, create a stack slot and emit a store to it before the asm.
7879   Type *Ty = OpVal->getType();
7880   auto &DL = DAG.getDataLayout();
7881   uint64_t TySize = DL.getTypeAllocSize(Ty);
7882   MachineFunction &MF = DAG.getMachineFunction();
7883   int SSFI = MF.getFrameInfo().CreateStackObject(
7884       TySize, DL.getPrefTypeAlign(Ty), false);
7885   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7886   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7887                             MachinePointerInfo::getFixedStack(MF, SSFI),
7888                             TLI.getMemValueType(DL, Ty));
7889   OpInfo.CallOperand = StackSlot;
7890 
7891   return Chain;
7892 }
7893 
7894 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7895 /// specified operand.  We prefer to assign virtual registers, to allow the
7896 /// register allocator to handle the assignment process.  However, if the asm
7897 /// uses features that we can't model on machineinstrs, we have SDISel do the
7898 /// allocation.  This produces generally horrible, but correct, code.
7899 ///
7900 ///   OpInfo describes the operand
7901 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7902 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7903                                  SDISelAsmOperandInfo &OpInfo,
7904                                  SDISelAsmOperandInfo &RefOpInfo) {
7905   LLVMContext &Context = *DAG.getContext();
7906   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7907 
7908   MachineFunction &MF = DAG.getMachineFunction();
7909   SmallVector<unsigned, 4> Regs;
7910   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7911 
7912   // No work to do for memory operations.
7913   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7914     return;
7915 
7916   // If this is a constraint for a single physreg, or a constraint for a
7917   // register class, find it.
7918   unsigned AssignedReg;
7919   const TargetRegisterClass *RC;
7920   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7921       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7922   // RC is unset only on failure. Return immediately.
7923   if (!RC)
7924     return;
7925 
7926   // Get the actual register value type.  This is important, because the user
7927   // may have asked for (e.g.) the AX register in i32 type.  We need to
7928   // remember that AX is actually i16 to get the right extension.
7929   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7930 
7931   if (OpInfo.ConstraintVT != MVT::Other) {
7932     // If this is an FP operand in an integer register (or visa versa), or more
7933     // generally if the operand value disagrees with the register class we plan
7934     // to stick it in, fix the operand type.
7935     //
7936     // If this is an input value, the bitcast to the new type is done now.
7937     // Bitcast for output value is done at the end of visitInlineAsm().
7938     if ((OpInfo.Type == InlineAsm::isOutput ||
7939          OpInfo.Type == InlineAsm::isInput) &&
7940         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7941       // Try to convert to the first EVT that the reg class contains.  If the
7942       // types are identical size, use a bitcast to convert (e.g. two differing
7943       // vector types).  Note: output bitcast is done at the end of
7944       // visitInlineAsm().
7945       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7946         // Exclude indirect inputs while they are unsupported because the code
7947         // to perform the load is missing and thus OpInfo.CallOperand still
7948         // refers to the input address rather than the pointed-to value.
7949         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7950           OpInfo.CallOperand =
7951               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7952         OpInfo.ConstraintVT = RegVT;
7953         // If the operand is an FP value and we want it in integer registers,
7954         // use the corresponding integer type. This turns an f64 value into
7955         // i64, which can be passed with two i32 values on a 32-bit machine.
7956       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7957         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7958         if (OpInfo.Type == InlineAsm::isInput)
7959           OpInfo.CallOperand =
7960               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7961         OpInfo.ConstraintVT = VT;
7962       }
7963     }
7964   }
7965 
7966   // No need to allocate a matching input constraint since the constraint it's
7967   // matching to has already been allocated.
7968   if (OpInfo.isMatchingInputConstraint())
7969     return;
7970 
7971   EVT ValueVT = OpInfo.ConstraintVT;
7972   if (OpInfo.ConstraintVT == MVT::Other)
7973     ValueVT = RegVT;
7974 
7975   // Initialize NumRegs.
7976   unsigned NumRegs = 1;
7977   if (OpInfo.ConstraintVT != MVT::Other)
7978     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7979 
7980   // If this is a constraint for a specific physical register, like {r17},
7981   // assign it now.
7982 
7983   // If this associated to a specific register, initialize iterator to correct
7984   // place. If virtual, make sure we have enough registers
7985 
7986   // Initialize iterator if necessary
7987   TargetRegisterClass::iterator I = RC->begin();
7988   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7989 
7990   // Do not check for single registers.
7991   if (AssignedReg) {
7992       for (; *I != AssignedReg; ++I)
7993         assert(I != RC->end() && "AssignedReg should be member of RC");
7994   }
7995 
7996   for (; NumRegs; --NumRegs, ++I) {
7997     assert(I != RC->end() && "Ran out of registers to allocate!");
7998     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7999     Regs.push_back(R);
8000   }
8001 
8002   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8003 }
8004 
8005 static unsigned
8006 findMatchingInlineAsmOperand(unsigned OperandNo,
8007                              const std::vector<SDValue> &AsmNodeOperands) {
8008   // Scan until we find the definition we already emitted of this operand.
8009   unsigned CurOp = InlineAsm::Op_FirstOperand;
8010   for (; OperandNo; --OperandNo) {
8011     // Advance to the next operand.
8012     unsigned OpFlag =
8013         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8014     assert((InlineAsm::isRegDefKind(OpFlag) ||
8015             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8016             InlineAsm::isMemKind(OpFlag)) &&
8017            "Skipped past definitions?");
8018     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8019   }
8020   return CurOp;
8021 }
8022 
8023 namespace {
8024 
8025 class ExtraFlags {
8026   unsigned Flags = 0;
8027 
8028 public:
8029   explicit ExtraFlags(const CallBase &Call) {
8030     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8031     if (IA->hasSideEffects())
8032       Flags |= InlineAsm::Extra_HasSideEffects;
8033     if (IA->isAlignStack())
8034       Flags |= InlineAsm::Extra_IsAlignStack;
8035     if (Call.isConvergent())
8036       Flags |= InlineAsm::Extra_IsConvergent;
8037     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8038   }
8039 
8040   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8041     // Ideally, we would only check against memory constraints.  However, the
8042     // meaning of an Other constraint can be target-specific and we can't easily
8043     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8044     // for Other constraints as well.
8045     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8046         OpInfo.ConstraintType == TargetLowering::C_Other) {
8047       if (OpInfo.Type == InlineAsm::isInput)
8048         Flags |= InlineAsm::Extra_MayLoad;
8049       else if (OpInfo.Type == InlineAsm::isOutput)
8050         Flags |= InlineAsm::Extra_MayStore;
8051       else if (OpInfo.Type == InlineAsm::isClobber)
8052         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8053     }
8054   }
8055 
8056   unsigned get() const { return Flags; }
8057 };
8058 
8059 } // end anonymous namespace
8060 
8061 /// visitInlineAsm - Handle a call to an InlineAsm object.
8062 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8063   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8064 
8065   /// ConstraintOperands - Information about all of the constraints.
8066   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8067 
8068   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8069   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8070       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8071 
8072   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8073   // AsmDialect, MayLoad, MayStore).
8074   bool HasSideEffect = IA->hasSideEffects();
8075   ExtraFlags ExtraInfo(Call);
8076 
8077   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8078   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8079   unsigned NumMatchingOps = 0;
8080   for (auto &T : TargetConstraints) {
8081     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8082     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8083 
8084     // Compute the value type for each operand.
8085     if (OpInfo.Type == InlineAsm::isInput ||
8086         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8087       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8088 
8089       // Process the call argument. BasicBlocks are labels, currently appearing
8090       // only in asm's.
8091       if (isa<CallBrInst>(Call) &&
8092           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8093                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8094                         NumMatchingOps) &&
8095           (NumMatchingOps == 0 ||
8096            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8097                         NumMatchingOps))) {
8098         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8099         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8100         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8101       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8102         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8103       } else {
8104         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8105       }
8106 
8107       OpInfo.ConstraintVT =
8108           OpInfo
8109               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8110               .getSimpleVT();
8111     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8112       // The return value of the call is this value.  As such, there is no
8113       // corresponding argument.
8114       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8115       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8116         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8117             DAG.getDataLayout(), STy->getElementType(ResNo));
8118       } else {
8119         assert(ResNo == 0 && "Asm only has one result!");
8120         OpInfo.ConstraintVT =
8121             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8122       }
8123       ++ResNo;
8124     } else {
8125       OpInfo.ConstraintVT = MVT::Other;
8126     }
8127 
8128     if (OpInfo.hasMatchingInput())
8129       ++NumMatchingOps;
8130 
8131     if (!HasSideEffect)
8132       HasSideEffect = OpInfo.hasMemory(TLI);
8133 
8134     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8135     // FIXME: Could we compute this on OpInfo rather than T?
8136 
8137     // Compute the constraint code and ConstraintType to use.
8138     TLI.ComputeConstraintToUse(T, SDValue());
8139 
8140     if (T.ConstraintType == TargetLowering::C_Immediate &&
8141         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8142       // We've delayed emitting a diagnostic like the "n" constraint because
8143       // inlining could cause an integer showing up.
8144       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8145                                           "' expects an integer constant "
8146                                           "expression");
8147 
8148     ExtraInfo.update(T);
8149   }
8150 
8151 
8152   // We won't need to flush pending loads if this asm doesn't touch
8153   // memory and is nonvolatile.
8154   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8155 
8156   bool IsCallBr = isa<CallBrInst>(Call);
8157   if (IsCallBr) {
8158     // If this is a callbr we need to flush pending exports since inlineasm_br
8159     // is a terminator. We need to do this before nodes are glued to
8160     // the inlineasm_br node.
8161     Chain = getControlRoot();
8162   }
8163 
8164   // Second pass over the constraints: compute which constraint option to use.
8165   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8166     // If this is an output operand with a matching input operand, look up the
8167     // matching input. If their types mismatch, e.g. one is an integer, the
8168     // other is floating point, or their sizes are different, flag it as an
8169     // error.
8170     if (OpInfo.hasMatchingInput()) {
8171       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8172       patchMatchingInput(OpInfo, Input, DAG);
8173     }
8174 
8175     // Compute the constraint code and ConstraintType to use.
8176     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8177 
8178     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8179         OpInfo.Type == InlineAsm::isClobber)
8180       continue;
8181 
8182     // If this is a memory input, and if the operand is not indirect, do what we
8183     // need to provide an address for the memory input.
8184     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8185         !OpInfo.isIndirect) {
8186       assert((OpInfo.isMultipleAlternative ||
8187               (OpInfo.Type == InlineAsm::isInput)) &&
8188              "Can only indirectify direct input operands!");
8189 
8190       // Memory operands really want the address of the value.
8191       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8192 
8193       // There is no longer a Value* corresponding to this operand.
8194       OpInfo.CallOperandVal = nullptr;
8195 
8196       // It is now an indirect operand.
8197       OpInfo.isIndirect = true;
8198     }
8199 
8200   }
8201 
8202   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8203   std::vector<SDValue> AsmNodeOperands;
8204   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8205   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8206       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8207 
8208   // If we have a !srcloc metadata node associated with it, we want to attach
8209   // this to the ultimately generated inline asm machineinstr.  To do this, we
8210   // pass in the third operand as this (potentially null) inline asm MDNode.
8211   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8212   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8213 
8214   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8215   // bits as operand 3.
8216   AsmNodeOperands.push_back(DAG.getTargetConstant(
8217       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8218 
8219   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8220   // this, assign virtual and physical registers for inputs and otput.
8221   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8222     // Assign Registers.
