1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 IntermediateVT.isVector() 419 ? EVT::getVectorVT( 420 *DAG.getContext(), IntermediateVT.getScalarType(), 421 IntermediateVT.getVectorElementCount() * NumParts) 422 : EVT::getVectorVT(*DAG.getContext(), 423 IntermediateVT.getScalarType(), 424 NumIntermediates); 425 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 426 : ISD::BUILD_VECTOR, 427 DL, BuiltVectorTy, Ops); 428 } 429 430 // There is now one part, held in Val. Correct it to match ValueVT. 431 EVT PartEVT = Val.getValueType(); 432 433 if (PartEVT == ValueVT) 434 return Val; 435 436 if (PartEVT.isVector()) { 437 // If the element type of the source/dest vectors are the same, but the 438 // parts vector has more elements than the value vector, then we have a 439 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 440 // elements we want. 441 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 442 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 443 "Cannot narrow, it would be a lossy transformation"); 444 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 445 DAG.getVectorIdxConstant(0, DL)); 446 } 447 448 // Vector/Vector bitcast. 449 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 450 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 451 452 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 453 "Cannot handle this kind of promotion"); 454 // Promoted vector extract 455 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 456 457 } 458 459 // Trivial bitcast if the types are the same size and the destination 460 // vector type is legal. 461 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 462 TLI.isTypeLegal(ValueVT)) 463 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 464 465 if (ValueVT.getVectorNumElements() != 1) { 466 // Certain ABIs require that vectors are passed as integers. For vectors 467 // are the same size, this is an obvious bitcast. 468 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 469 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 470 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 471 // Bitcast Val back the original type and extract the corresponding 472 // vector we want. 473 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 474 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 475 ValueVT.getVectorElementType(), Elts); 476 Val = DAG.getBitcast(WiderVecType, Val); 477 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 478 DAG.getVectorIdxConstant(0, DL)); 479 } 480 481 diagnosePossiblyInvalidConstraint( 482 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 483 return DAG.getUNDEF(ValueVT); 484 } 485 486 // Handle cases such as i8 -> <1 x i1> 487 EVT ValueSVT = ValueVT.getVectorElementType(); 488 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 489 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 490 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 491 else 492 Val = ValueVT.isFloatingPoint() 493 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 494 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 495 } 496 497 return DAG.getBuildVector(ValueVT, DL, Val); 498 } 499 500 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 501 SDValue Val, SDValue *Parts, unsigned NumParts, 502 MVT PartVT, const Value *V, 503 Optional<CallingConv::ID> CallConv); 504 505 /// getCopyToParts - Create a series of nodes that contain the specified value 506 /// split into legal parts. If the parts contain more bits than Val, then, for 507 /// integers, ExtendKind can be used to specify how to generate the extra bits. 508 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 509 SDValue *Parts, unsigned NumParts, MVT PartVT, 510 const Value *V, 511 Optional<CallingConv::ID> CallConv = None, 512 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 513 EVT ValueVT = Val.getValueType(); 514 515 // Handle the vector case separately. 516 if (ValueVT.isVector()) 517 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 518 CallConv); 519 520 unsigned PartBits = PartVT.getSizeInBits(); 521 unsigned OrigNumParts = NumParts; 522 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 523 "Copying to an illegal type!"); 524 525 if (NumParts == 0) 526 return; 527 528 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 529 EVT PartEVT = PartVT; 530 if (PartEVT == ValueVT) { 531 assert(NumParts == 1 && "No-op copy with multiple parts!"); 532 Parts[0] = Val; 533 return; 534 } 535 536 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 537 // If the parts cover more bits than the value has, promote the value. 538 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 539 assert(NumParts == 1 && "Do not know what to promote to!"); 540 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 541 } else { 542 if (ValueVT.isFloatingPoint()) { 543 // FP values need to be bitcast, then extended if they are being put 544 // into a larger container. 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 546 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 547 } 548 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 549 ValueVT.isInteger() && 550 "Unknown mismatch!"); 551 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 552 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 553 if (PartVT == MVT::x86mmx) 554 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 555 } 556 } else if (PartBits == ValueVT.getSizeInBits()) { 557 // Different types of the same size. 558 assert(NumParts == 1 && PartEVT != ValueVT); 559 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 560 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 561 // If the parts cover less bits than value has, truncate the value. 562 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 563 ValueVT.isInteger() && 564 "Unknown mismatch!"); 565 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 566 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 567 if (PartVT == MVT::x86mmx) 568 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 569 } 570 571 // The value may have changed - recompute ValueVT. 572 ValueVT = Val.getValueType(); 573 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 574 "Failed to tile the value with PartVT!"); 575 576 if (NumParts == 1) { 577 if (PartEVT != ValueVT) { 578 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 579 "scalar-to-vector conversion failed"); 580 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 581 } 582 583 Parts[0] = Val; 584 return; 585 } 586 587 // Expand the value into multiple parts. 588 if (NumParts & (NumParts - 1)) { 589 // The number of parts is not a power of 2. Split off and copy the tail. 590 assert(PartVT.isInteger() && ValueVT.isInteger() && 591 "Do not know what to expand to!"); 592 unsigned RoundParts = 1 << Log2_32(NumParts); 593 unsigned RoundBits = RoundParts * PartBits; 594 unsigned OddParts = NumParts - RoundParts; 595 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 596 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 597 598 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 599 CallConv); 600 601 if (DAG.getDataLayout().isBigEndian()) 602 // The odd parts were reversed by getCopyToParts - unreverse them. 603 std::reverse(Parts + RoundParts, Parts + NumParts); 604 605 NumParts = RoundParts; 606 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 607 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 608 } 609 610 // The number of parts is a power of 2. Repeatedly bisect the value using 611 // EXTRACT_ELEMENT. 612 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 613 EVT::getIntegerVT(*DAG.getContext(), 614 ValueVT.getSizeInBits()), 615 Val); 616 617 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 618 for (unsigned i = 0; i < NumParts; i += StepSize) { 619 unsigned ThisBits = StepSize * PartBits / 2; 620 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 621 SDValue &Part0 = Parts[i]; 622 SDValue &Part1 = Parts[i+StepSize/2]; 623 624 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 625 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 626 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 627 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 628 629 if (ThisBits == PartBits && ThisVT != PartVT) { 630 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 631 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 632 } 633 } 634 } 635 636 if (DAG.getDataLayout().isBigEndian()) 637 std::reverse(Parts, Parts + OrigNumParts); 638 } 639 640 static SDValue widenVectorToPartType(SelectionDAG &DAG, 641 SDValue Val, const SDLoc &DL, EVT PartVT) { 642 if (!PartVT.isVector()) 643 return SDValue(); 644 645 EVT ValueVT = Val.getValueType(); 646 unsigned PartNumElts = PartVT.getVectorNumElements(); 647 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 648 if (PartNumElts > ValueNumElts && 649 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 650 EVT ElementVT = PartVT.getVectorElementType(); 651 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 652 // undef elements. 653 SmallVector<SDValue, 16> Ops; 654 DAG.ExtractVectorElements(Val, Ops); 655 SDValue EltUndef = DAG.getUNDEF(ElementVT); 656 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 657 Ops.push_back(EltUndef); 658 659 // FIXME: Use CONCAT for 2x -> 4x. 660 return DAG.getBuildVector(PartVT, DL, Ops); 661 } 662 663 return SDValue(); 664 } 665 666 /// getCopyToPartsVector - Create a series of nodes that contain the specified 667 /// value split into legal parts. 668 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 669 SDValue Val, SDValue *Parts, unsigned NumParts, 670 MVT PartVT, const Value *V, 671 Optional<CallingConv::ID> CallConv) { 672 EVT ValueVT = Val.getValueType(); 673 assert(ValueVT.isVector() && "Not a vector"); 674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 675 const bool IsABIRegCopy = CallConv.hasValue(); 676 677 if (NumParts == 1) { 678 EVT PartEVT = PartVT; 679 if (PartEVT == ValueVT) { 680 // Nothing to do. 681 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 682 // Bitconvert vector->vector case. 683 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 684 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 685 Val = Widened; 686 } else if (PartVT.isVector() && 687 PartEVT.getVectorElementType().bitsGE( 688 ValueVT.getVectorElementType()) && 689 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 690 691 // Promoted vector extract 692 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 693 } else { 694 if (ValueVT.getVectorNumElements() == 1) { 695 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 696 DAG.getVectorIdxConstant(0, DL)); 697 } else { 698 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 699 "lossy conversion of vector to scalar type"); 700 EVT IntermediateType = 701 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 702 Val = DAG.getBitcast(IntermediateType, Val); 703 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 704 } 705 } 706 707 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 708 Parts[0] = Val; 709 return; 710 } 711 712 // Handle a multi-element vector. 713 EVT IntermediateVT; 714 MVT RegisterVT; 715 unsigned NumIntermediates; 716 unsigned NumRegs; 717 if (IsABIRegCopy) { 718 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 719 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 720 NumIntermediates, RegisterVT); 721 } else { 722 NumRegs = 723 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 724 NumIntermediates, RegisterVT); 725 } 726 727 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 728 NumParts = NumRegs; // Silence a compiler warning. 729 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 730 731 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 732 IntermediateVT.getVectorNumElements() : 1; 733 734 // Convert the vector to the appropriate type if necessary. 735 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 736 737 EVT BuiltVectorTy = EVT::getVectorVT( 738 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 739 if (ValueVT != BuiltVectorTy) { 740 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 741 Val = Widened; 742 743 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 744 } 745 746 // Split the vector into intermediate operands. 747 SmallVector<SDValue, 8> Ops(NumIntermediates); 748 for (unsigned i = 0; i != NumIntermediates; ++i) { 749 if (IntermediateVT.isVector()) { 750 Ops[i] = 751 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 752 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 753 } else { 754 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 755 DAG.getVectorIdxConstant(i, DL)); 756 } 757 } 758 759 // Split the intermediate operands into legal parts. 760 if (NumParts == NumIntermediates) { 761 // If the register was not expanded, promote or copy the value, 762 // as appropriate. 763 for (unsigned i = 0; i != NumParts; ++i) 764 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 765 } else if (NumParts > 0) { 766 // If the intermediate type was expanded, split each the value into 767 // legal parts. 768 assert(NumIntermediates != 0 && "division by zero"); 769 assert(NumParts % NumIntermediates == 0 && 770 "Must expand into a divisible number of parts!"); 771 unsigned Factor = NumParts / NumIntermediates; 772 for (unsigned i = 0; i != NumIntermediates; ++i) 773 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 774 CallConv); 775 } 776 } 777 778 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 779 EVT valuevt, Optional<CallingConv::ID> CC) 780 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 781 RegCount(1, regs.size()), CallConv(CC) {} 782 783 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 784 const DataLayout &DL, unsigned Reg, Type *Ty, 785 Optional<CallingConv::ID> CC) { 786 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 787 788 CallConv = CC; 789 790 for (EVT ValueVT : ValueVTs) { 791 unsigned NumRegs = 792 isABIMangled() 793 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 794 : TLI.getNumRegisters(Context, ValueVT); 795 MVT RegisterVT = 796 isABIMangled() 797 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 798 : TLI.getRegisterType(Context, ValueVT); 799 for (unsigned i = 0; i != NumRegs; ++i) 800 Regs.push_back(Reg + i); 801 RegVTs.push_back(RegisterVT); 802 RegCount.push_back(NumRegs); 803 Reg += NumRegs; 804 } 805 } 806 807 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 808 FunctionLoweringInfo &FuncInfo, 809 const SDLoc &dl, SDValue &Chain, 810 SDValue *Flag, const Value *V) const { 811 // A Value with type {} or [0 x %t] needs no registers. 812 if (ValueVTs.empty()) 813 return SDValue(); 814 815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 816 817 // Assemble the legal parts into the final values. 818 SmallVector<SDValue, 4> Values(ValueVTs.size()); 819 SmallVector<SDValue, 8> Parts; 820 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 821 // Copy the legal parts from the registers. 822 EVT ValueVT = ValueVTs[Value]; 823 unsigned NumRegs = RegCount[Value]; 824 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 825 *DAG.getContext(), 826 CallConv.getValue(), RegVTs[Value]) 827 : RegVTs[Value]; 828 829 Parts.resize(NumRegs); 830 for (unsigned i = 0; i != NumRegs; ++i) { 831 SDValue P; 832 if (!Flag) { 833 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 834 } else { 835 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 836 *Flag = P.getValue(2); 837 } 838 839 Chain = P.getValue(1); 840 Parts[i] = P; 841 842 // If the source register was virtual and if we know something about it, 843 // add an assert node. 844 if (!Register::isVirtualRegister(Regs[Part + i]) || 845 !RegisterVT.isInteger()) 846 continue; 847 848 const FunctionLoweringInfo::LiveOutInfo *LOI = 849 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 850 if (!LOI) 851 continue; 852 853 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 854 unsigned NumSignBits = LOI->NumSignBits; 855 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 856 857 if (NumZeroBits == RegSize) { 858 // The current value is a zero. 859 // Explicitly express that as it would be easier for 860 // optimizations to kick in. 861 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 862 continue; 863 } 864 865 // FIXME: We capture more information than the dag can represent. For 866 // now, just use the tightest assertzext/assertsext possible. 867 bool isSExt; 868 EVT FromVT(MVT::Other); 869 if (NumZeroBits) { 870 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 871 isSExt = false; 872 } else if (NumSignBits > 1) { 873 FromVT = 874 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 875 isSExt = true; 876 } else { 877 continue; 878 } 879 // Add an assertion node. 880 assert(FromVT != MVT::Other); 881 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 882 RegisterVT, P, DAG.getValueType(FromVT)); 883 } 884 885 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 886 RegisterVT, ValueVT, V, CallConv); 887 Part += NumRegs; 888 Parts.clear(); 889 } 890 891 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 892 } 893 894 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 895 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 896 const Value *V, 897 ISD::NodeType PreferredExtendType) const { 898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 899 ISD::NodeType ExtendKind = PreferredExtendType; 900 901 // Get the list of the values's legal parts. 902 unsigned NumRegs = Regs.size(); 903 SmallVector<SDValue, 8> Parts(NumRegs); 904 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 905 unsigned NumParts = RegCount[Value]; 906 907 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 908 *DAG.getContext(), 909 CallConv.getValue(), RegVTs[Value]) 910 : RegVTs[Value]; 911 912 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 913 ExtendKind = ISD::ZERO_EXTEND; 914 915 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 916 NumParts, RegisterVT, V, CallConv, ExtendKind); 917 Part += NumParts; 918 } 919 920 // Copy the parts into the registers. 921 SmallVector<SDValue, 8> Chains(NumRegs); 922 for (unsigned i = 0; i != NumRegs; ++i) { 923 SDValue Part; 924 if (!Flag) { 925 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 926 } else { 927 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 928 *Flag = Part.getValue(1); 929 } 930 931 Chains[i] = Part.getValue(0); 932 } 933 934 if (NumRegs == 1 || Flag) 935 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 936 // flagged to it. That is the CopyToReg nodes and the user are considered 937 // a single scheduling unit. If we create a TokenFactor and return it as 938 // chain, then the TokenFactor is both a predecessor (operand) of the 939 // user as well as a successor (the TF operands are flagged to the user). 940 // c1, f1 = CopyToReg 941 // c2, f2 = CopyToReg 942 // c3 = TokenFactor c1, c2 943 // ... 944 // = op c3, ..., f2 945 Chain = Chains[NumRegs-1]; 946 else 947 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 948 } 949 950 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 951 unsigned MatchingIdx, const SDLoc &dl, 952 SelectionDAG &DAG, 953 std::vector<SDValue> &Ops) const { 954 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 955 956 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 957 if (HasMatching) 958 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 959 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 960 // Put the register class of the virtual registers in the flag word. That 961 // way, later passes can recompute register class constraints for inline 962 // assembly as well as normal instructions. 963 // Don't do this for tied operands that can use the regclass information 964 // from the def. 965 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 966 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 967 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 968 } 969 970 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 971 Ops.push_back(Res); 972 973 if (Code == InlineAsm::Kind_Clobber) { 974 // Clobbers should always have a 1:1 mapping with registers, and may 975 // reference registers that have illegal (e.g. vector) types. Hence, we 976 // shouldn't try to apply any sort of splitting logic to them. 977 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 978 "No 1:1 mapping from clobbers to regs?"); 979 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 980 (void)SP; 981 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 982 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 983 assert( 984 (Regs[I] != SP || 985 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 986 "If we clobbered the stack pointer, MFI should know about it."); 987 } 988 return; 989 } 990 991 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 992 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 993 MVT RegisterVT = RegVTs[Value]; 994 for (unsigned i = 0; i != NumRegs; ++i) { 995 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 996 unsigned TheReg = Regs[Reg++]; 997 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 998 } 999 } 1000 } 1001 1002 SmallVector<std::pair<unsigned, unsigned>, 4> 1003 RegsForValue::getRegsAndSizes() const { 1004 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1005 unsigned I = 0; 1006 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1007 unsigned RegCount = std::get<0>(CountAndVT); 1008 MVT RegisterVT = std::get<1>(CountAndVT); 1009 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1010 for (unsigned E = I + RegCount; I != E; ++I) 1011 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1012 } 1013 return OutVec; 1014 } 1015 1016 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1017 const TargetLibraryInfo *li) { 1018 AA = aa; 1019 GFI = gfi; 1020 LibInfo = li; 1021 DL = &DAG.getDataLayout(); 1022 Context = DAG.getContext(); 1023 LPadToCallSiteMap.clear(); 1024 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1025 } 1026 1027 void SelectionDAGBuilder::clear() { 1028 NodeMap.clear(); 1029 UnusedArgNodeMap.clear(); 1030 PendingLoads.clear(); 1031 PendingExports.clear(); 1032 PendingConstrainedFP.clear(); 1033 PendingConstrainedFPStrict.clear(); 1034 CurInst = nullptr; 1035 HasTailCall = false; 1036 SDNodeOrder = LowestSDNodeOrder; 1037 StatepointLowering.clear(); 1038 } 1039 1040 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1041 DanglingDebugInfoMap.clear(); 1042 } 1043 1044 // Update DAG root to include dependencies on Pending chains. 1045 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1046 SDValue Root = DAG.getRoot(); 1047 1048 if (Pending.empty()) 1049 return Root; 1050 1051 // Add current root to PendingChains, unless we already indirectly 1052 // depend on it. 1053 if (Root.getOpcode() != ISD::EntryToken) { 1054 unsigned i = 0, e = Pending.size(); 1055 for (; i != e; ++i) { 1056 assert(Pending[i].getNode()->getNumOperands() > 1); 1057 if (Pending[i].getNode()->getOperand(0) == Root) 1058 break; // Don't add the root if we already indirectly depend on it. 1059 } 1060 1061 if (i == e) 1062 Pending.push_back(Root); 1063 } 1064 1065 if (Pending.size() == 1) 1066 Root = Pending[0]; 1067 else 1068 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1069 1070 DAG.setRoot(Root); 1071 Pending.clear(); 1072 return Root; 1073 } 1074 1075 SDValue SelectionDAGBuilder::getMemoryRoot() { 1076 return updateRoot(PendingLoads); 1077 } 1078 1079 SDValue SelectionDAGBuilder::getRoot() { 1080 // Chain up all pending constrained intrinsics together with all 1081 // pending loads, by simply appending them to PendingLoads and 1082 // then calling getMemoryRoot(). 1083 PendingLoads.reserve(PendingLoads.size() + 1084 PendingConstrainedFP.size() + 1085 PendingConstrainedFPStrict.size()); 1086 PendingLoads.append(PendingConstrainedFP.begin(), 1087 PendingConstrainedFP.end()); 1088 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1089 PendingConstrainedFPStrict.end()); 1090 PendingConstrainedFP.clear(); 1091 PendingConstrainedFPStrict.clear(); 1092 return getMemoryRoot(); 1093 } 1094 1095 SDValue SelectionDAGBuilder::getControlRoot() { 1096 // We need to emit pending fpexcept.strict constrained intrinsics, 1097 // so append them to the PendingExports list. 1098 PendingExports.append(PendingConstrainedFPStrict.begin(), 1099 PendingConstrainedFPStrict.end()); 1100 PendingConstrainedFPStrict.clear(); 1101 return updateRoot(PendingExports); 1102 } 1103 1104 void SelectionDAGBuilder::visit(const Instruction &I) { 1105 // Set up outgoing PHI node register values before emitting the terminator. 1106 if (I.isTerminator()) { 1107 HandlePHINodesInSuccessorBlocks(I.getParent()); 1108 } 1109 1110 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1111 if (!isa<DbgInfoIntrinsic>(I)) 1112 ++SDNodeOrder; 1113 1114 CurInst = &I; 1115 1116 visit(I.getOpcode(), I); 1117 1118 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1119 // ConstrainedFPIntrinsics handle their own FMF. 1120 if (!isa<ConstrainedFPIntrinsic>(&I)) { 1121 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1122 // maps to this instruction. 1123 // TODO: We could handle all flags (nsw, etc) here. 1124 // TODO: If an IR instruction maps to >1 node, only the final node will have 1125 // flags set. 1126 if (SDNode *Node = getNodeForIRValue(&I)) { 1127 SDNodeFlags IncomingFlags; 1128 IncomingFlags.copyFMF(*FPMO); 1129 if (!Node->getFlags().isDefined()) 1130 Node->setFlags(IncomingFlags); 1131 else 1132 Node->intersectFlagsWith(IncomingFlags); 1133 } 1134 } 1135 } 1136 1137 if (!I.isTerminator() && !HasTailCall && 1138 !isStatepoint(&I)) // statepoints handle their exports internally 1139 CopyToExportRegsIfNeeded(&I); 1140 1141 CurInst = nullptr; 1142 } 1143 1144 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1145 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1146 } 1147 1148 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1149 // Note: this doesn't use InstVisitor, because it has to work with 1150 // ConstantExpr's in addition to instructions. 1151 switch (Opcode) { 1152 default: llvm_unreachable("Unknown instruction type encountered!"); 1153 // Build the switch statement using the Instruction.def file. 1154 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1155 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1156 #include "llvm/IR/Instruction.def" 1157 } 1158 } 1159 1160 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1161 const DIExpression *Expr) { 1162 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1163 const DbgValueInst *DI = DDI.getDI(); 1164 DIVariable *DanglingVariable = DI->getVariable(); 1165 DIExpression *DanglingExpr = DI->getExpression(); 1166 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1167 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1168 return true; 1169 } 1170 return false; 1171 }; 1172 1173 for (auto &DDIMI : DanglingDebugInfoMap) { 1174 DanglingDebugInfoVector &DDIV = DDIMI.second; 1175 1176 // If debug info is to be dropped, run it through final checks to see 1177 // whether it can be salvaged. 1178 for (auto &DDI : DDIV) 1179 if (isMatchingDbgValue(DDI)) 1180 salvageUnresolvedDbgValue(DDI); 1181 1182 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1183 } 1184 } 1185 1186 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1187 // generate the debug data structures now that we've seen its definition. 1188 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1189 SDValue Val) { 1190 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1191 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1192 return; 1193 1194 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1195 for (auto &DDI : DDIV) { 1196 const DbgValueInst *DI = DDI.getDI(); 1197 assert(DI && "Ill-formed DanglingDebugInfo"); 1198 DebugLoc dl = DDI.getdl(); 1199 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1200 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1201 DILocalVariable *Variable = DI->getVariable(); 1202 DIExpression *Expr = DI->getExpression(); 1203 assert(Variable->isValidLocationForIntrinsic(dl) && 1204 "Expected inlined-at fields to agree"); 1205 SDDbgValue *SDV; 1206 if (Val.getNode()) { 1207 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1208 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1209 // we couldn't resolve it directly when examining the DbgValue intrinsic 1210 // in the first place we should not be more successful here). Unless we 1211 // have some test case that prove this to be correct we should avoid 1212 // calling EmitFuncArgumentDbgValue here. 1213 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1214 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1215 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1216 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1217 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1218 // inserted after the definition of Val when emitting the instructions 1219 // after ISel. An alternative could be to teach 1220 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1221 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1222 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1223 << ValSDNodeOrder << "\n"); 1224 SDV = getDbgValue(Val, Variable, Expr, dl, 1225 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1226 DAG.AddDbgValue(SDV, Val.getNode(), false); 1227 } else 1228 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1229 << "in EmitFuncArgumentDbgValue\n"); 1230 } else { 1231 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1232 auto Undef = 1233 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1234 auto SDV = 1235 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1236 DAG.AddDbgValue(SDV, nullptr, false); 1237 } 1238 } 1239 DDIV.clear(); 1240 } 1241 1242 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1243 Value *V = DDI.getDI()->getValue(); 1244 DILocalVariable *Var = DDI.getDI()->getVariable(); 1245 DIExpression *Expr = DDI.getDI()->getExpression(); 1246 DebugLoc DL = DDI.getdl(); 1247 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1248 unsigned SDOrder = DDI.getSDNodeOrder(); 1249 1250 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1251 // that DW_OP_stack_value is desired. 1252 assert(isa<DbgValueInst>(DDI.getDI())); 1253 bool StackValue = true; 1254 1255 // Can this Value can be encoded without any further work? 1256 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1257 return; 1258 1259 // Attempt to salvage back through as many instructions as possible. Bail if 1260 // a non-instruction is seen, such as a constant expression or global 1261 // variable. FIXME: Further work could recover those too. 1262 while (isa<Instruction>(V)) { 1263 Instruction &VAsInst = *cast<Instruction>(V); 1264 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1265 1266 // If we cannot salvage any further, and haven't yet found a suitable debug 1267 // expression, bail out. 1268 if (!NewExpr) 1269 break; 1270 1271 // New value and expr now represent this debuginfo. 1272 V = VAsInst.getOperand(0); 1273 Expr = NewExpr; 1274 1275 // Some kind of simplification occurred: check whether the operand of the 1276 // salvaged debug expression can be encoded in this DAG. 1277 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1278 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1279 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1280 return; 1281 } 1282 } 1283 1284 // This was the final opportunity to salvage this debug information, and it 1285 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1286 // any earlier variable location. 1287 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1288 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1289 DAG.AddDbgValue(SDV, nullptr, false); 1290 1291 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1292 << "\n"); 1293 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1294 << "\n"); 1295 } 1296 1297 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1298 DIExpression *Expr, DebugLoc dl, 1299 DebugLoc InstDL, unsigned Order) { 1300 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1301 SDDbgValue *SDV; 1302 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1303 isa<ConstantPointerNull>(V)) { 1304 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1305 DAG.AddDbgValue(SDV, nullptr, false); 1306 return true; 1307 } 1308 1309 // If the Value is a frame index, we can create a FrameIndex debug value 1310 // without relying on the DAG at all. 1311 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1312 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1313 if (SI != FuncInfo.StaticAllocaMap.end()) { 1314 auto SDV = 1315 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1316 /*IsIndirect*/ false, dl, SDNodeOrder); 1317 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1318 // is still available even if the SDNode gets optimized out. 1319 DAG.AddDbgValue(SDV, nullptr, false); 1320 return true; 1321 } 1322 } 1323 1324 // Do not use getValue() in here; we don't want to generate code at 1325 // this point if it hasn't been done yet. 1326 SDValue N = NodeMap[V]; 1327 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1328 N = UnusedArgNodeMap[V]; 1329 if (N.getNode()) { 1330 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1331 return true; 1332 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1333 DAG.AddDbgValue(SDV, N.getNode(), false); 1334 return true; 1335 } 1336 1337 // Special rules apply for the first dbg.values of parameter variables in a 1338 // function. Identify them by the fact they reference Argument Values, that 1339 // they're parameters, and they are parameters of the current function. We 1340 // need to let them dangle until they get an SDNode. 1341 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1342 !InstDL.getInlinedAt(); 1343 if (!IsParamOfFunc) { 1344 // The value is not used in this block yet (or it would have an SDNode). 1345 // We still want the value to appear for the user if possible -- if it has 1346 // an associated VReg, we can refer to that instead. 1347 auto VMI = FuncInfo.ValueMap.find(V); 1348 if (VMI != FuncInfo.ValueMap.end()) { 1349 unsigned Reg = VMI->second; 1350 // If this is a PHI node, it may be split up into several MI PHI nodes 1351 // (in FunctionLoweringInfo::set). 1352 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1353 V->getType(), None); 1354 if (RFV.occupiesMultipleRegs()) { 1355 unsigned Offset = 0; 1356 unsigned BitsToDescribe = 0; 1357 if (auto VarSize = Var->getSizeInBits()) 1358 BitsToDescribe = *VarSize; 1359 if (auto Fragment = Expr->getFragmentInfo()) 1360 BitsToDescribe = Fragment->SizeInBits; 1361 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1362 unsigned RegisterSize = RegAndSize.second; 1363 // Bail out if all bits are described already. 1364 if (Offset >= BitsToDescribe) 1365 break; 1366 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1367 ? BitsToDescribe - Offset 1368 : RegisterSize; 1369 auto FragmentExpr = DIExpression::createFragmentExpression( 1370 Expr, Offset, FragmentSize); 1371 if (!FragmentExpr) 1372 continue; 1373 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1374 false, dl, SDNodeOrder); 1375 DAG.AddDbgValue(SDV, nullptr, false); 1376 Offset += RegisterSize; 1377 } 1378 } else { 1379 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1380 DAG.AddDbgValue(SDV, nullptr, false); 1381 } 1382 return true; 1383 } 1384 } 1385 1386 return false; 1387 } 1388 1389 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1390 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1391 for (auto &Pair : DanglingDebugInfoMap) 1392 for (auto &DDI : Pair.second) 1393 salvageUnresolvedDbgValue(DDI); 1394 clearDanglingDebugInfo(); 1395 } 1396 1397 /// getCopyFromRegs - If there was virtual register allocated for the value V 1398 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1399 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1400 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1401 SDValue Result; 1402 1403 if (It != FuncInfo.ValueMap.end()) { 1404 unsigned InReg = It->second; 1405 1406 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1407 DAG.getDataLayout(), InReg, Ty, 1408 None); // This is not an ABI copy. 1409 SDValue Chain = DAG.getEntryNode(); 1410 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1411 V); 1412 resolveDanglingDebugInfo(V, Result); 1413 } 1414 1415 return Result; 1416 } 1417 1418 /// getValue - Return an SDValue for the given Value. 1419 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1420 // If we already have an SDValue for this value, use it. It's important 1421 // to do this first, so that we don't create a CopyFromReg if we already 1422 // have a regular SDValue. 1423 SDValue &N = NodeMap[V]; 1424 if (N.getNode()) return N; 1425 1426 // If there's a virtual register allocated and initialized for this 1427 // value, use it. 1428 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1429 return copyFromReg; 1430 1431 // Otherwise create a new SDValue and remember it. 1432 SDValue Val = getValueImpl(V); 1433 NodeMap[V] = Val; 1434 resolveDanglingDebugInfo(V, Val); 1435 return Val; 1436 } 1437 1438 // Return true if SDValue exists for the given Value 1439 bool SelectionDAGBuilder::findValue(const Value *V) const { 1440 return (NodeMap.find(V) != NodeMap.end()) || 1441 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1442 } 1443 1444 /// getNonRegisterValue - Return an SDValue for the given Value, but 1445 /// don't look in FuncInfo.ValueMap for a virtual register. 1446 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1447 // If we already have an SDValue for this value, use it. 1448 SDValue &N = NodeMap[V]; 1449 if (N.getNode()) { 1450 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1451 // Remove the debug location from the node as the node is about to be used 1452 // in a location which may differ from the original debug location. This 1453 // is relevant to Constant and ConstantFP nodes because they can appear 1454 // as constant expressions inside PHI nodes. 1455 N->setDebugLoc(DebugLoc()); 1456 } 1457 return N; 1458 } 1459 1460 // Otherwise create a new SDValue and remember it. 1461 SDValue Val = getValueImpl(V); 1462 NodeMap[V] = Val; 1463 resolveDanglingDebugInfo(V, Val); 1464 return Val; 1465 } 1466 1467 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1468 /// Create an SDValue for the given value. 1469 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1470 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1471 1472 if (const Constant *C = dyn_cast<Constant>(V)) { 1473 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1474 1475 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1476 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1477 1478 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1479 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1480 1481 if (isa<ConstantPointerNull>(C)) { 1482 unsigned AS = V->getType()->getPointerAddressSpace(); 1483 return DAG.getConstant(0, getCurSDLoc(), 1484 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1485 } 1486 1487 if (match(C, m_VScale(DAG.getDataLayout()))) 1488 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1489 1490 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1491 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1492 1493 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1494 return DAG.getUNDEF(VT); 1495 1496 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1497 visit(CE->getOpcode(), *CE); 1498 SDValue N1 = NodeMap[V]; 1499 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1500 return N1; 1501 } 1502 1503 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1504 SmallVector<SDValue, 4> Constants; 1505 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1506 OI != OE; ++OI) { 1507 SDNode *Val = getValue(*OI).getNode(); 1508 // If the operand is an empty aggregate, there are no values. 1509 if (!Val) continue; 1510 // Add each leaf value from the operand to the Constants list 1511 // to form a flattened list of all the values. 1512 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1513 Constants.push_back(SDValue(Val, i)); 1514 } 1515 1516 return DAG.getMergeValues(Constants, getCurSDLoc()); 1517 } 1518 1519 if (const ConstantDataSequential *CDS = 1520 dyn_cast<ConstantDataSequential>(C)) { 1521 SmallVector<SDValue, 4> Ops; 1522 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1523 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1524 // Add each leaf value from the operand to the Constants list 1525 // to form a flattened list of all the values. 1526 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1527 Ops.push_back(SDValue(Val, i)); 1528 } 1529 1530 if (isa<ArrayType>(CDS->getType())) 1531 return DAG.getMergeValues(Ops, getCurSDLoc()); 1532 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1533 } 1534 1535 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1536 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1537 "Unknown struct or array constant!"); 1538 1539 SmallVector<EVT, 4> ValueVTs; 1540 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1541 unsigned NumElts = ValueVTs.size(); 1542 if (NumElts == 0) 1543 return SDValue(); // empty struct 1544 SmallVector<SDValue, 4> Constants(NumElts); 1545 for (unsigned i = 0; i != NumElts; ++i) { 1546 EVT EltVT = ValueVTs[i]; 1547 if (isa<UndefValue>(C)) 1548 Constants[i] = DAG.getUNDEF(EltVT); 1549 else if (EltVT.isFloatingPoint()) 1550 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1551 else 1552 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1553 } 1554 1555 return DAG.getMergeValues(Constants, getCurSDLoc()); 1556 } 1557 1558 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1559 return DAG.getBlockAddress(BA, VT); 1560 1561 VectorType *VecTy = cast<VectorType>(V->getType()); 1562 unsigned NumElements = VecTy->getNumElements(); 1563 1564 // Now that we know the number and type of the elements, get that number of 1565 // elements into the Ops array based on what kind of constant it is. 1566 SmallVector<SDValue, 16> Ops; 1567 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1568 for (unsigned i = 0; i != NumElements; ++i) 1569 Ops.push_back(getValue(CV->getOperand(i))); 1570 } else { 1571 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1572 EVT EltVT = 1573 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1574 1575 SDValue Op; 1576 if (EltVT.isFloatingPoint()) 1577 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1578 else 1579 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1580 Ops.assign(NumElements, Op); 1581 } 1582 1583 // Create a BUILD_VECTOR node. 1584 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1585 } 1586 1587 // If this is a static alloca, generate it as the frameindex instead of 1588 // computation. 1589 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1590 DenseMap<const AllocaInst*, int>::iterator SI = 1591 FuncInfo.StaticAllocaMap.find(AI); 1592 if (SI != FuncInfo.StaticAllocaMap.end()) 1593 return DAG.getFrameIndex(SI->second, 1594 TLI.getFrameIndexTy(DAG.getDataLayout())); 1595 } 1596 1597 // If this is an instruction which fast-isel has deferred, select it now. 1598 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1599 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1600 1601 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1602 Inst->getType(), getABIRegCopyCC(V)); 1603 SDValue Chain = DAG.getEntryNode(); 1604 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1605 } 1606 1607 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1608 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1609 } 1610 llvm_unreachable("Can't get register for value!"); 1611 } 1612 1613 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1614 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1615 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1616 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1617 bool IsSEH = isAsynchronousEHPersonality(Pers); 1618 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1619 if (!IsSEH) 1620 CatchPadMBB->setIsEHScopeEntry(); 1621 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1622 if (IsMSVCCXX || IsCoreCLR) 1623 CatchPadMBB->setIsEHFuncletEntry(); 1624 } 1625 1626 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1627 // Update machine-CFG edge. 1628 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1629 FuncInfo.MBB->addSuccessor(TargetMBB); 1630 1631 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1632 bool IsSEH = isAsynchronousEHPersonality(Pers); 1633 if (IsSEH) { 1634 // If this is not a fall-through branch or optimizations are switched off, 1635 // emit the branch. 1636 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1637 TM.getOptLevel() == CodeGenOpt::None) 1638 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1639 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1640 return; 1641 } 1642 1643 // Figure out the funclet membership for the catchret's successor. 1644 // This will be used by the FuncletLayout pass to determine how to order the 1645 // BB's. 1646 // A 'catchret' returns to the outer scope's color. 1647 Value *ParentPad = I.getCatchSwitchParentPad(); 1648 const BasicBlock *SuccessorColor; 1649 if (isa<ConstantTokenNone>(ParentPad)) 1650 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1651 else 1652 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1653 assert(SuccessorColor && "No parent funclet for catchret!"); 1654 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1655 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1656 1657 // Create the terminator node. 1658 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1659 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1660 DAG.getBasicBlock(SuccessorColorMBB)); 1661 DAG.setRoot(Ret); 1662 } 1663 1664 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1665 // Don't emit any special code for the cleanuppad instruction. It just marks 1666 // the start of an EH scope/funclet. 1667 FuncInfo.MBB->setIsEHScopeEntry(); 1668 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1669 if (Pers != EHPersonality::Wasm_CXX) { 1670 FuncInfo.MBB->setIsEHFuncletEntry(); 1671 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1672 } 1673 } 1674 1675 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1676 // the control flow always stops at the single catch pad, as it does for a 1677 // cleanup pad. In case the exception caught is not of the types the catch pad 1678 // catches, it will be rethrown by a rethrow. 