1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "FunctionLoweringInfo.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/Module.h" 32 #include "llvm/CodeGen/FastISel.h" 33 #include "llvm/CodeGen/GCStrategy.h" 34 #include "llvm/CodeGen/GCMetadata.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineJumpTableInfo.h" 39 #include "llvm/CodeGen/MachineModuleInfo.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/PseudoSourceValue.h" 42 #include "llvm/CodeGen/SelectionDAG.h" 43 #include "llvm/CodeGen/DwarfWriter.h" 44 #include "llvm/Analysis/DebugInfo.h" 45 #include "llvm/Target/TargetRegisterInfo.h" 46 #include "llvm/Target/TargetData.h" 47 #include "llvm/Target/TargetFrameInfo.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetIntrinsicInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 using namespace llvm; 60 61 /// LimitFloatPrecision - Generate low-precision inline sequences for 62 /// some float libcalls (6, 8 or 12 bits). 63 static unsigned LimitFloatPrecision; 64 65 static cl::opt<unsigned, true> 66 LimitFPPrecision("limit-float-precision", 67 cl::desc("Generate low-precision inline sequences " 68 "for some float libcalls"), 69 cl::location(LimitFloatPrecision), 70 cl::init(0)); 71 72 namespace { 73 /// RegsForValue - This struct represents the registers (physical or virtual) 74 /// that a particular set of values is assigned, and the type information 75 /// about the value. The most common situation is to represent one value at a 76 /// time, but struct or array values are handled element-wise as multiple 77 /// values. The splitting of aggregates is performed recursively, so that we 78 /// never have aggregate-typed registers. The values at this point do not 79 /// necessarily have legal types, so each value may require one or more 80 /// registers of some legal type. 81 /// 82 struct RegsForValue { 83 /// TLI - The TargetLowering object. 84 /// 85 const TargetLowering *TLI; 86 87 /// ValueVTs - The value types of the values, which may not be legal, and 88 /// may need be promoted or synthesized from one or more registers. 89 /// 90 SmallVector<EVT, 4> ValueVTs; 91 92 /// RegVTs - The value types of the registers. This is the same size as 93 /// ValueVTs and it records, for each value, what the type of the assigned 94 /// register or registers are. (Individual values are never synthesized 95 /// from more than one type of register.) 96 /// 97 /// With virtual registers, the contents of RegVTs is redundant with TLI's 98 /// getRegisterType member function, however when with physical registers 99 /// it is necessary to have a separate record of the types. 100 /// 101 SmallVector<EVT, 4> RegVTs; 102 103 /// Regs - This list holds the registers assigned to the values. 104 /// Each legal or promoted value requires one register, and each 105 /// expanded value requires multiple registers. 106 /// 107 SmallVector<unsigned, 4> Regs; 108 109 RegsForValue() : TLI(0) {} 110 111 RegsForValue(const TargetLowering &tli, 112 const SmallVector<unsigned, 4> ®s, 113 EVT regvt, EVT valuevt) 114 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 115 RegsForValue(const TargetLowering &tli, 116 const SmallVector<unsigned, 4> ®s, 117 const SmallVector<EVT, 4> ®vts, 118 const SmallVector<EVT, 4> &valuevts) 119 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} 120 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 121 unsigned Reg, const Type *Ty) : TLI(&tli) { 122 ComputeValueVTs(tli, Ty, ValueVTs); 123 124 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 125 EVT ValueVT = ValueVTs[Value]; 126 unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT); 127 EVT RegisterVT = TLI->getRegisterType(Context, ValueVT); 128 for (unsigned i = 0; i != NumRegs; ++i) 129 Regs.push_back(Reg + i); 130 RegVTs.push_back(RegisterVT); 131 Reg += NumRegs; 132 } 133 } 134 135 /// areValueTypesLegal - Return true if types of all the values are legal. 136 bool areValueTypesLegal() { 137 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 138 EVT RegisterVT = RegVTs[Value]; 139 if (!TLI->isTypeLegal(RegisterVT)) 140 return false; 141 } 142 return true; 143 } 144 145 146 /// append - Add the specified values to this one. 147 void append(const RegsForValue &RHS) { 148 TLI = RHS.TLI; 149 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 150 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 151 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 152 } 153 154 155 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 156 /// this value and returns the result as a ValueVTs value. This uses 157 /// Chain/Flag as the input and updates them for the output Chain/Flag. 158 /// If the Flag pointer is NULL, no flag is used. 159 SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 160 SDValue &Chain, SDValue *Flag) const; 161 162 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 163 /// specified value into the registers specified by this object. This uses 164 /// Chain/Flag as the input and updates them for the output Chain/Flag. 165 /// If the Flag pointer is NULL, no flag is used. 166 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 167 SDValue &Chain, SDValue *Flag) const; 168 169 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 170 /// operand list. This adds the code marker, matching input operand index 171 /// (if applicable), and includes the number of values added into it. 172 void AddInlineAsmOperands(unsigned Code, 173 bool HasMatching, unsigned MatchingIdx, 174 SelectionDAG &DAG, 175 std::vector<SDValue> &Ops) const; 176 }; 177 } 178 179 /// getCopyFromParts - Create a value that contains the specified legal parts 180 /// combined into the value they represent. If the parts combine to a type 181 /// larger then ValueVT then AssertOp can be used to specify whether the extra 182 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 183 /// (ISD::AssertSext). 184 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, 185 const SDValue *Parts, 186 unsigned NumParts, EVT PartVT, EVT ValueVT, 187 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 188 assert(NumParts > 0 && "No parts to assemble!"); 189 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 190 SDValue Val = Parts[0]; 191 192 if (NumParts > 1) { 193 // Assemble the value from multiple parts. 194 if (!ValueVT.isVector() && ValueVT.isInteger()) { 195 unsigned PartBits = PartVT.getSizeInBits(); 196 unsigned ValueBits = ValueVT.getSizeInBits(); 197 198 // Assemble the power of 2 part. 199 unsigned RoundParts = NumParts & (NumParts - 1) ? 200 1 << Log2_32(NumParts) : NumParts; 201 unsigned RoundBits = PartBits * RoundParts; 202 EVT RoundVT = RoundBits == ValueBits ? 203 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 204 SDValue Lo, Hi; 205 206 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 207 208 if (RoundParts > 2) { 209 Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2, 210 PartVT, HalfVT); 211 Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2, 212 RoundParts / 2, PartVT, HalfVT); 213 } else { 214 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); 215 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); 216 } 217 218 if (TLI.isBigEndian()) 219 std::swap(Lo, Hi); 220 221 Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); 222 223 if (RoundParts < NumParts) { 224 // Assemble the trailing non-power-of-2 part. 225 unsigned OddParts = NumParts - RoundParts; 226 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 227 Hi = getCopyFromParts(DAG, dl, 228 Parts + RoundParts, OddParts, PartVT, OddVT); 229 230 // Combine the round and odd parts. 231 Lo = Val; 232 if (TLI.isBigEndian()) 233 std::swap(Lo, Hi); 234 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 235 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); 236 Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, 237 DAG.getConstant(Lo.getValueType().getSizeInBits(), 238 TLI.getPointerTy())); 239 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); 240 Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); 241 } 242 } else if (ValueVT.isVector()) { 243 // Handle a multi-element vector. 244 EVT IntermediateVT, RegisterVT; 245 unsigned NumIntermediates; 246 unsigned NumRegs = 247 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 248 NumIntermediates, RegisterVT); 249 assert(NumRegs == NumParts 250 && "Part count doesn't match vector breakdown!"); 251 NumParts = NumRegs; // Silence a compiler warning. 252 assert(RegisterVT == PartVT 253 && "Part type doesn't match vector breakdown!"); 254 assert(RegisterVT == Parts[0].getValueType() && 255 "Part type doesn't match part!"); 256 257 // Assemble the parts into intermediate operands. 258 SmallVector<SDValue, 8> Ops(NumIntermediates); 259 if (NumIntermediates == NumParts) { 260 // If the register was not expanded, truncate or copy the value, 261 // as appropriate. 262 for (unsigned i = 0; i != NumParts; ++i) 263 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, 264 PartVT, IntermediateVT); 265 } else if (NumParts > 0) { 266 // If the intermediate type was expanded, build the intermediate 267 // operands from the parts. 268 assert(NumParts % NumIntermediates == 0 && 269 "Must expand into a divisible number of parts!"); 270 unsigned Factor = NumParts / NumIntermediates; 271 for (unsigned i = 0; i != NumIntermediates; ++i) 272 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, 273 PartVT, IntermediateVT); 274 } 275 276 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 277 // intermediate operands. 278 Val = DAG.getNode(IntermediateVT.isVector() ? 279 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, 280 ValueVT, &Ops[0], NumIntermediates); 281 } else if (PartVT.isFloatingPoint()) { 282 // FP split into multiple FP parts (for ppcf128) 283 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 284 "Unexpected split"); 285 SDValue Lo, Hi; 286 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); 287 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); 288 if (TLI.isBigEndian()) 289 std::swap(Lo, Hi); 290 Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); 291 } else { 292 // FP split into integer parts (soft fp) 293 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 294 !PartVT.isVector() && "Unexpected split"); 295 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 296 Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); 297 } 298 } 299 300 // There is now one part, held in Val. Correct it to match ValueVT. 301 PartVT = Val.getValueType(); 302 303 if (PartVT == ValueVT) 304 return Val; 305 306 if (PartVT.isVector()) { 307 assert(ValueVT.isVector() && "Unknown vector conversion!"); 308 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 309 } 310 311 if (ValueVT.isVector()) { 312 assert(ValueVT.getVectorElementType() == PartVT && 313 ValueVT.getVectorNumElements() == 1 && 314 "Only trivial scalar-to-vector conversions should get here!"); 315 return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); 316 } 317 318 if (PartVT.isInteger() && 319 ValueVT.isInteger()) { 320 if (ValueVT.bitsLT(PartVT)) { 321 // For a truncate, see if we have any information to 322 // indicate whether the truncated bits will always be 323 // zero or sign-extension. 324 if (AssertOp != ISD::DELETED_NODE) 325 Val = DAG.getNode(AssertOp, dl, PartVT, Val, 326 DAG.getValueType(ValueVT)); 327 return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 328 } else { 329 return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); 330 } 331 } 332 333 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 334 if (ValueVT.bitsLT(Val.getValueType())) { 335 // FP_ROUND's are always exact here. 336 return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, 337 DAG.getIntPtrConstant(1)); 338 } 339 340 return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); 341 } 342 343 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 344 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 345 346 llvm_unreachable("Unknown mismatch!"); 347 return SDValue(); 348 } 349 350 /// getCopyToParts - Create a series of nodes that contain the specified value 351 /// split into legal parts. If the parts contain more bits than Val, then, for 352 /// integers, ExtendKind can be used to specify how to generate the extra bits. 353 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, 354 SDValue Val, SDValue *Parts, unsigned NumParts, 355 EVT PartVT, 356 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 EVT PtrVT = TLI.getPointerTy(); 359 EVT ValueVT = Val.getValueType(); 360 unsigned PartBits = PartVT.getSizeInBits(); 361 unsigned OrigNumParts = NumParts; 362 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 363 364 if (!NumParts) 365 return; 366 367 if (!ValueVT.isVector()) { 368 if (PartVT == ValueVT) { 369 assert(NumParts == 1 && "No-op copy with multiple parts!"); 370 Parts[0] = Val; 371 return; 372 } 373 374 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 375 // If the parts cover more bits than the value has, promote the value. 376 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 377 assert(NumParts == 1 && "Do not know what to promote to!"); 378 Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); 379 } else if (PartVT.isInteger() && ValueVT.isInteger()) { 380 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 381 Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); 382 } else { 383 llvm_unreachable("Unknown mismatch!"); 384 } 385 } else if (PartBits == ValueVT.getSizeInBits()) { 386 // Different types of the same size. 387 assert(NumParts == 1 && PartVT != ValueVT); 388 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 389 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 390 // If the parts cover less bits than value has, truncate the value. 391 if (PartVT.isInteger() && ValueVT.isInteger()) { 392 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 393 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 394 } else { 395 llvm_unreachable("Unknown mismatch!"); 396 } 397 } 398 399 // The value may have changed - recompute ValueVT. 400 ValueVT = Val.getValueType(); 401 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 402 "Failed to tile the value with PartVT!"); 403 404 if (NumParts == 1) { 405 assert(PartVT == ValueVT && "Type conversion failed!"); 406 Parts[0] = Val; 407 return; 408 } 409 410 // Expand the value into multiple parts. 411 if (NumParts & (NumParts - 1)) { 412 // The number of parts is not a power of 2. Split off and copy the tail. 413 assert(PartVT.isInteger() && ValueVT.isInteger() && 414 "Do not know what to expand to!"); 415 unsigned RoundParts = 1 << Log2_32(NumParts); 416 unsigned RoundBits = RoundParts * PartBits; 417 unsigned OddParts = NumParts - RoundParts; 418 SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, 419 DAG.getConstant(RoundBits, 420 TLI.getPointerTy())); 421 getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, 422 OddParts, PartVT); 423 424 if (TLI.isBigEndian()) 425 // The odd parts were reversed by getCopyToParts - unreverse them. 426 std::reverse(Parts + RoundParts, Parts + NumParts); 427 428 NumParts = RoundParts; 429 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 430 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 431 } 432 433 // The number of parts is a power of 2. Repeatedly bisect the value using 434 // EXTRACT_ELEMENT. 435 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, 436 EVT::getIntegerVT(*DAG.getContext(), 437 ValueVT.getSizeInBits()), 438 Val); 439 440 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 441 for (unsigned i = 0; i < NumParts; i += StepSize) { 442 unsigned ThisBits = StepSize * PartBits / 2; 443 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 444 SDValue &Part0 = Parts[i]; 445 SDValue &Part1 = Parts[i+StepSize/2]; 446 447 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 448 ThisVT, Part0, 449 DAG.getConstant(1, PtrVT)); 450 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 451 ThisVT, Part0, 452 DAG.getConstant(0, PtrVT)); 453 454 if (ThisBits == PartBits && ThisVT != PartVT) { 455 Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, 456 PartVT, Part0); 457 Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, 458 PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 466 return; 467 } 468 469 // Vector ValueVT. 470 if (NumParts == 1) { 471 if (PartVT != ValueVT) { 472 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 473 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 474 } else { 475 assert(ValueVT.getVectorElementType() == PartVT && 476 ValueVT.getVectorNumElements() == 1 && 477 "Only trivial vector-to-scalar conversions should get here!"); 478 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 479 PartVT, Val, 480 DAG.getConstant(0, PtrVT)); 481 } 482 } 483 484 Parts[0] = Val; 485 return; 486 } 487 488 // Handle a multi-element vector. 489 EVT IntermediateVT, RegisterVT; 490 unsigned NumIntermediates; 491 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 492 IntermediateVT, NumIntermediates, RegisterVT); 493 unsigned NumElements = ValueVT.getVectorNumElements(); 494 495 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 496 NumParts = NumRegs; // Silence a compiler warning. 497 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 498 499 // Split the vector into intermediate operands. 500 SmallVector<SDValue, 8> Ops(NumIntermediates); 501 for (unsigned i = 0; i != NumIntermediates; ++i) { 502 if (IntermediateVT.isVector()) 503 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, 504 IntermediateVT, Val, 505 DAG.getConstant(i * (NumElements / NumIntermediates), 506 PtrVT)); 507 else 508 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 509 IntermediateVT, Val, 510 DAG.getConstant(i, PtrVT)); 511 } 512 513 // Split the intermediate operands into legal parts. 514 if (NumParts == NumIntermediates) { 515 // If the register was not expanded, promote or copy the value, 516 // as appropriate. 517 for (unsigned i = 0; i != NumParts; ++i) 518 getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); 519 } else if (NumParts > 0) { 520 // If the intermediate type was expanded, split each the value into 521 // legal parts. 522 assert(NumParts % NumIntermediates == 0 && 523 "Must expand into a divisible number of parts!"); 524 unsigned Factor = NumParts / NumIntermediates; 525 for (unsigned i = 0; i != NumIntermediates; ++i) 526 getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT); 527 } 528 } 529 530 531 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 532 AA = &aa; 533 GFI = gfi; 534 TD = DAG.getTarget().getTargetData(); 535 } 536 537 /// clear - Clear out the curret SelectionDAG and the associated 538 /// state and prepare this SelectionDAGBuilder object to be used 539 /// for a new block. This doesn't clear out information about 540 /// additional blocks that are needed to complete switch lowering 541 /// or PHI node updating; that information is cleared out as it is 542 /// consumed. 543 void SelectionDAGBuilder::clear() { 544 NodeMap.clear(); 545 PendingLoads.clear(); 546 PendingExports.clear(); 547 EdgeMapping.clear(); 548 DAG.clear(); 549 CurDebugLoc = DebugLoc::getUnknownLoc(); 550 HasTailCall = false; 551 } 552 553 /// getRoot - Return the current virtual root of the Selection DAG, 554 /// flushing any PendingLoad items. This must be done before emitting 555 /// a store or any other node that may need to be ordered after any 556 /// prior load instructions. 557 /// 558 SDValue SelectionDAGBuilder::getRoot() { 559 if (PendingLoads.empty()) 560 return DAG.getRoot(); 561 562 if (PendingLoads.size() == 1) { 563 SDValue Root = PendingLoads[0]; 564 DAG.setRoot(Root); 565 PendingLoads.clear(); 566 return Root; 567 } 568 569 // Otherwise, we have to make a token factor node. 570 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 571 &PendingLoads[0], PendingLoads.size()); 572 PendingLoads.clear(); 573 DAG.setRoot(Root); 574 return Root; 575 } 576 577 /// getControlRoot - Similar to getRoot, but instead of flushing all the 578 /// PendingLoad items, flush all the PendingExports items. It is necessary 579 /// to do this before emitting a terminator instruction. 580 /// 581 SDValue SelectionDAGBuilder::getControlRoot() { 582 SDValue Root = DAG.getRoot(); 583 584 if (PendingExports.empty()) 585 return Root; 586 587 // Turn all of the CopyToReg chains into one factored node. 588 if (Root.getOpcode() != ISD::EntryToken) { 589 unsigned i = 0, e = PendingExports.size(); 590 for (; i != e; ++i) { 591 assert(PendingExports[i].getNode()->getNumOperands() > 1); 592 if (PendingExports[i].getNode()->getOperand(0) == Root) 593 break; // Don't add the root if we already indirectly depend on it. 594 } 595 596 if (i == e) 597 PendingExports.push_back(Root); 598 } 599 600 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 601 &PendingExports[0], 602 PendingExports.size()); 603 PendingExports.clear(); 604 DAG.setRoot(Root); 605 return Root; 606 } 607 608 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 609 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 610 DAG.AssignOrdering(Node, SDNodeOrder); 611 612 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 613 AssignOrderingToNode(Node->getOperand(I).getNode()); 614 } 615 616 void SelectionDAGBuilder::visit(Instruction &I) { 617 visit(I.getOpcode(), I); 618 } 619 620 void SelectionDAGBuilder::visit(unsigned Opcode, User &I) { 621 // Note: this doesn't use InstVisitor, because it has to work with 622 // ConstantExpr's in addition to instructions. 623 switch (Opcode) { 624 default: llvm_unreachable("Unknown instruction type encountered!"); 625 // Build the switch statement using the Instruction.def file. 626 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 627 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 628 #include "llvm/Instruction.def" 629 } 630 631 // Assign the ordering to the freshly created DAG nodes. 632 if (NodeMap.count(&I)) { 633 ++SDNodeOrder; 634 AssignOrderingToNode(getValue(&I).getNode()); 635 } 636 } 637 638 SDValue SelectionDAGBuilder::getValue(const Value *V) { 639 SDValue &N = NodeMap[V]; 640 if (N.getNode()) return N; 641 642 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) { 643 EVT VT = TLI.getValueType(V->getType(), true); 644 645 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 646 return N = DAG.getConstant(*CI, VT); 647 648 if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) 649 return N = DAG.getGlobalAddress(GV, VT); 650 651 if (isa<ConstantPointerNull>(C)) 652 return N = DAG.getConstant(0, TLI.getPointerTy()); 653 654 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 655 return N = DAG.getConstantFP(*CFP, VT); 656 657 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 658 return N = DAG.getUNDEF(VT); 659 660 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 661 visit(CE->getOpcode(), *CE); 662 SDValue N1 = NodeMap[V]; 663 assert(N1.getNode() && "visit didn't populate the ValueMap!"); 664 return N1; 665 } 666 667 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 668 SmallVector<SDValue, 4> Constants; 669 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 670 OI != OE; ++OI) { 671 SDNode *Val = getValue(*OI).getNode(); 672 // If the operand is an empty aggregate, there are no values. 673 if (!Val) continue; 674 // Add each leaf value from the operand to the Constants list 675 // to form a flattened list of all the values. 676 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 677 Constants.push_back(SDValue(Val, i)); 678 } 679 680 return DAG.getMergeValues(&Constants[0], Constants.size(), 681 getCurDebugLoc()); 682 } 683 684 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 685 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 686 "Unknown struct or array constant!"); 687 688 SmallVector<EVT, 4> ValueVTs; 689 ComputeValueVTs(TLI, C->getType(), ValueVTs); 690 unsigned NumElts = ValueVTs.size(); 691 if (NumElts == 0) 692 return SDValue(); // empty struct 693 SmallVector<SDValue, 4> Constants(NumElts); 694 for (unsigned i = 0; i != NumElts; ++i) { 695 EVT EltVT = ValueVTs[i]; 696 if (isa<UndefValue>(C)) 697 Constants[i] = DAG.getUNDEF(EltVT); 698 else if (EltVT.isFloatingPoint()) 699 Constants[i] = DAG.getConstantFP(0, EltVT); 700 else 701 Constants[i] = DAG.getConstant(0, EltVT); 702 } 703 704 return DAG.getMergeValues(&Constants[0], NumElts, 705 getCurDebugLoc()); 706 } 707 708 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 709 return DAG.getBlockAddress(BA, VT); 710 711 const VectorType *VecTy = cast<VectorType>(V->getType()); 712 unsigned NumElements = VecTy->getNumElements(); 713 714 // Now that we know the number and type of the elements, get that number of 715 // elements into the Ops array based on what kind of constant it is. 716 SmallVector<SDValue, 16> Ops; 717 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 718 for (unsigned i = 0; i != NumElements; ++i) 719 Ops.push_back(getValue(CP->getOperand(i))); 720 } else { 721 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 722 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 723 724 SDValue Op; 725 if (EltVT.isFloatingPoint()) 726 Op = DAG.getConstantFP(0, EltVT); 727 else 728 Op = DAG.getConstant(0, EltVT); 729 Ops.assign(NumElements, Op); 730 } 731 732 // Create a BUILD_VECTOR node. 733 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 734 VT, &Ops[0], Ops.size()); 735 } 736 737 // If this is a static alloca, generate it as the frameindex instead of 738 // computation. 739 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 740 DenseMap<const AllocaInst*, int>::iterator SI = 741 FuncInfo.StaticAllocaMap.find(AI); 742 if (SI != FuncInfo.StaticAllocaMap.end()) 743 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 744 } 745 746 unsigned InReg = FuncInfo.ValueMap[V]; 747 assert(InReg && "Value not in map!"); 748 749 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 750 SDValue Chain = DAG.getEntryNode(); 751 return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL); 752 } 753 754 /// Get the EVTs and ArgFlags collections that represent the legalized return 755 /// type of the given function. This does not require a DAG or a return value, 756 /// and is suitable for use before any DAGs for the function are constructed. 757 static void getReturnInfo(const Type* ReturnType, 758 Attributes attr, SmallVectorImpl<EVT> &OutVTs, 759 SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags, 760 TargetLowering &TLI, 761 SmallVectorImpl<uint64_t> *Offsets = 0) { 762 SmallVector<EVT, 4> ValueVTs; 763 ComputeValueVTs(TLI, ReturnType, ValueVTs); 764 unsigned NumValues = ValueVTs.size(); 765 if (NumValues == 0) return; 766 unsigned Offset = 0; 767 768 for (unsigned j = 0, f = NumValues; j != f; ++j) { 769 EVT VT = ValueVTs[j]; 770 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 771 772 if (attr & Attribute::SExt) 773 ExtendKind = ISD::SIGN_EXTEND; 774 else if (attr & Attribute::ZExt) 775 ExtendKind = ISD::ZERO_EXTEND; 776 777 // FIXME: C calling convention requires the return type to be promoted to 778 // at least 32-bit. But this is not necessary for non-C calling 779 // conventions. The frontend should mark functions whose return values 780 // require promoting with signext or zeroext attributes. 781 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 782 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 783 if (VT.bitsLT(MinVT)) 784 VT = MinVT; 785 } 786 787 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 788 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 789 unsigned PartSize = TLI.getTargetData()->getTypeAllocSize( 790 PartVT.getTypeForEVT(ReturnType->getContext())); 791 792 // 'inreg' on function refers to return value 793 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 794 if (attr & Attribute::InReg) 795 Flags.setInReg(); 796 797 // Propagate extension type if any 798 if (attr & Attribute::SExt) 799 Flags.setSExt(); 800 else if (attr & Attribute::ZExt) 801 Flags.setZExt(); 802 803 for (unsigned i = 0; i < NumParts; ++i) { 804 OutVTs.push_back(PartVT); 805 OutFlags.push_back(Flags); 806 if (Offsets) 807 { 808 Offsets->push_back(Offset); 809 Offset += PartSize; 810 } 811 } 812 } 813 } 814 815 void SelectionDAGBuilder::visitRet(ReturnInst &I) { 816 SDValue Chain = getControlRoot(); 817 SmallVector<ISD::OutputArg, 8> Outs; 818 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 819 820 if (!FLI.CanLowerReturn) { 821 unsigned DemoteReg = FLI.DemoteRegister; 822 const Function *F = I.getParent()->getParent(); 823 824 // Emit a store of the return value through the virtual register. 