8223     SDISelAsmOperandInfo &RefOpInfo =
8224         OpInfo.isMatchingInputConstraint()
8225             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8226             : OpInfo;
8227     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8228 
8229     auto DetectWriteToReservedRegister = [&]() {
8230       const MachineFunction &MF = DAG.getMachineFunction();
8231       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8232       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8233         if (Register::isPhysicalRegister(Reg) &&
8234             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8235           const char *RegName = TRI.getName(Reg);
8236           emitInlineAsmError(Call, "write to reserved register '" +
8237                                        Twine(RegName) + "'");
8238           return true;
8239         }
8240       }
8241       return false;
8242     };
8243 
8244     switch (OpInfo.Type) {
8245     case InlineAsm::isOutput:
8246       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8247         unsigned ConstraintID =
8248             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8249         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8250                "Failed to convert memory constraint code to constraint id.");
8251 
8252         // Add information to the INLINEASM node to know about this output.
8253         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8254         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8255         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8256                                                         MVT::i32));
8257         AsmNodeOperands.push_back(OpInfo.CallOperand);
8258       } else {
8259         // Otherwise, this outputs to a register (directly for C_Register /
8260         // C_RegisterClass, and a target-defined fashion for
8261         // C_Immediate/C_Other). Find a register that we can use.
8262         if (OpInfo.AssignedRegs.Regs.empty()) {
8263           emitInlineAsmError(
8264               Call, "couldn't allocate output register for constraint '" +
8265                         Twine(OpInfo.ConstraintCode) + "'");
8266           return;
8267         }
8268 
8269         if (DetectWriteToReservedRegister())
8270           return;
8271 
8272         // Add information to the INLINEASM node to know that this register is
8273         // set.
8274         OpInfo.AssignedRegs.AddInlineAsmOperands(
8275             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8276                                   : InlineAsm::Kind_RegDef,
8277             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8278       }
8279       break;
8280 
8281     case InlineAsm::isInput: {
8282       SDValue InOperandVal = OpInfo.CallOperand;
8283 
8284       if (OpInfo.isMatchingInputConstraint()) {
8285         // If this is required to match an output register we have already set,
8286         // just use its register.
8287         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8288                                                   AsmNodeOperands);
8289         unsigned OpFlag =
8290           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8291         if (InlineAsm::isRegDefKind(OpFlag) ||
8292             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8293           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8294           if (OpInfo.isIndirect) {
8295             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8296             emitInlineAsmError(Call, "inline asm not supported yet: "
8297                                      "don't know how to handle tied "
8298                                      "indirect register inputs");
8299             return;
8300           }
8301 
8302           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8303           SmallVector<unsigned, 4> Regs;
8304 
8305           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8306             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8307             MachineRegisterInfo &RegInfo =
8308                 DAG.getMachineFunction().getRegInfo();
8309             for (unsigned i = 0; i != NumRegs; ++i)
8310               Regs.push_back(RegInfo.createVirtualRegister(RC));
8311           } else {
8312             emitInlineAsmError(Call,
8313                                "inline asm error: This value type register "
8314                                "class is not natively supported!");
8315             return;
8316           }
8317 
8318           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8319 
8320           SDLoc dl = getCurSDLoc();
8321           // Use the produced MatchedRegs object to
8322           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8323           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8324                                            true, OpInfo.getMatchedOperand(), dl,
8325                                            DAG, AsmNodeOperands);
8326           break;
8327         }
8328 
8329         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8330         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8331                "Unexpected number of operands");
8332         // Add information to the INLINEASM node to know about this input.
8333         // See InlineAsm.h isUseOperandTiedToDef.
8334         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8335         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8336                                                     OpInfo.getMatchedOperand());
8337         AsmNodeOperands.push_back(DAG.getTargetConstant(
8338             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8339         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8340         break;
8341       }
8342 
8343       // Treat indirect 'X' constraint as memory.
8344       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8345           OpInfo.isIndirect)
8346         OpInfo.ConstraintType = TargetLowering::C_Memory;
8347 
8348       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8349           OpInfo.ConstraintType == TargetLowering::C_Other) {
8350         std::vector<SDValue> Ops;
8351         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8352                                           Ops, DAG);
8353         if (Ops.empty()) {
8354           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8355             if (isa<ConstantSDNode>(InOperandVal)) {
8356               emitInlineAsmError(Call, "value out of range for constraint '" +
8357                                            Twine(OpInfo.ConstraintCode) + "'");
8358               return;
8359             }
8360 
8361           emitInlineAsmError(Call,
8362                              "invalid operand for inline asm constraint '" +
8363                                  Twine(OpInfo.ConstraintCode) + "'");
8364           return;
8365         }
8366 
8367         // Add information to the INLINEASM node to know about this input.
8368         unsigned ResOpType =
8369           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8370         AsmNodeOperands.push_back(DAG.getTargetConstant(
8371             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8372         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8373         break;
8374       }
8375 
8376       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8377         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8378         assert(InOperandVal.getValueType() ==
8379                    TLI.getPointerTy(DAG.getDataLayout()) &&
8380                "Memory operands expect pointer values");
8381 
8382         unsigned ConstraintID =
8383             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8384         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8385                "Failed to convert memory constraint code to constraint id.");
8386 
8387         // Add information to the INLINEASM node to know about this input.
8388         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8389         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8390         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8391                                                         getCurSDLoc(),
8392                                                         MVT::i32));
8393         AsmNodeOperands.push_back(InOperandVal);
8394         break;
8395       }
8396 
8397       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8398               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8399              "Unknown constraint type!");
8400 
8401       // TODO: Support this.
8402       if (OpInfo.isIndirect) {
8403         emitInlineAsmError(
8404             Call, "Don't know how to handle indirect register inputs yet "
8405                   "for constraint '" +
8406                       Twine(OpInfo.ConstraintCode) + "'");
8407         return;
8408       }
8409 
8410       // Copy the input into the appropriate registers.
8411       if (OpInfo.AssignedRegs.Regs.empty()) {
8412         emitInlineAsmError(Call,
8413                            "couldn't allocate input reg for constraint '" +
8414                                Twine(OpInfo.ConstraintCode) + "'");
8415         return;
8416       }
8417 
8418       if (DetectWriteToReservedRegister())
8419         return;
8420 
8421       SDLoc dl = getCurSDLoc();
8422 
8423       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8424                                         &Call);
8425 
8426       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8427                                                dl, DAG, AsmNodeOperands);
8428       break;
8429     }
8430     case InlineAsm::isClobber:
8431       // Add the clobbered value to the operand list, so that the register
8432       // allocator is aware that the physreg got clobbered.
8433       if (!OpInfo.AssignedRegs.Regs.empty())
8434         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8435                                                  false, 0, getCurSDLoc(), DAG,
8436                                                  AsmNodeOperands);
8437       break;
8438     }
8439   }
8440 
8441   // Finish up input operands.  Set the input chain and add the flag last.
8442   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8443   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8444 
8445   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8446   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8447                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8448   Flag = Chain.getValue(1);
8449 
8450   // Do additional work to generate outputs.
8451 
8452   SmallVector<EVT, 1> ResultVTs;
8453   SmallVector<SDValue, 1> ResultValues;
8454   SmallVector<SDValue, 8> OutChains;
8455 
8456   llvm::Type *CallResultType = Call.getType();
8457   ArrayRef<Type *> ResultTypes;
8458   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8459     ResultTypes = StructResult->elements();
8460   else if (!CallResultType->isVoidTy())
8461     ResultTypes = makeArrayRef(CallResultType);
8462 
8463   auto CurResultType = ResultTypes.begin();
8464   auto handleRegAssign = [&](SDValue V) {
8465     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8466     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8467     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8468     ++CurResultType;
8469     // If the type of the inline asm call site return value is different but has
8470     // same size as the type of the asm output bitcast it.  One example of this
8471     // is for vectors with different width / number of elements.  This can
8472     // happen for register classes that can contain multiple different value
8473     // types.  The preg or vreg allocated may not have the same VT as was
8474     // expected.
8475     //
8476     // This can also happen for a return value that disagrees with the register
8477     // class it is put in, eg. a double in a general-purpose register on a
8478     // 32-bit machine.
8479     if (ResultVT != V.getValueType() &&
8480         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8481       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8482     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8483              V.getValueType().isInteger()) {
8484       // If a result value was tied to an input value, the computed result
8485       // may have a wider width than the expected result.  Extract the
8486       // relevant portion.
8487       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8488     }
8489     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8490     ResultVTs.push_back(ResultVT);
8491     ResultValues.push_back(V);
8492   };
8493 
8494   // Deal with output operands.
8495   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8496     if (OpInfo.Type == InlineAsm::isOutput) {
8497       SDValue Val;
8498       // Skip trivial output operands.
8499       if (OpInfo.AssignedRegs.Regs.empty())
8500         continue;
8501 
8502       switch (OpInfo.ConstraintType) {
8503       case TargetLowering::C_Register:
8504       case TargetLowering::C_RegisterClass:
8505         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8506                                                   Chain, &Flag, &Call);
8507         break;
8508       case TargetLowering::C_Immediate:
8509       case TargetLowering::C_Other:
8510         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8511                                               OpInfo, DAG);
8512         break;
8513       case TargetLowering::C_Memory:
8514         break; // Already handled.
8515       case TargetLowering::C_Unknown:
8516         assert(false && "Unexpected unknown constraint");
8517       }
8518 
8519       // Indirect output manifest as stores. Record output chains.
8520       if (OpInfo.isIndirect) {
8521         const Value *Ptr = OpInfo.CallOperandVal;
8522         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8523         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8524                                      MachinePointerInfo(Ptr));
8525         OutChains.push_back(Store);
8526       } else {
8527         // generate CopyFromRegs to associated registers.
8528         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8529         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8530           for (const SDValue &V : Val->op_values())
8531             handleRegAssign(V);
8532         } else
8533           handleRegAssign(Val);
8534       }
8535     }
8536   }
8537 
8538   // Set results.
8539   if (!ResultValues.empty()) {
8540     assert(CurResultType == ResultTypes.end() &&
8541            "Mismatch in number of ResultTypes");
8542     assert(ResultValues.size() == ResultTypes.size() &&
8543            "Mismatch in number of output operands in asm result");
8544 
8545     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8546                             DAG.getVTList(ResultVTs), ResultValues);
8547     setValue(&Call, V);
8548   }
8549 
8550   // Collect store chains.
8551   if (!OutChains.empty())
8552     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8553 
8554   // Only Update Root if inline assembly has a memory effect.
8555   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8556     DAG.setRoot(Chain);
8557 }
8558 
8559 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8560                                              const Twine &Message) {
8561   LLVMContext &Ctx = *DAG.getContext();
8562   Ctx.emitError(&Call, Message);
8563 
8564   // Make sure we leave the DAG in a valid state
8565   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8566   SmallVector<EVT, 1> ValueVTs;
8567   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8568 
8569   if (ValueVTs.empty())
8570     return;
8571 
8572   SmallVector<SDValue, 1> Ops;
8573   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8574     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8575 
8576   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8577 }
8578 
8579 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8580   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8581                           MVT::Other, getRoot(),
8582                           getValue(I.getArgOperand(0)),
8583                           DAG.getSrcValue(I.getArgOperand(0))));
8584 }
8585 
8586 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8587   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8588   const DataLayout &DL = DAG.getDataLayout();
8589   SDValue V = DAG.getVAArg(
8590       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8591       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8592       DL.getABITypeAlign(I.getType()).value());
8593   DAG.setRoot(V.getValue(1));
8594 
8595   if (I.getType()->isPointerTy())
8596     V = DAG.getPtrExtOrTrunc(
8597         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8598   setValue(&I, V);
8599 }
8600 
8601 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8602   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8603                           MVT::Other, getRoot(),
8604                           getValue(I.getArgOperand(0)),
8605                           DAG.getSrcValue(I.getArgOperand(0))));
8606 }
8607 
8608 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8609   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8610                           MVT::Other, getRoot(),
8611                           getValue(I.getArgOperand(0)),
8612                           getValue(I.getArgOperand(1)),
8613                           DAG.getSrcValue(I.getArgOperand(0)),
8614                           DAG.getSrcValue(I.getArgOperand(1))));
8615 }
8616 
8617 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8618                                                     const Instruction &I,
8619                                                     SDValue Op) {
8620   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8621   if (!Range)
8622     return Op;
8623 
8624   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8625   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8626     return Op;
8627 
8628   APInt Lo = CR.getUnsignedMin();
8629   if (!Lo.isMinValue())
8630     return Op;
8631 
8632   APInt Hi = CR.getUnsignedMax();
8633   unsigned Bits = std::max(Hi.getActiveBits(),
8634                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8635 
8636   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8637 
8638   SDLoc SL = getCurSDLoc();
8639 
8640   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8641                              DAG.getValueType(SmallVT));
8642   unsigned NumVals = Op.getNode()->getNumValues();
8643   if (NumVals == 1)
8644     return ZExt;
8645 
8646   SmallVector<SDValue, 4> Ops;
8647 
8648   Ops.push_back(ZExt);
8649   for (unsigned I = 1; I != NumVals; ++I)
8650     Ops.push_back(Op.getValue(I));
8651 
8652   return DAG.getMergeValues(Ops, SL);
8653 }
8654 
8655 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8656 /// the call being lowered.