1679 static void findWasmUnwindDestinations( 1680 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1681 BranchProbability Prob, 1682 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1683 &UnwindDests) { 1684 while (EHPadBB) { 1685 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1686 if (isa<CleanupPadInst>(Pad)) { 1687 // Stop on cleanup pads. 1688 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1689 UnwindDests.back().first->setIsEHScopeEntry(); 1690 break; 1691 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1692 // Add the catchpad handlers to the possible destinations. We don't 1693 // continue to the unwind destination of the catchswitch for wasm. 1694 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1695 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1696 UnwindDests.back().first->setIsEHScopeEntry(); 1697 } 1698 break; 1699 } else { 1700 continue; 1701 } 1702 } 1703 } 1704 1705 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1706 /// many places it could ultimately go. In the IR, we have a single unwind 1707 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1708 /// This function skips over imaginary basic blocks that hold catchswitch 1709 /// instructions, and finds all the "real" machine 1710 /// basic block destinations. As those destinations may not be successors of 1711 /// EHPadBB, here we also calculate the edge probability to those destinations. 1712 /// The passed-in Prob is the edge probability to EHPadBB. 1713 static void findUnwindDestinations( 1714 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1715 BranchProbability Prob, 1716 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1717 &UnwindDests) { 1718 EHPersonality Personality = 1719 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1720 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1721 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1722 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1723 bool IsSEH = isAsynchronousEHPersonality(Personality); 1724 1725 if (IsWasmCXX) { 1726 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1727 assert(UnwindDests.size() <= 1 && 1728 "There should be at most one unwind destination for wasm"); 1729 return; 1730 } 1731 1732 while (EHPadBB) { 1733 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1734 BasicBlock *NewEHPadBB = nullptr; 1735 if (isa<LandingPadInst>(Pad)) { 1736 // Stop on landingpads. They are not funclets. 1737 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1738 break; 1739 } else if (isa<CleanupPadInst>(Pad)) { 1740 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1741 // personalities. 1742 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1743 UnwindDests.back().first->setIsEHScopeEntry(); 1744 UnwindDests.back().first->setIsEHFuncletEntry(); 1745 break; 1746 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1747 // Add the catchpad handlers to the possible destinations. 1748 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1749 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1750 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1751 if (IsMSVCCXX || IsCoreCLR) 1752 UnwindDests.back().first->setIsEHFuncletEntry(); 1753 if (!IsSEH) 1754 UnwindDests.back().first->setIsEHScopeEntry(); 1755 } 1756 NewEHPadBB = CatchSwitch->getUnwindDest(); 1757 } else { 1758 continue; 1759 } 1760 1761 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1762 if (BPI && NewEHPadBB) 1763 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1764 EHPadBB = NewEHPadBB; 1765 } 1766 } 1767 1768 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1769 // Update successor info. 1770 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1771 auto UnwindDest = I.getUnwindDest(); 1772 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1773 BranchProbability UnwindDestProb = 1774 (BPI && UnwindDest) 1775 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1776 : BranchProbability::getZero(); 1777 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1778 for (auto &UnwindDest : UnwindDests) { 1779 UnwindDest.first->setIsEHPad(); 1780 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1781 } 1782 FuncInfo.MBB->normalizeSuccProbs(); 1783 1784 // Create the terminator node. 1785 SDValue Ret = 1786 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1787 DAG.setRoot(Ret); 1788 } 1789 1790 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1791 report_fatal_error("visitCatchSwitch not yet implemented!"); 1792 } 1793 1794 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1796 auto &DL = DAG.getDataLayout(); 1797 SDValue Chain = getControlRoot(); 1798 SmallVector<ISD::OutputArg, 8> Outs; 1799 SmallVector<SDValue, 8> OutVals; 1800 1801 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1802 // lower 1803 // 1804 // %val = call <ty> @llvm.experimental.deoptimize() 1805 // ret <ty> %val 1806 // 1807 // differently. 1808 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1809 LowerDeoptimizingReturn(); 1810 return; 1811 } 1812 1813 if (!FuncInfo.CanLowerReturn) { 1814 unsigned DemoteReg = FuncInfo.DemoteRegister; 1815 const Function *F = I.getParent()->getParent(); 1816 1817 // Emit a store of the return value through the virtual register. 1818 // Leave Outs empty so that LowerReturn won't try to load return 1819 // registers the usual way. 1820 SmallVector<EVT, 1> PtrValueVTs; 1821 ComputeValueVTs(TLI, DL, 1822 F->getReturnType()->getPointerTo( 1823 DAG.getDataLayout().getAllocaAddrSpace()), 1824 PtrValueVTs); 1825 1826 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1827 DemoteReg, PtrValueVTs[0]); 1828 SDValue RetOp = getValue(I.getOperand(0)); 1829 1830 SmallVector<EVT, 4> ValueVTs, MemVTs; 1831 SmallVector<uint64_t, 4> Offsets; 1832 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1833 &Offsets); 1834 unsigned NumValues = ValueVTs.size(); 1835 1836 SmallVector<SDValue, 4> Chains(NumValues); 1837 for (unsigned i = 0; i != NumValues; ++i) { 1838 // An aggregate return value cannot wrap around the address space, so 1839 // offsets to its parts don't wrap either. 1840 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1841 1842 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1843 if (MemVTs[i] != ValueVTs[i]) 1844 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1845 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1846 // FIXME: better loc info would be nice. 1847 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1848 } 1849 1850 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1851 MVT::Other, Chains); 1852 } else if (I.getNumOperands() != 0) { 1853 SmallVector<EVT, 4> ValueVTs; 1854 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1855 unsigned NumValues = ValueVTs.size(); 1856 if (NumValues) { 1857 SDValue RetOp = getValue(I.getOperand(0)); 1858 1859 const Function *F = I.getParent()->getParent(); 1860 1861 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1862 I.getOperand(0)->getType(), F->getCallingConv(), 1863 /*IsVarArg*/ false); 1864 1865 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1866 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1867 Attribute::SExt)) 1868 ExtendKind = ISD::SIGN_EXTEND; 1869 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1870 Attribute::ZExt)) 1871 ExtendKind = ISD::ZERO_EXTEND; 1872 1873 LLVMContext &Context = F->getContext(); 1874 bool RetInReg = F->getAttributes().hasAttribute( 1875 AttributeList::ReturnIndex, Attribute::InReg); 1876 1877 for (unsigned j = 0; j != NumValues; ++j) { 1878 EVT VT = ValueVTs[j]; 1879 1880 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1881 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1882 1883 CallingConv::ID CC = F->getCallingConv(); 1884 1885 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1886 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1887 SmallVector<SDValue, 4> Parts(NumParts); 1888 getCopyToParts(DAG, getCurSDLoc(), 1889 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1890 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1891 1892 // 'inreg' on function refers to return value 1893 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1894 if (RetInReg) 1895 Flags.setInReg(); 1896 1897 if (I.getOperand(0)->getType()->isPointerTy()) { 1898 Flags.setPointer(); 1899 Flags.setPointerAddrSpace( 1900 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1901 } 1902 1903 if (NeedsRegBlock) { 1904 Flags.setInConsecutiveRegs(); 1905 if (j == NumValues - 1) 1906 Flags.setInConsecutiveRegsLast(); 1907 } 1908 1909 // Propagate extension type if any 1910 if (ExtendKind == ISD::SIGN_EXTEND) 1911 Flags.setSExt(); 1912 else if (ExtendKind == ISD::ZERO_EXTEND) 1913 Flags.setZExt(); 1914 1915 for (unsigned i = 0; i < NumParts; ++i) { 1916 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1917 VT, /*isfixed=*/true, 0, 0)); 1918 OutVals.push_back(Parts[i]); 1919 } 1920 } 1921 } 1922 } 1923 1924 // Push in swifterror virtual register as the last element of Outs. This makes 1925 // sure swifterror virtual register will be returned in the swifterror 1926 // physical register. 1927 const Function *F = I.getParent()->getParent(); 1928 if (TLI.supportSwiftError() && 1929 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1930 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1931 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1932 Flags.setSwiftError(); 1933 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1934 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1935 true /*isfixed*/, 1 /*origidx*/, 1936 0 /*partOffs*/)); 1937 // Create SDNode for the swifterror virtual register. 1938 OutVals.push_back( 1939 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1940 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1941 EVT(TLI.getPointerTy(DL)))); 1942 } 1943 1944 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1945 CallingConv::ID CallConv = 1946 DAG.getMachineFunction().getFunction().getCallingConv(); 1947 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1948 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1949 1950 // Verify that the target's LowerReturn behaved as expected. 1951 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1952 "LowerReturn didn't return a valid chain!"); 1953 1954 // Update the DAG with the new chain value resulting from return lowering. 1955 DAG.setRoot(Chain); 1956 } 1957 1958 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1959 /// created for it, emit nodes to copy the value into the virtual 1960 /// registers. 1961 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1962 // Skip empty types 1963 if (V->getType()->isEmptyTy()) 1964 return; 1965 1966 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1967 if (VMI != FuncInfo.ValueMap.end()) { 1968 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1969 CopyValueToVirtualRegister(V, VMI->second); 1970 } 1971 } 1972 1973 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1974 /// the current basic block, add it to ValueMap now so that we'll get a 1975 /// CopyTo/FromReg. 1976 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1977 // No need to export constants. 1978 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1979 1980 // Already exported? 1981 if (FuncInfo.isExportedInst(V)) return; 1982 1983 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1984 CopyValueToVirtualRegister(V, Reg); 1985 } 1986 1987 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1988 const BasicBlock *FromBB) { 1989 // The operands of the setcc have to be in this block. We don't know 1990 // how to export them from some other block. 1991 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1992 // Can export from current BB. 1993 if (VI->getParent() == FromBB) 1994 return true; 1995 1996 // Is already exported, noop. 1997 return FuncInfo.isExportedInst(V); 1998 } 1999 2000 // If this is an argument, we can export it if the BB is the entry block or 2001 // if it is already exported. 2002 if (isa<Argument>(V)) { 2003 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2004 return true; 2005 2006 // Otherwise, can only export this if it is already exported. 2007 return FuncInfo.isExportedInst(V); 2008 } 2009 2010 // Otherwise, constants can always be exported. 2011 return true; 2012 } 2013 2014 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2015 BranchProbability 2016 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2017 const MachineBasicBlock *Dst) const { 2018 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2019 const BasicBlock *SrcBB = Src->getBasicBlock(); 2020 const BasicBlock *DstBB = Dst->getBasicBlock(); 2021 if (!BPI) { 2022 // If BPI is not available, set the default probability as 1 / N, where N is 2023 // the number of successors. 2024 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2025 return BranchProbability(1, SuccSize); 2026 } 2027 return BPI->getEdgeProbability(SrcBB, DstBB); 2028 } 2029 2030 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2031 MachineBasicBlock *Dst, 2032 BranchProbability Prob) { 2033 if (!FuncInfo.BPI) 2034 Src->addSuccessorWithoutProb(Dst); 2035 else { 2036 if (Prob.isUnknown()) 2037 Prob = getEdgeProbability(Src, Dst); 2038 Src->addSuccessor(Dst, Prob); 2039 } 2040 } 2041 2042 static bool InBlock(const Value *V, const BasicBlock *BB) { 2043 if (const Instruction *I = dyn_cast<Instruction>(V)) 2044 return I->getParent() == BB; 2045 return true; 2046 } 2047 2048 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2049 /// This function emits a branch and is used at the leaves of an OR or an 2050 /// AND operator tree. 2051 void 2052 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2053 MachineBasicBlock *TBB, 2054 MachineBasicBlock *FBB, 2055 MachineBasicBlock *CurBB, 2056 MachineBasicBlock *SwitchBB, 2057 BranchProbability TProb, 2058 BranchProbability FProb, 2059 bool InvertCond) { 2060 const BasicBlock *BB = CurBB->getBasicBlock(); 2061 2062 // If the leaf of the tree is a comparison, merge the condition into 2063 // the caseblock. 2064 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2065 // The operands of the cmp have to be in this block. We don't know 2066 // how to export them from some other block. If this is the first block 2067 // of the sequence, no exporting is needed. 2068 if (CurBB == SwitchBB || 2069 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2070 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2071 ISD::CondCode Condition; 2072 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2073 ICmpInst::Predicate Pred = 2074 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2075 Condition = getICmpCondCode(Pred); 2076 } else { 2077 const FCmpInst *FC = cast<FCmpInst>(Cond); 2078 FCmpInst::Predicate Pred = 2079 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2080 Condition = getFCmpCondCode(Pred); 2081 if (TM.Options.NoNaNsFPMath) 2082 Condition = getFCmpCodeWithoutNaN(Condition); 2083 } 2084 2085 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2086 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2087 SL->SwitchCases.push_back(CB); 2088 return; 2089 } 2090 } 2091 2092 // Create a CaseBlock record representing this branch. 2093 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2094 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2095 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2096 SL->SwitchCases.push_back(CB); 2097 } 2098 2099 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2100 MachineBasicBlock *TBB, 2101 MachineBasicBlock *FBB, 2102 MachineBasicBlock *CurBB, 2103 MachineBasicBlock *SwitchBB, 2104 Instruction::BinaryOps Opc, 2105 BranchProbability TProb, 2106 BranchProbability FProb, 2107 bool InvertCond) { 2108 // Skip over not part of the tree and remember to invert op and operands at 2109 // next level. 2110 Value *NotCond; 2111 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2112 InBlock(NotCond, CurBB->getBasicBlock())) { 2113 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2114 !InvertCond); 2115 return; 2116 } 2117 2118 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2119 // Compute the effective opcode for Cond, taking into account whether it needs 2120 // to be inverted, e.g. 2121 // and (not (or A, B)), C 2122 // gets lowered as 2123 // and (and (not A, not B), C) 2124 unsigned BOpc = 0; 2125 if (BOp) { 2126 BOpc = BOp->getOpcode(); 2127 if (InvertCond) { 2128 if (BOpc == Instruction::And) 2129 BOpc = Instruction::Or; 2130 else if (BOpc == Instruction::Or) 2131 BOpc = Instruction::And; 2132 } 2133 } 2134 2135 // If this node is not part of the or/and tree, emit it as a branch. 2136 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2137 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2138 BOp->getParent() != CurBB->getBasicBlock() || 2139 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2140 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2141 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2142 TProb, FProb, InvertCond); 2143 return; 2144 } 2145 2146 // Create TmpBB after CurBB. 2147 MachineFunction::iterator BBI(CurBB); 2148 MachineFunction &MF = DAG.getMachineFunction(); 2149 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2150 CurBB->getParent()->insert(++BBI, TmpBB); 2151 2152 if (Opc == Instruction::Or) { 2153 // Codegen X | Y as: 2154 // BB1: 2155 // jmp_if_X TBB 2156 // jmp TmpBB 2157 // TmpBB: 2158 // jmp_if_Y TBB 2159 // jmp FBB 2160 // 2161 2162 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2163 // The requirement is that 2164 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2165 // = TrueProb for original BB. 2166 // Assuming the original probabilities are A and B, one choice is to set 2167 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2168 // A/(1+B) and 2B/(1+B). This choice assumes that 2169 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2170 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2171 // TmpBB, but the math is more complicated. 2172 2173 auto NewTrueProb = TProb / 2; 2174 auto NewFalseProb = TProb / 2 + FProb; 2175 // Emit the LHS condition. 2176 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2177 NewTrueProb, NewFalseProb, InvertCond); 2178 2179 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2180 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2181 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2182 // Emit the RHS condition into TmpBB. 2183 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2184 Probs[0], Probs[1], InvertCond); 2185 } else { 2186 assert(Opc == Instruction::And && "Unknown merge op!"); 2187 // Codegen X & Y as: 2188 // BB1: 2189 // jmp_if_X TmpBB 2190 // jmp FBB 2191 // TmpBB: 2192 // jmp_if_Y TBB 2193 // jmp FBB 2194 // 2195 // This requires creation of TmpBB after CurBB. 2196 2197 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2198 // The requirement is that 2199 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2200 // = FalseProb for original BB. 2201 // Assuming the original probabilities are A and B, one choice is to set 2202 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2203 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2204 // TrueProb for BB1 * FalseProb for TmpBB. 2205 2206 auto NewTrueProb = TProb + FProb / 2; 2207 auto NewFalseProb = FProb / 2; 2208 // Emit the LHS condition. 2209 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2210 NewTrueProb, NewFalseProb, InvertCond); 2211 2212 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2213 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2214 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2215 // Emit the RHS condition into TmpBB. 2216 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2217 Probs[0], Probs[1], InvertCond); 2218 } 2219 } 2220 2221 /// If the set of cases should be emitted as a series of branches, return true. 2222 /// If we should emit this as a bunch of and/or'd together conditions, return 2223 /// false. 2224 bool 2225 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2226 if (Cases.size() != 2) return true; 2227 2228 // If this is two comparisons of the same values or'd or and'd together, they 2229 // will get folded into a single comparison, so don't emit two blocks. 2230 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2231 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2232 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2233 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2234 return false; 2235 } 2236 2237 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2238 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2239 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2240 Cases[0].CC == Cases[1].CC && 2241 isa<Constant>(Cases[0].CmpRHS) && 2242 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2243 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2244 return false; 2245 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2246 return false; 2247 } 2248 2249 return true; 2250 } 2251 2252 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2253 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2254 2255 // Update machine-CFG edges. 2256 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2257 2258 if (I.isUnconditional()) { 2259 // Update machine-CFG edges. 2260 BrMBB->addSuccessor(Succ0MBB); 2261 2262 // If this is not a fall-through branch or optimizations are switched off, 2263 // emit the branch. 2264 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2265 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2266 MVT::Other, getControlRoot(), 2267 DAG.getBasicBlock(Succ0MBB))); 2268 2269 return; 2270 } 2271 2272 // If this condition is one of the special cases we handle, do special stuff 2273 // now. 2274 const Value *CondVal = I.getCondition(); 2275 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2276 2277 // If this is a series of conditions that are or'd or and'd together, emit 2278 // this as a sequence of branches instead of setcc's with and/or operations. 2279 // As long as jumps are not expensive, this should improve performance. 2280 // For example, instead of something like: 2281 // cmp A, B 2282 // C = seteq 2283 // cmp D, E 2284 // F = setle 2285 // or C, F 2286 // jnz foo 2287 // Emit: 2288 // cmp A, B 2289 // je foo 2290 // cmp D, E 2291 // jle foo 2292 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2293 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2294 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2295 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2296 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2297 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2298 Opcode, 2299 getEdgeProbability(BrMBB, Succ0MBB), 2300 getEdgeProbability(BrMBB, Succ1MBB), 2301 /*InvertCond=*/false); 2302 // If the compares in later blocks need to use values not currently 2303 // exported from this block, export them now. This block should always 2304 // be the first entry. 2305 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2306 2307 // Allow some cases to be rejected. 2308 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2309 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2310 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2311 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2312 } 2313 2314 // Emit the branch for this block. 2315 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2316 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2317 return; 2318 } 2319 2320 // Okay, we decided not to do this, remove any inserted MBB's and clear 2321 // SwitchCases. 2322 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2323 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2324 2325 SL->SwitchCases.clear(); 2326 } 2327 } 2328 2329 // Create a CaseBlock record representing this branch. 2330 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2331 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2332 2333 // Use visitSwitchCase to actually insert the fast branch sequence for this 2334 // cond branch. 2335 visitSwitchCase(CB, BrMBB); 2336 } 2337 2338 /// visitSwitchCase - Emits the necessary code to represent a single node in 2339 /// the binary search tree resulting from lowering a switch instruction. 2340 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2341 MachineBasicBlock *SwitchBB) { 2342 SDValue Cond; 2343 SDValue CondLHS = getValue(CB.CmpLHS); 2344 SDLoc dl = CB.DL; 2345 2346 if (CB.CC == ISD::SETTRUE) { 2347 // Branch or fall through to TrueBB. 2348 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2349 SwitchBB->normalizeSuccProbs(); 2350 if (CB.TrueBB != NextBlock(SwitchBB)) { 2351 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2352 DAG.getBasicBlock(CB.TrueBB))); 2353 } 2354 return; 2355 } 2356 2357 auto &TLI = DAG.getTargetLoweringInfo(); 2358 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2359 2360 // Build the setcc now. 2361 if (!CB.CmpMHS) { 2362 // Fold "(X == true)" to X and "(X == false)" to !X to 2363 // handle common cases produced by branch lowering. 2364 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2365 CB.CC == ISD::SETEQ) 2366 Cond = CondLHS; 2367 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2368 CB.CC == ISD::SETEQ) { 2369 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2370 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2371 } else { 2372 SDValue CondRHS = getValue(CB.CmpRHS); 2373 2374 // If a pointer's DAG type is larger than its memory type then the DAG 2375 // values are zero-extended. This breaks signed comparisons so truncate 2376 // back to the underlying type before doing the compare. 2377 if (CondLHS.getValueType() != MemVT) { 2378 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2379 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2380 } 2381 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2382 } 2383 } else { 2384 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2385 2386 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2387 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2388 2389 SDValue CmpOp = getValue(CB.CmpMHS); 2390 EVT VT = CmpOp.getValueType(); 2391 2392 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2393 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2394 ISD::SETLE); 2395 } else { 2396 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2397 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2398 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2399 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2400 } 2401 } 2402 2403 // Update successor info 2404 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2405 // TrueBB and FalseBB are always different unless the incoming IR is 2406 // degenerate. This only happens when running llc on weird IR. 2407 if (CB.TrueBB != CB.FalseBB) 2408 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2409 SwitchBB->normalizeSuccProbs(); 2410 2411 // If the lhs block is the next block, invert the condition so that we can 2412 // fall through to the lhs instead of the rhs block. 2413 if (CB.TrueBB == NextBlock(SwitchBB)) { 2414 std::swap(CB.TrueBB, CB.FalseBB); 2415 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2416 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2417 } 2418 2419 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2420 MVT::Other, getControlRoot(), Cond, 2421 DAG.getBasicBlock(CB.TrueBB)); 2422 2423 // Insert the false branch. Do this even if it's a fall through branch, 2424 // this makes it easier to do DAG optimizations which require inverting 2425 // the branch condition. 2426 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2427 DAG.getBasicBlock(CB.FalseBB)); 2428 2429 DAG.setRoot(BrCond); 2430 } 2431 2432 /// visitJumpTable - Emit JumpTable node in the current MBB 2433 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2434 // Emit the code for the jump table 2435 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2436 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2437 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2438 JT.Reg, PTy); 2439 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2440 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2441 MVT::Other, Index.getValue(1), 2442 Table, Index); 2443 DAG.setRoot(BrJumpTable); 2444 } 2445 2446 /// visitJumpTableHeader - This function emits necessary code to produce index 2447 /// in the JumpTable from switch case. 2448 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2449 JumpTableHeader &JTH, 2450 MachineBasicBlock *SwitchBB) { 2451 SDLoc dl = getCurSDLoc(); 2452 2453 // Subtract the lowest switch case value from the value being switched on. 2454 SDValue SwitchOp = getValue(JTH.SValue); 2455 EVT VT = SwitchOp.getValueType(); 2456 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2457 DAG.getConstant(JTH.First, dl, VT)); 2458 2459 // The SDNode we just created, which holds the value being switched on minus 2460 // the smallest case value, needs to be copied to a virtual register so it 2461 // can be used as an index into the jump table in a subsequent basic block. 2462 // This value may be smaller or larger than the target's pointer type, and 2463 // therefore require extension or truncating. 2464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2465 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2466 2467 unsigned JumpTableReg = 2468 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2469 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2470 JumpTableReg, SwitchOp); 2471 JT.Reg = JumpTableReg; 2472 2473 if (!JTH.OmitRangeCheck) { 2474 // Emit the range check for the jump table, and branch to the default block 2475 // for the switch statement if the value being switched on exceeds the 2476 // largest case in the switch. 2477 SDValue CMP = DAG.getSetCC( 2478 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2479 Sub.getValueType()), 2480 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2481 2482 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2483 MVT::Other, CopyTo, CMP, 2484 DAG.getBasicBlock(JT.Default)); 2485 2486 // Avoid emitting unnecessary branches to the next block. 2487 if (JT.MBB != NextBlock(SwitchBB)) 2488 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2489 DAG.getBasicBlock(JT.MBB)); 2490 2491 DAG.setRoot(BrCond); 2492 } else { 2493 // Avoid emitting unnecessary branches to the next block. 2494 if (JT.MBB != NextBlock(SwitchBB)) 2495 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2496 DAG.getBasicBlock(JT.MBB))); 2497 else 2498 DAG.setRoot(CopyTo); 2499 } 2500 } 2501 2502 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2503 /// variable if there exists one. 2504 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2505 SDValue &Chain) { 2506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2507 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2508 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2509 MachineFunction &MF = DAG.getMachineFunction(); 2510 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2511 MachineSDNode *Node = 2512 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2513 if (Global) { 2514 MachinePointerInfo MPInfo(Global); 2515 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2516 MachineMemOperand::MODereferenceable; 2517 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2518 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2519 DAG.setNodeMemRefs(Node, {MemRef}); 2520 } 2521 if (PtrTy != PtrMemTy) 2522 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2523 return SDValue(Node, 0); 2524 } 2525 2526 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2527 /// tail spliced into a stack protector check success bb. 2528 /// 2529 /// For a high level explanation of how this fits into the stack protector 2530 /// generation see the comment on the declaration of class 2531 /// StackProtectorDescriptor. 2532 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2533 MachineBasicBlock *ParentBB) { 2534 2535 // First create the loads to the guard/stack slot for the comparison. 2536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2537 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2538 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2539 2540 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2541 int FI = MFI.getStackProtectorIndex(); 2542 2543 SDValue Guard; 2544 SDLoc dl = getCurSDLoc(); 2545 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2546 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2547 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2548 2549 // Generate code to load the content of the guard slot. 2550 SDValue GuardVal = DAG.getLoad( 2551 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2552 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2553 MachineMemOperand::MOVolatile); 2554 2555 if (TLI.useStackGuardXorFP()) 2556 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2557 2558 // Retrieve guard check function, nullptr if instrumentation is inlined. 2559 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2560 // The target provides a guard check function to validate the guard value. 2561 // Generate a call to that function with the content of the guard slot as 2562 // argument. 2563 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2564 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2565 2566 TargetLowering::ArgListTy Args; 2567 TargetLowering::ArgListEntry Entry; 2568 Entry.Node = GuardVal; 2569 Entry.Ty = FnTy->getParamType(0); 2570 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2571 Entry.IsInReg = true; 2572 Args.push_back(Entry); 2573 2574 TargetLowering::CallLoweringInfo CLI(DAG); 2575 CLI.setDebugLoc(getCurSDLoc()) 2576 .setChain(DAG.getEntryNode()) 2577 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2578 getValue(GuardCheckFn), std::move(Args)); 2579 2580 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2581 DAG.setRoot(Result.second); 2582 return; 2583 } 2584 2585 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2586 // Otherwise, emit a volatile load to retrieve the stack guard value. 2587 SDValue Chain = DAG.getEntryNode(); 2588 if (TLI.useLoadStackGuardNode()) { 2589 Guard = getLoadStackGuard(DAG, dl, Chain); 2590 } else { 2591 const Value *IRGuard = TLI.getSDagStackGuard(M); 2592 SDValue GuardPtr = getValue(IRGuard); 2593 2594 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2595 MachinePointerInfo(IRGuard, 0), Align, 2596 MachineMemOperand::MOVolatile); 2597 } 2598 2599 // Perform the comparison via a getsetcc. 2600 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2601 *DAG.getContext(), 2602 Guard.getValueType()), 2603 Guard, GuardVal, ISD::SETNE); 2604 2605 // If the guard/stackslot do not equal, branch to failure MBB. 2606 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2607 MVT::Other, GuardVal.getOperand(0), 2608 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2609 // Otherwise branch to success MBB. 2610 SDValue Br = DAG.getNode(ISD::BR, dl, 2611 MVT::Other, BrCond, 2612 DAG.getBasicBlock(SPD.getSuccessMBB())); 2613 2614 DAG.setRoot(Br); 2615 } 2616 2617 /// Codegen the failure basic block for a stack protector check. 2618 /// 2619 /// A failure stack protector machine basic block consists simply of a call to 2620 /// __stack_chk_fail(). 2621 /// 2622 /// For a high level explanation of how this fits into the stack protector 2623 /// generation see the comment on the declaration of class 2624 /// StackProtectorDescriptor. 2625 void 2626 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2628 TargetLowering::MakeLibCallOptions CallOptions; 2629 CallOptions.setDiscardResult(true); 2630 SDValue Chain = 2631 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2632 None, CallOptions, getCurSDLoc()).second; 2633 // On PS4, the "return address" must still be within the calling function, 2634 // even if it's at the very end, so emit an explicit TRAP here. 2635 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2636 if (TM.getTargetTriple().isPS4CPU()) 2637 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2638 2639 DAG.setRoot(Chain); 2640 } 2641 2642 /// visitBitTestHeader - This function emits necessary code to produce value 2643 /// suitable for "bit tests" 2644 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2645 MachineBasicBlock *SwitchBB) { 2646 SDLoc dl = getCurSDLoc(); 2647 2648 // Subtract the minimum value. 2649 SDValue SwitchOp = getValue(B.SValue); 2650 EVT VT = SwitchOp.getValueType(); 2651 SDValue RangeSub = 2652 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2653 2654 // Determine the type of the test operands. 2655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2656 bool UsePtrType = false; 2657 if (!TLI.isTypeLegal(VT)) { 2658 UsePtrType = true; 2659 } else { 2660 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2661 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2662 // Switch table case range are encoded into series of masks. 2663 // Just use pointer type, it's guaranteed to fit. 2664 UsePtrType = true; 2665 break; 2666 } 2667 } 2668 SDValue Sub = RangeSub; 2669 if (UsePtrType) { 2670 VT = TLI.getPointerTy(DAG.getDataLayout()); 2671 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2672 } 2673 2674 B.RegVT = VT.getSimpleVT(); 2675 B.Reg = FuncInfo.CreateReg(B.RegVT); 2676 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2677 2678 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2679 2680 if (!B.OmitRangeCheck) 2681 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2682 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2683 SwitchBB->normalizeSuccProbs(); 2684 2685 SDValue Root = CopyTo; 2686 if (!B.OmitRangeCheck) { 2687 // Conditional branch to the default block. 2688 SDValue RangeCmp = DAG.getSetCC(dl, 2689 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2690 RangeSub.getValueType()), 2691 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2692 ISD::SETUGT); 2693 2694 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2695 DAG.getBasicBlock(B.Default)); 2696 } 2697 2698 // Avoid emitting unnecessary branches to the next block. 2699 if (MBB != NextBlock(SwitchBB)) 2700 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2701 2702 DAG.setRoot(Root); 2703 } 2704 2705 /// visitBitTestCase - this function produces one "bit test" 2706 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2707 MachineBasicBlock* NextMBB, 2708 BranchProbability BranchProbToNext, 2709 unsigned Reg, 2710 BitTestCase &B, 2711 MachineBasicBlock *SwitchBB) { 2712 SDLoc dl = getCurSDLoc(); 2713 MVT VT = BB.RegVT; 2714 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2715 SDValue Cmp; 2716 unsigned PopCount = countPopulation(B.Mask); 2717 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2718 if (PopCount == 1) { 2719 // Testing for a single bit; just compare the shift count with what it 2720 // would need to be to shift a 1 bit in that position. 2721 Cmp = DAG.getSetCC( 2722 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2723 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2724 ISD::SETEQ); 2725 } else if (PopCount == BB.Range) { 2726 // There is only one zero bit in the range, test for it directly. 2727 Cmp = DAG.getSetCC( 2728 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2729 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2730 ISD::SETNE); 2731 } else { 2732 // Make desired shift 2733 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2734 DAG.getConstant(1, dl, VT), ShiftOp); 2735 2736 // Emit bit tests and jumps 2737 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2738 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2739 Cmp = DAG.getSetCC( 2740 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2741 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2742 } 2743 2744 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2745 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2746 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2747 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2748 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2749 // one as they are relative probabilities (and thus work more like weights), 2750 // and hence we need to normalize them to let the sum of them become one. 2751 SwitchBB->normalizeSuccProbs(); 2752 2753 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2754 MVT::Other, getControlRoot(), 2755 Cmp, DAG.getBasicBlock(B.TargetBB)); 2756 2757 // Avoid emitting unnecessary branches to the next block. 2758 if (NextMBB != NextBlock(SwitchBB)) 2759 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2760 DAG.getBasicBlock(NextMBB)); 2761 2762 DAG.setRoot(BrAnd); 2763 } 2764 2765 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2766 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2767 2768 // Retrieve successors. Look through artificial IR level blocks like 2769 // catchswitch for successors. 2770 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2771 const BasicBlock *EHPadBB = I.getSuccessor(1); 2772 2773 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2774 // have to do anything here to lower funclet bundles. 2775 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2776 LLVMContext::OB_funclet, 2777 LLVMContext::OB_cfguardtarget}) && 2778 "Cannot lower invokes with arbitrary operand bundles yet!"); 2779 2780 const Value *Callee(I.getCalledValue()); 2781 const Function *Fn = dyn_cast<Function>(Callee); 2782 if (isa<InlineAsm>(Callee)) 2783 visitInlineAsm(&I); 2784 else if (Fn && Fn->isIntrinsic()) { 2785 switch (Fn->getIntrinsicID()) { 2786 default: 2787 llvm_unreachable("Cannot invoke this intrinsic"); 2788 case Intrinsic::donothing: 2789 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2790 break; 2791 case Intrinsic::experimental_patchpoint_void: 2792 case Intrinsic::experimental_patchpoint_i64: 2793 visitPatchpoint(&I, EHPadBB); 2794 break; 2795 case Intrinsic::experimental_gc_statepoint: 2796 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2797 break; 2798 case Intrinsic::wasm_rethrow_in_catch: { 2799 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2800 // special because it can be invoked, so we manually lower it to a DAG 2801 // node here. 2802 SmallVector<SDValue, 8> Ops; 2803 Ops.push_back(getRoot()); // inchain 2804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2805 Ops.push_back( 2806 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2807 TLI.getPointerTy(DAG.getDataLayout()))); 2808 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2809 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2810 break; 2811 } 2812 } 2813 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2814 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2815 // Eventually we will support lowering the @llvm.experimental.deoptimize 2816 // intrinsic, and right now there are no plans to support other intrinsics 2817 // with deopt state. 2818 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2819 } else { 2820 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2821 } 2822 2823 // If the value of the invoke is used outside of its defining block, make it 2824 // available as a virtual register. 2825 // We already took care of the exported value for the statepoint instruction 2826 // during call to the LowerStatepoint. 2827 if (!isStatepoint(I)) { 2828 CopyToExportRegsIfNeeded(&I); 2829 } 2830 2831 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2832 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2833 BranchProbability EHPadBBProb = 2834 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2835 : BranchProbability::getZero(); 2836 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2837 2838 // Update successor info. 2839 addSuccessorWithProb(InvokeMBB, Return); 2840 for (auto &UnwindDest : UnwindDests) { 2841 UnwindDest.first->setIsEHPad(); 2842 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2843 } 2844 InvokeMBB->normalizeSuccProbs(); 2845 2846 // Drop into normal successor. 2847 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2848 DAG.getBasicBlock(Return))); 2849 } 2850 2851 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2852 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2853 2854 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2855 // have to do anything here to lower funclet bundles. 2856 assert(!I.hasOperandBundlesOtherThan( 2857 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2858 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2859 2860 assert(isa<InlineAsm>(I.getCalledValue()) && 2861 "Only know how to handle inlineasm callbr"); 2862 visitInlineAsm(&I); 2863 CopyToExportRegsIfNeeded(&I); 2864 2865 // Retrieve successors. 2866 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2867 Return->setInlineAsmBrDefaultTarget(); 2868 2869 // Update successor info. 2870 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2871 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2872 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2873 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2874 CallBrMBB->addInlineAsmBrIndirectTarget(Target); 2875 } 2876 CallBrMBB->normalizeSuccProbs(); 2877 2878 // Drop into default successor. 2879 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2880 MVT::Other, getControlRoot(), 2881 DAG.getBasicBlock(Return))); 2882 } 2883 2884 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2885 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2886 } 2887 2888 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2889 assert(FuncInfo.MBB->isEHPad() && 2890 "Call to landingpad not in landing pad!"); 2891 2892 // If there aren't registers to copy the values into (e.g., during SjLj 2893 // exceptions), then don't bother to create these DAG nodes. 2894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2895 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2896 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2897 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2898 return; 2899 2900 // If landingpad's return type is token type, we don't create DAG nodes 2901 // for its exception pointer and selector value. The extraction of exception 2902 // pointer or selector value from token type landingpads is not currently 2903 // supported. 2904 if (LP.getType()->isTokenTy()) 2905 return; 2906 2907 SmallVector<EVT, 2> ValueVTs; 2908 SDLoc dl = getCurSDLoc(); 2909 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2910 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2911 2912 // Get the two live-in registers as SDValues. The physregs have already been 2913 // copied into virtual registers. 2914 SDValue Ops[2]; 2915 if (FuncInfo.ExceptionPointerVirtReg) { 2916 Ops[0] = DAG.getZExtOrTrunc( 2917 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2918 FuncInfo.ExceptionPointerVirtReg, 2919 TLI.getPointerTy(DAG.getDataLayout())), 2920 dl, ValueVTs[0]); 2921 } else { 2922 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2923 } 2924 Ops[1] = DAG.getZExtOrTrunc( 2925 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2926 FuncInfo.ExceptionSelectorVirtReg, 2927 TLI.getPointerTy(DAG.getDataLayout())), 2928 dl, ValueVTs[1]); 2929 2930 // Merge into one. 2931 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2932 DAG.getVTList(ValueVTs), Ops); 2933 setValue(&LP, Res); 2934 } 2935 2936 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2937 MachineBasicBlock *Last) { 2938 // Update JTCases. 2939 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2940 if (SL->JTCases[i].first.HeaderBB == First) 2941 SL->JTCases[i].first.HeaderBB = Last; 2942 2943 // Update BitTestCases. 2944 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2945 if (SL->BitTestCases[i].Parent == First) 2946 SL->BitTestCases[i].Parent = Last; 2947 } 2948 2949 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2950 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2951 2952 // Update machine-CFG edges with unique successors. 