1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 33 #include "llvm/CodeGen/CodeGenCommonISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsAMDGPU.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/Support/AtomicOrdering.h" 92 #include "llvm/Support/Casting.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Compiler.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/MathExtras.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Target/TargetIntrinsicInfo.h" 99 #include "llvm/Target/TargetMachine.h" 100 #include "llvm/Target/TargetOptions.h" 101 #include "llvm/TargetParser/Triple.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <iterator> 105 #include <limits> 106 #include <optional> 107 #include <tuple> 108 109 using namespace llvm; 110 using namespace PatternMatch; 111 using namespace SwitchCG; 112 113 #define DEBUG_TYPE "isel" 114 115 /// LimitFloatPrecision - Generate low-precision inline sequences for 116 /// some float libcalls (6, 8 or 12 bits). 117 static unsigned LimitFloatPrecision; 118 119 static cl::opt<bool> 120 InsertAssertAlign("insert-assert-align", cl::init(true), 121 cl::desc("Insert the experimental `assertalign` node."), 122 cl::ReallyHidden); 123 124 static cl::opt<unsigned, true> 125 LimitFPPrecision("limit-float-precision", 126 cl::desc("Generate low-precision inline sequences " 127 "for some float libcalls"), 128 cl::location(LimitFloatPrecision), cl::Hidden, 129 cl::init(0)); 130 131 static cl::opt<unsigned> SwitchPeelThreshold( 132 "switch-peel-threshold", cl::Hidden, cl::init(66), 133 cl::desc("Set the case probability threshold for peeling the case from a " 134 "switch statement. A value greater than 100 will void this " 135 "optimization")); 136 137 // Limit the width of DAG chains. This is important in general to prevent 138 // DAG-based analysis from blowing up. For example, alias analysis and 139 // load clustering may not complete in reasonable time. It is difficult to 140 // recognize and avoid this situation within each individual analysis, and 141 // future analyses are likely to have the same behavior. Limiting DAG width is 142 // the safe approach and will be especially important with global DAGs. 143 // 144 // MaxParallelChains default is arbitrarily high to avoid affecting 145 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 146 // sequence over this should have been converted to llvm.memcpy by the 147 // frontend. It is easy to induce this behavior with .ll code such as: 148 // %buffer = alloca [4096 x i8] 149 // %data = load [4096 x i8]* %argPtr 150 // store [4096 x i8] %data, [4096 x i8]* %buffer 151 static const unsigned MaxParallelChains = 64; 152 153 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 154 const SDValue *Parts, unsigned NumParts, 155 MVT PartVT, EVT ValueVT, const Value *V, 156 std::optional<CallingConv::ID> CC); 157 158 /// getCopyFromParts - Create a value that contains the specified legal parts 159 /// combined into the value they represent. If the parts combine to a type 160 /// larger than ValueVT then AssertOp can be used to specify whether the extra 161 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 162 /// (ISD::AssertSext). 163 static SDValue 164 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 165 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 166 std::optional<CallingConv::ID> CC = std::nullopt, 167 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 168 // Let the target assemble the parts if it wants to 169 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 170 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 171 PartVT, ValueVT, CC)) 172 return Val; 173 174 if (ValueVT.isVector()) 175 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 176 CC); 177 178 assert(NumParts > 0 && "No parts to assemble!"); 179 SDValue Val = Parts[0]; 180 181 if (NumParts > 1) { 182 // Assemble the value from multiple parts. 183 if (ValueVT.isInteger()) { 184 unsigned PartBits = PartVT.getSizeInBits(); 185 unsigned ValueBits = ValueVT.getSizeInBits(); 186 187 // Assemble the power of 2 part. 188 unsigned RoundParts = llvm::bit_floor(NumParts); 189 unsigned RoundBits = PartBits * RoundParts; 190 EVT RoundVT = RoundBits == ValueBits ? 191 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 192 SDValue Lo, Hi; 193 194 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 195 196 if (RoundParts > 2) { 197 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 198 PartVT, HalfVT, V); 199 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 200 RoundParts / 2, PartVT, HalfVT, V); 201 } else { 202 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 203 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 204 } 205 206 if (DAG.getDataLayout().isBigEndian()) 207 std::swap(Lo, Hi); 208 209 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 210 211 if (RoundParts < NumParts) { 212 // Assemble the trailing non-power-of-2 part. 213 unsigned OddParts = NumParts - RoundParts; 214 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 215 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 216 OddVT, V, CC); 217 218 // Combine the round and odd parts. 219 Lo = Val; 220 if (DAG.getDataLayout().isBigEndian()) 221 std::swap(Lo, Hi); 222 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 223 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 224 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 225 DAG.getConstant(Lo.getValueSizeInBits(), DL, 226 TLI.getShiftAmountTy( 227 TotalVT, DAG.getDataLayout()))); 228 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 229 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 230 } 231 } else if (PartVT.isFloatingPoint()) { 232 // FP split into multiple FP parts (for ppcf128) 233 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 234 "Unexpected split"); 235 SDValue Lo, Hi; 236 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 237 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 238 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 239 std::swap(Lo, Hi); 240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 241 } else { 242 // FP split into integer parts (soft fp) 243 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 244 !PartVT.isVector() && "Unexpected split"); 245 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 246 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 247 } 248 } 249 250 // There is now one part, held in Val. Correct it to match ValueVT. 251 // PartEVT is the type of the register class that holds the value. 252 // ValueVT is the type of the inline asm operation. 253 EVT PartEVT = Val.getValueType(); 254 255 if (PartEVT == ValueVT) 256 return Val; 257 258 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 259 ValueVT.bitsLT(PartEVT)) { 260 // For an FP value in an integer part, we need to truncate to the right 261 // width first. 262 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 263 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 264 } 265 266 // Handle types that have the same size. 267 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 268 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 269 270 // Handle types with different sizes. 271 if (PartEVT.isInteger() && ValueVT.isInteger()) { 272 if (ValueVT.bitsLT(PartEVT)) { 273 // For a truncate, see if we have any information to 274 // indicate whether the truncated bits will always be 275 // zero or sign-extension. 276 if (AssertOp) 277 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 278 DAG.getValueType(ValueVT)); 279 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 280 } 281 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 282 } 283 284 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 285 // FP_ROUND's are always exact here. 286 if (ValueVT.bitsLT(Val.getValueType())) 287 return DAG.getNode( 288 ISD::FP_ROUND, DL, ValueVT, Val, 289 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 290 291 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 292 } 293 294 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 295 // then truncating. 296 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 297 ValueVT.bitsLT(PartEVT)) { 298 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 299 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 300 } 301 302 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 303 } 304 305 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 306 const Twine &ErrMsg) { 307 const Instruction *I = dyn_cast_or_null<Instruction>(V); 308 if (!V) 309 return Ctx.emitError(ErrMsg); 310 311 const char *AsmError = ", possible invalid constraint for vector type"; 312 if (const CallInst *CI = dyn_cast<CallInst>(I)) 313 if (CI->isInlineAsm()) 314 return Ctx.emitError(I, ErrMsg + AsmError); 315 316 return Ctx.emitError(I, ErrMsg); 317 } 318 319 /// getCopyFromPartsVector - Create a value that contains the specified legal 320 /// parts combined into the value they represent. If the parts combine to a 321 /// type larger than ValueVT then AssertOp can be used to specify whether the 322 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 323 /// ValueVT (ISD::AssertSext). 324 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 325 const SDValue *Parts, unsigned NumParts, 326 MVT PartVT, EVT ValueVT, const Value *V, 327 std::optional<CallingConv::ID> CallConv) { 328 assert(ValueVT.isVector() && "Not a vector value"); 329 assert(NumParts > 0 && "No parts to assemble!"); 330 const bool IsABIRegCopy = CallConv.has_value(); 331 332 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 333 SDValue Val = Parts[0]; 334 335 // Handle a multi-element vector. 336 if (NumParts > 1) { 337 EVT IntermediateVT; 338 MVT RegisterVT; 339 unsigned NumIntermediates; 340 unsigned NumRegs; 341 342 if (IsABIRegCopy) { 343 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 344 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 345 NumIntermediates, RegisterVT); 346 } else { 347 NumRegs = 348 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 349 NumIntermediates, RegisterVT); 350 } 351 352 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 353 NumParts = NumRegs; // Silence a compiler warning. 354 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 355 assert(RegisterVT.getSizeInBits() == 356 Parts[0].getSimpleValueType().getSizeInBits() && 357 "Part type sizes don't match!"); 358 359 // Assemble the parts into intermediate operands. 360 SmallVector<SDValue, 8> Ops(NumIntermediates); 361 if (NumIntermediates == NumParts) { 362 // If the register was not expanded, truncate or copy the value, 363 // as appropriate. 364 for (unsigned i = 0; i != NumParts; ++i) 365 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 366 PartVT, IntermediateVT, V, CallConv); 367 } else if (NumParts > 0) { 368 // If the intermediate type was expanded, build the intermediate 369 // operands from the parts. 370 assert(NumParts % NumIntermediates == 0 && 371 "Must expand into a divisible number of parts!"); 372 unsigned Factor = NumParts / NumIntermediates; 373 for (unsigned i = 0; i != NumIntermediates; ++i) 374 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 375 PartVT, IntermediateVT, V, CallConv); 376 } 377 378 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 379 // intermediate operands. 380 EVT BuiltVectorTy = 381 IntermediateVT.isVector() 382 ? EVT::getVectorVT( 383 *DAG.getContext(), IntermediateVT.getScalarType(), 384 IntermediateVT.getVectorElementCount() * NumParts) 385 : EVT::getVectorVT(*DAG.getContext(), 386 IntermediateVT.getScalarType(), 387 NumIntermediates); 388 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 389 : ISD::BUILD_VECTOR, 390 DL, BuiltVectorTy, Ops); 391 } 392 393 // There is now one part, held in Val. Correct it to match ValueVT. 394 EVT PartEVT = Val.getValueType(); 395 396 if (PartEVT == ValueVT) 397 return Val; 398 399 if (PartEVT.isVector()) { 400 // Vector/Vector bitcast. 401 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 402 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 403 404 // If the parts vector has more elements than the value vector, then we 405 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 406 // Extract the elements we want. 407 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 408 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 409 ValueVT.getVectorElementCount().getKnownMinValue()) && 410 (PartEVT.getVectorElementCount().isScalable() == 411 ValueVT.getVectorElementCount().isScalable()) && 412 "Cannot narrow, it would be a lossy transformation"); 413 PartEVT = 414 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 415 ValueVT.getVectorElementCount()); 416 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 417 DAG.getVectorIdxConstant(0, DL)); 418 if (PartEVT == ValueVT) 419 return Val; 420 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 421 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 422 423 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 424 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 425 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 426 } 427 428 // Promoted vector extract 429 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 430 } 431 432 // Trivial bitcast if the types are the same size and the destination 433 // vector type is legal. 434 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 435 TLI.isTypeLegal(ValueVT)) 436 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 437 438 if (ValueVT.getVectorNumElements() != 1) { 439 // Certain ABIs require that vectors are passed as integers. For vectors 440 // are the same size, this is an obvious bitcast. 441 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 442 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 443 } else if (ValueVT.bitsLT(PartEVT)) { 444 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 445 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 446 // Drop the extra bits. 447 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 448 return DAG.getBitcast(ValueVT, Val); 449 } 450 451 diagnosePossiblyInvalidConstraint( 452 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 453 return DAG.getUNDEF(ValueVT); 454 } 455 456 // Handle cases such as i8 -> <1 x i1> 457 EVT ValueSVT = ValueVT.getVectorElementType(); 458 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 459 unsigned ValueSize = ValueSVT.getSizeInBits(); 460 if (ValueSize == PartEVT.getSizeInBits()) { 461 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 462 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 463 // It's possible a scalar floating point type gets softened to integer and 464 // then promoted to a larger integer. If PartEVT is the larger integer 465 // we need to truncate it and then bitcast to the FP type. 466 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 467 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 468 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 469 Val = DAG.getBitcast(ValueSVT, Val); 470 } else { 471 Val = ValueVT.isFloatingPoint() 472 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 473 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 474 } 475 } 476 477 return DAG.getBuildVector(ValueVT, DL, Val); 478 } 479 480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 481 SDValue Val, SDValue *Parts, unsigned NumParts, 482 MVT PartVT, const Value *V, 483 std::optional<CallingConv::ID> CallConv); 484 485 /// getCopyToParts - Create a series of nodes that contain the specified value 486 /// split into legal parts. If the parts contain more bits than Val, then, for 487 /// integers, ExtendKind can be used to specify how to generate the extra bits. 488 static void 489 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 490 unsigned NumParts, MVT PartVT, const Value *V, 491 std::optional<CallingConv::ID> CallConv = std::nullopt, 492 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 493 // Let the target split the parts if it wants to 494 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 495 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 496 CallConv)) 497 return; 498 EVT ValueVT = Val.getValueType(); 499 500 // Handle the vector case separately. 501 if (ValueVT.isVector()) 502 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 503 CallConv); 504 505 unsigned OrigNumParts = NumParts; 506 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 507 "Copying to an illegal type!"); 508 509 if (NumParts == 0) 510 return; 511 512 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 513 EVT PartEVT = PartVT; 514 if (PartEVT == ValueVT) { 515 assert(NumParts == 1 && "No-op copy with multiple parts!"); 516 Parts[0] = Val; 517 return; 518 } 519 520 unsigned PartBits = PartVT.getSizeInBits(); 521 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 522 // If the parts cover more bits than the value has, promote the value. 523 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 524 assert(NumParts == 1 && "Do not know what to promote to!"); 525 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 526 } else { 527 if (ValueVT.isFloatingPoint()) { 528 // FP values need to be bitcast, then extended if they are being put 529 // into a larger container. 530 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 531 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 532 } 533 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 534 ValueVT.isInteger() && 535 "Unknown mismatch!"); 536 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 537 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 538 if (PartVT == MVT::x86mmx) 539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 540 } 541 } else if (PartBits == ValueVT.getSizeInBits()) { 542 // Different types of the same size. 543 assert(NumParts == 1 && PartEVT != ValueVT); 544 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 545 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 546 // If the parts cover less bits than value has, truncate the value. 547 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 548 ValueVT.isInteger() && 549 "Unknown mismatch!"); 550 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 551 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 552 if (PartVT == MVT::x86mmx) 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 556 // The value may have changed - recompute ValueVT. 