8657 ///
8658 /// This is a helper for lowering intrinsics that follow a target calling
8659 /// convention or require stack pointer adjustment. Only a subset of the
8660 /// intrinsic's operands need to participate in the calling convention.
8661 void SelectionDAGBuilder::populateCallLoweringInfo(
8662     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8663     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8664     bool IsPatchPoint) {
8665   TargetLowering::ArgListTy Args;
8666   Args.reserve(NumArgs);
8667 
8668   // Populate the argument list.
8669   // Attributes for args start at offset 1, after the return attribute.
8670   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8671        ArgI != ArgE; ++ArgI) {
8672     const Value *V = Call->getOperand(ArgI);
8673 
8674     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8675 
8676     TargetLowering::ArgListEntry Entry;
8677     Entry.Node = getValue(V);
8678     Entry.Ty = V->getType();
8679     Entry.setAttributes(Call, ArgI);
8680     Args.push_back(Entry);
8681   }
8682 
8683   CLI.setDebugLoc(getCurSDLoc())
8684       .setChain(getRoot())
8685       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8686       .setDiscardResult(Call->use_empty())
8687       .setIsPatchPoint(IsPatchPoint)
8688       .setIsPreallocated(
8689           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8690 }
8691 
8692 /// Add a stack map intrinsic call's live variable operands to a stackmap
8693 /// or patchpoint target node's operand list.
8694 ///
8695 /// Constants are converted to TargetConstants purely as an optimization to
8696 /// avoid constant materialization and register allocation.
8697 ///
8698 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8699 /// generate addess computation nodes, and so FinalizeISel can convert the
8700 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8701 /// address materialization and register allocation, but may also be required
8702 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8703 /// alloca in the entry block, then the runtime may assume that the alloca's
8704 /// StackMap location can be read immediately after compilation and that the
8705 /// location is valid at any point during execution (this is similar to the
8706 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8707 /// only available in a register, then the runtime would need to trap when
8708 /// execution reaches the StackMap in order to read the alloca's location.
8709 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8710                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8711                                 SelectionDAGBuilder &Builder) {
8712   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8713     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8714     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8715       Ops.push_back(
8716         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8717       Ops.push_back(
8718         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8719     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8720       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8721       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8722           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8723     } else
8724       Ops.push_back(OpVal);
8725   }
8726 }
8727 
8728 /// Lower llvm.experimental.stackmap directly to its target opcode.
8729 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8730   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8731   //                                  [live variables...])
8732 
8733   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8734 
8735   SDValue Chain, InFlag, Callee, NullPtr;
8736   SmallVector<SDValue, 32> Ops;
8737 
8738   SDLoc DL = getCurSDLoc();
8739   Callee = getValue(CI.getCalledOperand());
8740   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8741 
8742   // The stackmap intrinsic only records the live variables (the arguments
8743   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8744   // intrinsic, this won't be lowered to a function call. This means we don't
8745   // have to worry about calling conventions and target specific lowering code.
8746   // Instead we perform the call lowering right here.
8747   //
8748   // chain, flag = CALLSEQ_START(chain, 0, 0)
8749   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8750   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8751   //
8752   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8753   InFlag = Chain.getValue(1);
8754 
8755   // Add the <id> and <numBytes> constants.
8756   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8757   Ops.push_back(DAG.getTargetConstant(
8758                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8759   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8760   Ops.push_back(DAG.getTargetConstant(
8761                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8762                   MVT::i32));
8763 
8764   // Push live variables for the stack map.
8765   addStackMapLiveVars(CI, 2, DL, Ops, *this);
8766 
8767   // We are not pushing any register mask info here on the operands list,
8768   // because the stackmap doesn't clobber anything.
8769 
8770   // Push the chain and the glue flag.
8771   Ops.push_back(Chain);
8772   Ops.push_back(InFlag);
8773 
8774   // Create the STACKMAP node.
8775   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8776   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8777   Chain = SDValue(SM, 0);
8778   InFlag = Chain.getValue(1);
8779 
8780   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8781 
8782   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8783 
8784   // Set the root to the target-lowered call chain.
8785   DAG.setRoot(Chain);
8786 
8787   // Inform the Frame Information that we have a stackmap in this function.
8788   FuncInfo.MF->getFrameInfo().setHasStackMap();
8789 }
8790 
8791 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8792 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8793                                           const BasicBlock *EHPadBB) {
8794   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8795   //                                                 i32 <numBytes>,
8796   //                                                 i8* <target>,
8797   //                                                 i32 <numArgs>,
8798   //                                                 [Args...],
8799   //                                                 [live variables...])
8800 
8801   CallingConv::ID CC = CB.getCallingConv();
8802   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8803   bool HasDef = !CB.getType()->isVoidTy();
8804   SDLoc dl = getCurSDLoc();
8805   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8806 
8807   // Handle immediate and symbolic callees.
8808   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8809     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8810                                    /*isTarget=*/true);
8811   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8812     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8813                                          SDLoc(SymbolicCallee),
8814                                          SymbolicCallee->getValueType(0));
8815 
8816   // Get the real number of arguments participating in the call <numArgs>
8817   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8818   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8819 
8820   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8821   // Intrinsics include all meta-operands up to but not including CC.
8822   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8823   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8824          "Not enough arguments provided to the patchpoint intrinsic");
8825 
8826   // For AnyRegCC the arguments are lowered later on manually.
8827   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8828   Type *ReturnTy =
8829       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
8830 
8831   TargetLowering::CallLoweringInfo CLI(DAG);
8832   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
8833                            ReturnTy, true);
8834   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8835 
8836   SDNode *CallEnd = Result.second.getNode();
8837   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8838     CallEnd = CallEnd->getOperand(0).getNode();
8839 
8840   /// Get a call instruction from the call sequence chain.
8841   /// Tail calls are not allowed.
8842   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8843          "Expected a callseq node.");
8844   SDNode *Call = CallEnd->getOperand(0).getNode();
8845   bool HasGlue = Call->getGluedNode();
8846 
8847   // Replace the target specific call node with the patchable intrinsic.
8848   SmallVector<SDValue, 8> Ops;
8849 
8850   // Add the <id> and <numBytes> constants.
8851   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
8852   Ops.push_back(DAG.getTargetConstant(
8853                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8854   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
8855   Ops.push_back(DAG.getTargetConstant(
8856                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8857                   MVT::i32));
8858 
8859   // Add the callee.
8860   Ops.push_back(Callee);
8861 
8862   // Adjust <numArgs> to account for any arguments that have been passed on the
8863   // stack instead.
8864   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8865   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8866   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8867   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8868 
8869   // Add the calling convention
8870   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8871 
8872   // Add the arguments we omitted previously. The register allocator should
8873   // place these in any free register.
8874   if (IsAnyRegCC)
8875     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8876       Ops.push_back(getValue(CB.getArgOperand(i)));
8877 
8878   // Push the arguments from the call instruction up to the register mask.
8879   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8880   Ops.append(Call->op_begin() + 2, e);
8881 
8882   // Push live variables for the stack map.
8883   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
8884 
8885   // Push the register mask info.
8886   if (HasGlue)
8887     Ops.push_back(*(Call->op_end()-2));
8888   else
8889     Ops.push_back(*(Call->op_end()-1));
8890 
8891   // Push the chain (this is originally the first operand of the call, but
8892   // becomes now the last or second to last operand).
8893   Ops.push_back(*(Call->op_begin()));
8894 
8895   // Push the glue flag (last operand).
8896   if (HasGlue)
8897     Ops.push_back(*(Call->op_end()-1));
8898 
8899   SDVTList NodeTys;
8900   if (IsAnyRegCC && HasDef) {
8901     // Create the return types based on the intrinsic definition
8902     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8903     SmallVector<EVT, 3> ValueVTs;
8904     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
8905     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8906 
8907     // There is always a chain and a glue type at the end
8908     ValueVTs.push_back(MVT::Other);
8909     ValueVTs.push_back(MVT::Glue);
8910     NodeTys = DAG.getVTList(ValueVTs);
8911   } else
8912     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8913 
8914   // Replace the target specific call node with a PATCHPOINT node.
8915   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8916                                          dl, NodeTys, Ops);
8917 
8918   // Update the NodeMap.
8919   if (HasDef) {
8920     if (IsAnyRegCC)
8921       setValue(&CB, SDValue(MN, 0));
8922     else
8923       setValue(&CB, Result.first);
8924   }
8925 
8926   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8927   // call sequence. Furthermore the location of the chain and glue can change
8928   // when the AnyReg calling convention is used and the intrinsic returns a
8929   // value.
8930   if (IsAnyRegCC && HasDef) {
8931     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8932     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8933     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8934   } else
8935     DAG.ReplaceAllUsesWith(Call, MN);
8936   DAG.DeleteNode(Call);
8937 
8938   // Inform the Frame Information that we have a patchpoint in this function.
8939   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8940 }
8941 
8942 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8943                                             unsigned Intrinsic) {
8944   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8945   SDValue Op1 = getValue(I.getArgOperand(0));
8946   SDValue Op2;
8947   if (I.getNumArgOperands() > 1)
8948     Op2 = getValue(I.getArgOperand(1));
8949   SDLoc dl = getCurSDLoc();
8950   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8951   SDValue Res;
8952   FastMathFlags FMF;
8953   if (isa<FPMathOperator>(I))
8954     FMF = I.getFastMathFlags();
8955 
8956   switch (Intrinsic) {
8957   case Intrinsic::experimental_vector_reduce_v2_fadd:
8958     if (FMF.allowReassoc())
8959       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8960                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8961     else
8962       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8963     break;
8964   case Intrinsic::experimental_vector_reduce_v2_fmul:
8965     if (FMF.allowReassoc())
8966       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8967                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8968     else
8969       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8970     break;
8971   case Intrinsic::experimental_vector_reduce_add:
8972     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8973     break;
8974   case Intrinsic::experimental_vector_reduce_mul:
8975     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8976     break;
8977   case Intrinsic::experimental_vector_reduce_and:
8978     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8979     break;
8980   case Intrinsic::experimental_vector_reduce_or:
8981     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8982     break;
8983   case Intrinsic::experimental_vector_reduce_xor:
8984     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8985     break;
8986   case Intrinsic::experimental_vector_reduce_smax:
8987     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8988     break;
8989   case Intrinsic::experimental_vector_reduce_smin:
8990     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8991     break;
8992   case Intrinsic::experimental_vector_reduce_umax:
8993     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8994     break;
8995   case Intrinsic::experimental_vector_reduce_umin:
8996     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8997     break;
8998   case Intrinsic::experimental_vector_reduce_fmax:
8999     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
9000     break;
9001   case Intrinsic::experimental_vector_reduce_fmin:
9002     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
9003     break;
9004   default:
9005     llvm_unreachable("Unhandled vector reduce intrinsic");
9006   }
9007   setValue(&I, Res);
9008 }
9009 
9010 /// Returns an AttributeList representing the attributes applied to the return
9011 /// value of the given call.