2953 SmallSet<BasicBlock*, 32> Done; 2954 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2955 BasicBlock *BB = I.getSuccessor(i); 2956 bool Inserted = Done.insert(BB).second; 2957 if (!Inserted) 2958 continue; 2959 2960 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2961 addSuccessorWithProb(IndirectBrMBB, Succ); 2962 } 2963 IndirectBrMBB->normalizeSuccProbs(); 2964 2965 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2966 MVT::Other, getControlRoot(), 2967 getValue(I.getAddress()))); 2968 } 2969 2970 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2971 if (!DAG.getTarget().Options.TrapUnreachable) 2972 return; 2973 2974 // We may be able to ignore unreachable behind a noreturn call. 2975 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2976 const BasicBlock &BB = *I.getParent(); 2977 if (&I != &BB.front()) { 2978 BasicBlock::const_iterator PredI = 2979 std::prev(BasicBlock::const_iterator(&I)); 2980 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2981 if (Call->doesNotReturn()) 2982 return; 2983 } 2984 } 2985 } 2986 2987 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2988 } 2989 2990 void SelectionDAGBuilder::visitFSub(const User &I) { 2991 // -0.0 - X --> fneg 2992 Type *Ty = I.getType(); 2993 if (isa<Constant>(I.getOperand(0)) && 2994 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2995 SDValue Op2 = getValue(I.getOperand(1)); 2996 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2997 Op2.getValueType(), Op2)); 2998 return; 2999 } 3000 3001 visitBinary(I, ISD::FSUB); 3002 } 3003 3004 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3005 SDNodeFlags Flags; 3006 3007 SDValue Op = getValue(I.getOperand(0)); 3008 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3009 Op, Flags); 3010 setValue(&I, UnNodeValue); 3011 } 3012 3013 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3014 SDNodeFlags Flags; 3015 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3016 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3017 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3018 } 3019 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3020 Flags.setExact(ExactOp->isExact()); 3021 } 3022 3023 SDValue Op1 = getValue(I.getOperand(0)); 3024 SDValue Op2 = getValue(I.getOperand(1)); 3025 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3026 Op1, Op2, Flags); 3027 setValue(&I, BinNodeValue); 3028 } 3029 3030 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3031 SDValue Op1 = getValue(I.getOperand(0)); 3032 SDValue Op2 = getValue(I.getOperand(1)); 3033 3034 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3035 Op1.getValueType(), DAG.getDataLayout()); 3036 3037 // Coerce the shift amount to the right type if we can. 3038 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3039 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3040 unsigned Op2Size = Op2.getValueSizeInBits(); 3041 SDLoc DL = getCurSDLoc(); 3042 3043 // If the operand is smaller than the shift count type, promote it. 3044 if (ShiftSize > Op2Size) 3045 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3046 3047 // If the operand is larger than the shift count type but the shift 3048 // count type has enough bits to represent any shift value, truncate 3049 // it now. This is a common case and it exposes the truncate to 3050 // optimization early. 3051 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3052 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3053 // Otherwise we'll need to temporarily settle for some other convenient 3054 // type. Type legalization will make adjustments once the shiftee is split. 3055 else 3056 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3057 } 3058 3059 bool nuw = false; 3060 bool nsw = false; 3061 bool exact = false; 3062 3063 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3064 3065 if (const OverflowingBinaryOperator *OFBinOp = 3066 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3067 nuw = OFBinOp->hasNoUnsignedWrap(); 3068 nsw = OFBinOp->hasNoSignedWrap(); 3069 } 3070 if (const PossiblyExactOperator *ExactOp = 3071 dyn_cast<const PossiblyExactOperator>(&I)) 3072 exact = ExactOp->isExact(); 3073 } 3074 SDNodeFlags Flags; 3075 Flags.setExact(exact); 3076 Flags.setNoSignedWrap(nsw); 3077 Flags.setNoUnsignedWrap(nuw); 3078 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3079 Flags); 3080 setValue(&I, Res); 3081 } 3082 3083 void SelectionDAGBuilder::visitSDiv(const User &I) { 3084 SDValue Op1 = getValue(I.getOperand(0)); 3085 SDValue Op2 = getValue(I.getOperand(1)); 3086 3087 SDNodeFlags Flags; 3088 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3089 cast<PossiblyExactOperator>(&I)->isExact()); 3090 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3091 Op2, Flags)); 3092 } 3093 3094 void SelectionDAGBuilder::visitICmp(const User &I) { 3095 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3096 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3097 predicate = IC->getPredicate(); 3098 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3099 predicate = ICmpInst::Predicate(IC->getPredicate()); 3100 SDValue Op1 = getValue(I.getOperand(0)); 3101 SDValue Op2 = getValue(I.getOperand(1)); 3102 ISD::CondCode Opcode = getICmpCondCode(predicate); 3103 3104 auto &TLI = DAG.getTargetLoweringInfo(); 3105 EVT MemVT = 3106 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3107 3108 // If a pointer's DAG type is larger than its memory type then the DAG values 3109 // are zero-extended. This breaks signed comparisons so truncate back to the 3110 // underlying type before doing the compare. 3111 if (Op1.getValueType() != MemVT) { 3112 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3113 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3114 } 3115 3116 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3117 I.getType()); 3118 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3119 } 3120 3121 void SelectionDAGBuilder::visitFCmp(const User &I) { 3122 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3123 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3124 predicate = FC->getPredicate(); 3125 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3126 predicate = FCmpInst::Predicate(FC->getPredicate()); 3127 SDValue Op1 = getValue(I.getOperand(0)); 3128 SDValue Op2 = getValue(I.getOperand(1)); 3129 3130 ISD::CondCode Condition = getFCmpCondCode(predicate); 3131 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3132 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3133 Condition = getFCmpCodeWithoutNaN(Condition); 3134 3135 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3136 I.getType()); 3137 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3138 } 3139 3140 // Check if the condition of the select has one use or two users that are both 3141 // selects with the same condition. 3142 static bool hasOnlySelectUsers(const Value *Cond) { 3143 return llvm::all_of(Cond->users(), [](const Value *V) { 3144 return isa<SelectInst>(V); 3145 }); 3146 } 3147 3148 void SelectionDAGBuilder::visitSelect(const User &I) { 3149 SmallVector<EVT, 4> ValueVTs; 3150 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3151 ValueVTs); 3152 unsigned NumValues = ValueVTs.size(); 3153 if (NumValues == 0) return; 3154 3155 SmallVector<SDValue, 4> Values(NumValues); 3156 SDValue Cond = getValue(I.getOperand(0)); 3157 SDValue LHSVal = getValue(I.getOperand(1)); 3158 SDValue RHSVal = getValue(I.getOperand(2)); 3159 SmallVector<SDValue, 1> BaseOps(1, Cond); 3160 ISD::NodeType OpCode = 3161 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3162 3163 bool IsUnaryAbs = false; 3164 3165 // Min/max matching is only viable if all output VTs are the same. 3166 if (is_splat(ValueVTs)) { 3167 EVT VT = ValueVTs[0]; 3168 LLVMContext &Ctx = *DAG.getContext(); 3169 auto &TLI = DAG.getTargetLoweringInfo(); 3170 3171 // We care about the legality of the operation after it has been type 3172 // legalized. 3173 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3174 VT = TLI.getTypeToTransformTo(Ctx, VT); 3175 3176 // If the vselect is legal, assume we want to leave this as a vector setcc + 3177 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3178 // min/max is legal on the scalar type. 3179 bool UseScalarMinMax = VT.isVector() && 3180 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3181 3182 Value *LHS, *RHS; 3183 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3184 ISD::NodeType Opc = ISD::DELETED_NODE; 3185 switch (SPR.Flavor) { 3186 case SPF_UMAX: Opc = ISD::UMAX; break; 3187 case SPF_UMIN: Opc = ISD::UMIN; break; 3188 case SPF_SMAX: Opc = ISD::SMAX; break; 3189 case SPF_SMIN: Opc = ISD::SMIN; break; 3190 case SPF_FMINNUM: 3191 switch (SPR.NaNBehavior) { 3192 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3193 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3194 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3195 case SPNB_RETURNS_ANY: { 3196 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3197 Opc = ISD::FMINNUM; 3198 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3199 Opc = ISD::FMINIMUM; 3200 else if (UseScalarMinMax) 3201 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3202 ISD::FMINNUM : ISD::FMINIMUM; 3203 break; 3204 } 3205 } 3206 break; 3207 case SPF_FMAXNUM: 3208 switch (SPR.NaNBehavior) { 3209 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3210 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3211 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3212 case SPNB_RETURNS_ANY: 3213 3214 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3215 Opc = ISD::FMAXNUM; 3216 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3217 Opc = ISD::FMAXIMUM; 3218 else if (UseScalarMinMax) 3219 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3220 ISD::FMAXNUM : ISD::FMAXIMUM; 3221 break; 3222 } 3223 break; 3224 case SPF_ABS: 3225 IsUnaryAbs = true; 3226 Opc = ISD::ABS; 3227 break; 3228 case SPF_NABS: 3229 // TODO: we need to produce sub(0, abs(X)). 3230 default: break; 3231 } 3232 3233 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3234 (TLI.isOperationLegalOrCustom(Opc, VT) || 3235 (UseScalarMinMax && 3236 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3237 // If the underlying comparison instruction is used by any other 3238 // instruction, the consumed instructions won't be destroyed, so it is 3239 // not profitable to convert to a min/max. 3240 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3241 OpCode = Opc; 3242 LHSVal = getValue(LHS); 3243 RHSVal = getValue(RHS); 3244 BaseOps.clear(); 3245 } 3246 3247 if (IsUnaryAbs) { 3248 OpCode = Opc; 3249 LHSVal = getValue(LHS); 3250 BaseOps.clear(); 3251 } 3252 } 3253 3254 if (IsUnaryAbs) { 3255 for (unsigned i = 0; i != NumValues; ++i) { 3256 Values[i] = 3257 DAG.getNode(OpCode, getCurSDLoc(), 3258 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3259 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3260 } 3261 } else { 3262 for (unsigned i = 0; i != NumValues; ++i) { 3263 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3264 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3265 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3266 Values[i] = DAG.getNode( 3267 OpCode, getCurSDLoc(), 3268 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3269 } 3270 } 3271 3272 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3273 DAG.getVTList(ValueVTs), Values)); 3274 } 3275 3276 void SelectionDAGBuilder::visitTrunc(const User &I) { 3277 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3278 SDValue N = getValue(I.getOperand(0)); 3279 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3280 I.getType()); 3281 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3282 } 3283 3284 void SelectionDAGBuilder::visitZExt(const User &I) { 3285 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3286 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3287 SDValue N = getValue(I.getOperand(0)); 3288 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3289 I.getType()); 3290 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3291 } 3292 3293 void SelectionDAGBuilder::visitSExt(const User &I) { 3294 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3295 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3296 SDValue N = getValue(I.getOperand(0)); 3297 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3298 I.getType()); 3299 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3300 } 3301 3302 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3303 // FPTrunc is never a no-op cast, no need to check 3304 SDValue N = getValue(I.getOperand(0)); 3305 SDLoc dl = getCurSDLoc(); 3306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3307 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3308 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3309 DAG.getTargetConstant( 3310 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3311 } 3312 3313 void SelectionDAGBuilder::visitFPExt(const User &I) { 3314 // FPExt is never a no-op cast, no need to check 3315 SDValue N = getValue(I.getOperand(0)); 3316 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3317 I.getType()); 3318 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3319 } 3320 3321 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3322 // FPToUI is never a no-op cast, no need to check 3323 SDValue N = getValue(I.getOperand(0)); 3324 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3325 I.getType()); 3326 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3327 } 3328 3329 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3330 // FPToSI is never a no-op cast, no need to check 3331 SDValue N = getValue(I.getOperand(0)); 3332 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3333 I.getType()); 3334 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3335 } 3336 3337 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3338 // UIToFP is never a no-op cast, no need to check 3339 SDValue N = getValue(I.getOperand(0)); 3340 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3341 I.getType()); 3342 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3343 } 3344 3345 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3346 // SIToFP is never a no-op cast, no need to check 3347 SDValue N = getValue(I.getOperand(0)); 3348 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3349 I.getType()); 3350 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3351 } 3352 3353 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3354 // What to do depends on the size of the integer and the size of the pointer. 3355 // We can either truncate, zero extend, or no-op, accordingly. 3356 SDValue N = getValue(I.getOperand(0)); 3357 auto &TLI = DAG.getTargetLoweringInfo(); 3358 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3359 I.getType()); 3360 EVT PtrMemVT = 3361 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3362 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3363 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3364 setValue(&I, N); 3365 } 3366 3367 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3368 // What to do depends on the size of the integer and the size of the pointer. 3369 // We can either truncate, zero extend, or no-op, accordingly. 3370 SDValue N = getValue(I.getOperand(0)); 3371 auto &TLI = DAG.getTargetLoweringInfo(); 3372 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3373 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3374 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3375 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3376 setValue(&I, N); 3377 } 3378 3379 void SelectionDAGBuilder::visitBitCast(const User &I) { 3380 SDValue N = getValue(I.getOperand(0)); 3381 SDLoc dl = getCurSDLoc(); 3382 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3383 I.getType()); 3384 3385 // BitCast assures us that source and destination are the same size so this is 3386 // either a BITCAST or a no-op. 3387 if (DestVT != N.getValueType()) 3388 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3389 DestVT, N)); // convert types. 3390 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3391 // might fold any kind of constant expression to an integer constant and that 3392 // is not what we are looking for. Only recognize a bitcast of a genuine 3393 // constant integer as an opaque constant. 3394 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3395 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3396 /*isOpaque*/true)); 3397 else 3398 setValue(&I, N); // noop cast. 3399 } 3400 3401 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3403 const Value *SV = I.getOperand(0); 3404 SDValue N = getValue(SV); 3405 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3406 3407 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3408 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3409 3410 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3411 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3412 3413 setValue(&I, N); 3414 } 3415 3416 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3417 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3418 SDValue InVec = getValue(I.getOperand(0)); 3419 SDValue InVal = getValue(I.getOperand(1)); 3420 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3421 TLI.getVectorIdxTy(DAG.getDataLayout())); 3422 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3423 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3424 InVec, InVal, InIdx)); 3425 } 3426 3427 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3429 SDValue InVec = getValue(I.getOperand(0)); 3430 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3431 TLI.getVectorIdxTy(DAG.getDataLayout())); 3432 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3433 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3434 InVec, InIdx)); 3435 } 3436 3437 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3438 SDValue Src1 = getValue(I.getOperand(0)); 3439 SDValue Src2 = getValue(I.getOperand(1)); 3440 ArrayRef<int> Mask; 3441 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3442 Mask = SVI->getShuffleMask(); 3443 else 3444 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3445 SDLoc DL = getCurSDLoc(); 3446 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3447 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3448 EVT SrcVT = Src1.getValueType(); 3449 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3450 3451 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3452 VT.isScalableVector()) { 3453 // Canonical splat form of first element of first input vector. 3454 SDValue FirstElt = 3455 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3456 DAG.getVectorIdxConstant(0, DL)); 3457 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3458 return; 3459 } 3460 3461 // For now, we only handle splats for scalable vectors. 3462 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3463 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3464 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3465 3466 unsigned MaskNumElts = Mask.size(); 3467 3468 if (SrcNumElts == MaskNumElts) { 3469 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3470 return; 3471 } 3472 3473 // Normalize the shuffle vector since mask and vector length don't match. 3474 if (SrcNumElts < MaskNumElts) { 3475 // Mask is longer than the source vectors. We can use concatenate vector to 3476 // make the mask and vectors lengths match. 3477 3478 if (MaskNumElts % SrcNumElts == 0) { 3479 // Mask length is a multiple of the source vector length. 3480 // Check if the shuffle is some kind of concatenation of the input 3481 // vectors. 3482 unsigned NumConcat = MaskNumElts / SrcNumElts; 3483 bool IsConcat = true; 3484 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3485 for (unsigned i = 0; i != MaskNumElts; ++i) { 3486 int Idx = Mask[i]; 3487 if (Idx < 0) 3488 continue; 3489 // Ensure the indices in each SrcVT sized piece are sequential and that 3490 // the same source is used for the whole piece. 3491 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3492 (ConcatSrcs[i / SrcNumElts] >= 0 && 3493 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3494 IsConcat = false; 3495 break; 3496 } 3497 // Remember which source this index came from. 3498 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3499 } 3500 3501 // The shuffle is concatenating multiple vectors together. Just emit 3502 // a CONCAT_VECTORS operation. 3503 if (IsConcat) { 3504 SmallVector<SDValue, 8> ConcatOps; 3505 for (auto Src : ConcatSrcs) { 3506 if (Src < 0) 3507 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3508 else if (Src == 0) 3509 ConcatOps.push_back(Src1); 3510 else 3511 ConcatOps.push_back(Src2); 3512 } 3513 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3514 return; 3515 } 3516 } 3517 3518 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3519 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3520 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3521 PaddedMaskNumElts); 3522 3523 // Pad both vectors with undefs to make them the same length as the mask. 3524 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3525 3526 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3527 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3528 MOps1[0] = Src1; 3529 MOps2[0] = Src2; 3530 3531 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3532 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3533 3534 // Readjust mask for new input vector length. 3535 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3536 for (unsigned i = 0; i != MaskNumElts; ++i) { 3537 int Idx = Mask[i]; 3538 if (Idx >= (int)SrcNumElts) 3539 Idx -= SrcNumElts - PaddedMaskNumElts; 3540 MappedOps[i] = Idx; 3541 } 3542 3543 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3544 3545 // If the concatenated vector was padded, extract a subvector with the 3546 // correct number of elements. 3547 if (MaskNumElts != PaddedMaskNumElts) 3548 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3549 DAG.getVectorIdxConstant(0, DL)); 3550 3551 setValue(&I, Result); 3552 return; 3553 } 3554 3555 if (SrcNumElts > MaskNumElts) { 3556 // Analyze the access pattern of the vector to see if we can extract 3557 // two subvectors and do the shuffle. 3558 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3559 bool CanExtract = true; 3560 for (int Idx : Mask) { 3561 unsigned Input = 0; 3562 if (Idx < 0) 3563 continue; 3564 3565 if (Idx >= (int)SrcNumElts) { 3566 Input = 1; 3567 Idx -= SrcNumElts; 3568 } 3569 3570 // If all the indices come from the same MaskNumElts sized portion of 3571 // the sources we can use extract. Also make sure the extract wouldn't 3572 // extract past the end of the source. 3573 int NewStartIdx = alignDown(Idx, MaskNumElts); 3574 if (NewStartIdx + MaskNumElts > SrcNumElts || 3575 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3576 CanExtract = false; 3577 // Make sure we always update StartIdx as we use it to track if all 3578 // elements are undef. 3579 StartIdx[Input] = NewStartIdx; 3580 } 3581 3582 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3583 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3584 return; 3585 } 3586 if (CanExtract) { 3587 // Extract appropriate subvector and generate a vector shuffle 3588 for (unsigned Input = 0; Input < 2; ++Input) { 3589 SDValue &Src = Input == 0 ? Src1 : Src2; 3590 if (StartIdx[Input] < 0) 3591 Src = DAG.getUNDEF(VT); 3592 else { 3593 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3594 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3595 } 3596 } 3597 3598 // Calculate new mask. 3599 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3600 for (int &Idx : MappedOps) { 3601 if (Idx >= (int)SrcNumElts) 3602 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3603 else if (Idx >= 0) 3604 Idx -= StartIdx[0]; 3605 } 3606 3607 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3608 return; 3609 } 3610 } 3611 3612 // We can't use either concat vectors or extract subvectors so fall back to 3613 // replacing the shuffle with extract and build vector. 3614 // to insert and build vector. 3615 EVT EltVT = VT.getVectorElementType(); 3616 SmallVector<SDValue,8> Ops; 3617 for (int Idx : Mask) { 3618 SDValue Res; 3619 3620 if (Idx < 0) { 3621 Res = DAG.getUNDEF(EltVT); 3622 } else { 3623 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3624 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3625 3626 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3627 DAG.getVectorIdxConstant(Idx, DL)); 3628 } 3629 3630 Ops.push_back(Res); 3631 } 3632 3633 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3634 } 3635 3636 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3637 ArrayRef<unsigned> Indices; 3638 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3639 Indices = IV->getIndices(); 3640 else 3641 Indices = cast<ConstantExpr>(&I)->getIndices(); 3642 3643 const Value *Op0 = I.getOperand(0); 3644 const Value *Op1 = I.getOperand(1); 3645 Type *AggTy = I.getType(); 3646 Type *ValTy = Op1->getType(); 3647 bool IntoUndef = isa<UndefValue>(Op0); 3648 bool FromUndef = isa<UndefValue>(Op1); 3649 3650 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3651 3652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3653 SmallVector<EVT, 4> AggValueVTs; 3654 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3655 SmallVector<EVT, 4> ValValueVTs; 3656 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3657 3658 unsigned NumAggValues = AggValueVTs.size(); 3659 unsigned NumValValues = ValValueVTs.size(); 3660 SmallVector<SDValue, 4> Values(NumAggValues); 3661 3662 // Ignore an insertvalue that produces an empty object 3663 if (!NumAggValues) { 3664 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3665 return; 3666 } 3667 3668 SDValue Agg = getValue(Op0); 3669 unsigned i = 0; 3670 // Copy the beginning value(s) from the original aggregate. 3671 for (; i != LinearIndex; ++i) 3672 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3673 SDValue(Agg.getNode(), Agg.getResNo() + i); 3674 // Copy values from the inserted value(s). 3675 if (NumValValues) { 3676 SDValue Val = getValue(Op1); 3677 for (; i != LinearIndex + NumValValues; ++i) 3678 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3679 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3680 } 3681 // Copy remaining value(s) from the original aggregate. 3682 for (; i != NumAggValues; ++i) 3683 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3684 SDValue(Agg.getNode(), Agg.getResNo() + i); 3685 3686 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3687 DAG.getVTList(AggValueVTs), Values)); 3688 } 3689 3690 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3691 ArrayRef<unsigned> Indices; 3692 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3693 Indices = EV->getIndices(); 3694 else 3695 Indices = cast<ConstantExpr>(&I)->getIndices(); 3696 3697 const Value *Op0 = I.getOperand(0); 3698 Type *AggTy = Op0->getType(); 3699 Type *ValTy = I.getType(); 3700 bool OutOfUndef = isa<UndefValue>(Op0); 3701 3702 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3703 3704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3705 SmallVector<EVT, 4> ValValueVTs; 3706 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3707 3708 unsigned NumValValues = ValValueVTs.size(); 3709 3710 // Ignore a extractvalue that produces an empty object 3711 if (!NumValValues) { 3712 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3713 return; 3714 } 3715 3716 SmallVector<SDValue, 4> Values(NumValValues); 3717 3718 SDValue Agg = getValue(Op0); 3719 // Copy out the selected value(s). 3720 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3721 Values[i - LinearIndex] = 3722 OutOfUndef ? 3723 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3724 SDValue(Agg.getNode(), Agg.getResNo() + i); 3725 3726 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3727 DAG.getVTList(ValValueVTs), Values)); 3728 } 3729 3730 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3731 Value *Op0 = I.getOperand(0); 3732 // Note that the pointer operand may be a vector of pointers. Take the scalar 3733 // element which holds a pointer. 3734 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3735 SDValue N = getValue(Op0); 3736 SDLoc dl = getCurSDLoc(); 3737 auto &TLI = DAG.getTargetLoweringInfo(); 3738 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3739 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3740 3741 // Normalize Vector GEP - all scalar operands should be converted to the 3742 // splat vector. 3743 bool IsVectorGEP = I.getType()->isVectorTy(); 3744 ElementCount VectorElementCount = IsVectorGEP ? 3745 I.getType()->getVectorElementCount() : ElementCount(0, false); 3746 3747 if (IsVectorGEP && !N.getValueType().isVector()) { 3748 LLVMContext &Context = *DAG.getContext(); 3749 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3750 if (VectorElementCount.Scalable) 3751 N = DAG.getSplatVector(VT, dl, N); 3752 else 3753 N = DAG.getSplatBuildVector(VT, dl, N); 3754 } 3755 3756 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3757 GTI != E; ++GTI) { 3758 const Value *Idx = GTI.getOperand(); 3759 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3760 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3761 if (Field) { 3762 // N = N + Offset 3763 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3764 3765 // In an inbounds GEP with an offset that is nonnegative even when 3766 // interpreted as signed, assume there is no unsigned overflow. 3767 SDNodeFlags Flags; 3768 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3769 Flags.setNoUnsignedWrap(true); 3770 3771 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3772 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3773 } 3774 } else { 3775 // IdxSize is the width of the arithmetic according to IR semantics. 3776 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3777 // (and fix up the result later). 3778 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3779 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3780 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3781 // We intentionally mask away the high bits here; ElementSize may not 3782 // fit in IdxTy. 3783 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3784 bool ElementScalable = ElementSize.isScalable(); 3785 3786 // If this is a scalar constant or a splat vector of constants, 3787 // handle it quickly. 3788 const auto *C = dyn_cast<Constant>(Idx); 3789 if (C && isa<VectorType>(C->getType())) 3790 C = C->getSplatValue(); 3791 3792 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3793 if (CI && CI->isZero()) 3794 continue; 3795 if (CI && !ElementScalable) { 3796 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3797 LLVMContext &Context = *DAG.getContext(); 3798 SDValue OffsVal; 3799 if (IsVectorGEP) 3800 OffsVal = DAG.getConstant( 3801 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3802 else 3803 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3804 3805 // In an inbounds GEP with an offset that is nonnegative even when 3806 // interpreted as signed, assume there is no unsigned overflow. 3807 SDNodeFlags Flags; 3808 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3809 Flags.setNoUnsignedWrap(true); 3810 3811 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3812 3813 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3814 continue; 3815 } 3816 3817 // N = N + Idx * ElementMul; 3818 SDValue IdxN = getValue(Idx); 3819 3820 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3821 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3822 VectorElementCount); 3823 if (VectorElementCount.Scalable) 3824 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3825 else 3826 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3827 } 3828 3829 // If the index is smaller or larger than intptr_t, truncate or extend 3830 // it. 3831 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3832 3833 if (ElementScalable) { 3834 EVT VScaleTy = N.getValueType().getScalarType(); 3835 SDValue VScale = DAG.getNode( 3836 ISD::VSCALE, dl, VScaleTy, 3837 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3838 if (IsVectorGEP) 3839 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3840 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3841 } else { 3842 // If this is a multiply by a power of two, turn it into a shl 3843 // immediately. This is a very common case. 3844 if (ElementMul != 1) { 3845 if (ElementMul.isPowerOf2()) { 3846 unsigned Amt = ElementMul.logBase2(); 3847 IdxN = DAG.getNode(ISD::SHL, dl, 3848 N.getValueType(), IdxN, 3849 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3850 } else { 3851 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3852 IdxN.getValueType()); 3853 IdxN = DAG.getNode(ISD::MUL, dl, 3854 N.getValueType(), IdxN, Scale); 3855 } 3856 } 3857 } 3858 3859 N = DAG.getNode(ISD::ADD, dl, 3860 N.getValueType(), N, IdxN); 3861 } 3862 } 3863 3864 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3865 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3866 3867 setValue(&I, N); 3868 } 3869 3870 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3871 // If this is a fixed sized alloca in the entry block of the function, 3872 // allocate it statically on the stack. 3873 if (FuncInfo.StaticAllocaMap.count(&I)) 3874 return; // getValue will auto-populate this. 3875 3876 SDLoc dl = getCurSDLoc(); 3877 Type *Ty = I.getAllocatedType(); 3878 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3879 auto &DL = DAG.getDataLayout(); 3880 uint64_t TySize = DL.getTypeAllocSize(Ty); 3881 MaybeAlign Alignment = max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3882 3883 SDValue AllocSize = getValue(I.getArraySize()); 3884 3885 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3886 if (AllocSize.getValueType() != IntPtr) 3887 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3888 3889 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3890 AllocSize, 3891 DAG.getConstant(TySize, dl, IntPtr)); 3892 3893 // Handle alignment. If the requested alignment is less than or equal to 3894 // the stack alignment, ignore it. If the size is greater than or equal to 3895 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3896 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3897 if (Alignment <= StackAlign) 3898 Alignment = None; 3899 3900 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3901 // Round the size of the allocation up to the stack alignment size 3902 // by add SA-1 to the size. This doesn't overflow because we're computing 3903 // an address inside an alloca. 3904 SDNodeFlags Flags; 3905 Flags.setNoUnsignedWrap(true); 3906 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3907 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3908 3909 // Mask out the low bits for alignment purposes. 3910 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3911 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3912 3913 SDValue Ops[] = { 3914 getRoot(), AllocSize, 3915 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3916 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3917 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3918 setValue(&I, DSA); 3919 DAG.setRoot(DSA.getValue(1)); 3920 3921 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3922 } 3923 3924 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3925 if (I.isAtomic()) 3926 return visitAtomicLoad(I); 3927 3928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3929 const Value *SV = I.getOperand(0); 3930 if (TLI.supportSwiftError()) { 3931 // Swifterror values can come from either a function parameter with 3932 // swifterror attribute or an alloca with swifterror attribute. 3933 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3934 if (Arg->hasSwiftErrorAttr()) 3935 return visitLoadFromSwiftError(I); 3936 } 3937 3938 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3939 if (Alloca->isSwiftError()) 3940 return visitLoadFromSwiftError(I); 3941 } 3942 } 3943 3944 SDValue Ptr = getValue(SV); 3945 3946 Type *Ty = I.getType(); 3947 unsigned Alignment = I.getAlignment(); 3948 3949 AAMDNodes AAInfo; 3950 I.getAAMetadata(AAInfo); 3951 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3952 3953 SmallVector<EVT, 4> ValueVTs, MemVTs; 3954 SmallVector<uint64_t, 4> Offsets; 3955 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3956 unsigned NumValues = ValueVTs.size(); 3957 if (NumValues == 0) 3958 return; 3959 3960 bool isVolatile = I.isVolatile(); 3961 3962 SDValue Root; 3963 bool ConstantMemory = false; 3964 if (isVolatile) 3965 // Serialize volatile loads with other side effects. 3966 Root = getRoot(); 3967 else if (NumValues > MaxParallelChains) 3968 Root = getMemoryRoot(); 3969 else if (AA && 3970 AA->pointsToConstantMemory(MemoryLocation( 3971 SV, 3972 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3973 AAInfo))) { 3974 // Do not serialize (non-volatile) loads of constant memory with anything. 3975 Root = DAG.getEntryNode(); 3976 ConstantMemory = true; 3977 } else { 3978 // Do not serialize non-volatile loads against each other. 3979 Root = DAG.getRoot(); 3980 } 3981 3982 SDLoc dl = getCurSDLoc(); 3983 3984 if (isVolatile) 3985 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3986 3987 // An aggregate load cannot wrap around the address space, so offsets to its 3988 // parts don't wrap either. 3989 SDNodeFlags Flags; 3990 Flags.setNoUnsignedWrap(true); 3991 3992 SmallVector<SDValue, 4> Values(NumValues); 3993 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3994 EVT PtrVT = Ptr.getValueType(); 3995 3996 MachineMemOperand::Flags MMOFlags 3997 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 3998 3999 unsigned ChainI = 0; 4000 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4001 // Serializing loads here may result in excessive register pressure, and 4002 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4003 // could recover a bit by hoisting nodes upward in the chain by recognizing 4004 // they are side-effect free or do not alias. The optimizer should really 4005 // avoid this case by converting large object/array copies to llvm.memcpy 4006 // (MaxParallelChains should always remain as failsafe). 4007 if (ChainI == MaxParallelChains) { 4008 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4009 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4010 makeArrayRef(Chains.data(), ChainI)); 4011 Root = Chain; 4012 ChainI = 0; 4013 } 4014 SDValue A = DAG.getNode(ISD::ADD, dl, 4015 PtrVT, Ptr, 4016 DAG.getConstant(Offsets[i], dl, PtrVT), 4017 Flags); 4018 4019 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4020 MachinePointerInfo(SV, Offsets[i]), Alignment, 4021 MMOFlags, AAInfo, Ranges); 4022 Chains[ChainI] = L.getValue(1); 4023 4024 if (MemVTs[i] != ValueVTs[i]) 4025 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4026 4027 Values[i] = L; 4028 } 4029 4030 if (!ConstantMemory) { 4031 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4032 makeArrayRef(Chains.data(), ChainI)); 4033 if (isVolatile) 4034 DAG.setRoot(Chain); 4035 else 4036 PendingLoads.push_back(Chain); 4037 } 4038 4039 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4040 DAG.getVTList(ValueVTs), Values)); 4041 } 4042 4043 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4044 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4045 "call visitStoreToSwiftError when backend supports swifterror"); 4046 4047 SmallVector<EVT, 4> ValueVTs; 4048 SmallVector<uint64_t, 4> Offsets; 4049 const Value *SrcV = I.getOperand(0); 4050 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4051 SrcV->getType(), ValueVTs, &Offsets); 4052 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4053 "expect a single EVT for swifterror"); 4054 4055 SDValue Src = getValue(SrcV); 4056 // Create a virtual register, then update the virtual register. 4057 Register VReg = 4058 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4059 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4060 // Chain can be getRoot or getControlRoot. 4061 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4062 SDValue(Src.getNode(), Src.getResNo())); 4063 DAG.setRoot(CopyNode); 4064 } 4065 4066 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4067 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4068 "call visitLoadFromSwiftError when backend supports swifterror"); 4069 4070 assert(!I.isVolatile() && 4071 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4072 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4073 "Support volatile, non temporal, invariant for load_from_swift_error"); 4074 4075 const Value *SV = I.getOperand(0); 4076 Type *Ty = I.getType(); 4077 AAMDNodes AAInfo; 4078 I.getAAMetadata(AAInfo); 4079 assert( 4080 (!AA || 4081 !AA->pointsToConstantMemory(MemoryLocation( 4082 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4083 AAInfo))) && 4084 "load_from_swift_error should not be constant memory"); 4085 4086 SmallVector<EVT, 4> ValueVTs; 4087 SmallVector<uint64_t, 4> Offsets; 4088 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4089 ValueVTs, &Offsets); 4090 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4091 "expect a single EVT for swifterror"); 4092 4093 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4094 SDValue L = DAG.getCopyFromReg( 4095 getRoot(), getCurSDLoc(), 4096 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4097 4098 setValue(&I, L); 4099 } 4100 4101 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4102 if (I.isAtomic()) 4103 return visitAtomicStore(I); 4104 4105 const Value *SrcV = I.getOperand(0); 4106 const Value *PtrV = I.getOperand(1); 4107 4108 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4109 if (TLI.supportSwiftError()) { 4110 // Swifterror values can come from either a function parameter with 4111 // swifterror attribute or an alloca with swifterror attribute. 4112 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4113 if (Arg->hasSwiftErrorAttr()) 4114 return visitStoreToSwiftError(I); 4115 } 4116 4117 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4118 if (Alloca->isSwiftError()) 4119 return visitStoreToSwiftError(I); 4120 } 4121 } 4122 4123 SmallVector<EVT, 4> ValueVTs, MemVTs; 4124 SmallVector<uint64_t, 4> Offsets; 4125 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4126 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4127 unsigned NumValues = ValueVTs.size(); 4128 if (NumValues == 0) 4129 return; 4130 4131 // Get the lowered operands. Note that we do this after 4132 // checking if NumResults is zero, because with zero results 4133 // the operands won't have values in the map. 4134 SDValue Src = getValue(SrcV); 4135 SDValue Ptr = getValue(PtrV); 4136 4137 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4138 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4139 SDLoc dl = getCurSDLoc(); 4140 unsigned Alignment = I.getAlignment(); 4141 AAMDNodes AAInfo; 4142 I.getAAMetadata(AAInfo); 4143 4144 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4145 4146 // An aggregate load cannot wrap around the address space, so offsets to its 4147 // parts don't wrap either. 4148 SDNodeFlags Flags; 4149 Flags.setNoUnsignedWrap(true); 4150 4151 unsigned ChainI = 0; 4152 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4153 // See visitLoad comments. 4154 if (ChainI == MaxParallelChains) { 4155 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4156 makeArrayRef(Chains.data(), ChainI)); 4157 Root = Chain; 4158 ChainI = 0; 4159 } 4160 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4161 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4162 if (MemVTs[i] != ValueVTs[i]) 4163 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4164 SDValue St = 4165 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4166 Alignment, MMOFlags, AAInfo); 4167 Chains[ChainI] = St; 4168 } 4169 4170 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4171 makeArrayRef(Chains.data(), ChainI)); 4172 DAG.setRoot(StoreNode); 4173 } 4174 4175 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4176 bool IsCompressing) { 4177 SDLoc sdl = getCurSDLoc(); 4178 4179 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4180 MaybeAlign &Alignment) { 4181 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4182 Src0 = I.getArgOperand(0); 4183 Ptr = I.getArgOperand(1); 4184 Alignment = 4185 MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4186 Mask = I.getArgOperand(3); 4187 }; 4188 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4189 MaybeAlign &Alignment) { 4190 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4191 Src0 = I.getArgOperand(0); 4192 Ptr = I.getArgOperand(1); 4193 Mask = I.getArgOperand(2); 4194 Alignment = None; 4195 }; 4196 4197 Value *PtrOperand, *MaskOperand, *Src0Operand; 4198 MaybeAlign Alignment; 4199 if (IsCompressing) 4200 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4201 else 4202 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4203 4204 SDValue Ptr = getValue(PtrOperand); 4205 SDValue Src0 = getValue(Src0Operand); 4206 SDValue Mask = getValue(MaskOperand); 4207 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4208 4209 EVT VT = Src0.getValueType(); 4210 if (!Alignment) 4211 Alignment = DAG.getEVTAlign(VT); 4212 4213 AAMDNodes AAInfo; 4214 I.getAAMetadata(AAInfo); 4215 4216 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4217 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4218 // TODO: Make MachineMemOperands aware of scalable 4219 // vectors. 4220 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4221 SDValue StoreNode = 4222 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4223 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4224 DAG.setRoot(StoreNode); 4225 setValue(&I, StoreNode); 4226 } 4227 4228 // Get a uniform base for the Gather/Scatter intrinsic. 4229 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4230 // We try to represent it as a base pointer + vector of indices. 4231 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4232 // The first operand of the GEP may be a single pointer or a vector of pointers 4233 // Example: 4234 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4235 // or 4236 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4237 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4238 // 4239 // When the first GEP operand is a single pointer - it is the uniform base we 4240 // are looking for. If first operand of the GEP is a splat vector - we 4241 // extract the splat value and use it as a uniform base. 4242 // In all other cases the function returns 'false'. 4243 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4244 ISD::MemIndexType &IndexType, SDValue &Scale, 4245 SelectionDAGBuilder *SDB) { 4246 SelectionDAG& DAG = SDB->DAG; 4247 LLVMContext &Context = *DAG.getContext(); 4248 4249 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4250 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4251 if (!GEP) 4252 return false; 4253 4254 const Value *BasePtr = GEP->getPointerOperand(); 4255 if (BasePtr->getType()->isVectorTy()) { 4256 BasePtr = getSplatValue(BasePtr); 4257 if (!BasePtr) 4258 return false; 4259 } 4260 4261 unsigned FinalIndex = GEP->getNumOperands() - 1; 4262 Value *IndexVal = GEP->getOperand(FinalIndex); 4263 gep_type_iterator GTI = gep_type_begin(*GEP); 4264 4265 // Ensure all the other indices are 0. 