557 ValueVT = Val.getValueType(); 558 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 559 "Failed to tile the value with PartVT!"); 560 561 if (NumParts == 1) { 562 if (PartEVT != ValueVT) { 563 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 564 "scalar-to-vector conversion failed"); 565 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 566 } 567 568 Parts[0] = Val; 569 return; 570 } 571 572 // Expand the value into multiple parts. 573 if (NumParts & (NumParts - 1)) { 574 // The number of parts is not a power of 2. Split off and copy the tail. 575 assert(PartVT.isInteger() && ValueVT.isInteger() && 576 "Do not know what to expand to!"); 577 unsigned RoundParts = llvm::bit_floor(NumParts); 578 unsigned RoundBits = RoundParts * PartBits; 579 unsigned OddParts = NumParts - RoundParts; 580 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 581 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 582 583 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 584 CallConv); 585 586 if (DAG.getDataLayout().isBigEndian()) 587 // The odd parts were reversed by getCopyToParts - unreverse them. 588 std::reverse(Parts + RoundParts, Parts + NumParts); 589 590 NumParts = RoundParts; 591 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 592 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 593 } 594 595 // The number of parts is a power of 2. Repeatedly bisect the value using 596 // EXTRACT_ELEMENT. 597 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 598 EVT::getIntegerVT(*DAG.getContext(), 599 ValueVT.getSizeInBits()), 600 Val); 601 602 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 603 for (unsigned i = 0; i < NumParts; i += StepSize) { 604 unsigned ThisBits = StepSize * PartBits / 2; 605 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 606 SDValue &Part0 = Parts[i]; 607 SDValue &Part1 = Parts[i+StepSize/2]; 608 609 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 610 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 611 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 612 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 613 614 if (ThisBits == PartBits && ThisVT != PartVT) { 615 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 616 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 617 } 618 } 619 } 620 621 if (DAG.getDataLayout().isBigEndian()) 622 std::reverse(Parts, Parts + OrigNumParts); 623 } 624 625 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 626 const SDLoc &DL, EVT PartVT) { 627 if (!PartVT.isVector()) 628 return SDValue(); 629 630 EVT ValueVT = Val.getValueType(); 631 EVT PartEVT = PartVT.getVectorElementType(); 632 EVT ValueEVT = ValueVT.getVectorElementType(); 633 ElementCount PartNumElts = PartVT.getVectorElementCount(); 634 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 635 636 // We only support widening vectors with equivalent element types and 637 // fixed/scalable properties. If a target needs to widen a fixed-length type 638 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 639 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 640 PartNumElts.isScalable() != ValueNumElts.isScalable()) 641 return SDValue(); 642 643 // Have a try for bf16 because some targets share its ABI with fp16. 644 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 645 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 646 "Cannot widen to illegal type"); 647 Val = DAG.getNode(ISD::BITCAST, DL, 648 ValueVT.changeVectorElementType(MVT::f16), Val); 649 } else if (PartEVT != ValueEVT) { 650 return SDValue(); 651 } 652 653 // Widening a scalable vector to another scalable vector is done by inserting 654 // the vector into a larger undef one. 655 if (PartNumElts.isScalable()) 656 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 657 Val, DAG.getVectorIdxConstant(0, DL)); 658 659 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 660 // undef elements. 661 SmallVector<SDValue, 16> Ops; 662 DAG.ExtractVectorElements(Val, Ops); 663 SDValue EltUndef = DAG.getUNDEF(PartEVT); 664 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 665 666 // FIXME: Use CONCAT for 2x -> 4x. 667 return DAG.getBuildVector(PartVT, DL, Ops); 668 } 669 670 /// getCopyToPartsVector - Create a series of nodes that contain the specified 671 /// value split into legal parts. 672 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 673 SDValue Val, SDValue *Parts, unsigned NumParts, 674 MVT PartVT, const Value *V, 675 std::optional<CallingConv::ID> CallConv) { 676 EVT ValueVT = Val.getValueType(); 677 assert(ValueVT.isVector() && "Not a vector"); 678 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 679 const bool IsABIRegCopy = CallConv.has_value(); 680 681 if (NumParts == 1) { 682 EVT PartEVT = PartVT; 683 if (PartEVT == ValueVT) { 684 // Nothing to do. 685 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 686 // Bitconvert vector->vector case. 687 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 688 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 689 Val = Widened; 690 } else if (PartVT.isVector() && 691 PartEVT.getVectorElementType().bitsGE( 692 ValueVT.getVectorElementType()) && 693 PartEVT.getVectorElementCount() == 694 ValueVT.getVectorElementCount()) { 695 696 // Promoted vector extract 697 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 698 } else if (PartEVT.isVector() && 699 PartEVT.getVectorElementType() != 700 ValueVT.getVectorElementType() && 701 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 702 TargetLowering::TypeWidenVector) { 703 // Combination of widening and promotion. 704 EVT WidenVT = 705 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 706 PartVT.getVectorElementCount()); 707 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 708 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 709 } else { 710 // Don't extract an integer from a float vector. This can happen if the 711 // FP type gets softened to integer and then promoted. The promotion 712 // prevents it from being picked up by the earlier bitcast case. 713 if (ValueVT.getVectorElementCount().isScalar() && 714 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 715 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 716 DAG.getVectorIdxConstant(0, DL)); 717 } else { 718 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 719 assert(PartVT.getFixedSizeInBits() > ValueSize && 720 "lossy conversion of vector to scalar type"); 721 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 722 Val = DAG.getBitcast(IntermediateType, Val); 723 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 724 } 725 } 726 727 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 728 Parts[0] = Val; 729 return; 730 } 731 732 // Handle a multi-element vector. 733 EVT IntermediateVT; 734 MVT RegisterVT; 735 unsigned NumIntermediates; 736 unsigned NumRegs; 737 if (IsABIRegCopy) { 738 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 739 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 740 RegisterVT); 741 } else { 742 NumRegs = 743 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 744 NumIntermediates, RegisterVT); 745 } 746 747 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 748 NumParts = NumRegs; // Silence a compiler warning. 749 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 750 751 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 752 "Mixing scalable and fixed vectors when copying in parts"); 753 754 std::optional<ElementCount> DestEltCnt; 755 756 if (IntermediateVT.isVector()) 757 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 758 else 759 DestEltCnt = ElementCount::getFixed(NumIntermediates); 760 761 EVT BuiltVectorTy = EVT::getVectorVT( 762 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 763 764 if (ValueVT == BuiltVectorTy) { 765 // Nothing to do. 766 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 767 // Bitconvert vector->vector case. 768 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 769 } else { 770 if (BuiltVectorTy.getVectorElementType().bitsGT( 771 ValueVT.getVectorElementType())) { 772 // Integer promotion. 773 ValueVT = EVT::getVectorVT(*DAG.getContext(), 774 BuiltVectorTy.getVectorElementType(), 775 ValueVT.getVectorElementCount()); 776 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 777 } 778 779 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 780 Val = Widened; 781 } 782 } 783 784 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 785 786 // Split the vector into intermediate operands. 787 SmallVector<SDValue, 8> Ops(NumIntermediates); 788 for (unsigned i = 0; i != NumIntermediates; ++i) { 789 if (IntermediateVT.isVector()) { 790 // This does something sensible for scalable vectors - see the 791 // definition of EXTRACT_SUBVECTOR for further details. 792 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 793 Ops[i] = 794 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 795 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 796 } else { 797 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 798 DAG.getVectorIdxConstant(i, DL)); 799 } 800 } 801 802 // Split the intermediate operands into legal parts. 803 if (NumParts == NumIntermediates) { 804 // If the register was not expanded, promote or copy the value, 805 // as appropriate. 806 for (unsigned i = 0; i != NumParts; ++i) 807 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 808 } else if (NumParts > 0) { 809 // If the intermediate type was expanded, split each the value into 810 // legal parts. 811 assert(NumIntermediates != 0 && "division by zero"); 812 assert(NumParts % NumIntermediates == 0 && 813 "Must expand into a divisible number of parts!"); 814 unsigned Factor = NumParts / NumIntermediates; 815 for (unsigned i = 0; i != NumIntermediates; ++i) 816 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 817 CallConv); 818 } 819 } 820 821 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 822 EVT valuevt, std::optional<CallingConv::ID> CC) 823 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 824 RegCount(1, regs.size()), CallConv(CC) {} 825 826 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 827 const DataLayout &DL, unsigned Reg, Type *Ty, 828 std::optional<CallingConv::ID> CC) { 829 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 830 831 CallConv = CC; 832 833 for (EVT ValueVT : ValueVTs) { 834 unsigned NumRegs = 835 isABIMangled() 836 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 837 : TLI.getNumRegisters(Context, ValueVT); 838 MVT RegisterVT = 839 isABIMangled() 840 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 841 : TLI.getRegisterType(Context, ValueVT); 842 for (unsigned i = 0; i != NumRegs; ++i) 843 Regs.push_back(Reg + i); 844 RegVTs.push_back(RegisterVT); 845 RegCount.push_back(NumRegs); 846 Reg += NumRegs; 847 } 848 } 849 850 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 851 FunctionLoweringInfo &FuncInfo, 852 const SDLoc &dl, SDValue &Chain, 853 SDValue *Glue, const Value *V) const { 854 // A Value with type {} or [0 x %t] needs no registers. 855 if (ValueVTs.empty()) 856 return SDValue(); 857 858 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 859 860 // Assemble the legal parts into the final values. 861 SmallVector<SDValue, 4> Values(ValueVTs.size()); 862 SmallVector<SDValue, 8> Parts; 863 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 864 // Copy the legal parts from the registers. 865 EVT ValueVT = ValueVTs[Value]; 866 unsigned NumRegs = RegCount[Value]; 867 MVT RegisterVT = isABIMangled() 868 ? TLI.getRegisterTypeForCallingConv( 869 *DAG.getContext(), *CallConv, RegVTs[Value]) 870 : RegVTs[Value]; 871 872 Parts.resize(NumRegs); 873 for (unsigned i = 0; i != NumRegs; ++i) { 874 SDValue P; 875 if (!Glue) { 876 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 877 } else { 878 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 879 *Glue = P.getValue(2); 880 } 881 882 Chain = P.getValue(1); 883 Parts[i] = P; 884 885 // If the source register was virtual and if we know something about it, 886 // add an assert node. 887 if (!Register::isVirtualRegister(Regs[Part + i]) || 888 !RegisterVT.isInteger()) 889 continue; 890 891 const FunctionLoweringInfo::LiveOutInfo *LOI = 892 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 893 if (!LOI) 894 continue; 895 896 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 897 unsigned NumSignBits = LOI->NumSignBits; 898 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 899 900 if (NumZeroBits == RegSize) { 901 // The current value is a zero. 902 // Explicitly express that as it would be easier for 903 // optimizations to kick in. 904 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 905 continue; 906 } 907 908 // FIXME: We capture more information than the dag can represent. For 909 // now, just use the tightest assertzext/assertsext possible. 910 bool isSExt; 911 EVT FromVT(MVT::Other); 912 if (NumZeroBits) { 913 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 914 isSExt = false; 915 } else if (NumSignBits > 1) { 916 FromVT = 917 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 918 isSExt = true; 919 } else { 920 continue; 921 } 922 // Add an assertion node. 923 assert(FromVT != MVT::Other); 924 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 925 RegisterVT, P, DAG.getValueType(FromVT)); 926 } 927 928 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 929 RegisterVT, ValueVT, V, CallConv); 930 Part += NumRegs; 931 Parts.clear(); 932 } 933 934 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 935 } 936 937 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 938 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 939 const Value *V, 940 ISD::NodeType PreferredExtendType) const { 941 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 942 ISD::NodeType ExtendKind = PreferredExtendType; 943 944 // Get the list of the values's legal parts. 945 unsigned NumRegs = Regs.size(); 946 SmallVector<SDValue, 8> Parts(NumRegs); 947 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 948 unsigned NumParts = RegCount[Value]; 949 950 MVT RegisterVT = isABIMangled() 951 ? TLI.getRegisterTypeForCallingConv( 952 *DAG.getContext(), *CallConv, RegVTs[Value]) 953 : RegVTs[Value]; 954 955 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 956 ExtendKind = ISD::ZERO_EXTEND; 957 958 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 959 NumParts, RegisterVT, V, CallConv, ExtendKind); 960 Part += NumParts; 961 } 962 963 // Copy the parts into the registers. 964 SmallVector<SDValue, 8> Chains(NumRegs); 965 for (unsigned i = 0; i != NumRegs; ++i) { 966 SDValue Part; 967 if (!Glue) { 968 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 969 } else { 970 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 971 *Glue = Part.getValue(1); 972 } 973 974 Chains[i] = Part.getValue(0); 975 } 976 977 if (NumRegs == 1 || Glue) 978 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 979 // flagged to it. That is the CopyToReg nodes and the user are considered 980 // a single scheduling unit. If we create a TokenFactor and return it as 981 // chain, then the TokenFactor is both a predecessor (operand) of the 982 // user as well as a successor (the TF operands are flagged to the user). 983 // c1, f1 = CopyToReg 984 // c2, f2 = CopyToReg 985 // c3 = TokenFactor c1, c2 986 // ... 987 // = op c3, ..., f2 988 Chain = Chains[NumRegs-1]; 989 else 990 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 991 } 992 993 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 994 unsigned MatchingIdx, const SDLoc &dl, 995 SelectionDAG &DAG, 996 std::vector<SDValue> &Ops) const { 997 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 998 999 InlineAsm::Flag Flag(Code, Regs.size()); 1000 if (HasMatching) 1001 Flag.setMatchingOp(MatchingIdx); 1002 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1003 // Put the register class of the virtual registers in the flag word. That 1004 // way, later passes can recompute register class constraints for inline 1005 // assembly as well as normal instructions. 1006 // Don't do this for tied operands that can use the regclass information 1007 // from the def. 1008 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1009 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1010 Flag.setRegClass(RC->getID()); 1011 } 1012 1013 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1014 Ops.push_back(Res); 1015 1016 if (Code == InlineAsm::Kind::Clobber) { 1017 // Clobbers should always have a 1:1 mapping with registers, and may 1018 // reference registers that have illegal (e.g. vector) types. Hence, we 1019 // shouldn't try to apply any sort of splitting logic to them. 1020 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1021 "No 1:1 mapping from clobbers to regs?"); 1022 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1023 (void)SP; 1024 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1025 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1026 assert( 1027 (Regs[I] != SP || 1028 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1029 "If we clobbered the stack pointer, MFI should know about it."); 1030 } 1031 return; 1032 } 1033 1034 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1035 MVT RegisterVT = RegVTs[Value]; 1036 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1037 RegisterVT); 1038 for (unsigned i = 0; i != NumRegs; ++i) { 1039 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1040 unsigned TheReg = Regs[Reg++]; 1041 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1042 } 1043 } 1044 } 1045 1046 SmallVector<std::pair<unsigned, TypeSize>, 4> 1047 RegsForValue::getRegsAndSizes() const { 1048 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1049 unsigned I = 0; 1050 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1051 unsigned RegCount = std::get<0>(CountAndVT); 1052 MVT RegisterVT = std::get<1>(CountAndVT); 1053 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1054 for (unsigned E = I + RegCount; I != E; ++I) 1055 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1056 } 1057 return OutVec; 1058 } 1059 1060 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1061 AssumptionCache *ac, 1062 const TargetLibraryInfo *li) { 1063 AA = aa; 1064 AC = ac; 1065 GFI = gfi; 1066 LibInfo = li; 1067 Context = DAG.getContext(); 1068 LPadToCallSiteMap.clear(); 1069 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1070 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1071 *DAG.getMachineFunction().getFunction().getParent()); 1072 } 1073 1074 void SelectionDAGBuilder::clear() { 1075 NodeMap.clear(); 1076 UnusedArgNodeMap.clear(); 1077 PendingLoads.clear(); 1078 PendingExports.clear(); 1079 PendingConstrainedFP.clear(); 1080 PendingConstrainedFPStrict.clear(); 1081 CurInst = nullptr; 1082 HasTailCall = false; 1083 SDNodeOrder = LowestSDNodeOrder; 1084 StatepointLowering.clear(); 1085 } 1086 1087 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1088 DanglingDebugInfoMap.clear(); 1089 } 1090 1091 // Update DAG root to include dependencies on Pending chains. 