9012 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9013   SmallVector<Attribute::AttrKind, 2> Attrs;
9014   if (CLI.RetSExt)
9015     Attrs.push_back(Attribute::SExt);
9016   if (CLI.RetZExt)
9017     Attrs.push_back(Attribute::ZExt);
9018   if (CLI.IsInReg)
9019     Attrs.push_back(Attribute::InReg);
9020 
9021   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9022                             Attrs);
9023 }
9024 
9025 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9026 /// implementation, which just calls LowerCall.
9027 /// FIXME: When all targets are
9028 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9029 std::pair<SDValue, SDValue>
9030 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9031   // Handle the incoming return values from the call.
9032   CLI.Ins.clear();
9033   Type *OrigRetTy = CLI.RetTy;
9034   SmallVector<EVT, 4> RetTys;
9035   SmallVector<uint64_t, 4> Offsets;
9036   auto &DL = CLI.DAG.getDataLayout();
9037   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9038 
9039   if (CLI.IsPostTypeLegalization) {
9040     // If we are lowering a libcall after legalization, split the return type.
9041     SmallVector<EVT, 4> OldRetTys;
9042     SmallVector<uint64_t, 4> OldOffsets;
9043     RetTys.swap(OldRetTys);
9044     Offsets.swap(OldOffsets);
9045 
9046     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9047       EVT RetVT = OldRetTys[i];
9048       uint64_t Offset = OldOffsets[i];
9049       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9050       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9051       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9052       RetTys.append(NumRegs, RegisterVT);
9053       for (unsigned j = 0; j != NumRegs; ++j)
9054         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9055     }
9056   }
9057 
9058   SmallVector<ISD::OutputArg, 4> Outs;
9059   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9060 
9061   bool CanLowerReturn =
9062       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9063                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9064 
9065   SDValue DemoteStackSlot;
9066   int DemoteStackIdx = -100;
9067   if (!CanLowerReturn) {
9068     // FIXME: equivalent assert?
9069     // assert(!CS.hasInAllocaArgument() &&
9070     //        "sret demotion is incompatible with inalloca");
9071     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9072     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9073     MachineFunction &MF = CLI.DAG.getMachineFunction();
9074     DemoteStackIdx =
9075         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9076     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9077                                               DL.getAllocaAddrSpace());
9078 
9079     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9080     ArgListEntry Entry;
9081     Entry.Node = DemoteStackSlot;
9082     Entry.Ty = StackSlotPtrType;
9083     Entry.IsSExt = false;
9084     Entry.IsZExt = false;
9085     Entry.IsInReg = false;
9086     Entry.IsSRet = true;
9087     Entry.IsNest = false;
9088     Entry.IsByVal = false;
9089     Entry.IsByRef = false;
9090     Entry.IsReturned = false;
9091     Entry.IsSwiftSelf = false;
9092     Entry.IsSwiftError = false;
9093     Entry.IsCFGuardTarget = false;
9094     Entry.Alignment = Alignment;
9095     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9096     CLI.NumFixedArgs += 1;
9097     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9098 
9099     // sret demotion isn't compatible with tail-calls, since the sret argument
9100     // points into the callers stack frame.
9101     CLI.IsTailCall = false;
9102   } else {
9103     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9104         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9105     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9106       ISD::ArgFlagsTy Flags;
9107       if (NeedsRegBlock) {
9108         Flags.setInConsecutiveRegs();
9109         if (I == RetTys.size() - 1)
9110           Flags.setInConsecutiveRegsLast();
9111       }
9112       EVT VT = RetTys[I];
9113       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9114                                                      CLI.CallConv, VT);
9115       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9116                                                        CLI.CallConv, VT);
9117       for (unsigned i = 0; i != NumRegs; ++i) {
9118         ISD::InputArg MyFlags;
9119         MyFlags.Flags = Flags;
9120         MyFlags.VT = RegisterVT;
9121         MyFlags.ArgVT = VT;
9122         MyFlags.Used = CLI.IsReturnValueUsed;
9123         if (CLI.RetTy->isPointerTy()) {
9124           MyFlags.Flags.setPointer();
9125           MyFlags.Flags.setPointerAddrSpace(
9126               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9127         }
9128         if (CLI.RetSExt)
9129           MyFlags.Flags.setSExt();
9130         if (CLI.RetZExt)
9131           MyFlags.Flags.setZExt();
9132         if (CLI.IsInReg)
9133           MyFlags.Flags.setInReg();
9134         CLI.Ins.push_back(MyFlags);
9135       }
9136     }
9137   }
9138 
9139   // We push in swifterror return as the last element of CLI.Ins.
9140   ArgListTy &Args = CLI.getArgs();
9141   if (supportSwiftError()) {
9142     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9143       if (Args[i].IsSwiftError) {
9144         ISD::InputArg MyFlags;
9145         MyFlags.VT = getPointerTy(DL);
9146         MyFlags.ArgVT = EVT(getPointerTy(DL));
9147         MyFlags.Flags.setSwiftError();
9148         CLI.Ins.push_back(MyFlags);
9149       }
9150     }
9151   }
9152 
9153   // Handle all of the outgoing arguments.
9154   CLI.Outs.clear();
9155   CLI.OutVals.clear();
9156   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9157     SmallVector<EVT, 4> ValueVTs;
9158     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9159     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9160     Type *FinalType = Args[i].Ty;
9161     if (Args[i].IsByVal)
9162       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9163     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9164         FinalType, CLI.CallConv, CLI.IsVarArg);
9165     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9166          ++Value) {
9167       EVT VT = ValueVTs[Value];
9168       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9169       SDValue Op = SDValue(Args[i].Node.getNode(),
9170                            Args[i].Node.getResNo() + Value);
9171       ISD::ArgFlagsTy Flags;
9172 
9173       // Certain targets (such as MIPS), may have a different ABI alignment
9174       // for a type depending on the context. Give the target a chance to
9175       // specify the alignment it wants.
9176       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9177 
9178       if (Args[i].Ty->isPointerTy()) {
9179         Flags.setPointer();
9180         Flags.setPointerAddrSpace(
9181             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9182       }
9183       if (Args[i].IsZExt)
9184         Flags.setZExt();
9185       if (Args[i].IsSExt)
9186         Flags.setSExt();
9187       if (Args[i].IsInReg) {
9188         // If we are using vectorcall calling convention, a structure that is
9189         // passed InReg - is surely an HVA
9190         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9191             isa<StructType>(FinalType)) {
9192           // The first value of a structure is marked
9193           if (0 == Value)
9194             Flags.setHvaStart();
9195           Flags.setHva();
9196         }
9197         // Set InReg Flag
9198         Flags.setInReg();
9199       }
9200       if (Args[i].IsSRet)
9201         Flags.setSRet();
9202       if (Args[i].IsSwiftSelf)
9203         Flags.setSwiftSelf();
9204       if (Args[i].IsSwiftError)
9205         Flags.setSwiftError();
9206       if (Args[i].IsCFGuardTarget)
9207         Flags.setCFGuardTarget();
9208       if (Args[i].IsByVal)
9209         Flags.setByVal();
9210       if (Args[i].IsByRef)
9211         Flags.setByRef();
9212       if (Args[i].IsPreallocated) {
9213         Flags.setPreallocated();
9214         // Set the byval flag for CCAssignFn callbacks that don't know about
9215         // preallocated.  This way we can know how many bytes we should've
9216         // allocated and how many bytes a callee cleanup function will pop.  If
9217         // we port preallocated to more targets, we'll have to add custom
9218         // preallocated handling in the various CC lowering callbacks.
9219         Flags.setByVal();
9220       }
9221       if (Args[i].IsInAlloca) {
9222         Flags.setInAlloca();
9223         // Set the byval flag for CCAssignFn callbacks that don't know about
9224         // inalloca.  This way we can know how many bytes we should've allocated
9225         // and how many bytes a callee cleanup function will pop.  If we port
9226         // inalloca to more targets, we'll have to add custom inalloca handling
9227         // in the various CC lowering callbacks.
9228         Flags.setByVal();
9229       }
9230       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9231         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9232         Type *ElementTy = Ty->getElementType();
9233 
9234         unsigned FrameSize = DL.getTypeAllocSize(
9235             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9236         Flags.setByValSize(FrameSize);
9237 
9238         // info is not there but there are cases it cannot get right.
9239         Align FrameAlign;
9240         if (auto MA = Args[i].Alignment)
9241           FrameAlign = *MA;
9242         else
9243           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9244         Flags.setByValAlign(FrameAlign);
9245       }
9246       if (Args[i].IsNest)
9247         Flags.setNest();
9248       if (NeedsRegBlock)
9249         Flags.setInConsecutiveRegs();
9250       Flags.setOrigAlign(OriginalAlignment);
9251 
9252       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9253                                                  CLI.CallConv, VT);
9254       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9255                                                         CLI.CallConv, VT);
9256       SmallVector<SDValue, 4> Parts(NumParts);
9257       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9258 
9259       if (Args[i].IsSExt)
9260         ExtendKind = ISD::SIGN_EXTEND;
9261       else if (Args[i].IsZExt)
9262         ExtendKind = ISD::ZERO_EXTEND;
9263 
9264       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9265       // for now.
9266       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9267           CanLowerReturn) {
9268         assert((CLI.RetTy == Args[i].Ty ||
9269                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9270                  CLI.RetTy->getPointerAddressSpace() ==
9271                      Args[i].Ty->getPointerAddressSpace())) &&
9272                RetTys.size() == NumValues && "unexpected use of 'returned'");
9273         // Before passing 'returned' to the target lowering code, ensure that
9274         // either the register MVT and the actual EVT are the same size or that
9275         // the return value and argument are extended in the same way; in these
9276         // cases it's safe to pass the argument register value unchanged as the
9277         // return register value (although it's at the target's option whether
9278         // to do so)
9279         // TODO: allow code generation to take advantage of partially preserved
9280         // registers rather than clobbering the entire register when the
9281         // parameter extension method is not compatible with the return
9282         // extension method
9283         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9284             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9285              CLI.RetZExt == Args[i].IsZExt))
9286           Flags.setReturned();
9287       }
9288 
9289       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9290                      CLI.CallConv, ExtendKind);
9291 
9292       for (unsigned j = 0; j != NumParts; ++j) {
9293         // if it isn't first piece, alignment must be 1
9294         // For scalable vectors the scalable part is currently handled
9295         // by individual targets, so we just use the known minimum size here.
9296         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9297                     i < CLI.NumFixedArgs, i,
9298                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9299         if (NumParts > 1 && j == 0)
9300           MyFlags.Flags.setSplit();
9301         else if (j != 0) {
9302           MyFlags.Flags.setOrigAlign(Align(1));
9303           if (j == NumParts - 1)
9304             MyFlags.Flags.setSplitEnd();
9305         }
9306 
9307         CLI.Outs.push_back(MyFlags);
9308         CLI.OutVals.push_back(Parts[j]);
9309       }
9310 
9311       if (NeedsRegBlock && Value == NumValues - 1)
9312         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9313     }
9314   }
9315 
9316   SmallVector<SDValue, 4> InVals;
9317   CLI.Chain = LowerCall(CLI, InVals);
9318 
9319   // Update CLI.InVals to use outside of this function.
9320   CLI.InVals = InVals;
9321 
9322   // Verify that the target's LowerCall behaved as expected.