4266 for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { 4267 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4268 if (!C) 4269 return false; 4270 if (isa<VectorType>(C->getType())) 4271 C = C->getSplatValue(); 4272 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4273 if (!CI || !CI->isZero()) 4274 return false; 4275 } 4276 4277 // The operands of the GEP may be defined in another basic block. 4278 // In this case we'll not find nodes for the operands. 4279 if (!SDB->findValue(BasePtr)) 4280 return false; 4281 Constant *C = dyn_cast<Constant>(IndexVal); 4282 if (!C && !SDB->findValue(IndexVal)) 4283 return false; 4284 4285 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4286 const DataLayout &DL = DAG.getDataLayout(); 4287 StructType *STy = GTI.getStructTypeOrNull(); 4288 4289 if (STy) { 4290 const StructLayout *SL = DL.getStructLayout(STy); 4291 unsigned Field = cast<Constant>(IndexVal)->getUniqueInteger().getZExtValue(); 4292 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4293 Index = DAG.getConstant(SL->getElementOffset(Field), 4294 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4295 } else { 4296 Scale = DAG.getTargetConstant( 4297 DL.getTypeAllocSize(GEP->getResultElementType()), 4298 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4299 Index = SDB->getValue(IndexVal); 4300 } 4301 Base = SDB->getValue(BasePtr); 4302 IndexType = ISD::SIGNED_SCALED; 4303 4304 if (STy || !Index.getValueType().isVector()) { 4305 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4306 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4307 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4308 } 4309 return true; 4310 } 4311 4312 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4313 SDLoc sdl = getCurSDLoc(); 4314 4315 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4316 const Value *Ptr = I.getArgOperand(1); 4317 SDValue Src0 = getValue(I.getArgOperand(0)); 4318 SDValue Mask = getValue(I.getArgOperand(3)); 4319 EVT VT = Src0.getValueType(); 4320 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4321 if (!Alignment) 4322 Alignment = DAG.getEVTAlign(VT); 4323 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4324 4325 AAMDNodes AAInfo; 4326 I.getAAMetadata(AAInfo); 4327 4328 SDValue Base; 4329 SDValue Index; 4330 ISD::MemIndexType IndexType; 4331 SDValue Scale; 4332 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this); 4333 4334 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4335 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4336 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4337 // TODO: Make MachineMemOperands aware of scalable 4338 // vectors. 4339 MemoryLocation::UnknownSize, *Alignment, AAInfo); 4340 if (!UniformBase) { 4341 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4342 Index = getValue(Ptr); 4343 IndexType = ISD::SIGNED_SCALED; 4344 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4345 } 4346 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4347 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4348 Ops, MMO, IndexType); 4349 DAG.setRoot(Scatter); 4350 setValue(&I, Scatter); 4351 } 4352 4353 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4354 SDLoc sdl = getCurSDLoc(); 4355 4356 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4357 MaybeAlign &Alignment) { 4358 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4359 Ptr = I.getArgOperand(0); 4360 Alignment = 4361 MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4362 Mask = I.getArgOperand(2); 4363 Src0 = I.getArgOperand(3); 4364 }; 4365 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4366 MaybeAlign &Alignment) { 4367 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4368 Ptr = I.getArgOperand(0); 4369 Alignment = None; 4370 Mask = I.getArgOperand(1); 4371 Src0 = I.getArgOperand(2); 4372 }; 4373 4374 Value *PtrOperand, *MaskOperand, *Src0Operand; 4375 MaybeAlign Alignment; 4376 if (IsExpanding) 4377 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4378 else 4379 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4380 4381 SDValue Ptr = getValue(PtrOperand); 4382 SDValue Src0 = getValue(Src0Operand); 4383 SDValue Mask = getValue(MaskOperand); 4384 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4385 4386 EVT VT = Src0.getValueType(); 4387 if (!Alignment) 4388 Alignment = DAG.getEVTAlign(VT); 4389 4390 AAMDNodes AAInfo; 4391 I.getAAMetadata(AAInfo); 4392 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4393 4394 // Do not serialize masked loads of constant memory with anything. 4395 MemoryLocation ML; 4396 if (VT.isScalableVector()) 4397 ML = MemoryLocation(PtrOperand); 4398 else 4399 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4400 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4401 AAInfo); 4402 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4403 4404 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4405 4406 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4407 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4408 // TODO: Make MachineMemOperands aware of scalable 4409 // vectors. 4410 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4411 4412 SDValue Load = 4413 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4414 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4415 if (AddToChain) 4416 PendingLoads.push_back(Load.getValue(1)); 4417 setValue(&I, Load); 4418 } 4419 4420 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4421 SDLoc sdl = getCurSDLoc(); 4422 4423 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4424 const Value *Ptr = I.getArgOperand(0); 4425 SDValue Src0 = getValue(I.getArgOperand(3)); 4426 SDValue Mask = getValue(I.getArgOperand(2)); 4427 4428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4429 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4430 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4431 if (!Alignment) 4432 Alignment = DAG.getEVTAlign(VT); 4433 4434 AAMDNodes AAInfo; 4435 I.getAAMetadata(AAInfo); 4436 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4437 4438 SDValue Root = DAG.getRoot(); 4439 SDValue Base; 4440 SDValue Index; 4441 ISD::MemIndexType IndexType; 4442 SDValue Scale; 4443 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this); 4444 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4445 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4446 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4447 // TODO: Make MachineMemOperands aware of scalable 4448 // vectors. 4449 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4450 4451 if (!UniformBase) { 4452 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4453 Index = getValue(Ptr); 4454 IndexType = ISD::SIGNED_SCALED; 4455 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4456 } 4457 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4458 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4459 Ops, MMO, IndexType); 4460 4461 PendingLoads.push_back(Gather.getValue(1)); 4462 setValue(&I, Gather); 4463 } 4464 4465 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4466 SDLoc dl = getCurSDLoc(); 4467 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4468 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4469 SyncScope::ID SSID = I.getSyncScopeID(); 4470 4471 SDValue InChain = getRoot(); 4472 4473 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4474 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4475 4476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4477 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4478 4479 MachineFunction &MF = DAG.getMachineFunction(); 4480 MachineMemOperand *MMO = MF.getMachineMemOperand( 4481 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4482 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4483 FailureOrdering); 4484 4485 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4486 dl, MemVT, VTs, InChain, 4487 getValue(I.getPointerOperand()), 4488 getValue(I.getCompareOperand()), 4489 getValue(I.getNewValOperand()), MMO); 4490 4491 SDValue OutChain = L.getValue(2); 4492 4493 setValue(&I, L); 4494 DAG.setRoot(OutChain); 4495 } 4496 4497 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4498 SDLoc dl = getCurSDLoc(); 4499 ISD::NodeType NT; 4500 switch (I.getOperation()) { 4501 default: llvm_unreachable("Unknown atomicrmw operation"); 4502 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4503 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4504 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4505 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4506 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4507 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4508 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4509 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4510 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4511 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4512 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4513 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4514 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4515 } 4516 AtomicOrdering Ordering = I.getOrdering(); 4517 SyncScope::ID SSID = I.getSyncScopeID(); 4518 4519 SDValue InChain = getRoot(); 4520 4521 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4522 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4523 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4524 4525 MachineFunction &MF = DAG.getMachineFunction(); 4526 MachineMemOperand *MMO = MF.getMachineMemOperand( 4527 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4528 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4529 4530 SDValue L = 4531 DAG.getAtomic(NT, dl, MemVT, InChain, 4532 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4533 MMO); 4534 4535 SDValue OutChain = L.getValue(1); 4536 4537 setValue(&I, L); 4538 DAG.setRoot(OutChain); 4539 } 4540 4541 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4542 SDLoc dl = getCurSDLoc(); 4543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4544 SDValue Ops[3]; 4545 Ops[0] = getRoot(); 4546 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4547 TLI.getFenceOperandTy(DAG.getDataLayout())); 4548 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4549 TLI.getFenceOperandTy(DAG.getDataLayout())); 4550 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4551 } 4552 4553 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4554 SDLoc dl = getCurSDLoc(); 4555 AtomicOrdering Order = I.getOrdering(); 4556 SyncScope::ID SSID = I.getSyncScopeID(); 4557 4558 SDValue InChain = getRoot(); 4559 4560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4561 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4562 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4563 4564 if (!TLI.supportsUnalignedAtomics() && 4565 I.getAlignment() < MemVT.getSizeInBits() / 8) 4566 report_fatal_error("Cannot generate unaligned atomic load"); 4567 4568 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4569 4570 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4571 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4572 I.getAlign().getValueOr(DAG.getEVTAlign(MemVT)), AAMDNodes(), nullptr, 4573 SSID, Order); 4574 4575 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4576 4577 SDValue Ptr = getValue(I.getPointerOperand()); 4578 4579 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4580 // TODO: Once this is better exercised by tests, it should be merged with 4581 // the normal path for loads to prevent future divergence. 4582 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4583 if (MemVT != VT) 4584 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4585 4586 setValue(&I, L); 4587 SDValue OutChain = L.getValue(1); 4588 if (!I.isUnordered()) 4589 DAG.setRoot(OutChain); 4590 else 4591 PendingLoads.push_back(OutChain); 4592 return; 4593 } 4594 4595 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4596 Ptr, MMO); 4597 4598 SDValue OutChain = L.getValue(1); 4599 if (MemVT != VT) 4600 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4601 4602 setValue(&I, L); 4603 DAG.setRoot(OutChain); 4604 } 4605 4606 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4607 SDLoc dl = getCurSDLoc(); 4608 4609 AtomicOrdering Ordering = I.getOrdering(); 4610 SyncScope::ID SSID = I.getSyncScopeID(); 4611 4612 SDValue InChain = getRoot(); 4613 4614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4615 EVT MemVT = 4616 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4617 4618 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4619 report_fatal_error("Cannot generate unaligned atomic store"); 4620 4621 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4622 4623 MachineFunction &MF = DAG.getMachineFunction(); 4624 MachineMemOperand *MMO = MF.getMachineMemOperand( 4625 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4626 *I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4627 4628 SDValue Val = getValue(I.getValueOperand()); 4629 if (Val.getValueType() != MemVT) 4630 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4631 SDValue Ptr = getValue(I.getPointerOperand()); 4632 4633 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4634 // TODO: Once this is better exercised by tests, it should be merged with 4635 // the normal path for stores to prevent future divergence. 4636 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4637 DAG.setRoot(S); 4638 return; 4639 } 4640 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4641 Ptr, Val, MMO); 4642 4643 4644 DAG.setRoot(OutChain); 4645 } 4646 4647 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4648 /// node. 4649 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4650 unsigned Intrinsic) { 4651 // Ignore the callsite's attributes. A specific call site may be marked with 4652 // readnone, but the lowering code will expect the chain based on the 4653 // definition. 4654 const Function *F = I.getCalledFunction(); 4655 bool HasChain = !F->doesNotAccessMemory(); 4656 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4657 4658 // Build the operand list. 4659 SmallVector<SDValue, 8> Ops; 4660 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4661 if (OnlyLoad) { 4662 // We don't need to serialize loads against other loads. 4663 Ops.push_back(DAG.getRoot()); 4664 } else { 4665 Ops.push_back(getRoot()); 4666 } 4667 } 4668 4669 // Info is set by getTgtMemInstrinsic 4670 TargetLowering::IntrinsicInfo Info; 4671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4672 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4673 DAG.getMachineFunction(), 4674 Intrinsic); 4675 4676 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4677 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4678 Info.opc == ISD::INTRINSIC_W_CHAIN) 4679 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4680 TLI.getPointerTy(DAG.getDataLayout()))); 4681 4682 // Add all operands of the call to the operand list. 4683 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4684 const Value *Arg = I.getArgOperand(i); 4685 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4686 Ops.push_back(getValue(Arg)); 4687 continue; 4688 } 4689 4690 // Use TargetConstant instead of a regular constant for immarg. 4691 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4692 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4693 assert(CI->getBitWidth() <= 64 && 4694 "large intrinsic immediates not handled"); 4695 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4696 } else { 4697 Ops.push_back( 4698 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4699 } 4700 } 4701 4702 SmallVector<EVT, 4> ValueVTs; 4703 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4704 4705 if (HasChain) 4706 ValueVTs.push_back(MVT::Other); 4707 4708 SDVTList VTs = DAG.getVTList(ValueVTs); 4709 4710 // Create the node. 4711 SDValue Result; 4712 if (IsTgtIntrinsic) { 4713 // This is target intrinsic that touches memory 4714 AAMDNodes AAInfo; 4715 I.getAAMetadata(AAInfo); 4716 Result = 4717 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4718 MachinePointerInfo(Info.ptrVal, Info.offset), 4719 Info.align, Info.flags, Info.size, AAInfo); 4720 } else if (!HasChain) { 4721 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4722 } else if (!I.getType()->isVoidTy()) { 4723 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4724 } else { 4725 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4726 } 4727 4728 if (HasChain) { 4729 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4730 if (OnlyLoad) 4731 PendingLoads.push_back(Chain); 4732 else 4733 DAG.setRoot(Chain); 4734 } 4735 4736 if (!I.getType()->isVoidTy()) { 4737 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4738 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4739 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4740 } else 4741 Result = lowerRangeToAssertZExt(DAG, I, Result); 4742 4743 setValue(&I, Result); 4744 } 4745 } 4746 4747 /// GetSignificand - Get the significand and build it into a floating-point 4748 /// number with exponent of 1: 4749 /// 4750 /// Op = (Op & 0x007fffff) | 0x3f800000; 4751 /// 4752 /// where Op is the hexadecimal representation of floating point value. 4753 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4754 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4755 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4756 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4757 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4758 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4759 } 4760 4761 /// GetExponent - Get the exponent: 4762 /// 4763 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4764 /// 4765 /// where Op is the hexadecimal representation of floating point value. 4766 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4767 const TargetLowering &TLI, const SDLoc &dl) { 4768 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4769 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4770 SDValue t1 = DAG.getNode( 4771 ISD::SRL, dl, MVT::i32, t0, 4772 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4773 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4774 DAG.getConstant(127, dl, MVT::i32)); 4775 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4776 } 4777 4778 /// getF32Constant - Get 32-bit floating point constant. 4779 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4780 const SDLoc &dl) { 4781 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4782 MVT::f32); 4783 } 4784 4785 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4786 SelectionDAG &DAG) { 4787 // TODO: What fast-math-flags should be set on the floating-point nodes? 4788 4789 // IntegerPartOfX = ((int32_t)(t0); 4790 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4791 4792 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4793 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4794 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4795 4796 // IntegerPartOfX <<= 23; 4797 IntegerPartOfX = DAG.getNode( 4798 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4799 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4800 DAG.getDataLayout()))); 4801 4802 SDValue TwoToFractionalPartOfX; 4803 if (LimitFloatPrecision <= 6) { 4804 // For floating-point precision of 6: 4805 // 4806 // TwoToFractionalPartOfX = 4807 // 0.997535578f + 4808 // (0.735607626f + 0.252464424f * x) * x; 4809 // 4810 // error 0.0144103317, which is 6 bits 4811 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4812 getF32Constant(DAG, 0x3e814304, dl)); 4813 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4814 getF32Constant(DAG, 0x3f3c50c8, dl)); 4815 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4816 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4817 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4818 } else if (LimitFloatPrecision <= 12) { 4819 // For floating-point precision of 12: 4820 // 4821 // TwoToFractionalPartOfX = 4822 // 0.999892986f + 4823 // (0.696457318f + 4824 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4825 // 4826 // error 0.000107046256, which is 13 to 14 bits 4827 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4828 getF32Constant(DAG, 0x3da235e3, dl)); 4829 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4830 getF32Constant(DAG, 0x3e65b8f3, dl)); 4831 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4832 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4833 getF32Constant(DAG, 0x3f324b07, dl)); 4834 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4835 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4836 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4837 } else { // LimitFloatPrecision <= 18 4838 // For floating-point precision of 18: 4839 // 4840 // TwoToFractionalPartOfX = 4841 // 0.999999982f + 4842 // (0.693148872f + 4843 // (0.240227044f + 4844 // (0.554906021e-1f + 4845 // (0.961591928e-2f + 4846 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4847 // error 2.47208000*10^(-7), which is better than 18 bits 4848 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4849 getF32Constant(DAG, 0x3924b03e, dl)); 4850 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4851 getF32Constant(DAG, 0x3ab24b87, dl)); 4852 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4853 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4854 getF32Constant(DAG, 0x3c1d8c17, dl)); 4855 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4856 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4857 getF32Constant(DAG, 0x3d634a1d, dl)); 4858 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4859 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4860 getF32Constant(DAG, 0x3e75fe14, dl)); 4861 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4862 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4863 getF32Constant(DAG, 0x3f317234, dl)); 4864 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4865 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4866 getF32Constant(DAG, 0x3f800000, dl)); 4867 } 4868 4869 // Add the exponent into the result in integer domain. 4870 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4871 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4872 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4873 } 4874 4875 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4876 /// limited-precision mode. 4877 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4878 const TargetLowering &TLI) { 4879 if (Op.getValueType() == MVT::f32 && 4880 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4881 4882 // Put the exponent in the right bit position for later addition to the 4883 // final result: 4884 // 4885 // t0 = Op * log2(e) 4886 4887 // TODO: What fast-math-flags should be set here? 4888 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4889 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4890 return getLimitedPrecisionExp2(t0, dl, DAG); 4891 } 4892 4893 // No special expansion. 4894 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4895 } 4896 4897 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4898 /// limited-precision mode. 4899 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4900 const TargetLowering &TLI) { 4901 // TODO: What fast-math-flags should be set on the floating-point nodes? 4902 4903 if (Op.getValueType() == MVT::f32 && 4904 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4905 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4906 4907 // Scale the exponent by log(2). 4908 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4909 SDValue LogOfExponent = 4910 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4911 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4912 4913 // Get the significand and build it into a floating-point number with 4914 // exponent of 1. 4915 SDValue X = GetSignificand(DAG, Op1, dl); 4916 4917 SDValue LogOfMantissa; 4918 if (LimitFloatPrecision <= 6) { 4919 // For floating-point precision of 6: 4920 // 4921 // LogofMantissa = 4922 // -1.1609546f + 4923 // (1.4034025f - 0.23903021f * x) * x; 4924 // 4925 // error 0.0034276066, which is better than 8 bits 4926 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4927 getF32Constant(DAG, 0xbe74c456, dl)); 4928 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4929 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4930 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4931 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4932 getF32Constant(DAG, 0x3f949a29, dl)); 4933 } else if (LimitFloatPrecision <= 12) { 4934 // For floating-point precision of 12: 4935 // 4936 // LogOfMantissa = 4937 // -1.7417939f + 4938 // (2.8212026f + 4939 // (-1.4699568f + 4940 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4941 // 4942 // error 0.000061011436, which is 14 bits 4943 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4944 getF32Constant(DAG, 0xbd67b6d6, dl)); 4945 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4946 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4947 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4948 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4949 getF32Constant(DAG, 0x3fbc278b, dl)); 4950 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4951 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4952 getF32Constant(DAG, 0x40348e95, dl)); 4953 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4954 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4955 getF32Constant(DAG, 0x3fdef31a, dl)); 4956 } else { // LimitFloatPrecision <= 18 4957 // For floating-point precision of 18: 4958 // 4959 // LogOfMantissa = 4960 // -2.1072184f + 4961 // (4.2372794f + 4962 // (-3.7029485f + 4963 // (2.2781945f + 4964 // (-0.87823314f + 4965 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4966 // 4967 // error 0.0000023660568, which is better than 18 bits 4968 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4969 getF32Constant(DAG, 0xbc91e5ac, dl)); 4970 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4971 getF32Constant(DAG, 0x3e4350aa, dl)); 4972 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4973 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4974 getF32Constant(DAG, 0x3f60d3e3, dl)); 4975 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4976 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4977 getF32Constant(DAG, 0x4011cdf0, dl)); 4978 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4979 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4980 getF32Constant(DAG, 0x406cfd1c, dl)); 4981 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4982 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4983 getF32Constant(DAG, 0x408797cb, dl)); 4984 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4985 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4986 getF32Constant(DAG, 0x4006dcab, dl)); 4987 } 4988 4989 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4990 } 4991 4992 // No special expansion. 4993 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4994 } 4995 4996 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4997 /// limited-precision mode. 4998 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4999 const TargetLowering &TLI) { 5000 // TODO: What fast-math-flags should be set on the floating-point nodes? 5001 5002 if (Op.getValueType() == MVT::f32 && 5003 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5004 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5005 5006 // Get the exponent. 5007 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5008 5009 // Get the significand and build it into a floating-point number with 5010 // exponent of 1. 5011 SDValue X = GetSignificand(DAG, Op1, dl); 5012 5013 // Different possible minimax approximations of significand in 5014 // floating-point for various degrees of accuracy over [1,2]. 5015 SDValue Log2ofMantissa; 5016 if (LimitFloatPrecision <= 6) { 5017 // For floating-point precision of 6: 5018 // 5019 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5020 // 5021 // error 0.0049451742, which is more than 7 bits 5022 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5023 getF32Constant(DAG, 0xbeb08fe0, dl)); 5024 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5025 getF32Constant(DAG, 0x40019463, dl)); 5026 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5027 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5028 getF32Constant(DAG, 0x3fd6633d, dl)); 5029 } else if (LimitFloatPrecision <= 12) { 5030 // For floating-point precision of 12: 5031 // 5032 // Log2ofMantissa = 5033 // -2.51285454f + 5034 // (4.07009056f + 5035 // (-2.12067489f + 5036 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5037 // 5038 // error 0.0000876136000, which is better than 13 bits 5039 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5040 getF32Constant(DAG, 0xbda7262e, dl)); 5041 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5042 getF32Constant(DAG, 0x3f25280b, dl)); 5043 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5044 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5045 getF32Constant(DAG, 0x4007b923, dl)); 5046 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5047 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5048 getF32Constant(DAG, 0x40823e2f, dl)); 5049 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5050 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5051 getF32Constant(DAG, 0x4020d29c, dl)); 5052 } else { // LimitFloatPrecision <= 18 5053 // For floating-point precision of 18: 5054 // 5055 // Log2ofMantissa = 5056 // -3.0400495f + 5057 // (6.1129976f + 5058 // (-5.3420409f + 5059 // (3.2865683f + 5060 // (-1.2669343f + 5061 // (0.27515199f - 5062 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5063 // 5064 // error 0.0000018516, which is better than 18 bits 5065 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5066 getF32Constant(DAG, 0xbcd2769e, dl)); 5067 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5068 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5069 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5070 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5071 getF32Constant(DAG, 0x3fa22ae7, dl)); 5072 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5073 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5074 getF32Constant(DAG, 0x40525723, dl)); 5075 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5076 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5077 getF32Constant(DAG, 0x40aaf200, dl)); 5078 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5079 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5080 getF32Constant(DAG, 0x40c39dad, dl)); 5081 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5082 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5083 getF32Constant(DAG, 0x4042902c, dl)); 5084 } 5085 5086 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5087 } 5088 5089 // No special expansion. 5090 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5091 } 5092 5093 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5094 /// limited-precision mode. 5095 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5096 const TargetLowering &TLI) { 5097 // TODO: What fast-math-flags should be set on the floating-point nodes? 5098 5099 if (Op.getValueType() == MVT::f32 && 5100 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5101 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5102 5103 // Scale the exponent by log10(2) [0.30102999f]. 5104 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5105 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5106 getF32Constant(DAG, 0x3e9a209a, dl)); 5107 5108 // Get the significand and build it into a floating-point number with 5109 // exponent of 1. 5110 SDValue X = GetSignificand(DAG, Op1, dl); 5111 5112 SDValue Log10ofMantissa; 5113 if (LimitFloatPrecision <= 6) { 5114 // For floating-point precision of 6: 5115 // 5116 // Log10ofMantissa = 5117 // -0.50419619f + 5118 // (0.60948995f - 0.10380950f * x) * x; 5119 // 5120 // error 0.0014886165, which is 6 bits 5121 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5122 getF32Constant(DAG, 0xbdd49a13, dl)); 5123 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5124 getF32Constant(DAG, 0x3f1c0789, dl)); 5125 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5126 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5127 getF32Constant(DAG, 0x3f011300, dl)); 5128 } else if (LimitFloatPrecision <= 12) { 5129 // For floating-point precision of 12: 5130 // 5131 // Log10ofMantissa = 5132 // -0.64831180f + 5133 // (0.91751397f + 5134 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5135 // 5136 // error 0.00019228036, which is better than 12 bits 5137 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5138 getF32Constant(DAG, 0x3d431f31, dl)); 5139 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5140 getF32Constant(DAG, 0x3ea21fb2, dl)); 5141 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5142 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5143 getF32Constant(DAG, 0x3f6ae232, dl)); 5144 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5145 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5146 getF32Constant(DAG, 0x3f25f7c3, dl)); 5147 } else { // LimitFloatPrecision <= 18 5148 // For floating-point precision of 18: 5149 // 5150 // Log10ofMantissa = 5151 // -0.84299375f + 5152 // (1.5327582f + 5153 // (-1.0688956f + 5154 // (0.49102474f + 5155 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5156 // 5157 // error 0.0000037995730, which is better than 18 bits 5158 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5159 getF32Constant(DAG, 0x3c5d51ce, dl)); 5160 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5161 getF32Constant(DAG, 0x3e00685a, dl)); 5162 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5163 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5164 getF32Constant(DAG, 0x3efb6798, dl)); 5165 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5166 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5167 getF32Constant(DAG, 0x3f88d192, dl)); 5168 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5169 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5170 getF32Constant(DAG, 0x3fc4316c, dl)); 5171 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5172 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5173 getF32Constant(DAG, 0x3f57ce70, dl)); 5174 } 5175 5176 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5177 } 5178 5179 // No special expansion. 5180 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5181 } 5182 5183 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5184 /// limited-precision mode. 5185 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5186 const TargetLowering &TLI) { 5187 if (Op.getValueType() == MVT::f32 && 5188 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5189 return getLimitedPrecisionExp2(Op, dl, DAG); 5190 5191 // No special expansion. 5192 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5193 } 5194 5195 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5196 /// limited-precision mode with x == 10.0f. 5197 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5198 SelectionDAG &DAG, const TargetLowering &TLI) { 5199 bool IsExp10 = false; 5200 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5201 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5202 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5203 APFloat Ten(10.0f); 5204 IsExp10 = LHSC->isExactlyValue(Ten); 5205 } 5206 } 5207 5208 // TODO: What fast-math-flags should be set on the FMUL node? 5209 if (IsExp10) { 5210 // Put the exponent in the right bit position for later addition to the 5211 // final result: 5212 // 5213 // #define LOG2OF10 3.3219281f 5214 // t0 = Op * LOG2OF10; 5215 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5216 getF32Constant(DAG, 0x40549a78, dl)); 5217 return getLimitedPrecisionExp2(t0, dl, DAG); 5218 } 5219 5220 // No special expansion. 5221 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5222 } 5223 5224 /// ExpandPowI - Expand a llvm.powi intrinsic. 5225 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5226 SelectionDAG &DAG) { 5227 // If RHS is a constant, we can expand this out to a multiplication tree, 5228 // otherwise we end up lowering to a call to __powidf2 (for example). When 5229 // optimizing for size, we only want to do this if the expansion would produce 5230 // a small number of multiplies, otherwise we do the full expansion. 5231 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5232 // Get the exponent as a positive value. 5233 unsigned Val = RHSC->getSExtValue(); 5234 if ((int)Val < 0) Val = -Val; 5235 5236 // powi(x, 0) -> 1.0 5237 if (Val == 0) 5238 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5239 5240 bool OptForSize = DAG.shouldOptForSize(); 5241 if (!OptForSize || 5242 // If optimizing for size, don't insert too many multiplies. 5243 // This inserts up to 5 multiplies. 5244 countPopulation(Val) + Log2_32(Val) < 7) { 5245 // We use the simple binary decomposition method to generate the multiply 5246 // sequence. There are more optimal ways to do this (for example, 5247 // powi(x,15) generates one more multiply than it should), but this has 5248 // the benefit of being both really simple and much better than a libcall. 5249 SDValue Res; // Logically starts equal to 1.0 5250 SDValue CurSquare = LHS; 5251 // TODO: Intrinsics should have fast-math-flags that propagate to these 5252 // nodes. 5253 while (Val) { 5254 if (Val & 1) { 5255 if (Res.getNode()) 5256 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5257 else 5258 Res = CurSquare; // 1.0*CurSquare. 5259 } 5260 5261 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5262 CurSquare, CurSquare); 5263 Val >>= 1; 5264 } 5265 5266 // If the original was negative, invert the result, producing 1/(x*x*x). 5267 if (RHSC->getSExtValue() < 0) 5268 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5269 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5270 return Res; 5271 } 5272 } 5273 5274 // Otherwise, expand to a libcall. 5275 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5276 } 5277 5278 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5279 SDValue LHS, SDValue RHS, SDValue Scale, 5280 SelectionDAG &DAG, const TargetLowering &TLI) { 5281 EVT VT = LHS.getValueType(); 5282 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5283 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5284 LLVMContext &Ctx = *DAG.getContext(); 5285 5286 // If the type is legal but the operation isn't, this node might survive all 5287 // the way to operation legalization. If we end up there and we do not have 5288 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5289 // node. 5290 5291 // Coax the legalizer into expanding the node during type legalization instead 5292 // by bumping the size by one bit. This will force it to Promote, enabling the 5293 // early expansion and avoiding the need to expand later. 5294 5295 // We don't have to do this if Scale is 0; that can always be expanded, unless 5296 // it's a saturating signed operation. Those can experience true integer 5297 // division overflow, a case which we must avoid. 5298 5299 // FIXME: We wouldn't have to do this (or any of the early 5300 // expansion/promotion) if it was possible to expand a libcall of an 5301 // illegal type during operation legalization. But it's not, so things 5302 // get a bit hacky. 5303 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5304 if ((ScaleInt > 0 || (Saturating && Signed)) && 5305 (TLI.isTypeLegal(VT) || 5306 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5307 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5308 Opcode, VT, ScaleInt); 5309 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5310 EVT PromVT; 5311 if (VT.isScalarInteger()) 5312 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5313 else if (VT.isVector()) { 5314 PromVT = VT.getVectorElementType(); 5315 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5316 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5317 } else 5318 llvm_unreachable("Wrong VT for DIVFIX?"); 5319 if (Signed) { 5320 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5321 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5322 } else { 5323 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5324 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5325 } 5326 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5327 // For saturating operations, we need to shift up the LHS to get the 5328 // proper saturation width, and then shift down again afterwards. 5329 if (Saturating) 5330 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5331 DAG.getConstant(1, DL, ShiftTy)); 5332 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5333 if (Saturating) 5334 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5335 DAG.getConstant(1, DL, ShiftTy)); 5336 return DAG.getZExtOrTrunc(Res, DL, VT); 5337 } 5338 } 5339 5340 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5341 } 5342 5343 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5344 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5345 static void 5346 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5347 const SDValue &N) { 5348 switch (N.getOpcode()) { 5349 case ISD::CopyFromReg: { 5350 SDValue Op = N.getOperand(1); 5351 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5352 Op.getValueType().getSizeInBits()); 5353 return; 5354 } 5355 case ISD::BITCAST: 5356 case ISD::AssertZext: 5357 case ISD::AssertSext: 5358 case ISD::TRUNCATE: 5359 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5360 return; 5361 case ISD::BUILD_PAIR: 5362 case ISD::BUILD_VECTOR: 5363 case ISD::CONCAT_VECTORS: 5364 for (SDValue Op : N->op_values()) 5365 getUnderlyingArgRegs(Regs, Op); 5366 return; 5367 default: 5368 return; 5369 } 5370 } 5371 5372 /// If the DbgValueInst is a dbg_value of a function argument, create the 5373 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5374 /// instruction selection, they will be inserted to the entry BB. 5375 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5376 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5377 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5378 const Argument *Arg = dyn_cast<Argument>(V); 5379 if (!Arg) 5380 return false; 5381 5382 if (!IsDbgDeclare) { 5383 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5384 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5385 // the entry block. 5386 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5387 if (!IsInEntryBlock) 5388 return false; 5389 5390 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5391 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5392 // variable that also is a param. 5393 // 5394 // Although, if we are at the top of the entry block already, we can still 5395 // emit using ArgDbgValue. This might catch some situations when the 5396 // dbg.value refers to an argument that isn't used in the entry block, so 5397 // any CopyToReg node would be optimized out and the only way to express 5398 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5399 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5400 // we should only emit as ArgDbgValue if the Variable is an argument to the 5401 // current function, and the dbg.value intrinsic is found in the entry 5402 // block. 5403 bool VariableIsFunctionInputArg = Variable->isParameter() && 5404 !DL->getInlinedAt(); 5405 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5406 if (!IsInPrologue && !VariableIsFunctionInputArg) 5407 return false; 5408 5409 // Here we assume that a function argument on IR level only can be used to 5410 // describe one input parameter on source level. If we for example have 5411 // source code like this 5412 // 5413 // struct A { long x, y; }; 5414 // void foo(struct A a, long b) { 5415 // ... 5416 // b = a.x; 5417 // ... 5418 // } 5419 // 5420 // and IR like this 5421 // 5422 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5423 // entry: 5424 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5425 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5426 // call void @llvm.dbg.value(metadata i32 %b, "b", 5427 // ... 5428 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5429 // ... 5430 // 5431 // then the last dbg.value is describing a parameter "b" using a value that 5432 // is an argument. But since we already has used %a1 to describe a parameter 5433 // we should not handle that last dbg.value here (that would result in an 5434 // incorrect hoisting of the DBG_VALUE to the function entry). 5435 // Notice that we allow one dbg.value per IR level argument, to accommodate 5436 // for the situation with fragments above. 5437 if (VariableIsFunctionInputArg) { 5438 unsigned ArgNo = Arg->getArgNo(); 5439 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5440 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5441 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5442 return false; 5443 FuncInfo.DescribedArgs.set(ArgNo); 5444 } 5445 } 5446 5447 MachineFunction &MF = DAG.getMachineFunction(); 5448 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5449 5450 bool IsIndirect = false; 5451 Optional<MachineOperand> Op; 5452 // Some arguments' frame index is recorded during argument lowering. 5453 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5454 if (FI != std::numeric_limits<int>::max()) 5455 Op = MachineOperand::CreateFI(FI); 5456 5457 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5458 if (!Op && N.getNode()) { 5459 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5460 Register Reg; 5461 if (ArgRegsAndSizes.size() == 1) 5462 Reg = ArgRegsAndSizes.front().first; 5463 5464 if (Reg && Reg.isVirtual()) { 5465 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5466 Register PR = RegInfo.getLiveInPhysReg(Reg); 5467 if (PR) 5468 Reg = PR; 5469 } 5470 if (Reg) { 5471 Op = MachineOperand::CreateReg(Reg, false); 5472 IsIndirect = IsDbgDeclare; 5473 } 5474 } 5475 5476 if (!Op && N.getNode()) { 5477 // Check if frame index is available. 5478 SDValue LCandidate = peekThroughBitcasts(N); 5479 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5480 if (FrameIndexSDNode *FINode = 5481 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5482 Op = MachineOperand::CreateFI(FINode->getIndex()); 5483 } 5484 5485 if (!Op) { 5486 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5487 auto splitMultiRegDbgValue 5488 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5489 unsigned Offset = 0; 5490 for (auto RegAndSize : SplitRegs) { 5491 // If the expression is already a fragment, the current register 5492 // offset+size might extend beyond the fragment. In this case, only 5493 // the register bits that are inside the fragment are relevant. 