825 // Leave Outs empty so that LowerReturn won't try to load return 826 // registers the usual way. 827 SmallVector<EVT, 1> PtrValueVTs; 828 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 829 PtrValueVTs); 830 831 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 832 SDValue RetOp = getValue(I.getOperand(0)); 833 834 SmallVector<EVT, 4> ValueVTs; 835 SmallVector<uint64_t, 4> Offsets; 836 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 837 unsigned NumValues = ValueVTs.size(); 838 839 SmallVector<SDValue, 4> Chains(NumValues); 840 EVT PtrVT = PtrValueVTs[0]; 841 for (unsigned i = 0; i != NumValues; ++i) { 842 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr, 843 DAG.getConstant(Offsets[i], PtrVT)); 844 Chains[i] = 845 DAG.getStore(Chain, getCurDebugLoc(), 846 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 847 Add, NULL, Offsets[i], false, false, 0); 848 } 849 850 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 851 MVT::Other, &Chains[0], NumValues); 852 } else if (I.getNumOperands() != 0) { 853 SmallVector<EVT, 4> ValueVTs; 854 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 855 unsigned NumValues = ValueVTs.size(); 856 if (NumValues) { 857 SDValue RetOp = getValue(I.getOperand(0)); 858 for (unsigned j = 0, f = NumValues; j != f; ++j) { 859 EVT VT = ValueVTs[j]; 860 861 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 862 863 const Function *F = I.getParent()->getParent(); 864 if (F->paramHasAttr(0, Attribute::SExt)) 865 ExtendKind = ISD::SIGN_EXTEND; 866 else if (F->paramHasAttr(0, Attribute::ZExt)) 867 ExtendKind = ISD::ZERO_EXTEND; 868 869 // FIXME: C calling convention requires the return type to be promoted 870 // to at least 32-bit. But this is not necessary for non-C calling 871 // conventions. The frontend should mark functions whose return values 872 // require promoting with signext or zeroext attributes. 873 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 874 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 875 if (VT.bitsLT(MinVT)) 876 VT = MinVT; 877 } 878 879 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 880 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 881 SmallVector<SDValue, 4> Parts(NumParts); 882 getCopyToParts(DAG, getCurDebugLoc(), 883 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 884 &Parts[0], NumParts, PartVT, ExtendKind); 885 886 // 'inreg' on function refers to return value 887 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 888 if (F->paramHasAttr(0, Attribute::InReg)) 889 Flags.setInReg(); 890 891 // Propagate extension type if any 892 if (F->paramHasAttr(0, Attribute::SExt)) 893 Flags.setSExt(); 894 else if (F->paramHasAttr(0, Attribute::ZExt)) 895 Flags.setZExt(); 896 897 for (unsigned i = 0; i < NumParts; ++i) 898 Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true)); 899 } 900 } 901 } 902 903 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 904 CallingConv::ID CallConv = 905 DAG.getMachineFunction().getFunction()->getCallingConv(); 906 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 907 Outs, getCurDebugLoc(), DAG); 908 909 // Verify that the target's LowerReturn behaved as expected. 910 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 911 "LowerReturn didn't return a valid chain!"); 912 913 // Update the DAG with the new chain value resulting from return lowering. 914 DAG.setRoot(Chain); 915 } 916 917 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 918 /// created for it, emit nodes to copy the value into the virtual 919 /// registers. 920 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) { 921 if (!V->use_empty()) { 922 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 923 if (VMI != FuncInfo.ValueMap.end()) 924 CopyValueToVirtualRegister(V, VMI->second); 925 } 926 } 927 928 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 929 /// the current basic block, add it to ValueMap now so that we'll get a 930 /// CopyTo/FromReg. 931 void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) { 932 // No need to export constants. 933 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 934 935 // Already exported? 936 if (FuncInfo.isExportedInst(V)) return; 937 938 unsigned Reg = FuncInfo.InitializeRegForValue(V); 939 CopyValueToVirtualRegister(V, Reg); 940 } 941 942 bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V, 943 const BasicBlock *FromBB) { 944 // The operands of the setcc have to be in this block. We don't know 945 // how to export them from some other block. 946 if (Instruction *VI = dyn_cast<Instruction>(V)) { 947 // Can export from current BB. 948 if (VI->getParent() == FromBB) 949 return true; 950 951 // Is already exported, noop. 952 return FuncInfo.isExportedInst(V); 953 } 954 955 // If this is an argument, we can export it if the BB is the entry block or 956 // if it is already exported. 957 if (isa<Argument>(V)) { 958 if (FromBB == &FromBB->getParent()->getEntryBlock()) 959 return true; 960 961 // Otherwise, can only export this if it is already exported. 962 return FuncInfo.isExportedInst(V); 963 } 964 965 // Otherwise, constants can always be exported. 966 return true; 967 } 968 969 static bool InBlock(const Value *V, const BasicBlock *BB) { 970 if (const Instruction *I = dyn_cast<Instruction>(V)) 971 return I->getParent() == BB; 972 return true; 973 } 974 975 /// getFCmpCondCode - Return the ISD condition code corresponding to 976 /// the given LLVM IR floating-point condition code. This includes 977 /// consideration of global floating-point math flags. 978 /// 979 static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) { 980 ISD::CondCode FPC, FOC; 981 switch (Pred) { 982 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; 983 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; 984 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; 985 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; 986 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; 987 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; 988 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; 989 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; 990 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; 991 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; 992 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; 993 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; 994 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; 995 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; 996 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; 997 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; 998 default: 999 llvm_unreachable("Invalid FCmp predicate opcode!"); 1000 FOC = FPC = ISD::SETFALSE; 1001 break; 1002 } 1003 if (FiniteOnlyFPMath()) 1004 return FOC; 1005 else 1006 return FPC; 1007 } 1008 1009 /// getICmpCondCode - Return the ISD condition code corresponding to 1010 /// the given LLVM IR integer condition code. 1011 /// 1012 static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) { 1013 switch (Pred) { 1014 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 1015 case ICmpInst::ICMP_NE: return ISD::SETNE; 1016 case ICmpInst::ICMP_SLE: return ISD::SETLE; 1017 case ICmpInst::ICMP_ULE: return ISD::SETULE; 1018 case ICmpInst::ICMP_SGE: return ISD::SETGE; 1019 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 1020 case ICmpInst::ICMP_SLT: return ISD::SETLT; 1021 case ICmpInst::ICMP_ULT: return ISD::SETULT; 1022 case ICmpInst::ICMP_SGT: return ISD::SETGT; 1023 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 1024 default: 1025 llvm_unreachable("Invalid ICmp predicate opcode!"); 1026 return ISD::SETNE; 1027 } 1028 } 1029 1030 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1031 /// This function emits a branch and is used at the leaves of an OR or an 1032 /// AND operator tree. 1033 /// 1034 void 1035 SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond, 1036 MachineBasicBlock *TBB, 1037 MachineBasicBlock *FBB, 1038 MachineBasicBlock *CurBB) { 1039 const BasicBlock *BB = CurBB->getBasicBlock(); 1040 1041 // If the leaf of the tree is a comparison, merge the condition into 1042 // the caseblock. 1043 if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1044 // The operands of the cmp have to be in this block. We don't know 1045 // how to export them from some other block. If this is the first block 1046 // of the sequence, no exporting is needed. 1047 if (CurBB == CurMBB || 1048 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1049 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1050 ISD::CondCode Condition; 1051 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1052 Condition = getICmpCondCode(IC->getPredicate()); 1053 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1054 Condition = getFCmpCondCode(FC->getPredicate()); 1055 } else { 1056 Condition = ISD::SETEQ; // silence warning. 1057 llvm_unreachable("Unknown compare instruction"); 1058 } 1059 1060 CaseBlock CB(Condition, BOp->getOperand(0), 1061 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1062 SwitchCases.push_back(CB); 1063 return; 1064 } 1065 } 1066 1067 // Create a CaseBlock record representing this branch. 1068 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1069 NULL, TBB, FBB, CurBB); 1070 SwitchCases.push_back(CB); 1071 } 1072 1073 /// FindMergedConditions - If Cond is an expression like 1074 void SelectionDAGBuilder::FindMergedConditions(Value *Cond, 1075 MachineBasicBlock *TBB, 1076 MachineBasicBlock *FBB, 1077 MachineBasicBlock *CurBB, 1078 unsigned Opc) { 1079 // If this node is not part of the or/and tree, emit it as a branch. 1080 Instruction *BOp = dyn_cast<Instruction>(Cond); 1081 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1082 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1083 BOp->getParent() != CurBB->getBasicBlock() || 1084 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1085 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1086 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB); 1087 return; 1088 } 1089 1090 // Create TmpBB after CurBB. 1091 MachineFunction::iterator BBI = CurBB; 1092 MachineFunction &MF = DAG.getMachineFunction(); 1093 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1094 CurBB->getParent()->insert(++BBI, TmpBB); 1095 1096 if (Opc == Instruction::Or) { 1097 // Codegen X | Y as: 1098 // jmp_if_X TBB 1099 // jmp TmpBB 1100 // TmpBB: 1101 // jmp_if_Y TBB 1102 // jmp FBB 1103 // 1104 1105 // Emit the LHS condition. 1106 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); 1107 1108 // Emit the RHS condition into TmpBB. 1109 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1110 } else { 1111 assert(Opc == Instruction::And && "Unknown merge op!"); 1112 // Codegen X & Y as: 1113 // jmp_if_X TmpBB 1114 // jmp FBB 1115 // TmpBB: 1116 // jmp_if_Y TBB 1117 // jmp FBB 1118 // 1119 // This requires creation of TmpBB after CurBB. 1120 1121 // Emit the LHS condition. 1122 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); 1123 1124 // Emit the RHS condition into TmpBB. 1125 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1126 } 1127 } 1128 1129 /// If the set of cases should be emitted as a series of branches, return true. 1130 /// If we should emit this as a bunch of and/or'd together conditions, return 1131 /// false. 1132 bool 1133 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1134 if (Cases.size() != 2) return true; 1135 1136 // If this is two comparisons of the same values or'd or and'd together, they 1137 // will get folded into a single comparison, so don't emit two blocks. 1138 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1139 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1140 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1141 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1142 return false; 1143 } 1144 1145 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1146 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1147 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1148 Cases[0].CC == Cases[1].CC && 1149 isa<Constant>(Cases[0].CmpRHS) && 1150 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1151 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1152 return false; 1153 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1154 return false; 1155 } 1156 1157 return true; 1158 } 1159 1160 void SelectionDAGBuilder::visitBr(BranchInst &I) { 1161 // Update machine-CFG edges. 1162 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1163 1164 // Figure out which block is immediately after the current one. 1165 MachineBasicBlock *NextBlock = 0; 1166 MachineFunction::iterator BBI = CurMBB; 1167 if (++BBI != FuncInfo.MF->end()) 1168 NextBlock = BBI; 1169 1170 if (I.isUnconditional()) { 1171 // Update machine-CFG edges. 1172 CurMBB->addSuccessor(Succ0MBB); 1173 1174 // If this is not a fall-through branch, emit the branch. 1175 if (Succ0MBB != NextBlock) 1176 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1177 MVT::Other, getControlRoot(), 1178 DAG.getBasicBlock(Succ0MBB))); 1179 1180 return; 1181 } 1182 1183 // If this condition is one of the special cases we handle, do special stuff 1184 // now. 1185 Value *CondVal = I.getCondition(); 1186 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1187 1188 // If this is a series of conditions that are or'd or and'd together, emit 1189 // this as a sequence of branches instead of setcc's with and/or operations. 1190 // For example, instead of something like: 1191 // cmp A, B 1192 // C = seteq 1193 // cmp D, E 1194 // F = setle 1195 // or C, F 1196 // jnz foo 1197 // Emit: 1198 // cmp A, B 1199 // je foo 1200 // cmp D, E 1201 // jle foo 1202 // 1203 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1204 if (BOp->hasOneUse() && 1205 (BOp->getOpcode() == Instruction::And || 1206 BOp->getOpcode() == Instruction::Or)) { 1207 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); 1208 // If the compares in later blocks need to use values not currently 1209 // exported from this block, export them now. This block should always 1210 // be the first entry. 1211 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); 1212 1213 // Allow some cases to be rejected. 1214 if (ShouldEmitAsBranches(SwitchCases)) { 1215 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1216 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1217 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1218 } 1219 1220 // Emit the branch for this block. 1221 visitSwitchCase(SwitchCases[0]); 1222 SwitchCases.erase(SwitchCases.begin()); 1223 return; 1224 } 1225 1226 // Okay, we decided not to do this, remove any inserted MBB's and clear 1227 // SwitchCases. 1228 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1229 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1230 1231 SwitchCases.clear(); 1232 } 1233 } 1234 1235 // Create a CaseBlock record representing this branch. 1236 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1237 NULL, Succ0MBB, Succ1MBB, CurMBB); 1238 1239 // Use visitSwitchCase to actually insert the fast branch sequence for this 1240 // cond branch. 1241 visitSwitchCase(CB); 1242 } 1243 1244 /// visitSwitchCase - Emits the necessary code to represent a single node in 1245 /// the binary search tree resulting from lowering a switch instruction. 1246 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) { 1247 SDValue Cond; 1248 SDValue CondLHS = getValue(CB.CmpLHS); 1249 DebugLoc dl = getCurDebugLoc(); 1250 1251 // Build the setcc now. 1252 if (CB.CmpMHS == NULL) { 1253 // Fold "(X == true)" to X and "(X == false)" to !X to 1254 // handle common cases produced by branch lowering. 1255 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1256 CB.CC == ISD::SETEQ) 1257 Cond = CondLHS; 1258 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1259 CB.CC == ISD::SETEQ) { 1260 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1261 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1262 } else 1263 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1264 } else { 1265 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1266 1267 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1268 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1269 1270 SDValue CmpOp = getValue(CB.CmpMHS); 1271 EVT VT = CmpOp.getValueType(); 1272 1273 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1274 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1275 ISD::SETLE); 1276 } else { 1277 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1278 VT, CmpOp, DAG.getConstant(Low, VT)); 1279 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1280 DAG.getConstant(High-Low, VT), ISD::SETULE); 1281 } 1282 } 1283 1284 // Update successor info 1285 CurMBB->addSuccessor(CB.TrueBB); 1286 CurMBB->addSuccessor(CB.FalseBB); 1287 1288 // Set NextBlock to be the MBB immediately after the current one, if any. 1289 // This is used to avoid emitting unnecessary branches to the next block. 1290 MachineBasicBlock *NextBlock = 0; 1291 MachineFunction::iterator BBI = CurMBB; 1292 if (++BBI != FuncInfo.MF->end()) 1293 NextBlock = BBI; 1294 1295 // If the lhs block is the next block, invert the condition so that we can 1296 // fall through to the lhs instead of the rhs block. 1297 if (CB.TrueBB == NextBlock) { 1298 std::swap(CB.TrueBB, CB.FalseBB); 1299 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1300 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1301 } 1302 1303 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1304 MVT::Other, getControlRoot(), Cond, 1305 DAG.getBasicBlock(CB.TrueBB)); 1306 1307 // If the branch was constant folded, fix up the CFG. 1308 if (BrCond.getOpcode() == ISD::BR) { 1309 CurMBB->removeSuccessor(CB.FalseBB); 1310 } else { 1311 // Otherwise, go ahead and insert the false branch. 1312 if (BrCond == getControlRoot()) 1313 CurMBB->removeSuccessor(CB.TrueBB); 1314 1315 if (CB.FalseBB != NextBlock) 1316 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1317 DAG.getBasicBlock(CB.FalseBB)); 1318 } 1319 1320 DAG.setRoot(BrCond); 1321 } 1322 1323 /// visitJumpTable - Emit JumpTable node in the current MBB 1324 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1325 // Emit the code for the jump table 1326 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1327 EVT PTy = TLI.getPointerTy(); 1328 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1329 JT.Reg, PTy); 1330 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1331 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1332 MVT::Other, Index.getValue(1), 1333 Table, Index); 1334 DAG.setRoot(BrJumpTable); 1335 } 1336 1337 /// visitJumpTableHeader - This function emits necessary code to produce index 1338 /// in the JumpTable from switch case. 1339 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1340 JumpTableHeader &JTH) { 1341 // Subtract the lowest switch case value from the value being switched on and 1342 // conditional branch to default mbb if the result is greater than the 1343 // difference between smallest and largest cases. 1344 SDValue SwitchOp = getValue(JTH.SValue); 1345 EVT VT = SwitchOp.getValueType(); 1346 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1347 DAG.getConstant(JTH.First, VT)); 1348 1349 // The SDNode we just created, which holds the value being switched on minus 1350 // the smallest case value, needs to be copied to a virtual register so it 1351 // can be used as an index into the jump table in a subsequent basic block. 1352 // This value may be smaller or larger than the target's pointer type, and 1353 // therefore require extension or truncating. 1354 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1355 1356 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); 1357 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1358 JumpTableReg, SwitchOp); 1359 JT.Reg = JumpTableReg; 1360 1361 // Emit the range check for the jump table, and branch to the default block 1362 // for the switch statement if the value being switched on exceeds the largest 1363 // case in the switch. 1364 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1365 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1366 DAG.getConstant(JTH.Last-JTH.First,VT), 1367 ISD::SETUGT); 1368 1369 // Set NextBlock to be the MBB immediately after the current one, if any. 1370 // This is used to avoid emitting unnecessary branches to the next block. 1371 MachineBasicBlock *NextBlock = 0; 1372 MachineFunction::iterator BBI = CurMBB; 1373 1374 if (++BBI != FuncInfo.MF->end()) 1375 NextBlock = BBI; 1376 1377 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1378 MVT::Other, CopyTo, CMP, 1379 DAG.getBasicBlock(JT.Default)); 1380 1381 if (JT.MBB != NextBlock) 1382 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1383 DAG.getBasicBlock(JT.MBB)); 1384 1385 DAG.setRoot(BrCond); 1386 } 1387 1388 /// visitBitTestHeader - This function emits necessary code to produce value 1389 /// suitable for "bit tests" 1390 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) { 1391 // Subtract the minimum value 1392 SDValue SwitchOp = getValue(B.SValue); 1393 EVT VT = SwitchOp.getValueType(); 1394 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1395 DAG.getConstant(B.First, VT)); 1396 1397 // Check range 1398 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1399 TLI.getSetCCResultType(Sub.getValueType()), 1400 Sub, DAG.getConstant(B.Range, VT), 1401 ISD::SETUGT); 1402 1403 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1404 TLI.getPointerTy()); 1405 1406 B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); 1407 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1408 B.Reg, ShiftOp); 1409 1410 // Set NextBlock to be the MBB immediately after the current one, if any. 1411 // This is used to avoid emitting unnecessary branches to the next block. 1412 MachineBasicBlock *NextBlock = 0; 1413 MachineFunction::iterator BBI = CurMBB; 1414 if (++BBI != FuncInfo.MF->end()) 1415 NextBlock = BBI; 1416 1417 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1418 1419 CurMBB->addSuccessor(B.Default); 1420 CurMBB->addSuccessor(MBB); 1421 1422 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1423 MVT::Other, CopyTo, RangeCmp, 1424 DAG.getBasicBlock(B.Default)); 1425 1426 if (MBB != NextBlock) 1427 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1428 DAG.getBasicBlock(MBB)); 1429 1430 DAG.setRoot(BrRange); 1431 } 1432 1433 /// visitBitTestCase - this function produces one "bit test" 1434 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1435 unsigned Reg, 1436 BitTestCase &B) { 1437 // Make desired shift 1438 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1439 TLI.getPointerTy()); 1440 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1441 TLI.getPointerTy(), 1442 DAG.getConstant(1, TLI.getPointerTy()), 1443 ShiftOp); 1444 1445 // Emit bit tests and jumps 1446 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1447 TLI.getPointerTy(), SwitchVal, 1448 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1449 SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), 1450 TLI.getSetCCResultType(AndOp.getValueType()), 1451 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1452 ISD::SETNE); 1453 1454 CurMBB->addSuccessor(B.TargetBB); 1455 CurMBB->addSuccessor(NextMBB); 1456 1457 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1458 MVT::Other, getControlRoot(), 1459 AndCmp, DAG.getBasicBlock(B.TargetBB)); 1460 1461 // Set NextBlock to be the MBB immediately after the current one, if any. 1462 // This is used to avoid emitting unnecessary branches to the next block. 1463 MachineBasicBlock *NextBlock = 0; 1464 MachineFunction::iterator BBI = CurMBB; 1465 if (++BBI != FuncInfo.MF->end()) 1466 NextBlock = BBI; 1467 1468 if (NextMBB != NextBlock) 1469 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1470 DAG.getBasicBlock(NextMBB)); 1471 1472 DAG.setRoot(BrAnd); 1473 } 1474 1475 void SelectionDAGBuilder::visitInvoke(InvokeInst &I) { 1476 // Retrieve successors. 1477 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1478 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1479 1480 const Value *Callee(I.getCalledValue()); 1481 if (isa<InlineAsm>(Callee)) 1482 visitInlineAsm(&I); 1483 else 1484 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1485 1486 // If the value of the invoke is used outside of its defining block, make it 1487 // available as a virtual register. 1488 CopyToExportRegsIfNeeded(&I); 1489 1490 // Update successor info 1491 CurMBB->addSuccessor(Return); 1492 CurMBB->addSuccessor(LandingPad); 1493 1494 // Drop into normal successor. 1495 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1496 MVT::Other, getControlRoot(), 1497 DAG.getBasicBlock(Return))); 1498 } 1499 1500 void SelectionDAGBuilder::visitUnwind(UnwindInst &I) { 1501 } 1502 1503 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1504 /// small case ranges). 1505 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1506 CaseRecVector& WorkList, 1507 Value* SV, 1508 MachineBasicBlock* Default) { 1509 Case& BackCase = *(CR.Range.second-1); 1510 1511 // Size is the number of Cases represented by this range. 1512 size_t Size = CR.Range.second - CR.Range.first; 1513 if (Size > 3) 1514 return false; 1515 1516 // Get the MachineFunction which holds the current MBB. This is used when 1517 // inserting any additional MBBs necessary to represent the switch. 1518 MachineFunction *CurMF = FuncInfo.MF; 1519 1520 // Figure out which block is immediately after the current one. 1521 MachineBasicBlock *NextBlock = 0; 1522 MachineFunction::iterator BBI = CR.CaseBB; 1523 1524 if (++BBI != FuncInfo.MF->end()) 1525 NextBlock = BBI; 1526 1527 // TODO: If any two of the cases has the same destination, and if one value 1528 // is the same as the other, but has one bit unset that the other has set, 1529 // use bit manipulation to do two compares at once. For example: 1530 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1531 1532 // Rearrange the case blocks so that the last one falls through if possible. 1533 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1534 // The last case block won't fall through into 'NextBlock' if we emit the 1535 // branches in this order. See if rearranging a case value would help. 1536 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1537 if (I->BB == NextBlock) { 1538 std::swap(*I, BackCase); 1539 break; 1540 } 1541 } 1542 } 1543 1544 // Create a CaseBlock record representing a conditional branch to 1545 // the Case's target mbb if the value being switched on SV is equal 1546 // to C. 1547 MachineBasicBlock *CurBlock = CR.CaseBB; 1548 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1549 MachineBasicBlock *FallThrough; 1550 if (I != E-1) { 1551 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1552 CurMF->insert(BBI, FallThrough); 1553 1554 // Put SV in a virtual register to make it available from the new blocks. 1555 ExportFromCurrentBlock(SV); 1556 } else { 1557 // If the last case doesn't match, go to the default block. 1558 FallThrough = Default; 1559 } 1560 1561 Value *RHS, *LHS, *MHS; 1562 ISD::CondCode CC; 1563 if (I->High == I->Low) { 1564 // This is just small small case range :) containing exactly 1 case 1565 CC = ISD::SETEQ; 1566 LHS = SV; RHS = I->High; MHS = NULL; 1567 } else { 1568 CC = ISD::SETLE; 1569 LHS = I->Low; MHS = SV; RHS = I->High; 1570 } 1571 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1572 1573 // If emitting the first comparison, just call visitSwitchCase to emit the 1574 // code into the current block. Otherwise, push the CaseBlock onto the 1575 // vector to be later processed by SDISel, and insert the node's MBB 1576 // before the next MBB. 1577 if (CurBlock == CurMBB) 1578 visitSwitchCase(CB); 1579 else 1580 SwitchCases.push_back(CB); 1581 1582 CurBlock = FallThrough; 1583 } 1584 1585 return true; 1586 } 1587 1588 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1589 return !DisableJumpTables && 1590 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1591 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1592 } 1593 1594 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1595 APInt LastExt(Last), FirstExt(First); 1596 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1597 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1598 return (LastExt - FirstExt + 1ULL); 1599 } 1600 1601 /// handleJTSwitchCase - Emit jumptable for current switch case range 1602 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1603 CaseRecVector& WorkList, 1604 Value* SV, 1605 MachineBasicBlock* Default) { 1606 Case& FrontCase = *CR.Range.first; 1607 Case& BackCase = *(CR.Range.second-1); 1608 1609 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1610 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1611 1612 APInt TSize(First.getBitWidth(), 0); 1613 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1614 I!