9323   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9324          "LowerCall didn't return a valid chain!");
9325   assert((!CLI.IsTailCall || InVals.empty()) &&
9326          "LowerCall emitted a return value for a tail call!");
9327   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9328          "LowerCall didn't emit the correct number of values!");
9329 
9330   // For a tail call, the return value is merely live-out and there aren't
9331   // any nodes in the DAG representing it. Return a special value to
9332   // indicate that a tail call has been emitted and no more Instructions
9333   // should be processed in the current block.
9334   if (CLI.IsTailCall) {
9335     CLI.DAG.setRoot(CLI.Chain);
9336     return std::make_pair(SDValue(), SDValue());
9337   }
9338 
9339 #ifndef NDEBUG
9340   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9341     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9342     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9343            "LowerCall emitted a value with the wrong type!");
9344   }
9345 #endif
9346 
9347   SmallVector<SDValue, 4> ReturnValues;
9348   if (!CanLowerReturn) {
9349     // The instruction result is the result of loading from the
9350     // hidden sret parameter.
9351     SmallVector<EVT, 1> PVTs;
9352     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9353 
9354     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9355     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9356     EVT PtrVT = PVTs[0];
9357 
9358     unsigned NumValues = RetTys.size();
9359     ReturnValues.resize(NumValues);
9360     SmallVector<SDValue, 4> Chains(NumValues);
9361 
9362     // An aggregate return value cannot wrap around the address space, so
9363     // offsets to its parts don't wrap either.
9364     SDNodeFlags Flags;
9365     Flags.setNoUnsignedWrap(true);
9366 
9367     MachineFunction &MF = CLI.DAG.getMachineFunction();
9368     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9369     for (unsigned i = 0; i < NumValues; ++i) {
9370       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9371                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9372                                                         PtrVT), Flags);
9373       SDValue L = CLI.DAG.getLoad(
9374           RetTys[i], CLI.DL, CLI.Chain, Add,
9375           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9376                                             DemoteStackIdx, Offsets[i]),
9377           HiddenSRetAlign);
9378       ReturnValues[i] = L;
9379       Chains[i] = L.getValue(1);
9380     }
9381 
9382     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9383   } else {
9384     // Collect the legal value parts into potentially illegal values
9385     // that correspond to the original function's return values.
9386     Optional<ISD::NodeType> AssertOp;
9387     if (CLI.RetSExt)
9388       AssertOp = ISD::AssertSext;
9389     else if (CLI.RetZExt)
9390       AssertOp = ISD::AssertZext;
9391     unsigned CurReg = 0;
9392     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9393       EVT VT = RetTys[I];
9394       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9395                                                      CLI.CallConv, VT);
9396       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9397                                                        CLI.CallConv, VT);
9398 
9399       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9400                                               NumRegs, RegisterVT, VT, nullptr,
9401                                               CLI.CallConv, AssertOp));
9402       CurReg += NumRegs;
9403     }
9404 
9405     // For a function returning void, there is no return value. We can't create
9406     // such a node, so we just return a null return value in that case. In
9407     // that case, nothing will actually look at the value.
9408     if (ReturnValues.empty())
9409       return std::make_pair(SDValue(), CLI.Chain);
9410   }
9411 
9412   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9413                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9414   return std::make_pair(Res, CLI.Chain);
9415 }
9416 
9417 void TargetLowering::LowerOperationWrapper(SDNode *N,
9418                                            SmallVectorImpl<SDValue> &Results,
9419                                            SelectionDAG &DAG) const {
9420   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9421     Results.push_back(Res);
9422 }
9423 
9424 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9425   llvm_unreachable("LowerOperation not implemented for this target!");
9426 }
9427 
9428 void
9429 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9430   SDValue Op = getNonRegisterValue(V);
9431   assert((Op.getOpcode() != ISD::CopyFromReg ||
9432           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9433          "Copy from a reg to the same reg!");
9434   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9435 
9436   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9437   // If this is an InlineAsm we have to match the registers required, not the
9438   // notional registers required by the type.
9439 
9440   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9441                    None); // This is not an ABI copy.
9442   SDValue Chain = DAG.getEntryNode();
9443 
9444   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9445                               FuncInfo.PreferredExtendType.end())
9446                                  ? ISD::ANY_EXTEND
9447                                  : FuncInfo.PreferredExtendType[V];
9448   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9449   PendingExports.push_back(Chain);
9450 }
9451 
9452 #include "llvm/CodeGen/SelectionDAGISel.h"
9453 
9454 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9455 /// entry block, return true.  This includes arguments used by switches, since
9456 /// the switch may expand into multiple basic blocks.
9457 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9458   // With FastISel active, we may be splitting blocks, so force creation
9459   // of virtual registers for all non-dead arguments.
9460   if (FastISel)
9461     return A->use_empty();
9462 
9463   const BasicBlock &Entry = A->getParent()->front();
9464   for (const User *U : A->users())
9465     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9466       return false;  // Use not in entry block.
9467 
9468   return true;
9469 }
9470 
9471 using ArgCopyElisionMapTy =
9472     DenseMap<const Argument *,
9473              std::pair<const AllocaInst *, const StoreInst *>>;
9474 
9475 /// Scan the entry block of the function in FuncInfo for arguments that look
9476 /// like copies into a local alloca. Record any copied arguments in
9477 /// ArgCopyElisionCandidates.
9478 static void
9479 findArgumentCopyElisionCandidates(const DataLayout &DL,
9480                                   FunctionLoweringInfo *FuncInfo,
9481                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9482   // Record the state of every static alloca used in the entry block. Argument
9483   // allocas are all used in the entry block, so we need approximately as many
9484   // entries as we have arguments.
9485   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9486   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9487   unsigned NumArgs = FuncInfo->Fn->arg_size();
9488   StaticAllocas.reserve(NumArgs * 2);
9489 
9490   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9491     if (!V)
9492       return nullptr;
9493     V = V->stripPointerCasts();
9494     const auto *AI = dyn_cast<AllocaInst>(V);
9495     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9496       return nullptr;
9497     auto Iter = StaticAllocas.insert({AI, Unknown});
9498     return &Iter.first->second;
9499   };
9500 
9501   // Look for stores of arguments to static allocas. Look through bitcasts and
9502   // GEPs to handle type coercions, as long as the alloca is fully initialized
9503   // by the store. Any non-store use of an alloca escapes it and any subsequent
9504   // unanalyzed store might write it.
9505   // FIXME: Handle structs initialized with multiple stores.
9506   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9507     // Look for stores, and handle non-store uses conservatively.
9508     const auto *SI = dyn_cast<StoreInst>(&I);
9509     if (!SI) {
9510       // We will look through cast uses, so ignore them completely.
9511       if (I.isCast())
9512         continue;
9513       // Ignore debug info intrinsics, they don't escape or store to allocas.
9514       if (isa<DbgInfoIntrinsic>(I))
9515         continue;
9516       // This is an unknown instruction. Assume it escapes or writes to all
9517       // static alloca operands.
9518       for (const Use &U : I.operands()) {
9519         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9520           *Info = StaticAllocaInfo::Clobbered;
9521       }
9522       continue;
9523     }
9524 
9525     // If the stored value is a static alloca, mark it as escaped.
9526     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9527       *Info = StaticAllocaInfo::Clobbered;
9528 
9529     // Check if the destination is a static alloca.
9530     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9531     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9532     if (!Info)
9533       continue;
9534     const AllocaInst *AI = cast<AllocaInst>(Dst);
9535 
9536     // Skip allocas that have been initialized or clobbered.
9537     if (*Info != StaticAllocaInfo::Unknown)
9538       continue;
9539 
9540     // Check if the stored value is an argument, and that this store fully
9541     // initializes the alloca. Don't elide copies from the same argument twice.
9542     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9543     const auto *Arg = dyn_cast<Argument>(Val);
9544     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9545         Arg->getType()->isEmptyTy() ||
9546         DL.getTypeStoreSize(Arg->getType()) !=
9547             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9548         ArgCopyElisionCandidates.count(Arg)) {
9549       *Info = StaticAllocaInfo::Clobbered;
9550       continue;
9551     }
9552 
9553     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9554                       << '\n');
9555 
9556     // Mark this alloca and store for argument copy elision.
9557     *Info = StaticAllocaInfo::Elidable;
9558     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9559 
9560     // Stop scanning if we've seen all arguments. This will happen early in -O0
9561     // builds, which is useful, because -O0 builds have large entry blocks and
9562     // many allocas.
9563     if (ArgCopyElisionCandidates.size() == NumArgs)
9564       break;
9565   }
9566 }
9567 
9568 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9569 /// ArgVal is a load from a suitable fixed stack object.
9570 static void tryToElideArgumentCopy(
9571     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9572     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9573     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9574     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9575     SDValue ArgVal, bool &ArgHasUses) {
9576   // Check if this is a load from a fixed stack object.
9577   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9578   if (!LNode)
9579     return;
9580   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9581   if (!FINode)
9582     return;
9583 
9584   // Check that the fixed stack object is the right size and alignment.
9585   // Look at the alignment that the user wrote on the alloca instead of looking
9586   // at the stack object.
9587   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9588   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9589   const AllocaInst *AI = ArgCopyIter->second.first;
9590   int FixedIndex = FINode->getIndex();
9591   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9592   int OldIndex = AllocaIndex;
9593   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9594   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9595     LLVM_DEBUG(
9596         dbgs() << "  argument copy elision failed due to bad fixed stack "
9597                   "object size\n");
9598     return;
9599   }
9600   Align RequiredAlignment = AI->getAlign();
9601   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9602     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9603                          "greater than stack argument alignment ("
9604                       << DebugStr(RequiredAlignment) << " vs "
9605                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9606     return;
9607   }
9608 
9609   // Perform the elision. Delete the old stack object and replace its only use
9610   // in the variable info map. Mark the stack object as mutable.
9611   LLVM_DEBUG({
9612     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9613            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9614            << '\n';
9615   });
9616   MFI.RemoveStackObject(OldIndex);
9617   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9618   AllocaIndex = FixedIndex;
9619   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9620   Chains.push_back(ArgVal.getValue(1));
9621 
9622   // Avoid emitting code for the store implementing the copy.
9623   const StoreInst *SI = ArgCopyIter->second.second;
9624   ElidedArgCopyInstrs.insert(SI);
9625 
9626   // Check for uses of the argument again so that we can avoid exporting ArgVal
9627   // if it is't used by anything other than the store.
9628   for (const Value *U : Arg.users()) {
9629     if (U != SI) {
9630       ArgHasUses = true;
9631       break;
9632     }
9633   }
9634 }
9635 
9636 void SelectionDAGISel::LowerArguments(const Function &F) {
9637   SelectionDAG &DAG = SDB->DAG;
9638   SDLoc dl = SDB->getCurSDLoc();
9639   const DataLayout &DL = DAG.getDataLayout();
9640   SmallVector<ISD::InputArg, 16> Ins;
9641 
9642   // In Naked functions we aren't going to save any registers.
9643   if (F.hasFnAttribute(Attribute::Naked))
9644     return;
9645 
9646   if (!FuncInfo->CanLowerReturn) {
9647     // Put in an sret pointer parameter before all the other parameters.
9648     SmallVector<EVT, 1> ValueVTs;
9649     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9650                     F.getReturnType()->getPointerTo(
9651                         DAG.getDataLayout().getAllocaAddrSpace()),
9652                     ValueVTs);
9653 
9654     // NOTE: Assuming that a pointer will never break down to more than one VT
9655     // or one register.
9656     ISD::ArgFlagsTy Flags;
9657     Flags.setSRet();
9658     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9659     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9660                          ISD::InputArg::NoArgIndex, 0);
9661     Ins.push_back(RetArg);
9662   }
9663 
9664   // Look for stores of arguments to static allocas. Mark such arguments with a
9665   // flag to ask the target to give us the memory location of that argument if
9666   // available.
9667   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9668   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9669                                     ArgCopyElisionCandidates);
9670 
9671   // Set up the incoming argument description vector.