5494 int RegFragmentSizeInBits = RegAndSize.second; 5495 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5496 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5497 // The register is entirely outside the expression fragment, 5498 // so is irrelevant for debug info. 5499 if (Offset >= ExprFragmentSizeInBits) 5500 break; 5501 // The register is partially outside the expression fragment, only 5502 // the low bits within the fragment are relevant for debug info. 5503 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5504 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5505 } 5506 } 5507 5508 auto FragmentExpr = DIExpression::createFragmentExpression( 5509 Expr, Offset, RegFragmentSizeInBits); 5510 Offset += RegAndSize.second; 5511 // If a valid fragment expression cannot be created, the variable's 5512 // correct value cannot be determined and so it is set as Undef. 5513 if (!FragmentExpr) { 5514 SDDbgValue *SDV = DAG.getConstantDbgValue( 5515 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5516 DAG.AddDbgValue(SDV, nullptr, false); 5517 continue; 5518 } 5519 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5520 FuncInfo.ArgDbgValues.push_back( 5521 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5522 RegAndSize.first, Variable, *FragmentExpr)); 5523 } 5524 }; 5525 5526 // Check if ValueMap has reg number. 5527 DenseMap<const Value *, unsigned>::const_iterator 5528 VMI = FuncInfo.ValueMap.find(V); 5529 if (VMI != FuncInfo.ValueMap.end()) { 5530 const auto &TLI = DAG.getTargetLoweringInfo(); 5531 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5532 V->getType(), getABIRegCopyCC(V)); 5533 if (RFV.occupiesMultipleRegs()) { 5534 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5535 return true; 5536 } 5537 5538 Op = MachineOperand::CreateReg(VMI->second, false); 5539 IsIndirect = IsDbgDeclare; 5540 } else if (ArgRegsAndSizes.size() > 1) { 5541 // This was split due to the calling convention, and no virtual register 5542 // mapping exists for the value. 5543 splitMultiRegDbgValue(ArgRegsAndSizes); 5544 return true; 5545 } 5546 } 5547 5548 if (!Op) 5549 return false; 5550 5551 assert(Variable->isValidLocationForIntrinsic(DL) && 5552 "Expected inlined-at fields to agree"); 5553 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5554 FuncInfo.ArgDbgValues.push_back( 5555 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5556 *Op, Variable, Expr)); 5557 5558 return true; 5559 } 5560 5561 /// Return the appropriate SDDbgValue based on N. 5562 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5563 DILocalVariable *Variable, 5564 DIExpression *Expr, 5565 const DebugLoc &dl, 5566 unsigned DbgSDNodeOrder) { 5567 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5568 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5569 // stack slot locations. 5570 // 5571 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5572 // debug values here after optimization: 5573 // 5574 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5575 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5576 // 5577 // Both describe the direct values of their associated variables. 5578 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5579 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5580 } 5581 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5582 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5583 } 5584 5585 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5586 switch (Intrinsic) { 5587 case Intrinsic::smul_fix: 5588 return ISD::SMULFIX; 5589 case Intrinsic::umul_fix: 5590 return ISD::UMULFIX; 5591 case Intrinsic::smul_fix_sat: 5592 return ISD::SMULFIXSAT; 5593 case Intrinsic::umul_fix_sat: 5594 return ISD::UMULFIXSAT; 5595 case Intrinsic::sdiv_fix: 5596 return ISD::SDIVFIX; 5597 case Intrinsic::udiv_fix: 5598 return ISD::UDIVFIX; 5599 case Intrinsic::sdiv_fix_sat: 5600 return ISD::SDIVFIXSAT; 5601 case Intrinsic::udiv_fix_sat: 5602 return ISD::UDIVFIXSAT; 5603 default: 5604 llvm_unreachable("Unhandled fixed point intrinsic"); 5605 } 5606 } 5607 5608 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5609 const char *FunctionName) { 5610 assert(FunctionName && "FunctionName must not be nullptr"); 5611 SDValue Callee = DAG.getExternalSymbol( 5612 FunctionName, 5613 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5614 LowerCallTo(&I, Callee, I.isTailCall()); 5615 } 5616 5617 /// Lower the call to the specified intrinsic function. 5618 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5619 unsigned Intrinsic) { 5620 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5621 SDLoc sdl = getCurSDLoc(); 5622 DebugLoc dl = getCurDebugLoc(); 5623 SDValue Res; 5624 5625 switch (Intrinsic) { 5626 default: 5627 // By default, turn this into a target intrinsic node. 5628 visitTargetIntrinsic(I, Intrinsic); 5629 return; 5630 case Intrinsic::vscale: { 5631 match(&I, m_VScale(DAG.getDataLayout())); 5632 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5633 setValue(&I, 5634 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5635 return; 5636 } 5637 case Intrinsic::vastart: visitVAStart(I); return; 5638 case Intrinsic::vaend: visitVAEnd(I); return; 5639 case Intrinsic::vacopy: visitVACopy(I); return; 5640 case Intrinsic::returnaddress: 5641 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5642 TLI.getPointerTy(DAG.getDataLayout()), 5643 getValue(I.getArgOperand(0)))); 5644 return; 5645 case Intrinsic::addressofreturnaddress: 5646 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5647 TLI.getPointerTy(DAG.getDataLayout()))); 5648 return; 5649 case Intrinsic::sponentry: 5650 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5651 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5652 return; 5653 case Intrinsic::frameaddress: 5654 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5655 TLI.getFrameIndexTy(DAG.getDataLayout()), 5656 getValue(I.getArgOperand(0)))); 5657 return; 5658 case Intrinsic::read_register: { 5659 Value *Reg = I.getArgOperand(0); 5660 SDValue Chain = getRoot(); 5661 SDValue RegName = 5662 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5663 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5664 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5665 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5666 setValue(&I, Res); 5667 DAG.setRoot(Res.getValue(1)); 5668 return; 5669 } 5670 case Intrinsic::write_register: { 5671 Value *Reg = I.getArgOperand(0); 5672 Value *RegValue = I.getArgOperand(1); 5673 SDValue Chain = getRoot(); 5674 SDValue RegName = 5675 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5676 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5677 RegName, getValue(RegValue))); 5678 return; 5679 } 5680 case Intrinsic::memcpy: { 5681 const auto &MCI = cast<MemCpyInst>(I); 5682 SDValue Op1 = getValue(I.getArgOperand(0)); 5683 SDValue Op2 = getValue(I.getArgOperand(1)); 5684 SDValue Op3 = getValue(I.getArgOperand(2)); 5685 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5686 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5687 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5688 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5689 bool isVol = MCI.isVolatile(); 5690 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5691 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5692 // node. 5693 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5694 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5695 /* AlwaysInline */ false, isTC, 5696 MachinePointerInfo(I.getArgOperand(0)), 5697 MachinePointerInfo(I.getArgOperand(1))); 5698 updateDAGForMaybeTailCall(MC); 5699 return; 5700 } 5701 case Intrinsic::memcpy_inline: { 5702 const auto &MCI = cast<MemCpyInlineInst>(I); 5703 SDValue Dst = getValue(I.getArgOperand(0)); 5704 SDValue Src = getValue(I.getArgOperand(1)); 5705 SDValue Size = getValue(I.getArgOperand(2)); 5706 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5707 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5708 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5709 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5710 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5711 bool isVol = MCI.isVolatile(); 5712 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5713 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5714 // node. 5715 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5716 /* AlwaysInline */ true, isTC, 5717 MachinePointerInfo(I.getArgOperand(0)), 5718 MachinePointerInfo(I.getArgOperand(1))); 5719 updateDAGForMaybeTailCall(MC); 5720 return; 5721 } 5722 case Intrinsic::memset: { 5723 const auto &MSI = cast<MemSetInst>(I); 5724 SDValue Op1 = getValue(I.getArgOperand(0)); 5725 SDValue Op2 = getValue(I.getArgOperand(1)); 5726 SDValue Op3 = getValue(I.getArgOperand(2)); 5727 // @llvm.memset defines 0 and 1 to both mean no alignment. 5728 Align Alignment = MSI.getDestAlign().valueOrOne(); 5729 bool isVol = MSI.isVolatile(); 5730 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5731 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5732 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5733 MachinePointerInfo(I.getArgOperand(0))); 5734 updateDAGForMaybeTailCall(MS); 5735 return; 5736 } 5737 case Intrinsic::memmove: { 5738 const auto &MMI = cast<MemMoveInst>(I); 5739 SDValue Op1 = getValue(I.getArgOperand(0)); 5740 SDValue Op2 = getValue(I.getArgOperand(1)); 5741 SDValue Op3 = getValue(I.getArgOperand(2)); 5742 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5743 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5744 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5745 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5746 bool isVol = MMI.isVolatile(); 5747 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5748 // FIXME: Support passing different dest/src alignments to the memmove DAG 5749 // node. 5750 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5751 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5752 isTC, MachinePointerInfo(I.getArgOperand(0)), 5753 MachinePointerInfo(I.getArgOperand(1))); 5754 updateDAGForMaybeTailCall(MM); 5755 return; 5756 } 5757 case Intrinsic::memcpy_element_unordered_atomic: { 5758 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5759 SDValue Dst = getValue(MI.getRawDest()); 5760 SDValue Src = getValue(MI.getRawSource()); 5761 SDValue Length = getValue(MI.getLength()); 5762 5763 unsigned DstAlign = MI.getDestAlignment(); 5764 unsigned SrcAlign = MI.getSourceAlignment(); 5765 Type *LengthTy = MI.getLength()->getType(); 5766 unsigned ElemSz = MI.getElementSizeInBytes(); 5767 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5768 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5769 SrcAlign, Length, LengthTy, ElemSz, isTC, 5770 MachinePointerInfo(MI.getRawDest()), 5771 MachinePointerInfo(MI.getRawSource())); 5772 updateDAGForMaybeTailCall(MC); 5773 return; 5774 } 5775 case Intrinsic::memmove_element_unordered_atomic: { 5776 auto &MI = cast<AtomicMemMoveInst>(I); 5777 SDValue Dst = getValue(MI.getRawDest()); 5778 SDValue Src = getValue(MI.getRawSource()); 5779 SDValue Length = getValue(MI.getLength()); 5780 5781 unsigned DstAlign = MI.getDestAlignment(); 5782 unsigned SrcAlign = MI.getSourceAlignment(); 5783 Type *LengthTy = MI.getLength()->getType(); 5784 unsigned ElemSz = MI.getElementSizeInBytes(); 5785 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5786 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5787 SrcAlign, Length, LengthTy, ElemSz, isTC, 5788 MachinePointerInfo(MI.getRawDest()), 5789 MachinePointerInfo(MI.getRawSource())); 5790 updateDAGForMaybeTailCall(MC); 5791 return; 5792 } 5793 case Intrinsic::memset_element_unordered_atomic: { 5794 auto &MI = cast<AtomicMemSetInst>(I); 5795 SDValue Dst = getValue(MI.getRawDest()); 5796 SDValue Val = getValue(MI.getValue()); 5797 SDValue Length = getValue(MI.getLength()); 5798 5799 unsigned DstAlign = MI.getDestAlignment(); 5800 Type *LengthTy = MI.getLength()->getType(); 5801 unsigned ElemSz = MI.getElementSizeInBytes(); 5802 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5803 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5804 LengthTy, ElemSz, isTC, 5805 MachinePointerInfo(MI.getRawDest())); 5806 updateDAGForMaybeTailCall(MC); 5807 return; 5808 } 5809 case Intrinsic::dbg_addr: 5810 case Intrinsic::dbg_declare: { 5811 const auto &DI = cast<DbgVariableIntrinsic>(I); 5812 DILocalVariable *Variable = DI.getVariable(); 5813 DIExpression *Expression = DI.getExpression(); 5814 dropDanglingDebugInfo(Variable, Expression); 5815 assert(Variable && "Missing variable"); 5816 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5817 << "\n"); 5818 // Check if address has undef value. 5819 const Value *Address = DI.getVariableLocation(); 5820 if (!Address || isa<UndefValue>(Address) || 5821 (Address->use_empty() && !isa<Argument>(Address))) { 5822 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5823 << " (bad/undef/unused-arg address)\n"); 5824 return; 5825 } 5826 5827 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5828 5829 // Check if this variable can be described by a frame index, typically 5830 // either as a static alloca or a byval parameter. 5831 int FI = std::numeric_limits<int>::max(); 5832 if (const auto *AI = 5833 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5834 if (AI->isStaticAlloca()) { 5835 auto I = FuncInfo.StaticAllocaMap.find(AI); 5836 if (I != FuncInfo.StaticAllocaMap.end()) 5837 FI = I->second; 5838 } 5839 } else if (const auto *Arg = dyn_cast<Argument>( 5840 Address->stripInBoundsConstantOffsets())) { 5841 FI = FuncInfo.getArgumentFrameIndex(Arg); 5842 } 5843 5844 // llvm.dbg.addr is control dependent and always generates indirect 5845 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5846 // the MachineFunction variable table. 5847 if (FI != std::numeric_limits<int>::max()) { 5848 if (Intrinsic == Intrinsic::dbg_addr) { 5849 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5850 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5851 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5852 } else { 5853 LLVM_DEBUG(dbgs() << "Skipping " << DI 5854 << " (variable info stashed in MF side table)\n"); 5855 } 5856 return; 5857 } 5858 5859 SDValue &N = NodeMap[Address]; 5860 if (!N.getNode() && isa<Argument>(Address)) 5861 // Check unused arguments map. 5862 N = UnusedArgNodeMap[Address]; 5863 SDDbgValue *SDV; 5864 if (N.getNode()) { 5865 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5866 Address = BCI->getOperand(0); 5867 // Parameters are handled specially. 5868 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5869 if (isParameter && FINode) { 5870 // Byval parameter. We have a frame index at this point. 5871 SDV = 5872 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5873 /*IsIndirect*/ true, dl, SDNodeOrder); 5874 } else if (isa<Argument>(Address)) { 5875 // Address is an argument, so try to emit its dbg value using 5876 // virtual register info from the FuncInfo.ValueMap. 5877 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5878 return; 5879 } else { 5880 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5881 true, dl, SDNodeOrder); 5882 } 5883 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5884 } else { 5885 // If Address is an argument then try to emit its dbg value using 5886 // virtual register info from the FuncInfo.ValueMap. 5887 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5888 N)) { 5889 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5890 << " (could not emit func-arg dbg_value)\n"); 5891 } 5892 } 5893 return; 5894 } 5895 case Intrinsic::dbg_label: { 5896 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5897 DILabel *Label = DI.getLabel(); 5898 assert(Label && "Missing label"); 5899 5900 SDDbgLabel *SDV; 5901 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5902 DAG.AddDbgLabel(SDV); 5903 return; 5904 } 5905 case Intrinsic::dbg_value: { 5906 const DbgValueInst &DI = cast<DbgValueInst>(I); 5907 assert(DI.getVariable() && "Missing variable"); 5908 5909 DILocalVariable *Variable = DI.getVariable(); 5910 DIExpression *Expression = DI.getExpression(); 5911 dropDanglingDebugInfo(Variable, Expression); 5912 const Value *V = DI.getValue(); 5913 if (!V) 5914 return; 5915 5916 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5917 SDNodeOrder)) 5918 return; 5919 5920 // TODO: Dangling debug info will eventually either be resolved or produce 5921 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5922 // between the original dbg.value location and its resolved DBG_VALUE, which 5923 // we should ideally fill with an extra Undef DBG_VALUE. 5924 5925 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5926 return; 5927 } 5928 5929 case Intrinsic::eh_typeid_for: { 5930 // Find the type id for the given typeinfo. 5931 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5932 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5933 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5934 setValue(&I, Res); 5935 return; 5936 } 5937 5938 case Intrinsic::eh_return_i32: 5939 case Intrinsic::eh_return_i64: 5940 DAG.getMachineFunction().setCallsEHReturn(true); 5941 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5942 MVT::Other, 5943 getControlRoot(), 5944 getValue(I.getArgOperand(0)), 5945 getValue(I.getArgOperand(1)))); 5946 return; 5947 case Intrinsic::eh_unwind_init: 5948 DAG.getMachineFunction().setCallsUnwindInit(true); 5949 return; 5950 case Intrinsic::eh_dwarf_cfa: 5951 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5952 TLI.getPointerTy(DAG.getDataLayout()), 5953 getValue(I.getArgOperand(0)))); 5954 return; 5955 case Intrinsic::eh_sjlj_callsite: { 5956 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5957 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5958 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5959 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5960 5961 MMI.setCurrentCallSite(CI->getZExtValue()); 5962 return; 5963 } 5964 case Intrinsic::eh_sjlj_functioncontext: { 5965 // Get and store the index of the function context. 5966 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5967 AllocaInst *FnCtx = 5968 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5969 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5970 MFI.setFunctionContextIndex(FI); 5971 return; 5972 } 5973 case Intrinsic::eh_sjlj_setjmp: { 5974 SDValue Ops[2]; 5975 Ops[0] = getRoot(); 5976 Ops[1] = getValue(I.getArgOperand(0)); 5977 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5978 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5979 setValue(&I, Op.getValue(0)); 5980 DAG.setRoot(Op.getValue(1)); 5981 return; 5982 } 5983 case Intrinsic::eh_sjlj_longjmp: 5984 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5985 getRoot(), getValue(I.getArgOperand(0)))); 5986 return; 5987 case Intrinsic::eh_sjlj_setup_dispatch: 5988 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5989 getRoot())); 5990 return; 5991 case Intrinsic::masked_gather: 5992 visitMaskedGather(I); 5993 return; 5994 case Intrinsic::masked_load: 5995 visitMaskedLoad(I); 5996 return; 5997 case Intrinsic::masked_scatter: 5998 visitMaskedScatter(I); 5999 return; 6000 case Intrinsic::masked_store: 6001 visitMaskedStore(I); 6002 return; 6003 case Intrinsic::masked_expandload: 6004 visitMaskedLoad(I, true /* IsExpanding */); 6005 return; 6006 case Intrinsic::masked_compressstore: 6007 visitMaskedStore(I, true /* IsCompressing */); 6008 return; 6009 case Intrinsic::powi: 6010 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6011 getValue(I.getArgOperand(1)), DAG)); 6012 return; 6013 case Intrinsic::log: 6014 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6015 return; 6016 case Intrinsic::log2: 6017 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6018 return; 6019 case Intrinsic::log10: 6020 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6021 return; 6022 case Intrinsic::exp: 6023 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6024 return; 6025 case Intrinsic::exp2: 6026 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6027 return; 6028 case Intrinsic::pow: 6029 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6030 getValue(I.getArgOperand(1)), DAG, TLI)); 6031 return; 6032 case Intrinsic::sqrt: 6033 case Intrinsic::fabs: 6034 case Intrinsic::sin: 6035 case Intrinsic::cos: 6036 case Intrinsic::floor: 6037 case Intrinsic::ceil: 6038 case Intrinsic::trunc: 6039 case Intrinsic::rint: 6040 case Intrinsic::nearbyint: 6041 case Intrinsic::round: 6042 case Intrinsic::canonicalize: { 6043 unsigned Opcode; 6044 switch (Intrinsic) { 6045 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6046 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6047 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6048 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6049 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6050 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6051 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6052 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6053 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6054 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6055 case Intrinsic::round: Opcode = ISD::FROUND; break; 6056 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6057 } 6058 6059 setValue(&I, DAG.getNode(Opcode, sdl, 6060 getValue(I.getArgOperand(0)).getValueType(), 6061 getValue(I.getArgOperand(0)))); 6062 return; 6063 } 6064 case Intrinsic::lround: 6065 case Intrinsic::llround: 6066 case Intrinsic::lrint: 6067 case Intrinsic::llrint: { 6068 unsigned Opcode; 6069 switch (Intrinsic) { 6070 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6071 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6072 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6073 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6074 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6075 } 6076 6077 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6078 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6079 getValue(I.getArgOperand(0)))); 6080 return; 6081 } 6082 case Intrinsic::minnum: 6083 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6084 getValue(I.getArgOperand(0)).getValueType(), 6085 getValue(I.getArgOperand(0)), 6086 getValue(I.getArgOperand(1)))); 6087 return; 6088 case Intrinsic::maxnum: 6089 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6090 getValue(I.getArgOperand(0)).getValueType(), 6091 getValue(I.getArgOperand(0)), 6092 getValue(I.getArgOperand(1)))); 6093 return; 6094 case Intrinsic::minimum: 6095 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6096 getValue(I.getArgOperand(0)).getValueType(), 6097 getValue(I.getArgOperand(0)), 6098 getValue(I.getArgOperand(1)))); 6099 return; 6100 case Intrinsic::maximum: 6101 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6102 getValue(I.getArgOperand(0)).getValueType(), 6103 getValue(I.getArgOperand(0)), 6104 getValue(I.getArgOperand(1)))); 6105 return; 6106 case Intrinsic::copysign: 6107 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6108 getValue(I.getArgOperand(0)).getValueType(), 6109 getValue(I.getArgOperand(0)), 6110 getValue(I.getArgOperand(1)))); 6111 return; 6112 case Intrinsic::fma: 6113 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6114 getValue(I.getArgOperand(0)).getValueType(), 6115 getValue(I.getArgOperand(0)), 6116 getValue(I.getArgOperand(1)), 6117 getValue(I.getArgOperand(2)))); 6118 return; 6119 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6120 case Intrinsic::INTRINSIC: 6121 #include "llvm/IR/ConstrainedOps.def" 6122 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6123 return; 6124 case Intrinsic::fmuladd: { 6125 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6126 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6127 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6128 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6129 getValue(I.getArgOperand(0)).getValueType(), 6130 getValue(I.getArgOperand(0)), 6131 getValue(I.getArgOperand(1)), 6132 getValue(I.getArgOperand(2)))); 6133 } else { 6134 // TODO: Intrinsic calls should have fast-math-flags. 6135 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6136 getValue(I.getArgOperand(0)).getValueType(), 6137 getValue(I.getArgOperand(0)), 6138 getValue(I.getArgOperand(1))); 6139 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6140 getValue(I.getArgOperand(0)).getValueType(), 6141 Mul, 6142 getValue(I.getArgOperand(2))); 6143 setValue(&I, Add); 6144 } 6145 return; 6146 } 6147 case Intrinsic::convert_to_fp16: 6148 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6149 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6150 getValue(I.getArgOperand(0)), 6151 DAG.getTargetConstant(0, sdl, 6152 MVT::i32)))); 6153 return; 6154 case Intrinsic::convert_from_fp16: 6155 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6156 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6157 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6158 getValue(I.getArgOperand(0))))); 6159 return; 6160 case Intrinsic::pcmarker: { 6161 SDValue Tmp = getValue(I.getArgOperand(0)); 6162 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6163 return; 6164 } 6165 case Intrinsic::readcyclecounter: { 6166 SDValue Op = getRoot(); 6167 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6168 DAG.getVTList(MVT::i64, MVT::Other), Op); 6169 setValue(&I, Res); 6170 DAG.setRoot(Res.getValue(1)); 6171 return; 6172 } 6173 case Intrinsic::bitreverse: 6174 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6175 getValue(I.getArgOperand(0)).getValueType(), 6176 getValue(I.getArgOperand(0)))); 6177 return; 6178 case Intrinsic::bswap: 6179 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6180 getValue(I.getArgOperand(0)).getValueType(), 6181 getValue(I.getArgOperand(0)))); 6182 return; 6183 case Intrinsic::cttz: { 6184 SDValue Arg = getValue(I.getArgOperand(0)); 6185 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6186 EVT Ty = Arg.getValueType(); 6187 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6188 sdl, Ty, Arg)); 6189 return; 6190 } 6191 case Intrinsic::ctlz: { 6192 SDValue Arg = getValue(I.getArgOperand(0)); 6193 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6194 EVT Ty = Arg.getValueType(); 6195 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6196 sdl, Ty, Arg)); 6197 return; 6198 } 6199 case Intrinsic::ctpop: { 6200 SDValue Arg = getValue(I.getArgOperand(0)); 6201 EVT Ty = Arg.getValueType(); 6202 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6203 return; 6204 } 6205 case Intrinsic::fshl: 6206 case Intrinsic::fshr: { 6207 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6208 SDValue X = getValue(I.getArgOperand(0)); 6209 SDValue Y = getValue(I.getArgOperand(1)); 6210 SDValue Z = getValue(I.getArgOperand(2)); 6211 EVT VT = X.getValueType(); 6212 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6213 SDValue Zero = DAG.getConstant(0, sdl, VT); 6214 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6215 6216 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6217 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6218 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6219 return; 6220 } 6221 6222 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6223 // avoid the select that is necessary in the general case to filter out 6224 // the 0-shift possibility that leads to UB. 6225 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6226 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6227 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6228 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6229 return; 6230 } 6231 6232 // Some targets only rotate one way. Try the opposite direction. 6233 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6234 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6235 // Negate the shift amount because it is safe to ignore the high bits. 6236 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6237 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6238 return; 6239 } 6240 6241 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6242 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6243 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6244 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6245 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6246 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6247 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6248 return; 6249 } 6250 6251 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6252 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6253 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6254 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6255 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6256 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6257 6258 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6259 // and that is undefined. We must compare and select to avoid UB. 6260 EVT CCVT = MVT::i1; 6261 if (VT.isVector()) 6262 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6263 6264 // For fshl, 0-shift returns the 1st arg (X). 6265 // For fshr, 0-shift returns the 2nd arg (Y). 6266 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6267 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6268 return; 6269 } 6270 case Intrinsic::sadd_sat: { 6271 SDValue Op1 = getValue(I.getArgOperand(0)); 6272 SDValue Op2 = getValue(I.getArgOperand(1)); 6273 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6274 return; 6275 } 6276 case Intrinsic::uadd_sat: { 6277 SDValue Op1 = getValue(I.getArgOperand(0)); 6278 SDValue Op2 = getValue(I.getArgOperand(1)); 6279 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6280 return; 6281 } 6282 case Intrinsic::ssub_sat: { 6283 SDValue Op1 = getValue(I.getArgOperand(0)); 6284 SDValue Op2 = getValue(I.getArgOperand(1)); 6285 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6286 return; 6287 } 6288 case Intrinsic::usub_sat: { 6289 SDValue Op1 = getValue(I.getArgOperand(0)); 6290 SDValue Op2 = getValue(I.getArgOperand(1)); 6291 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6292 return; 6293 } 6294 case Intrinsic::smul_fix: 6295 case Intrinsic::umul_fix: 6296 case Intrinsic::smul_fix_sat: 6297 case Intrinsic::umul_fix_sat: { 6298 SDValue Op1 = getValue(I.getArgOperand(0)); 6299 SDValue Op2 = getValue(I.getArgOperand(1)); 6300 SDValue Op3 = getValue(I.getArgOperand(2)); 6301 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6302 Op1.getValueType(), Op1, Op2, Op3)); 6303 return; 6304 } 6305 case Intrinsic::sdiv_fix: 6306 case Intrinsic::udiv_fix: 6307 case Intrinsic::sdiv_fix_sat: 6308 case Intrinsic::udiv_fix_sat: { 6309 SDValue Op1 = getValue(I.getArgOperand(0)); 6310 SDValue Op2 = getValue(I.getArgOperand(1)); 6311 SDValue Op3 = getValue(I.getArgOperand(2)); 6312 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6313 Op1, Op2, Op3, DAG, TLI)); 6314 return; 6315 } 6316 case Intrinsic::stacksave: { 6317 SDValue Op = getRoot(); 6318 Res = DAG.getNode( 6319 ISD::STACKSAVE, sdl, 6320 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6321 setValue(&I, Res); 6322 DAG.setRoot(Res.getValue(1)); 6323 return; 6324 } 6325 case Intrinsic::stackrestore: 6326 Res = getValue(I.getArgOperand(0)); 6327 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6328 return; 6329 case Intrinsic::get_dynamic_area_offset: { 6330 SDValue Op = getRoot(); 6331 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6332 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6333 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6334 // target. 6335 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6336 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6337 " intrinsic!"); 6338 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6339 Op); 6340 DAG.setRoot(Op); 6341 setValue(&I, Res); 6342 return; 6343 } 6344 case Intrinsic::stackguard: { 6345 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6346 MachineFunction &MF = DAG.getMachineFunction(); 6347 const Module &M = *MF.getFunction().getParent(); 6348 SDValue Chain = getRoot(); 6349 if (TLI.useLoadStackGuardNode()) { 6350 Res = getLoadStackGuard(DAG, sdl, Chain); 6351 } else { 6352 const Value *Global = TLI.getSDagStackGuard(M); 6353 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6354 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6355 MachinePointerInfo(Global, 0), Align, 6356 MachineMemOperand::MOVolatile); 6357 } 6358 if (TLI.useStackGuardXorFP()) 6359 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6360 DAG.setRoot(Chain); 6361 setValue(&I, Res); 6362 return; 6363 } 6364 case Intrinsic::stackprotector: { 6365 // Emit code into the DAG to store the stack guard onto the stack. 6366 MachineFunction &MF = DAG.getMachineFunction(); 6367 MachineFrameInfo &MFI = MF.getFrameInfo(); 6368 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6369 SDValue Src, Chain = getRoot(); 6370 6371 if (TLI.useLoadStackGuardNode()) 6372 Src = getLoadStackGuard(DAG, sdl, Chain); 6373 else 6374 Src = getValue(I.getArgOperand(0)); // The guard's value. 6375 6376 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6377 6378 int FI = FuncInfo.StaticAllocaMap[Slot]; 6379 MFI.setStackProtectorIndex(FI); 6380 6381 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6382 6383 // Store the stack protector onto the stack. 6384 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6385 DAG.getMachineFunction(), FI), 6386 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6387 setValue(&I, Res); 6388 DAG.setRoot(Res); 6389 return; 6390 } 6391 case Intrinsic::objectsize: 6392 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6393 6394 case Intrinsic::is_constant: 6395 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6396 6397 case Intrinsic::annotation: 6398 case Intrinsic::ptr_annotation: 6399 case Intrinsic::launder_invariant_group: 6400 case Intrinsic::strip_invariant_group: 6401 // Drop the intrinsic, but forward the value 6402 setValue(&I, getValue(I.getOperand(0))); 6403 return; 6404 case Intrinsic::assume: 6405 case Intrinsic::var_annotation: 6406 case Intrinsic::sideeffect: 6407 // Discard annotate attributes, assumptions, and artificial side-effects. 6408 return; 6409 6410 case Intrinsic::codeview_annotation: { 6411 // Emit a label associated with this metadata. 6412 MachineFunction &MF = DAG.getMachineFunction(); 6413 MCSymbol *Label = 6414 MF.getMMI().getContext().createTempSymbol("annotation", true); 6415 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6416 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6417 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6418 DAG.setRoot(Res); 6419 return; 6420 } 6421 6422 case Intrinsic::init_trampoline: { 6423 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6424 6425 SDValue Ops[6]; 6426 Ops[0] = getRoot(); 6427 Ops[1] = getValue(I.getArgOperand(0)); 6428 Ops[2] = getValue(I.getArgOperand(1)); 6429 Ops[3] = getValue(I.getArgOperand(2)); 6430 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6431 Ops[5] = DAG.getSrcValue(F); 6432 6433 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6434 6435 DAG.setRoot(Res); 6436 return; 6437 } 6438 case Intrinsic::adjust_trampoline: 6439 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6440 TLI.getPointerTy(DAG.getDataLayout()), 6441 getValue(I.getArgOperand(0)))); 6442 return; 6443 case Intrinsic::gcroot: { 6444 assert(DAG.getMachineFunction().getFunction().hasGC() && 6445 "only valid in functions with gc specified, enforced by Verifier"); 6446 assert(GFI && "implied by previous"); 6447 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6448 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6449 6450 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6451 GFI->addStackRoot(FI->getIndex(), TypeMap); 6452 return; 6453 } 6454 case Intrinsic::gcread: 6455 case Intrinsic::gcwrite: 6456 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6457 case Intrinsic::flt_rounds: 6458 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6459 setValue(&I, Res); 6460 DAG.setRoot(Res.getValue(1)); 6461 return; 6462 6463 case Intrinsic::expect: 6464 // Just replace __builtin_expect(exp, c) with EXP. 6465 setValue(&I, getValue(I.getArgOperand(0))); 6466 return; 6467 6468 case Intrinsic::debugtrap: 6469 case Intrinsic::trap: { 6470 StringRef TrapFuncName = 6471 I.getAttributes() 6472 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6473 .getValueAsString(); 6474 if (TrapFuncName.empty()) { 6475 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6476 ISD::TRAP : ISD::DEBUGTRAP; 6477 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6478 return; 6479 } 6480 TargetLowering::ArgListTy Args; 6481 6482 TargetLowering::CallLoweringInfo CLI(DAG); 6483 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6484 CallingConv::C, I.getType(), 6485 DAG.getExternalSymbol(TrapFuncName.data(), 6486 TLI.getPointerTy(DAG.getDataLayout())), 6487 std::move(Args)); 6488 6489 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6490 DAG.setRoot(Result.second); 6491 return; 6492 } 6493 6494 case Intrinsic::uadd_with_overflow: 6495 case Intrinsic::sadd_with_overflow: 6496 case Intrinsic::usub_with_overflow: 6497 case Intrinsic::ssub_with_overflow: 6498 case Intrinsic::umul_with_overflow: 6499 case Intrinsic::smul_with_overflow: { 6500 ISD::NodeType Op; 6501 switch (Intrinsic) { 6502 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6503 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6504 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6505 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6506 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6507 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6508 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6509 } 6510 SDValue Op1 = getValue(I.getArgOperand(0)); 6511 SDValue Op2 = getValue(I.getArgOperand(1)); 6512 6513 EVT ResultVT = Op1.getValueType(); 6514 EVT OverflowVT = MVT::i1; 6515 if (ResultVT.isVector()) 6516 OverflowVT = EVT::getVectorVT( 6517 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6518 6519 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6520 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6521 return; 6522 } 6523 case Intrinsic::prefetch: { 6524 SDValue Ops[5]; 6525 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6526 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6527 Ops[0] = DAG.getRoot(); 6528 Ops[1] = getValue(I.getArgOperand(0)); 6529 Ops[2] = getValue(I.getArgOperand(1)); 6530 Ops[3] = getValue(I.getArgOperand(2)); 6531 Ops[4] = getValue(I.getArgOperand(3)); 6532 SDValue Result = DAG.getMemIntrinsicNode( 6533 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6534 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6535 /* align */ None, Flags); 6536 6537 // Chain the prefetch in parallell with any pending loads, to stay out of 6538 // the way of later optimizations. 6539 PendingLoads.push_back(Result); 6540 Result = getRoot(); 6541 DAG.setRoot(Result); 6542 return; 6543 } 6544 case Intrinsic::lifetime_start: 6545 case Intrinsic::lifetime_end: { 6546 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6547 // Stack coloring is not enabled in O0, discard region information. 6548 if (TM.getOptLevel() == CodeGenOpt::None) 6549 return; 6550 6551 const int64_t ObjectSize = 6552 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6553 Value *const ObjectPtr = I.getArgOperand(1); 6554 SmallVector<const Value *, 4> Allocas; 6555 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6556 6557 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6558 E = Allocas.end(); Object != E; ++Object) { 6559 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6560 6561 // Could not find an Alloca. 6562 if (!LifetimeObject) 6563 continue; 6564 6565 // First check that the Alloca is static, otherwise it won't have a 6566 // valid frame index. 6567 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6568 if (SI == FuncInfo.StaticAllocaMap.end()) 6569 return; 6570 6571 const int FrameIndex = SI->second; 6572 int64_t Offset; 6573 if (GetPointerBaseWithConstantOffset( 6574 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6575 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6576 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6577 Offset); 6578 DAG.setRoot(Res); 6579 } 6580 return; 6581 } 6582 case Intrinsic::invariant_start: 6583 // Discard region information. 6584 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6585 return; 6586 case Intrinsic::invariant_end: 6587 // Discard region information. 6588 return; 6589 case Intrinsic::clear_cache: 6590 /// FunctionName may be null. 6591 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6592 lowerCallToExternalSymbol(I, FunctionName); 6593 return; 6594 case Intrinsic::donothing: 6595 // ignore 6596 return; 6597 case Intrinsic::experimental_stackmap: 6598 visitStackmap(I); 6599 return; 6600 case Intrinsic::experimental_patchpoint_void: 6601 case Intrinsic::experimental_patchpoint_i64: 6602 visitPatchpoint(&I); 6603 return; 6604 case Intrinsic::experimental_gc_statepoint: 6605 LowerStatepoint(ImmutableStatepoint(&I)); 6606 return; 6607 case Intrinsic::experimental_gc_result: 6608 visitGCResult(cast<GCResultInst>(I)); 6609 return; 6610 case Intrinsic::experimental_gc_relocate: 6611 visitGCRelocate(cast<GCRelocateInst>(I)); 6612 return; 6613 case Intrinsic::instrprof_increment: 6614 llvm_unreachable("instrprof failed to lower an increment"); 6615 case Intrinsic::instrprof_value_profile: 6616 llvm_unreachable("instrprof failed to lower a value profiling call"); 6617 case Intrinsic::localescape: { 6618 MachineFunction &MF = DAG.getMachineFunction(); 6619 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6620 6621 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6622 // is the same on all targets. 6623 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6624 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6625 if (isa<ConstantPointerNull>(Arg)) 6626 continue; // Skip null pointers. They represent a hole in index space. 6627 AllocaInst *Slot = cast<AllocaInst>(Arg); 6628 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6629 "can only escape static allocas"); 6630 int FI = FuncInfo.StaticAllocaMap[Slot]; 6631 MCSymbol *FrameAllocSym = 6632 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6633 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6634 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6635 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6636 .addSym(FrameAllocSym) 6637 .addFrameIndex(FI); 6638 } 6639 6640 return; 6641 } 6642 6643 case Intrinsic::localrecover: { 6644 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6645 MachineFunction &MF = DAG.getMachineFunction(); 6646 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6647 6648 // Get the symbol that defines the frame offset. 6649 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6650 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6651 unsigned IdxVal = 6652 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6653 MCSymbol *FrameAllocSym = 6654 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6655 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6656 6657 // Create a MCSymbol for the label to avoid any target lowering 6658 // that would make this PC relative. 6659 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6660 SDValue OffsetVal = 6661 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6662 6663 // Add the offset to the FP. 6664 Value *FP = I.getArgOperand(1); 6665 SDValue FPVal = getValue(FP); 6666 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6667 setValue(&I, Add); 6668 6669 return; 6670 } 6671 6672 case Intrinsic::eh_exceptionpointer: 6673 case Intrinsic::eh_exceptioncode: { 6674 // Get the exception pointer vreg, copy from it, and resize it to fit. 6675 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6676 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6677 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6678 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6679 SDValue N = 6680 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6681 if (Intrinsic == Intrinsic::eh_exceptioncode) 6682 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6683 setValue(&I, N); 6684 return; 6685 } 6686 case Intrinsic::xray_customevent: { 6687 // Here we want to make sure that the intrinsic behaves as if it has a 6688 // specific calling convention, and only for x86_64. 6689 // FIXME: Support other platforms later. 6690 const auto &Triple = DAG.getTarget().getTargetTriple(); 6691 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6692 return; 6693 6694 SDLoc DL = getCurSDLoc(); 6695 SmallVector<SDValue, 8> Ops; 6696 6697 // We want to say that we always want the arguments in registers. 6698 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6699 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6700 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6701 SDValue Chain = getRoot(); 6702 Ops.push_back(LogEntryVal); 6703 Ops.push_back(StrSizeVal); 6704 Ops.push_back(Chain); 6705 6706 // We need to enforce the calling convention for the callsite, so that 6707 // argument ordering is enforced correctly, and that register allocation can 6708 // see that some registers may be assumed clobbered and have to preserve 6709 // them across calls to the intrinsic. 6710 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6711 DL, NodeTys, Ops); 6712 SDValue patchableNode = SDValue(MN, 0); 6713 DAG.setRoot(patchableNode); 6714 setValue(&I, patchableNode); 6715 return; 6716 } 6717 case Intrinsic::xray_typedevent: { 6718 // Here we want to make sure that the intrinsic behaves as if it has a 6719 // specific calling convention, and only for x86_64. 6720 // FIXME: Support other platforms later. 6721 const auto &Triple = DAG.getTarget().getTargetTriple(); 6722 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6723 return; 6724 6725 SDLoc DL = getCurSDLoc(); 6726 SmallVector<SDValue, 8> Ops; 6727 6728 // We want to say that we always want the arguments in registers. 6729 // It's unclear to me how manipulating the selection DAG here forces callers 6730 // to provide arguments in registers instead of on the stack. 6731 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6732 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6733 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6734 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6735 SDValue Chain = getRoot(); 6736 Ops.push_back(LogTypeId); 6737 Ops.push_back(LogEntryVal); 6738 Ops.push_back(StrSizeVal); 6739 Ops.push_back(Chain); 6740 6741 // We need to enforce the calling convention for the callsite, so that 6742 // argument ordering is enforced correctly, and that register allocation can 6743 // see that some registers may be assumed clobbered and have to preserve 6744 // them across calls to the intrinsic. 