1092 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1093 SDValue Root = DAG.getRoot(); 1094 1095 if (Pending.empty()) 1096 return Root; 1097 1098 // Add current root to PendingChains, unless we already indirectly 1099 // depend on it. 1100 if (Root.getOpcode() != ISD::EntryToken) { 1101 unsigned i = 0, e = Pending.size(); 1102 for (; i != e; ++i) { 1103 assert(Pending[i].getNode()->getNumOperands() > 1); 1104 if (Pending[i].getNode()->getOperand(0) == Root) 1105 break; // Don't add the root if we already indirectly depend on it. 1106 } 1107 1108 if (i == e) 1109 Pending.push_back(Root); 1110 } 1111 1112 if (Pending.size() == 1) 1113 Root = Pending[0]; 1114 else 1115 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1116 1117 DAG.setRoot(Root); 1118 Pending.clear(); 1119 return Root; 1120 } 1121 1122 SDValue SelectionDAGBuilder::getMemoryRoot() { 1123 return updateRoot(PendingLoads); 1124 } 1125 1126 SDValue SelectionDAGBuilder::getRoot() { 1127 // Chain up all pending constrained intrinsics together with all 1128 // pending loads, by simply appending them to PendingLoads and 1129 // then calling getMemoryRoot(). 1130 PendingLoads.reserve(PendingLoads.size() + 1131 PendingConstrainedFP.size() + 1132 PendingConstrainedFPStrict.size()); 1133 PendingLoads.append(PendingConstrainedFP.begin(), 1134 PendingConstrainedFP.end()); 1135 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1136 PendingConstrainedFPStrict.end()); 1137 PendingConstrainedFP.clear(); 1138 PendingConstrainedFPStrict.clear(); 1139 return getMemoryRoot(); 1140 } 1141 1142 SDValue SelectionDAGBuilder::getControlRoot() { 1143 // We need to emit pending fpexcept.strict constrained intrinsics, 1144 // so append them to the PendingExports list. 1145 PendingExports.append(PendingConstrainedFPStrict.begin(), 1146 PendingConstrainedFPStrict.end()); 1147 PendingConstrainedFPStrict.clear(); 1148 return updateRoot(PendingExports); 1149 } 1150 1151 void SelectionDAGBuilder::visit(const Instruction &I) { 1152 // Set up outgoing PHI node register values before emitting the terminator. 1153 if (I.isTerminator()) { 1154 HandlePHINodesInSuccessorBlocks(I.getParent()); 1155 } 1156 1157 // Add SDDbgValue nodes for any var locs here. Do so before updating 1158 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1159 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1160 // Add SDDbgValue nodes for any var locs here. Do so before updating 1161 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1162 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1163 It != End; ++It) { 1164 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1165 dropDanglingDebugInfo(Var, It->Expr); 1166 if (It->Values.isKillLocation(It->Expr)) { 1167 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1168 continue; 1169 } 1170 SmallVector<Value *> Values(It->Values.location_ops()); 1171 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1172 It->Values.hasArgList())) 1173 addDanglingDebugInfo(It, SDNodeOrder); 1174 } 1175 } 1176 1177 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1178 if (!isa<DbgInfoIntrinsic>(I)) 1179 ++SDNodeOrder; 1180 1181 CurInst = &I; 1182 1183 // Set inserted listener only if required. 1184 bool NodeInserted = false; 1185 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1186 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1187 if (PCSectionsMD) { 1188 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1189 DAG, [&](SDNode *) { NodeInserted = true; }); 1190 } 1191 1192 visit(I.getOpcode(), I); 1193 1194 if (!I.isTerminator() && !HasTailCall && 1195 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1196 CopyToExportRegsIfNeeded(&I); 1197 1198 // Handle metadata. 1199 if (PCSectionsMD) { 1200 auto It = NodeMap.find(&I); 1201 if (It != NodeMap.end()) { 1202 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1203 } else if (NodeInserted) { 1204 // This should not happen; if it does, don't let it go unnoticed so we can 1205 // fix it. Relevant visit*() function is probably missing a setValue(). 1206 errs() << "warning: loosing !pcsections metadata [" 1207 << I.getModule()->getName() << "]\n"; 1208 LLVM_DEBUG(I.dump()); 1209 assert(false); 1210 } 1211 } 1212 1213 CurInst = nullptr; 1214 } 1215 1216 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1217 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1218 } 1219 1220 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1221 // Note: this doesn't use InstVisitor, because it has to work with 1222 // ConstantExpr's in addition to instructions. 1223 switch (Opcode) { 1224 default: llvm_unreachable("Unknown instruction type encountered!"); 1225 // Build the switch statement using the Instruction.def file. 1226 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1227 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1228 #include "llvm/IR/Instruction.def" 1229 } 1230 } 1231 1232 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1233 DILocalVariable *Variable, 1234 DebugLoc DL, unsigned Order, 1235 RawLocationWrapper Values, 1236 DIExpression *Expression) { 1237 if (!Values.hasArgList()) 1238 return false; 1239 // For variadic dbg_values we will now insert an undef. 1240 // FIXME: We can potentially recover these! 1241 SmallVector<SDDbgOperand, 2> Locs; 1242 for (const Value *V : Values.location_ops()) { 1243 auto *Undef = UndefValue::get(V->getType()); 1244 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1245 } 1246 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1247 /*IsIndirect=*/false, DL, Order, 1248 /*IsVariadic=*/true); 1249 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1250 return true; 1251 } 1252 1253 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc, 1254 unsigned Order) { 1255 if (!handleDanglingVariadicDebugInfo( 1256 DAG, 1257 const_cast<DILocalVariable *>(DAG.getFunctionVarLocs() 1258 ->getVariable(VarLoc->VariableID) 1259 .getVariable()), 1260 VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) { 1261 DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back( 1262 VarLoc, Order); 1263 } 1264 } 1265 1266 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1267 unsigned Order) { 1268 // We treat variadic dbg_values differently at this stage. 1269 if (!handleDanglingVariadicDebugInfo( 1270 DAG, DI->getVariable(), DI->getDebugLoc(), Order, 1271 DI->getWrappedLocation(), DI->getExpression())) { 1272 // TODO: Dangling debug info will eventually either be resolved or produce 1273 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1274 // between the original dbg.value location and its resolved DBG_VALUE, 1275 // which we should ideally fill with an extra Undef DBG_VALUE. 1276 assert(DI->getNumVariableLocationOps() == 1 && 1277 "DbgValueInst without an ArgList should have a single location " 1278 "operand."); 1279 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1280 } 1281 } 1282 1283 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1284 const DIExpression *Expr) { 1285 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1286 DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs()); 1287 DIExpression *DanglingExpr = DDI.getExpression(); 1288 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1289 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI) 1290 << "\n"); 1291 return true; 1292 } 1293 return false; 1294 }; 1295 1296 for (auto &DDIMI : DanglingDebugInfoMap) { 1297 DanglingDebugInfoVector &DDIV = DDIMI.second; 1298 1299 // If debug info is to be dropped, run it through final checks to see 1300 // whether it can be salvaged. 1301 for (auto &DDI : DDIV) 1302 if (isMatchingDbgValue(DDI)) 1303 salvageUnresolvedDbgValue(DDI); 1304 1305 erase_if(DDIV, isMatchingDbgValue); 1306 } 1307 } 1308 1309 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1310 // generate the debug data structures now that we've seen its definition. 1311 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1312 SDValue Val) { 1313 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1314 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1315 return; 1316 1317 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1318 for (auto &DDI : DDIV) { 1319 DebugLoc DL = DDI.getDebugLoc(); 1320 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1321 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1322 DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs()); 1323 DIExpression *Expr = DDI.getExpression(); 1324 assert(Variable->isValidLocationForIntrinsic(DL) && 1325 "Expected inlined-at fields to agree"); 1326 SDDbgValue *SDV; 1327 if (Val.getNode()) { 1328 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1329 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1330 // we couldn't resolve it directly when examining the DbgValue intrinsic 1331 // in the first place we should not be more successful here). Unless we 1332 // have some test case that prove this to be correct we should avoid 1333 // calling EmitFuncArgumentDbgValue here. 1334 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1335 FuncArgumentDbgValueKind::Value, Val)) { 1336 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI) 1337 << "\n"); 1338 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1339 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1340 // inserted after the definition of Val when emitting the instructions 1341 // after ISel. An alternative could be to teach 1342 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1343 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1344 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1345 << ValSDNodeOrder << "\n"); 1346 SDV = getDbgValue(Val, Variable, Expr, DL, 1347 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1348 DAG.AddDbgValue(SDV, false); 1349 } else 1350 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1351 << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n"); 1352 } else { 1353 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n"); 1354 auto Undef = UndefValue::get(V->getType()); 1355 auto SDV = 1356 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1357 DAG.AddDbgValue(SDV, false); 1358 } 1359 } 1360 DDIV.clear(); 1361 } 1362 1363 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1364 // TODO: For the variadic implementation, instead of only checking the fail 1365 // state of `handleDebugValue`, we need know specifically which values were 1366 // invalid, so that we attempt to salvage only those values when processing 1367 // a DIArgList. 1368 Value *V = DDI.getVariableLocationOp(0); 1369 Value *OrigV = V; 1370 DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs()); 1371 DIExpression *Expr = DDI.getExpression(); 1372 DebugLoc DL = DDI.getDebugLoc(); 1373 unsigned SDOrder = DDI.getSDNodeOrder(); 1374 1375 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1376 // that DW_OP_stack_value is desired. 1377 bool StackValue = true; 1378 1379 // Can this Value can be encoded without any further work? 1380 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1381 return; 1382 1383 // Attempt to salvage back through as many instructions as possible. Bail if 1384 // a non-instruction is seen, such as a constant expression or global 1385 // variable. FIXME: Further work could recover those too. 1386 while (isa<Instruction>(V)) { 1387 Instruction &VAsInst = *cast<Instruction>(V); 1388 // Temporary "0", awaiting real implementation. 1389 SmallVector<uint64_t, 16> Ops; 1390 SmallVector<Value *, 4> AdditionalValues; 1391 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1392 AdditionalValues); 1393 // If we cannot salvage any further, and haven't yet found a suitable debug 1394 // expression, bail out. 1395 if (!V) 1396 break; 1397 1398 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1399 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1400 // here for variadic dbg_values, remove that condition. 1401 if (!AdditionalValues.empty()) 1402 break; 1403 1404 // New value and expr now represent this debuginfo. 1405 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1406 1407 // Some kind of simplification occurred: check whether the operand of the 1408 // salvaged debug expression can be encoded in this DAG. 1409 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1410 LLVM_DEBUG( 1411 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1412 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1413 return; 1414 } 1415 } 1416 1417 // This was the final opportunity to salvage this debug information, and it 1418 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1419 // any earlier variable location. 1420 assert(OrigV && "V shouldn't be null"); 1421 auto *Undef = UndefValue::get(OrigV->getType()); 1422 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1423 DAG.AddDbgValue(SDV, false); 1424 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << printDDI(DDI) 1425 << "\n"); 1426 } 1427 1428 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1429 DIExpression *Expr, 1430 DebugLoc DbgLoc, 1431 unsigned Order) { 1432 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1433 DIExpression *NewExpr = 1434 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1435 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1436 /*IsVariadic*/ false); 1437 } 1438 1439 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1440 DILocalVariable *Var, 1441 DIExpression *Expr, DebugLoc DbgLoc, 1442 unsigned Order, bool IsVariadic) { 1443 if (Values.empty()) 1444 return true; 1445 SmallVector<SDDbgOperand> LocationOps; 1446 SmallVector<SDNode *> Dependencies; 1447 for (const Value *V : Values) { 1448 // Constant value. 1449 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1450 isa<ConstantPointerNull>(V)) { 1451 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1452 continue; 1453 } 1454 1455 // Look through IntToPtr constants. 1456 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1457 if (CE->getOpcode() == Instruction::IntToPtr) { 1458 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1459 continue; 1460 } 1461 1462 // If the Value is a frame index, we can create a FrameIndex debug value 1463 // without relying on the DAG at all. 1464 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1465 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1466 if (SI != FuncInfo.StaticAllocaMap.end()) { 1467 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1468 continue; 1469 } 1470 } 1471 1472 // Do not use getValue() in here; we don't want to generate code at 1473 // this point if it hasn't been done yet. 1474 SDValue N = NodeMap[V]; 1475 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1476 N = UnusedArgNodeMap[V]; 1477 if (N.getNode()) { 1478 // Only emit func arg dbg value for non-variadic dbg.values for now. 1479 if (!IsVariadic && 1480 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1481 FuncArgumentDbgValueKind::Value, N)) 1482 return true; 1483 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1484 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1485 // describe stack slot locations. 1486 // 1487 // Consider "int x = 0; int *px = &x;". There are two kinds of 1488 // interesting debug values here after optimization: 1489 // 1490 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1491 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1492 // 1493 // Both describe the direct values of their associated variables. 1494 Dependencies.push_back(N.getNode()); 1495 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1496 continue; 1497 } 1498 LocationOps.emplace_back( 1499 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1500 continue; 1501 } 1502 1503 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1504 // Special rules apply for the first dbg.values of parameter variables in a 1505 // function. Identify them by the fact they reference Argument Values, that 1506 // they're parameters, and they are parameters of the current function. We 1507 // need to let them dangle until they get an SDNode. 1508 bool IsParamOfFunc = 1509 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1510 if (IsParamOfFunc) 1511 return false; 1512 1513 // The value is not used in this block yet (or it would have an SDNode). 1514 // We still want the value to appear for the user if possible -- if it has 1515 // an associated VReg, we can refer to that instead. 1516 auto VMI = FuncInfo.ValueMap.find(V); 1517 if (VMI != FuncInfo.ValueMap.end()) { 1518 unsigned Reg = VMI->second; 1519 // If this is a PHI node, it may be split up into several MI PHI nodes 1520 // (in FunctionLoweringInfo::set). 1521 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1522 V->getType(), std::nullopt); 1523 if (RFV.occupiesMultipleRegs()) { 1524 // FIXME: We could potentially support variadic dbg_values here. 1525 if (IsVariadic) 1526 return false; 1527 unsigned Offset = 0; 1528 unsigned BitsToDescribe = 0; 1529 if (auto VarSize = Var->getSizeInBits()) 1530 BitsToDescribe = *VarSize; 1531 if (auto Fragment = Expr->getFragmentInfo()) 1532 BitsToDescribe = Fragment->SizeInBits; 1533 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1534 // Bail out if all bits are described already. 1535 if (Offset >= BitsToDescribe) 1536 break; 1537 // TODO: handle scalable vectors. 