=E; ++I) 1615 TSize += I->size(); 1616 1617 if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4))) 1618 return false; 1619 1620 APInt Range = ComputeRange(First, Last); 1621 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1622 if (Density < 0.4) 1623 return false; 1624 1625 DEBUG(dbgs() << "Lowering jump table\n" 1626 << "First entry: " << First << ". Last entry: " << Last << '\n' 1627 << "Range: " << Range 1628 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1629 1630 // Get the MachineFunction which holds the current MBB. This is used when 1631 // inserting any additional MBBs necessary to represent the switch. 1632 MachineFunction *CurMF = FuncInfo.MF; 1633 1634 // Figure out which block is immediately after the current one. 1635 MachineFunction::iterator BBI = CR.CaseBB; 1636 ++BBI; 1637 1638 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1639 1640 // Create a new basic block to hold the code for loading the address 1641 // of the jump table, and jumping to it. Update successor information; 1642 // we will either branch to the default case for the switch, or the jump 1643 // table. 1644 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1645 CurMF->insert(BBI, JumpTableBB); 1646 CR.CaseBB->addSuccessor(Default); 1647 CR.CaseBB->addSuccessor(JumpTableBB); 1648 1649 // Build a vector of destination BBs, corresponding to each target 1650 // of the jump table. If the value of the jump table slot corresponds to 1651 // a case statement, push the case's BB onto the vector, otherwise, push 1652 // the default BB. 1653 std::vector<MachineBasicBlock*> DestBBs; 1654 APInt TEI = First; 1655 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1656 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1657 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1658 1659 if (Low.sle(TEI) && TEI.sle(High)) { 1660 DestBBs.push_back(I->BB); 1661 if (TEI==High) 1662 ++I; 1663 } else { 1664 DestBBs.push_back(Default); 1665 } 1666 } 1667 1668 // Update successor info. Add one edge to each unique successor. 1669 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1670 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1671 E = DestBBs.end(); I != E; ++I) { 1672 if (!SuccsHandled[(*I)->getNumber()]) { 1673 SuccsHandled[(*I)->getNumber()] = true; 1674 JumpTableBB->addSuccessor(*I); 1675 } 1676 } 1677 1678 // Create a jump table index for this jump table, or return an existing 1679 // one. 1680 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1681 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1682 ->getJumpTableIndex(DestBBs); 1683 1684 // Set the jump table information so that we can codegen it as a second 1685 // MachineBasicBlock 1686 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1687 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB)); 1688 if (CR.CaseBB == CurMBB) 1689 visitJumpTableHeader(JT, JTH); 1690 1691 JTCases.push_back(JumpTableBlock(JTH, JT)); 1692 1693 return true; 1694 } 1695 1696 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1697 /// 2 subtrees. 1698 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1699 CaseRecVector& WorkList, 1700 Value* SV, 1701 MachineBasicBlock* Default) { 1702 // Get the MachineFunction which holds the current MBB. This is used when 1703 // inserting any additional MBBs necessary to represent the switch. 1704 MachineFunction *CurMF = FuncInfo.MF; 1705 1706 // Figure out which block is immediately after the current one. 1707 MachineFunction::iterator BBI = CR.CaseBB; 1708 ++BBI; 1709 1710 Case& FrontCase = *CR.Range.first; 1711 Case& BackCase = *(CR.Range.second-1); 1712 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1713 1714 // Size is the number of Cases represented by this range. 1715 unsigned Size = CR.Range.second - CR.Range.first; 1716 1717 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1718 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1719 double FMetric = 0; 1720 CaseItr Pivot = CR.Range.first + Size/2; 1721 1722 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1723 // (heuristically) allow us to emit JumpTable's later. 1724 APInt TSize(First.getBitWidth(), 0); 1725 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1726 I!=E; ++I) 1727 TSize += I->size(); 1728 1729 APInt LSize = FrontCase.size(); 1730 APInt RSize = TSize-LSize; 1731 DEBUG(dbgs() << "Selecting best pivot: \n" 1732 << "First: " << First << ", Last: " << Last <<'\n' 1733 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1734 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1735 J!=E; ++I, ++J) { 1736 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1737 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1738 APInt Range = ComputeRange(LEnd, RBegin); 1739 assert((Range - 2ULL).isNonNegative() && 1740 "Invalid case distance"); 1741 double LDensity = (double)LSize.roundToDouble() / 1742 (LEnd - First + 1ULL).roundToDouble(); 1743 double RDensity = (double)RSize.roundToDouble() / 1744 (Last - RBegin + 1ULL).roundToDouble(); 1745 double Metric = Range.logBase2()*(LDensity+RDensity); 1746 // Should always split in some non-trivial place 1747 DEBUG(dbgs() <<"=>Step\n" 1748 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1749 << "LDensity: " << LDensity 1750 << ", RDensity: " << RDensity << '\n' 1751 << "Metric: " << Metric << '\n'); 1752 if (FMetric < Metric) { 1753 Pivot = J; 1754 FMetric = Metric; 1755 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1756 } 1757 1758 LSize += J->size(); 1759 RSize -= J->size(); 1760 } 1761 if (areJTsAllowed(TLI)) { 1762 // If our case is dense we *really* should handle it earlier! 1763 assert((FMetric > 0) && "Should handle dense range earlier!"); 1764 } else { 1765 Pivot = CR.Range.first + Size/2; 1766 } 1767 1768 CaseRange LHSR(CR.Range.first, Pivot); 1769 CaseRange RHSR(Pivot, CR.Range.second); 1770 Constant *C = Pivot->Low; 1771 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1772 1773 // We know that we branch to the LHS if the Value being switched on is 1774 // less than the Pivot value, C. We use this to optimize our binary 1775 // tree a bit, by recognizing that if SV is greater than or equal to the 1776 // LHS's Case Value, and that Case Value is exactly one less than the 1777 // Pivot's Value, then we can branch directly to the LHS's Target, 1778 // rather than creating a leaf node for it. 1779 if ((LHSR.second - LHSR.first) == 1 && 1780 LHSR.first->High == CR.GE && 1781 cast<ConstantInt>(C)->getValue() == 1782 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1783 TrueBB = LHSR.first->BB; 1784 } else { 1785 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1786 CurMF->insert(BBI, TrueBB); 1787 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 1788 1789 // Put SV in a virtual register to make it available from the new blocks. 1790 ExportFromCurrentBlock(SV); 1791 } 1792 1793 // Similar to the optimization above, if the Value being switched on is 1794 // known to be less than the Constant CR.LT, and the current Case Value 1795 // is CR.LT - 1, then we can branch directly to the target block for 1796 // the current Case Value, rather than emitting a RHS leaf node for it. 1797 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 1798 cast<ConstantInt>(RHSR.first->Low)->getValue() == 1799 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 1800 FalseBB = RHSR.first->BB; 1801 } else { 1802 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1803 CurMF->insert(BBI, FalseBB); 1804 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 1805 1806 // Put SV in a virtual register to make it available from the new blocks. 1807 ExportFromCurrentBlock(SV); 1808 } 1809 1810 // Create a CaseBlock record representing a conditional branch to 1811 // the LHS node if the value being switched on SV is less than C. 1812 // Otherwise, branch to LHS. 1813 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 1814 1815 if (CR.CaseBB == CurMBB) 1816 visitSwitchCase(CB); 1817 else 1818 SwitchCases.push_back(CB); 1819 1820 return true; 1821 } 1822 1823 /// handleBitTestsSwitchCase - if current case range has few destination and 1824 /// range span less, than machine word bitwidth, encode case range into series 1825 /// of masks and emit bit tests with these masks. 1826 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 1827 CaseRecVector& WorkList, 1828 Value* SV, 1829 MachineBasicBlock* Default){ 1830 EVT PTy = TLI.getPointerTy(); 1831 unsigned IntPtrBits = PTy.getSizeInBits(); 1832 1833 Case& FrontCase = *CR.Range.first; 1834 Case& BackCase = *(CR.Range.second-1); 1835 1836 // Get the MachineFunction which holds the current MBB. This is used when 1837 // inserting any additional MBBs necessary to represent the switch. 1838 MachineFunction *CurMF = FuncInfo.MF; 1839 1840 // If target does not have legal shift left, do not emit bit tests at all. 1841 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 1842 return false; 1843 1844 size_t numCmps = 0; 1845 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1846 I!=E; ++I) { 1847 // Single case counts one, case range - two. 1848 numCmps += (I->Low == I->High ? 1 : 2); 1849 } 1850 1851 // Count unique destinations 1852 SmallSet<MachineBasicBlock*, 4> Dests; 1853 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1854 Dests.insert(I->BB); 1855 if (Dests.size() > 3) 1856 // Don't bother the code below, if there are too much unique destinations 1857 return false; 1858 } 1859 DEBUG(dbgs() << "Total number of unique destinations: " 1860 << Dests.size() << '\n' 1861 << "Total number of comparisons: " << numCmps << '\n'); 1862 1863 // Compute span of values. 1864 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 1865 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 1866 APInt cmpRange = maxValue - minValue; 1867 1868 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 1869 << "Low bound: " << minValue << '\n' 1870 << "High bound: " << maxValue << '\n'); 1871 1872 if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) || 1873 (!(Dests.size() == 1 && numCmps >= 3) && 1874 !(Dests.size() == 2 && numCmps >= 5) && 1875 !(Dests.size() >= 3 && numCmps >= 6))) 1876 return false; 1877 1878 DEBUG(dbgs() << "Emitting bit tests\n"); 1879 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 1880 1881 // Optimize the case where all the case values fit in a 1882 // word without having to subtract minValue. In this case, 1883 // we can optimize away the subtraction. 1884 if (minValue.isNonNegative() && 1885 maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) { 1886 cmpRange = maxValue; 1887 } else { 1888 lowBound = minValue; 1889 } 1890 1891 CaseBitsVector CasesBits; 1892 unsigned i, count = 0; 1893 1894 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1895 MachineBasicBlock* Dest = I->BB; 1896 for (i = 0; i < count; ++i) 1897 if (Dest == CasesBits[i].BB) 1898 break; 1899 1900 if (i == count) { 1901 assert((count < 3) && "Too much destinations to test!"); 1902 CasesBits.push_back(CaseBits(0, Dest, 0)); 1903 count++; 1904 } 1905 1906 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 1907 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 1908 1909 uint64_t lo = (lowValue - lowBound).getZExtValue(); 1910 uint64_t hi = (highValue - lowBound).getZExtValue(); 1911 1912 for (uint64_t j = lo; j <= hi; j++) { 1913 CasesBits[i].Mask |= 1ULL << j; 1914 CasesBits[i].Bits++; 1915 } 1916 1917 } 1918 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 1919 1920 BitTestInfo BTC; 1921 1922 // Figure out which block is immediately after the current one. 1923 MachineFunction::iterator BBI = CR.CaseBB; 1924 ++BBI; 1925 1926 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1927 1928 DEBUG(dbgs() << "Cases:\n"); 1929 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 1930 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 1931 << ", Bits: " << CasesBits[i].Bits 1932 << ", BB: " << CasesBits[i].BB << '\n'); 1933 1934 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1935 CurMF->insert(BBI, CaseBB); 1936 BTC.push_back(BitTestCase(CasesBits[i].Mask, 1937 CaseBB, 1938 CasesBits[i].BB)); 1939 1940 // Put SV in a virtual register to make it available from the new blocks. 1941 ExportFromCurrentBlock(SV); 1942 } 1943 1944 BitTestBlock BTB(lowBound, cmpRange, SV, 1945 -1U, (CR.CaseBB == CurMBB), 1946 CR.CaseBB, Default, BTC); 1947 1948 if (CR.CaseBB == CurMBB) 1949 visitBitTestHeader(BTB); 1950 1951 BitTestCases.push_back(BTB); 1952 1953 return true; 1954 } 1955 1956 /// Clusterify - Transform simple list of Cases into list of CaseRange's 1957 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 1958 const SwitchInst& SI) { 1959 size_t numCmps = 0; 1960 1961 // Start with "simple" cases 1962 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 1963 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 1964 Cases.push_back(Case(SI.getSuccessorValue(i), 1965 SI.getSuccessorValue(i), 1966 SMBB)); 1967 } 1968 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 1969 1970 // Merge case into clusters 1971 if (Cases.size() >= 2) 1972 // Must recompute end() each iteration because it may be 1973 // invalidated by erase if we hold on to it 1974 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 1975 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 1976 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 1977 MachineBasicBlock* nextBB = J->BB; 1978 MachineBasicBlock* currentBB = I->BB; 1979 1980 // If the two neighboring cases go to the same destination, merge them 1981 // into a single case. 1982 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 1983 I->High = J->High; 1984 J = Cases.erase(J); 1985 } else { 1986 I = J++; 1987 } 1988 } 1989 1990 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 1991 if (I->Low != I->High) 1992 // A range counts double, since it requires two compares. 1993 ++numCmps; 1994 } 1995 1996 return numCmps; 1997 } 1998 1999 void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) { 2000 // Figure out which block is immediately after the current one. 2001 MachineBasicBlock *NextBlock = 0; 2002 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2003 2004 // If there is only the default destination, branch to it if it is not the 2005 // next basic block. Otherwise, just fall through. 2006 if (SI.getNumOperands() == 2) { 2007 // Update machine-CFG edges. 2008 2009 // If this is not a fall-through branch, emit the branch. 2010 CurMBB->addSuccessor(Default); 2011 if (Default != NextBlock) 2012 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2013 MVT::Other, getControlRoot(), 2014 DAG.getBasicBlock(Default))); 2015 2016 return; 2017 } 2018 2019 // If there are any non-default case statements, create a vector of Cases 2020 // representing each one, and sort the vector so that we can efficiently 2021 // create a binary search tree from them. 2022 CaseVector Cases; 2023 size_t numCmps = Clusterify(Cases, SI); 2024 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2025 << ". Total compares: " << numCmps << '\n'); 2026 numCmps = 0; 2027 2028 // Get the Value to be switched on and default basic blocks, which will be 2029 // inserted into CaseBlock records, representing basic blocks in the binary 2030 // search tree. 2031 Value *SV = SI.getOperand(0); 2032 2033 // Push the initial CaseRec onto the worklist 2034 CaseRecVector WorkList; 2035 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); 2036 2037 while (!WorkList.empty()) { 2038 // Grab a record representing a case range to process off the worklist 2039 CaseRec CR = WorkList.back(); 2040 WorkList.pop_back(); 2041 2042 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) 2043 continue; 2044 2045 // If the range has few cases (two or less) emit a series of specific 2046 // tests. 2047 if (handleSmallSwitchRange(CR, WorkList, SV, Default)) 2048 continue; 2049 2050 // If the switch has more than 5 blocks, and at least 40% dense, and the 2051 // target supports indirect branches, then emit a jump table rather than 2052 // lowering the switch to a binary tree of conditional branches. 2053 if (handleJTSwitchCase(CR, WorkList, SV, Default)) 2054 continue; 2055 2056 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2057 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2058 handleBTSplitSwitchCase(CR, WorkList, SV, Default); 2059 } 2060 } 2061 2062 void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) { 2063 // Update machine-CFG edges with unique successors. 2064 SmallVector<BasicBlock*, 32> succs; 2065 succs.reserve(I.getNumSuccessors()); 2066 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2067 succs.push_back(I.getSuccessor(i)); 2068 array_pod_sort(succs.begin(), succs.end()); 2069 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2070 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2071 CurMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2072 2073 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2074 MVT::Other, getControlRoot(), 2075 getValue(I.getAddress()))); 2076 } 2077 2078 void SelectionDAGBuilder::visitFSub(User &I) { 2079 // -0.0 - X --> fneg 2080 const Type *Ty = I.getType(); 2081 if (Ty->isVectorTy()) { 2082 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2083 const VectorType *DestTy = cast<VectorType>(I.getType()); 2084 const Type *ElTy = DestTy->getElementType(); 2085 unsigned VL = DestTy->getNumElements(); 2086 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2087 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2088 if (CV == CNZ) { 2089 SDValue Op2 = getValue(I.getOperand(1)); 2090 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2091 Op2.getValueType(), Op2)); 2092 return; 2093 } 2094 } 2095 } 2096 2097 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2098 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2099 SDValue Op2 = getValue(I.getOperand(1)); 2100 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2101 Op2.getValueType(), Op2)); 2102 return; 2103 } 2104 2105 visitBinary(I, ISD::FSUB); 2106 } 2107 2108 void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) { 2109 SDValue Op1 = getValue(I.getOperand(0)); 2110 SDValue Op2 = getValue(I.getOperand(1)); 2111 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2112 Op1.getValueType(), Op1, Op2)); 2113 } 2114 2115 void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) { 2116 SDValue Op1 = getValue(I.getOperand(0)); 2117 SDValue Op2 = getValue(I.getOperand(1)); 2118 if (!I.getType()->isVectorTy() && 2119 Op2.getValueType() != TLI.getShiftAmountTy()) { 2120 // If the operand is smaller than the shift count type, promote it. 2121 EVT PTy = TLI.getPointerTy(); 2122 EVT STy = TLI.getShiftAmountTy(); 2123 if (STy.bitsGT(Op2.getValueType())) 2124 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2125 TLI.getShiftAmountTy(), Op2); 2126 // If the operand is larger than the shift count type but the shift 2127 // count type has enough bits to represent any shift value, truncate 2128 // it now. This is a common case and it exposes the truncate to 2129 // optimization early. 2130 else if (STy.getSizeInBits() >= 2131 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2132 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2133 TLI.getShiftAmountTy(), Op2); 2134 // Otherwise we'll need to temporarily settle for some other 2135 // convenient type; type legalization will make adjustments as 2136 // needed. 2137 else if (PTy.bitsLT(Op2.getValueType())) 2138 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2139 TLI.getPointerTy(), Op2); 2140 else if (PTy.bitsGT(Op2.getValueType())) 2141 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2142 TLI.getPointerTy(), Op2); 2143 } 2144 2145 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2146 Op1.getValueType(), Op1, Op2)); 2147 } 2148 2149 void SelectionDAGBuilder::visitICmp(User &I) { 2150 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2151 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2152 predicate = IC->getPredicate(); 2153 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2154 predicate = ICmpInst::Predicate(IC->getPredicate()); 2155 SDValue Op1 = getValue(I.getOperand(0)); 2156 SDValue Op2 = getValue(I.getOperand(1)); 2157 ISD::CondCode Opcode = getICmpCondCode(predicate); 2158 2159 EVT DestVT = TLI.getValueType(I.getType()); 2160 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2161 } 2162 2163 void SelectionDAGBuilder::visitFCmp(User &I) { 2164 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2165 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2166 predicate = FC->getPredicate(); 2167 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2168 predicate = FCmpInst::Predicate(FC->getPredicate()); 2169 SDValue Op1 = getValue(I.getOperand(0)); 2170 SDValue Op2 = getValue(I.getOperand(1)); 2171 ISD::CondCode Condition = getFCmpCondCode(predicate); 2172 EVT DestVT = TLI.getValueType(I.getType()); 2173 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2174 } 2175 2176 void SelectionDAGBuilder::visitSelect(User &I) { 2177 SmallVector<EVT, 4> ValueVTs; 2178 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2179 unsigned NumValues = ValueVTs.size(); 2180 if (NumValues == 0) return; 2181 2182 SmallVector<SDValue, 4> Values(NumValues); 2183 SDValue Cond = getValue(I.getOperand(0)); 2184 SDValue TrueVal = getValue(I.getOperand(1)); 2185 SDValue FalseVal = getValue(I.getOperand(2)); 2186 2187 for (unsigned i = 0; i != NumValues; ++i) 2188 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2189 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2190 Cond, 2191 SDValue(TrueVal.getNode(), 2192 TrueVal.getResNo() + i), 2193 SDValue(FalseVal.getNode(), 2194 FalseVal.getResNo() + i)); 2195 2196 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2197 DAG.getVTList(&ValueVTs[0], NumValues), 2198 &Values[0], NumValues)); 2199 } 2200 2201 void SelectionDAGBuilder::visitTrunc(User &I) { 2202 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2203 SDValue N = getValue(I.getOperand(0)); 2204 EVT DestVT = TLI.getValueType(I.getType()); 2205 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2206 } 2207 2208 void SelectionDAGBuilder::visitZExt(User &I) { 2209 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2210 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2211 SDValue N = getValue(I.getOperand(0)); 2212 EVT DestVT = TLI.getValueType(I.getType()); 2213 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2214 } 2215 2216 void SelectionDAGBuilder::visitSExt(User &I) { 2217 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2218 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2219 SDValue N = getValue(I.getOperand(0)); 2220 EVT DestVT = TLI.getValueType(I.getType()); 2221 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2222 } 2223 2224 void SelectionDAGBuilder::visitFPTrunc(User &I) { 2225 // FPTrunc is never a no-op cast, no need to check 2226 SDValue N = getValue(I.getOperand(0)); 2227 EVT DestVT = TLI.getValueType(I.getType()); 2228 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2229 DestVT, N, DAG.getIntPtrConstant(0))); 2230 } 2231 2232 void SelectionDAGBuilder::visitFPExt(User &I){ 2233 // FPTrunc is never a no-op cast, no need to check 2234 SDValue N = getValue(I.getOperand(0)); 2235 EVT DestVT = TLI.getValueType(I.getType()); 2236 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2237 } 2238 2239 void SelectionDAGBuilder::visitFPToUI(User &I) { 2240 // FPToUI is never a no-op cast, no need to check 2241 SDValue N = getValue(I.getOperand(0)); 2242 EVT DestVT = TLI.getValueType(I.getType()); 2243 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2244 } 2245 2246 void SelectionDAGBuilder::visitFPToSI(User &I) { 2247 // FPToSI is never a no-op cast, no need to check 2248 SDValue N = getValue(I.getOperand(0)); 2249 EVT DestVT = TLI.getValueType(I.getType()); 2250 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2251 } 2252 2253 void SelectionDAGBuilder::visitUIToFP(User &I) { 2254 // UIToFP is never a no-op cast, no need to check 2255 SDValue N = getValue(I.getOperand(0)); 2256 EVT DestVT = TLI.getValueType(I.getType()); 2257 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2258 } 2259 2260 void SelectionDAGBuilder::visitSIToFP(User &I){ 2261 // SIToFP is never a no-op cast, no need to check 2262 SDValue N = getValue(I.getOperand(0)); 2263 EVT DestVT = TLI.getValueType(I.getType()); 2264 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2265 } 2266 2267 void SelectionDAGBuilder::visitPtrToInt(User &I) { 2268 // What to do depends on the size of the integer and the size of the pointer. 2269 // We can either truncate, zero extend, or no-op, accordingly. 2270 SDValue N = getValue(I.getOperand(0)); 2271 EVT SrcVT = N.getValueType(); 2272 EVT DestVT = TLI.getValueType(I.getType()); 2273 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2274 } 2275 2276 void SelectionDAGBuilder::visitIntToPtr(User &I) { 2277 // What to do depends on the size of the integer and the size of the pointer. 2278 // We can either truncate, zero extend, or no-op, accordingly. 2279 SDValue N = getValue(I.getOperand(0)); 2280 EVT SrcVT = N.getValueType(); 2281 EVT DestVT = TLI.getValueType(I.getType()); 2282 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2283 } 2284 2285 void SelectionDAGBuilder::visitBitCast(User &I) { 2286 SDValue N = getValue(I.getOperand(0)); 2287 EVT DestVT = TLI.getValueType(I.getType()); 2288 2289 // BitCast assures us that source and destination are the same size so this is 2290 // either a BIT_CONVERT or a no-op. 2291 if (DestVT != N.getValueType()) 2292 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2293 DestVT, N)); // convert types. 2294 else 2295 setValue(&I, N); // noop cast. 2296 } 2297 2298 void SelectionDAGBuilder::visitInsertElement(User &I) { 2299 SDValue InVec = getValue(I.getOperand(0)); 2300 SDValue InVal = getValue(I.getOperand(1)); 2301 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2302 TLI.getPointerTy(), 2303 getValue(I.getOperand(2))); 2304 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2305 TLI.getValueType(I.getType()), 2306 InVec, InVal, InIdx)); 2307 } 2308 2309 void SelectionDAGBuilder::visitExtractElement(User &I) { 2310 SDValue InVec = getValue(I.getOperand(0)); 2311 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2312 TLI.getPointerTy(), 2313 getValue(I.getOperand(1))); 2314 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2315 TLI.getValueType(I.getType()), InVec, InIdx)); 2316 } 2317 2318 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2319 // from SIndx and increasing to the element length (undefs are allowed). 2320 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2321 unsigned MaskNumElts = Mask.size(); 2322 for (unsigned i = 0; i != MaskNumElts; ++i) 2323 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2324 return false; 2325 return true; 2326 } 2327 2328 void SelectionDAGBuilder::visitShuffleVector(User &I) { 2329 SmallVector<int, 8> Mask; 2330 SDValue Src1 = getValue(I.getOperand(0)); 2331 SDValue Src2 = getValue(I.getOperand(1)); 2332 2333 // Convert the ConstantVector mask operand into an array of ints, with -1 2334 // representing undef values. 