6745 MachineSDNode *MN = DAG.getMachineNode( 6746 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6747 SDValue patchableNode = SDValue(MN, 0); 6748 DAG.setRoot(patchableNode); 6749 setValue(&I, patchableNode); 6750 return; 6751 } 6752 case Intrinsic::experimental_deoptimize: 6753 LowerDeoptimizeCall(&I); 6754 return; 6755 6756 case Intrinsic::experimental_vector_reduce_v2_fadd: 6757 case Intrinsic::experimental_vector_reduce_v2_fmul: 6758 case Intrinsic::experimental_vector_reduce_add: 6759 case Intrinsic::experimental_vector_reduce_mul: 6760 case Intrinsic::experimental_vector_reduce_and: 6761 case Intrinsic::experimental_vector_reduce_or: 6762 case Intrinsic::experimental_vector_reduce_xor: 6763 case Intrinsic::experimental_vector_reduce_smax: 6764 case Intrinsic::experimental_vector_reduce_smin: 6765 case Intrinsic::experimental_vector_reduce_umax: 6766 case Intrinsic::experimental_vector_reduce_umin: 6767 case Intrinsic::experimental_vector_reduce_fmax: 6768 case Intrinsic::experimental_vector_reduce_fmin: 6769 visitVectorReduce(I, Intrinsic); 6770 return; 6771 6772 case Intrinsic::icall_branch_funnel: { 6773 SmallVector<SDValue, 16> Ops; 6774 Ops.push_back(getValue(I.getArgOperand(0))); 6775 6776 int64_t Offset; 6777 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6778 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6779 if (!Base) 6780 report_fatal_error( 6781 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6782 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6783 6784 struct BranchFunnelTarget { 6785 int64_t Offset; 6786 SDValue Target; 6787 }; 6788 SmallVector<BranchFunnelTarget, 8> Targets; 6789 6790 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6791 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6792 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6793 if (ElemBase != Base) 6794 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6795 "to the same GlobalValue"); 6796 6797 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6798 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6799 if (!GA) 6800 report_fatal_error( 6801 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6802 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6803 GA->getGlobal(), getCurSDLoc(), 6804 Val.getValueType(), GA->getOffset())}); 6805 } 6806 llvm::sort(Targets, 6807 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6808 return T1.Offset < T2.Offset; 6809 }); 6810 6811 for (auto &T : Targets) { 6812 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6813 Ops.push_back(T.Target); 6814 } 6815 6816 Ops.push_back(DAG.getRoot()); // Chain 6817 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6818 getCurSDLoc(), MVT::Other, Ops), 6819 0); 6820 DAG.setRoot(N); 6821 setValue(&I, N); 6822 HasTailCall = true; 6823 return; 6824 } 6825 6826 case Intrinsic::wasm_landingpad_index: 6827 // Information this intrinsic contained has been transferred to 6828 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6829 // delete it now. 6830 return; 6831 6832 case Intrinsic::aarch64_settag: 6833 case Intrinsic::aarch64_settag_zero: { 6834 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6835 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6836 SDValue Val = TSI.EmitTargetCodeForSetTag( 6837 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6838 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6839 ZeroMemory); 6840 DAG.setRoot(Val); 6841 setValue(&I, Val); 6842 return; 6843 } 6844 case Intrinsic::ptrmask: { 6845 SDValue Ptr = getValue(I.getOperand(0)); 6846 SDValue Const = getValue(I.getOperand(1)); 6847 6848 EVT DestVT = 6849 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6850 6851 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6852 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6853 return; 6854 } 6855 } 6856 } 6857 6858 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6859 const ConstrainedFPIntrinsic &FPI) { 6860 SDLoc sdl = getCurSDLoc(); 6861 6862 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6863 SmallVector<EVT, 4> ValueVTs; 6864 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6865 ValueVTs.push_back(MVT::Other); // Out chain 6866 6867 // We do not need to serialize constrained FP intrinsics against 6868 // each other or against (nonvolatile) loads, so they can be 6869 // chained like loads. 6870 SDValue Chain = DAG.getRoot(); 6871 SmallVector<SDValue, 4> Opers; 6872 Opers.push_back(Chain); 6873 if (FPI.isUnaryOp()) { 6874 Opers.push_back(getValue(FPI.getArgOperand(0))); 6875 } else if (FPI.isTernaryOp()) { 6876 Opers.push_back(getValue(FPI.getArgOperand(0))); 6877 Opers.push_back(getValue(FPI.getArgOperand(1))); 6878 Opers.push_back(getValue(FPI.getArgOperand(2))); 6879 } else { 6880 Opers.push_back(getValue(FPI.getArgOperand(0))); 6881 Opers.push_back(getValue(FPI.getArgOperand(1))); 6882 } 6883 6884 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6885 assert(Result.getNode()->getNumValues() == 2); 6886 6887 // Push node to the appropriate list so that future instructions can be 6888 // chained up correctly. 6889 SDValue OutChain = Result.getValue(1); 6890 switch (EB) { 6891 case fp::ExceptionBehavior::ebIgnore: 6892 // The only reason why ebIgnore nodes still need to be chained is that 6893 // they might depend on the current rounding mode, and therefore must 6894 // not be moved across instruction that may change that mode. 6895 LLVM_FALLTHROUGH; 6896 case fp::ExceptionBehavior::ebMayTrap: 6897 // These must not be moved across calls or instructions that may change 6898 // floating-point exception masks. 6899 PendingConstrainedFP.push_back(OutChain); 6900 break; 6901 case fp::ExceptionBehavior::ebStrict: 6902 // These must not be moved across calls or instructions that may change 6903 // floating-point exception masks or read floating-point exception flags. 6904 // In addition, they cannot be optimized out even if unused. 6905 PendingConstrainedFPStrict.push_back(OutChain); 6906 break; 6907 } 6908 }; 6909 6910 SDVTList VTs = DAG.getVTList(ValueVTs); 6911 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6912 6913 SDNodeFlags Flags; 6914 if (EB == fp::ExceptionBehavior::ebIgnore) 6915 Flags.setNoFPExcept(true); 6916 6917 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6918 Flags.copyFMF(*FPOp); 6919 6920 unsigned Opcode; 6921 switch (FPI.getIntrinsicID()) { 6922 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6923 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6924 case Intrinsic::INTRINSIC: \ 6925 Opcode = ISD::STRICT_##DAGN; \ 6926 break; 6927 #include "llvm/IR/ConstrainedOps.def" 6928 case Intrinsic::experimental_constrained_fmuladd: { 6929 Opcode = ISD::STRICT_FMA; 6930 // Break fmuladd into fmul and fadd. 6931 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 6932 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 6933 ValueVTs[0])) { 6934 Opers.pop_back(); 6935 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 6936 pushOutChain(Mul, EB); 6937 Opcode = ISD::STRICT_FADD; 6938 Opers.clear(); 6939 Opers.push_back(Mul.getValue(1)); 6940 Opers.push_back(Mul.getValue(0)); 6941 Opers.push_back(getValue(FPI.getArgOperand(2))); 6942 } 6943 break; 6944 } 6945 } 6946 6947 // A few strict DAG nodes carry additional operands that are not 6948 // set up by the default code above. 6949 switch (Opcode) { 6950 default: break; 6951 case ISD::STRICT_FP_ROUND: 6952 Opers.push_back( 6953 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6954 break; 6955 case ISD::STRICT_FSETCC: 6956 case ISD::STRICT_FSETCCS: { 6957 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6958 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6959 break; 6960 } 6961 } 6962 6963 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 6964 pushOutChain(Result, EB); 6965 6966 SDValue FPResult = Result.getValue(0); 6967 setValue(&FPI, FPResult); 6968 } 6969 6970 std::pair<SDValue, SDValue> 6971 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6972 const BasicBlock *EHPadBB) { 6973 MachineFunction &MF = DAG.getMachineFunction(); 6974 MachineModuleInfo &MMI = MF.getMMI(); 6975 MCSymbol *BeginLabel = nullptr; 6976 6977 if (EHPadBB) { 6978 // Insert a label before the invoke call to mark the try range. This can be 6979 // used to detect deletion of the invoke via the MachineModuleInfo. 6980 BeginLabel = MMI.getContext().createTempSymbol(); 6981 6982 // For SjLj, keep track of which landing pads go with which invokes 6983 // so as to maintain the ordering of pads in the LSDA. 6984 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6985 if (CallSiteIndex) { 6986 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6987 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6988 6989 // Now that the call site is handled, stop tracking it. 6990 MMI.setCurrentCallSite(0); 6991 } 6992 6993 // Both PendingLoads and PendingExports must be flushed here; 6994 // this call might not return. 6995 (void)getRoot(); 6996 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6997 6998 CLI.setChain(getRoot()); 6999 } 7000 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7001 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7002 7003 assert((CLI.IsTailCall || Result.second.getNode()) && 7004 "Non-null chain expected with non-tail call!"); 7005 assert((Result.second.getNode() || !Result.first.getNode()) && 7006 "Null value expected with tail call!"); 7007 7008 if (!Result.second.getNode()) { 7009 // As a special case, a null chain means that a tail call has been emitted 7010 // and the DAG root is already updated. 7011 HasTailCall = true; 7012 7013 // Since there's no actual continuation from this block, nothing can be 7014 // relying on us setting vregs for them. 7015 PendingExports.clear(); 7016 } else { 7017 DAG.setRoot(Result.second); 7018 } 7019 7020 if (EHPadBB) { 7021 // Insert a label at the end of the invoke call to mark the try range. This 7022 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7023 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7024 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7025 7026 // Inform MachineModuleInfo of range. 7027 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7028 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7029 // actually use outlined funclets and their LSDA info style. 7030 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7031 assert(CLI.CS); 7032 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7033 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7034 BeginLabel, EndLabel); 7035 } else if (!isScopedEHPersonality(Pers)) { 7036 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7037 } 7038 } 7039 7040 return Result; 7041 } 7042 7043 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7044 bool isTailCall, 7045 const BasicBlock *EHPadBB) { 7046 auto &DL = DAG.getDataLayout(); 7047 FunctionType *FTy = CS.getFunctionType(); 7048 Type *RetTy = CS.getType(); 7049 7050 TargetLowering::ArgListTy Args; 7051 Args.reserve(CS.arg_size()); 7052 7053 const Value *SwiftErrorVal = nullptr; 7054 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7055 7056 if (isTailCall) { 7057 // Avoid emitting tail calls in functions with the disable-tail-calls 7058 // attribute. 7059 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7060 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7061 "true") 7062 isTailCall = false; 7063 7064 // We can't tail call inside a function with a swifterror argument. Lowering 7065 // does not support this yet. It would have to move into the swifterror 7066 // register before the call. 7067 if (TLI.supportSwiftError() && 7068 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7069 isTailCall = false; 7070 } 7071 7072 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7073 i != e; ++i) { 7074 TargetLowering::ArgListEntry Entry; 7075 const Value *V = *i; 7076 7077 // Skip empty types 7078 if (V->getType()->isEmptyTy()) 7079 continue; 7080 7081 SDValue ArgNode = getValue(V); 7082 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7083 7084 Entry.setAttributes(&CS, i - CS.arg_begin()); 7085 7086 // Use swifterror virtual register as input to the call. 7087 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7088 SwiftErrorVal = V; 7089 // We find the virtual register for the actual swifterror argument. 7090 // Instead of using the Value, we use the virtual register instead. 7091 Entry.Node = DAG.getRegister( 7092 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7093 EVT(TLI.getPointerTy(DL))); 7094 } 7095 7096 Args.push_back(Entry); 7097 7098 // If we have an explicit sret argument that is an Instruction, (i.e., it 7099 // might point to function-local memory), we can't meaningfully tail-call. 7100 if (Entry.IsSRet && isa<Instruction>(V)) 7101 isTailCall = false; 7102 } 7103 7104 // If call site has a cfguardtarget operand bundle, create and add an 7105 // additional ArgListEntry. 7106 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7107 TargetLowering::ArgListEntry Entry; 7108 Value *V = Bundle->Inputs[0]; 7109 SDValue ArgNode = getValue(V); 7110 Entry.Node = ArgNode; 7111 Entry.Ty = V->getType(); 7112 Entry.IsCFGuardTarget = true; 7113 Args.push_back(Entry); 7114 } 7115 7116 // Check if target-independent constraints permit a tail call here. 7117 // Target-dependent constraints are checked within TLI->LowerCallTo. 7118 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7119 isTailCall = false; 7120 7121 // Disable tail calls if there is an swifterror argument. Targets have not 7122 // been updated to support tail calls. 7123 if (TLI.supportSwiftError() && SwiftErrorVal) 7124 isTailCall = false; 7125 7126 TargetLowering::CallLoweringInfo CLI(DAG); 7127 CLI.setDebugLoc(getCurSDLoc()) 7128 .setChain(getRoot()) 7129 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7130 .setTailCall(isTailCall) 7131 .setConvergent(CS.isConvergent()); 7132 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7133 7134 if (Result.first.getNode()) { 7135 const Instruction *Inst = CS.getInstruction(); 7136 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7137 setValue(Inst, Result.first); 7138 } 7139 7140 // The last element of CLI.InVals has the SDValue for swifterror return. 7141 // Here we copy it to a virtual register and update SwiftErrorMap for 7142 // book-keeping. 7143 if (SwiftErrorVal && TLI.supportSwiftError()) { 7144 // Get the last element of InVals. 7145 SDValue Src = CLI.InVals.back(); 7146 Register VReg = SwiftError.getOrCreateVRegDefAt( 7147 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7148 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7149 DAG.setRoot(CopyNode); 7150 } 7151 } 7152 7153 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7154 SelectionDAGBuilder &Builder) { 7155 // Check to see if this load can be trivially constant folded, e.g. if the 7156 // input is from a string literal. 7157 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7158 // Cast pointer to the type we really want to load. 7159 Type *LoadTy = 7160 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7161 if (LoadVT.isVector()) 7162 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7163 7164 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7165 PointerType::getUnqual(LoadTy)); 7166 7167 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7168 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7169 return Builder.getValue(LoadCst); 7170 } 7171 7172 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7173 // still constant memory, the input chain can be the entry node. 7174 SDValue Root; 7175 bool ConstantMemory = false; 7176 7177 // Do not serialize (non-volatile) loads of constant memory with anything. 7178 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7179 Root = Builder.DAG.getEntryNode(); 7180 ConstantMemory = true; 7181 } else { 7182 // Do not serialize non-volatile loads against each other. 7183 Root = Builder.DAG.getRoot(); 7184 } 7185 7186 SDValue Ptr = Builder.getValue(PtrVal); 7187 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7188 Ptr, MachinePointerInfo(PtrVal), 7189 /* Alignment = */ 1); 7190 7191 if (!ConstantMemory) 7192 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7193 return LoadVal; 7194 } 7195 7196 /// Record the value for an instruction that produces an integer result, 7197 /// converting the type where necessary. 7198 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7199 SDValue Value, 7200 bool IsSigned) { 7201 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7202 I.getType(), true); 7203 if (IsSigned) 7204 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7205 else 7206 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7207 setValue(&I, Value); 7208 } 7209 7210 /// See if we can lower a memcmp call into an optimized form. If so, return 7211 /// true and lower it. Otherwise return false, and it will be lowered like a 7212 /// normal call. 7213 /// The caller already checked that \p I calls the appropriate LibFunc with a 7214 /// correct prototype. 7215 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7216 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7217 const Value *Size = I.getArgOperand(2); 7218 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7219 if (CSize && CSize->getZExtValue() == 0) { 7220 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7221 I.getType(), true); 7222 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7223 return true; 7224 } 7225 7226 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7227 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7228 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7229 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7230 if (Res.first.getNode()) { 7231 processIntegerCallValue(I, Res.first, true); 7232 PendingLoads.push_back(Res.second); 7233 return true; 7234 } 7235 7236 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7237 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7238 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7239 return false; 7240 7241 // If the target has a fast compare for the given size, it will return a 7242 // preferred load type for that size. Require that the load VT is legal and 7243 // that the target supports unaligned loads of that type. Otherwise, return 7244 // INVALID. 7245 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7247 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7248 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7249 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7250 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7251 // TODO: Check alignment of src and dest ptrs. 7252 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7253 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7254 if (!TLI.isTypeLegal(LVT) || 7255 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7256 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7257 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7258 } 7259 7260 return LVT; 7261 }; 7262 7263 // This turns into unaligned loads. We only do this if the target natively 7264 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7265 // we'll only produce a small number of byte loads. 7266 MVT LoadVT; 7267 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7268 switch (NumBitsToCompare) { 7269 default: 7270 return false; 7271 case 16: 7272 LoadVT = MVT::i16; 7273 break; 7274 case 32: 7275 LoadVT = MVT::i32; 7276 break; 7277 case 64: 7278 case 128: 7279 case 256: 7280 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7281 break; 7282 } 7283 7284 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7285 return false; 7286 7287 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7288 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7289 7290 // Bitcast to a wide integer type if the loads are vectors. 7291 if (LoadVT.isVector()) { 7292 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7293 LoadL = DAG.getBitcast(CmpVT, LoadL); 7294 LoadR = DAG.getBitcast(CmpVT, LoadR); 7295 } 7296 7297 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7298 processIntegerCallValue(I, Cmp, false); 7299 return true; 7300 } 7301 7302 /// See if we can lower a memchr call into an optimized form. If so, return 7303 /// true and lower it. Otherwise return false, and it will be lowered like a 7304 /// normal call. 7305 /// The caller already checked that \p I calls the appropriate LibFunc with a 7306 /// correct prototype. 7307 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7308 const Value *Src = I.getArgOperand(0); 7309 const Value *Char = I.getArgOperand(1); 7310 const Value *Length = I.getArgOperand(2); 7311 7312 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7313 std::pair<SDValue, SDValue> Res = 7314 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7315 getValue(Src), getValue(Char), getValue(Length), 7316 MachinePointerInfo(Src)); 7317 if (Res.first.getNode()) { 7318 setValue(&I, Res.first); 7319 PendingLoads.push_back(Res.second); 7320 return true; 7321 } 7322 7323 return false; 7324 } 7325 7326 /// See if we can lower a mempcpy call into an optimized form. If so, return 7327 /// true and lower it. Otherwise return false, and it will be lowered like a 7328 /// normal call. 7329 /// The caller already checked that \p I calls the appropriate LibFunc with a 7330 /// correct prototype. 7331 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7332 SDValue Dst = getValue(I.getArgOperand(0)); 7333 SDValue Src = getValue(I.getArgOperand(1)); 7334 SDValue Size = getValue(I.getArgOperand(2)); 7335 7336 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7337 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7338 // DAG::getMemcpy needs Alignment to be defined. 7339 Align Alignment = std::min(DstAlign, SrcAlign); 7340 7341 bool isVol = false; 7342 SDLoc sdl = getCurSDLoc(); 7343 7344 // In the mempcpy context we need to pass in a false value for isTailCall 7345 // because the return pointer needs to be adjusted by the size of 7346 // the copied memory. 7347 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7348 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7349 /*isTailCall=*/false, 7350 MachinePointerInfo(I.getArgOperand(0)), 7351 MachinePointerInfo(I.getArgOperand(1))); 7352 assert(MC.getNode() != nullptr && 7353 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7354 DAG.setRoot(MC); 7355 7356 // Check if Size needs to be truncated or extended. 7357 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7358 7359 // Adjust return pointer to point just past the last dst byte. 7360 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7361 Dst, Size); 7362 setValue(&I, DstPlusSize); 7363 return true; 7364 } 7365 7366 /// See if we can lower a strcpy call into an optimized form. If so, return 7367 /// true and lower it, otherwise return false and it will be lowered like a 7368 /// normal call. 7369 /// The caller already checked that \p I calls the appropriate LibFunc with a 7370 /// correct prototype. 7371 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7372 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7373 7374 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7375 std::pair<SDValue, SDValue> Res = 7376 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7377 getValue(Arg0), getValue(Arg1), 7378 MachinePointerInfo(Arg0), 7379 MachinePointerInfo(Arg1), isStpcpy); 7380 if (Res.first.getNode()) { 7381 setValue(&I, Res.first); 7382 DAG.setRoot(Res.second); 7383 return true; 7384 } 7385 7386 return false; 7387 } 7388 7389 /// See if we can lower a strcmp call into an optimized form. If so, return 7390 /// true and lower it, otherwise return false and it will be lowered like a 7391 /// normal call. 7392 /// The caller already checked that \p I calls the appropriate LibFunc with a 7393 /// correct prototype. 7394 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7395 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7396 7397 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7398 std::pair<SDValue, SDValue> Res = 7399 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7400 getValue(Arg0), getValue(Arg1), 7401 MachinePointerInfo(Arg0), 7402 MachinePointerInfo(Arg1)); 7403 if (Res.first.getNode()) { 7404 processIntegerCallValue(I, Res.first, true); 7405 PendingLoads.push_back(Res.second); 7406 return true; 7407 } 7408 7409 return false; 7410 } 7411 7412 /// See if we can lower a strlen call into an optimized form. If so, return 7413 /// true and lower it, otherwise return false and it will be lowered like a 7414 /// normal call. 7415 /// The caller already checked that \p I calls the appropriate LibFunc with a 7416 /// correct prototype. 7417 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7418 const Value *Arg0 = I.getArgOperand(0); 7419 7420 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7421 std::pair<SDValue, SDValue> Res = 7422 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7423 getValue(Arg0), MachinePointerInfo(Arg0)); 7424 if (Res.first.getNode()) { 7425 processIntegerCallValue(I, Res.first, false); 7426 PendingLoads.push_back(Res.second); 7427 return true; 7428 } 7429 7430 return false; 7431 } 7432 7433 /// See if we can lower a strnlen call into an optimized form. If so, return 7434 /// true and lower it, otherwise return false and it will be lowered like a 7435 /// normal call. 7436 /// The caller already checked that \p I calls the appropriate LibFunc with a 7437 /// correct prototype. 7438 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7439 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7440 7441 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7442 std::pair<SDValue, SDValue> Res = 7443 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7444 getValue(Arg0), getValue(Arg1), 7445 MachinePointerInfo(Arg0)); 7446 if (Res.first.getNode()) { 7447 processIntegerCallValue(I, Res.first, false); 7448 PendingLoads.push_back(Res.second); 7449 return true; 7450 } 7451 7452 return false; 7453 } 7454 7455 /// See if we can lower a unary floating-point operation into an SDNode with 7456 /// the specified Opcode. If so, return true and lower it, otherwise return 7457 /// false and it will be lowered like a normal call. 7458 /// The caller already checked that \p I calls the appropriate LibFunc with a 7459 /// correct prototype. 7460 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7461 unsigned Opcode) { 7462 // We already checked this call's prototype; verify it doesn't modify errno. 7463 if (!I.onlyReadsMemory()) 7464 return false; 7465 7466 SDValue Tmp = getValue(I.getArgOperand(0)); 7467 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7468 return true; 7469 } 7470 7471 /// See if we can lower a binary floating-point operation into an SDNode with 7472 /// the specified Opcode. If so, return true and lower it. Otherwise return 7473 /// false, and it will be lowered like a normal call. 7474 /// The caller already checked that \p I calls the appropriate LibFunc with a 7475 /// correct prototype. 7476 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7477 unsigned Opcode) { 7478 // We already checked this call's prototype; verify it doesn't modify errno. 7479 if (!I.onlyReadsMemory()) 7480 return false; 7481 7482 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7483 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7484 EVT VT = Tmp0.getValueType(); 7485 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7486 return true; 7487 } 7488 7489 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7490 // Handle inline assembly differently. 7491 if (isa<InlineAsm>(I.getCalledValue())) { 7492 visitInlineAsm(&I); 7493 return; 7494 } 7495 7496 if (Function *F = I.getCalledFunction()) { 7497 if (F->isDeclaration()) { 7498 // Is this an LLVM intrinsic or a target-specific intrinsic? 7499 unsigned IID = F->getIntrinsicID(); 7500 if (!IID) 7501 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7502 IID = II->getIntrinsicID(F); 7503 7504 if (IID) { 7505 visitIntrinsicCall(I, IID); 7506 return; 7507 } 7508 } 7509 7510 // Check for well-known libc/libm calls. If the function is internal, it 7511 // can't be a library call. Don't do the check if marked as nobuiltin for 7512 // some reason or the call site requires strict floating point semantics. 7513 LibFunc Func; 7514 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7515 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7516 LibInfo->hasOptimizedCodeGen(Func)) { 7517 switch (Func) { 7518 default: break; 7519 case LibFunc_copysign: 7520 case LibFunc_copysignf: 7521 case LibFunc_copysignl: 7522 // We already checked this call's prototype; verify it doesn't modify 7523 // errno. 7524 if (I.onlyReadsMemory()) { 7525 SDValue LHS = getValue(I.getArgOperand(0)); 7526 SDValue RHS = getValue(I.getArgOperand(1)); 7527 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7528 LHS.getValueType(), LHS, RHS)); 7529 return; 7530 } 7531 break; 7532 case LibFunc_fabs: 7533 case LibFunc_fabsf: 7534 case LibFunc_fabsl: 7535 if (visitUnaryFloatCall(I, ISD::FABS)) 7536 return; 7537 break; 7538 case LibFunc_fmin: 7539 case LibFunc_fminf: 7540 case LibFunc_fminl: 7541 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7542 return; 7543 break; 7544 case LibFunc_fmax: 7545 case LibFunc_fmaxf: 7546 case LibFunc_fmaxl: 7547 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7548 return; 7549 break; 7550 case LibFunc_sin: 7551 case LibFunc_sinf: 7552 case LibFunc_sinl: 7553 if (visitUnaryFloatCall(I, ISD::FSIN)) 7554 return; 7555 break; 7556 case LibFunc_cos: 7557 case LibFunc_cosf: 7558 case LibFunc_cosl: 7559 if (visitUnaryFloatCall(I, ISD::FCOS)) 7560 return; 7561 break; 7562 case LibFunc_sqrt: 7563 case LibFunc_sqrtf: 7564 case LibFunc_sqrtl: 7565 case LibFunc_sqrt_finite: 7566 case LibFunc_sqrtf_finite: 7567 case LibFunc_sqrtl_finite: 7568 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7569 return; 7570 break; 7571 case LibFunc_floor: 7572 case LibFunc_floorf: 7573 case LibFunc_floorl: 7574 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7575 return; 7576 break; 7577 case LibFunc_nearbyint: 7578 case LibFunc_nearbyintf: 7579 case LibFunc_nearbyintl: 7580 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7581 return; 7582 break; 7583 case LibFunc_ceil: 7584 case LibFunc_ceilf: 7585 case LibFunc_ceill: 7586 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7587 return; 7588 break; 7589 case LibFunc_rint: 7590 case LibFunc_rintf: 7591 case LibFunc_rintl: 7592 if (visitUnaryFloatCall(I, ISD::FRINT)) 7593 return; 7594 break; 7595 case LibFunc_round: 7596 case LibFunc_roundf: 7597 case LibFunc_roundl: 7598 if (visitUnaryFloatCall(I, ISD::FROUND)) 7599 return; 7600 break; 7601 case LibFunc_trunc: 7602 case LibFunc_truncf: 7603 case LibFunc_truncl: 7604 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7605 return; 7606 break; 7607 case LibFunc_log2: 7608 case LibFunc_log2f: 7609 case LibFunc_log2l: 7610 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7611 return; 7612 break; 7613 case LibFunc_exp2: 7614 case LibFunc_exp2f: 7615 case LibFunc_exp2l: 7616 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7617 return; 7618 break; 7619 case LibFunc_memcmp: 7620 if (visitMemCmpCall(I)) 7621 return; 7622 break; 7623 case LibFunc_mempcpy: 7624 if (visitMemPCpyCall(I)) 7625 return; 7626 break; 7627 case LibFunc_memchr: 7628 if (visitMemChrCall(I)) 7629 return; 7630 break; 7631 case LibFunc_strcpy: 7632 if (visitStrCpyCall(I, false)) 7633 return; 7634 break; 7635 case LibFunc_stpcpy: 7636 if (visitStrCpyCall(I, true)) 7637 return; 7638 break; 7639 case LibFunc_strcmp: 7640 if (visitStrCmpCall(I)) 7641 return; 7642 break; 7643 case LibFunc_strlen: 7644 if (visitStrLenCall(I)) 7645 return; 7646 break; 7647 case LibFunc_strnlen: 7648 if (visitStrNLenCall(I)) 7649 return; 7650 break; 7651 } 7652 } 7653 } 7654 7655 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7656 // have to do anything here to lower funclet bundles. 7657 // CFGuardTarget bundles are lowered in LowerCallTo. 7658 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7659 LLVMContext::OB_funclet, 7660 LLVMContext::OB_cfguardtarget}) && 7661 "Cannot lower calls with arbitrary operand bundles!"); 7662 7663 SDValue Callee = getValue(I.getCalledValue()); 7664 7665 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7666 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7667 else 7668 // Check if we can potentially perform a tail call. More detailed checking 7669 // is be done within LowerCallTo, after more information about the call is 7670 // known. 7671 LowerCallTo(&I, Callee, I.isTailCall()); 7672 } 7673 7674 namespace { 7675 7676 /// AsmOperandInfo - This contains information for each constraint that we are 7677 /// lowering. 7678 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7679 public: 7680 /// CallOperand - If this is the result output operand or a clobber 7681 /// this is null, otherwise it is the incoming operand to the CallInst. 7682 /// This gets modified as the asm is processed. 7683 SDValue CallOperand; 7684 7685 /// AssignedRegs - If this is a register or register class operand, this 7686 /// contains the set of register corresponding to the operand. 7687 RegsForValue AssignedRegs; 7688 7689 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7690 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7691 } 7692 7693 /// Whether or not this operand accesses memory 7694 bool hasMemory(const TargetLowering &TLI) const { 7695 // Indirect operand accesses access memory. 7696 if (isIndirect) 7697 return true; 7698 7699 for (const auto &Code : Codes) 7700 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7701 return true; 7702 7703 return false; 7704 } 7705 7706 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7707 /// corresponds to. If there is no Value* for this operand, it returns 7708 /// MVT::Other. 7709 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7710 const DataLayout &DL) const { 7711 if (!CallOperandVal) return MVT::Other; 7712 7713 if (isa<BasicBlock>(CallOperandVal)) 7714 return TLI.getPointerTy(DL); 7715 7716 llvm::Type *OpTy = CallOperandVal->getType(); 7717 7718 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7719 // If this is an indirect operand, the operand is a pointer to the 7720 // accessed type. 7721 if (isIndirect) { 7722 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7723 if (!PtrTy) 7724 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7725 OpTy = PtrTy->getElementType(); 7726 } 7727 7728 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7729 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7730 if (STy->getNumElements() == 1) 7731 OpTy = STy->getElementType(0); 7732 7733 // If OpTy is not a single value, it may be a struct/union that we 7734 // can tile with integers. 7735 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7736 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7737 switch (BitSize) { 7738 default: break; 7739 case 1: 7740 case 8: 7741 case 16: 7742 case 32: 7743 case 64: 7744 case 128: 7745 OpTy = IntegerType::get(Context, BitSize); 7746 break; 7747 } 7748 } 7749 7750 return TLI.getValueType(DL, OpTy, true); 7751 } 7752 }; 7753 7754 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7755 7756 } // end anonymous namespace 7757 7758 /// Make sure that the output operand \p OpInfo and its corresponding input 7759 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7760 /// out). 7761 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7762 SDISelAsmOperandInfo &MatchingOpInfo, 7763 SelectionDAG &DAG) { 7764 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7765 return; 7766 7767 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7768 const auto &TLI = DAG.getTargetLoweringInfo(); 7769 7770 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7771 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7772 OpInfo.ConstraintVT); 7773 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7774 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7775 MatchingOpInfo.ConstraintVT); 7776 if ((OpInfo.ConstraintVT.isInteger() != 7777 MatchingOpInfo.ConstraintVT.isInteger()) || 7778 (MatchRC.second != InputRC.second)) { 7779 // FIXME: error out in a more elegant fashion 7780 report_fatal_error("Unsupported asm: input constraint" 7781 " with a matching output constraint of" 7782 " incompatible type!"); 7783 } 7784 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7785 } 7786 7787 /// Get a direct memory input to behave well as an indirect operand. 7788 /// This may introduce stores, hence the need for a \p Chain. 7789 /// \return The (possibly updated) chain. 7790 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7791 SDISelAsmOperandInfo &OpInfo, 7792 SelectionDAG &DAG) { 7793 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7794 7795 // If we don't have an indirect input, put it in the constpool if we can, 7796 // otherwise spill it to a stack slot. 7797 // TODO: This isn't quite right. We need to handle these according to 7798 // the addressing mode that the constraint wants. Also, this may take 7799 // an additional register for the computation and we don't want that 7800 // either. 7801 7802 // If the operand is a float, integer, or vector constant, spill to a 7803 // constant pool entry to get its address. 7804 const Value *OpVal = OpInfo.CallOperandVal; 7805 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7806 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7807 OpInfo.CallOperand = DAG.getConstantPool( 7808 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7809 return Chain; 7810 } 7811 7812 // Otherwise, create a stack slot and emit a store to it before the asm. 7813 Type *Ty = OpVal->getType(); 7814 auto &DL = DAG.getDataLayout(); 7815 uint64_t TySize = DL.getTypeAllocSize(Ty); 7816 unsigned Align = DL.getPrefTypeAlignment(Ty); 7817 MachineFunction &MF = DAG.getMachineFunction(); 7818 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7819 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7820 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7821 MachinePointerInfo::getFixedStack(MF, SSFI), 7822 TLI.getMemValueType(DL, Ty)); 7823 OpInfo.CallOperand = StackSlot; 7824 7825 return Chain; 7826 } 7827 7828 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7829 /// specified operand. We prefer to assign virtual registers, to allow the 7830 /// register allocator to handle the assignment process. However, if the asm 7831 /// uses features that we can't model on machineinstrs, we have SDISel do the 7832 /// allocation. This produces generally horrible, but correct, code. 7833 /// 7834 /// OpInfo describes the operand 7835 /// RefOpInfo describes the matching operand if any, the operand otherwise 7836 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7837 SDISelAsmOperandInfo &OpInfo, 7838 SDISelAsmOperandInfo &RefOpInfo) { 7839 LLVMContext &Context = *DAG.getContext(); 7840 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7841 7842 MachineFunction &MF = DAG.getMachineFunction(); 7843 SmallVector<unsigned, 4> Regs; 7844 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7845 7846 // No work to do for memory operations. 7847 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7848 return; 7849 7850 // If this is a constraint for a single physreg, or a constraint for a 7851 // register class, find it. 7852 unsigned AssignedReg; 7853 const TargetRegisterClass *RC; 7854 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7855 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7856 // RC is unset only on failure. Return immediately. 7857 if (!RC) 7858 return; 7859 7860 // Get the actual register value type. This is important, because the user 7861 // may have asked for (e.g.) the AX register in i32 type. We need to 7862 // remember that AX is actually i16 to get the right extension. 7863 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7864 7865 if (OpInfo.ConstraintVT != MVT::Other) { 7866 // If this is an FP operand in an integer register (or visa versa), or more 7867 // generally if the operand value disagrees with the register class we plan 7868 // to stick it in, fix the operand type. 7869 // 7870 // If this is an input value, the bitcast to the new type is done now. 7871 // Bitcast for output value is done at the end of visitInlineAsm(). 7872 if ((OpInfo.Type == InlineAsm::isOutput || 7873 OpInfo.Type == InlineAsm::isInput) && 7874 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7875 // Try to convert to the first EVT that the reg class contains. If the 7876 // types are identical size, use a bitcast to convert (e.g. two differing 7877 // vector types). Note: output bitcast is done at the end of 7878 // visitInlineAsm(). 7879 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7880 // Exclude indirect inputs while they are unsupported because the code 7881 // to perform the load is missing and thus OpInfo.CallOperand still 7882 // refers to the input address rather than the pointed-to value. 7883 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7884 OpInfo.CallOperand = 7885 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7886 OpInfo.ConstraintVT = RegVT; 7887 // If the operand is an FP value and we want it in integer registers, 7888 // use the corresponding integer type. This turns an f64 value into 7889 // i64, which can be passed with two i32 values on a 32-bit machine. 7890 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7891 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7892 if (OpInfo.Type == InlineAsm::isInput) 7893 OpInfo.CallOperand = 7894 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7895 OpInfo.ConstraintVT = VT; 7896 } 7897 } 7898 } 7899 7900 // No need to allocate a matching input constraint since the constraint it's 7901 // matching to has already been allocated. 7902 if (OpInfo.isMatchingInputConstraint()) 7903 return; 7904 7905 EVT ValueVT = OpInfo.ConstraintVT; 7906 if (OpInfo.ConstraintVT == MVT::Other) 7907 ValueVT = RegVT; 7908 7909 // Initialize NumRegs. 7910 unsigned NumRegs = 1; 7911 if (OpInfo.ConstraintVT != MVT::Other) 7912 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7913 7914 // If this is a constraint for a specific physical register, like {r17}, 7915 // assign it now. 7916 7917 // If this associated to a specific register, initialize iterator to correct 7918 // place. If virtual, make sure we have enough registers 7919 7920 // Initialize iterator if necessary 7921 TargetRegisterClass::iterator I = RC->begin(); 7922 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7923 7924 // Do not check for single registers. 7925 if (AssignedReg) { 7926 for (; *I != AssignedReg; ++I) 7927 assert(I != RC->end() && "AssignedReg should be member of RC"); 7928 } 7929 7930 for (; NumRegs; --NumRegs, ++I) { 7931 assert(I != RC->end() && "Ran out of registers to allocate!"); 7932 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7933 Regs.push_back(R); 7934 } 7935 7936 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7937 } 7938 7939 static unsigned 7940 findMatchingInlineAsmOperand(unsigned OperandNo, 7941 const std::vector<SDValue> &AsmNodeOperands) { 7942 // Scan until we find the definition we already emitted of this operand. 7943 unsigned CurOp = InlineAsm::Op_FirstOperand; 7944 for (; OperandNo; --OperandNo) { 7945 // Advance to the next operand. 7946 unsigned OpFlag = 7947 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7948 assert((InlineAsm::isRegDefKind(OpFlag) || 7949 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7950 InlineAsm::isMemKind(OpFlag)) && 7951 "Skipped past definitions?"); 7952 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7953 } 7954 return CurOp; 7955 } 7956 7957 namespace { 7958 7959 class ExtraFlags { 7960 unsigned Flags = 0; 7961 7962 public: 7963 explicit ExtraFlags(ImmutableCallSite CS) { 7964 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7965 if (IA->hasSideEffects()) 7966 Flags |= InlineAsm::Extra_HasSideEffects; 7967 if (IA->isAlignStack()) 7968 Flags |= InlineAsm::Extra_IsAlignStack; 7969 if (CS.isConvergent()) 7970 Flags |= InlineAsm::Extra_IsConvergent; 7971 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7972 } 7973 7974 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7975 // Ideally, we would only check against memory constraints. However, the 7976 // meaning of an Other constraint can be target-specific and we can't easily 7977 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7978 // for Other constraints as well. 7979 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7980 OpInfo.ConstraintType == TargetLowering::C_Other) { 7981 if (OpInfo.Type == InlineAsm::isInput) 7982 Flags |= InlineAsm::Extra_MayLoad; 7983 else if (OpInfo.Type == InlineAsm::isOutput) 7984 Flags |= InlineAsm::Extra_MayStore; 7985 else if (OpInfo.Type == InlineAsm::isClobber) 7986 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7987 } 7988 } 7989 7990 unsigned get() const { return Flags; } 7991 }; 7992 7993 } // end anonymous namespace 7994 7995 /// visitInlineAsm - Handle a call to an InlineAsm object. 7996 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7997 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7998 7999 /// ConstraintOperands - Information about all of the constraints. 8000 SDISelAsmOperandInfoVector ConstraintOperands; 8001 8002 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8003 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8004 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8005 8006 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8007 // AsmDialect, MayLoad, MayStore). 8008 bool HasSideEffect = IA->hasSideEffects(); 8009 ExtraFlags ExtraInfo(CS); 8010 8011 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8012 unsigned ResNo = 0; // ResNo - The result number of the next output. 8013 unsigned NumMatchingOps = 0; 8014 for (auto &T : TargetConstraints) { 8015 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8016 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8017 8018 // Compute the value type for each operand. 8019 if (OpInfo.Type == InlineAsm::isInput || 8020 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8021 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8022 8023 // Process the call argument. BasicBlocks are labels, currently appearing 8024 // only in asm's. 8025 const Instruction *I = CS.getInstruction(); 8026 if (isa<CallBrInst>(I) && 8027 ArgNo - 1 >= (cast<CallBrInst>(I)->getNumArgOperands() - 8028 cast<CallBrInst>(I)->getNumIndirectDests() - 8029 NumMatchingOps) && 8030 (NumMatchingOps == 0 || 8031 ArgNo - 1 < (cast<CallBrInst>(I)->getNumArgOperands() - 8032 NumMatchingOps))) { 8033 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8034 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8035 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8036 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8037 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8038 } else { 8039 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8040 } 8041 8042 OpInfo.ConstraintVT = 8043 OpInfo 8044 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8045 .getSimpleVT(); 8046 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8047 // The return value of the call is this value. As such, there is no 8048 // corresponding argument. 