9672   for (const Argument &Arg : F.args()) {
9673     unsigned ArgNo = Arg.getArgNo();
9674     SmallVector<EVT, 4> ValueVTs;
9675     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9676     bool isArgValueUsed = !Arg.use_empty();
9677     unsigned PartBase = 0;
9678     Type *FinalType = Arg.getType();
9679     if (Arg.hasAttribute(Attribute::ByVal))
9680       FinalType = Arg.getParamByValType();
9681     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9682         FinalType, F.getCallingConv(), F.isVarArg());
9683     for (unsigned Value = 0, NumValues = ValueVTs.size();
9684          Value != NumValues; ++Value) {
9685       EVT VT = ValueVTs[Value];
9686       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9687       ISD::ArgFlagsTy Flags;
9688 
9689       // Certain targets (such as MIPS), may have a different ABI alignment
9690       // for a type depending on the context. Give the target a chance to
9691       // specify the alignment it wants.
9692       const Align OriginalAlignment(
9693           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9694 
9695       if (Arg.getType()->isPointerTy()) {
9696         Flags.setPointer();
9697         Flags.setPointerAddrSpace(
9698             cast<PointerType>(Arg.getType())->getAddressSpace());
9699       }
9700       if (Arg.hasAttribute(Attribute::ZExt))
9701         Flags.setZExt();
9702       if (Arg.hasAttribute(Attribute::SExt))
9703         Flags.setSExt();
9704       if (Arg.hasAttribute(Attribute::InReg)) {
9705         // If we are using vectorcall calling convention, a structure that is
9706         // passed InReg - is surely an HVA
9707         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9708             isa<StructType>(Arg.getType())) {
9709           // The first value of a structure is marked
9710           if (0 == Value)
9711             Flags.setHvaStart();
9712           Flags.setHva();
9713         }
9714         // Set InReg Flag
9715         Flags.setInReg();
9716       }
9717       if (Arg.hasAttribute(Attribute::StructRet))
9718         Flags.setSRet();
9719       if (Arg.hasAttribute(Attribute::SwiftSelf))
9720         Flags.setSwiftSelf();
9721       if (Arg.hasAttribute(Attribute::SwiftError))
9722         Flags.setSwiftError();
9723       if (Arg.hasAttribute(Attribute::ByVal))
9724         Flags.setByVal();
9725       if (Arg.hasAttribute(Attribute::ByRef))
9726         Flags.setByRef();
9727       if (Arg.hasAttribute(Attribute::InAlloca)) {
9728         Flags.setInAlloca();
9729         // Set the byval flag for CCAssignFn callbacks that don't know about
9730         // inalloca.  This way we can know how many bytes we should've allocated
9731         // and how many bytes a callee cleanup function will pop.  If we port
9732         // inalloca to more targets, we'll have to add custom inalloca handling
9733         // in the various CC lowering callbacks.
9734         Flags.setByVal();
9735       }
9736       if (Arg.hasAttribute(Attribute::Preallocated)) {
9737         Flags.setPreallocated();
9738         // Set the byval flag for CCAssignFn callbacks that don't know about
9739         // preallocated.  This way we can know how many bytes we should've
9740         // allocated and how many bytes a callee cleanup function will pop.  If
9741         // we port preallocated to more targets, we'll have to add custom
9742         // preallocated handling in the various CC lowering callbacks.
9743         Flags.setByVal();
9744       }
9745 
9746       Type *ArgMemTy = nullptr;
9747       if (F.getCallingConv() == CallingConv::X86_INTR) {
9748         // IA Interrupt passes frame (1st parameter) by value in the stack.
9749         if (ArgNo == 0) {
9750           Flags.setByVal();
9751           // FIXME: Dependence on pointee element type. See bug 46672.
9752           ArgMemTy = Arg.getType()->getPointerElementType();
9753         }
9754       }
9755       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
9756           Flags.isByRef()) {
9757         if (!ArgMemTy)
9758           ArgMemTy = Arg.getPointeeInMemoryValueType();
9759 
9760         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
9761 
9762         // For in-memory arguments, size and alignment should be passed from FE.
9763         // BE will guess if this info is not there but there are cases it cannot
9764         // get right.
9765         MaybeAlign MemAlign = Arg.getParamAlign();
9766         if (!MemAlign)
9767           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
9768 
9769         if (Flags.isByRef()) {
9770           Flags.setByRefSize(MemSize);
9771           Flags.setByRefAlign(*MemAlign);
9772         } else {
9773           Flags.setByValSize(MemSize);
9774           Flags.setByValAlign(*MemAlign);
9775         }
9776       }
9777 
9778       if (Arg.hasAttribute(Attribute::Nest))
9779         Flags.setNest();
9780       if (NeedsRegBlock)
9781         Flags.setInConsecutiveRegs();
9782       Flags.setOrigAlign(OriginalAlignment);
9783       if (ArgCopyElisionCandidates.count(&Arg))
9784         Flags.setCopyElisionCandidate();
9785       if (Arg.hasAttribute(Attribute::Returned))
9786         Flags.setReturned();
9787 
9788       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9789           *CurDAG->getContext(), F.getCallingConv(), VT);
9790       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9791           *CurDAG->getContext(), F.getCallingConv(), VT);
9792       for (unsigned i = 0; i != NumRegs; ++i) {
9793         // For scalable vectors, use the minimum size; individual targets
9794         // are responsible for handling scalable vector arguments and
9795         // return values.
9796         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9797                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9798         if (NumRegs > 1 && i == 0)
9799           MyFlags.Flags.setSplit();
9800         // if it isn't first piece, alignment must be 1
9801         else if (i > 0) {
9802           MyFlags.Flags.setOrigAlign(Align(1));
9803           if (i == NumRegs - 1)
9804             MyFlags.Flags.setSplitEnd();
9805         }
9806         Ins.push_back(MyFlags);
9807       }
9808       if (NeedsRegBlock && Value == NumValues - 1)
9809         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9810       PartBase += VT.getStoreSize().getKnownMinSize();
9811     }
9812   }
9813 
9814   // Call the target to set up the argument values.
9815   SmallVector<SDValue, 8> InVals;
9816   SDValue NewRoot = TLI->LowerFormalArguments(
9817       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9818 
9819   // Verify that the target's LowerFormalArguments behaved as expected.
9820   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9821          "LowerFormalArguments didn't return a valid chain!");
9822   assert(InVals.size() == Ins.size() &&
9823          "LowerFormalArguments didn't emit the correct number of values!");
9824   LLVM_DEBUG({
9825     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9826       assert(InVals[i].getNode() &&
9827              "LowerFormalArguments emitted a null value!");
9828       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9829              "LowerFormalArguments emitted a value with the wrong type!");
9830     }
9831   });
9832 
9833   // Update the DAG with the new chain value resulting from argument lowering.
9834   DAG.setRoot(NewRoot);
9835 
9836   // Set up the argument values.
9837   unsigned i = 0;
9838   if (!FuncInfo->CanLowerReturn) {
9839     // Create a virtual register for the sret pointer, and put in a copy
9840     // from the sret argument into it.
9841     SmallVector<EVT, 1> ValueVTs;
9842     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9843                     F.getReturnType()->getPointerTo(
9844                         DAG.getDataLayout().getAllocaAddrSpace()),
9845                     ValueVTs);
9846     MVT VT = ValueVTs[0].getSimpleVT();
9847     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9848     Optional<ISD::NodeType> AssertOp = None;
9849     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9850                                         nullptr, F.getCallingConv(), AssertOp);
9851 
9852     MachineFunction& MF = SDB->DAG.getMachineFunction();
9853     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9854     Register SRetReg =
9855         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9856     FuncInfo->DemoteRegister = SRetReg;
9857     NewRoot =
9858         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9859     DAG.setRoot(NewRoot);
9860 
9861     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9862     ++i;
9863   }
9864 
9865   SmallVector<SDValue, 4> Chains;
9866   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9867   for (const Argument &Arg : F.args()) {
9868     SmallVector<SDValue, 4> ArgValues;
9869     SmallVector<EVT, 4> ValueVTs;
9870     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9871     unsigned NumValues = ValueVTs.size();
9872     if (NumValues == 0)
9873       continue;
9874 
9875     bool ArgHasUses = !Arg.use_empty();
9876 
9877     // Elide the copying store if the target loaded this argument from a
9878     // suitable fixed stack object.
9879     if (Ins[i].Flags.isCopyElisionCandidate()) {
9880       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9881                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9882                              InVals[i], ArgHasUses);
9883     }
9884 
9885     // If this argument is unused then remember its value. It is used to generate
9886     // debugging information.
9887     bool isSwiftErrorArg =
9888         TLI->supportSwiftError() &&
9889         Arg.hasAttribute(Attribute::SwiftError);
9890     if (!ArgHasUses && !isSwiftErrorArg) {
9891       SDB->setUnusedArgValue(&Arg, InVals[i]);
9892 
9893       // Also remember any frame index for use in FastISel.
9894       if (FrameIndexSDNode *FI =
9895           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9896         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9897     }
9898 
9899     for (unsigned Val = 0; Val != NumValues; ++Val) {
9900       EVT VT = ValueVTs[Val];
9901       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9902                                                       F.getCallingConv(), VT);
9903       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9904           *CurDAG->getContext(), F.getCallingConv(), VT);
9905 
9906       // Even an apparent 'unused' swifterror argument needs to be returned. So
9907       // we do generate a copy for it that can be used on return from the
9908       // function.
9909       if (ArgHasUses || isSwiftErrorArg) {
9910         Optional<ISD::NodeType> AssertOp;
9911         if (Arg.hasAttribute(Attribute::SExt))
9912           AssertOp = ISD::AssertSext;
9913         else if (Arg.hasAttribute(Attribute::ZExt))
9914           AssertOp = ISD::AssertZext;
9915 
9916         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9917                                              PartVT, VT, nullptr,
9918                                              F.getCallingConv(), AssertOp));
9919       }
9920 
9921       i += NumParts;
9922     }
9923 
9924     // We don't need to do anything else for unused arguments.
9925     if (ArgValues.empty())
9926       continue;
9927 
9928     // Note down frame index.
9929     if (FrameIndexSDNode *FI =
9930         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9931       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9932 
9933     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9934                                      SDB->getCurSDLoc());
9935 
9936     SDB->setValue(&Arg, Res);
9937     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9938       // We want to associate the argument with the frame index, among
9939       // involved operands, that correspond to the lowest address. The
9940       // getCopyFromParts function, called earlier, is swapping the order of
9941       // the operands to BUILD_PAIR depending on endianness. The result of
9942       // that swapping is that the least significant bits of the argument will
9943       // be in the first operand of the BUILD_PAIR node, and the most
9944       // significant bits will be in the second operand.
9945       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9946       if (LoadSDNode *LNode =
9947           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9948         if (FrameIndexSDNode *FI =
9949             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9950           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9951     }
9952 
9953     // Analyses past this point are naive and don't expect an assertion.
9954     if (Res.getOpcode() == ISD::AssertZext)
9955       Res = Res.getOperand(0);
9956 
9957     // Update the SwiftErrorVRegDefMap.
9958     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9959       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9960       if (Register::isVirtualRegister(Reg))
9961         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9962                                    Reg);
9963     }
9964 
9965     // If this argument is live outside of the entry block, insert a copy from
9966     // wherever we got it to the vreg that other BB's will reference it as.
9967     if (Res.getOpcode() == ISD::CopyFromReg) {
9968       // If we can, though, try to skip creating an unnecessary vreg.
9969       // FIXME: This isn't very clean... it would be nice to make this more
9970       // general.