2335 SmallVector<Constant*, 8> MaskElts; 2336 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2337 unsigned MaskNumElts = MaskElts.size(); 2338 for (unsigned i = 0; i != MaskNumElts; ++i) { 2339 if (isa<UndefValue>(MaskElts[i])) 2340 Mask.push_back(-1); 2341 else 2342 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2343 } 2344 2345 EVT VT = TLI.getValueType(I.getType()); 2346 EVT SrcVT = Src1.getValueType(); 2347 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2348 2349 if (SrcNumElts == MaskNumElts) { 2350 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2351 &Mask[0])); 2352 return; 2353 } 2354 2355 // Normalize the shuffle vector since mask and vector length don't match. 2356 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2357 // Mask is longer than the source vectors and is a multiple of the source 2358 // vectors. We can use concatenate vector to make the mask and vectors 2359 // lengths match. 2360 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2361 // The shuffle is concatenating two vectors together. 2362 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2363 VT, Src1, Src2)); 2364 return; 2365 } 2366 2367 // Pad both vectors with undefs to make them the same length as the mask. 2368 unsigned NumConcat = MaskNumElts / SrcNumElts; 2369 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2370 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2371 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2372 2373 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2374 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2375 MOps1[0] = Src1; 2376 MOps2[0] = Src2; 2377 2378 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2379 getCurDebugLoc(), VT, 2380 &MOps1[0], NumConcat); 2381 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2382 getCurDebugLoc(), VT, 2383 &MOps2[0], NumConcat); 2384 2385 // Readjust mask for new input vector length. 2386 SmallVector<int, 8> MappedOps; 2387 for (unsigned i = 0; i != MaskNumElts; ++i) { 2388 int Idx = Mask[i]; 2389 if (Idx < (int)SrcNumElts) 2390 MappedOps.push_back(Idx); 2391 else 2392 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2393 } 2394 2395 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2396 &MappedOps[0])); 2397 return; 2398 } 2399 2400 if (SrcNumElts > MaskNumElts) { 2401 // Analyze the access pattern of the vector to see if we can extract 2402 // two subvectors and do the shuffle. The analysis is done by calculating 2403 // the range of elements the mask access on both vectors. 2404 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2405 int MaxRange[2] = {-1, -1}; 2406 2407 for (unsigned i = 0; i != MaskNumElts; ++i) { 2408 int Idx = Mask[i]; 2409 int Input = 0; 2410 if (Idx < 0) 2411 continue; 2412 2413 if (Idx >= (int)SrcNumElts) { 2414 Input = 1; 2415 Idx -= SrcNumElts; 2416 } 2417 if (Idx > MaxRange[Input]) 2418 MaxRange[Input] = Idx; 2419 if (Idx < MinRange[Input]) 2420 MinRange[Input] = Idx; 2421 } 2422 2423 // Check if the access is smaller than the vector size and can we find 2424 // a reasonable extract index. 2425 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2426 // Extract. 2427 int StartIdx[2]; // StartIdx to extract from 2428 for (int Input=0; Input < 2; ++Input) { 2429 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2430 RangeUse[Input] = 0; // Unused 2431 StartIdx[Input] = 0; 2432 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2433 // Fits within range but we should see if we can find a good 2434 // start index that is a multiple of the mask length. 2435 if (MaxRange[Input] < (int)MaskNumElts) { 2436 RangeUse[Input] = 1; // Extract from beginning of the vector 2437 StartIdx[Input] = 0; 2438 } else { 2439 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2440 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2441 StartIdx[Input] + MaskNumElts < SrcNumElts) 2442 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2443 } 2444 } 2445 } 2446 2447 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2448 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2449 return; 2450 } 2451 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2452 // Extract appropriate subvector and generate a vector shuffle 2453 for (int Input=0; Input < 2; ++Input) { 2454 SDValue &Src = Input == 0 ? Src1 : Src2; 2455 if (RangeUse[Input] == 0) 2456 Src = DAG.getUNDEF(VT); 2457 else 2458 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2459 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2460 } 2461 2462 // Calculate new mask. 2463 SmallVector<int, 8> MappedOps; 2464 for (unsigned i = 0; i != MaskNumElts; ++i) { 2465 int Idx = Mask[i]; 2466 if (Idx < 0) 2467 MappedOps.push_back(Idx); 2468 else if (Idx < (int)SrcNumElts) 2469 MappedOps.push_back(Idx - StartIdx[0]); 2470 else 2471 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2472 } 2473 2474 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2475 &MappedOps[0])); 2476 return; 2477 } 2478 } 2479 2480 // We can't use either concat vectors or extract subvectors so fall back to 2481 // replacing the shuffle with extract and build vector. 2482 // to insert and build vector. 2483 EVT EltVT = VT.getVectorElementType(); 2484 EVT PtrVT = TLI.getPointerTy(); 2485 SmallVector<SDValue,8> Ops; 2486 for (unsigned i = 0; i != MaskNumElts; ++i) { 2487 if (Mask[i] < 0) { 2488 Ops.push_back(DAG.getUNDEF(EltVT)); 2489 } else { 2490 int Idx = Mask[i]; 2491 SDValue Res; 2492 2493 if (Idx < (int)SrcNumElts) 2494 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2495 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2496 else 2497 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2498 EltVT, Src2, 2499 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2500 2501 Ops.push_back(Res); 2502 } 2503 } 2504 2505 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2506 VT, &Ops[0], Ops.size())); 2507 } 2508 2509 void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) { 2510 const Value *Op0 = I.getOperand(0); 2511 const Value *Op1 = I.getOperand(1); 2512 const Type *AggTy = I.getType(); 2513 const Type *ValTy = Op1->getType(); 2514 bool IntoUndef = isa<UndefValue>(Op0); 2515 bool FromUndef = isa<UndefValue>(Op1); 2516 2517 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2518 I.idx_begin(), I.idx_end()); 2519 2520 SmallVector<EVT, 4> AggValueVTs; 2521 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2522 SmallVector<EVT, 4> ValValueVTs; 2523 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2524 2525 unsigned NumAggValues = AggValueVTs.size(); 2526 unsigned NumValValues = ValValueVTs.size(); 2527 SmallVector<SDValue, 4> Values(NumAggValues); 2528 2529 SDValue Agg = getValue(Op0); 2530 SDValue Val = getValue(Op1); 2531 unsigned i = 0; 2532 // Copy the beginning value(s) from the original aggregate. 2533 for (; i != LinearIndex; ++i) 2534 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2535 SDValue(Agg.getNode(), Agg.getResNo() + i); 2536 // Copy values from the inserted value(s). 2537 for (; i != LinearIndex + NumValValues; ++i) 2538 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2539 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2540 // Copy remaining value(s) from the original aggregate. 2541 for (; i != NumAggValues; ++i) 2542 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2543 SDValue(Agg.getNode(), Agg.getResNo() + i); 2544 2545 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2546 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2547 &Values[0], NumAggValues)); 2548 } 2549 2550 void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) { 2551 const Value *Op0 = I.getOperand(0); 2552 const Type *AggTy = Op0->getType(); 2553 const Type *ValTy = I.getType(); 2554 bool OutOfUndef = isa<UndefValue>(Op0); 2555 2556 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2557 I.idx_begin(), I.idx_end()); 2558 2559 SmallVector<EVT, 4> ValValueVTs; 2560 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2561 2562 unsigned NumValValues = ValValueVTs.size(); 2563 SmallVector<SDValue, 4> Values(NumValValues); 2564 2565 SDValue Agg = getValue(Op0); 2566 // Copy out the selected value(s). 2567 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2568 Values[i - LinearIndex] = 2569 OutOfUndef ? 2570 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2571 SDValue(Agg.getNode(), Agg.getResNo() + i); 2572 2573 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2574 DAG.getVTList(&ValValueVTs[0], NumValValues), 2575 &Values[0], NumValValues)); 2576 } 2577 2578 void SelectionDAGBuilder::visitGetElementPtr(User &I) { 2579 SDValue N = getValue(I.getOperand(0)); 2580 const Type *Ty = I.getOperand(0)->getType(); 2581 2582 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); 2583 OI != E; ++OI) { 2584 Value *Idx = *OI; 2585 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2586 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2587 if (Field) { 2588 // N = N + Offset 2589 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2590 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2591 DAG.getIntPtrConstant(Offset)); 2592 } 2593 2594 Ty = StTy->getElementType(Field); 2595 } else { 2596 Ty = cast<SequentialType>(Ty)->getElementType(); 2597 2598 // If this is a constant subscript, handle it quickly. 2599 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2600 if (CI->getZExtValue() == 0) continue; 2601 uint64_t Offs = 2602 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2603 SDValue OffsVal; 2604 EVT PTy = TLI.getPointerTy(); 2605 unsigned PtrBits = PTy.getSizeInBits(); 2606 if (PtrBits < 64) 2607 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2608 TLI.getPointerTy(), 2609 DAG.getConstant(Offs, MVT::i64)); 2610 else 2611 OffsVal = DAG.getIntPtrConstant(Offs); 2612 2613 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2614 OffsVal); 2615 continue; 2616 } 2617 2618 // N = N + Idx * ElementSize; 2619 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2620 TD->getTypeAllocSize(Ty)); 2621 SDValue IdxN = getValue(Idx); 2622 2623 // If the index is smaller or larger than intptr_t, truncate or extend 2624 // it. 2625 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2626 2627 // If this is a multiply by a power of two, turn it into a shl 2628 // immediately. This is a very common case. 2629 if (ElementSize != 1) { 2630 if (ElementSize.isPowerOf2()) { 2631 unsigned Amt = ElementSize.logBase2(); 2632 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2633 N.getValueType(), IdxN, 2634 DAG.getConstant(Amt, TLI.getPointerTy())); 2635 } else { 2636 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2637 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2638 N.getValueType(), IdxN, Scale); 2639 } 2640 } 2641 2642 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2643 N.getValueType(), N, IdxN); 2644 } 2645 } 2646 2647 setValue(&I, N); 2648 } 2649 2650 void SelectionDAGBuilder::visitAlloca(AllocaInst &I) { 2651 // If this is a fixed sized alloca in the entry block of the function, 2652 // allocate it statically on the stack. 2653 if (FuncInfo.StaticAllocaMap.count(&I)) 2654 return; // getValue will auto-populate this. 2655 2656 const Type *Ty = I.getAllocatedType(); 2657 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2658 unsigned Align = 2659 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2660 I.getAlignment()); 2661 2662 SDValue AllocSize = getValue(I.getArraySize()); 2663 2664 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), 2665 AllocSize, 2666 DAG.getConstant(TySize, AllocSize.getValueType())); 2667 2668 EVT IntPtr = TLI.getPointerTy(); 2669 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2670 2671 // Handle alignment. If the requested alignment is less than or equal to 2672 // the stack alignment, ignore it. If the size is greater than or equal to 2673 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2674 unsigned StackAlign = 2675 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 2676 if (Align <= StackAlign) 2677 Align = 0; 2678 2679 // Round the size of the allocation up to the stack alignment size 2680 // by add SA-1 to the size. 2681 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2682 AllocSize.getValueType(), AllocSize, 2683 DAG.getIntPtrConstant(StackAlign-1)); 2684 2685 // Mask out the low bits for alignment purposes. 2686 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2687 AllocSize.getValueType(), AllocSize, 2688 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2689 2690 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2691 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2692 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2693 VTs, Ops, 3); 2694 setValue(&I, DSA); 2695 DAG.setRoot(DSA.getValue(1)); 2696 2697 // Inform the Frame Information that we have just allocated a variable-sized 2698 // object. 2699 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); 2700 } 2701 2702 void SelectionDAGBuilder::visitLoad(LoadInst &I) { 2703 const Value *SV = I.getOperand(0); 2704 SDValue Ptr = getValue(SV); 2705 2706 const Type *Ty = I.getType(); 2707 2708 bool isVolatile = I.isVolatile(); 2709 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2710 unsigned Alignment = I.getAlignment(); 2711 2712 SmallVector<EVT, 4> ValueVTs; 2713 SmallVector<uint64_t, 4> Offsets; 2714 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2715 unsigned NumValues = ValueVTs.size(); 2716 if (NumValues == 0) 2717 return; 2718 2719 SDValue Root; 2720 bool ConstantMemory = false; 2721 if (I.isVolatile()) 2722 // Serialize volatile loads with other side effects. 2723 Root = getRoot(); 2724 else if (AA->pointsToConstantMemory(SV)) { 2725 // Do not serialize (non-volatile) loads of constant memory with anything. 2726 Root = DAG.getEntryNode(); 2727 ConstantMemory = true; 2728 } else { 2729 // Do not serialize non-volatile loads against each other. 2730 Root = DAG.getRoot(); 2731 } 2732 2733 SmallVector<SDValue, 4> Values(NumValues); 2734 SmallVector<SDValue, 4> Chains(NumValues); 2735 EVT PtrVT = Ptr.getValueType(); 2736 for (unsigned i = 0; i != NumValues; ++i) { 2737 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2738 PtrVT, Ptr, 2739 DAG.getConstant(Offsets[i], PtrVT)); 2740 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2741 A, SV, Offsets[i], isVolatile, 2742 isNonTemporal, Alignment); 2743 2744 Values[i] = L; 2745 Chains[i] = L.getValue(1); 2746 } 2747 2748 if (!ConstantMemory) { 2749 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2750 MVT::Other, &Chains[0], NumValues); 2751 if (isVolatile) 2752 DAG.setRoot(Chain); 2753 else 2754 PendingLoads.push_back(Chain); 2755 } 2756 2757 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2758 DAG.getVTList(&ValueVTs[0], NumValues), 2759 &Values[0], NumValues)); 2760 } 2761 2762 void SelectionDAGBuilder::visitStore(StoreInst &I) { 2763 Value *SrcV = I.getOperand(0); 2764 Value *PtrV = I.getOperand(1); 2765 2766 SmallVector<EVT, 4> ValueVTs; 2767 SmallVector<uint64_t, 4> Offsets; 2768 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2769 unsigned NumValues = ValueVTs.size(); 2770 if (NumValues == 0) 2771 return; 2772 2773 // Get the lowered operands. Note that we do this after 2774 // checking if NumResults is zero, because with zero results 2775 // the operands won't have values in the map. 2776 SDValue Src = getValue(SrcV); 2777 SDValue Ptr = getValue(PtrV); 2778 2779 SDValue Root = getRoot(); 2780 SmallVector<SDValue, 4> Chains(NumValues); 2781 EVT PtrVT = Ptr.getValueType(); 2782 bool isVolatile = I.isVolatile(); 2783 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2784 unsigned Alignment = I.getAlignment(); 2785 2786 for (unsigned i = 0; i != NumValues; ++i) { 2787 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 2788 DAG.getConstant(Offsets[i], PtrVT)); 2789 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 2790 SDValue(Src.getNode(), Src.getResNo() + i), 2791 Add, PtrV, Offsets[i], isVolatile, 2792 isNonTemporal, Alignment); 2793 } 2794 2795 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2796 MVT::Other, &Chains[0], NumValues)); 2797 } 2798 2799 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 2800 /// node. 2801 void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I, 2802 unsigned Intrinsic) { 2803 bool HasChain = !I.doesNotAccessMemory(); 2804 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 2805 2806 // Build the operand list. 2807 SmallVector<SDValue, 8> Ops; 2808 if (HasChain) { // If this intrinsic has side-effects, chainify it. 2809 if (OnlyLoad) { 2810 // We don't need to serialize loads against other loads. 2811 Ops.push_back(DAG.getRoot()); 2812 } else { 2813 Ops.push_back(getRoot()); 2814 } 2815 } 2816 2817 // Info is set by getTgtMemInstrinsic 2818 TargetLowering::IntrinsicInfo Info; 2819 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 2820 2821 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 2822 if (!IsTgtIntrinsic) 2823 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 2824 2825 // Add all operands of the call to the operand list. 2826 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 2827 SDValue Op = getValue(I.getOperand(i)); 2828 assert(TLI.isTypeLegal(Op.getValueType()) && 2829 "Intrinsic uses a non-legal type?"); 2830 Ops.push_back(Op); 2831 } 2832 2833 SmallVector<EVT, 4> ValueVTs; 2834 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2835 #ifndef NDEBUG 2836 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 2837 assert(TLI.isTypeLegal(ValueVTs[Val]) && 2838 "Intrinsic uses a non-legal type?"); 2839 } 2840 #endif // NDEBUG 2841 2842 if (HasChain) 2843 ValueVTs.push_back(MVT::Other); 2844 2845 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 2846 2847 // Create the node. 2848 SDValue Result; 2849 if (IsTgtIntrinsic) { 2850 // This is target intrinsic that touches memory 2851 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 2852 VTs, &Ops[0], Ops.size(), 2853 Info.memVT, Info.ptrVal, Info.offset, 2854 Info.align, Info.vol, 2855 Info.readMem, Info.writeMem); 2856 } else if (!HasChain) { 2857 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 2858 VTs, &Ops[0], Ops.size()); 2859 } else if (!I.getType()->isVoidTy()) { 2860 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 2861 VTs, &Ops[0], Ops.size()); 2862 } else { 2863 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 2864 VTs, &Ops[0], Ops.size()); 2865 } 2866 2867 if (HasChain) { 2868 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 2869 if (OnlyLoad) 2870 PendingLoads.push_back(Chain); 2871 else 2872 DAG.setRoot(Chain); 2873 } 2874 2875 if (!I.getType()->isVoidTy()) { 2876 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 2877 EVT VT = TLI.getValueType(PTy); 2878 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 2879 } 2880 2881 setValue(&I, Result); 2882 } 2883 } 2884 2885 /// GetSignificand - Get the significand and build it into a floating-point 2886 /// number with exponent of 1: 2887 /// 2888 /// Op = (Op & 0x007fffff) | 0x3f800000; 2889 /// 2890 /// where Op is the hexidecimal representation of floating point value. 2891 static SDValue 2892 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 2893 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2894 DAG.getConstant(0x007fffff, MVT::i32)); 2895 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 2896 DAG.getConstant(0x3f800000, MVT::i32)); 2897 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 2898 } 2899 2900 /// GetExponent - Get the exponent: 2901 /// 2902 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 2903 /// 2904 /// where Op is the hexidecimal representation of floating point value. 2905 static SDValue 2906 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 2907 DebugLoc dl) { 2908 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2909 DAG.getConstant(0x7f800000, MVT::i32)); 2910 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 2911 DAG.getConstant(23, TLI.getPointerTy())); 2912 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 2913 DAG.getConstant(127, MVT::i32)); 2914 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 2915 } 2916 2917 /// getF32Constant - Get 32-bit floating point constant. 2918 static SDValue 2919 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 2920 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 2921 } 2922 2923 /// Inlined utility function to implement binary input atomic intrinsics for 2924 /// visitIntrinsicCall: I is a call instruction 2925 /// Op is the associated NodeType for I 2926 const char * 2927 SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) { 2928 SDValue Root = getRoot(); 2929 SDValue L = 2930 DAG.getAtomic(Op, getCurDebugLoc(), 2931 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 2932 Root, 2933 getValue(I.getOperand(1)), 2934 getValue(I.getOperand(2)), 2935 I.getOperand(1)); 2936 setValue(&I, L); 2937 DAG.setRoot(L.getValue(1)); 2938 return 0; 2939 } 2940 2941 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 2942 const char * 2943 SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) { 2944 SDValue Op1 = getValue(I.getOperand(1)); 2945 SDValue Op2 = getValue(I.getOperand(2)); 2946 2947 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 2948 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 2949 return 0; 2950 } 2951 2952 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 2953 /// limited-precision mode. 2954 void 2955 SelectionDAGBuilder::visitExp(CallInst &I) { 2956 SDValue result; 2957 DebugLoc dl = getCurDebugLoc(); 2958 2959 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 2960 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 2961 SDValue Op = getValue(I.getOperand(1)); 2962 2963 // Put the exponent in the right bit position for later addition to the 2964 // final result: 2965 // 2966 // #define LOG2OFe 1.4426950f 2967 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 2968 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 2969 getF32Constant(DAG, 0x3fb8aa3b)); 2970 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 2971 2972 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 2973 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 2974 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 2975 2976 // IntegerPartOfX <<= 23; 2977 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 2978 DAG.getConstant(23, TLI.getPointerTy())); 2979 2980 if (LimitFloatPrecision <= 6) { 2981 // For floating-point precision of 6: 2982 // 2983 // TwoToFractionalPartOfX = 2984 // 0.997535578f + 2985 // (0.735607626f + 0.252464424f * x) * x; 2986 // 2987 // error 0.0144103317, which is 6 bits 2988 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2989 getF32Constant(DAG, 0x3e814304)); 2990 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2991 getF32Constant(DAG, 0x3f3c50c8)); 2992 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2993 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 2994 getF32Constant(DAG, 0x3f7f5e7e)); 2995 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 2996 2997 // Add the exponent into the result in integer domain. 2998 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2999 TwoToFracPartOfX, IntegerPartOfX); 3000 3001 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 3002 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3003 // For floating-point precision of 12: 3004 // 3005 // TwoToFractionalPartOfX = 3006 // 0.999892986f + 3007 // (0.696457318f + 3008 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3009 // 3010 // 0.000107046256 error, which is 13 to 14 bits 3011 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3012 getF32Constant(DAG, 0x3da235e3)); 3013 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3014 getF32Constant(DAG, 0x3e65b8f3)); 3015 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3016 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3017 getF32Constant(DAG, 0x3f324b07)); 3018 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3019 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3020 getF32Constant(DAG, 0x3f7ff8fd)); 3021 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3022 3023 // Add the exponent into the result in integer domain. 3024 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3025 TwoToFracPartOfX, IntegerPartOfX); 3026 3027 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3028 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3029 // For floating-point precision of 18: 3030 // 3031 // TwoToFractionalPartOfX = 3032 // 0.999999982f + 3033 // (0.693148872f + 3034 // (0.240227044f + 3035 // (0.554906021e-1f + 3036 // (0.961591928e-2f + 3037 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3038 // 3039 // error 2.47208000*10^(-7), which is better than 18 bits 3040 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3041 getF32Constant(DAG, 0x3924b03e)); 3042 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3043 getF32Constant(DAG, 0x3ab24b87)); 3044 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3045 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3046 getF32Constant(DAG, 0x3c1d8c17)); 3047 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3048 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3049 getF32Constant(DAG, 0x3d634a1d)); 3050 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3051 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3052 getF32Constant(DAG, 0x3e75fe14)); 3053 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3054 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3055 getF32Constant(DAG, 0x3f317234)); 3056 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3057 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3058 getF32Constant(DAG, 0x3f800000)); 3059 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3060 MVT::i32, t13); 3061 3062 // Add the exponent into the result in integer domain. 3063 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3064 TwoToFracPartOfX, IntegerPartOfX); 3065 3066 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3067 } 3068 } else { 3069 // No special expansion. 3070 result = DAG.getNode(ISD::FEXP, dl, 3071 getValue(I.getOperand(1)).getValueType(), 3072 getValue(I.getOperand(1))); 3073 } 3074 3075 setValue(&I, result); 3076 } 3077 3078 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3079 /// limited-precision mode. 3080 void 3081 SelectionDAGBuilder::visitLog(CallInst &I) { 3082 SDValue result; 3083 DebugLoc dl = getCurDebugLoc(); 3084 3085 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3086 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3087 SDValue Op = getValue(I.getOperand(1)); 3088 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3089 3090 // Scale the exponent by log(2) [0.69314718f]. 3091 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3092 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3093 getF32Constant(DAG, 0x3f317218)); 3094 3095 // Get the significand and build it into a floating-point number with 3096 // exponent of 1. 3097 SDValue X = GetSignificand(DAG, Op1, dl); 3098 3099 if (LimitFloatPrecision <= 6) { 3100 // For floating-point precision of 6: 3101 // 3102 // LogofMantissa = 3103 // -1.1609546f + 3104 // (1.4034025f - 0.23903021f * x) * x; 3105 // 3106 // error 0.0034276066, which is better than 8 bits 3107 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3108 getF32Constant(DAG, 0xbe74c456)); 3109 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3110 getF32Constant(DAG, 0x3fb3a2b1)); 3111 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3112 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3113 getF32Constant(DAG, 0x3f949a29)); 3114 3115 result = DAG.getNode(ISD::FADD, dl, 3116 MVT::f32, LogOfExponent, LogOfMantissa); 3117 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3118 // For floating-point precision of 12: 3119 // 3120 // LogOfMantissa = 3121 // -1.7417939f + 3122 // (2.8212026f + 3123 // (-1.4699568f + 3124 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3125 // 3126 // error 0.000061011436, which is 14 bits 3127 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3128 getF32Constant(DAG, 0xbd67b6d6)); 3129 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3130 getF32Constant(DAG, 0x3ee4f4b8)); 3131 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3132 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3133 getF32Constant(DAG, 0x3fbc278b)); 3134 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3135 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3136 getF32Constant(DAG, 0x40348e95)); 3137 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3138 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3139 getF32Constant(DAG, 0x3fdef31a)); 3140 3141 result = DAG.getNode(ISD::FADD, dl, 3142 MVT::f32, LogOfExponent, LogOfMantissa); 3143 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3144 // For floating-point precision of 18: 3145 // 3146 // LogOfMantissa = 3147 // -2.1072184f + 3148 // (4.2372794f + 3149 // (-3.7029485f + 3150 // (2.2781945f + 3151 // (-0.87823314f + 3152 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3153 // 3154 // error 0.0000023660568, which is better than 18 bits 3155 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3156 getF32Constant(DAG, 0xbc91e5ac)); 3157 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3158 getF32Constant(DAG, 0x3e4350aa)); 3159 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3160 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3161 getF32Constant(DAG, 0x3f60d3e3)); 3162 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3163 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3164 getF32Constant(DAG, 0x4011cdf0)); 3165 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3166 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3167 getF32Constant(DAG, 0x406cfd1c)); 3168 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3169 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3170 getF32Constant(DAG, 0x408797cb)); 3171 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3172 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3173 getF32Constant(DAG, 0x4006dcab)); 3174 3175 result = DAG.getNode(ISD::FADD, dl, 3176 MVT::f32, LogOfExponent, LogOfMantissa); 3177 } 3178 } else { 3179 // No special expansion. 