1538 unsigned RegisterSize = RegAndSize.second; 1539 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1540 ? BitsToDescribe - Offset 1541 : RegisterSize; 1542 auto FragmentExpr = DIExpression::createFragmentExpression( 1543 Expr, Offset, FragmentSize); 1544 if (!FragmentExpr) 1545 continue; 1546 SDDbgValue *SDV = DAG.getVRegDbgValue( 1547 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1548 DAG.AddDbgValue(SDV, false); 1549 Offset += RegisterSize; 1550 } 1551 return true; 1552 } 1553 // We can use simple vreg locations for variadic dbg_values as well. 1554 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1555 continue; 1556 } 1557 // We failed to create a SDDbgOperand for V. 1558 return false; 1559 } 1560 1561 // We have created a SDDbgOperand for each Value in Values. 1562 // Should use Order instead of SDNodeOrder? 1563 assert(!LocationOps.empty()); 1564 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1565 /*IsIndirect=*/false, DbgLoc, 1566 SDNodeOrder, IsVariadic); 1567 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1568 return true; 1569 } 1570 1571 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1572 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1573 for (auto &Pair : DanglingDebugInfoMap) 1574 for (auto &DDI : Pair.second) 1575 salvageUnresolvedDbgValue(DDI); 1576 clearDanglingDebugInfo(); 1577 } 1578 1579 /// getCopyFromRegs - If there was virtual register allocated for the value V 1580 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1581 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1582 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1583 SDValue Result; 1584 1585 if (It != FuncInfo.ValueMap.end()) { 1586 Register InReg = It->second; 1587 1588 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1589 DAG.getDataLayout(), InReg, Ty, 1590 std::nullopt); // This is not an ABI copy. 1591 SDValue Chain = DAG.getEntryNode(); 1592 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1593 V); 1594 resolveDanglingDebugInfo(V, Result); 1595 } 1596 1597 return Result; 1598 } 1599 1600 /// getValue - Return an SDValue for the given Value. 1601 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1602 // If we already have an SDValue for this value, use it. It's important 1603 // to do this first, so that we don't create a CopyFromReg if we already 1604 // have a regular SDValue. 1605 SDValue &N = NodeMap[V]; 1606 if (N.getNode()) return N; 1607 1608 // If there's a virtual register allocated and initialized for this 1609 // value, use it. 1610 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1611 return copyFromReg; 1612 1613 // Otherwise create a new SDValue and remember it. 1614 SDValue Val = getValueImpl(V); 1615 NodeMap[V] = Val; 1616 resolveDanglingDebugInfo(V, Val); 1617 return Val; 1618 } 1619 1620 /// getNonRegisterValue - Return an SDValue for the given Value, but 1621 /// don't look in FuncInfo.ValueMap for a virtual register. 1622 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1623 // If we already have an SDValue for this value, use it. 1624 SDValue &N = NodeMap[V]; 1625 if (N.getNode()) { 1626 if (isIntOrFPConstant(N)) { 1627 // Remove the debug location from the node as the node is about to be used 1628 // in a location which may differ from the original debug location. This 1629 // is relevant to Constant and ConstantFP nodes because they can appear 1630 // as constant expressions inside PHI nodes. 1631 N->setDebugLoc(DebugLoc()); 1632 } 1633 return N; 1634 } 1635 1636 // Otherwise create a new SDValue and remember it. 1637 SDValue Val = getValueImpl(V); 1638 NodeMap[V] = Val; 1639 resolveDanglingDebugInfo(V, Val); 1640 return Val; 1641 } 1642 1643 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1644 /// Create an SDValue for the given value. 1645 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1646 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1647 1648 if (const Constant *C = dyn_cast<Constant>(V)) { 1649 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1650 1651 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1652 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1653 1654 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1655 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1656 1657 if (isa<ConstantPointerNull>(C)) { 1658 unsigned AS = V->getType()->getPointerAddressSpace(); 1659 return DAG.getConstant(0, getCurSDLoc(), 1660 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1661 } 1662 1663 if (match(C, m_VScale())) 1664 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1665 1666 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1667 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1668 1669 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1670 return DAG.getUNDEF(VT); 1671 1672 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1673 visit(CE->getOpcode(), *CE); 1674 SDValue N1 = NodeMap[V]; 1675 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1676 return N1; 1677 } 1678 1679 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1680 SmallVector<SDValue, 4> Constants; 1681 for (const Use &U : C->operands()) { 1682 SDNode *Val = getValue(U).getNode(); 1683 // If the operand is an empty aggregate, there are no values. 1684 if (!Val) continue; 1685 // Add each leaf value from the operand to the Constants list 1686 // to form a flattened list of all the values. 1687 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1688 Constants.push_back(SDValue(Val, i)); 1689 } 1690 1691 return DAG.getMergeValues(Constants, getCurSDLoc()); 1692 } 1693 1694 if (const ConstantDataSequential *CDS = 1695 dyn_cast<ConstantDataSequential>(C)) { 1696 SmallVector<SDValue, 4> Ops; 1697 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1698 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1699 // Add each leaf value from the operand to the Constants list 1700 // to form a flattened list of all the values. 1701 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1702 Ops.push_back(SDValue(Val, i)); 1703 } 1704 1705 if (isa<ArrayType>(CDS->getType())) 1706 return DAG.getMergeValues(Ops, getCurSDLoc()); 1707 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1708 } 1709 1710 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1711 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1712 "Unknown struct or array constant!"); 1713 1714 SmallVector<EVT, 4> ValueVTs; 1715 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1716 unsigned NumElts = ValueVTs.size(); 1717 if (NumElts == 0) 1718 return SDValue(); // empty struct 1719 SmallVector<SDValue, 4> Constants(NumElts); 1720 for (unsigned i = 0; i != NumElts; ++i) { 1721 EVT EltVT = ValueVTs[i]; 1722 if (isa<UndefValue>(C)) 1723 Constants[i] = DAG.getUNDEF(EltVT); 1724 else if (EltVT.isFloatingPoint()) 1725 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1726 else 1727 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1728 } 1729 1730 return DAG.getMergeValues(Constants, getCurSDLoc()); 1731 } 1732 1733 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1734 return DAG.getBlockAddress(BA, VT); 1735 1736 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1737 return getValue(Equiv->getGlobalValue()); 1738 1739 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1740 return getValue(NC->getGlobalValue()); 1741 1742 if (VT == MVT::aarch64svcount) { 1743 assert(C->isNullValue() && "Can only zero this target type!"); 1744 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1745 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1746 } 1747 1748 VectorType *VecTy = cast<VectorType>(V->getType()); 1749 1750 // Now that we know the number and type of the elements, get that number of 1751 // elements into the Ops array based on what kind of constant it is. 1752 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1753 SmallVector<SDValue, 16> Ops; 1754 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1755 for (unsigned i = 0; i != NumElements; ++i) 1756 Ops.push_back(getValue(CV->getOperand(i))); 1757 1758 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1759 } 1760 1761 if (isa<ConstantAggregateZero>(C)) { 1762 EVT EltVT = 1763 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1764 1765 SDValue Op; 1766 if (EltVT.isFloatingPoint()) 1767 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1768 else 1769 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1770 1771 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1772 } 1773 1774 llvm_unreachable("Unknown vector constant"); 1775 } 1776 1777 // If this is a static alloca, generate it as the frameindex instead of 1778 // computation. 1779 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1780 DenseMap<const AllocaInst*, int>::iterator SI = 1781 FuncInfo.StaticAllocaMap.find(AI); 1782 if (SI != FuncInfo.StaticAllocaMap.end()) 1783 return DAG.getFrameIndex( 1784 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1785 } 1786 1787 // If this is an instruction which fast-isel has deferred, select it now. 1788 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1789 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1790 1791 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1792 Inst->getType(), std::nullopt); 1793 SDValue Chain = DAG.getEntryNode(); 1794 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1795 } 1796 1797 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1798 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1799 1800 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1801 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1802 1803 llvm_unreachable("Can't get register for value!"); 1804 } 1805 1806 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1807 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1808 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1809 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1810 bool IsSEH = isAsynchronousEHPersonality(Pers); 1811 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1812 if (!IsSEH) 1813 CatchPadMBB->setIsEHScopeEntry(); 1814 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1815 if (IsMSVCCXX || IsCoreCLR) 1816 CatchPadMBB->setIsEHFuncletEntry(); 1817 } 1818 1819 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1820 // Update machine-CFG edge. 1821 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1822 FuncInfo.MBB->addSuccessor(TargetMBB); 1823 TargetMBB->setIsEHCatchretTarget(true); 1824 DAG.getMachineFunction().setHasEHCatchret(true); 1825 1826 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1827 bool IsSEH = isAsynchronousEHPersonality(Pers); 1828 if (IsSEH) { 1829 // If this is not a fall-through branch or optimizations are switched off, 1830 // emit the branch. 1831 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1832 TM.getOptLevel() == CodeGenOptLevel::None) 1833 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1834 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1835 return; 1836 } 1837 1838 // Figure out the funclet membership for the catchret's successor. 1839 // This will be used by the FuncletLayout pass to determine how to order the 1840 // BB's. 1841 // A 'catchret' returns to the outer scope's color. 1842 Value *ParentPad = I.getCatchSwitchParentPad(); 1843 const BasicBlock *SuccessorColor; 1844 if (isa<ConstantTokenNone>(ParentPad)) 1845 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1846 else 1847 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1848 assert(SuccessorColor && "No parent funclet for catchret!"); 1849 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1850 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1851 1852 // Create the terminator node. 1853 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1854 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1855 DAG.getBasicBlock(SuccessorColorMBB)); 1856 DAG.setRoot(Ret); 1857 } 1858 1859 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1860 // Don't emit any special code for the cleanuppad instruction. It just marks 1861 // the start of an EH scope/funclet. 1862 FuncInfo.MBB->setIsEHScopeEntry(); 1863 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1864 if (Pers != EHPersonality::Wasm_CXX) { 1865 FuncInfo.MBB->setIsEHFuncletEntry(); 1866 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1867 } 1868 } 1869 1870 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1871 // not match, it is OK to add only the first unwind destination catchpad to the 1872 // successors, because there will be at least one invoke instruction within the 1873 // catch scope that points to the next unwind destination, if one exists, so 1874 // CFGSort cannot mess up with BB sorting order. 1875 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1876 // call within them, and catchpads only consisting of 'catch (...)' have a 1877 // '__cxa_end_catch' call within them, both of which generate invokes in case 1878 // the next unwind destination exists, i.e., the next unwind destination is not 1879 // the caller.) 1880 // 1881 // Having at most one EH pad successor is also simpler and helps later 1882 // transformations. 1883 // 1884 // For example, 1885 // current: 1886 // invoke void @foo to ... unwind label %catch.dispatch 1887 // catch.dispatch: 1888 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1889 // catch.start: 1890 // ... 1891 // ... in this BB or some other child BB dominated by this BB there will be an 1892 // invoke that points to 'next' BB as an unwind destination 1893 // 1894 // next: ; We don't need to add this to 'current' BB's successor 1895 // ... 1896 static void findWasmUnwindDestinations( 1897 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1898 BranchProbability Prob, 1899 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1900 &UnwindDests) { 1901 while (EHPadBB) { 1902 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1903 if (isa<CleanupPadInst>(Pad)) { 1904 // Stop on cleanup pads. 1905 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1906 UnwindDests.back().first->setIsEHScopeEntry(); 1907 break; 1908 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1909 // Add the catchpad handlers to the possible destinations. We don't 1910 // continue to the unwind destination of the catchswitch for wasm. 1911 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1912 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1913 UnwindDests.back().first->setIsEHScopeEntry(); 1914 } 1915 break; 1916 } else { 1917 continue; 1918 } 1919 } 1920 } 1921 1922 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1923 /// many places it could ultimately go. In the IR, we have a single unwind 1924 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1925 /// This function skips over imaginary basic blocks that hold catchswitch 1926 /// instructions, and finds all the "real" machine 1927 /// basic block destinations. As those destinations may not be successors of 1928 /// EHPadBB, here we also calculate the edge probability to those destinations. 1929 /// The passed-in Prob is the edge probability to EHPadBB. 1930 static void findUnwindDestinations( 1931 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1932 BranchProbability Prob, 1933 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1934 &UnwindDests) { 1935 EHPersonality Personality = 1936 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1937 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1938 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1939 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1940 bool IsSEH = isAsynchronousEHPersonality(Personality); 1941 1942 if (IsWasmCXX) { 1943 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1944 assert(UnwindDests.size() <= 1 && 1945 "There should be at most one unwind destination for wasm"); 1946 return; 1947 } 1948 1949 while (EHPadBB) { 1950 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1951 BasicBlock *NewEHPadBB = nullptr; 1952 if (isa<LandingPadInst>(Pad)) { 1953 // Stop on landingpads. They are not funclets. 1954 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1955 break; 1956 } else if (isa<CleanupPadInst>(Pad)) { 1957 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1958 // personalities. 1959 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1960 UnwindDests.back().first->setIsEHScopeEntry(); 1961 UnwindDests.back().first->setIsEHFuncletEntry(); 1962 break; 1963 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1964 // Add the catchpad handlers to the possible destinations. 1965 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1966 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1967 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1968 if (IsMSVCCXX || IsCoreCLR) 1969 UnwindDests.back().first->setIsEHFuncletEntry(); 1970 if (!IsSEH) 1971 UnwindDests.back().first->setIsEHScopeEntry(); 1972 } 1973 NewEHPadBB = CatchSwitch->getUnwindDest(); 1974 } else { 1975 continue; 1976 } 1977 1978 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1979 if (BPI && NewEHPadBB) 1980 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1981 EHPadBB = NewEHPadBB; 1982 } 1983 } 1984 1985 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1986 // Update successor info. 1987 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1988 auto UnwindDest = I.getUnwindDest(); 1989 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1990 BranchProbability UnwindDestProb = 1991 (BPI && UnwindDest) 1992 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1993 : BranchProbability::getZero(); 1994 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1995 for (auto &UnwindDest : UnwindDests) { 1996 UnwindDest.first->setIsEHPad(); 1997 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1998 } 1999 FuncInfo.MBB->normalizeSuccProbs(); 2000 2001 // Create the terminator node. 2002 SDValue Ret = 2003 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2004 DAG.setRoot(Ret); 2005 } 2006 2007 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2008 report_fatal_error("visitCatchSwitch not yet implemented!"); 2009 } 2010 2011 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2012 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2013 auto &DL = DAG.getDataLayout(); 2014 SDValue Chain = getControlRoot(); 2015 SmallVector<ISD::OutputArg, 8> Outs; 2016 SmallVector<SDValue, 8> OutVals; 2017 2018 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2019 // lower 2020 // 2021 // %val = call <ty> @llvm.experimental.deoptimize() 2022 // ret <ty> %val 2023 // 2024 // differently. 