8049 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8050 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8051 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8052 DAG.getDataLayout(), STy->getElementType(ResNo)); 8053 } else { 8054 assert(ResNo == 0 && "Asm only has one result!"); 8055 OpInfo.ConstraintVT = 8056 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8057 } 8058 ++ResNo; 8059 } else { 8060 OpInfo.ConstraintVT = MVT::Other; 8061 } 8062 8063 if (OpInfo.hasMatchingInput()) 8064 ++NumMatchingOps; 8065 8066 if (!HasSideEffect) 8067 HasSideEffect = OpInfo.hasMemory(TLI); 8068 8069 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8070 // FIXME: Could we compute this on OpInfo rather than T? 8071 8072 // Compute the constraint code and ConstraintType to use. 8073 TLI.ComputeConstraintToUse(T, SDValue()); 8074 8075 if (T.ConstraintType == TargetLowering::C_Immediate && 8076 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8077 // We've delayed emitting a diagnostic like the "n" constraint because 8078 // inlining could cause an integer showing up. 8079 return emitInlineAsmError( 8080 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8081 "integer constant expression"); 8082 8083 ExtraInfo.update(T); 8084 } 8085 8086 8087 // We won't need to flush pending loads if this asm doesn't touch 8088 // memory and is nonvolatile. 8089 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8090 8091 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8092 if (IsCallBr) { 8093 // If this is a callbr we need to flush pending exports since inlineasm_br 8094 // is a terminator. We need to do this before nodes are glued to 8095 // the inlineasm_br node. 8096 Chain = getControlRoot(); 8097 } 8098 8099 // Second pass over the constraints: compute which constraint option to use. 8100 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8101 // If this is an output operand with a matching input operand, look up the 8102 // matching input. If their types mismatch, e.g. one is an integer, the 8103 // other is floating point, or their sizes are different, flag it as an 8104 // error. 8105 if (OpInfo.hasMatchingInput()) { 8106 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8107 patchMatchingInput(OpInfo, Input, DAG); 8108 } 8109 8110 // Compute the constraint code and ConstraintType to use. 8111 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8112 8113 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8114 OpInfo.Type == InlineAsm::isClobber) 8115 continue; 8116 8117 // If this is a memory input, and if the operand is not indirect, do what we 8118 // need to provide an address for the memory input. 8119 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8120 !OpInfo.isIndirect) { 8121 assert((OpInfo.isMultipleAlternative || 8122 (OpInfo.Type == InlineAsm::isInput)) && 8123 "Can only indirectify direct input operands!"); 8124 8125 // Memory operands really want the address of the value. 8126 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8127 8128 // There is no longer a Value* corresponding to this operand. 8129 OpInfo.CallOperandVal = nullptr; 8130 8131 // It is now an indirect operand. 8132 OpInfo.isIndirect = true; 8133 } 8134 8135 } 8136 8137 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8138 std::vector<SDValue> AsmNodeOperands; 8139 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8140 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8141 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8142 8143 // If we have a !srcloc metadata node associated with it, we want to attach 8144 // this to the ultimately generated inline asm machineinstr. To do this, we 8145 // pass in the third operand as this (potentially null) inline asm MDNode. 8146 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8147 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8148 8149 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8150 // bits as operand 3. 8151 AsmNodeOperands.push_back(DAG.getTargetConstant( 8152 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8153 8154 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8155 // this, assign virtual and physical registers for inputs and otput. 8156 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8157 // Assign Registers. 8158 SDISelAsmOperandInfo &RefOpInfo = 8159 OpInfo.isMatchingInputConstraint() 8160 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8161 : OpInfo; 8162 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8163 8164 switch (OpInfo.Type) { 8165 case InlineAsm::isOutput: 8166 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8167 unsigned ConstraintID = 8168 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8169 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8170 "Failed to convert memory constraint code to constraint id."); 8171 8172 // Add information to the INLINEASM node to know about this output. 8173 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8174 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8175 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8176 MVT::i32)); 8177 AsmNodeOperands.push_back(OpInfo.CallOperand); 8178 } else { 8179 // Otherwise, this outputs to a register (directly for C_Register / 8180 // C_RegisterClass, and a target-defined fashion for 8181 // C_Immediate/C_Other). Find a register that we can use. 8182 if (OpInfo.AssignedRegs.Regs.empty()) { 8183 emitInlineAsmError( 8184 CS, "couldn't allocate output register for constraint '" + 8185 Twine(OpInfo.ConstraintCode) + "'"); 8186 return; 8187 } 8188 8189 // Add information to the INLINEASM node to know that this register is 8190 // set. 8191 OpInfo.AssignedRegs.AddInlineAsmOperands( 8192 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8193 : InlineAsm::Kind_RegDef, 8194 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8195 } 8196 break; 8197 8198 case InlineAsm::isInput: { 8199 SDValue InOperandVal = OpInfo.CallOperand; 8200 8201 if (OpInfo.isMatchingInputConstraint()) { 8202 // If this is required to match an output register we have already set, 8203 // just use its register. 8204 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8205 AsmNodeOperands); 8206 unsigned OpFlag = 8207 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8208 if (InlineAsm::isRegDefKind(OpFlag) || 8209 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8210 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8211 if (OpInfo.isIndirect) { 8212 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8213 emitInlineAsmError(CS, "inline asm not supported yet:" 8214 " don't know how to handle tied " 8215 "indirect register inputs"); 8216 return; 8217 } 8218 8219 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8220 SmallVector<unsigned, 4> Regs; 8221 8222 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8223 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8224 MachineRegisterInfo &RegInfo = 8225 DAG.getMachineFunction().getRegInfo(); 8226 for (unsigned i = 0; i != NumRegs; ++i) 8227 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8228 } else { 8229 emitInlineAsmError(CS, "inline asm error: This value type register " 8230 "class is not natively supported!"); 8231 return; 8232 } 8233 8234 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8235 8236 SDLoc dl = getCurSDLoc(); 8237 // Use the produced MatchedRegs object to 8238 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8239 CS.getInstruction()); 8240 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8241 true, OpInfo.getMatchedOperand(), dl, 8242 DAG, AsmNodeOperands); 8243 break; 8244 } 8245 8246 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8247 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8248 "Unexpected number of operands"); 8249 // Add information to the INLINEASM node to know about this input. 8250 // See InlineAsm.h isUseOperandTiedToDef. 8251 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8252 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8253 OpInfo.getMatchedOperand()); 8254 AsmNodeOperands.push_back(DAG.getTargetConstant( 8255 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8256 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8257 break; 8258 } 8259 8260 // Treat indirect 'X' constraint as memory. 8261 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8262 OpInfo.isIndirect) 8263 OpInfo.ConstraintType = TargetLowering::C_Memory; 8264 8265 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8266 OpInfo.ConstraintType == TargetLowering::C_Other) { 8267 std::vector<SDValue> Ops; 8268 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8269 Ops, DAG); 8270 if (Ops.empty()) { 8271 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8272 if (isa<ConstantSDNode>(InOperandVal)) { 8273 emitInlineAsmError(CS, "value out of range for constraint '" + 8274 Twine(OpInfo.ConstraintCode) + "'"); 8275 return; 8276 } 8277 8278 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8279 Twine(OpInfo.ConstraintCode) + "'"); 8280 return; 8281 } 8282 8283 // Add information to the INLINEASM node to know about this input. 8284 unsigned ResOpType = 8285 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8286 AsmNodeOperands.push_back(DAG.getTargetConstant( 8287 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8288 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8289 break; 8290 } 8291 8292 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8293 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8294 assert(InOperandVal.getValueType() == 8295 TLI.getPointerTy(DAG.getDataLayout()) && 8296 "Memory operands expect pointer values"); 8297 8298 unsigned ConstraintID = 8299 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8300 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8301 "Failed to convert memory constraint code to constraint id."); 8302 8303 // Add information to the INLINEASM node to know about this input. 8304 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8305 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8306 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8307 getCurSDLoc(), 8308 MVT::i32)); 8309 AsmNodeOperands.push_back(InOperandVal); 8310 break; 8311 } 8312 8313 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8314 OpInfo.ConstraintType == TargetLowering::C_Register) && 8315 "Unknown constraint type!"); 8316 8317 // TODO: Support this. 8318 if (OpInfo.isIndirect) { 8319 emitInlineAsmError( 8320 CS, "Don't know how to handle indirect register inputs yet " 8321 "for constraint '" + 8322 Twine(OpInfo.ConstraintCode) + "'"); 8323 return; 8324 } 8325 8326 // Copy the input into the appropriate registers. 8327 if (OpInfo.AssignedRegs.Regs.empty()) { 8328 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8329 Twine(OpInfo.ConstraintCode) + "'"); 8330 return; 8331 } 8332 8333 SDLoc dl = getCurSDLoc(); 8334 8335 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8336 Chain, &Flag, CS.getInstruction()); 8337 8338 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8339 dl, DAG, AsmNodeOperands); 8340 break; 8341 } 8342 case InlineAsm::isClobber: 8343 // Add the clobbered value to the operand list, so that the register 8344 // allocator is aware that the physreg got clobbered. 8345 if (!OpInfo.AssignedRegs.Regs.empty()) 8346 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8347 false, 0, getCurSDLoc(), DAG, 8348 AsmNodeOperands); 8349 break; 8350 } 8351 } 8352 8353 // Finish up input operands. Set the input chain and add the flag last. 8354 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8355 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8356 8357 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8358 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8359 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8360 Flag = Chain.getValue(1); 8361 8362 // Do additional work to generate outputs. 8363 8364 SmallVector<EVT, 1> ResultVTs; 8365 SmallVector<SDValue, 1> ResultValues; 8366 SmallVector<SDValue, 8> OutChains; 8367 8368 llvm::Type *CSResultType = CS.getType(); 8369 ArrayRef<Type *> ResultTypes; 8370 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8371 ResultTypes = StructResult->elements(); 8372 else if (!CSResultType->isVoidTy()) 8373 ResultTypes = makeArrayRef(CSResultType); 8374 8375 auto CurResultType = ResultTypes.begin(); 8376 auto handleRegAssign = [&](SDValue V) { 8377 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8378 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8379 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8380 ++CurResultType; 8381 // If the type of the inline asm call site return value is different but has 8382 // same size as the type of the asm output bitcast it. One example of this 8383 // is for vectors with different width / number of elements. This can 8384 // happen for register classes that can contain multiple different value 8385 // types. The preg or vreg allocated may not have the same VT as was 8386 // expected. 8387 // 8388 // This can also happen for a return value that disagrees with the register 8389 // class it is put in, eg. a double in a general-purpose register on a 8390 // 32-bit machine. 8391 if (ResultVT != V.getValueType() && 8392 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8393 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8394 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8395 V.getValueType().isInteger()) { 8396 // If a result value was tied to an input value, the computed result 8397 // may have a wider width than the expected result. Extract the 8398 // relevant portion. 8399 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8400 } 8401 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8402 ResultVTs.push_back(ResultVT); 8403 ResultValues.push_back(V); 8404 }; 8405 8406 // Deal with output operands. 8407 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8408 if (OpInfo.Type == InlineAsm::isOutput) { 8409 SDValue Val; 8410 // Skip trivial output operands. 8411 if (OpInfo.AssignedRegs.Regs.empty()) 8412 continue; 8413 8414 switch (OpInfo.ConstraintType) { 8415 case TargetLowering::C_Register: 8416 case TargetLowering::C_RegisterClass: 8417 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8418 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8419 break; 8420 case TargetLowering::C_Immediate: 8421 case TargetLowering::C_Other: 8422 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8423 OpInfo, DAG); 8424 break; 8425 case TargetLowering::C_Memory: 8426 break; // Already handled. 8427 case TargetLowering::C_Unknown: 8428 assert(false && "Unexpected unknown constraint"); 8429 } 8430 8431 // Indirect output manifest as stores. Record output chains. 8432 if (OpInfo.isIndirect) { 8433 const Value *Ptr = OpInfo.CallOperandVal; 8434 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8435 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8436 MachinePointerInfo(Ptr)); 8437 OutChains.push_back(Store); 8438 } else { 8439 // generate CopyFromRegs to associated registers. 8440 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8441 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8442 for (const SDValue &V : Val->op_values()) 8443 handleRegAssign(V); 8444 } else 8445 handleRegAssign(Val); 8446 } 8447 } 8448 } 8449 8450 // Set results. 8451 if (!ResultValues.empty()) { 8452 assert(CurResultType == ResultTypes.end() && 8453 "Mismatch in number of ResultTypes"); 8454 assert(ResultValues.size() == ResultTypes.size() && 8455 "Mismatch in number of output operands in asm result"); 8456 8457 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8458 DAG.getVTList(ResultVTs), ResultValues); 8459 setValue(CS.getInstruction(), V); 8460 } 8461 8462 // Collect store chains. 8463 if (!OutChains.empty()) 8464 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8465 8466 // Only Update Root if inline assembly has a memory effect. 8467 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8468 DAG.setRoot(Chain); 8469 } 8470 8471 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8472 const Twine &Message) { 8473 LLVMContext &Ctx = *DAG.getContext(); 8474 Ctx.emitError(CS.getInstruction(), Message); 8475 8476 // Make sure we leave the DAG in a valid state 8477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8478 SmallVector<EVT, 1> ValueVTs; 8479 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8480 8481 if (ValueVTs.empty()) 8482 return; 8483 8484 SmallVector<SDValue, 1> Ops; 8485 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8486 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8487 8488 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8489 } 8490 8491 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8492 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8493 MVT::Other, getRoot(), 8494 getValue(I.getArgOperand(0)), 8495 DAG.getSrcValue(I.getArgOperand(0)))); 8496 } 8497 8498 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8500 const DataLayout &DL = DAG.getDataLayout(); 8501 SDValue V = DAG.getVAArg( 8502 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8503 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8504 DL.getABITypeAlignment(I.getType())); 8505 DAG.setRoot(V.getValue(1)); 8506 8507 if (I.getType()->isPointerTy()) 8508 V = DAG.getPtrExtOrTrunc( 8509 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8510 setValue(&I, V); 8511 } 8512 8513 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8514 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8515 MVT::Other, getRoot(), 8516 getValue(I.getArgOperand(0)), 8517 DAG.getSrcValue(I.getArgOperand(0)))); 8518 } 8519 8520 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8521 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8522 MVT::Other, getRoot(), 8523 getValue(I.getArgOperand(0)), 8524 getValue(I.getArgOperand(1)), 8525 DAG.getSrcValue(I.getArgOperand(0)), 8526 DAG.getSrcValue(I.getArgOperand(1)))); 8527 } 8528 8529 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8530 const Instruction &I, 8531 SDValue Op) { 8532 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8533 if (!Range) 8534 return Op; 8535 8536 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8537 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8538 return Op; 8539 8540 APInt Lo = CR.getUnsignedMin(); 8541 if (!Lo.isMinValue()) 8542 return Op; 8543 8544 APInt Hi = CR.getUnsignedMax(); 8545 unsigned Bits = std::max(Hi.getActiveBits(), 8546 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8547 8548 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8549 8550 SDLoc SL = getCurSDLoc(); 8551 8552 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8553 DAG.getValueType(SmallVT)); 8554 unsigned NumVals = Op.getNode()->getNumValues(); 8555 if (NumVals == 1) 8556 return ZExt; 8557 8558 SmallVector<SDValue, 4> Ops; 8559 8560 Ops.push_back(ZExt); 8561 for (unsigned I = 1; I != NumVals; ++I) 8562 Ops.push_back(Op.getValue(I)); 8563 8564 return DAG.getMergeValues(Ops, SL); 8565 } 8566 8567 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8568 /// the call being lowered. 8569 /// 8570 /// This is a helper for lowering intrinsics that follow a target calling 8571 /// convention or require stack pointer adjustment. Only a subset of the 8572 /// intrinsic's operands need to participate in the calling convention. 8573 void SelectionDAGBuilder::populateCallLoweringInfo( 8574 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8575 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8576 bool IsPatchPoint) { 8577 TargetLowering::ArgListTy Args; 8578 Args.reserve(NumArgs); 8579 8580 // Populate the argument list. 8581 // Attributes for args start at offset 1, after the return attribute. 8582 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8583 ArgI != ArgE; ++ArgI) { 8584 const Value *V = Call->getOperand(ArgI); 8585 8586 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8587 8588 TargetLowering::ArgListEntry Entry; 8589 Entry.Node = getValue(V); 8590 Entry.Ty = V->getType(); 8591 Entry.setAttributes(Call, ArgI); 8592 Args.push_back(Entry); 8593 } 8594 8595 CLI.setDebugLoc(getCurSDLoc()) 8596 .setChain(getRoot()) 8597 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8598 .setDiscardResult(Call->use_empty()) 8599 .setIsPatchPoint(IsPatchPoint); 8600 } 8601 8602 /// Add a stack map intrinsic call's live variable operands to a stackmap 8603 /// or patchpoint target node's operand list. 8604 /// 8605 /// Constants are converted to TargetConstants purely as an optimization to 8606 /// avoid constant materialization and register allocation. 8607 /// 8608 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8609 /// generate addess computation nodes, and so FinalizeISel can convert the 8610 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8611 /// address materialization and register allocation, but may also be required 8612 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8613 /// alloca in the entry block, then the runtime may assume that the alloca's 8614 /// StackMap location can be read immediately after compilation and that the 8615 /// location is valid at any point during execution (this is similar to the 8616 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8617 /// only available in a register, then the runtime would need to trap when 8618 /// execution reaches the StackMap in order to read the alloca's location. 8619 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8620 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8621 SelectionDAGBuilder &Builder) { 8622 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8623 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8624 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8625 Ops.push_back( 8626 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8627 Ops.push_back( 8628 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8629 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8630 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8631 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8632 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8633 } else 8634 Ops.push_back(OpVal); 8635 } 8636 } 8637 8638 /// Lower llvm.experimental.stackmap directly to its target opcode. 8639 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8640 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8641 // [live variables...]) 8642 8643 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8644 8645 SDValue Chain, InFlag, Callee, NullPtr; 8646 SmallVector<SDValue, 32> Ops; 8647 8648 SDLoc DL = getCurSDLoc(); 8649 Callee = getValue(CI.getCalledValue()); 8650 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8651 8652 // The stackmap intrinsic only records the live variables (the arguments 8653 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8654 // intrinsic, this won't be lowered to a function call. This means we don't 8655 // have to worry about calling conventions and target specific lowering code. 8656 // Instead we perform the call lowering right here. 8657 // 8658 // chain, flag = CALLSEQ_START(chain, 0, 0) 8659 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8660 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8661 // 8662 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8663 InFlag = Chain.getValue(1); 8664 8665 // Add the <id> and <numBytes> constants. 8666 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8667 Ops.push_back(DAG.getTargetConstant( 8668 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8669 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8670 Ops.push_back(DAG.getTargetConstant( 8671 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8672 MVT::i32)); 8673 8674 // Push live variables for the stack map. 8675 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8676 8677 // We are not pushing any register mask info here on the operands list, 8678 // because the stackmap doesn't clobber anything. 8679 8680 // Push the chain and the glue flag. 8681 Ops.push_back(Chain); 8682 Ops.push_back(InFlag); 8683 8684 // Create the STACKMAP node. 8685 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8686 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8687 Chain = SDValue(SM, 0); 8688 InFlag = Chain.getValue(1); 8689 8690 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8691 8692 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8693 8694 // Set the root to the target-lowered call chain. 8695 DAG.setRoot(Chain); 8696 8697 // Inform the Frame Information that we have a stackmap in this function. 8698 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8699 } 8700 8701 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8702 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8703 const BasicBlock *EHPadBB) { 8704 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8705 // i32 <numBytes>, 8706 // i8* <target>, 8707 // i32 <numArgs>, 8708 // [Args...], 8709 // [live variables...]) 8710 8711 CallingConv::ID CC = CS.getCallingConv(); 8712 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8713 bool HasDef = !CS->getType()->isVoidTy(); 8714 SDLoc dl = getCurSDLoc(); 8715 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8716 8717 // Handle immediate and symbolic callees. 8718 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8719 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8720 /*isTarget=*/true); 8721 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8722 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8723 SDLoc(SymbolicCallee), 8724 SymbolicCallee->getValueType(0)); 8725 8726 // Get the real number of arguments participating in the call <numArgs> 8727 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8728 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8729 8730 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8731 // Intrinsics include all meta-operands up to but not including CC. 8732 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8733 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8734 "Not enough arguments provided to the patchpoint intrinsic"); 8735 8736 // For AnyRegCC the arguments are lowered later on manually. 8737 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8738 Type *ReturnTy = 8739 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8740 8741 TargetLowering::CallLoweringInfo CLI(DAG); 8742 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8743 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8744 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8745 8746 SDNode *CallEnd = Result.second.getNode(); 8747 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8748 CallEnd = CallEnd->getOperand(0).getNode(); 8749 8750 /// Get a call instruction from the call sequence chain. 8751 /// Tail calls are not allowed. 8752 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8753 "Expected a callseq node."); 8754 SDNode *Call = CallEnd->getOperand(0).getNode(); 8755 bool HasGlue = Call->getGluedNode(); 8756 8757 // Replace the target specific call node with the patchable intrinsic. 8758 SmallVector<SDValue, 8> Ops; 8759 8760 // Add the <id> and <numBytes> constants. 8761 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8762 Ops.push_back(DAG.getTargetConstant( 8763 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8764 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8765 Ops.push_back(DAG.getTargetConstant( 8766 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8767 MVT::i32)); 8768 8769 // Add the callee. 8770 Ops.push_back(Callee); 8771 8772 // Adjust <numArgs> to account for any arguments that have been passed on the 8773 // stack instead. 8774 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8775 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8776 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8777 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8778 8779 // Add the calling convention 8780 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8781 8782 // Add the arguments we omitted previously. The register allocator should 8783 // place these in any free register. 8784 if (IsAnyRegCC) 8785 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8786 Ops.push_back(getValue(CS.getArgument(i))); 8787 8788 // Push the arguments from the call instruction up to the register mask. 8789 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8790 Ops.append(Call->op_begin() + 2, e); 8791 8792 // Push live variables for the stack map. 8793 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8794 8795 // Push the register mask info. 8796 if (HasGlue) 8797 Ops.push_back(*(Call->op_end()-2)); 8798 else 8799 Ops.push_back(*(Call->op_end()-1)); 8800 8801 // Push the chain (this is originally the first operand of the call, but 8802 // becomes now the last or second to last operand). 8803 Ops.push_back(*(Call->op_begin())); 8804 8805 // Push the glue flag (last operand). 8806 if (HasGlue) 8807 Ops.push_back(*(Call->op_end()-1)); 8808 8809 SDVTList NodeTys; 8810 if (IsAnyRegCC && HasDef) { 8811 // Create the return types based on the intrinsic definition 8812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8813 SmallVector<EVT, 3> ValueVTs; 8814 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8815 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8816 8817 // There is always a chain and a glue type at the end 8818 ValueVTs.push_back(MVT::Other); 8819 ValueVTs.push_back(MVT::Glue); 8820 NodeTys = DAG.getVTList(ValueVTs); 8821 } else 8822 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8823 8824 // Replace the target specific call node with a PATCHPOINT node. 8825 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8826 dl, NodeTys, Ops); 8827 8828 // Update the NodeMap. 8829 if (HasDef) { 8830 if (IsAnyRegCC) 8831 setValue(CS.getInstruction(), SDValue(MN, 0)); 8832 else 8833 setValue(CS.getInstruction(), Result.first); 8834 } 8835 8836 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8837 // call sequence. Furthermore the location of the chain and glue can change 8838 // when the AnyReg calling convention is used and the intrinsic returns a 8839 // value. 8840 if (IsAnyRegCC && HasDef) { 8841 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8842 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8843 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8844 } else 8845 DAG.ReplaceAllUsesWith(Call, MN); 8846 DAG.DeleteNode(Call); 8847 8848 // Inform the Frame Information that we have a patchpoint in this function. 8849 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8850 } 8851 8852 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8853 unsigned Intrinsic) { 8854 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8855 SDValue Op1 = getValue(I.getArgOperand(0)); 8856 SDValue Op2; 8857 if (I.getNumArgOperands() > 1) 8858 Op2 = getValue(I.getArgOperand(1)); 8859 SDLoc dl = getCurSDLoc(); 8860 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8861 SDValue Res; 8862 FastMathFlags FMF; 8863 if (isa<FPMathOperator>(I)) 8864 FMF = I.getFastMathFlags(); 8865 8866 switch (Intrinsic) { 8867 case Intrinsic::experimental_vector_reduce_v2_fadd: 8868 if (FMF.allowReassoc()) 8869 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8870 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8871 else 8872 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8873 break; 8874 case Intrinsic::experimental_vector_reduce_v2_fmul: 8875 if (FMF.allowReassoc()) 8876 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8877 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8878 else 8879 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8880 break; 8881 case Intrinsic::experimental_vector_reduce_add: 8882 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8883 break; 8884 case Intrinsic::experimental_vector_reduce_mul: 8885 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8886 break; 8887 case Intrinsic::experimental_vector_reduce_and: 8888 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8889 break; 8890 case Intrinsic::experimental_vector_reduce_or: 8891 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8892 break; 8893 case Intrinsic::experimental_vector_reduce_xor: 8894 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8895 break; 8896 case Intrinsic::experimental_vector_reduce_smax: 8897 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8898 break; 8899 case Intrinsic::experimental_vector_reduce_smin: 8900 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8901 break; 8902 case Intrinsic::experimental_vector_reduce_umax: 8903 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8904 break; 8905 case Intrinsic::experimental_vector_reduce_umin: 8906 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8907 break; 8908 case Intrinsic::experimental_vector_reduce_fmax: 8909 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8910 break; 8911 case Intrinsic::experimental_vector_reduce_fmin: 8912 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8913 break; 8914 default: 8915 llvm_unreachable("Unhandled vector reduce intrinsic"); 8916 } 8917 setValue(&I, Res); 8918 } 8919 8920 /// Returns an AttributeList representing the attributes applied to the return 8921 /// value of the given call. 8922 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8923 SmallVector<Attribute::AttrKind, 2> Attrs; 8924 if (CLI.RetSExt) 8925 Attrs.push_back(Attribute::SExt); 8926 if (CLI.RetZExt) 8927 Attrs.push_back(Attribute::ZExt); 8928 if (CLI.IsInReg) 8929 Attrs.push_back(Attribute::InReg); 8930 8931 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8932 Attrs); 8933 } 8934 8935 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8936 /// implementation, which just calls LowerCall. 8937 /// FIXME: When all targets are 8938 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8939 std::pair<SDValue, SDValue> 8940 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8941 // Handle the incoming return values from the call. 8942 CLI.Ins.clear(); 8943 Type *OrigRetTy = CLI.RetTy; 8944 SmallVector<EVT, 4> RetTys; 8945 SmallVector<uint64_t, 4> Offsets; 8946 auto &DL = CLI.DAG.getDataLayout(); 8947 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8948 8949 if (CLI.IsPostTypeLegalization) { 8950 // If we are lowering a libcall after legalization, split the return type. 8951 SmallVector<EVT, 4> OldRetTys; 8952 SmallVector<uint64_t, 4> OldOffsets; 8953 RetTys.swap(OldRetTys); 8954 Offsets.swap(OldOffsets); 8955 8956 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8957 EVT RetVT = OldRetTys[i]; 8958 uint64_t Offset = OldOffsets[i]; 8959 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8960 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8961 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8962 RetTys.append(NumRegs, RegisterVT); 8963 for (unsigned j = 0; j != NumRegs; ++j) 8964 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8965 } 8966 } 8967 8968 SmallVector<ISD::OutputArg, 4> Outs; 8969 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8970 8971 bool CanLowerReturn = 8972 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8973 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8974 8975 SDValue DemoteStackSlot; 8976 int DemoteStackIdx = -100; 8977 if (!CanLowerReturn) { 8978 // FIXME: equivalent assert? 8979 // assert(!CS.hasInAllocaArgument() && 8980 // "sret demotion is incompatible with inalloca"); 8981 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8982 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8983 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8984 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8985 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8986 DL.getAllocaAddrSpace()); 8987 8988 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8989 ArgListEntry Entry; 8990 Entry.Node = DemoteStackSlot; 8991 Entry.Ty = StackSlotPtrType; 8992 Entry.IsSExt = false; 8993 Entry.IsZExt = false; 8994 Entry.IsInReg = false; 8995 Entry.IsSRet = true; 8996 Entry.IsNest = false; 8997 Entry.IsByVal = false; 8998 Entry.IsReturned = false; 8999 Entry.IsSwiftSelf = false; 9000 Entry.IsSwiftError = false; 9001 Entry.IsCFGuardTarget = false; 9002 Entry.Alignment = Align; 9003 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9004 CLI.NumFixedArgs += 1; 9005 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9006 9007 // sret demotion isn't compatible with tail-calls, since the sret argument 9008 // points into the callers stack frame. 9009 CLI.IsTailCall = false; 9010 } else { 9011 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9012 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9013 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9014 ISD::ArgFlagsTy Flags; 9015 if (NeedsRegBlock) { 9016 Flags.setInConsecutiveRegs(); 9017 if (I == RetTys.size() - 1) 9018 Flags.setInConsecutiveRegsLast(); 9019 } 9020 EVT VT = RetTys[I]; 9021 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9022 CLI.CallConv, VT); 9023 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9024 CLI.CallConv, VT); 9025 for (unsigned i = 0; i != NumRegs; ++i) { 9026 ISD::InputArg MyFlags; 9027 MyFlags.Flags = Flags; 9028 MyFlags.VT = RegisterVT; 9029 MyFlags.ArgVT = VT; 9030 MyFlags.Used = CLI.IsReturnValueUsed; 9031 if (CLI.RetTy->isPointerTy()) { 9032 MyFlags.Flags.setPointer(); 9033 MyFlags.Flags.setPointerAddrSpace( 9034 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9035 } 9036 if (CLI.RetSExt) 9037 MyFlags.Flags.setSExt(); 9038 if (CLI.RetZExt) 9039 MyFlags.Flags.setZExt(); 9040 if (CLI.IsInReg) 9041 MyFlags.Flags.setInReg(); 9042 CLI.Ins.push_back(MyFlags); 9043 } 9044 } 9045 } 9046 9047 // We push in swifterror return as the last element of CLI.Ins. 9048 ArgListTy &Args = CLI.getArgs(); 9049 if (supportSwiftError()) { 9050 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9051 if (Args[i].IsSwiftError) { 9052 ISD::InputArg MyFlags; 9053 MyFlags.VT = getPointerTy(DL); 9054 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9055 MyFlags.Flags.setSwiftError(); 9056 CLI.Ins.push_back(MyFlags); 9057 } 9058 } 9059 } 9060 9061 // Handle all of the outgoing arguments. 9062 CLI.Outs.clear(); 9063 CLI.OutVals.clear(); 9064 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9065 SmallVector<EVT, 4> ValueVTs; 9066 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9067 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9068 Type *FinalType = Args[i].Ty; 9069 if (Args[i].IsByVal) 9070 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9071 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9072 FinalType, CLI.CallConv, CLI.IsVarArg); 9073 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9074 ++Value) { 9075 EVT VT = ValueVTs[Value]; 9076 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9077 SDValue Op = SDValue(Args[i].Node.getNode(), 9078 Args[i].Node.getResNo() + Value); 9079 ISD::ArgFlagsTy Flags; 9080 9081 // Certain targets (such as MIPS), may have a different ABI alignment 9082 // for a type depending on the context. Give the target a chance to 9083 // specify the alignment it wants. 9084 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9085 9086 if (Args[i].Ty->isPointerTy()) { 9087 Flags.setPointer(); 9088 Flags.setPointerAddrSpace( 9089 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9090 } 9091 if (Args[i].IsZExt) 9092 Flags.setZExt(); 9093 if (Args[i].IsSExt) 9094 Flags.setSExt(); 9095 if (Args[i].IsInReg) { 9096 // If we are using vectorcall calling convention, a structure that is 9097 // passed InReg - is surely an HVA 9098 if (CLI.CallConv == CallingConv::X86_VectorCall && 9099 isa<StructType>(FinalType)) { 9100 // The first value of a structure is marked 9101 if (0 == Value) 9102 Flags.setHvaStart(); 9103 Flags.setHva(); 9104 } 9105 // Set InReg Flag 9106 Flags.setInReg(); 9107 } 9108 if (Args[i].IsSRet) 9109 Flags.setSRet(); 9110 if (Args[i].IsSwiftSelf) 9111 Flags.setSwiftSelf(); 9112 if (Args[i].IsSwiftError) 9113 Flags.setSwiftError(); 9114 if (Args[i].IsCFGuardTarget) 9115 Flags.setCFGuardTarget(); 9116 if (Args[i].IsByVal) 9117 Flags.setByVal(); 9118 if (Args[i].IsInAlloca) { 9119 Flags.setInAlloca(); 9120 // Set the byval flag for CCAssignFn callbacks that don't know about 9121 // inalloca. This way we can know how many bytes we should've allocated 9122 // and how many bytes a callee cleanup function will pop. If we port 9123 // inalloca to more targets, we'll have to add custom inalloca handling 9124 // in the various CC lowering callbacks. 9125 Flags.setByVal(); 9126 } 9127 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9128 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9129 Type *ElementTy = Ty->getElementType(); 9130 9131 unsigned FrameSize = DL.getTypeAllocSize( 9132 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9133 Flags.setByValSize(FrameSize); 9134 9135 // info is not there but there are cases it cannot get right. 9136 unsigned FrameAlign; 9137 if (Args[i].Alignment) 9138 FrameAlign = Args[i].Alignment; 9139 else 9140 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9141 Flags.setByValAlign(Align(FrameAlign)); 9142 } 9143 if (Args[i].IsNest) 9144 Flags.setNest(); 9145 if (NeedsRegBlock) 9146 Flags.setInConsecutiveRegs(); 9147 Flags.setOrigAlign(OriginalAlignment); 9148 9149 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9150 CLI.CallConv, VT); 9151 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9152 CLI.CallConv, VT); 9153 SmallVector<SDValue, 4> Parts(NumParts); 9154 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9155 9156 if (Args[i].IsSExt) 9157 ExtendKind = ISD::SIGN_EXTEND; 9158 else if (Args[i].IsZExt) 9159 ExtendKind = ISD::ZERO_EXTEND; 9160 9161 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9162 // for now. 9163 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9164 CanLowerReturn) { 9165 assert((CLI.RetTy == Args[i].Ty || 9166 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9167 CLI.RetTy->getPointerAddressSpace() == 9168 Args[i].Ty->getPointerAddressSpace())) && 9169 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9170 // Before passing 'returned' to the target lowering code, ensure that 9171 // either the register MVT and the actual EVT are the same size or that 9172 // the return value and argument are extended in the same way; in these 9173 // cases it's safe to pass the argument register value unchanged as the 9174 // return register value (although it's at the target's option whether 9175 // to do so) 9176 // TODO: allow code generation to take advantage of partially preserved 9177 // registers rather than clobbering the entire register when the 9178 // parameter extension method is not compatible with the return 9179 // extension method 9180 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9181 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9182 CLI.RetZExt == Args[i].IsZExt)) 9183 Flags.setReturned(); 9184 } 9185 9186 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9187 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9188 9189 for (unsigned j = 0; j != NumParts; ++j) { 9190 // if it isn't first piece, alignment must be 1 9191 // For scalable vectors the scalable part is currently handled 9192 // by individual targets, so we just use the known minimum size here. 9193 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9194 i < CLI.NumFixedArgs, i, 9195 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9196 if (NumParts > 1 && j == 0) 9197 MyFlags.Flags.setSplit(); 9198 else if (j != 0) { 9199 MyFlags.Flags.setOrigAlign(Align(1)); 9200 if (j == NumParts - 1) 9201 MyFlags.Flags.setSplitEnd(); 9202 } 9203 9204 CLI.Outs.push_back(MyFlags); 9205 CLI.OutVals.push_back(Parts[j]); 9206 } 9207 9208 if (NeedsRegBlock && Value == NumValues - 1) 9209 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9210 } 9211 } 9212 9213 SmallVector<SDValue, 4> InVals; 9214 CLI.Chain = LowerCall(CLI, InVals); 9215 9216 // Update CLI.InVals to use outside of this function. 9217 CLI.InVals = InVals; 9218 9219 // Verify that the target's LowerCall behaved as expected. 9220 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9221 "LowerCall didn't return a valid chain!"); 9222 assert((!CLI.IsTailCall || InVals.empty()) && 9223 "LowerCall emitted a return value for a tail call!"); 9224 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9225 "LowerCall didn't emit the correct number of values!"); 9226 9227 // For a tail call, the return value is merely live-out and there aren't 9228 // any nodes in the DAG representing it. Return a special value to 9229 // indicate that a tail call has been emitted and no more Instructions 9230 // should be processed in the current block. 9231 if (CLI.IsTailCall) { 9232 CLI.DAG.setRoot(CLI.Chain); 9233 return std::make_pair(SDValue(), SDValue()); 9234 } 9235 9236 #ifndef NDEBUG 9237 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9238 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9239 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9240 "LowerCall emitted a value with the wrong type!"); 9241 } 9242 #endif 9243 9244 SmallVector<SDValue, 4> ReturnValues; 9245 if (!CanLowerReturn) { 9246 // The instruction result is the result of loading from the 9247 // hidden sret parameter. 9248 SmallVector<EVT, 1> PVTs; 9249 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9250 9251 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9252 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9253 EVT PtrVT = PVTs[0]; 9254 9255 unsigned NumValues = RetTys.size(); 9256 ReturnValues.resize(NumValues); 9257 SmallVector<SDValue, 4> Chains(NumValues); 9258 9259 // An aggregate return value cannot wrap around the address space, so 9260 // offsets to its parts don't wrap either. 9261 SDNodeFlags Flags; 9262 Flags.setNoUnsignedWrap(true); 9263 9264 for (unsigned i = 0; i < NumValues; ++i) { 9265 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9266 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9267 PtrVT), Flags); 9268 SDValue L = CLI.DAG.getLoad( 9269 RetTys[i], CLI.DL, CLI.Chain, Add, 9270 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9271 DemoteStackIdx, Offsets[i]), 9272 /* Alignment = */ 1); 9273 ReturnValues[i] = L; 9274 Chains[i] = L.getValue(1); 9275 } 9276 9277 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9278 } else { 9279 // Collect the legal value parts into potentially illegal values 9280 // that correspond to the original function's return values. 9281 Optional<ISD::NodeType> AssertOp; 9282 if (CLI.RetSExt) 9283 AssertOp = ISD::AssertSext; 9284 else if (CLI.RetZExt) 9285 AssertOp = ISD::AssertZext; 9286 unsigned CurReg = 0; 9287 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9288 EVT VT = RetTys[I]; 9289 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9290 CLI.CallConv, VT); 9291 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9292 CLI.CallConv, VT); 9293 9294 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9295 NumRegs, RegisterVT, VT, nullptr, 9296 CLI.CallConv, AssertOp)); 9297 CurReg += NumRegs; 9298 } 9299 9300 // For a function returning void, there is no return value. We can't create 9301 // such a node, so we just return a null return value in that case. In 9302 // that case, nothing will actually look at the value. 