3180 result = DAG.getNode(ISD::FLOG, dl, 3181 getValue(I.getOperand(1)).getValueType(), 3182 getValue(I.getOperand(1))); 3183 } 3184 3185 setValue(&I, result); 3186 } 3187 3188 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3189 /// limited-precision mode. 3190 void 3191 SelectionDAGBuilder::visitLog2(CallInst &I) { 3192 SDValue result; 3193 DebugLoc dl = getCurDebugLoc(); 3194 3195 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3196 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3197 SDValue Op = getValue(I.getOperand(1)); 3198 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3199 3200 // Get the exponent. 3201 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3202 3203 // Get the significand and build it into a floating-point number with 3204 // exponent of 1. 3205 SDValue X = GetSignificand(DAG, Op1, dl); 3206 3207 // Different possible minimax approximations of significand in 3208 // floating-point for various degrees of accuracy over [1,2]. 3209 if (LimitFloatPrecision <= 6) { 3210 // For floating-point precision of 6: 3211 // 3212 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3213 // 3214 // error 0.0049451742, which is more than 7 bits 3215 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3216 getF32Constant(DAG, 0xbeb08fe0)); 3217 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3218 getF32Constant(DAG, 0x40019463)); 3219 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3220 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3221 getF32Constant(DAG, 0x3fd6633d)); 3222 3223 result = DAG.getNode(ISD::FADD, dl, 3224 MVT::f32, LogOfExponent, Log2ofMantissa); 3225 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3226 // For floating-point precision of 12: 3227 // 3228 // Log2ofMantissa = 3229 // -2.51285454f + 3230 // (4.07009056f + 3231 // (-2.12067489f + 3232 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3233 // 3234 // error 0.0000876136000, which is better than 13 bits 3235 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3236 getF32Constant(DAG, 0xbda7262e)); 3237 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3238 getF32Constant(DAG, 0x3f25280b)); 3239 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3240 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3241 getF32Constant(DAG, 0x4007b923)); 3242 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3243 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3244 getF32Constant(DAG, 0x40823e2f)); 3245 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3246 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3247 getF32Constant(DAG, 0x4020d29c)); 3248 3249 result = DAG.getNode(ISD::FADD, dl, 3250 MVT::f32, LogOfExponent, Log2ofMantissa); 3251 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3252 // For floating-point precision of 18: 3253 // 3254 // Log2ofMantissa = 3255 // -3.0400495f + 3256 // (6.1129976f + 3257 // (-5.3420409f + 3258 // (3.2865683f + 3259 // (-1.2669343f + 3260 // (0.27515199f - 3261 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3262 // 3263 // error 0.0000018516, which is better than 18 bits 3264 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3265 getF32Constant(DAG, 0xbcd2769e)); 3266 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3267 getF32Constant(DAG, 0x3e8ce0b9)); 3268 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3269 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3270 getF32Constant(DAG, 0x3fa22ae7)); 3271 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3272 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3273 getF32Constant(DAG, 0x40525723)); 3274 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3275 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3276 getF32Constant(DAG, 0x40aaf200)); 3277 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3278 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3279 getF32Constant(DAG, 0x40c39dad)); 3280 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3281 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3282 getF32Constant(DAG, 0x4042902c)); 3283 3284 result = DAG.getNode(ISD::FADD, dl, 3285 MVT::f32, LogOfExponent, Log2ofMantissa); 3286 } 3287 } else { 3288 // No special expansion. 3289 result = DAG.getNode(ISD::FLOG2, dl, 3290 getValue(I.getOperand(1)).getValueType(), 3291 getValue(I.getOperand(1))); 3292 } 3293 3294 setValue(&I, result); 3295 } 3296 3297 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3298 /// limited-precision mode. 3299 void 3300 SelectionDAGBuilder::visitLog10(CallInst &I) { 3301 SDValue result; 3302 DebugLoc dl = getCurDebugLoc(); 3303 3304 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3305 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3306 SDValue Op = getValue(I.getOperand(1)); 3307 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3308 3309 // Scale the exponent by log10(2) [0.30102999f]. 3310 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3311 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3312 getF32Constant(DAG, 0x3e9a209a)); 3313 3314 // Get the significand and build it into a floating-point number with 3315 // exponent of 1. 3316 SDValue X = GetSignificand(DAG, Op1, dl); 3317 3318 if (LimitFloatPrecision <= 6) { 3319 // For floating-point precision of 6: 3320 // 3321 // Log10ofMantissa = 3322 // -0.50419619f + 3323 // (0.60948995f - 0.10380950f * x) * x; 3324 // 3325 // error 0.0014886165, which is 6 bits 3326 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3327 getF32Constant(DAG, 0xbdd49a13)); 3328 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3329 getF32Constant(DAG, 0x3f1c0789)); 3330 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3331 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3332 getF32Constant(DAG, 0x3f011300)); 3333 3334 result = DAG.getNode(ISD::FADD, dl, 3335 MVT::f32, LogOfExponent, Log10ofMantissa); 3336 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3337 // For floating-point precision of 12: 3338 // 3339 // Log10ofMantissa = 3340 // -0.64831180f + 3341 // (0.91751397f + 3342 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3343 // 3344 // error 0.00019228036, which is better than 12 bits 3345 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3346 getF32Constant(DAG, 0x3d431f31)); 3347 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3348 getF32Constant(DAG, 0x3ea21fb2)); 3349 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3350 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3351 getF32Constant(DAG, 0x3f6ae232)); 3352 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3353 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3354 getF32Constant(DAG, 0x3f25f7c3)); 3355 3356 result = DAG.getNode(ISD::FADD, dl, 3357 MVT::f32, LogOfExponent, Log10ofMantissa); 3358 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3359 // For floating-point precision of 18: 3360 // 3361 // Log10ofMantissa = 3362 // -0.84299375f + 3363 // (1.5327582f + 3364 // (-1.0688956f + 3365 // (0.49102474f + 3366 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3367 // 3368 // error 0.0000037995730, which is better than 18 bits 3369 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3370 getF32Constant(DAG, 0x3c5d51ce)); 3371 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3372 getF32Constant(DAG, 0x3e00685a)); 3373 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3374 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3375 getF32Constant(DAG, 0x3efb6798)); 3376 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3377 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3378 getF32Constant(DAG, 0x3f88d192)); 3379 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3380 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3381 getF32Constant(DAG, 0x3fc4316c)); 3382 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3383 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3384 getF32Constant(DAG, 0x3f57ce70)); 3385 3386 result = DAG.getNode(ISD::FADD, dl, 3387 MVT::f32, LogOfExponent, Log10ofMantissa); 3388 } 3389 } else { 3390 // No special expansion. 3391 result = DAG.getNode(ISD::FLOG10, dl, 3392 getValue(I.getOperand(1)).getValueType(), 3393 getValue(I.getOperand(1))); 3394 } 3395 3396 setValue(&I, result); 3397 } 3398 3399 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3400 /// limited-precision mode. 3401 void 3402 SelectionDAGBuilder::visitExp2(CallInst &I) { 3403 SDValue result; 3404 DebugLoc dl = getCurDebugLoc(); 3405 3406 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3407 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3408 SDValue Op = getValue(I.getOperand(1)); 3409 3410 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3411 3412 // FractionalPartOfX = x - (float)IntegerPartOfX; 3413 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3414 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3415 3416 // IntegerPartOfX <<= 23; 3417 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3418 DAG.getConstant(23, TLI.getPointerTy())); 3419 3420 if (LimitFloatPrecision <= 6) { 3421 // For floating-point precision of 6: 3422 // 3423 // TwoToFractionalPartOfX = 3424 // 0.997535578f + 3425 // (0.735607626f + 0.252464424f * x) * x; 3426 // 3427 // error 0.0144103317, which is 6 bits 3428 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3429 getF32Constant(DAG, 0x3e814304)); 3430 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3431 getF32Constant(DAG, 0x3f3c50c8)); 3432 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3433 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3434 getF32Constant(DAG, 0x3f7f5e7e)); 3435 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3436 SDValue TwoToFractionalPartOfX = 3437 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3438 3439 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3440 MVT::f32, TwoToFractionalPartOfX); 3441 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3442 // For floating-point precision of 12: 3443 // 3444 // TwoToFractionalPartOfX = 3445 // 0.999892986f + 3446 // (0.696457318f + 3447 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3448 // 3449 // error 0.000107046256, which is 13 to 14 bits 3450 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3451 getF32Constant(DAG, 0x3da235e3)); 3452 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3453 getF32Constant(DAG, 0x3e65b8f3)); 3454 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3455 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3456 getF32Constant(DAG, 0x3f324b07)); 3457 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3458 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3459 getF32Constant(DAG, 0x3f7ff8fd)); 3460 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3461 SDValue TwoToFractionalPartOfX = 3462 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3463 3464 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3465 MVT::f32, TwoToFractionalPartOfX); 3466 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3467 // For floating-point precision of 18: 3468 // 3469 // TwoToFractionalPartOfX = 3470 // 0.999999982f + 3471 // (0.693148872f + 3472 // (0.240227044f + 3473 // (0.554906021e-1f + 3474 // (0.961591928e-2f + 3475 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3476 // error 2.47208000*10^(-7), which is better than 18 bits 3477 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3478 getF32Constant(DAG, 0x3924b03e)); 3479 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3480 getF32Constant(DAG, 0x3ab24b87)); 3481 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3482 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3483 getF32Constant(DAG, 0x3c1d8c17)); 3484 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3485 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3486 getF32Constant(DAG, 0x3d634a1d)); 3487 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3488 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3489 getF32Constant(DAG, 0x3e75fe14)); 3490 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3491 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3492 getF32Constant(DAG, 0x3f317234)); 3493 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3494 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3495 getF32Constant(DAG, 0x3f800000)); 3496 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3497 SDValue TwoToFractionalPartOfX = 3498 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3499 3500 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3501 MVT::f32, TwoToFractionalPartOfX); 3502 } 3503 } else { 3504 // No special expansion. 3505 result = DAG.getNode(ISD::FEXP2, dl, 3506 getValue(I.getOperand(1)).getValueType(), 3507 getValue(I.getOperand(1))); 3508 } 3509 3510 setValue(&I, result); 3511 } 3512 3513 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3514 /// limited-precision mode with x == 10.0f. 3515 void 3516 SelectionDAGBuilder::visitPow(CallInst &I) { 3517 SDValue result; 3518 Value *Val = I.getOperand(1); 3519 DebugLoc dl = getCurDebugLoc(); 3520 bool IsExp10 = false; 3521 3522 if (getValue(Val).getValueType() == MVT::f32 && 3523 getValue(I.getOperand(2)).getValueType() == MVT::f32 && 3524 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3525 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3526 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3527 APFloat Ten(10.0f); 3528 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3529 } 3530 } 3531 } 3532 3533 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3534 SDValue Op = getValue(I.getOperand(2)); 3535 3536 // Put the exponent in the right bit position for later addition to the 3537 // final result: 3538 // 3539 // #define LOG2OF10 3.3219281f 3540 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3541 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3542 getF32Constant(DAG, 0x40549a78)); 3543 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3544 3545 // FractionalPartOfX = x - (float)IntegerPartOfX; 3546 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3547 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3548 3549 // IntegerPartOfX <<= 23; 3550 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3551 DAG.getConstant(23, TLI.getPointerTy())); 3552 3553 if (LimitFloatPrecision <= 6) { 3554 // For floating-point precision of 6: 3555 // 3556 // twoToFractionalPartOfX = 3557 // 0.997535578f + 3558 // (0.735607626f + 0.252464424f * x) * x; 3559 // 3560 // error 0.0144103317, which is 6 bits 3561 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3562 getF32Constant(DAG, 0x3e814304)); 3563 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3564 getF32Constant(DAG, 0x3f3c50c8)); 3565 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3566 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3567 getF32Constant(DAG, 0x3f7f5e7e)); 3568 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3569 SDValue TwoToFractionalPartOfX = 3570 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3571 3572 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3573 MVT::f32, TwoToFractionalPartOfX); 3574 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3575 // For floating-point precision of 12: 3576 // 3577 // TwoToFractionalPartOfX = 3578 // 0.999892986f + 3579 // (0.696457318f + 3580 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3581 // 3582 // error 0.000107046256, which is 13 to 14 bits 3583 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3584 getF32Constant(DAG, 0x3da235e3)); 3585 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3586 getF32Constant(DAG, 0x3e65b8f3)); 3587 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3588 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3589 getF32Constant(DAG, 0x3f324b07)); 3590 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3591 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3592 getF32Constant(DAG, 0x3f7ff8fd)); 3593 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3594 SDValue TwoToFractionalPartOfX = 3595 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3596 3597 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3598 MVT::f32, TwoToFractionalPartOfX); 3599 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3600 // For floating-point precision of 18: 3601 // 3602 // TwoToFractionalPartOfX = 3603 // 0.999999982f + 3604 // (0.693148872f + 3605 // (0.240227044f + 3606 // (0.554906021e-1f + 3607 // (0.961591928e-2f + 3608 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3609 // error 2.47208000*10^(-7), which is better than 18 bits 3610 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3611 getF32Constant(DAG, 0x3924b03e)); 3612 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3613 getF32Constant(DAG, 0x3ab24b87)); 3614 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3615 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3616 getF32Constant(DAG, 0x3c1d8c17)); 3617 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3618 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3619 getF32Constant(DAG, 0x3d634a1d)); 3620 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3621 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3622 getF32Constant(DAG, 0x3e75fe14)); 3623 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3624 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3625 getF32Constant(DAG, 0x3f317234)); 3626 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3627 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3628 getF32Constant(DAG, 0x3f800000)); 3629 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3630 SDValue TwoToFractionalPartOfX = 3631 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3632 3633 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3634 MVT::f32, TwoToFractionalPartOfX); 3635 } 3636 } else { 3637 // No special expansion. 3638 result = DAG.getNode(ISD::FPOW, dl, 3639 getValue(I.getOperand(1)).getValueType(), 3640 getValue(I.getOperand(1)), 3641 getValue(I.getOperand(2))); 3642 } 3643 3644 setValue(&I, result); 3645 } 3646 3647 3648 /// ExpandPowI - Expand a llvm.powi intrinsic. 3649 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3650 SelectionDAG &DAG) { 3651 // If RHS is a constant, we can expand this out to a multiplication tree, 3652 // otherwise we end up lowering to a call to __powidf2 (for example). When 3653 // optimizing for size, we only want to do this if the expansion would produce 3654 // a small number of multiplies, otherwise we do the full expansion. 3655 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3656 // Get the exponent as a positive value. 3657 unsigned Val = RHSC->getSExtValue(); 3658 if ((int)Val < 0) Val = -Val; 3659 3660 // powi(x, 0) -> 1.0 3661 if (Val == 0) 3662 return DAG.getConstantFP(1.0, LHS.getValueType()); 3663 3664 Function *F = DAG.getMachineFunction().getFunction(); 3665 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3666 // If optimizing for size, don't insert too many multiplies. This 3667 // inserts up to 5 multiplies. 3668 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3669 // We use the simple binary decomposition method to generate the multiply 3670 // sequence. There are more optimal ways to do this (for example, 3671 // powi(x,15) generates one more multiply than it should), but this has 3672 // the benefit of being both really simple and much better than a libcall. 3673 SDValue Res; // Logically starts equal to 1.0 3674 SDValue CurSquare = LHS; 3675 while (Val) { 3676 if (Val & 1) { 3677 if (Res.getNode()) 3678 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3679 else 3680 Res = CurSquare; // 1.0*CurSquare. 3681 } 3682 3683 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3684 CurSquare, CurSquare); 3685 Val >>= 1; 3686 } 3687 3688 // If the original was negative, invert the result, producing 1/(x*x*x). 3689 if (RHSC->getSExtValue() < 0) 3690 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3691 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3692 return Res; 3693 } 3694 } 3695 3696 // Otherwise, expand to a libcall. 3697 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3698 } 3699 3700 3701 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3702 /// we want to emit this as a call to a named external function, return the name 3703 /// otherwise lower it and return null. 3704 const char * 3705 SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { 3706 DebugLoc dl = getCurDebugLoc(); 3707 SDValue Res; 3708 3709 switch (Intrinsic) { 3710 default: 3711 // By default, turn this into a target intrinsic node. 3712 visitTargetIntrinsic(I, Intrinsic); 3713 return 0; 3714 case Intrinsic::vastart: visitVAStart(I); return 0; 3715 case Intrinsic::vaend: visitVAEnd(I); return 0; 3716 case Intrinsic::vacopy: visitVACopy(I); return 0; 3717 case Intrinsic::returnaddress: 3718 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 3719 getValue(I.getOperand(1)))); 3720 return 0; 3721 case Intrinsic::frameaddress: 3722 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 3723 getValue(I.getOperand(1)))); 3724 return 0; 3725 case Intrinsic::setjmp: 3726 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 3727 case Intrinsic::longjmp: 3728 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 3729 case Intrinsic::memcpy: { 3730 SDValue Op1 = getValue(I.getOperand(1)); 3731 SDValue Op2 = getValue(I.getOperand(2)); 3732 SDValue Op3 = getValue(I.getOperand(3)); 3733 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3734 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, 3735 I.getOperand(1), 0, I.getOperand(2), 0)); 3736 return 0; 3737 } 3738 case Intrinsic::memset: { 3739 SDValue Op1 = getValue(I.getOperand(1)); 3740 SDValue Op2 = getValue(I.getOperand(2)); 3741 SDValue Op3 = getValue(I.getOperand(3)); 3742 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3743 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, 3744 I.getOperand(1), 0)); 3745 return 0; 3746 } 3747 case Intrinsic::memmove: { 3748 SDValue Op1 = getValue(I.getOperand(1)); 3749 SDValue Op2 = getValue(I.getOperand(2)); 3750 SDValue Op3 = getValue(I.getOperand(3)); 3751 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3752 3753 // If the source and destination are known to not be aliases, we can 3754 // lower memmove as memcpy. 3755 uint64_t Size = -1ULL; 3756 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 3757 Size = C->getZExtValue(); 3758 if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == 3759 AliasAnalysis::NoAlias) { 3760 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, 3761 I.getOperand(1), 0, I.getOperand(2), 0)); 3762 return 0; 3763 } 3764 3765 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, 3766 I.getOperand(1), 0, I.getOperand(2), 0)); 3767 return 0; 3768 } 3769 case Intrinsic::dbg_declare: { 3770 // FIXME: currently, we get here only if OptLevel != CodeGenOpt::None. 3771 // The real handling of this intrinsic is in FastISel. 3772 if (OptLevel != CodeGenOpt::None) 3773 // FIXME: Variable debug info is not supported here. 3774 return 0; 3775 DwarfWriter *DW = DAG.getDwarfWriter(); 3776 if (!DW) 3777 return 0; 3778 DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 3779 if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None)) 3780 return 0; 3781 3782 MDNode *Variable = DI.getVariable(); 3783 Value *Address = DI.getAddress(); 3784 if (!Address) 3785 return 0; 3786 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 3787 Address = BCI->getOperand(0); 3788 AllocaInst *AI = dyn_cast<AllocaInst>(Address); 3789 // Don't handle byval struct arguments or VLAs, for example. 3790 if (!AI) 3791 return 0; 3792 DenseMap<const AllocaInst*, int>::iterator SI = 3793 FuncInfo.StaticAllocaMap.find(AI); 3794 if (SI == FuncInfo.StaticAllocaMap.end()) 3795 return 0; // VLAs. 3796 int FI = SI->second; 3797 3798 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) 3799 if (MDNode *Dbg = DI.getMetadata("dbg")) 3800 MMI->setVariableDbgInfo(Variable, FI, Dbg); 3801 return 0; 3802 } 3803 case Intrinsic::dbg_value: { 3804 DwarfWriter *DW = DAG.getDwarfWriter(); 3805 if (!DW) 3806 return 0; 3807 DbgValueInst &DI = cast<DbgValueInst>(I); 3808 if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None)) 3809 return 0; 3810 3811 MDNode *Variable = DI.getVariable(); 3812 uint64_t Offset = DI.getOffset(); 3813 Value *V = DI.getValue(); 3814 if (!V) 3815 return 0; 3816 3817 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 3818 // but do not always have a corresponding SDNode built. The SDNodeOrder 3819 // absolute, but not relative, values are different depending on whether 3820 // debug info exists. 3821 ++SDNodeOrder; 3822 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 3823 SDDbgValue* dv = new SDDbgValue(Variable, V, Offset, dl, SDNodeOrder); 3824 DAG.RememberDbgInfo(dv); 3825 } else { 3826 SDValue &N = NodeMap[V]; 3827 if (N.getNode()) { 3828 SDDbgValue *dv = new SDDbgValue(Variable, N.getNode(), 3829 N.getResNo(), Offset, dl, SDNodeOrder); 3830 DAG.AssignDbgInfo(N.getNode(), dv); 3831 } else { 3832 // We may expand this to cover more cases. One case where we have no 3833 // data available is an unreferenced parameter; we need this fallback. 3834 SDDbgValue* dv = new SDDbgValue(Variable, 3835 UndefValue::get(V->getType()), 3836 Offset, dl, SDNodeOrder); 3837 DAG.RememberDbgInfo(dv); 3838 } 3839 } 3840 3841 // Build a debug info table entry. 3842 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 3843 V = BCI->getOperand(0); 3844 AllocaInst *AI = dyn_cast<AllocaInst>(V); 3845 // Don't handle byval struct arguments or VLAs, for example. 3846 if (!AI) 3847 return 0; 3848 DenseMap<const AllocaInst*, int>::iterator SI = 3849 FuncInfo.StaticAllocaMap.find(AI); 3850 if (SI == FuncInfo.StaticAllocaMap.end()) 3851 return 0; // VLAs. 3852 int FI = SI->second; 3853 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) 3854 if (MDNode *Dbg = DI.getMetadata("dbg")) 3855 MMI->setVariableDbgInfo(Variable, FI, Dbg); 3856 return 0; 3857 } 3858 case Intrinsic::eh_exception: { 3859 // Insert the EXCEPTIONADDR instruction. 3860 assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!"); 3861 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3862 SDValue Ops[1]; 3863 Ops[0] = DAG.getRoot(); 3864 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 3865 setValue(&I, Op); 3866 DAG.setRoot(Op.getValue(1)); 3867 return 0; 3868 } 3869 3870 case Intrinsic::eh_selector: { 3871 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3872 3873 if (CurMBB->isLandingPad()) 3874 AddCatchInfo(I, MMI, CurMBB); 3875 else { 3876 #ifndef NDEBUG 3877 FuncInfo.CatchInfoLost.insert(&I); 3878 #endif 3879 // FIXME: Mark exception selector register as live in. Hack for PR1508. 