2025 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2026 LowerDeoptimizingReturn(); 2027 return; 2028 } 2029 2030 if (!FuncInfo.CanLowerReturn) { 2031 unsigned DemoteReg = FuncInfo.DemoteRegister; 2032 const Function *F = I.getParent()->getParent(); 2033 2034 // Emit a store of the return value through the virtual register. 2035 // Leave Outs empty so that LowerReturn won't try to load return 2036 // registers the usual way. 2037 SmallVector<EVT, 1> PtrValueVTs; 2038 ComputeValueVTs(TLI, DL, 2039 PointerType::get(F->getContext(), 2040 DAG.getDataLayout().getAllocaAddrSpace()), 2041 PtrValueVTs); 2042 2043 SDValue RetPtr = 2044 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2045 SDValue RetOp = getValue(I.getOperand(0)); 2046 2047 SmallVector<EVT, 4> ValueVTs, MemVTs; 2048 SmallVector<uint64_t, 4> Offsets; 2049 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2050 &Offsets, 0); 2051 unsigned NumValues = ValueVTs.size(); 2052 2053 SmallVector<SDValue, 4> Chains(NumValues); 2054 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2055 for (unsigned i = 0; i != NumValues; ++i) { 2056 // An aggregate return value cannot wrap around the address space, so 2057 // offsets to its parts don't wrap either. 2058 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2059 TypeSize::Fixed(Offsets[i])); 2060 2061 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2062 if (MemVTs[i] != ValueVTs[i]) 2063 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2064 Chains[i] = DAG.getStore( 2065 Chain, getCurSDLoc(), Val, 2066 // FIXME: better loc info would be nice. 2067 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2068 commonAlignment(BaseAlign, Offsets[i])); 2069 } 2070 2071 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2072 MVT::Other, Chains); 2073 } else if (I.getNumOperands() != 0) { 2074 SmallVector<EVT, 4> ValueVTs; 2075 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2076 unsigned NumValues = ValueVTs.size(); 2077 if (NumValues) { 2078 SDValue RetOp = getValue(I.getOperand(0)); 2079 2080 const Function *F = I.getParent()->getParent(); 2081 2082 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2083 I.getOperand(0)->getType(), F->getCallingConv(), 2084 /*IsVarArg*/ false, DL); 2085 2086 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2087 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2088 ExtendKind = ISD::SIGN_EXTEND; 2089 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2090 ExtendKind = ISD::ZERO_EXTEND; 2091 2092 LLVMContext &Context = F->getContext(); 2093 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2094 2095 for (unsigned j = 0; j != NumValues; ++j) { 2096 EVT VT = ValueVTs[j]; 2097 2098 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2099 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2100 2101 CallingConv::ID CC = F->getCallingConv(); 2102 2103 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2104 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2105 SmallVector<SDValue, 4> Parts(NumParts); 2106 getCopyToParts(DAG, getCurSDLoc(), 2107 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2108 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2109 2110 // 'inreg' on function refers to return value 2111 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2112 if (RetInReg) 2113 Flags.setInReg(); 2114 2115 if (I.getOperand(0)->getType()->isPointerTy()) { 2116 Flags.setPointer(); 2117 Flags.setPointerAddrSpace( 2118 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2119 } 2120 2121 if (NeedsRegBlock) { 2122 Flags.setInConsecutiveRegs(); 2123 if (j == NumValues - 1) 2124 Flags.setInConsecutiveRegsLast(); 2125 } 2126 2127 // Propagate extension type if any 2128 if (ExtendKind == ISD::SIGN_EXTEND) 2129 Flags.setSExt(); 2130 else if (ExtendKind == ISD::ZERO_EXTEND) 2131 Flags.setZExt(); 2132 2133 for (unsigned i = 0; i < NumParts; ++i) { 2134 Outs.push_back(ISD::OutputArg(Flags, 2135 Parts[i].getValueType().getSimpleVT(), 2136 VT, /*isfixed=*/true, 0, 0)); 2137 OutVals.push_back(Parts[i]); 2138 } 2139 } 2140 } 2141 } 2142 2143 // Push in swifterror virtual register as the last element of Outs. This makes 2144 // sure swifterror virtual register will be returned in the swifterror 2145 // physical register. 2146 const Function *F = I.getParent()->getParent(); 2147 if (TLI.supportSwiftError() && 2148 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2149 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2150 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2151 Flags.setSwiftError(); 2152 Outs.push_back(ISD::OutputArg( 2153 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2154 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2155 // Create SDNode for the swifterror virtual register. 2156 OutVals.push_back( 2157 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2158 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2159 EVT(TLI.getPointerTy(DL)))); 2160 } 2161 2162 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2163 CallingConv::ID CallConv = 2164 DAG.getMachineFunction().getFunction().getCallingConv(); 2165 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2166 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2167 2168 // Verify that the target's LowerReturn behaved as expected. 2169 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2170 "LowerReturn didn't return a valid chain!"); 2171 2172 // Update the DAG with the new chain value resulting from return lowering. 2173 DAG.setRoot(Chain); 2174 } 2175 2176 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2177 /// created for it, emit nodes to copy the value into the virtual 2178 /// registers. 2179 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2180 // Skip empty types 2181 if (V->getType()->isEmptyTy()) 2182 return; 2183 2184 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2185 if (VMI != FuncInfo.ValueMap.end()) { 2186 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2187 "Unused value assigned virtual registers!"); 2188 CopyValueToVirtualRegister(V, VMI->second); 2189 } 2190 } 2191 2192 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2193 /// the current basic block, add it to ValueMap now so that we'll get a 2194 /// CopyTo/FromReg. 2195 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2196 // No need to export constants. 2197 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2198 2199 // Already exported? 2200 if (FuncInfo.isExportedInst(V)) return; 2201 2202 Register Reg = FuncInfo.InitializeRegForValue(V); 2203 CopyValueToVirtualRegister(V, Reg); 2204 } 2205 2206 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2207 const BasicBlock *FromBB) { 2208 // The operands of the setcc have to be in this block. We don't know 2209 // how to export them from some other block. 2210 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2211 // Can export from current BB. 2212 if (VI->getParent() == FromBB) 2213 return true; 2214 2215 // Is already exported, noop. 2216 return FuncInfo.isExportedInst(V); 2217 } 2218 2219 // If this is an argument, we can export it if the BB is the entry block or 2220 // if it is already exported. 2221 if (isa<Argument>(V)) { 2222 if (FromBB->isEntryBlock()) 2223 return true; 2224 2225 // Otherwise, can only export this if it is already exported. 2226 return FuncInfo.isExportedInst(V); 2227 } 2228 2229 // Otherwise, constants can always be exported. 2230 return true; 2231 } 2232 2233 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2234 BranchProbability 2235 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2236 const MachineBasicBlock *Dst) const { 2237 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2238 const BasicBlock *SrcBB = Src->getBasicBlock(); 2239 const BasicBlock *DstBB = Dst->getBasicBlock(); 2240 if (!BPI) { 2241 // If BPI is not available, set the default probability as 1 / N, where N is 2242 // the number of successors. 2243 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2244 return BranchProbability(1, SuccSize); 2245 } 2246 return BPI->getEdgeProbability(SrcBB, DstBB); 2247 } 2248 2249 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2250 MachineBasicBlock *Dst, 2251 BranchProbability Prob) { 2252 if (!FuncInfo.BPI) 2253 Src->addSuccessorWithoutProb(Dst); 2254 else { 2255 if (Prob.isUnknown()) 2256 Prob = getEdgeProbability(Src, Dst); 2257 Src->addSuccessor(Dst, Prob); 2258 } 2259 } 2260 2261 static bool InBlock(const Value *V, const BasicBlock *BB) { 2262 if (const Instruction *I = dyn_cast<Instruction>(V)) 2263 return I->getParent() == BB; 2264 return true; 2265 } 2266 2267 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2268 /// This function emits a branch and is used at the leaves of an OR or an 2269 /// AND operator tree. 2270 void 2271 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2272 MachineBasicBlock *TBB, 2273 MachineBasicBlock *FBB, 2274 MachineBasicBlock *CurBB, 2275 MachineBasicBlock *SwitchBB, 2276 BranchProbability TProb, 2277 BranchProbability FProb, 2278 bool InvertCond) { 2279 const BasicBlock *BB = CurBB->getBasicBlock(); 2280 2281 // If the leaf of the tree is a comparison, merge the condition into 2282 // the caseblock. 2283 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2284 // The operands of the cmp have to be in this block. We don't know 2285 // how to export them from some other block. If this is the first block 2286 // of the sequence, no exporting is needed. 2287 if (CurBB == SwitchBB || 2288 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2289 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2290 ISD::CondCode Condition; 2291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2292 ICmpInst::Predicate Pred = 2293 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2294 Condition = getICmpCondCode(Pred); 2295 } else { 2296 const FCmpInst *FC = cast<FCmpInst>(Cond); 2297 FCmpInst::Predicate Pred = 2298 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2299 Condition = getFCmpCondCode(Pred); 2300 if (TM.Options.NoNaNsFPMath) 2301 Condition = getFCmpCodeWithoutNaN(Condition); 2302 } 2303 2304 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2305 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2306 SL->SwitchCases.push_back(CB); 2307 return; 2308 } 2309 } 2310 2311 // Create a CaseBlock record representing this branch. 2312 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2313 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2314 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2315 SL->SwitchCases.push_back(CB); 2316 } 2317 2318 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2319 MachineBasicBlock *TBB, 2320 MachineBasicBlock *FBB, 2321 MachineBasicBlock *CurBB, 2322 MachineBasicBlock *SwitchBB, 2323 Instruction::BinaryOps Opc, 2324 BranchProbability TProb, 2325 BranchProbability FProb, 2326 bool InvertCond) { 2327 // Skip over not part of the tree and remember to invert op and operands at 2328 // next level. 2329 Value *NotCond; 2330 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2331 InBlock(NotCond, CurBB->getBasicBlock())) { 2332 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2333 !InvertCond); 2334 return; 2335 } 2336 2337 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2338 const Value *BOpOp0, *BOpOp1; 2339 // Compute the effective opcode for Cond, taking into account whether it needs 2340 // to be inverted, e.g. 2341 // and (not (or A, B)), C 2342 // gets lowered as 2343 // and (and (not A, not B), C) 2344 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2345 if (BOp) { 2346 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2347 ? Instruction::And 2348 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2349 ? Instruction::Or 2350 : (Instruction::BinaryOps)0); 2351 if (InvertCond) { 2352 if (BOpc == Instruction::And) 2353 BOpc = Instruction::Or; 2354 else if (BOpc == Instruction::Or) 2355 BOpc = Instruction::And; 2356 } 2357 } 2358 2359 // If this node is not part of the or/and tree, emit it as a branch. 2360 // Note that all nodes in the tree should have same opcode. 2361 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2362 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2363 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2364 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2365 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2366 TProb, FProb, InvertCond); 2367 return; 2368 } 2369 2370 // Create TmpBB after CurBB. 2371 MachineFunction::iterator BBI(CurBB); 2372 MachineFunction &MF = DAG.getMachineFunction(); 2373 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2374 CurBB->getParent()->insert(++BBI, TmpBB); 2375 2376 if (Opc == Instruction::Or) { 2377 // Codegen X | Y as: 2378 // BB1: 2379 // jmp_if_X TBB 2380 // jmp TmpBB 2381 // TmpBB: 2382 // jmp_if_Y TBB 2383 // jmp FBB 2384 // 2385 2386 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2387 // The requirement is that 2388 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2389 // = TrueProb for original BB. 2390 // Assuming the original probabilities are A and B, one choice is to set 2391 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2392 // A/(1+B) and 2B/(1+B). This choice assumes that 2393 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2394 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2395 // TmpBB, but the math is more complicated. 2396 2397 auto NewTrueProb = TProb / 2; 2398 auto NewFalseProb = TProb / 2 + FProb; 2399 // Emit the LHS condition. 2400 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2401 NewFalseProb, InvertCond); 2402 2403 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2404 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2405 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2406 // Emit the RHS condition into TmpBB. 2407 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2408 Probs[1], InvertCond); 2409 } else { 2410 assert(Opc == Instruction::And && "Unknown merge op!"); 2411 // Codegen X & Y as: 2412 // BB1: 2413 // jmp_if_X TmpBB 2414 // jmp FBB 2415 // TmpBB: 2416 // jmp_if_Y TBB 2417 // jmp FBB 2418 // 2419 // This requires creation of TmpBB after CurBB. 2420 2421 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2422 // The requirement is that 2423 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2424 // = FalseProb for original BB. 2425 // Assuming the original probabilities are A and B, one choice is to set 2426 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2427 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2428 // TrueProb for BB1 * FalseProb for TmpBB. 2429 2430 auto NewTrueProb = TProb + FProb / 2; 2431 auto NewFalseProb = FProb / 2; 2432 // Emit the LHS condition. 2433 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2434 NewFalseProb, InvertCond); 2435 2436 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2437 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2438 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2439 // Emit the RHS condition into TmpBB. 2440 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2441 Probs[1], InvertCond); 2442 } 2443 } 2444 2445 /// If the set of cases should be emitted as a series of branches, return true. 2446 /// If we should emit this as a bunch of and/or'd together conditions, return 2447 /// false. 2448 bool 2449 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2450 if (Cases.size() != 2) return true; 2451 2452 // If this is two comparisons of the same values or'd or and'd together, they 2453 // will get folded into a single comparison, so don't emit two blocks. 2454 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2455 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2456 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2457 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2458 return false; 2459 } 2460 2461 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2462 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2463 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2464 Cases[0].CC == Cases[1].CC && 2465 isa<Constant>(Cases[0].CmpRHS) && 2466 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2467 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2468 return false; 2469 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2470 return false; 2471 } 2472 2473 return true; 2474 } 2475 2476 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2477 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2478 2479 // Update machine-CFG edges. 2480 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2481 2482 if (I.isUnconditional()) { 2483 // Update machine-CFG edges. 2484 BrMBB->addSuccessor(Succ0MBB); 2485 2486 // If this is not a fall-through branch or optimizations are switched off, 2487 // emit the branch. 2488 if (Succ0MBB != NextBlock(BrMBB) || 2489 TM.getOptLevel() == CodeGenOptLevel::None) { 2490 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2491 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2492 setValue(&I, Br); 2493 DAG.setRoot(Br); 2494 } 2495 2496 return; 2497 } 2498 2499 // If this condition is one of the special cases we handle, do special stuff 2500 // now. 2501 const Value *CondVal = I.getCondition(); 2502 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2503 2504 // If this is a series of conditions that are or'd or and'd together, emit 2505 // this as a sequence of branches instead of setcc's with and/or operations. 2506 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2507 // unpredictable branches, and vector extracts because those jumps are likely 2508 // expensive for any target), this should improve performance. 