9971       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9972       if (Register::isVirtualRegister(Reg)) {
9973         FuncInfo->ValueMap[&Arg] = Reg;
9974         continue;
9975       }
9976     }
9977     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9978       FuncInfo->InitializeRegForValue(&Arg);
9979       SDB->CopyToExportRegsIfNeeded(&Arg);
9980     }
9981   }
9982 
9983   if (!Chains.empty()) {
9984     Chains.push_back(NewRoot);
9985     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9986   }
9987 
9988   DAG.setRoot(NewRoot);
9989 
9990   assert(i == InVals.size() && "Argument register count mismatch!");
9991 
9992   // If any argument copy elisions occurred and we have debug info, update the
9993   // stale frame indices used in the dbg.declare variable info table.
9994   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9995   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9996     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9997       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9998       if (I != ArgCopyElisionFrameIndexMap.end())
9999         VI.Slot = I->second;
10000     }
10001   }
10002 
10003   // Finally, if the target has anything special to do, allow it to do so.
10004   emitFunctionEntryCode();
10005 }
10006 
10007 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10008 /// ensure constants are generated when needed.  Remember the virtual registers
10009 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10010 /// directly add them, because expansion might result in multiple MBB's for one
10011 /// BB.  As such, the start of the BB might correspond to a different MBB than
10012 /// the end.
10013 void
10014 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10015   const Instruction *TI = LLVMBB->getTerminator();
10016 
10017   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10018 
10019   // Check PHI nodes in successors that expect a value to be available from this
10020   // block.
10021   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10022     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10023     if (!isa<PHINode>(SuccBB->begin())) continue;
10024     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10025 
10026     // If this terminator has multiple identical successors (common for
10027     // switches), only handle each succ once.
10028     if (!SuccsHandled.insert(SuccMBB).second)
10029       continue;
10030 
10031     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10032 
10033     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10034     // nodes and Machine PHI nodes, but the incoming operands have not been
10035     // emitted yet.
10036     for (const PHINode &PN : SuccBB->phis()) {
10037       // Ignore dead phi's.
10038       if (PN.use_empty())
10039         continue;
10040 
10041       // Skip empty types
10042       if (PN.getType()->isEmptyTy())
10043         continue;
10044 
10045       unsigned Reg;
10046       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10047 
10048       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10049         unsigned &RegOut = ConstantsOut[C];
10050         if (RegOut == 0) {
10051           RegOut = FuncInfo.CreateRegs(C);
10052           CopyValueToVirtualRegister(C, RegOut);
10053         }
10054         Reg = RegOut;
10055       } else {
10056         DenseMap<const Value *, Register>::iterator I =
10057           FuncInfo.ValueMap.find(PHIOp);
10058         if (I != FuncInfo.ValueMap.end())
10059           Reg = I->second;
10060         else {
10061           assert(isa<AllocaInst>(PHIOp) &&
10062                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10063                  "Didn't codegen value into a register!??");
10064           Reg = FuncInfo.CreateRegs(PHIOp);
10065           CopyValueToVirtualRegister(PHIOp, Reg);
10066         }
10067       }
10068 
10069       // Remember that this register needs to added to the machine PHI node as
10070       // the input for this MBB.
10071       SmallVector<EVT, 4> ValueVTs;
10072       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10073       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10074       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10075         EVT VT = ValueVTs[vti];
10076         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10077         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10078           FuncInfo.PHINodesToUpdate.push_back(
10079               std::make_pair(&*MBBI++, Reg + i));
10080         Reg += NumRegisters;
10081       }
10082     }
10083   }
10084 
10085   ConstantsOut.clear();
10086 }
10087 
10088 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10089 /// is 0.
10090 MachineBasicBlock *
10091 SelectionDAGBuilder::StackProtectorDescriptor::
10092 AddSuccessorMBB(const BasicBlock *BB,
10093                 MachineBasicBlock *ParentMBB,
10094                 bool IsLikely,
10095                 MachineBasicBlock *SuccMBB) {
10096   // If SuccBB has not been created yet, create it.
10097   if (!SuccMBB) {
10098     MachineFunction *MF = ParentMBB->getParent();
10099     MachineFunction::iterator BBI(ParentMBB);
10100     SuccMBB = MF->CreateMachineBasicBlock(BB);
10101     MF->insert(++BBI, SuccMBB);
10102   }
10103   // Add it as a successor of ParentMBB.
10104   ParentMBB->addSuccessor(
10105       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10106   return SuccMBB;
10107 }
10108 
10109 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10110   MachineFunction::iterator I(MBB);
10111   if (++I == FuncInfo.MF->end())
10112     return nullptr;
10113   return &*I;
10114 }
10115 
10116 /// During lowering new call nodes can be created (such as memset, etc.).
10117 /// Those will become new roots of the current DAG, but complications arise
10118 /// when they are tail calls. In such cases, the call lowering will update
10119 /// the root, but the builder still needs to know that a tail call has been
10120 /// lowered in order to avoid generating an additional return.
10121 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10122   // If the node is null, we do have a tail call.
10123   if (MaybeTC.getNode() != nullptr)
10124     DAG.setRoot(MaybeTC);
10125   else
10126     HasTailCall = true;
10127 }
10128 
10129 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10130                                         MachineBasicBlock *SwitchMBB,
10131                                         MachineBasicBlock *DefaultMBB) {
10132   MachineFunction *CurMF = FuncInfo.MF;
10133   MachineBasicBlock *NextMBB = nullptr;
10134   MachineFunction::iterator BBI(W.MBB);
10135   if (++BBI != FuncInfo.MF->end())
10136     NextMBB = &*BBI;
10137 
10138   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10139 
10140   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10141 
10142   if (Size == 2 && W.MBB == SwitchMBB) {
10143     // If any two of the cases has the same destination, and if one value
10144     // is the same as the other, but has one bit unset that the other has set,
10145     // use bit manipulation to do two compares at once.  For example:
10146     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10147     // TODO: This could be extended to merge any 2 cases in switches with 3
10148     // cases.
10149     // TODO: Handle cases where W.CaseBB != SwitchBB.
10150     CaseCluster &Small = *W.FirstCluster;
10151     CaseCluster &Big = *W.LastCluster;
10152 
10153     if (Small.Low == Small.High && Big.Low == Big.High &&
10154         Small.MBB == Big.MBB) {
10155       const APInt &SmallValue = Small.Low->getValue();
10156       const APInt &BigValue = Big.Low->getValue();
10157 
10158       // Check that there is only one bit different.
10159       APInt CommonBit = BigValue ^ SmallValue;
10160       if (CommonBit.isPowerOf2()) {
10161         SDValue CondLHS = getValue(Cond);
10162         EVT VT = CondLHS.getValueType();
10163         SDLoc DL = getCurSDLoc();
10164 
10165         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10166                                  DAG.getConstant(CommonBit, DL, VT));
10167         SDValue Cond = DAG.getSetCC(
10168             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10169             ISD::SETEQ);
10170 
10171         // Update successor info.
10172         // Both Small and Big will jump to Small.BB, so we sum up the
10173         // probabilities.
10174         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10175         if (BPI)
10176           addSuccessorWithProb(
10177               SwitchMBB, DefaultMBB,
10178               // The default destination is the first successor in IR.
10179               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10180         else
10181           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10182 
10183         // Insert the true branch.
10184         SDValue BrCond =
10185             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10186                         DAG.getBasicBlock(Small.MBB));
10187         // Insert the false branch.
10188         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10189                              DAG.getBasicBlock(DefaultMBB));
10190 
10191         DAG.setRoot(BrCond);
10192         return;
10193       }
10194     }
10195   }
10196 
10197   if (TM.getOptLevel() != CodeGenOpt::None) {
10198     // Here, we order cases by probability so the most likely case will be
10199     // checked first. However, two clusters can have the same probability in
10200     // which case their relative ordering is non-deterministic. So we use Low
10201     // as a tie-breaker as clusters are guaranteed to never overlap.
10202     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10203                [](const CaseCluster &a, const CaseCluster &b) {
10204       return a.Prob != b.Prob ?
10205              a.Prob > b.Prob :
10206              a.Low->getValue().slt(b.Low->getValue());
10207     });
10208 
10209     // Rearrange the case blocks so that the last one falls through if possible
10210     // without changing the order of probabilities.
10211     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10212       --I;
10213       if (I->Prob > W.LastCluster->Prob)
10214         break;
10215       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10216         std::swap(*I, *W.LastCluster);
10217         break;
10218       }
10219     }
10220   }
10221 
10222   // Compute total probability.
10223   BranchProbability DefaultProb = W.DefaultProb;
10224   BranchProbability UnhandledProbs = DefaultProb;
10225   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10226     UnhandledProbs += I->Prob;
10227 
10228   MachineBasicBlock *CurMBB = W.MBB;
10229   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10230     bool FallthroughUnreachable = false;
10231     MachineBasicBlock *Fallthrough;
10232     if (I == W.LastCluster) {
10233       // For the last cluster, fall through to the default destination.
10234       Fallthrough = DefaultMBB;
10235       FallthroughUnreachable = isa<UnreachableInst>(
10236           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10237     } else {
10238       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10239       CurMF->insert(BBI, Fallthrough);
10240       // Put Cond in a virtual register to make it available from the new blocks.
10241       ExportFromCurrentBlock(Cond);
10242     }
10243     UnhandledProbs -= I->Prob;
10244 
10245     switch (I->Kind) {
10246       case CC_JumpTable: {
10247         // FIXME: Optimize away range check based on pivot comparisons.
10248         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10249         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10250 
10251         // The jump block hasn't been inserted yet; insert it here.
10252         MachineBasicBlock *JumpMBB = JT->MBB;
10253         CurMF->insert(BBI, JumpMBB);
10254 
10255         auto JumpProb = I->Prob;
10256         auto FallthroughProb = UnhandledProbs;
10257 
10258         // If the default statement is a target of the jump table, we evenly
10259         // distribute the default probability to successors of CurMBB. Also
10260         // update the probability on the edge from JumpMBB to Fallthrough.
10261         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10262                                               SE = JumpMBB->succ_end();
10263              SI != SE; ++SI) {
10264           if (*SI == DefaultMBB) {
10265             JumpProb += DefaultProb / 2;
10266             FallthroughProb -= DefaultProb / 2;
10267             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10268             JumpMBB->normalizeSuccProbs();
10269             break;
10270           }
10271         }
10272 
10273         if (FallthroughUnreachable) {
10274           // Skip the range check if the fallthrough block is unreachable.
10275           JTH->OmitRangeCheck = true;
10276         }
10277 
10278         if (!JTH->OmitRangeCheck)
10279           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10280         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10281         CurMBB->normalizeSuccProbs();
10282 
10283         // The jump table header will be inserted in our current block, do the
10284         // range check, and fall through to our fallthrough block.
10285         JTH->HeaderBB = CurMBB;
10286         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10287 
10288         // If we're in the right place, emit the jump table header right now.
10289         if (CurMBB == SwitchMBB) {
10290           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10291           JTH->Emitted = true;
10292         }
10293         break;
10294       }
10295       case CC_BitTests: {
10296         // FIXME: Optimize away range check based on pivot comparisons.
10297         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10298 
10299         // The bit test blocks haven't been inserted yet; insert them here.
10300         for (BitTestCase &BTC : BTB->Cases)
10301           CurMF->insert(BBI, BTC.ThisBB);
10302 
10303         // Fill in fields of the BitTestBlock.
10304         BTB->Parent = CurMBB;
10305         BTB->Default = Fallthrough;
10306 
10307         BTB->DefaultProb = UnhandledProbs;
10308         // If the cases in bit test don't form a contiguous range, we evenly
10309         // distribute the probability on the edge to Fallthrough to two
10310         // successors of CurMBB.
10311         if (!BTB->ContiguousRange) {
10312           BTB->Prob += DefaultProb / 2;
10313           BTB->DefaultProb -= DefaultProb / 2;
10314         }
10315 
10316         if (FallthroughUnreachable) {
10317           // Skip the range check if the fallthrough block is unreachable.
10318           BTB->OmitRangeCheck = true;
10319         }
10320 
10321         // If we're in the right place, emit the bit test header right now.