3880 unsigned Reg = TLI.getExceptionSelectorRegister(); 3881 if (Reg) CurMBB->addLiveIn(Reg); 3882 } 3883 3884 // Insert the EHSELECTION instruction. 3885 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3886 SDValue Ops[2]; 3887 Ops[0] = getValue(I.getOperand(1)); 3888 Ops[1] = getRoot(); 3889 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 3890 DAG.setRoot(Op.getValue(1)); 3891 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 3892 return 0; 3893 } 3894 3895 case Intrinsic::eh_typeid_for: { 3896 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3897 3898 if (MMI) { 3899 // Find the type id for the given typeinfo. 3900 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); 3901 unsigned TypeID = MMI->getTypeIDFor(GV); 3902 Res = DAG.getConstant(TypeID, MVT::i32); 3903 } else { 3904 // Return something different to eh_selector. 3905 Res = DAG.getConstant(1, MVT::i32); 3906 } 3907 3908 setValue(&I, Res); 3909 return 0; 3910 } 3911 3912 case Intrinsic::eh_return_i32: 3913 case Intrinsic::eh_return_i64: 3914 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { 3915 MMI->setCallsEHReturn(true); 3916 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 3917 MVT::Other, 3918 getControlRoot(), 3919 getValue(I.getOperand(1)), 3920 getValue(I.getOperand(2)))); 3921 } else { 3922 setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); 3923 } 3924 3925 return 0; 3926 case Intrinsic::eh_unwind_init: 3927 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { 3928 MMI->setCallsUnwindInit(true); 3929 } 3930 return 0; 3931 case Intrinsic::eh_dwarf_cfa: { 3932 EVT VT = getValue(I.getOperand(1)).getValueType(); 3933 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl, 3934 TLI.getPointerTy()); 3935 SDValue Offset = DAG.getNode(ISD::ADD, dl, 3936 TLI.getPointerTy(), 3937 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 3938 TLI.getPointerTy()), 3939 CfaArg); 3940 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 3941 TLI.getPointerTy(), 3942 DAG.getConstant(0, TLI.getPointerTy())); 3943 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 3944 FA, Offset)); 3945 return 0; 3946 } 3947 case Intrinsic::eh_sjlj_callsite: { 3948 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3949 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 3950 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 3951 assert(MMI->getCurrentCallSite() == 0 && "Overlapping call sites!"); 3952 3953 MMI->setCurrentCallSite(CI->getZExtValue()); 3954 return 0; 3955 } 3956 3957 case Intrinsic::convertff: 3958 case Intrinsic::convertfsi: 3959 case Intrinsic::convertfui: 3960 case Intrinsic::convertsif: 3961 case Intrinsic::convertuif: 3962 case Intrinsic::convertss: 3963 case Intrinsic::convertsu: 3964 case Intrinsic::convertus: 3965 case Intrinsic::convertuu: { 3966 ISD::CvtCode Code = ISD::CVT_INVALID; 3967 switch (Intrinsic) { 3968 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 3969 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 3970 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 3971 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 3972 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 3973 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 3974 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 3975 case Intrinsic::convertus: Code = ISD::CVT_US; break; 3976 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 3977 } 3978 EVT DestVT = TLI.getValueType(I.getType()); 3979 Value *Op1 = I.getOperand(1); 3980 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 3981 DAG.getValueType(DestVT), 3982 DAG.getValueType(getValue(Op1).getValueType()), 3983 getValue(I.getOperand(2)), 3984 getValue(I.getOperand(3)), 3985 Code); 3986 setValue(&I, Res); 3987 return 0; 3988 } 3989 case Intrinsic::sqrt: 3990 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 3991 getValue(I.getOperand(1)).getValueType(), 3992 getValue(I.getOperand(1)))); 3993 return 0; 3994 case Intrinsic::powi: 3995 setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)), 3996 getValue(I.getOperand(2)), DAG)); 3997 return 0; 3998 case Intrinsic::sin: 3999 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4000 getValue(I.getOperand(1)).getValueType(), 4001 getValue(I.getOperand(1)))); 4002 return 0; 4003 case Intrinsic::cos: 4004 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4005 getValue(I.getOperand(1)).getValueType(), 4006 getValue(I.getOperand(1)))); 4007 return 0; 4008 case Intrinsic::log: 4009 visitLog(I); 4010 return 0; 4011 case Intrinsic::log2: 4012 visitLog2(I); 4013 return 0; 4014 case Intrinsic::log10: 4015 visitLog10(I); 4016 return 0; 4017 case Intrinsic::exp: 4018 visitExp(I); 4019 return 0; 4020 case Intrinsic::exp2: 4021 visitExp2(I); 4022 return 0; 4023 case Intrinsic::pow: 4024 visitPow(I); 4025 return 0; 4026 case Intrinsic::convert_to_fp16: 4027 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4028 MVT::i16, getValue(I.getOperand(1)))); 4029 return 0; 4030 case Intrinsic::convert_from_fp16: 4031 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4032 MVT::f32, getValue(I.getOperand(1)))); 4033 return 0; 4034 case Intrinsic::pcmarker: { 4035 SDValue Tmp = getValue(I.getOperand(1)); 4036 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4037 return 0; 4038 } 4039 case Intrinsic::readcyclecounter: { 4040 SDValue Op = getRoot(); 4041 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4042 DAG.getVTList(MVT::i64, MVT::Other), 4043 &Op, 1); 4044 setValue(&I, Res); 4045 DAG.setRoot(Res.getValue(1)); 4046 return 0; 4047 } 4048 case Intrinsic::bswap: 4049 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4050 getValue(I.getOperand(1)).getValueType(), 4051 getValue(I.getOperand(1)))); 4052 return 0; 4053 case Intrinsic::cttz: { 4054 SDValue Arg = getValue(I.getOperand(1)); 4055 EVT Ty = Arg.getValueType(); 4056 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4057 return 0; 4058 } 4059 case Intrinsic::ctlz: { 4060 SDValue Arg = getValue(I.getOperand(1)); 4061 EVT Ty = Arg.getValueType(); 4062 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4063 return 0; 4064 } 4065 case Intrinsic::ctpop: { 4066 SDValue Arg = getValue(I.getOperand(1)); 4067 EVT Ty = Arg.getValueType(); 4068 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4069 return 0; 4070 } 4071 case Intrinsic::stacksave: { 4072 SDValue Op = getRoot(); 4073 Res = DAG.getNode(ISD::STACKSAVE, dl, 4074 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4075 setValue(&I, Res); 4076 DAG.setRoot(Res.getValue(1)); 4077 return 0; 4078 } 4079 case Intrinsic::stackrestore: { 4080 Res = getValue(I.getOperand(1)); 4081 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4082 return 0; 4083 } 4084 case Intrinsic::stackprotector: { 4085 // Emit code into the DAG to store the stack guard onto the stack. 4086 MachineFunction &MF = DAG.getMachineFunction(); 4087 MachineFrameInfo *MFI = MF.getFrameInfo(); 4088 EVT PtrTy = TLI.getPointerTy(); 4089 4090 SDValue Src = getValue(I.getOperand(1)); // The guard's value. 4091 AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); 4092 4093 int FI = FuncInfo.StaticAllocaMap[Slot]; 4094 MFI->setStackProtectorIndex(FI); 4095 4096 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4097 4098 // Store the stack protector onto the stack. 4099 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4100 PseudoSourceValue::getFixedStack(FI), 4101 0, true, false, 0); 4102 setValue(&I, Res); 4103 DAG.setRoot(Res); 4104 return 0; 4105 } 4106 case Intrinsic::objectsize: { 4107 // If we don't know by now, we're never going to know. 4108 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2)); 4109 4110 assert(CI && "Non-constant type in __builtin_object_size?"); 4111 4112 SDValue Arg = getValue(I.getOperand(0)); 4113 EVT Ty = Arg.getValueType(); 4114 4115 if (CI->getZExtValue() == 0) 4116 Res = DAG.getConstant(-1ULL, Ty); 4117 else 4118 Res = DAG.getConstant(0, Ty); 4119 4120 setValue(&I, Res); 4121 return 0; 4122 } 4123 case Intrinsic::var_annotation: 4124 // Discard annotate attributes 4125 return 0; 4126 4127 case Intrinsic::init_trampoline: { 4128 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); 4129 4130 SDValue Ops[6]; 4131 Ops[0] = getRoot(); 4132 Ops[1] = getValue(I.getOperand(1)); 4133 Ops[2] = getValue(I.getOperand(2)); 4134 Ops[3] = getValue(I.getOperand(3)); 4135 Ops[4] = DAG.getSrcValue(I.getOperand(1)); 4136 Ops[5] = DAG.getSrcValue(F); 4137 4138 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4139 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4140 Ops, 6); 4141 4142 setValue(&I, Res); 4143 DAG.setRoot(Res.getValue(1)); 4144 return 0; 4145 } 4146 case Intrinsic::gcroot: 4147 if (GFI) { 4148 Value *Alloca = I.getOperand(1); 4149 Constant *TypeMap = cast<Constant>(I.getOperand(2)); 4150 4151 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4152 GFI->addStackRoot(FI->getIndex(), TypeMap); 4153 } 4154 return 0; 4155 case Intrinsic::gcread: 4156 case Intrinsic::gcwrite: 4157 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4158 return 0; 4159 case Intrinsic::flt_rounds: 4160 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4161 return 0; 4162 case Intrinsic::trap: 4163 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4164 return 0; 4165 case Intrinsic::uadd_with_overflow: 4166 return implVisitAluOverflow(I, ISD::UADDO); 4167 case Intrinsic::sadd_with_overflow: 4168 return implVisitAluOverflow(I, ISD::SADDO); 4169 case Intrinsic::usub_with_overflow: 4170 return implVisitAluOverflow(I, ISD::USUBO); 4171 case Intrinsic::ssub_with_overflow: 4172 return implVisitAluOverflow(I, ISD::SSUBO); 4173 case Intrinsic::umul_with_overflow: 4174 return implVisitAluOverflow(I, ISD::UMULO); 4175 case Intrinsic::smul_with_overflow: 4176 return implVisitAluOverflow(I, ISD::SMULO); 4177 4178 case Intrinsic::prefetch: { 4179 SDValue Ops[4]; 4180 Ops[0] = getRoot(); 4181 Ops[1] = getValue(I.getOperand(1)); 4182 Ops[2] = getValue(I.getOperand(2)); 4183 Ops[3] = getValue(I.getOperand(3)); 4184 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4185 return 0; 4186 } 4187 4188 case Intrinsic::memory_barrier: { 4189 SDValue Ops[6]; 4190 Ops[0] = getRoot(); 4191 for (int x = 1; x < 6; ++x) 4192 Ops[x] = getValue(I.getOperand(x)); 4193 4194 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4195 return 0; 4196 } 4197 case Intrinsic::atomic_cmp_swap: { 4198 SDValue Root = getRoot(); 4199 SDValue L = 4200 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4201 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 4202 Root, 4203 getValue(I.getOperand(1)), 4204 getValue(I.getOperand(2)), 4205 getValue(I.getOperand(3)), 4206 I.getOperand(1)); 4207 setValue(&I, L); 4208 DAG.setRoot(L.getValue(1)); 4209 return 0; 4210 } 4211 case Intrinsic::atomic_load_add: 4212 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4213 case Intrinsic::atomic_load_sub: 4214 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4215 case Intrinsic::atomic_load_or: 4216 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4217 case Intrinsic::atomic_load_xor: 4218 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4219 case Intrinsic::atomic_load_and: 4220 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4221 case Intrinsic::atomic_load_nand: 4222 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4223 case Intrinsic::atomic_load_max: 4224 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4225 case Intrinsic::atomic_load_min: 4226 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4227 case Intrinsic::atomic_load_umin: 4228 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4229 case Intrinsic::atomic_load_umax: 4230 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4231 case Intrinsic::atomic_swap: 4232 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4233 4234 case Intrinsic::invariant_start: 4235 case Intrinsic::lifetime_start: 4236 // Discard region information. 4237 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4238 return 0; 4239 case Intrinsic::invariant_end: 4240 case Intrinsic::lifetime_end: 4241 // Discard region information. 4242 return 0; 4243 } 4244 } 4245 4246 /// Test if the given instruction is in a position to be optimized 4247 /// with a tail-call. This roughly means that it's in a block with 4248 /// a return and there's nothing that needs to be scheduled 4249 /// between it and the return. 4250 /// 4251 /// This function only tests target-independent requirements. 4252 static bool 4253 isInTailCallPosition(CallSite CS, Attributes CalleeRetAttr, 4254 const TargetLowering &TLI) { 4255 const Instruction *I = CS.getInstruction(); 4256 const BasicBlock *ExitBB = I->getParent(); 4257 const TerminatorInst *Term = ExitBB->getTerminator(); 4258 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 4259 const Function *F = ExitBB->getParent(); 4260 4261 // The block must end in a return statement or unreachable. 4262 // 4263 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 4264 // an unreachable, for now. The way tailcall optimization is currently 4265 // implemented means it will add an epilogue followed by a jump. That is 4266 // not profitable. Also, if the callee is a special function (e.g. 4267 // longjmp on x86), it can end up causing miscompilation that has not 4268 // been fully understood. 4269 if (!Ret && 4270 (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false; 4271 4272 // If I will have a chain, make sure no other instruction that will have a 4273 // chain interposes between I and the return. 4274 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 4275 !I->isSafeToSpeculativelyExecute()) 4276 for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; 4277 --BBI) { 4278 if (&*BBI == I) 4279 break; 4280 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 4281 !BBI->isSafeToSpeculativelyExecute()) 4282 return false; 4283 } 4284 4285 // If the block ends with a void return or unreachable, it doesn't matter 4286 // what the call's return type is. 4287 if (!Ret || Ret->getNumOperands() == 0) return true; 4288 4289 // If the return value is undef, it doesn't matter what the call's 4290 // return type is. 4291 if (isa<UndefValue>(Ret->getOperand(0))) return true; 4292 4293 // Conservatively require the attributes of the call to match those of 4294 // the return. Ignore noalias because it doesn't affect the call sequence. 4295 unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); 4296 if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) 4297 return false; 4298 4299 // It's not safe to eliminate the sign / zero extension of the return value. 4300 if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) 4301 return false; 4302 4303 // Otherwise, make sure the unmodified return value of I is the return value. 4304 for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; 4305 U = dyn_cast<Instruction>(U->getOperand(0))) { 4306 if (!U) 4307 return false; 4308 if (!U->hasOneUse()) 4309 return false; 4310 if (U == I) 4311 break; 4312 // Check for a truly no-op truncate. 4313 if (isa<TruncInst>(U) && 4314 TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) 4315 continue; 4316 // Check for a truly no-op bitcast. 4317 if (isa<BitCastInst>(U) && 4318 (U->getOperand(0)->getType() == U->getType() || 4319 (U->getOperand(0)->getType()->isPointerTy() && 4320 U->getType()->isPointerTy()))) 4321 continue; 4322 // Otherwise it's not a true no-op. 4323 return false; 4324 } 4325 4326 return true; 4327 } 4328 4329 void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee, 4330 bool isTailCall, 4331 MachineBasicBlock *LandingPad) { 4332 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4333 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4334 const Type *RetTy = FTy->getReturnType(); 4335 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 4336 MCSymbol *BeginLabel = 0; 4337 4338 TargetLowering::ArgListTy Args; 4339 TargetLowering::ArgListEntry Entry; 4340 Args.reserve(CS.arg_size()); 4341 4342 // Check whether the function can return without sret-demotion. 4343 SmallVector<EVT, 4> OutVTs; 4344 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 4345 SmallVector<uint64_t, 4> Offsets; 4346 getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4347 OutVTs, OutsFlags, TLI, &Offsets); 4348 4349 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4350 FTy->isVarArg(), OutVTs, OutsFlags, DAG); 4351 4352 SDValue DemoteStackSlot; 4353 4354 if (!CanLowerReturn) { 4355 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4356 FTy->getReturnType()); 4357 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4358 FTy->getReturnType()); 4359 MachineFunction &MF = DAG.getMachineFunction(); 4360 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4361 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4362 4363 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4364 Entry.Node = DemoteStackSlot; 4365 Entry.Ty = StackSlotPtrType; 4366 Entry.isSExt = false; 4367 Entry.isZExt = false; 4368 Entry.isInReg = false; 4369 Entry.isSRet = true; 4370 Entry.isNest = false; 4371 Entry.isByVal = false; 4372 Entry.Alignment = Align; 4373 Args.push_back(Entry); 4374 RetTy = Type::getVoidTy(FTy->getContext()); 4375 } 4376 4377 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4378 i != e; ++i) { 4379 SDValue ArgNode = getValue(*i); 4380 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4381 4382 unsigned attrInd = i - CS.arg_begin() + 1; 4383 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4384 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4385 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4386 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4387 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4388 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4389 Entry.Alignment = CS.getParamAlignment(attrInd); 4390 Args.push_back(Entry); 4391 } 4392 4393 if (LandingPad && MMI) { 4394 // Insert a label before the invoke call to mark the try range. This can be 4395 // used to detect deletion of the invoke via the MachineModuleInfo. 4396 BeginLabel = MMI->getContext().CreateTempSymbol(); 4397 4398 // For SjLj, keep track of which landing pads go with which invokes 4399 // so as to maintain the ordering of pads in the LSDA. 4400 unsigned CallSiteIndex = MMI->getCurrentCallSite(); 4401 if (CallSiteIndex) { 4402 MMI->setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4403 // Now that the call site is handled, stop tracking it. 4404 MMI->setCurrentCallSite(0); 4405 } 4406 4407 // Both PendingLoads and PendingExports must be flushed here; 4408 // this call might not return. 4409 (void)getRoot(); 4410 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4411 } 4412 4413 // Check if target-independent constraints permit a tail call here. 4414 // Target-dependent constraints are checked within TLI.LowerCallTo. 4415 if (isTailCall && 4416 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4417 isTailCall = false; 4418 4419 std::pair<SDValue,SDValue> Result = 4420 TLI.LowerCallTo(getRoot(), RetTy, 4421 CS.paramHasAttr(0, Attribute::SExt), 4422 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4423 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4424 CS.getCallingConv(), 4425 isTailCall, 4426 !CS.getInstruction()->use_empty(), 4427 Callee, Args, DAG, getCurDebugLoc()); 4428 assert((isTailCall || Result.second.getNode()) && 4429 "Non-null chain expected with non-tail call!"); 4430 assert((Result.second.getNode() || !Result.first.getNode()) && 4431 "Null value expected with tail call!"); 4432 if (Result.first.getNode()) { 4433 setValue(CS.getInstruction(), Result.first); 4434 } else if (!CanLowerReturn && Result.second.getNode()) { 4435 // The instruction result is the result of loading from the 4436 // hidden sret parameter. 4437 SmallVector<EVT, 1> PVTs; 4438 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4439 4440 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4441 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4442 EVT PtrVT = PVTs[0]; 4443 unsigned NumValues = OutVTs.size(); 4444 SmallVector<SDValue, 4> Values(NumValues); 4445 SmallVector<SDValue, 4> Chains(NumValues); 4446 4447 for (unsigned i = 0; i < NumValues; ++i) { 4448 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4449 DemoteStackSlot, 4450 DAG.getConstant(Offsets[i], PtrVT)); 4451 SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second, 4452 Add, NULL, Offsets[i], false, false, 1); 4453 Values[i] = L; 4454 Chains[i] = L.getValue(1); 4455 } 4456 4457 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4458 MVT::Other, &Chains[0], NumValues); 4459 PendingLoads.push_back(Chain); 4460 4461 // Collect the legal value parts into potentially illegal values 4462 // that correspond to the original function's return values. 4463 SmallVector<EVT, 4> RetTys; 4464 RetTy = FTy->getReturnType(); 4465 ComputeValueVTs(TLI, RetTy, RetTys); 4466 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4467 SmallVector<SDValue, 4> ReturnValues; 4468 unsigned CurReg = 0; 4469 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4470 EVT VT = RetTys[I]; 4471 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4472 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4473 4474 SDValue ReturnValue = 4475 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4476 RegisterVT, VT, AssertOp); 4477 ReturnValues.push_back(ReturnValue); 4478 CurReg += NumRegs; 4479 } 4480 4481 setValue(CS.getInstruction(), 4482 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4483 DAG.getVTList(&RetTys[0], RetTys.size()), 4484 &ReturnValues[0], ReturnValues.size())); 4485 4486 } 4487 4488 // As a special case, a null chain means that a tail call has been emitted and 4489 // the DAG root is already updated. 4490 if (Result.second.getNode()) 4491 DAG.setRoot(Result.second); 4492 else 4493 HasTailCall = true; 4494 4495 if (LandingPad && MMI) { 4496 // Insert a label at the end of the invoke call to mark the try range. This 4497 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4498 MCSymbol *EndLabel = MMI->getContext().CreateTempSymbol(); 4499 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4500 4501 // Inform MachineModuleInfo of range. 4502 MMI->addInvoke(LandingPad, BeginLabel, EndLabel); 4503 } 4504 } 4505 4506 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4507 /// value is equal or not-equal to zero. 4508 static bool IsOnlyUsedInZeroEqualityComparison(Value *V) { 4509 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); 4510 UI != E; ++UI) { 4511 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4512 if (IC->isEquality()) 4513 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4514 if (C->isNullValue()) 4515 continue; 4516 // Unknown instruction. 4517 return false; 4518 } 4519 return true; 4520 } 4521 4522 static SDValue getMemCmpLoad(Value *PtrVal, MVT LoadVT, const Type *LoadTy, 4523 SelectionDAGBuilder &Builder) { 4524 4525 // Check to see if this load can be trivially constant folded, e.g. if the 4526 // input is from a string literal. 4527 if (Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4528 // Cast pointer to the type we really want to load. 4529 LoadInput = ConstantExpr::getBitCast(LoadInput, 4530 PointerType::getUnqual(LoadTy)); 4531 4532 if (Constant *LoadCst = ConstantFoldLoadFromConstPtr(LoadInput, Builder.TD)) 4533 return Builder.getValue(LoadCst); 4534 } 4535 4536 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4537 // still constant memory, the input chain can be the entry node. 4538 SDValue Root; 4539 bool ConstantMemory = false; 4540 4541 // Do not serialize (non-volatile) loads of constant memory with anything. 4542 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4543 Root = Builder.DAG.getEntryNode(); 4544 ConstantMemory = true; 4545 } else { 4546 // Do not serialize non-volatile loads against each other. 4547 Root = Builder.DAG.getRoot(); 4548 } 4549 4550 SDValue Ptr = Builder.getValue(PtrVal); 4551 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4552 Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/, 4553 false /*volatile*/, 4554 false /*nontemporal*/, 1 /* align=1 */); 4555 4556 if (!ConstantMemory) 4557 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4558 return LoadVal; 4559 } 4560 4561 4562 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4563 /// If so, return true and lower it, otherwise return false and it will be 4564 /// lowered like a normal call. 4565 bool SelectionDAGBuilder::visitMemCmpCall(CallInst &I) { 4566 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4567 if (I.getNumOperands() != 4) 4568 return false; 4569 4570 Value *LHS = I.getOperand(1), *RHS = I.getOperand(2); 4571 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4572 !I.getOperand(3)->getType()->isIntegerTy() || 4573 !I.getType()->isIntegerTy()) 4574 return false; 4575 4576 ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3)); 4577 4578 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4579 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4580 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4581 bool ActuallyDoIt = true; 4582 MVT LoadVT; 4583 const Type *LoadTy; 4584 switch (Size->getZExtValue()) { 4585 default: 4586 LoadVT = MVT::Other; 4587 LoadTy = 0; 4588 ActuallyDoIt = false; 4589 break; 4590 case 2: 4591 LoadVT = MVT::i16; 4592 LoadTy = Type::getInt16Ty(Size->getContext()); 4593 break; 4594 case 4: 4595 LoadVT = MVT::i32; 4596 LoadTy = Type::getInt32Ty(Size->getContext()); 4597 break; 4598 case 8: 4599 LoadVT = MVT::i64; 4600 LoadTy = Type::getInt64Ty(Size->getContext()); 4601 break; 4602 /* 4603 case 16: 4604 LoadVT = MVT::v4i32; 4605 LoadTy = Type::getInt32Ty(Size->getContext()); 4606 LoadTy = VectorType::get(LoadTy, 4); 4607 break; 4608 */ 4609 } 4610 4611 // This turns into unaligned loads. We only do this if the target natively 4612 // supports the MVT we'll be loading or if it is small enough (<= 4) that 4613 // we'll only produce a small number of byte loads. 4614 4615 // Require that we can find a legal MVT, and only do this if the target 4616 // supports unaligned loads of that type. Expanding into byte loads would 4617 // bloat the code. 4618 if (ActuallyDoIt && Size->getZExtValue() > 4) { 4619 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 4620 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 4621 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 4622 ActuallyDoIt = false; 4623 } 4624 4625 if (ActuallyDoIt) { 4626 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 4627 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 4628 4629 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 4630 ISD::SETNE); 4631 EVT CallVT = TLI.getValueType(I.getType(), true); 4632 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 4633 return true; 4634 } 4635 } 4636 4637 4638 return false; 4639 } 4640 4641 4642 void SelectionDAGBuilder::visitCall(CallInst &I) { 4643 const char *RenameFn = 0; 4644 if (Function *F = I.getCalledFunction()) { 4645 if (F->isDeclaration()) { 4646 const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo(); 4647 if (II) { 4648 if (unsigned IID = II->getIntrinsicID(F)) { 4649 RenameFn = visitIntrinsicCall(I, IID); 4650 if (!RenameFn) 4651 return; 4652 } 4653 } 4654 if (unsigned IID = F->getIntrinsicID()) { 4655 RenameFn = visitIntrinsicCall(I, IID); 4656 if (!RenameFn) 4657 return; 4658 } 4659 } 4660 4661 // Check for well-known libc/libm calls. If the function is internal, it 4662 // can't be a library call. 4663 if (!F->hasLocalLinkage() && F->hasName()) { 4664 StringRef Name = F->getName(); 4665 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 4666 if (I.getNumOperands() == 3 && // Basic sanity checks. 4667 I.getOperand(1)->getType()->isFloatingPointTy() && 4668 I.getType() == I.getOperand(1)->getType() && 4669 I.getType() == I.getOperand(2)->getType()) { 4670 SDValue LHS = getValue(I.getOperand(1)); 4671 SDValue RHS = getValue(I.getOperand(2)); 4672 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4673 LHS.getValueType(), LHS, RHS)); 4674 return; 4675 } 4676 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4677 if (I.getNumOperands() == 2 && // Basic sanity checks. 