2509 // For example, instead of something like: 2510 // cmp A, B 2511 // C = seteq 2512 // cmp D, E 2513 // F = setle 2514 // or C, F 2515 // jnz foo 2516 // Emit: 2517 // cmp A, B 2518 // je foo 2519 // cmp D, E 2520 // jle foo 2521 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2522 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2523 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2524 Value *Vec; 2525 const Value *BOp0, *BOp1; 2526 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2527 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2528 Opcode = Instruction::And; 2529 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2530 Opcode = Instruction::Or; 2531 2532 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2533 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2534 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2535 getEdgeProbability(BrMBB, Succ0MBB), 2536 getEdgeProbability(BrMBB, Succ1MBB), 2537 /*InvertCond=*/false); 2538 // If the compares in later blocks need to use values not currently 2539 // exported from this block, export them now. This block should always 2540 // be the first entry. 2541 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2542 2543 // Allow some cases to be rejected. 2544 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2545 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2546 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2547 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2548 } 2549 2550 // Emit the branch for this block. 2551 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2552 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2553 return; 2554 } 2555 2556 // Okay, we decided not to do this, remove any inserted MBB's and clear 2557 // SwitchCases. 2558 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2559 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2560 2561 SL->SwitchCases.clear(); 2562 } 2563 } 2564 2565 // Create a CaseBlock record representing this branch. 2566 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2567 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2568 2569 // Use visitSwitchCase to actually insert the fast branch sequence for this 2570 // cond branch. 2571 visitSwitchCase(CB, BrMBB); 2572 } 2573 2574 /// visitSwitchCase - Emits the necessary code to represent a single node in 2575 /// the binary search tree resulting from lowering a switch instruction. 2576 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2577 MachineBasicBlock *SwitchBB) { 2578 SDValue Cond; 2579 SDValue CondLHS = getValue(CB.CmpLHS); 2580 SDLoc dl = CB.DL; 2581 2582 if (CB.CC == ISD::SETTRUE) { 2583 // Branch or fall through to TrueBB. 2584 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2585 SwitchBB->normalizeSuccProbs(); 2586 if (CB.TrueBB != NextBlock(SwitchBB)) { 2587 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2588 DAG.getBasicBlock(CB.TrueBB))); 2589 } 2590 return; 2591 } 2592 2593 auto &TLI = DAG.getTargetLoweringInfo(); 2594 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2595 2596 // Build the setcc now. 2597 if (!CB.CmpMHS) { 2598 // Fold "(X == true)" to X and "(X == false)" to !X to 2599 // handle common cases produced by branch lowering. 2600 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2601 CB.CC == ISD::SETEQ) 2602 Cond = CondLHS; 2603 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2604 CB.CC == ISD::SETEQ) { 2605 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2606 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2607 } else { 2608 SDValue CondRHS = getValue(CB.CmpRHS); 2609 2610 // If a pointer's DAG type is larger than its memory type then the DAG 2611 // values are zero-extended. This breaks signed comparisons so truncate 2612 // back to the underlying type before doing the compare. 2613 if (CondLHS.getValueType() != MemVT) { 2614 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2615 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2616 } 2617 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2618 } 2619 } else { 2620 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2621 2622 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2623 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2624 2625 SDValue CmpOp = getValue(CB.CmpMHS); 2626 EVT VT = CmpOp.getValueType(); 2627 2628 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2629 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2630 ISD::SETLE); 2631 } else { 2632 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2633 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2634 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2635 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2636 } 2637 } 2638 2639 // Update successor info 2640 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2641 // TrueBB and FalseBB are always different unless the incoming IR is 2642 // degenerate. This only happens when running llc on weird IR. 2643 if (CB.TrueBB != CB.FalseBB) 2644 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2645 SwitchBB->normalizeSuccProbs(); 2646 2647 // If the lhs block is the next block, invert the condition so that we can 2648 // fall through to the lhs instead of the rhs block. 2649 if (CB.TrueBB == NextBlock(SwitchBB)) { 2650 std::swap(CB.TrueBB, CB.FalseBB); 2651 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2652 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2653 } 2654 2655 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2656 MVT::Other, getControlRoot(), Cond, 2657 DAG.getBasicBlock(CB.TrueBB)); 2658 2659 setValue(CurInst, BrCond); 2660 2661 // Insert the false branch. Do this even if it's a fall through branch, 2662 // this makes it easier to do DAG optimizations which require inverting 2663 // the branch condition. 2664 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2665 DAG.getBasicBlock(CB.FalseBB)); 2666 2667 DAG.setRoot(BrCond); 2668 } 2669 2670 /// visitJumpTable - Emit JumpTable node in the current MBB 2671 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2672 // Emit the code for the jump table 2673 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2674 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2675 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2676 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2677 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2678 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2679 Index.getValue(1), Table, Index); 2680 DAG.setRoot(BrJumpTable); 2681 } 2682 2683 /// visitJumpTableHeader - This function emits necessary code to produce index 2684 /// in the JumpTable from switch case. 2685 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2686 JumpTableHeader &JTH, 2687 MachineBasicBlock *SwitchBB) { 2688 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2689 const SDLoc &dl = *JT.SL; 2690 2691 // Subtract the lowest switch case value from the value being switched on. 2692 SDValue SwitchOp = getValue(JTH.SValue); 2693 EVT VT = SwitchOp.getValueType(); 2694 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2695 DAG.getConstant(JTH.First, dl, VT)); 2696 2697 // The SDNode we just created, which holds the value being switched on minus 2698 // the smallest case value, needs to be copied to a virtual register so it 2699 // can be used as an index into the jump table in a subsequent basic block. 2700 // This value may be smaller or larger than the target's pointer type, and 2701 // therefore require extension or truncating. 2702 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2703 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2704 2705 unsigned JumpTableReg = 2706 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2707 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2708 JumpTableReg, SwitchOp); 2709 JT.Reg = JumpTableReg; 2710 2711 if (!JTH.FallthroughUnreachable) { 2712 // Emit the range check for the jump table, and branch to the default block 2713 // for the switch statement if the value being switched on exceeds the 2714 // largest case in the switch. 2715 SDValue CMP = DAG.getSetCC( 2716 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2717 Sub.getValueType()), 2718 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2719 2720 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2721 MVT::Other, CopyTo, CMP, 2722 DAG.getBasicBlock(JT.Default)); 2723 2724 // Avoid emitting unnecessary branches to the next block. 2725 if (JT.MBB != NextBlock(SwitchBB)) 2726 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2727 DAG.getBasicBlock(JT.MBB)); 2728 2729 DAG.setRoot(BrCond); 2730 } else { 2731 // Avoid emitting unnecessary branches to the next block. 2732 if (JT.MBB != NextBlock(SwitchBB)) 2733 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2734 DAG.getBasicBlock(JT.MBB))); 2735 else 2736 DAG.setRoot(CopyTo); 2737 } 2738 } 2739 2740 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2741 /// variable if there exists one. 2742 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2743 SDValue &Chain) { 2744 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2745 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2746 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2747 MachineFunction &MF = DAG.getMachineFunction(); 2748 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2749 MachineSDNode *Node = 2750 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2751 if (Global) { 2752 MachinePointerInfo MPInfo(Global); 2753 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2754 MachineMemOperand::MODereferenceable; 2755 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2756 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2757 DAG.setNodeMemRefs(Node, {MemRef}); 2758 } 2759 if (PtrTy != PtrMemTy) 2760 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2761 return SDValue(Node, 0); 2762 } 2763 2764 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2765 /// tail spliced into a stack protector check success bb. 2766 /// 2767 /// For a high level explanation of how this fits into the stack protector 2768 /// generation see the comment on the declaration of class 2769 /// StackProtectorDescriptor. 2770 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2771 MachineBasicBlock *ParentBB) { 2772 2773 // First create the loads to the guard/stack slot for the comparison. 2774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2775 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2776 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2777 2778 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2779 int FI = MFI.getStackProtectorIndex(); 2780 2781 SDValue Guard; 2782 SDLoc dl = getCurSDLoc(); 2783 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2784 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2785 Align Align = 2786 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 2787 2788 // Generate code to load the content of the guard slot. 2789 SDValue GuardVal = DAG.getLoad( 2790 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2791 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2792 MachineMemOperand::MOVolatile); 2793 2794 if (TLI.useStackGuardXorFP()) 2795 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2796 2797 // Retrieve guard check function, nullptr if instrumentation is inlined. 2798 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2799 // The target provides a guard check function to validate the guard value. 2800 // Generate a call to that function with the content of the guard slot as 2801 // argument. 2802 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2803 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2804 2805 TargetLowering::ArgListTy Args; 2806 TargetLowering::ArgListEntry Entry; 2807 Entry.Node = GuardVal; 2808 Entry.Ty = FnTy->getParamType(0); 2809 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2810 Entry.IsInReg = true; 2811 Args.push_back(Entry); 2812 2813 TargetLowering::CallLoweringInfo CLI(DAG); 2814 CLI.setDebugLoc(getCurSDLoc()) 2815 .setChain(DAG.getEntryNode()) 2816 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2817 getValue(GuardCheckFn), std::move(Args)); 2818 2819 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2820 DAG.setRoot(Result.second); 2821 return; 2822 } 2823 2824 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2825 // Otherwise, emit a volatile load to retrieve the stack guard value. 2826 SDValue Chain = DAG.getEntryNode(); 2827 if (TLI.useLoadStackGuardNode()) { 2828 Guard = getLoadStackGuard(DAG, dl, Chain); 2829 } else { 2830 const Value *IRGuard = TLI.getSDagStackGuard(M); 2831 SDValue GuardPtr = getValue(IRGuard); 2832 2833 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2834 MachinePointerInfo(IRGuard, 0), Align, 2835 MachineMemOperand::MOVolatile); 2836 } 2837 2838 // Perform the comparison via a getsetcc. 2839 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2840 *DAG.getContext(), 2841 Guard.getValueType()), 2842 Guard, GuardVal, ISD::SETNE); 2843 2844 // If the guard/stackslot do not equal, branch to failure MBB. 2845 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2846 MVT::Other, GuardVal.getOperand(0), 2847 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2848 // Otherwise branch to success MBB. 2849 SDValue Br = DAG.getNode(ISD::BR, dl, 2850 MVT::Other, BrCond, 2851 DAG.getBasicBlock(SPD.getSuccessMBB())); 2852 2853 DAG.setRoot(Br); 2854 } 2855 2856 /// Codegen the failure basic block for a stack protector check. 2857 /// 2858 /// A failure stack protector machine basic block consists simply of a call to 2859 /// __stack_chk_fail(). 2860 /// 2861 /// For a high level explanation of how this fits into the stack protector 2862 /// generation see the comment on the declaration of class 2863 /// StackProtectorDescriptor. 2864 void 2865 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2866 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2867 TargetLowering::MakeLibCallOptions CallOptions; 2868 CallOptions.setDiscardResult(true); 2869 SDValue Chain = 2870 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2871 std::nullopt, CallOptions, getCurSDLoc()) 2872 .second; 2873 // On PS4/PS5, the "return address" must still be within the calling 2874 // function, even if it's at the very end, so emit an explicit TRAP here. 2875 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2876 if (TM.getTargetTriple().isPS()) 2877 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2878 // WebAssembly needs an unreachable instruction after a non-returning call, 2879 // because the function return type can be different from __stack_chk_fail's 2880 // return type (void). 2881 if (TM.getTargetTriple().isWasm()) 2882 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2883 2884 DAG.setRoot(Chain); 2885 } 2886 2887 /// visitBitTestHeader - This function emits necessary code to produce value 2888 /// suitable for "bit tests" 2889 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2890 MachineBasicBlock *SwitchBB) { 2891 SDLoc dl = getCurSDLoc(); 2892 2893 // Subtract the minimum value. 2894 SDValue SwitchOp = getValue(B.SValue); 2895 EVT VT = SwitchOp.getValueType(); 2896 SDValue RangeSub = 2897 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2898 2899 // Determine the type of the test operands. 2900 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2901 bool UsePtrType = false; 2902 if (!TLI.isTypeLegal(VT)) { 2903 UsePtrType = true; 2904 } else { 2905 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2906 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2907 // Switch table case range are encoded into series of masks. 2908 // Just use pointer type, it's guaranteed to fit. 2909 UsePtrType = true; 2910 break; 2911 } 2912 } 2913 SDValue Sub = RangeSub; 2914 if (UsePtrType) { 2915 VT = TLI.getPointerTy(DAG.getDataLayout()); 2916 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2917 } 2918 2919 B.RegVT = VT.getSimpleVT(); 2920 B.Reg = FuncInfo.CreateReg(B.RegVT); 2921 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2922 2923 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2924 2925 if (!B.FallthroughUnreachable) 2926 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2927 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2928 SwitchBB->normalizeSuccProbs(); 2929 2930 SDValue Root = CopyTo; 2931 if (!B.FallthroughUnreachable) { 2932 // Conditional branch to the default block. 2933 SDValue RangeCmp = DAG.getSetCC(dl, 2934 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2935 RangeSub.getValueType()), 2936 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2937 ISD::SETUGT); 2938 2939 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2940 DAG.getBasicBlock(B.Default)); 2941 } 2942 2943 // Avoid emitting unnecessary branches to the next block. 2944 if (MBB != NextBlock(SwitchBB)) 2945 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2946 2947 DAG.setRoot(Root); 2948 } 2949 2950 /// visitBitTestCase - this function produces one "bit test" 2951 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2952 MachineBasicBlock* NextMBB, 2953 BranchProbability BranchProbToNext, 2954 unsigned Reg, 2955 BitTestCase &B, 2956 MachineBasicBlock *SwitchBB) { 2957 SDLoc dl = getCurSDLoc(); 2958 MVT VT = BB.RegVT; 2959 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2960 SDValue Cmp; 2961 unsigned PopCount = llvm::popcount(B.Mask); 2962 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2963 if (PopCount == 1) { 2964 // Testing for a single bit; just compare the shift count with what it 2965 // would need to be to shift a 1 bit in that position. 2966 Cmp = DAG.getSetCC( 2967 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2968 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 2969 ISD::SETEQ); 2970 } else if (PopCount == BB.Range) { 2971 // There is only one zero bit in the range, test for it directly. 