9303 if (ReturnValues.empty()) 9304 return std::make_pair(SDValue(), CLI.Chain); 9305 } 9306 9307 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9308 CLI.DAG.getVTList(RetTys), ReturnValues); 9309 return std::make_pair(Res, CLI.Chain); 9310 } 9311 9312 void TargetLowering::LowerOperationWrapper(SDNode *N, 9313 SmallVectorImpl<SDValue> &Results, 9314 SelectionDAG &DAG) const { 9315 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9316 Results.push_back(Res); 9317 } 9318 9319 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9320 llvm_unreachable("LowerOperation not implemented for this target!"); 9321 } 9322 9323 void 9324 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9325 SDValue Op = getNonRegisterValue(V); 9326 assert((Op.getOpcode() != ISD::CopyFromReg || 9327 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9328 "Copy from a reg to the same reg!"); 9329 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9330 9331 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9332 // If this is an InlineAsm we have to match the registers required, not the 9333 // notional registers required by the type. 9334 9335 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9336 None); // This is not an ABI copy. 9337 SDValue Chain = DAG.getEntryNode(); 9338 9339 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9340 FuncInfo.PreferredExtendType.end()) 9341 ? ISD::ANY_EXTEND 9342 : FuncInfo.PreferredExtendType[V]; 9343 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9344 PendingExports.push_back(Chain); 9345 } 9346 9347 #include "llvm/CodeGen/SelectionDAGISel.h" 9348 9349 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9350 /// entry block, return true. This includes arguments used by switches, since 9351 /// the switch may expand into multiple basic blocks. 9352 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9353 // With FastISel active, we may be splitting blocks, so force creation 9354 // of virtual registers for all non-dead arguments. 9355 if (FastISel) 9356 return A->use_empty(); 9357 9358 const BasicBlock &Entry = A->getParent()->front(); 9359 for (const User *U : A->users()) 9360 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9361 return false; // Use not in entry block. 9362 9363 return true; 9364 } 9365 9366 using ArgCopyElisionMapTy = 9367 DenseMap<const Argument *, 9368 std::pair<const AllocaInst *, const StoreInst *>>; 9369 9370 /// Scan the entry block of the function in FuncInfo for arguments that look 9371 /// like copies into a local alloca. Record any copied arguments in 9372 /// ArgCopyElisionCandidates. 9373 static void 9374 findArgumentCopyElisionCandidates(const DataLayout &DL, 9375 FunctionLoweringInfo *FuncInfo, 9376 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9377 // Record the state of every static alloca used in the entry block. Argument 9378 // allocas are all used in the entry block, so we need approximately as many 9379 // entries as we have arguments. 9380 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9381 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9382 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9383 StaticAllocas.reserve(NumArgs * 2); 9384 9385 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9386 if (!V) 9387 return nullptr; 9388 V = V->stripPointerCasts(); 9389 const auto *AI = dyn_cast<AllocaInst>(V); 9390 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9391 return nullptr; 9392 auto Iter = StaticAllocas.insert({AI, Unknown}); 9393 return &Iter.first->second; 9394 }; 9395 9396 // Look for stores of arguments to static allocas. Look through bitcasts and 9397 // GEPs to handle type coercions, as long as the alloca is fully initialized 9398 // by the store. Any non-store use of an alloca escapes it and any subsequent 9399 // unanalyzed store might write it. 9400 // FIXME: Handle structs initialized with multiple stores. 9401 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9402 // Look for stores, and handle non-store uses conservatively. 9403 const auto *SI = dyn_cast<StoreInst>(&I); 9404 if (!SI) { 9405 // We will look through cast uses, so ignore them completely. 9406 if (I.isCast()) 9407 continue; 9408 // Ignore debug info intrinsics, they don't escape or store to allocas. 9409 if (isa<DbgInfoIntrinsic>(I)) 9410 continue; 9411 // This is an unknown instruction. Assume it escapes or writes to all 9412 // static alloca operands. 9413 for (const Use &U : I.operands()) { 9414 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9415 *Info = StaticAllocaInfo::Clobbered; 9416 } 9417 continue; 9418 } 9419 9420 // If the stored value is a static alloca, mark it as escaped. 9421 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9422 *Info = StaticAllocaInfo::Clobbered; 9423 9424 // Check if the destination is a static alloca. 9425 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9426 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9427 if (!Info) 9428 continue; 9429 const AllocaInst *AI = cast<AllocaInst>(Dst); 9430 9431 // Skip allocas that have been initialized or clobbered. 9432 if (*Info != StaticAllocaInfo::Unknown) 9433 continue; 9434 9435 // Check if the stored value is an argument, and that this store fully 9436 // initializes the alloca. Don't elide copies from the same argument twice. 9437 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9438 const auto *Arg = dyn_cast<Argument>(Val); 9439 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9440 Arg->getType()->isEmptyTy() || 9441 DL.getTypeStoreSize(Arg->getType()) != 9442 DL.getTypeAllocSize(AI->getAllocatedType()) || 9443 ArgCopyElisionCandidates.count(Arg)) { 9444 *Info = StaticAllocaInfo::Clobbered; 9445 continue; 9446 } 9447 9448 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9449 << '\n'); 9450 9451 // Mark this alloca and store for argument copy elision. 9452 *Info = StaticAllocaInfo::Elidable; 9453 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9454 9455 // Stop scanning if we've seen all arguments. This will happen early in -O0 9456 // builds, which is useful, because -O0 builds have large entry blocks and 9457 // many allocas. 9458 if (ArgCopyElisionCandidates.size() == NumArgs) 9459 break; 9460 } 9461 } 9462 9463 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9464 /// ArgVal is a load from a suitable fixed stack object. 9465 static void tryToElideArgumentCopy( 9466 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9467 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9468 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9469 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9470 SDValue ArgVal, bool &ArgHasUses) { 9471 // Check if this is a load from a fixed stack object. 9472 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9473 if (!LNode) 9474 return; 9475 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9476 if (!FINode) 9477 return; 9478 9479 // Check that the fixed stack object is the right size and alignment. 9480 // Look at the alignment that the user wrote on the alloca instead of looking 9481 // at the stack object. 9482 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9483 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9484 const AllocaInst *AI = ArgCopyIter->second.first; 9485 int FixedIndex = FINode->getIndex(); 9486 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9487 int OldIndex = AllocaIndex; 9488 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9489 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9490 LLVM_DEBUG( 9491 dbgs() << " argument copy elision failed due to bad fixed stack " 9492 "object size\n"); 9493 return; 9494 } 9495 Align RequiredAlignment = AI->getAlign().getValueOr( 9496 FuncInfo.MF->getDataLayout().getABITypeAlign(AI->getAllocatedType())); 9497 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9498 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9499 "greater than stack argument alignment (" 9500 << RequiredAlignment.value() << " vs " 9501 << MFI.getObjectAlign(FixedIndex).value() << ")\n"); 9502 return; 9503 } 9504 9505 // Perform the elision. Delete the old stack object and replace its only use 9506 // in the variable info map. Mark the stack object as mutable. 9507 LLVM_DEBUG({ 9508 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9509 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9510 << '\n'; 9511 }); 9512 MFI.RemoveStackObject(OldIndex); 9513 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9514 AllocaIndex = FixedIndex; 9515 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9516 Chains.push_back(ArgVal.getValue(1)); 9517 9518 // Avoid emitting code for the store implementing the copy. 9519 const StoreInst *SI = ArgCopyIter->second.second; 9520 ElidedArgCopyInstrs.insert(SI); 9521 9522 // Check for uses of the argument again so that we can avoid exporting ArgVal 9523 // if it is't used by anything other than the store. 9524 for (const Value *U : Arg.users()) { 9525 if (U != SI) { 9526 ArgHasUses = true; 9527 break; 9528 } 9529 } 9530 } 9531 9532 void SelectionDAGISel::LowerArguments(const Function &F) { 9533 SelectionDAG &DAG = SDB->DAG; 9534 SDLoc dl = SDB->getCurSDLoc(); 9535 const DataLayout &DL = DAG.getDataLayout(); 9536 SmallVector<ISD::InputArg, 16> Ins; 9537 9538 if (!FuncInfo->CanLowerReturn) { 9539 // Put in an sret pointer parameter before all the other parameters. 9540 SmallVector<EVT, 1> ValueVTs; 9541 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9542 F.getReturnType()->getPointerTo( 9543 DAG.getDataLayout().getAllocaAddrSpace()), 9544 ValueVTs); 9545 9546 // NOTE: Assuming that a pointer will never break down to more than one VT 9547 // or one register. 9548 ISD::ArgFlagsTy Flags; 9549 Flags.setSRet(); 9550 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9551 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9552 ISD::InputArg::NoArgIndex, 0); 9553 Ins.push_back(RetArg); 9554 } 9555 9556 // Look for stores of arguments to static allocas. Mark such arguments with a 9557 // flag to ask the target to give us the memory location of that argument if 9558 // available. 9559 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9560 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9561 ArgCopyElisionCandidates); 9562 9563 // Set up the incoming argument description vector. 9564 for (const Argument &Arg : F.args()) { 9565 unsigned ArgNo = Arg.getArgNo(); 9566 SmallVector<EVT, 4> ValueVTs; 9567 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9568 bool isArgValueUsed = !Arg.use_empty(); 9569 unsigned PartBase = 0; 9570 Type *FinalType = Arg.getType(); 9571 if (Arg.hasAttribute(Attribute::ByVal)) 9572 FinalType = Arg.getParamByValType(); 9573 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9574 FinalType, F.getCallingConv(), F.isVarArg()); 9575 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9576 Value != NumValues; ++Value) { 9577 EVT VT = ValueVTs[Value]; 9578 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9579 ISD::ArgFlagsTy Flags; 9580 9581 // Certain targets (such as MIPS), may have a different ABI alignment 9582 // for a type depending on the context. Give the target a chance to 9583 // specify the alignment it wants. 9584 const Align OriginalAlignment( 9585 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9586 9587 if (Arg.getType()->isPointerTy()) { 9588 Flags.setPointer(); 9589 Flags.setPointerAddrSpace( 9590 cast<PointerType>(Arg.getType())->getAddressSpace()); 9591 } 9592 if (Arg.hasAttribute(Attribute::ZExt)) 9593 Flags.setZExt(); 9594 if (Arg.hasAttribute(Attribute::SExt)) 9595 Flags.setSExt(); 9596 if (Arg.hasAttribute(Attribute::InReg)) { 9597 // If we are using vectorcall calling convention, a structure that is 9598 // passed InReg - is surely an HVA 9599 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9600 isa<StructType>(Arg.getType())) { 9601 // The first value of a structure is marked 9602 if (0 == Value) 9603 Flags.setHvaStart(); 9604 Flags.setHva(); 9605 } 9606 // Set InReg Flag 9607 Flags.setInReg(); 9608 } 9609 if (Arg.hasAttribute(Attribute::StructRet)) 9610 Flags.setSRet(); 9611 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9612 Flags.setSwiftSelf(); 9613 if (Arg.hasAttribute(Attribute::SwiftError)) 9614 Flags.setSwiftError(); 9615 if (Arg.hasAttribute(Attribute::ByVal)) 9616 Flags.setByVal(); 9617 if (Arg.hasAttribute(Attribute::InAlloca)) { 9618 Flags.setInAlloca(); 9619 // Set the byval flag for CCAssignFn callbacks that don't know about 9620 // inalloca. This way we can know how many bytes we should've allocated 9621 // and how many bytes a callee cleanup function will pop. If we port 9622 // inalloca to more targets, we'll have to add custom inalloca handling 9623 // in the various CC lowering callbacks. 9624 Flags.setByVal(); 9625 } 9626 if (F.getCallingConv() == CallingConv::X86_INTR) { 9627 // IA Interrupt passes frame (1st parameter) by value in the stack. 9628 if (ArgNo == 0) 9629 Flags.setByVal(); 9630 } 9631 if (Flags.isByVal() || Flags.isInAlloca()) { 9632 Type *ElementTy = Arg.getParamByValType(); 9633 9634 // For ByVal, size and alignment should be passed from FE. BE will 9635 // guess if this info is not there but there are cases it cannot get 9636 // right. 9637 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9638 Flags.setByValSize(FrameSize); 9639 9640 unsigned FrameAlign; 9641 if (Arg.getParamAlignment()) 9642 FrameAlign = Arg.getParamAlignment(); 9643 else 9644 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9645 Flags.setByValAlign(Align(FrameAlign)); 9646 } 9647 if (Arg.hasAttribute(Attribute::Nest)) 9648 Flags.setNest(); 9649 if (NeedsRegBlock) 9650 Flags.setInConsecutiveRegs(); 9651 Flags.setOrigAlign(OriginalAlignment); 9652 if (ArgCopyElisionCandidates.count(&Arg)) 9653 Flags.setCopyElisionCandidate(); 9654 if (Arg.hasAttribute(Attribute::Returned)) 9655 Flags.setReturned(); 9656 9657 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9658 *CurDAG->getContext(), F.getCallingConv(), VT); 9659 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9660 *CurDAG->getContext(), F.getCallingConv(), VT); 9661 for (unsigned i = 0; i != NumRegs; ++i) { 9662 // For scalable vectors, use the minimum size; individual targets 9663 // are responsible for handling scalable vector arguments and 9664 // return values. 9665 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9666 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9667 if (NumRegs > 1 && i == 0) 9668 MyFlags.Flags.setSplit(); 9669 // if it isn't first piece, alignment must be 1 9670 else if (i > 0) { 9671 MyFlags.Flags.setOrigAlign(Align(1)); 9672 if (i == NumRegs - 1) 9673 MyFlags.Flags.setSplitEnd(); 9674 } 9675 Ins.push_back(MyFlags); 9676 } 9677 if (NeedsRegBlock && Value == NumValues - 1) 9678 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9679 PartBase += VT.getStoreSize().getKnownMinSize(); 9680 } 9681 } 9682 9683 // Call the target to set up the argument values. 9684 SmallVector<SDValue, 8> InVals; 9685 SDValue NewRoot = TLI->LowerFormalArguments( 9686 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9687 9688 // Verify that the target's LowerFormalArguments behaved as expected. 9689 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9690 "LowerFormalArguments didn't return a valid chain!"); 9691 assert(InVals.size() == Ins.size() && 9692 "LowerFormalArguments didn't emit the correct number of values!"); 9693 LLVM_DEBUG({ 9694 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9695 assert(InVals[i].getNode() && 9696 "LowerFormalArguments emitted a null value!"); 9697 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9698 "LowerFormalArguments emitted a value with the wrong type!"); 9699 } 9700 }); 9701 9702 // Update the DAG with the new chain value resulting from argument lowering. 9703 DAG.setRoot(NewRoot); 9704 9705 // Set up the argument values. 9706 unsigned i = 0; 9707 if (!FuncInfo->CanLowerReturn) { 9708 // Create a virtual register for the sret pointer, and put in a copy 9709 // from the sret argument into it. 9710 SmallVector<EVT, 1> ValueVTs; 9711 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9712 F.getReturnType()->getPointerTo( 9713 DAG.getDataLayout().getAllocaAddrSpace()), 9714 ValueVTs); 9715 MVT VT = ValueVTs[0].getSimpleVT(); 9716 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9717 Optional<ISD::NodeType> AssertOp = None; 9718 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9719 nullptr, F.getCallingConv(), AssertOp); 9720 9721 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9722 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9723 Register SRetReg = 9724 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9725 FuncInfo->DemoteRegister = SRetReg; 9726 NewRoot = 9727 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9728 DAG.setRoot(NewRoot); 9729 9730 // i indexes lowered arguments. Bump it past the hidden sret argument. 9731 ++i; 9732 } 9733 9734 SmallVector<SDValue, 4> Chains; 9735 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9736 for (const Argument &Arg : F.args()) { 9737 SmallVector<SDValue, 4> ArgValues; 9738 SmallVector<EVT, 4> ValueVTs; 9739 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9740 unsigned NumValues = ValueVTs.size(); 9741 if (NumValues == 0) 9742 continue; 9743 9744 bool ArgHasUses = !Arg.use_empty(); 9745 9746 // Elide the copying store if the target loaded this argument from a 9747 // suitable fixed stack object. 9748 if (Ins[i].Flags.isCopyElisionCandidate()) { 9749 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9750 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9751 InVals[i], ArgHasUses); 9752 } 9753 9754 // If this argument is unused then remember its value. It is used to generate 9755 // debugging information. 9756 bool isSwiftErrorArg = 9757 TLI->supportSwiftError() && 9758 Arg.hasAttribute(Attribute::SwiftError); 9759 if (!ArgHasUses && !isSwiftErrorArg) { 9760 SDB->setUnusedArgValue(&Arg, InVals[i]); 9761 9762 // Also remember any frame index for use in FastISel. 9763 if (FrameIndexSDNode *FI = 9764 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9765 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9766 } 9767 9768 for (unsigned Val = 0; Val != NumValues; ++Val) { 9769 EVT VT = ValueVTs[Val]; 9770 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9771 F.getCallingConv(), VT); 9772 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9773 *CurDAG->getContext(), F.getCallingConv(), VT); 9774 9775 // Even an apparent 'unused' swifterror argument needs to be returned. So 9776 // we do generate a copy for it that can be used on return from the 9777 // function. 9778 if (ArgHasUses || isSwiftErrorArg) { 9779 Optional<ISD::NodeType> AssertOp; 9780 if (Arg.hasAttribute(Attribute::SExt)) 9781 AssertOp = ISD::AssertSext; 9782 else if (Arg.hasAttribute(Attribute::ZExt)) 9783 AssertOp = ISD::AssertZext; 9784 9785 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9786 PartVT, VT, nullptr, 9787 F.getCallingConv(), AssertOp)); 9788 } 9789 9790 i += NumParts; 9791 } 9792 9793 // We don't need to do anything else for unused arguments. 9794 if (ArgValues.empty()) 9795 continue; 9796 9797 // Note down frame index. 9798 if (FrameIndexSDNode *FI = 9799 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9800 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9801 9802 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9803 SDB->getCurSDLoc()); 9804 9805 SDB->setValue(&Arg, Res); 9806 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9807 // We want to associate the argument with the frame index, among 9808 // involved operands, that correspond to the lowest address. The 9809 // getCopyFromParts function, called earlier, is swapping the order of 9810 // the operands to BUILD_PAIR depending on endianness. The result of 9811 // that swapping is that the least significant bits of the argument will 9812 // be in the first operand of the BUILD_PAIR node, and the most 9813 // significant bits will be in the second operand. 9814 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9815 if (LoadSDNode *LNode = 9816 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9817 if (FrameIndexSDNode *FI = 9818 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9819 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9820 } 9821 9822 // Analyses past this point are naive and don't expect an assertion. 9823 if (Res.getOpcode() == ISD::AssertZext) 9824 Res = Res.getOperand(0); 9825 9826 // Update the SwiftErrorVRegDefMap. 9827 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9828 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9829 if (Register::isVirtualRegister(Reg)) 9830 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9831 Reg); 9832 } 9833 9834 // If this argument is live outside of the entry block, insert a copy from 9835 // wherever we got it to the vreg that other BB's will reference it as. 9836 if (Res.getOpcode() == ISD::CopyFromReg) { 9837 // If we can, though, try to skip creating an unnecessary vreg. 9838 // FIXME: This isn't very clean... it would be nice to make this more 9839 // general. 9840 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9841 if (Register::isVirtualRegister(Reg)) { 9842 FuncInfo->ValueMap[&Arg] = Reg; 9843 continue; 9844 } 9845 } 9846 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9847 FuncInfo->InitializeRegForValue(&Arg); 9848 SDB->CopyToExportRegsIfNeeded(&Arg); 9849 } 9850 } 9851 9852 if (!Chains.empty()) { 9853 Chains.push_back(NewRoot); 9854 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9855 } 9856 9857 DAG.setRoot(NewRoot); 9858 9859 assert(i == InVals.size() && "Argument register count mismatch!"); 9860 9861 // If any argument copy elisions occurred and we have debug info, update the 9862 // stale frame indices used in the dbg.declare variable info table. 9863 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9864 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9865 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9866 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9867 if (I != ArgCopyElisionFrameIndexMap.end()) 9868 VI.Slot = I->second; 9869 } 9870 } 9871 9872 // Finally, if the target has anything special to do, allow it to do so. 9873 emitFunctionEntryCode(); 9874 } 9875 9876 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9877 /// ensure constants are generated when needed. Remember the virtual registers 9878 /// that need to be added to the Machine PHI nodes as input. We cannot just 9879 /// directly add them, because expansion might result in multiple MBB's for one 9880 /// BB. As such, the start of the BB might correspond to a different MBB than 9881 /// the end. 9882 void 9883 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9884 const Instruction *TI = LLVMBB->getTerminator(); 9885 9886 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9887 9888 // Check PHI nodes in successors that expect a value to be available from this 9889 // block. 9890 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9891 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9892 if (!isa<PHINode>(SuccBB->begin())) continue; 9893 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9894 9895 // If this terminator has multiple identical successors (common for 9896 // switches), only handle each succ once. 9897 if (!SuccsHandled.insert(SuccMBB).second) 9898 continue; 9899 9900 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9901 9902 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9903 // nodes and Machine PHI nodes, but the incoming operands have not been 9904 // emitted yet. 9905 for (const PHINode &PN : SuccBB->phis()) { 9906 // Ignore dead phi's. 9907 if (PN.use_empty()) 9908 continue; 9909 9910 // Skip empty types 9911 if (PN.getType()->isEmptyTy()) 9912 continue; 9913 9914 unsigned Reg; 9915 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9916 9917 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9918 unsigned &RegOut = ConstantsOut[C]; 9919 if (RegOut == 0) { 9920 RegOut = FuncInfo.CreateRegs(C); 9921 CopyValueToVirtualRegister(C, RegOut); 9922 } 9923 Reg = RegOut; 9924 } else { 9925 DenseMap<const Value *, unsigned>::iterator I = 9926 FuncInfo.ValueMap.find(PHIOp); 9927 if (I != FuncInfo.ValueMap.end()) 9928 Reg = I->second; 9929 else { 9930 assert(isa<AllocaInst>(PHIOp) && 9931 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9932 "Didn't codegen value into a register!??"); 9933 Reg = FuncInfo.CreateRegs(PHIOp); 9934 CopyValueToVirtualRegister(PHIOp, Reg); 9935 } 9936 } 9937 9938 // Remember that this register needs to added to the machine PHI node as 9939 // the input for this MBB. 9940 SmallVector<EVT, 4> ValueVTs; 9941 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9942 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9943 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9944 EVT VT = ValueVTs[vti]; 9945 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9946 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9947 FuncInfo.PHINodesToUpdate.push_back( 9948 std::make_pair(&*MBBI++, Reg + i)); 9949 Reg += NumRegisters; 9950 } 9951 } 9952 } 9953 9954 ConstantsOut.clear(); 9955 } 9956 9957 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9958 /// is 0. 9959 MachineBasicBlock * 9960 SelectionDAGBuilder::StackProtectorDescriptor:: 9961 AddSuccessorMBB(const BasicBlock *BB, 9962 MachineBasicBlock *ParentMBB, 9963 bool IsLikely, 9964 MachineBasicBlock *SuccMBB) { 9965 // If SuccBB has not been created yet, create it. 9966 if (!SuccMBB) { 9967 MachineFunction *MF = ParentMBB->getParent(); 9968 MachineFunction::iterator BBI(ParentMBB); 9969 SuccMBB = MF->CreateMachineBasicBlock(BB); 9970 MF->insert(++BBI, SuccMBB); 9971 } 9972 // Add it as a successor of ParentMBB. 9973 ParentMBB->addSuccessor( 9974 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9975 return SuccMBB; 9976 } 9977 9978 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9979 MachineFunction::iterator I(MBB); 9980 if (++I == FuncInfo.MF->end()) 9981 return nullptr; 9982 return &*I; 9983 } 9984 9985 /// During lowering new call nodes can be created (such as memset, etc.). 9986 /// Those will become new roots of the current DAG, but complications arise 9987 /// when they are tail calls. In such cases, the call lowering will update 9988 /// the root, but the builder still needs to know that a tail call has been 9989 /// lowered in order to avoid generating an additional return. 9990 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9991 // If the node is null, we do have a tail call. 9992 if (MaybeTC.getNode() != nullptr) 9993 DAG.setRoot(MaybeTC); 9994 else 9995 HasTailCall = true; 9996 } 9997 9998 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9999 MachineBasicBlock *SwitchMBB, 10000 MachineBasicBlock *DefaultMBB) { 10001 MachineFunction *CurMF = FuncInfo.MF; 10002 MachineBasicBlock *NextMBB = nullptr; 10003 MachineFunction::iterator BBI(W.MBB); 10004 if (++BBI != FuncInfo.MF->end()) 10005 NextMBB = &*BBI; 10006 10007 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10008 10009 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10010 10011 if (Size == 2 && W.MBB == SwitchMBB) { 10012 // If any two of the cases has the same destination, and if one value 10013 // is the same as the other, but has one bit unset that the other has set, 10014 // use bit manipulation to do two compares at once. For example: 10015 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10016 // TODO: This could be extended to merge any 2 cases in switches with 3 10017 // cases. 10018 // TODO: Handle cases where W.CaseBB != SwitchBB. 10019 CaseCluster &Small = *W.FirstCluster; 10020 CaseCluster &Big = *W.LastCluster; 10021 10022 if (Small.Low == Small.High && Big.Low == Big.High && 10023 Small.MBB == Big.MBB) { 10024 const APInt &SmallValue = Small.Low->getValue(); 10025 const APInt &BigValue = Big.Low->getValue(); 10026 10027 // Check that there is only one bit different. 10028 APInt CommonBit = BigValue ^ SmallValue; 10029 if (CommonBit.isPowerOf2()) { 10030 SDValue CondLHS = getValue(Cond); 10031 EVT VT = CondLHS.getValueType(); 10032 SDLoc DL = getCurSDLoc(); 10033 10034 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10035 DAG.getConstant(CommonBit, DL, VT)); 10036 SDValue Cond = DAG.getSetCC( 10037 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10038 ISD::SETEQ); 10039 10040 // Update successor info. 10041 // Both Small and Big will jump to Small.BB, so we sum up the 10042 // probabilities. 10043 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10044 if (BPI) 10045 addSuccessorWithProb( 10046 SwitchMBB, DefaultMBB, 10047 // The default destination is the first successor in IR. 10048 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10049 else 10050 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10051 10052 // Insert the true branch. 10053 SDValue BrCond = 10054 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10055 DAG.getBasicBlock(Small.MBB)); 10056 // Insert the false branch. 10057 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10058 DAG.getBasicBlock(DefaultMBB)); 10059 10060 DAG.setRoot(BrCond); 10061 return; 10062 } 10063 } 10064 } 10065 10066 if (TM.getOptLevel() != CodeGenOpt::None) { 10067 // Here, we order cases by probability so the most likely case will be 10068 // checked first. However, two clusters can have the same probability in 10069 // which case their relative ordering is non-deterministic. So we use Low 10070 // as a tie-breaker as clusters are guaranteed to never overlap. 10071 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10072 [](const CaseCluster &a, const CaseCluster &b) { 10073 return a.Prob != b.Prob ? 10074 a.Prob > b.Prob : 10075 a.Low->getValue().slt(b.Low->getValue()); 10076 }); 10077 10078 // Rearrange the case blocks so that the last one falls through if possible 10079 // without changing the order of probabilities. 10080 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10081 --I; 10082 if (I->Prob > W.LastCluster->Prob) 10083 break; 10084 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10085 std::swap(*I, *W.LastCluster); 10086 break; 10087 } 10088 } 10089 } 10090 10091 // Compute total probability. 10092 BranchProbability DefaultProb = W.DefaultProb; 10093 BranchProbability UnhandledProbs = DefaultProb; 10094 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10095 UnhandledProbs += I->Prob; 10096 10097 MachineBasicBlock *CurMBB = W.MBB; 10098 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10099 bool FallthroughUnreachable = false; 10100 MachineBasicBlock *Fallthrough; 10101 if (I == W.LastCluster) { 10102 // For the last cluster, fall through to the default destination. 10103 Fallthrough = DefaultMBB; 10104 FallthroughUnreachable = isa<UnreachableInst>( 10105 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10106 } else { 10107 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10108 CurMF->insert(BBI, Fallthrough); 10109 // Put Cond in a virtual register to make it available from the new blocks. 10110 ExportFromCurrentBlock(Cond); 10111 } 10112 UnhandledProbs -= I->Prob; 10113 10114 switch (I->Kind) { 10115 case CC_JumpTable: { 10116 // FIXME: Optimize away range check based on pivot comparisons. 10117 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10118 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10119 10120 // The jump block hasn't been inserted yet; insert it here. 10121 MachineBasicBlock *JumpMBB = JT->MBB; 10122 CurMF->insert(BBI, JumpMBB); 10123 10124 auto JumpProb = I->Prob; 10125 auto FallthroughProb = UnhandledProbs; 10126 10127 // If the default statement is a target of the jump table, we evenly 10128 // distribute the default probability to successors of CurMBB. Also 10129 // update the probability on the edge from JumpMBB to Fallthrough. 10130 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10131 SE = JumpMBB->succ_end(); 10132 SI != SE; ++SI) { 10133 if (*SI == DefaultMBB) { 10134 JumpProb += DefaultProb / 2; 10135 FallthroughProb -= DefaultProb / 2; 10136 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10137 JumpMBB->normalizeSuccProbs(); 10138 break; 10139 } 10140 } 10141 10142 if (FallthroughUnreachable) { 10143 // Skip the range check if the fallthrough block is unreachable. 10144 JTH->OmitRangeCheck = true; 10145 } 10146 10147 if (!JTH->OmitRangeCheck) 10148 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10149 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10150 CurMBB->normalizeSuccProbs(); 10151 10152 // The jump table header will be inserted in our current block, do the 10153 // range check, and fall through to our fallthrough block. 10154 JTH->HeaderBB = CurMBB; 10155 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10156 10157 // If we're in the right place, emit the jump table header right now. 10158 if (CurMBB == SwitchMBB) { 10159 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10160 JTH->Emitted = true; 10161 } 10162 break; 10163 } 10164 case CC_BitTests: { 10165 // FIXME: Optimize away range check based on pivot comparisons. 10166 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10167 10168 // The bit test blocks haven't been inserted yet; insert them here. 10169 for (BitTestCase &BTC : BTB->Cases) 10170 CurMF->insert(BBI, BTC.ThisBB); 10171 10172 // Fill in fields of the BitTestBlock. 10173 BTB->Parent = CurMBB; 10174 BTB->Default = Fallthrough; 10175 10176 BTB->DefaultProb = UnhandledProbs; 10177 // If the cases in bit test don't form a contiguous range, we evenly 10178 // distribute the probability on the edge to Fallthrough to two 10179 // successors of CurMBB. 10180 if (!BTB->ContiguousRange) { 10181 BTB->Prob += DefaultProb / 2; 10182 BTB->DefaultProb -= DefaultProb / 2; 10183 } 10184 10185 if (FallthroughUnreachable) { 10186 // Skip the range check if the fallthrough block is unreachable. 10187 BTB->OmitRangeCheck = true; 10188 } 10189 10190 // If we're in the right place, emit the bit test header right now. 10191 if (CurMBB == SwitchMBB) { 10192 visitBitTestHeader(*BTB, SwitchMBB); 10193 BTB->Emitted = true; 10194 } 10195 break; 10196 } 10197 case CC_Range: { 10198 const Value *RHS, *LHS, *MHS; 10199 ISD::CondCode CC; 10200 if (I->Low == I->High) { 10201 // Check Cond == I->Low. 10202 CC = ISD::SETEQ; 10203 LHS = Cond; 10204 RHS=I->Low; 10205 MHS = nullptr; 10206 } else { 10207 // Check I->Low <= Cond <= I->High. 10208 CC = ISD::SETLE; 10209 LHS = I->Low; 10210 MHS = Cond; 10211 RHS = I->High; 10212 } 10213 10214 // If Fallthrough is unreachable, fold away the comparison. 10215 if (FallthroughUnreachable) 10216 CC = ISD::SETTRUE; 10217 10218 // The false probability is the sum of all unhandled cases. 10219 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10220 getCurSDLoc(), I->Prob, UnhandledProbs); 10221 10222 if (CurMBB == SwitchMBB) 10223 visitSwitchCase(CB, SwitchMBB); 10224 else 10225 SL->SwitchCases.push_back(CB); 10226 10227 break; 10228 } 10229 } 10230 CurMBB = Fallthrough; 10231 } 10232 } 10233 10234 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10235 CaseClusterIt First, 10236 CaseClusterIt Last) { 10237 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10238 if (X.Prob != CC.Prob) 10239 return X.Prob > CC.Prob; 10240 10241 // Ties are broken by comparing the case value. 10242 return X.Low->getValue().slt(CC.Low->getValue()); 10243 }); 10244 } 10245 10246 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10247 const SwitchWorkListItem &W, 10248 Value *Cond, 10249 MachineBasicBlock *SwitchMBB) { 10250 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10251 "Clusters not sorted?"); 10252 10253 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10254 10255 // Balance the tree based on branch probabilities to create a near-optimal (in 10256 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10257 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10258 CaseClusterIt LastLeft = W.FirstCluster; 10259 CaseClusterIt FirstRight = W.LastCluster; 10260 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10261 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10262 10263 // Move LastLeft and FirstRight towards each other from opposite directions to 10264 // find a partitioning of the clusters which balances the probability on both 10265 // sides. If LeftProb and RightProb are equal, alternate which side is 10266 // taken to ensure 0-probability nodes are distributed evenly. 10267 unsigned I = 0; 10268 while (LastLeft + 1 < FirstRight) { 10269 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10270 LeftProb += (++LastLeft)->Prob; 10271 else 10272 RightProb += (--FirstRight)->Prob; 10273 I++; 10274 } 10275 10276 while (true) { 10277 // Our binary search tree differs from a typical BST in that ours can have up 10278 // to three values in each leaf. The pivot selection above doesn't take that 10279 // into account, which means the tree might require more nodes and be less 10280 // efficient. We compensate for this here. 10281 10282 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10283 unsigned NumRight = W.LastCluster - FirstRight + 1; 10284 10285 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10286 // If one side has less than 3 clusters, and the other has more than 3, 10287 // consider taking a cluster from the other side. 10288 10289 if (NumLeft < NumRight) { 10290 // Consider moving the first cluster on the right to the left side. 10291 CaseCluster &CC = *FirstRight; 10292 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10293 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10294 if (LeftSideRank <= RightSideRank) { 10295 // Moving the cluster to the left does not demote it. 10296 ++LastLeft; 10297 ++FirstRight; 10298 continue; 10299 } 10300 } else { 10301 assert(NumRight < NumLeft); 10302 // Consider moving the last element on the left to the right side. 10303 CaseCluster &CC = *LastLeft; 10304 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10305 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10306 if (RightSideRank <= LeftSideRank) { 10307 // Moving the cluster to the right does not demot it. 10308 --LastLeft; 10309 --FirstRight; 10310 continue; 10311 } 10312 } 10313 } 10314 break; 10315 } 10316 10317 assert(LastLeft + 1 == FirstRight); 10318 assert(LastLeft >= W.FirstCluster); 10319 assert(FirstRight <= W.LastCluster); 10320 10321 // Use the first element on the right as pivot since we will make less-than 10322 // comparisons against it. 10323 CaseClusterIt PivotCluster = FirstRight; 10324 assert(PivotCluster > W.FirstCluster); 10325 assert(PivotCluster <= W.LastCluster); 10326 10327 CaseClusterIt FirstLeft = W.FirstCluster; 10328 CaseClusterIt LastRight = W.LastCluster; 10329 10330 const ConstantInt *Pivot = PivotCluster->Low; 10331 10332 // New blocks will be inserted immediately after the current one. 10333 MachineFunction::iterator BBI(W.MBB); 10334 ++BBI; 10335 10336 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10337 // we can branch to its destination directly if it's squeezed exactly in 10338 // between the known lower bound and Pivot - 1. 10339 MachineBasicBlock *LeftMBB; 10340 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10341 FirstLeft->Low == W.GE && 10342 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10343 LeftMBB = FirstLeft->MBB; 10344 } else { 10345 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10346 FuncInfo.MF->insert(BBI, LeftMBB); 10347 WorkList.push_back( 10348 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10349 // Put Cond in a virtual register to make it available from the new blocks. 10350 ExportFromCurrentBlock(Cond); 10351 } 10352 10353 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10354 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10355 // directly if RHS.High equals the current upper bound. 10356 MachineBasicBlock *RightMBB; 10357 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10358 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10359 RightMBB = FirstRight->MBB; 10360 } else { 10361 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10362 FuncInfo.MF->insert(BBI, RightMBB); 10363 WorkList.push_back( 10364 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10365 // Put Cond in a virtual register to make it available from the new blocks. 10366 ExportFromCurrentBlock(Cond); 10367 } 10368 10369 // Create the CaseBlock record that will be used to lower the branch. 10370 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10371 getCurSDLoc(), LeftProb, RightProb); 10372 10373 if (W.MBB == SwitchMBB) 10374 visitSwitchCase(CB, SwitchMBB); 10375 else 10376 SL->SwitchCases.push_back(CB); 10377 } 10378 10379 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10380 // from the swith statement. 10381 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10382 BranchProbability PeeledCaseProb) { 10383 if (PeeledCaseProb == BranchProbability::getOne()) 10384 return BranchProbability::getZero(); 10385 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10386 10387 uint32_t Numerator = CaseProb.getNumerator(); 10388 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10389 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10390 } 10391 10392 // Try to peel the top probability case if it exceeds the threshold. 10393 // Return current MachineBasicBlock for the switch statement if the peeling 10394 // does not occur. 10395 // If the peeling is performed, return the newly created MachineBasicBlock 10396 // for the peeled switch statement. Also update Clusters to remove the peeled 10397 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10398 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10399 const SwitchInst &SI, CaseClusterVector &Clusters, 10400 BranchProbability &PeeledCaseProb) { 10401 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10402 // Don't perform if there is only one cluster or optimizing for size. 10403 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10404 TM.getOptLevel() == CodeGenOpt::None || 10405 SwitchMBB->getParent()->getFunction().hasMinSize()) 10406 return SwitchMBB; 10407 10408 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10409 unsigned PeeledCaseIndex = 0; 10410 bool SwitchPeeled = false; 10411 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10412 CaseCluster &CC = Clusters[Index]; 10413 if (CC.Prob < TopCaseProb) 10414 continue; 10415 TopCaseProb = CC.Prob; 10416 PeeledCaseIndex = Index; 10417 SwitchPeeled = true; 10418 } 10419 if (!SwitchPeeled) 10420 return SwitchMBB; 10421 10422 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10423 << TopCaseProb << "\n"); 10424 10425 // Record the MBB for the peeled switch statement. 10426 MachineFunction::iterator BBI(SwitchMBB); 10427 ++BBI; 10428 MachineBasicBlock *PeeledSwitchMBB = 10429 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10430 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10431 10432 ExportFromCurrentBlock(SI.getCondition()); 10433 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10434 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10435 nullptr, nullptr, TopCaseProb.getCompl()}; 10436 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10437 10438 Clusters.erase(PeeledCaseIt); 10439 for (CaseCluster &CC : Clusters) { 10440 LLVM_DEBUG( 10441 dbgs() << "Scale the probablity for one cluster, before scaling: " 10442 << CC.Prob << "\n"); 10443 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10444 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10445 } 10446 PeeledCaseProb = TopCaseProb; 10447 return PeeledSwitchMBB; 10448 } 10449 10450 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10451 // Extract cases from the switch. 10452 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10453 CaseClusterVector Clusters; 10454 Clusters.reserve(SI.getNumCases()); 10455 for (auto I : SI.cases()) { 10456 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10457 const ConstantInt *CaseVal = I.getCaseValue(); 10458 BranchProbability Prob = 10459 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10460 : BranchProbability(1, SI.getNumCases() + 1); 10461 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10462 } 10463 10464 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10465 10466 // Cluster adjacent cases with the same destination. We do this at all 10467 // optimization levels because it's cheap to do and will make codegen faster 10468 // if there are many clusters. 10469 sortAndRangeify(Clusters); 10470 10471 // The branch probablity of the peeled case. 10472 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10473 MachineBasicBlock *PeeledSwitchMBB = 10474 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10475 10476 // If there is only the default destination, jump there directly. 10477 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10478 if (Clusters.empty()) { 10479 assert(PeeledSwitchMBB == SwitchMBB); 10480 SwitchMBB->addSuccessor(DefaultMBB); 10481 if (DefaultMBB != NextBlock(SwitchMBB)) { 10482 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10483 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10484 } 10485 return; 10486 } 10487 10488 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10489 SL->findBitTestClusters(Clusters, &SI); 10490 10491 LLVM_DEBUG({ 10492 dbgs() << "Case clusters: "; 10493 for (const CaseCluster &C : Clusters) { 10494 if (C.Kind == CC_JumpTable) 10495 dbgs() << "JT:"; 10496 if (C.Kind == CC_BitTests) 10497 dbgs() << "BT:"; 10498 10499 C.Low->getValue().print(dbgs(), true); 10500 if (C.Low != C.High) { 10501 dbgs() << '-'; 10502 C.High->getValue().print(dbgs(), true); 10503 } 10504 dbgs() << ' '; 10505 } 10506 dbgs() << '\n'; 10507 }); 10508 10509 assert(!Clusters.empty()); 10510 SwitchWorkList WorkList; 10511 CaseClusterIt First = Clusters.begin(); 10512 CaseClusterIt Last = Clusters.end() - 1; 10513 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10514 // Scale the branchprobability for DefaultMBB if the peel occurs and 10515 // DefaultMBB is not replaced. 10516 if (PeeledCaseProb != BranchProbability::getZero() && 10517 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10518 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10519 WorkList.push_back( 10520 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10521 10522 while (!WorkList.empty()) { 10523 SwitchWorkListItem W = WorkList.back(); 10524 WorkList.pop_back(); 10525 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10526 10527 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10528 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10529 // For optimized builds, lower large range as a balanced binary tree. 10530 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10531 continue; 10532 } 10533 10534 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10535 } 10536 } 10537 10538 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10539 SDNodeFlags Flags; 10540 10541 SDValue Op = getValue(I.getOperand(0)); 10542 if (I.getOperand(0)->getType()->isAggregateType()) { 10543 EVT VT = Op.getValueType(); 10544 SmallVector<SDValue, 1> Values; 10545 for (unsigned i = 0; i < Op.getNumOperands(); ++i) { 10546 SDValue Arg(Op.getNode(), i); 10547 SDValue UnNodeValue = DAG.getNode(ISD::FREEZE, getCurSDLoc(), VT, Arg, Flags); 10548 Values.push_back(UnNodeValue); 10549 } 10550 SDValue MergedValue = DAG.getMergeValues(Values, getCurSDLoc()); 10551 setValue(&I, MergedValue); 10552 } else { 10553 SDValue UnNodeValue = DAG.getNode(ISD::FREEZE, getCurSDLoc(), Op.getValueType(), 10554 Op, Flags); 10555 setValue(&I, UnNodeValue); 10556 } 10557 } 10558