4678 I.getOperand(1)->getType()->isFloatingPointTy() && 4679 I.getType() == I.getOperand(1)->getType()) { 4680 SDValue Tmp = getValue(I.getOperand(1)); 4681 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4682 Tmp.getValueType(), Tmp)); 4683 return; 4684 } 4685 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4686 if (I.getNumOperands() == 2 && // Basic sanity checks. 4687 I.getOperand(1)->getType()->isFloatingPointTy() && 4688 I.getType() == I.getOperand(1)->getType() && 4689 I.onlyReadsMemory()) { 4690 SDValue Tmp = getValue(I.getOperand(1)); 4691 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4692 Tmp.getValueType(), Tmp)); 4693 return; 4694 } 4695 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4696 if (I.getNumOperands() == 2 && // Basic sanity checks. 4697 I.getOperand(1)->getType()->isFloatingPointTy() && 4698 I.getType() == I.getOperand(1)->getType() && 4699 I.onlyReadsMemory()) { 4700 SDValue Tmp = getValue(I.getOperand(1)); 4701 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4702 Tmp.getValueType(), Tmp)); 4703 return; 4704 } 4705 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4706 if (I.getNumOperands() == 2 && // Basic sanity checks. 4707 I.getOperand(1)->getType()->isFloatingPointTy() && 4708 I.getType() == I.getOperand(1)->getType() && 4709 I.onlyReadsMemory()) { 4710 SDValue Tmp = getValue(I.getOperand(1)); 4711 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4712 Tmp.getValueType(), Tmp)); 4713 return; 4714 } 4715 } else if (Name == "memcmp") { 4716 if (visitMemCmpCall(I)) 4717 return; 4718 } 4719 } 4720 } else if (isa<InlineAsm>(I.getOperand(0))) { 4721 visitInlineAsm(&I); 4722 return; 4723 } 4724 4725 SDValue Callee; 4726 if (!RenameFn) 4727 Callee = getValue(I.getOperand(0)); 4728 else 4729 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4730 4731 // Check if we can potentially perform a tail call. More detailed checking is 4732 // be done within LowerCallTo, after more information about the call is known. 4733 LowerCallTo(&I, Callee, I.isTailCall()); 4734 } 4735 4736 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 4737 /// this value and returns the result as a ValueVT value. This uses 4738 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4739 /// If the Flag pointer is NULL, no flag is used. 4740 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 4741 SDValue &Chain, SDValue *Flag) const { 4742 // Assemble the legal parts into the final values. 4743 SmallVector<SDValue, 4> Values(ValueVTs.size()); 4744 SmallVector<SDValue, 8> Parts; 4745 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4746 // Copy the legal parts from the registers. 4747 EVT ValueVT = ValueVTs[Value]; 4748 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4749 EVT RegisterVT = RegVTs[Value]; 4750 4751 Parts.resize(NumRegs); 4752 for (unsigned i = 0; i != NumRegs; ++i) { 4753 SDValue P; 4754 if (Flag == 0) { 4755 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 4756 } else { 4757 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 4758 *Flag = P.getValue(2); 4759 } 4760 4761 Chain = P.getValue(1); 4762 4763 // If the source register was virtual and if we know something about it, 4764 // add an assert node. 4765 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 4766 RegisterVT.isInteger() && !RegisterVT.isVector()) { 4767 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 4768 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 4769 if (FLI.LiveOutRegInfo.size() > SlotNo) { 4770 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; 4771 4772 unsigned RegSize = RegisterVT.getSizeInBits(); 4773 unsigned NumSignBits = LOI.NumSignBits; 4774 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 4775 4776 // FIXME: We capture more information than the dag can represent. For 4777 // now, just use the tightest assertzext/assertsext possible. 4778 bool isSExt = true; 4779 EVT FromVT(MVT::Other); 4780 if (NumSignBits == RegSize) 4781 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 4782 else if (NumZeroBits >= RegSize-1) 4783 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 4784 else if (NumSignBits > RegSize-8) 4785 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 4786 else if (NumZeroBits >= RegSize-8) 4787 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 4788 else if (NumSignBits > RegSize-16) 4789 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 4790 else if (NumZeroBits >= RegSize-16) 4791 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 4792 else if (NumSignBits > RegSize-32) 4793 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 4794 else if (NumZeroBits >= RegSize-32) 4795 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 4796 4797 if (FromVT != MVT::Other) 4798 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 4799 RegisterVT, P, DAG.getValueType(FromVT)); 4800 } 4801 } 4802 4803 Parts[i] = P; 4804 } 4805 4806 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 4807 NumRegs, RegisterVT, ValueVT); 4808 Part += NumRegs; 4809 Parts.clear(); 4810 } 4811 4812 return DAG.getNode(ISD::MERGE_VALUES, dl, 4813 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 4814 &Values[0], ValueVTs.size()); 4815 } 4816 4817 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 4818 /// specified value into the registers specified by this object. This uses 4819 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4820 /// If the Flag pointer is NULL, no flag is used. 4821 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 4822 SDValue &Chain, SDValue *Flag) const { 4823 // Get the list of the values's legal parts. 4824 unsigned NumRegs = Regs.size(); 4825 SmallVector<SDValue, 8> Parts(NumRegs); 4826 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4827 EVT ValueVT = ValueVTs[Value]; 4828 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4829 EVT RegisterVT = RegVTs[Value]; 4830 4831 getCopyToParts(DAG, dl, 4832 Val.getValue(Val.getResNo() + Value), 4833 &Parts[Part], NumParts, RegisterVT); 4834 Part += NumParts; 4835 } 4836 4837 // Copy the parts into the registers. 4838 SmallVector<SDValue, 8> Chains(NumRegs); 4839 for (unsigned i = 0; i != NumRegs; ++i) { 4840 SDValue Part; 4841 if (Flag == 0) { 4842 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 4843 } else { 4844 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 4845 *Flag = Part.getValue(1); 4846 } 4847 4848 Chains[i] = Part.getValue(0); 4849 } 4850 4851 if (NumRegs == 1 || Flag) 4852 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 4853 // flagged to it. That is the CopyToReg nodes and the user are considered 4854 // a single scheduling unit. If we create a TokenFactor and return it as 4855 // chain, then the TokenFactor is both a predecessor (operand) of the 4856 // user as well as a successor (the TF operands are flagged to the user). 4857 // c1, f1 = CopyToReg 4858 // c2, f2 = CopyToReg 4859 // c3 = TokenFactor c1, c2 4860 // ... 4861 // = op c3, ..., f2 4862 Chain = Chains[NumRegs-1]; 4863 else 4864 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 4865 } 4866 4867 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 4868 /// operand list. This adds the code marker and includes the number of 4869 /// values added into it. 4870 void RegsForValue::AddInlineAsmOperands(unsigned Code, 4871 bool HasMatching,unsigned MatchingIdx, 4872 SelectionDAG &DAG, 4873 std::vector<SDValue> &Ops) const { 4874 assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!"); 4875 unsigned Flag = Code | (Regs.size() << 3); 4876 if (HasMatching) 4877 Flag |= 0x80000000 | (MatchingIdx << 16); 4878 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 4879 Ops.push_back(Res); 4880 4881 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 4882 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 4883 EVT RegisterVT = RegVTs[Value]; 4884 for (unsigned i = 0; i != NumRegs; ++i) { 4885 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 4886 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 4887 } 4888 } 4889 } 4890 4891 /// isAllocatableRegister - If the specified register is safe to allocate, 4892 /// i.e. it isn't a stack pointer or some other special register, return the 4893 /// register class for the register. Otherwise, return null. 4894 static const TargetRegisterClass * 4895 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 4896 const TargetLowering &TLI, 4897 const TargetRegisterInfo *TRI) { 4898 EVT FoundVT = MVT::Other; 4899 const TargetRegisterClass *FoundRC = 0; 4900 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 4901 E = TRI->regclass_end(); RCI != E; ++RCI) { 4902 EVT ThisVT = MVT::Other; 4903 4904 const TargetRegisterClass *RC = *RCI; 4905 // If none of the value types for this register class are valid, we 4906 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4907 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 4908 I != E; ++I) { 4909 if (TLI.isTypeLegal(*I)) { 4910 // If we have already found this register in a different register class, 4911 // choose the one with the largest VT specified. For example, on 4912 // PowerPC, we favor f64 register classes over f32. 4913 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 4914 ThisVT = *I; 4915 break; 4916 } 4917 } 4918 } 4919 4920 if (ThisVT == MVT::Other) continue; 4921 4922 // NOTE: This isn't ideal. In particular, this might allocate the 4923 // frame pointer in functions that need it (due to them not being taken 4924 // out of allocation, because a variable sized allocation hasn't been seen 4925 // yet). This is a slight code pessimization, but should still work. 4926 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 4927 E = RC->allocation_order_end(MF); I != E; ++I) 4928 if (*I == Reg) { 4929 // We found a matching register class. Keep looking at others in case 4930 // we find one with larger registers that this physreg is also in. 4931 FoundRC = RC; 4932 FoundVT = ThisVT; 4933 break; 4934 } 4935 } 4936 return FoundRC; 4937 } 4938 4939 4940 namespace llvm { 4941 /// AsmOperandInfo - This contains information for each constraint that we are 4942 /// lowering. 4943 class VISIBILITY_HIDDEN SDISelAsmOperandInfo : 4944 public TargetLowering::AsmOperandInfo { 4945 public: 4946 /// CallOperand - If this is the result output operand or a clobber 4947 /// this is null, otherwise it is the incoming operand to the CallInst. 4948 /// This gets modified as the asm is processed. 4949 SDValue CallOperand; 4950 4951 /// AssignedRegs - If this is a register or register class operand, this 4952 /// contains the set of register corresponding to the operand. 4953 RegsForValue AssignedRegs; 4954 4955 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 4956 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 4957 } 4958 4959 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 4960 /// busy in OutputRegs/InputRegs. 4961 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 4962 std::set<unsigned> &OutputRegs, 4963 std::set<unsigned> &InputRegs, 4964 const TargetRegisterInfo &TRI) const { 4965 if (isOutReg) { 4966 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4967 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 4968 } 4969 if (isInReg) { 4970 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4971 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 4972 } 4973 } 4974 4975 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 4976 /// corresponds to. If there is no Value* for this operand, it returns 4977 /// MVT::Other. 4978 EVT getCallOperandValEVT(LLVMContext &Context, 4979 const TargetLowering &TLI, 4980 const TargetData *TD) const { 4981 if (CallOperandVal == 0) return MVT::Other; 4982 4983 if (isa<BasicBlock>(CallOperandVal)) 4984 return TLI.getPointerTy(); 4985 4986 const llvm::Type *OpTy = CallOperandVal->getType(); 4987 4988 // If this is an indirect operand, the operand is a pointer to the 4989 // accessed type. 4990 if (isIndirect) { 4991 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4992 if (!PtrTy) 4993 llvm_report_error("Indirect operand for inline asm not a pointer!"); 4994 OpTy = PtrTy->getElementType(); 4995 } 4996 4997 // If OpTy is not a single value, it may be a struct/union that we 4998 // can tile with integers. 4999 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5000 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5001 switch (BitSize) { 5002 default: break; 5003 case 1: 5004 case 8: 5005 case 16: 5006 case 32: 5007 case 64: 5008 case 128: 5009 OpTy = IntegerType::get(Context, BitSize); 5010 break; 5011 } 5012 } 5013 5014 return TLI.getValueType(OpTy, true); 5015 } 5016 5017 private: 5018 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5019 /// specified set. 5020 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5021 const TargetRegisterInfo &TRI) { 5022 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5023 Regs.insert(Reg); 5024 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5025 for (; *Aliases; ++Aliases) 5026 Regs.insert(*Aliases); 5027 } 5028 }; 5029 } // end llvm namespace. 5030 5031 5032 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5033 /// specified operand. We prefer to assign virtual registers, to allow the 5034 /// register allocator to handle the assignment process. However, if the asm 5035 /// uses features that we can't model on machineinstrs, we have SDISel do the 5036 /// allocation. This produces generally horrible, but correct, code. 5037 /// 5038 /// OpInfo describes the operand. 5039 /// Input and OutputRegs are the set of already allocated physical registers. 5040 /// 5041 void SelectionDAGBuilder:: 5042 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5043 std::set<unsigned> &OutputRegs, 5044 std::set<unsigned> &InputRegs) { 5045 LLVMContext &Context = FuncInfo.Fn->getContext(); 5046 5047 // Compute whether this value requires an input register, an output register, 5048 // or both. 5049 bool isOutReg = false; 5050 bool isInReg = false; 5051 switch (OpInfo.Type) { 5052 case InlineAsm::isOutput: 5053 isOutReg = true; 5054 5055 // If there is an input constraint that matches this, we need to reserve 5056 // the input register so no other inputs allocate to it. 5057 isInReg = OpInfo.hasMatchingInput(); 5058 break; 5059 case InlineAsm::isInput: 5060 isInReg = true; 5061 isOutReg = false; 5062 break; 5063 case InlineAsm::isClobber: 5064 isOutReg = true; 5065 isInReg = true; 5066 break; 5067 } 5068 5069 5070 MachineFunction &MF = DAG.getMachineFunction(); 5071 SmallVector<unsigned, 4> Regs; 5072 5073 // If this is a constraint for a single physreg, or a constraint for a 5074 // register class, find it. 5075 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5076 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5077 OpInfo.ConstraintVT); 5078 5079 unsigned NumRegs = 1; 5080 if (OpInfo.ConstraintVT != MVT::Other) { 5081 // If this is a FP input in an integer register (or visa versa) insert a bit 5082 // cast of the input value. More generally, handle any case where the input 5083 // value disagrees with the register class we plan to stick this in. 5084 if (OpInfo.Type == InlineAsm::isInput && 5085 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5086 // Try to convert to the first EVT that the reg class contains. If the 5087 // types are identical size, use a bitcast to convert (e.g. two differing 5088 // vector types). 5089 EVT RegVT = *PhysReg.second->vt_begin(); 5090 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5091 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5092 RegVT, OpInfo.CallOperand); 5093 OpInfo.ConstraintVT = RegVT; 5094 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5095 // If the input is a FP value and we want it in FP registers, do a 5096 // bitcast to the corresponding integer type. This turns an f64 value 5097 // into i64, which can be passed with two i32 values on a 32-bit 5098 // machine. 5099 RegVT = EVT::getIntegerVT(Context, 5100 OpInfo.ConstraintVT.getSizeInBits()); 5101 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5102 RegVT, OpInfo.CallOperand); 5103 OpInfo.ConstraintVT = RegVT; 5104 } 5105 } 5106 5107 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5108 } 5109 5110 EVT RegVT; 5111 EVT ValueVT = OpInfo.ConstraintVT; 5112 5113 // If this is a constraint for a specific physical register, like {r17}, 5114 // assign it now. 5115 if (unsigned AssignedReg = PhysReg.first) { 5116 const TargetRegisterClass *RC = PhysReg.second; 5117 if (OpInfo.ConstraintVT == MVT::Other) 5118 ValueVT = *RC->vt_begin(); 5119 5120 // Get the actual register value type. This is important, because the user 5121 // may have asked for (e.g.) the AX register in i32 type. We need to 5122 // remember that AX is actually i16 to get the right extension. 5123 RegVT = *RC->vt_begin(); 5124 5125 // This is a explicit reference to a physical register. 5126 Regs.push_back(AssignedReg); 5127 5128 // If this is an expanded reference, add the rest of the regs to Regs. 5129 if (NumRegs != 1) { 5130 TargetRegisterClass::iterator I = RC->begin(); 5131 for (; *I != AssignedReg; ++I) 5132 assert(I != RC->end() && "Didn't find reg!"); 5133 5134 // Already added the first reg. 5135 --NumRegs; ++I; 5136 for (; NumRegs; --NumRegs, ++I) { 5137 assert(I != RC->end() && "Ran out of registers to allocate!"); 5138 Regs.push_back(*I); 5139 } 5140 } 5141 5142 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5143 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5144 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5145 return; 5146 } 5147 5148 // Otherwise, if this was a reference to an LLVM register class, create vregs 5149 // for this reference. 5150 if (const TargetRegisterClass *RC = PhysReg.second) { 5151 RegVT = *RC->vt_begin(); 5152 if (OpInfo.ConstraintVT == MVT::Other) 5153 ValueVT = RegVT; 5154 5155 // Create the appropriate number of virtual registers. 5156 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5157 for (; NumRegs; --NumRegs) 5158 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5159 5160 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5161 return; 5162 } 5163 5164 // This is a reference to a register class that doesn't directly correspond 5165 // to an LLVM register class. Allocate NumRegs consecutive, available, 5166 // registers from the class. 5167 std::vector<unsigned> RegClassRegs 5168 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5169 OpInfo.ConstraintVT); 5170 5171 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5172 unsigned NumAllocated = 0; 5173 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5174 unsigned Reg = RegClassRegs[i]; 5175 // See if this register is available. 5176 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5177 (isInReg && InputRegs.count(Reg))) { // Already used. 5178 // Make sure we find consecutive registers. 5179 NumAllocated = 0; 5180 continue; 5181 } 5182 5183 // Check to see if this register is allocatable (i.e. don't give out the 5184 // stack pointer). 5185 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5186 if (!RC) { // Couldn't allocate this register. 5187 // Reset NumAllocated to make sure we return consecutive registers. 5188 NumAllocated = 0; 5189 continue; 5190 } 5191 5192 // Okay, this register is good, we can use it. 5193 ++NumAllocated; 5194 5195 // If we allocated enough consecutive registers, succeed. 5196 if (NumAllocated == NumRegs) { 5197 unsigned RegStart = (i-NumAllocated)+1; 5198 unsigned RegEnd = i+1; 5199 // Mark all of the allocated registers used. 5200 for (unsigned i = RegStart; i != RegEnd; ++i) 5201 Regs.push_back(RegClassRegs[i]); 5202 5203 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), 5204 OpInfo.ConstraintVT); 5205 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5206 return; 5207 } 5208 } 5209 5210 // Otherwise, we couldn't allocate enough registers for this. 5211 } 5212 5213 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 5214 /// processed uses a memory 'm' constraint. 5215 static bool 5216 hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, 5217 const TargetLowering &TLI) { 5218 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 5219 InlineAsm::ConstraintInfo &CI = CInfos[i]; 5220 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 5221 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 5222 if (CType == TargetLowering::C_Memory) 5223 return true; 5224 } 5225 5226 // Indirect operand accesses access memory. 5227 if (CI.isIndirect) 5228 return true; 5229 } 5230 5231 return false; 5232 } 5233 5234 /// visitInlineAsm - Handle a call to an InlineAsm object. 5235 /// 5236 void SelectionDAGBuilder::visitInlineAsm(CallSite CS) { 5237 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5238 5239 /// ConstraintOperands - Information about all of the constraints. 5240 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5241 5242 std::set<unsigned> OutputRegs, InputRegs; 5243 5244 // Do a prepass over the constraints, canonicalizing them, and building up the 5245 // ConstraintOperands list. 5246 std::vector<InlineAsm::ConstraintInfo> 5247 ConstraintInfos = IA->ParseConstraints(); 5248 5249 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5250 5251 SDValue Chain, Flag; 5252 5253 // We won't need to flush pending loads if this asm doesn't touch 5254 // memory and is nonvolatile. 5255 if (hasMemory || IA->hasSideEffects()) 5256 Chain = getRoot(); 5257 else 5258 Chain = DAG.getRoot(); 5259 5260 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5261 unsigned ResNo = 0; // ResNo - The result number of the next output. 5262 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5263 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5264 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5265 5266 EVT OpVT = MVT::Other; 5267 5268 // Compute the value type for each operand. 5269 switch (OpInfo.Type) { 5270 case InlineAsm::isOutput: 5271 // Indirect outputs just consume an argument. 5272 if (OpInfo.isIndirect) { 5273 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 5274 break; 5275 } 5276 5277 // The return value of the call is this value. As such, there is no 5278 // corresponding argument. 5279 assert(!CS.getType()->isVoidTy() && 5280 "Bad inline asm!"); 5281 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5282 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5283 } else { 5284 assert(ResNo == 0 && "Asm only has one result!"); 5285 OpVT = TLI.getValueType(CS.getType()); 5286 } 5287 ++ResNo; 5288 break; 5289 case InlineAsm::isInput: 5290 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 5291 break; 5292 case InlineAsm::isClobber: 5293 // Nothing to do. 5294 break; 5295 } 5296 5297 // If this is an input or an indirect output, process the call argument. 5298 // BasicBlocks are labels, currently appearing only in asm's. 5299 if (OpInfo.CallOperandVal) { 5300 // Strip bitcasts, if any. This mostly comes up for functions. 5301 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5302 5303 if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5304 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5305 } else { 5306 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5307 } 5308 5309 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5310 } 5311 5312 OpInfo.ConstraintVT = OpVT; 5313 } 5314 5315 // Second pass over the constraints: compute which constraint option to use 5316 // and assign registers to constraints that want a specific physreg. 5317 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5318 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5319 5320 // If this is an output operand with a matching input operand, look up the 5321 // matching input. If their types mismatch, e.g. one is an integer, the 5322 // other is floating point, or their sizes are different, flag it as an 5323 // error. 5324 if (OpInfo.hasMatchingInput()) { 5325 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5326 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5327 if ((OpInfo.ConstraintVT.isInteger() != 5328 Input.ConstraintVT.isInteger()) || 5329 (OpInfo.ConstraintVT.getSizeInBits() != 5330 Input.ConstraintVT.getSizeInBits())) { 5331 llvm_report_error("Unsupported asm: input constraint" 5332 " with a matching output constraint of incompatible" 5333 " type!"); 5334 } 5335 Input.ConstraintVT = OpInfo.ConstraintVT; 5336 } 5337 } 5338 5339 // Compute the constraint code and ConstraintType to use. 5340 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); 5341 5342 // If this is a memory input, and if the operand is not indirect, do what we 5343 // need to to provide an address for the memory input. 5344 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5345 !OpInfo.isIndirect) { 5346 assert(OpInfo.Type == InlineAsm::isInput && 5347 "Can only indirectify direct input operands!"); 5348 5349 // Memory operands really want the address of the value. If we don't have 5350 // an indirect input, put it in the constpool if we can, otherwise spill 5351 // it to a stack slot. 5352 5353 // If the operand is a float, integer, or vector constant, spill to a 5354 // constant pool entry to get its address. 5355 Value *OpVal = OpInfo.CallOperandVal; 5356 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5357 isa<ConstantVector>(OpVal)) { 5358 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5359 TLI.getPointerTy()); 5360 } else { 5361 // Otherwise, create a stack slot and emit a store to it before the 5362 // asm. 5363 const Type *Ty = OpVal->getType(); 5364 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5365 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5366 MachineFunction &MF = DAG.getMachineFunction(); 5367 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5368 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5369 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5370 OpInfo.CallOperand, StackSlot, NULL, 0, 5371 false, false, 0); 5372 OpInfo.CallOperand = StackSlot; 5373 } 5374 5375 // There is no longer a Value* corresponding to this operand. 5376 OpInfo.CallOperandVal = 0; 5377 5378 // It is now an indirect operand. 5379 OpInfo.isIndirect = true; 5380 } 5381 5382 // If this constraint is for a specific register, allocate it before 5383 // anything else. 5384 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5385 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5386 } 5387 5388 ConstraintInfos.clear(); 5389 5390 // Second pass - Loop over all of the operands, assigning virtual or physregs 5391 // to register class operands. 5392 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5393 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5394 5395 // C_Register operands have already been allocated, Other/Memory don't need 5396 // to be. 5397 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5398 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5399 } 5400 5401 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5402 std::vector<SDValue> AsmNodeOperands; 5403 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5404 AsmNodeOperands.push_back( 5405 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5406 TLI.getPointerTy())); 5407 5408 5409 // Loop over all of the inputs, copying the operand values into the 5410 // appropriate registers and processing the output regs. 5411 RegsForValue RetValRegs; 5412 5413 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5414 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5415 5416 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5417 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5418 5419 switch (OpInfo.Type) { 5420 case InlineAsm::isOutput: { 5421 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5422 OpInfo.ConstraintType != TargetLowering::C_Register) { 5423 // Memory output, or 'other' output (e.g. 'X' constraint). 5424 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5425 5426 // Add information to the INLINEASM node to know about this output. 5427 unsigned ResOpType = 4/*MEM*/ | (1<<3); 5428 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5429 TLI.getPointerTy())); 5430 AsmNodeOperands.push_back(OpInfo.CallOperand); 5431 break; 5432 } 5433 5434 // Otherwise, this is a register or register class output. 