2972 Cmp = DAG.getSetCC( 2973 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2974 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 2975 } else { 2976 // Make desired shift 2977 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2978 DAG.getConstant(1, dl, VT), ShiftOp); 2979 2980 // Emit bit tests and jumps 2981 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2982 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2983 Cmp = DAG.getSetCC( 2984 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2985 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2986 } 2987 2988 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2989 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2990 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2991 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2992 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2993 // one as they are relative probabilities (and thus work more like weights), 2994 // and hence we need to normalize them to let the sum of them become one. 2995 SwitchBB->normalizeSuccProbs(); 2996 2997 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2998 MVT::Other, getControlRoot(), 2999 Cmp, DAG.getBasicBlock(B.TargetBB)); 3000 3001 // Avoid emitting unnecessary branches to the next block. 3002 if (NextMBB != NextBlock(SwitchBB)) 3003 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3004 DAG.getBasicBlock(NextMBB)); 3005 3006 DAG.setRoot(BrAnd); 3007 } 3008 3009 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3010 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3011 3012 // Retrieve successors. Look through artificial IR level blocks like 3013 // catchswitch for successors. 3014 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3015 const BasicBlock *EHPadBB = I.getSuccessor(1); 3016 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3017 3018 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3019 // have to do anything here to lower funclet bundles. 3020 assert(!I.hasOperandBundlesOtherThan( 3021 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3022 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3023 LLVMContext::OB_cfguardtarget, 3024 LLVMContext::OB_clang_arc_attachedcall}) && 3025 "Cannot lower invokes with arbitrary operand bundles yet!"); 3026 3027 const Value *Callee(I.getCalledOperand()); 3028 const Function *Fn = dyn_cast<Function>(Callee); 3029 if (isa<InlineAsm>(Callee)) 3030 visitInlineAsm(I, EHPadBB); 3031 else if (Fn && Fn->isIntrinsic()) { 3032 switch (Fn->getIntrinsicID()) { 3033 default: 3034 llvm_unreachable("Cannot invoke this intrinsic"); 3035 case Intrinsic::donothing: 3036 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3037 case Intrinsic::seh_try_begin: 3038 case Intrinsic::seh_scope_begin: 3039 case Intrinsic::seh_try_end: 3040 case Intrinsic::seh_scope_end: 3041 if (EHPadMBB) 3042 // a block referenced by EH table 3043 // so dtor-funclet not removed by opts 3044 EHPadMBB->setMachineBlockAddressTaken(); 3045 break; 3046 case Intrinsic::experimental_patchpoint_void: 3047 case Intrinsic::experimental_patchpoint_i64: 3048 visitPatchpoint(I, EHPadBB); 3049 break; 3050 case Intrinsic::experimental_gc_statepoint: 3051 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3052 break; 3053 case Intrinsic::wasm_rethrow: { 3054 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3055 // special because it can be invoked, so we manually lower it to a DAG 3056 // node here. 3057 SmallVector<SDValue, 8> Ops; 3058 Ops.push_back(getRoot()); // inchain 3059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3060 Ops.push_back( 3061 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3062 TLI.getPointerTy(DAG.getDataLayout()))); 3063 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3064 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3065 break; 3066 } 3067 } 3068 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3069 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3070 // Eventually we will support lowering the @llvm.experimental.deoptimize 3071 // intrinsic, and right now there are no plans to support other intrinsics 3072 // with deopt state. 3073 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3074 } else { 3075 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3076 } 3077 3078 // If the value of the invoke is used outside of its defining block, make it 3079 // available as a virtual register. 3080 // We already took care of the exported value for the statepoint instruction 3081 // during call to the LowerStatepoint. 3082 if (!isa<GCStatepointInst>(I)) { 3083 CopyToExportRegsIfNeeded(&I); 3084 } 3085 3086 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3087 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3088 BranchProbability EHPadBBProb = 3089 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3090 : BranchProbability::getZero(); 3091 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3092 3093 // Update successor info. 3094 addSuccessorWithProb(InvokeMBB, Return); 3095 for (auto &UnwindDest : UnwindDests) { 3096 UnwindDest.first->setIsEHPad(); 3097 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3098 } 3099 InvokeMBB->normalizeSuccProbs(); 3100 3101 // Drop into normal successor. 3102 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3103 DAG.getBasicBlock(Return))); 3104 } 3105 3106 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3107 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3108 3109 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3110 // have to do anything here to lower funclet bundles. 3111 assert(!I.hasOperandBundlesOtherThan( 3112 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3113 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3114 3115 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3116 visitInlineAsm(I); 3117 CopyToExportRegsIfNeeded(&I); 3118 3119 // Retrieve successors. 3120 SmallPtrSet<BasicBlock *, 8> Dests; 3121 Dests.insert(I.getDefaultDest()); 3122 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3123 3124 // Update successor info. 3125 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3126 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3127 BasicBlock *Dest = I.getIndirectDest(i); 3128 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3129 Target->setIsInlineAsmBrIndirectTarget(); 3130 Target->setMachineBlockAddressTaken(); 3131 Target->setLabelMustBeEmitted(); 3132 // Don't add duplicate machine successors. 3133 if (Dests.insert(Dest).second) 3134 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3135 } 3136 CallBrMBB->normalizeSuccProbs(); 3137 3138 // Drop into default successor. 3139 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3140 MVT::Other, getControlRoot(), 3141 DAG.getBasicBlock(Return))); 3142 } 3143 3144 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3145 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3146 } 3147 3148 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3149 assert(FuncInfo.MBB->isEHPad() && 3150 "Call to landingpad not in landing pad!"); 3151 3152 // If there aren't registers to copy the values into (e.g., during SjLj 3153 // exceptions), then don't bother to create these DAG nodes. 3154 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3155 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3156 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3157 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3158 return; 3159 3160 // If landingpad's return type is token type, we don't create DAG nodes 3161 // for its exception pointer and selector value. The extraction of exception 3162 // pointer or selector value from token type landingpads is not currently 3163 // supported. 3164 if (LP.getType()->isTokenTy()) 3165 return; 3166 3167 SmallVector<EVT, 2> ValueVTs; 3168 SDLoc dl = getCurSDLoc(); 3169 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3170 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3171 3172 // Get the two live-in registers as SDValues. The physregs have already been 3173 // copied into virtual registers. 3174 SDValue Ops[2]; 3175 if (FuncInfo.ExceptionPointerVirtReg) { 3176 Ops[0] = DAG.getZExtOrTrunc( 3177 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3178 FuncInfo.ExceptionPointerVirtReg, 3179 TLI.getPointerTy(DAG.getDataLayout())), 3180 dl, ValueVTs[0]); 3181 } else { 3182 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3183 } 3184 Ops[1] = DAG.getZExtOrTrunc( 3185 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3186 FuncInfo.ExceptionSelectorVirtReg, 3187 TLI.getPointerTy(DAG.getDataLayout())), 3188 dl, ValueVTs[1]); 3189 3190 // Merge into one. 3191 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3192 DAG.getVTList(ValueVTs), Ops); 3193 setValue(&LP, Res); 3194 } 3195 3196 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3197 MachineBasicBlock *Last) { 3198 // Update JTCases. 3199 for (JumpTableBlock &JTB : SL->JTCases) 3200 if (JTB.first.HeaderBB == First) 3201 JTB.first.HeaderBB = Last; 3202 3203 // Update BitTestCases. 3204 for (BitTestBlock &BTB : SL->BitTestCases) 3205 if (BTB.Parent == First) 3206 BTB.Parent = Last; 3207 } 3208 3209 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3210 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3211 3212 // Update machine-CFG edges with unique successors. 3213 SmallSet<BasicBlock*, 32> Done; 3214 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3215 BasicBlock *BB = I.getSuccessor(i); 3216 bool Inserted = Done.insert(BB).second; 3217 if (!Inserted) 3218 continue; 3219 3220 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3221 addSuccessorWithProb(IndirectBrMBB, Succ); 3222 } 3223 IndirectBrMBB->normalizeSuccProbs(); 3224 3225 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3226 MVT::Other, getControlRoot(), 3227 getValue(I.getAddress()))); 3228 } 3229 3230 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3231 if (!DAG.getTarget().Options.TrapUnreachable) 3232 return; 3233 3234 // We may be able to ignore unreachable behind a noreturn call. 3235 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3236 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3237 if (Call->doesNotReturn()) 3238 return; 3239 } 3240 } 3241 3242 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3243 } 3244 3245 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3246 SDNodeFlags Flags; 3247 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3248 Flags.copyFMF(*FPOp); 3249 3250 SDValue Op = getValue(I.getOperand(0)); 3251 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3252 Op, Flags); 3253 setValue(&I, UnNodeValue); 3254 } 3255 3256 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3257 SDNodeFlags Flags; 3258 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3259 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3260 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3261 } 3262 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3263 Flags.setExact(ExactOp->isExact()); 3264 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3265 Flags.copyFMF(*FPOp); 3266 3267 SDValue Op1 = getValue(I.getOperand(0)); 3268 SDValue Op2 = getValue(I.getOperand(1)); 3269 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3270 Op1, Op2, Flags); 3271 setValue(&I, BinNodeValue); 3272 } 3273 3274 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3275 SDValue Op1 = getValue(I.getOperand(0)); 3276 SDValue Op2 = getValue(I.getOperand(1)); 3277 3278 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3279 Op1.getValueType(), DAG.getDataLayout()); 3280 3281 // Coerce the shift amount to the right type if we can. This exposes the 3282 // truncate or zext to optimization early. 3283 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3284 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3285 "Unexpected shift type"); 3286 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3287 } 3288 3289 bool nuw = false; 3290 bool nsw = false; 3291 bool exact = false; 3292 3293 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3294 3295 if (const OverflowingBinaryOperator *OFBinOp = 3296 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3297 nuw = OFBinOp->hasNoUnsignedWrap(); 3298 nsw = OFBinOp->hasNoSignedWrap(); 3299 } 3300 if (const PossiblyExactOperator *ExactOp = 3301 dyn_cast<const PossiblyExactOperator>(&I)) 3302 exact = ExactOp->isExact(); 3303 } 3304 SDNodeFlags Flags; 3305 Flags.setExact(exact); 3306 Flags.setNoSignedWrap(nsw); 3307 Flags.setNoUnsignedWrap(nuw); 3308 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3309 Flags); 3310 setValue(&I, Res); 3311 } 3312 3313 void SelectionDAGBuilder::visitSDiv(const User &I) { 3314 SDValue Op1 = getValue(I.getOperand(0)); 3315 SDValue Op2 = getValue(I.getOperand(1)); 3316 3317 SDNodeFlags Flags; 3318 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3319 cast<PossiblyExactOperator>(&I)->isExact()); 3320 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3321 Op2, Flags)); 3322 } 3323 3324 void SelectionDAGBuilder::visitICmp(const User &I) { 3325 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3326 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3327 predicate = IC->getPredicate(); 3328 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3329 predicate = ICmpInst::Predicate(IC->getPredicate()); 3330 SDValue Op1 = getValue(I.getOperand(0)); 3331 SDValue Op2 = getValue(I.getOperand(1)); 3332 ISD::CondCode Opcode = getICmpCondCode(predicate); 3333 3334 auto &TLI = DAG.getTargetLoweringInfo(); 3335 EVT MemVT = 3336 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3337 3338 // If a pointer's DAG type is larger than its memory type then the DAG values 3339 // are zero-extended. This breaks signed comparisons so truncate back to the 3340 // underlying type before doing the compare. 3341 if (Op1.getValueType() != MemVT) { 3342 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3343 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3344 } 3345 3346 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3347 I.getType()); 3348 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3349 } 3350 3351 void SelectionDAGBuilder::visitFCmp(const User &I) { 3352 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3353 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3354 predicate = FC->getPredicate(); 3355 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3356 predicate = FCmpInst::Predicate(FC->getPredicate()); 3357 SDValue Op1 = getValue(I.getOperand(0)); 3358 SDValue Op2 = getValue(I.getOperand(1)); 3359 3360 ISD::CondCode Condition = getFCmpCondCode(predicate); 3361 auto *FPMO = cast<FPMathOperator>(&I); 3362 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3363 Condition = getFCmpCodeWithoutNaN(Condition); 3364 3365 SDNodeFlags Flags; 3366 Flags.copyFMF(*FPMO); 3367 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3368 3369 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3370 I.getType()); 3371 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3372 } 3373 3374 // Check if the condition of the select has one use or two users that are both 3375 // selects with the same condition. 3376 static bool hasOnlySelectUsers(const Value *Cond) { 3377 return llvm::all_of(Cond->users(), [](const Value *V) { 3378 return isa<SelectInst>(V); 3379 }); 3380 } 3381 3382 void SelectionDAGBuilder::visitSelect(const User &I) { 3383 SmallVector<EVT, 4> ValueVTs; 3384 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3385 ValueVTs); 3386 unsigned NumValues = ValueVTs.size(); 3387 if (NumValues == 0) return; 3388 3389 SmallVector<SDValue, 4> Values(NumValues); 3390 SDValue Cond = getValue(I.getOperand(0)); 3391 SDValue LHSVal = getValue(I.getOperand(1)); 3392 SDValue RHSVal = getValue(I.getOperand(2)); 3393 SmallVector<SDValue, 1> BaseOps(1, Cond); 3394 ISD::NodeType OpCode = 3395 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3396 3397 bool IsUnaryAbs = false; 3398 bool Negate = false; 3399 3400 SDNodeFlags Flags; 3401 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3402 Flags.copyFMF(*FPOp); 3403 3404 Flags.setUnpredictable( 3405 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3406 3407 // Min/max matching is only viable if all output VTs are the same. 3408 if (all_equal(ValueVTs)) { 3409 EVT VT = ValueVTs[0]; 3410 LLVMContext &Ctx = *DAG.getContext(); 3411 auto &TLI = DAG.getTargetLoweringInfo(); 3412 3413 // We care about the legality of the operation after it has been type 3414 // legalized. 3415 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3416 VT = TLI.getTypeToTransformTo(Ctx, VT); 3417 3418 // If the vselect is legal, assume we want to leave this as a vector setcc + 3419 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3420 // min/max is legal on the scalar type. 3421 bool UseScalarMinMax = VT.isVector() && 3422 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3423 3424 // ValueTracking's select pattern matching does not account for -0.0, 3425 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3426 // -0.0 is less than +0.0. 