10322         if (CurMBB == SwitchMBB) {
10323           visitBitTestHeader(*BTB, SwitchMBB);
10324           BTB->Emitted = true;
10325         }
10326         break;
10327       }
10328       case CC_Range: {
10329         const Value *RHS, *LHS, *MHS;
10330         ISD::CondCode CC;
10331         if (I->Low == I->High) {
10332           // Check Cond == I->Low.
10333           CC = ISD::SETEQ;
10334           LHS = Cond;
10335           RHS=I->Low;
10336           MHS = nullptr;
10337         } else {
10338           // Check I->Low <= Cond <= I->High.
10339           CC = ISD::SETLE;
10340           LHS = I->Low;
10341           MHS = Cond;
10342           RHS = I->High;
10343         }
10344 
10345         // If Fallthrough is unreachable, fold away the comparison.
10346         if (FallthroughUnreachable)
10347           CC = ISD::SETTRUE;
10348 
10349         // The false probability is the sum of all unhandled cases.
10350         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10351                      getCurSDLoc(), I->Prob, UnhandledProbs);
10352 
10353         if (CurMBB == SwitchMBB)
10354           visitSwitchCase(CB, SwitchMBB);
10355         else
10356           SL->SwitchCases.push_back(CB);
10357 
10358         break;
10359       }
10360     }
10361     CurMBB = Fallthrough;
10362   }
10363 }
10364 
10365 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10366                                               CaseClusterIt First,
10367                                               CaseClusterIt Last) {
10368   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10369     if (X.Prob != CC.Prob)
10370       return X.Prob > CC.Prob;
10371 
10372     // Ties are broken by comparing the case value.
10373     return X.Low->getValue().slt(CC.Low->getValue());
10374   });
10375 }
10376 
10377 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10378                                         const SwitchWorkListItem &W,
10379                                         Value *Cond,
10380                                         MachineBasicBlock *SwitchMBB) {
10381   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10382          "Clusters not sorted?");
10383 
10384   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10385 
10386   // Balance the tree based on branch probabilities to create a near-optimal (in
10387   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10388   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10389   CaseClusterIt LastLeft = W.FirstCluster;
10390   CaseClusterIt FirstRight = W.LastCluster;
10391   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10392   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10393 
10394   // Move LastLeft and FirstRight towards each other from opposite directions to
10395   // find a partitioning of the clusters which balances the probability on both
10396   // sides. If LeftProb and RightProb are equal, alternate which side is
10397   // taken to ensure 0-probability nodes are distributed evenly.
10398   unsigned I = 0;
10399   while (LastLeft + 1 < FirstRight) {
10400     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10401       LeftProb += (++LastLeft)->Prob;
10402     else
10403       RightProb += (--FirstRight)->Prob;
10404     I++;
10405   }
10406 
10407   while (true) {
10408     // Our binary search tree differs from a typical BST in that ours can have up
10409     // to three values in each leaf. The pivot selection above doesn't take that
10410     // into account, which means the tree might require more nodes and be less
10411     // efficient. We compensate for this here.
10412 
10413     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10414     unsigned NumRight = W.LastCluster - FirstRight + 1;
10415 
10416     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10417       // If one side has less than 3 clusters, and the other has more than 3,
10418       // consider taking a cluster from the other side.
10419 
10420       if (NumLeft < NumRight) {
10421         // Consider moving the first cluster on the right to the left side.
10422         CaseCluster &CC = *FirstRight;
10423         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10424         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10425         if (LeftSideRank <= RightSideRank) {
10426           // Moving the cluster to the left does not demote it.
10427           ++LastLeft;
10428           ++FirstRight;
10429           continue;
10430         }
10431       } else {
10432         assert(NumRight < NumLeft);
10433         // Consider moving the last element on the left to the right side.
10434         CaseCluster &CC = *LastLeft;
10435         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10436         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10437         if (RightSideRank <= LeftSideRank) {
10438           // Moving the cluster to the right does not demot it.
10439           --LastLeft;
10440           --FirstRight;
10441           continue;
10442         }
10443       }
10444     }
10445     break;
10446   }
10447 
10448   assert(LastLeft + 1 == FirstRight);
10449   assert(LastLeft >= W.FirstCluster);
10450   assert(FirstRight <= W.LastCluster);
10451 
10452   // Use the first element on the right as pivot since we will make less-than
10453   // comparisons against it.
10454   CaseClusterIt PivotCluster = FirstRight;
10455   assert(PivotCluster > W.FirstCluster);
10456   assert(PivotCluster <= W.LastCluster);
10457 
10458   CaseClusterIt FirstLeft = W.FirstCluster;
10459   CaseClusterIt LastRight = W.LastCluster;
10460 
10461   const ConstantInt *Pivot = PivotCluster->Low;
10462 
10463   // New blocks will be inserted immediately after the current one.
10464   MachineFunction::iterator BBI(W.MBB);
10465   ++BBI;
10466 
10467   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10468   // we can branch to its destination directly if it's squeezed exactly in
10469   // between the known lower bound and Pivot - 1.
10470   MachineBasicBlock *LeftMBB;
10471   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10472       FirstLeft->Low == W.GE &&
10473       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10474     LeftMBB = FirstLeft->MBB;
10475   } else {
10476     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10477     FuncInfo.MF->insert(BBI, LeftMBB);
10478     WorkList.push_back(
10479         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10480     // Put Cond in a virtual register to make it available from the new blocks.
10481     ExportFromCurrentBlock(Cond);
10482   }
10483 
10484   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10485   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10486   // directly if RHS.High equals the current upper bound.
10487   MachineBasicBlock *RightMBB;
10488   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10489       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10490     RightMBB = FirstRight->MBB;
10491   } else {
10492     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10493     FuncInfo.MF->insert(BBI, RightMBB);
10494     WorkList.push_back(
10495         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10496     // Put Cond in a virtual register to make it available from the new blocks.
10497     ExportFromCurrentBlock(Cond);
10498   }
10499 
10500   // Create the CaseBlock record that will be used to lower the branch.
10501   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10502                getCurSDLoc(), LeftProb, RightProb);
10503 
10504   if (W.MBB == SwitchMBB)
10505     visitSwitchCase(CB, SwitchMBB);
10506   else
10507     SL->SwitchCases.push_back(CB);
10508 }
10509 
10510 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10511 // from the swith statement.
10512 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10513                                             BranchProbability PeeledCaseProb) {
10514   if (PeeledCaseProb == BranchProbability::getOne())
10515     return BranchProbability::getZero();
10516   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10517 
10518   uint32_t Numerator = CaseProb.getNumerator();
10519   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10520   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10521 }
10522 
10523 // Try to peel the top probability case if it exceeds the threshold.
10524 // Return current MachineBasicBlock for the switch statement if the peeling
10525 // does not occur.
10526 // If the peeling is performed, return the newly created MachineBasicBlock
10527 // for the peeled switch statement. Also update Clusters to remove the peeled
10528 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10529 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10530     const SwitchInst &SI, CaseClusterVector &Clusters,
10531     BranchProbability &PeeledCaseProb) {
10532   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10533   // Don't perform if there is only one cluster or optimizing for size.
10534   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10535       TM.getOptLevel() == CodeGenOpt::None ||
10536       SwitchMBB->getParent()->getFunction().hasMinSize())
10537     return SwitchMBB;
10538 
10539   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10540   unsigned PeeledCaseIndex = 0;
10541   bool SwitchPeeled = false;
10542   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10543     CaseCluster &CC = Clusters[Index];
10544     if (CC.Prob < TopCaseProb)
10545       continue;
10546     TopCaseProb = CC.Prob;
10547     PeeledCaseIndex = Index;
10548     SwitchPeeled = true;
10549   }
10550   if (!SwitchPeeled)
10551     return SwitchMBB;
10552 
10553   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10554                     << TopCaseProb << "\n");
10555 
10556   // Record the MBB for the peeled switch statement.
10557   MachineFunction::iterator BBI(SwitchMBB);
10558   ++BBI;
10559   MachineBasicBlock *PeeledSwitchMBB =
10560       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10561   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10562 
10563   ExportFromCurrentBlock(SI.getCondition());
10564   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10565   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10566                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10567   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10568 
10569   Clusters.erase(PeeledCaseIt);
10570   for (CaseCluster &CC : Clusters) {
10571     LLVM_DEBUG(
10572         dbgs() << "Scale the probablity for one cluster, before scaling: "
10573                << CC.Prob << "\n");
10574     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10575     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10576   }
10577   PeeledCaseProb = TopCaseProb;
10578   return PeeledSwitchMBB;
10579 }
10580 
10581 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10582   // Extract cases from the switch.
10583   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10584   CaseClusterVector Clusters;
10585   Clusters.reserve(SI.getNumCases());
10586   for (auto I : SI.cases()) {
10587     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10588     const ConstantInt *CaseVal = I.getCaseValue();
10589     BranchProbability Prob =
10590         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10591             : BranchProbability(1, SI.getNumCases() + 1);
10592     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10593   }
10594 
10595   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10596 
10597   // Cluster adjacent cases with the same destination. We do this at all
10598   // optimization levels because it's cheap to do and will make codegen faster
10599   // if there are many clusters.
10600   sortAndRangeify(Clusters);
10601 
10602   // The branch probablity of the peeled case.
10603   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10604   MachineBasicBlock *PeeledSwitchMBB =
10605       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10606 
10607   // If there is only the default destination, jump there directly.
10608   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10609   if (Clusters.empty()) {
10610     assert(PeeledSwitchMBB == SwitchMBB);
10611     SwitchMBB->addSuccessor(DefaultMBB);
10612     if (DefaultMBB != NextBlock(SwitchMBB)) {
10613       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10614                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10615     }
10616     return;
10617   }
10618 
10619   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10620   SL->findBitTestClusters(Clusters, &SI);
10621 
10622   LLVM_DEBUG({
10623     dbgs() << "Case clusters: ";
10624     for (const CaseCluster &C : Clusters) {
10625       if (C.Kind == CC_JumpTable)
10626         dbgs() << "JT:";
10627       if (C.Kind == CC_BitTests)
10628         dbgs() << "BT:";
10629 
10630       C.Low->getValue().print(dbgs(), true);
10631       if (C.Low != C.High) {
10632         dbgs() << '-';
10633         C.High->getValue().print(dbgs(), true);
10634       }
10635       dbgs() << ' ';
10636     }
10637     dbgs() << '\n';
10638   });
10639 
10640   assert(!Clusters.empty());
10641   SwitchWorkList WorkList;
10642   CaseClusterIt First = Clusters.begin();
10643   CaseClusterIt Last = Clusters.end() - 1;
10644   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10645   // Scale the branchprobability for DefaultMBB if the peel occurs and
10646   // DefaultMBB is not replaced.
10647   if (PeeledCaseProb != BranchProbability::getZero() &&
10648       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10649     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10650   WorkList.push_back(
10651       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10652 
10653   while (!WorkList.empty()) {
10654     SwitchWorkListItem W = WorkList.back();
10655     WorkList.pop_back();
10656     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10657 
10658     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10659         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10660       // For optimized builds, lower large range as a balanced binary tree.
10661       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10662       continue;
10663     }
10664 
10665     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10666   }
10667 }
10668 
10669 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10670   SmallVector<EVT, 4> ValueVTs;
10671   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10672                   ValueVTs);
10673   unsigned NumValues = ValueVTs.size();
10674   if (NumValues == 0) return;
10675 
10676   SmallVector<SDValue, 4> Values(NumValues);
10677   SDValue Op = getValue(I.getOperand(0));
10678 
10679   for (unsigned i = 0; i != NumValues; ++i)
10680     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10681                             SDValue(Op.getNode(), Op.getResNo() + i));
10682 
10683   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10684                            DAG.getVTList(ValueVTs), Values));
10685 }
10686