5435 5436 // Copy the output from the appropriate register. Find a register that 5437 // we can use. 5438 if (OpInfo.AssignedRegs.Regs.empty()) { 5439 llvm_report_error("Couldn't allocate output reg for" 5440 " constraint '" + OpInfo.ConstraintCode + "'!"); 5441 } 5442 5443 // If this is an indirect operand, store through the pointer after the 5444 // asm. 5445 if (OpInfo.isIndirect) { 5446 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5447 OpInfo.CallOperandVal)); 5448 } else { 5449 // This is the result value of the call. 5450 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5451 // Concatenate this output onto the outputs list. 5452 RetValRegs.append(OpInfo.AssignedRegs); 5453 } 5454 5455 // Add information to the INLINEASM node to know that this register is 5456 // set. 5457 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5458 6 /* EARLYCLOBBER REGDEF */ : 5459 2 /* REGDEF */ , 5460 false, 5461 0, 5462 DAG, 5463 AsmNodeOperands); 5464 break; 5465 } 5466 case InlineAsm::isInput: { 5467 SDValue InOperandVal = OpInfo.CallOperand; 5468 5469 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5470 // If this is required to match an output register we have already set, 5471 // just use its register. 5472 unsigned OperandNo = OpInfo.getMatchedOperand(); 5473 5474 // Scan until we find the definition we already emitted of this operand. 5475 // When we find it, create a RegsForValue operand. 5476 unsigned CurOp = 2; // The first operand. 5477 for (; OperandNo; --OperandNo) { 5478 // Advance to the next operand. 5479 unsigned OpFlag = 5480 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5481 assert(((OpFlag & 7) == 2 /*REGDEF*/ || 5482 (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ || 5483 (OpFlag & 7) == 4 /*MEM*/) && 5484 "Skipped past definitions?"); 5485 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5486 } 5487 5488 unsigned OpFlag = 5489 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5490 if ((OpFlag & 7) == 2 /*REGDEF*/ 5491 || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) { 5492 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5493 if (OpInfo.isIndirect) { 5494 llvm_report_error("Don't know how to handle tied indirect " 5495 "register inputs yet!"); 5496 } 5497 RegsForValue MatchedRegs; 5498 MatchedRegs.TLI = &TLI; 5499 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5500 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5501 MatchedRegs.RegVTs.push_back(RegVT); 5502 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5503 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5504 i != e; ++i) 5505 MatchedRegs.Regs.push_back 5506 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5507 5508 // Use the produced MatchedRegs object to 5509 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5510 Chain, &Flag); 5511 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, 5512 true, OpInfo.getMatchedOperand(), 5513 DAG, AsmNodeOperands); 5514 break; 5515 } else { 5516 assert(((OpFlag & 7) == 4) && "Unknown matching constraint!"); 5517 assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 && 5518 "Unexpected number of operands"); 5519 // Add information to the INLINEASM node to know about this input. 5520 // See InlineAsm.h isUseOperandTiedToDef. 5521 OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16); 5522 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5523 TLI.getPointerTy())); 5524 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5525 break; 5526 } 5527 } 5528 5529 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5530 assert(!OpInfo.isIndirect && 5531 "Don't know how to handle indirect other inputs yet!"); 5532 5533 std::vector<SDValue> Ops; 5534 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5535 hasMemory, Ops, DAG); 5536 if (Ops.empty()) { 5537 llvm_report_error("Invalid operand for inline asm" 5538 " constraint '" + OpInfo.ConstraintCode + "'!"); 5539 } 5540 5541 // Add information to the INLINEASM node to know about this input. 5542 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); 5543 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5544 TLI.getPointerTy())); 5545 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5546 break; 5547 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5548 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5549 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5550 "Memory operands expect pointer values"); 5551 5552 // Add information to the INLINEASM node to know about this input. 5553 unsigned ResOpType = 4/*MEM*/ | (1<<3); 5554 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5555 TLI.getPointerTy())); 5556 AsmNodeOperands.push_back(InOperandVal); 5557 break; 5558 } 5559 5560 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5561 OpInfo.ConstraintType == TargetLowering::C_Register) && 5562 "Unknown constraint type!"); 5563 assert(!OpInfo.isIndirect && 5564 "Don't know how to handle indirect register inputs yet!"); 5565 5566 // Copy the input into the appropriate registers. 5567 if (OpInfo.AssignedRegs.Regs.empty() || 5568 !OpInfo.AssignedRegs.areValueTypesLegal()) { 5569 llvm_report_error("Couldn't allocate input reg for" 5570 " constraint '"+ OpInfo.ConstraintCode +"'!"); 5571 } 5572 5573 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5574 Chain, &Flag); 5575 5576 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0, 5577 DAG, AsmNodeOperands); 5578 break; 5579 } 5580 case InlineAsm::isClobber: { 5581 // Add the clobbered value to the operand list, so that the register 5582 // allocator is aware that the physreg got clobbered. 5583 if (!OpInfo.AssignedRegs.Regs.empty()) 5584 OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */, 5585 false, 0, DAG, 5586 AsmNodeOperands); 5587 break; 5588 } 5589 } 5590 } 5591 5592 // Finish up input operands. 5593 AsmNodeOperands[0] = Chain; 5594 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5595 5596 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5597 DAG.getVTList(MVT::Other, MVT::Flag), 5598 &AsmNodeOperands[0], AsmNodeOperands.size()); 5599 Flag = Chain.getValue(1); 5600 5601 // If this asm returns a register value, copy the result from that register 5602 // and set it as the value of the call. 5603 if (!RetValRegs.Regs.empty()) { 5604 SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5605 Chain, &Flag); 5606 5607 // FIXME: Why don't we do this for inline asms with MRVs? 5608 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5609 EVT ResultType = TLI.getValueType(CS.getType()); 5610 5611 // If any of the results of the inline asm is a vector, it may have the 5612 // wrong width/num elts. This can happen for register classes that can 5613 // contain multiple different value types. The preg or vreg allocated may 5614 // not have the same VT as was expected. Convert it to the right type 5615 // with bit_convert. 5616 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5617 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5618 ResultType, Val); 5619 5620 } else if (ResultType != Val.getValueType() && 5621 ResultType.isInteger() && Val.getValueType().isInteger()) { 5622 // If a result value was tied to an input value, the computed result may 5623 // have a wider width than the expected result. Extract the relevant 5624 // portion. 5625 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5626 } 5627 5628 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5629 } 5630 5631 setValue(CS.getInstruction(), Val); 5632 // Don't need to use this as a chain in this case. 5633 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5634 return; 5635 } 5636 5637 std::vector<std::pair<SDValue, Value*> > StoresToEmit; 5638 5639 // Process indirect outputs, first output all of the flagged copies out of 5640 // physregs. 5641 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5642 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5643 Value *Ptr = IndirectStoresToEmit[i].second; 5644 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5645 Chain, &Flag); 5646 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5647 5648 } 5649 5650 // Emit the non-flagged stores from the physregs. 5651 SmallVector<SDValue, 8> OutChains; 5652 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5653 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5654 StoresToEmit[i].first, 5655 getValue(StoresToEmit[i].second), 5656 StoresToEmit[i].second, 0, 5657 false, false, 0); 5658 OutChains.push_back(Val); 5659 } 5660 5661 if (!OutChains.empty()) 5662 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5663 &OutChains[0], OutChains.size()); 5664 5665 DAG.setRoot(Chain); 5666 } 5667 5668 void SelectionDAGBuilder::visitVAStart(CallInst &I) { 5669 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5670 MVT::Other, getRoot(), 5671 getValue(I.getOperand(1)), 5672 DAG.getSrcValue(I.getOperand(1)))); 5673 } 5674 5675 void SelectionDAGBuilder::visitVAArg(VAArgInst &I) { 5676 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5677 getRoot(), getValue(I.getOperand(0)), 5678 DAG.getSrcValue(I.getOperand(0))); 5679 setValue(&I, V); 5680 DAG.setRoot(V.getValue(1)); 5681 } 5682 5683 void SelectionDAGBuilder::visitVAEnd(CallInst &I) { 5684 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5685 MVT::Other, getRoot(), 5686 getValue(I.getOperand(1)), 5687 DAG.getSrcValue(I.getOperand(1)))); 5688 } 5689 5690 void SelectionDAGBuilder::visitVACopy(CallInst &I) { 5691 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5692 MVT::Other, getRoot(), 5693 getValue(I.getOperand(1)), 5694 getValue(I.getOperand(2)), 5695 DAG.getSrcValue(I.getOperand(1)), 5696 DAG.getSrcValue(I.getOperand(2)))); 5697 } 5698 5699 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5700 /// implementation, which just calls LowerCall. 5701 /// FIXME: When all targets are 5702 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5703 std::pair<SDValue, SDValue> 5704 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5705 bool RetSExt, bool RetZExt, bool isVarArg, 5706 bool isInreg, unsigned NumFixedArgs, 5707 CallingConv::ID CallConv, bool isTailCall, 5708 bool isReturnValueUsed, 5709 SDValue Callee, 5710 ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) { 5711 // Handle all of the outgoing arguments. 5712 SmallVector<ISD::OutputArg, 32> Outs; 5713 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5714 SmallVector<EVT, 4> ValueVTs; 5715 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5716 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5717 Value != NumValues; ++Value) { 5718 EVT VT = ValueVTs[Value]; 5719 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5720 SDValue Op = SDValue(Args[i].Node.getNode(), 5721 Args[i].Node.getResNo() + Value); 5722 ISD::ArgFlagsTy Flags; 5723 unsigned OriginalAlignment = 5724 getTargetData()->getABITypeAlignment(ArgTy); 5725 5726 if (Args[i].isZExt) 5727 Flags.setZExt(); 5728 if (Args[i].isSExt) 5729 Flags.setSExt(); 5730 if (Args[i].isInReg) 5731 Flags.setInReg(); 5732 if (Args[i].isSRet) 5733 Flags.setSRet(); 5734 if (Args[i].isByVal) { 5735 Flags.setByVal(); 5736 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5737 const Type *ElementTy = Ty->getElementType(); 5738 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5739 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5740 // For ByVal, alignment should come from FE. BE will guess if this 5741 // info is not there but there are cases it cannot get right. 5742 if (Args[i].Alignment) 5743 FrameAlign = Args[i].Alignment; 5744 Flags.setByValAlign(FrameAlign); 5745 Flags.setByValSize(FrameSize); 5746 } 5747 if (Args[i].isNest) 5748 Flags.setNest(); 5749 Flags.setOrigAlign(OriginalAlignment); 5750 5751 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5752 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5753 SmallVector<SDValue, 4> Parts(NumParts); 5754 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5755 5756 if (Args[i].isSExt) 5757 ExtendKind = ISD::SIGN_EXTEND; 5758 else if (Args[i].isZExt) 5759 ExtendKind = ISD::ZERO_EXTEND; 5760 5761 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 5762 PartVT, ExtendKind); 5763 5764 for (unsigned j = 0; j != NumParts; ++j) { 5765 // if it isn't first piece, alignment must be 1 5766 ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs); 5767 if (NumParts > 1 && j == 0) 5768 MyFlags.Flags.setSplit(); 5769 else if (j != 0) 5770 MyFlags.Flags.setOrigAlign(1); 5771 5772 Outs.push_back(MyFlags); 5773 } 5774 } 5775 } 5776 5777 // Handle the incoming return values from the call. 5778 SmallVector<ISD::InputArg, 32> Ins; 5779 SmallVector<EVT, 4> RetTys; 5780 ComputeValueVTs(*this, RetTy, RetTys); 5781 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5782 EVT VT = RetTys[I]; 5783 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5784 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5785 for (unsigned i = 0; i != NumRegs; ++i) { 5786 ISD::InputArg MyFlags; 5787 MyFlags.VT = RegisterVT; 5788 MyFlags.Used = isReturnValueUsed; 5789 if (RetSExt) 5790 MyFlags.Flags.setSExt(); 5791 if (RetZExt) 5792 MyFlags.Flags.setZExt(); 5793 if (isInreg) 5794 MyFlags.Flags.setInReg(); 5795 Ins.push_back(MyFlags); 5796 } 5797 } 5798 5799 SmallVector<SDValue, 4> InVals; 5800 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5801 Outs, Ins, dl, DAG, InVals); 5802 5803 // Verify that the target's LowerCall behaved as expected. 5804 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5805 "LowerCall didn't return a valid chain!"); 5806 assert((!isTailCall || InVals.empty()) && 5807 "LowerCall emitted a return value for a tail call!"); 5808 assert((isTailCall || InVals.size() == Ins.size()) && 5809 "LowerCall didn't emit the correct number of values!"); 5810 5811 // For a tail call, the return value is merely live-out and there aren't 5812 // any nodes in the DAG representing it. Return a special value to 5813 // indicate that a tail call has been emitted and no more Instructions 5814 // should be processed in the current block. 5815 if (isTailCall) { 5816 DAG.setRoot(Chain); 5817 return std::make_pair(SDValue(), SDValue()); 5818 } 5819 5820 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5821 assert(InVals[i].getNode() && 5822 "LowerCall emitted a null value!"); 5823 assert(Ins[i].VT == InVals[i].getValueType() && 5824 "LowerCall emitted a value with the wrong type!"); 5825 }); 5826 5827 // Collect the legal value parts into potentially illegal values 5828 // that correspond to the original function's return values. 5829 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5830 if (RetSExt) 5831 AssertOp = ISD::AssertSext; 5832 else if (RetZExt) 5833 AssertOp = ISD::AssertZext; 5834 SmallVector<SDValue, 4> ReturnValues; 5835 unsigned CurReg = 0; 5836 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5837 EVT VT = RetTys[I]; 5838 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5839 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5840 5841 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 5842 NumRegs, RegisterVT, VT, 5843 AssertOp)); 5844 CurReg += NumRegs; 5845 } 5846 5847 // For a function returning void, there is no return value. We can't create 5848 // such a node, so we just return a null return value in that case. In 5849 // that case, nothing will actualy look at the value. 5850 if (ReturnValues.empty()) 5851 return std::make_pair(SDValue(), Chain); 5852 5853 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5854 DAG.getVTList(&RetTys[0], RetTys.size()), 5855 &ReturnValues[0], ReturnValues.size()); 5856 return std::make_pair(Res, Chain); 5857 } 5858 5859 void TargetLowering::LowerOperationWrapper(SDNode *N, 5860 SmallVectorImpl<SDValue> &Results, 5861 SelectionDAG &DAG) { 5862 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5863 if (Res.getNode()) 5864 Results.push_back(Res); 5865 } 5866 5867 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { 5868 llvm_unreachable("LowerOperation not implemented for this target!"); 5869 return SDValue(); 5870 } 5871 5872 void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) { 5873 SDValue Op = getValue(V); 5874 assert((Op.getOpcode() != ISD::CopyFromReg || 5875 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5876 "Copy from a reg to the same reg!"); 5877 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5878 5879 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5880 SDValue Chain = DAG.getEntryNode(); 5881 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5882 PendingExports.push_back(Chain); 5883 } 5884 5885 #include "llvm/CodeGen/SelectionDAGISel.h" 5886 5887 void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) { 5888 // If this is the entry block, emit arguments. 5889 Function &F = *LLVMBB->getParent(); 5890 SelectionDAG &DAG = SDB->DAG; 5891 SDValue OldRoot = DAG.getRoot(); 5892 DebugLoc dl = SDB->getCurDebugLoc(); 5893 const TargetData *TD = TLI.getTargetData(); 5894 SmallVector<ISD::InputArg, 16> Ins; 5895 5896 // Check whether the function can return without sret-demotion. 5897 SmallVector<EVT, 4> OutVTs; 5898 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 5899 getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5900 OutVTs, OutsFlags, TLI); 5901 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 5902 5903 FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), 5904 OutVTs, OutsFlags, DAG); 5905 if (!FLI.CanLowerReturn) { 5906 // Put in an sret pointer parameter before all the other parameters. 5907 SmallVector<EVT, 1> ValueVTs; 5908 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5909 5910 // NOTE: Assuming that a pointer will never break down to more than one VT 5911 // or one register. 5912 ISD::ArgFlagsTy Flags; 5913 Flags.setSRet(); 5914 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]); 5915 ISD::InputArg RetArg(Flags, RegisterVT, true); 5916 Ins.push_back(RetArg); 5917 } 5918 5919 // Set up the incoming argument description vector. 5920 unsigned Idx = 1; 5921 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); 5922 I != E; ++I, ++Idx) { 5923 SmallVector<EVT, 4> ValueVTs; 5924 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5925 bool isArgValueUsed = !I->use_empty(); 5926 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5927 Value != NumValues; ++Value) { 5928 EVT VT = ValueVTs[Value]; 5929 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 5930 ISD::ArgFlagsTy Flags; 5931 unsigned OriginalAlignment = 5932 TD->getABITypeAlignment(ArgTy); 5933 5934 if (F.paramHasAttr(Idx, Attribute::ZExt)) 5935 Flags.setZExt(); 5936 if (F.paramHasAttr(Idx, Attribute::SExt)) 5937 Flags.setSExt(); 5938 if (F.paramHasAttr(Idx, Attribute::InReg)) 5939 Flags.setInReg(); 5940 if (F.paramHasAttr(Idx, Attribute::StructRet)) 5941 Flags.setSRet(); 5942 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 5943 Flags.setByVal(); 5944 const PointerType *Ty = cast<PointerType>(I->getType()); 5945 const Type *ElementTy = Ty->getElementType(); 5946 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 5947 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 5948 // For ByVal, alignment should be passed from FE. BE will guess if 5949 // this info is not there but there are cases it cannot get right. 5950 if (F.getParamAlignment(Idx)) 5951 FrameAlign = F.getParamAlignment(Idx); 5952 Flags.setByValAlign(FrameAlign); 5953 Flags.setByValSize(FrameSize); 5954 } 5955 if (F.paramHasAttr(Idx, Attribute::Nest)) 5956 Flags.setNest(); 5957 Flags.setOrigAlign(OriginalAlignment); 5958 5959 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5960 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5961 for (unsigned i = 0; i != NumRegs; ++i) { 5962 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 5963 if (NumRegs > 1 && i == 0) 5964 MyFlags.Flags.setSplit(); 5965 // if it isn't first piece, alignment must be 1 5966 else if (i > 0) 5967 MyFlags.Flags.setOrigAlign(1); 5968 Ins.push_back(MyFlags); 5969 } 5970 } 5971 } 5972 5973 // Call the target to set up the argument values. 5974 SmallVector<SDValue, 8> InVals; 5975 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 5976 F.isVarArg(), Ins, 5977 dl, DAG, InVals); 5978 5979 // Verify that the target's LowerFormalArguments behaved as expected. 5980 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 5981 "LowerFormalArguments didn't return a valid chain!"); 5982 assert(InVals.size() == Ins.size() && 5983 "LowerFormalArguments didn't emit the correct number of values!"); 5984 DEBUG({ 5985 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5986 assert(InVals[i].getNode() && 5987 "LowerFormalArguments emitted a null value!"); 5988 assert(Ins[i].VT == InVals[i].getValueType() && 5989 "LowerFormalArguments emitted a value with the wrong type!"); 5990 } 5991 }); 5992 5993 // Update the DAG with the new chain value resulting from argument lowering. 5994 DAG.setRoot(NewRoot); 5995 5996 // Set up the argument values. 5997 unsigned i = 0; 5998 Idx = 1; 5999 if (!FLI.CanLowerReturn) { 6000 // Create a virtual register for the sret pointer, and put in a copy 6001 // from the sret argument into it. 6002 SmallVector<EVT, 1> ValueVTs; 6003 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6004 EVT VT = ValueVTs[0]; 6005 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6006 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6007 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6008 RegVT, VT, AssertOp); 6009 6010 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6011 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6012 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6013 FLI.DemoteRegister = SRetReg; 6014 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6015 SRetReg, ArgValue); 6016 DAG.setRoot(NewRoot); 6017 6018 // i indexes lowered arguments. Bump it past the hidden sret argument. 6019 // Idx indexes LLVM arguments. Don't touch it. 6020 ++i; 6021 } 6022 6023 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6024 ++I, ++Idx) { 6025 SmallVector<SDValue, 4> ArgValues; 6026 SmallVector<EVT, 4> ValueVTs; 6027 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6028 unsigned NumValues = ValueVTs.size(); 6029 for (unsigned Value = 0; Value != NumValues; ++Value) { 6030 EVT VT = ValueVTs[Value]; 6031 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6032 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6033 6034 if (!I->use_empty()) { 6035 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6036 if (F.paramHasAttr(Idx, Attribute::SExt)) 6037 AssertOp = ISD::AssertSext; 6038 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6039 AssertOp = ISD::AssertZext; 6040 6041 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6042 NumParts, PartVT, VT, 6043 AssertOp)); 6044 } 6045 6046 i += NumParts; 6047 } 6048 6049 if (!I->use_empty()) { 6050 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6051 SDB->getCurDebugLoc()); 6052 SDB->setValue(I, Res); 6053 6054 // If this argument is live outside of the entry block, insert a copy from 6055 // whereever we got it to the vreg that other BB's will reference it as. 6056 SDB->CopyToExportRegsIfNeeded(I); 6057 } 6058 } 6059 6060 assert(i == InVals.size() && "Argument register count mismatch!"); 6061 6062 // Finally, if the target has anything special to do, allow it to do so. 6063 // FIXME: this should insert code into the DAG! 6064 EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction()); 6065 } 6066 6067 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6068 /// ensure constants are generated when needed. Remember the virtual registers 6069 /// that need to be added to the Machine PHI nodes as input. We cannot just 6070 /// directly add them, because expansion might result in multiple MBB's for one 6071 /// BB. As such, the start of the BB might correspond to a different MBB than 6072 /// the end. 6073 /// 6074 void 6075 SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) { 6076 TerminatorInst *TI = LLVMBB->getTerminator(); 6077 6078 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6079 6080 // Check successor nodes' PHI nodes that expect a constant to be available 6081 // from this block. 6082 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6083 BasicBlock *SuccBB = TI->getSuccessor(succ); 6084 if (!isa<PHINode>(SuccBB->begin())) continue; 6085 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 6086 6087 // If this terminator has multiple identical successors (common for 6088 // switches), only handle each succ once. 6089 if (!SuccsHandled.insert(SuccMBB)) continue; 6090 6091 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6092 PHINode *PN; 6093 6094 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6095 // nodes and Machine PHI nodes, but the incoming operands have not been 6096 // emitted yet. 6097 for (BasicBlock::iterator I = SuccBB->begin(); 6098 (PN = dyn_cast<PHINode>(I)); ++I) { 6099 // Ignore dead phi's. 6100 if (PN->use_empty()) continue; 6101 6102 unsigned Reg; 6103 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6104 6105 if (Constant *C = dyn_cast<Constant>(PHIOp)) { 6106 unsigned &RegOut = SDB->ConstantsOut[C]; 6107 if (RegOut == 0) { 6108 RegOut = FuncInfo->CreateRegForValue(C); 6109 SDB->CopyValueToVirtualRegister(C, RegOut); 6110 } 6111 Reg = RegOut; 6112 } else { 6113 Reg = FuncInfo->ValueMap[PHIOp]; 6114 if (Reg == 0) { 6115 assert(isa<AllocaInst>(PHIOp) && 6116 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6117 "Didn't codegen value into a register!??"); 6118 Reg = FuncInfo->CreateRegForValue(PHIOp); 6119 SDB->CopyValueToVirtualRegister(PHIOp, Reg); 6120 } 6121 } 6122 6123 // Remember that this register needs to added to the machine PHI node as 6124 // the input for this MBB. 6125 SmallVector<EVT, 4> ValueVTs; 6126 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6127 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6128 EVT VT = ValueVTs[vti]; 6129 unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6130 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6131 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6132 Reg += NumRegisters; 6133 } 6134 } 6135 } 6136 SDB->ConstantsOut.clear(); 6137 } 6138 6139 /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only 6140 /// supports legal types, and it emits MachineInstrs directly instead of 6141 /// creating SelectionDAG nodes. 6142 /// 6143 bool 6144 SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB, 6145 FastISel *F) { 6146 TerminatorInst *TI = LLVMBB->getTerminator(); 6147 6148 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6149 unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size(); 6150 6151 // Check successor nodes' PHI nodes that expect a constant to be available 6152 // from this block. 6153 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6154 BasicBlock *SuccBB = TI->getSuccessor(succ); 6155 if (!isa<PHINode>(SuccBB->begin())) continue; 6156 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 6157 6158 // If this terminator has multiple identical successors (common for 6159 // switches), only handle each succ once. 6160 if (!SuccsHandled.insert(SuccMBB)) continue; 6161 6162 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6163 PHINode *PN; 6164 6165 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6166 // nodes and Machine PHI nodes, but the incoming operands have not been 6167 // emitted yet. 6168 for (BasicBlock::iterator I = SuccBB->begin(); 6169 (PN = dyn_cast<PHINode>(I)); ++I) { 6170 // Ignore dead phi's. 6171 if (PN->use_empty()) continue; 6172 6173 // Only handle legal types. Two interesting things to note here. First, 6174 // by bailing out early, we may leave behind some dead instructions, 6175 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 6176 // own moves. Second, this check is necessary becuase FastISel doesn't 6177 // use CreateRegForValue to create registers, so it always creates 6178 // exactly one register for each non-void instruction. 6179 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 6180 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 6181 // Promote MVT::i1. 6182 if (VT == MVT::i1) 6183 VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT); 6184 else { 6185 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 6186 return false; 6187 } 6188 } 6189 6190 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6191 6192 unsigned Reg = F->getRegForValue(PHIOp); 6193 if (Reg == 0) { 6194 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 6195 return false; 6196 } 6197 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 6198 } 6199 } 6200 6201 return true; 6202 } 6203