3427 Value *LHS, *RHS; 3428 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3429 ISD::NodeType Opc = ISD::DELETED_NODE; 3430 switch (SPR.Flavor) { 3431 case SPF_UMAX: Opc = ISD::UMAX; break; 3432 case SPF_UMIN: Opc = ISD::UMIN; break; 3433 case SPF_SMAX: Opc = ISD::SMAX; break; 3434 case SPF_SMIN: Opc = ISD::SMIN; break; 3435 case SPF_FMINNUM: 3436 switch (SPR.NaNBehavior) { 3437 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3438 case SPNB_RETURNS_NAN: break; 3439 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3440 case SPNB_RETURNS_ANY: 3441 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3442 (UseScalarMinMax && 3443 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3444 Opc = ISD::FMINNUM; 3445 break; 3446 } 3447 break; 3448 case SPF_FMAXNUM: 3449 switch (SPR.NaNBehavior) { 3450 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3451 case SPNB_RETURNS_NAN: break; 3452 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3453 case SPNB_RETURNS_ANY: 3454 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3455 (UseScalarMinMax && 3456 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3457 Opc = ISD::FMAXNUM; 3458 break; 3459 } 3460 break; 3461 case SPF_NABS: 3462 Negate = true; 3463 [[fallthrough]]; 3464 case SPF_ABS: 3465 IsUnaryAbs = true; 3466 Opc = ISD::ABS; 3467 break; 3468 default: break; 3469 } 3470 3471 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3472 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3473 (UseScalarMinMax && 3474 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3475 // If the underlying comparison instruction is used by any other 3476 // instruction, the consumed instructions won't be destroyed, so it is 3477 // not profitable to convert to a min/max. 3478 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3479 OpCode = Opc; 3480 LHSVal = getValue(LHS); 3481 RHSVal = getValue(RHS); 3482 BaseOps.clear(); 3483 } 3484 3485 if (IsUnaryAbs) { 3486 OpCode = Opc; 3487 LHSVal = getValue(LHS); 3488 BaseOps.clear(); 3489 } 3490 } 3491 3492 if (IsUnaryAbs) { 3493 for (unsigned i = 0; i != NumValues; ++i) { 3494 SDLoc dl = getCurSDLoc(); 3495 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3496 Values[i] = 3497 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3498 if (Negate) 3499 Values[i] = DAG.getNegative(Values[i], dl, VT); 3500 } 3501 } else { 3502 for (unsigned i = 0; i != NumValues; ++i) { 3503 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3504 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3505 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3506 Values[i] = DAG.getNode( 3507 OpCode, getCurSDLoc(), 3508 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3509 } 3510 } 3511 3512 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3513 DAG.getVTList(ValueVTs), Values)); 3514 } 3515 3516 void SelectionDAGBuilder::visitTrunc(const User &I) { 3517 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3518 SDValue N = getValue(I.getOperand(0)); 3519 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3520 I.getType()); 3521 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3522 } 3523 3524 void SelectionDAGBuilder::visitZExt(const User &I) { 3525 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3526 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3527 SDValue N = getValue(I.getOperand(0)); 3528 auto &TLI = DAG.getTargetLoweringInfo(); 3529 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3530 3531 SDNodeFlags Flags; 3532 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3533 Flags.setNonNeg(PNI->hasNonNeg()); 3534 3535 // Eagerly use nonneg information to canonicalize towards sign_extend if 3536 // that is the target's preference. 3537 // TODO: Let the target do this later. 3538 if (Flags.hasNonNeg() && 3539 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3540 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3541 return; 3542 } 3543 3544 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3545 } 3546 3547 void SelectionDAGBuilder::visitSExt(const User &I) { 3548 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3549 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3550 SDValue N = getValue(I.getOperand(0)); 3551 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3552 I.getType()); 3553 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3554 } 3555 3556 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3557 // FPTrunc is never a no-op cast, no need to check 3558 SDValue N = getValue(I.getOperand(0)); 3559 SDLoc dl = getCurSDLoc(); 3560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3561 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3562 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3563 DAG.getTargetConstant( 3564 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3565 } 3566 3567 void SelectionDAGBuilder::visitFPExt(const User &I) { 3568 // FPExt is never a no-op cast, no need to check 3569 SDValue N = getValue(I.getOperand(0)); 3570 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3571 I.getType()); 3572 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3573 } 3574 3575 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3576 // FPToUI is never a no-op cast, no need to check 3577 SDValue N = getValue(I.getOperand(0)); 3578 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3579 I.getType()); 3580 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3581 } 3582 3583 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3584 // FPToSI is never a no-op cast, no need to check 3585 SDValue N = getValue(I.getOperand(0)); 3586 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3587 I.getType()); 3588 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3589 } 3590 3591 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3592 // UIToFP is never a no-op cast, no need to check 3593 SDValue N = getValue(I.getOperand(0)); 3594 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3595 I.getType()); 3596 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3597 } 3598 3599 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3600 // SIToFP is never a no-op cast, no need to check 3601 SDValue N = getValue(I.getOperand(0)); 3602 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3603 I.getType()); 3604 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3605 } 3606 3607 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3608 // What to do depends on the size of the integer and the size of the pointer. 3609 // We can either truncate, zero extend, or no-op, accordingly. 3610 SDValue N = getValue(I.getOperand(0)); 3611 auto &TLI = DAG.getTargetLoweringInfo(); 3612 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3613 I.getType()); 3614 EVT PtrMemVT = 3615 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3616 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3617 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3618 setValue(&I, N); 3619 } 3620 3621 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3622 // What to do depends on the size of the integer and the size of the pointer. 3623 // We can either truncate, zero extend, or no-op, accordingly. 3624 SDValue N = getValue(I.getOperand(0)); 3625 auto &TLI = DAG.getTargetLoweringInfo(); 3626 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3627 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3628 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3629 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3630 setValue(&I, N); 3631 } 3632 3633 void SelectionDAGBuilder::visitBitCast(const User &I) { 3634 SDValue N = getValue(I.getOperand(0)); 3635 SDLoc dl = getCurSDLoc(); 3636 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3637 I.getType()); 3638 3639 // BitCast assures us that source and destination are the same size so this is 3640 // either a BITCAST or a no-op. 3641 if (DestVT != N.getValueType()) 3642 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3643 DestVT, N)); // convert types. 3644 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3645 // might fold any kind of constant expression to an integer constant and that 3646 // is not what we are looking for. Only recognize a bitcast of a genuine 3647 // constant integer as an opaque constant. 3648 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3649 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3650 /*isOpaque*/true)); 3651 else 3652 setValue(&I, N); // noop cast. 3653 } 3654 3655 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3657 const Value *SV = I.getOperand(0); 3658 SDValue N = getValue(SV); 3659 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3660 3661 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3662 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3663 3664 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3665 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3666 3667 setValue(&I, N); 3668 } 3669 3670 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3672 SDValue InVec = getValue(I.getOperand(0)); 3673 SDValue InVal = getValue(I.getOperand(1)); 3674 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3675 TLI.getVectorIdxTy(DAG.getDataLayout())); 3676 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3677 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3678 InVec, InVal, InIdx)); 3679 } 3680 3681 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3683 SDValue InVec = getValue(I.getOperand(0)); 3684 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3685 TLI.getVectorIdxTy(DAG.getDataLayout())); 3686 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3687 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3688 InVec, InIdx)); 3689 } 3690 3691 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3692 SDValue Src1 = getValue(I.getOperand(0)); 3693 SDValue Src2 = getValue(I.getOperand(1)); 3694 ArrayRef<int> Mask; 3695 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3696 Mask = SVI->getShuffleMask(); 3697 else 3698 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3699 SDLoc DL = getCurSDLoc(); 3700 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3701 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3702 EVT SrcVT = Src1.getValueType(); 3703 3704 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3705 VT.isScalableVector()) { 3706 // Canonical splat form of first element of first input vector. 3707 SDValue FirstElt = 3708 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3709 DAG.getVectorIdxConstant(0, DL)); 3710 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3711 return; 3712 } 3713 3714 // For now, we only handle splats for scalable vectors. 3715 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3716 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3717 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3718 3719 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3720 unsigned MaskNumElts = Mask.size(); 3721 3722 if (SrcNumElts == MaskNumElts) { 3723 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3724 return; 3725 } 3726 3727 // Normalize the shuffle vector since mask and vector length don't match. 3728 if (SrcNumElts < MaskNumElts) { 3729 // Mask is longer than the source vectors. We can use concatenate vector to 3730 // make the mask and vectors lengths match. 3731 3732 if (MaskNumElts % SrcNumElts == 0) { 3733 // Mask length is a multiple of the source vector length. 3734 // Check if the shuffle is some kind of concatenation of the input 3735 // vectors. 3736 unsigned NumConcat = MaskNumElts / SrcNumElts; 3737 bool IsConcat = true; 3738 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3739 for (unsigned i = 0; i != MaskNumElts; ++i) { 3740 int Idx = Mask[i]; 3741 if (Idx < 0) 3742 continue; 3743 // Ensure the indices in each SrcVT sized piece are sequential and that 3744 // the same source is used for the whole piece. 3745 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3746 (ConcatSrcs[i / SrcNumElts] >= 0 && 3747 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3748 IsConcat = false; 3749 break; 3750 } 3751 // Remember which source this index came from. 3752 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3753 } 3754 3755 // The shuffle is concatenating multiple vectors together. Just emit 3756 // a CONCAT_VECTORS operation. 3757 if (IsConcat) { 3758 SmallVector<SDValue, 8> ConcatOps; 3759 for (auto Src : ConcatSrcs) { 3760 if (Src < 0) 3761 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3762 else if (Src == 0) 3763 ConcatOps.push_back(Src1); 3764 else 3765 ConcatOps.push_back(Src2); 3766 } 3767 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3768 return; 3769 } 3770 } 3771 3772 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3773 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3774 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3775 PaddedMaskNumElts); 3776 3777 // Pad both vectors with undefs to make them the same length as the mask. 3778 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3779 3780 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3781 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3782 MOps1[0] = Src1; 3783 MOps2[0] = Src2; 3784 3785 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3786 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3787 3788 // Readjust mask for new input vector length. 3789 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3790 for (unsigned i = 0; i != MaskNumElts; ++i) { 3791 int Idx = Mask[i]; 3792 if (Idx >= (int)SrcNumElts) 3793 Idx -= SrcNumElts - PaddedMaskNumElts; 3794 MappedOps[i] = Idx; 3795 } 3796 3797 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3798 3799 // If the concatenated vector was padded, extract a subvector with the 3800 // correct number of elements. 3801 if (MaskNumElts != PaddedMaskNumElts) 3802 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3803 DAG.getVectorIdxConstant(0, DL)); 3804 3805 setValue(&I, Result); 3806 return; 3807 } 3808 3809 if (SrcNumElts > MaskNumElts) { 3810 // Analyze the access pattern of the vector to see if we can extract 3811 // two subvectors and do the shuffle. 3812 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3813 bool CanExtract = true; 3814 for (int Idx : Mask) { 3815 unsigned Input = 0; 3816 if (Idx < 0) 3817 continue; 3818 3819 if (Idx >= (int)SrcNumElts) { 3820 Input = 1; 3821 Idx -= SrcNumElts; 3822 } 3823 3824 // If all the indices come from the same MaskNumElts sized portion of 3825 // the sources we can use extract. Also make sure the extract wouldn't 3826 // extract past the end of the source. 3827 int NewStartIdx = alignDown(Idx, MaskNumElts); 3828 if (NewStartIdx + MaskNumElts > SrcNumElts || 3829 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3830 CanExtract = false; 3831 // Make sure we always update StartIdx as we use it to track if all 3832 // elements are undef. 3833 StartIdx[Input] = NewStartIdx; 3834 } 3835 3836 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3837 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3838 return; 3839 } 3840 if (CanExtract) { 3841 // Extract appropriate subvector and generate a vector shuffle 3842 for (unsigned Input = 0; Input < 2; ++Input) { 3843 SDValue &Src = Input == 0 ? Src1 : Src2; 3844 if (StartIdx[Input] < 0) 3845 Src = DAG.getUNDEF(VT); 3846 else { 3847 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3848 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3849 } 3850 } 3851 3852 // Calculate new mask. 3853 SmallVector<int, 8> MappedOps(Mask); 3854 for (int &Idx : MappedOps) { 3855 if (Idx >= (int)SrcNumElts) 3856 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3857 else if (Idx >= 0) 3858 Idx -= StartIdx[0]; 3859 } 3860 3861 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3862 return; 3863 } 3864 } 3865 3866 // We can't use either concat vectors or extract subvectors so fall back to 3867 // replacing the shuffle with extract and build vector. 3868 // to insert and build vector. 3869 EVT EltVT = VT.getVectorElementType(); 3870 SmallVector<SDValue,8> Ops; 3871 for (int Idx : Mask) { 3872 SDValue Res; 3873 3874 if (Idx < 0) { 3875 Res = DAG.getUNDEF(EltVT); 3876 } else { 3877 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3878 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3879 3880 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3881 DAG.getVectorIdxConstant(Idx, DL)); 3882 } 3883 3884 Ops.push_back(Res); 3885 } 3886 3887 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3888 } 3889 3890 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3891 ArrayRef<unsigned> Indices = I.getIndices(); 3892 const Value *Op0 = I.getOperand(0); 3893 const Value *Op1 = I.getOperand(1); 3894 Type *AggTy = I.getType(); 3895 Type *ValTy = Op1->getType(); 3896 bool IntoUndef = isa<UndefValue>(Op0); 3897 bool FromUndef = isa<UndefValue>(Op1); 3898 3899 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3900 3901 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3902 SmallVector<EVT, 4> AggValueVTs; 3903 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3904 SmallVector<EVT, 4> ValValueVTs; 3905 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3906 3907 unsigned NumAggValues = AggValueVTs.size(); 3908 unsigned NumValValues = ValValueVTs.size(); 3909 SmallVector<SDValue, 4> Values(NumAggValues); 3910 3911 // Ignore an insertvalue that produces an empty object 3912 if (!NumAggValues) { 3913 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3914 return; 3915 } 3916 3917 SDValue Agg = getValue(Op0); 3918 unsigned i = 0; 3919 // Copy the beginning value(s) from the original aggregate. 3920 for (; i != LinearIndex; ++i) 3921 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3922 SDValue(Agg.getNode(), Agg.getResNo() + i); 3923 // Copy values from the inserted value(s). 3924 if (NumValValues) { 3925 SDValue Val = getValue(Op1); 3926 for (; i != LinearIndex + NumValValues; ++i) 3927 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3928 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3929 } 3930 // Copy remaining value(s) from the original aggregate. 3931 for (; i != NumAggValues; ++i) 3932 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3933 SDValue(Agg.getNode(), Agg.getResNo() + i); 3934 3935 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3936 DAG.getVTList(AggValueVTs), Values)); 3937 } 3938 3939 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3940 ArrayRef<unsigned> Indices = I.getIndices(); 3941 const Value *Op0 = I.getOperand(0); 3942 Type *AggTy = Op0->getType(); 3943 Type *ValTy = I.getType(); 3944 bool OutOfUndef = isa<UndefValue>(Op0); 3945 3946 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3947 3948 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3949 SmallVector<EVT, 4> ValValueVTs; 3950 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3951 3952 unsigned NumValValues = ValValueVTs.size(); 3953 3954 // Ignore a extractvalue that produces an empty object 3955 if (!NumValValues) { 3956 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3957 return; 3958 } 3959 3960 SmallVector<SDValue, 4> Values(NumValValues); 3961 3962 SDValue Agg = getValue(Op0); 3963 // Copy out the selected value(s). 3964 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3965 Values[i - LinearIndex] = 3966 OutOfUndef ? 3967 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3968 SDValue(Agg.getNode(), Agg.getResNo() + i); 3969 3970 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3971 DAG.getVTList(ValValueVTs), Values)); 3972 } 3973 3974 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3975 Value *Op0 = I.getOperand(0); 3976 // Note that the pointer operand may be a vector of pointers. Take the scalar 3977 // element which holds a pointer. 3978 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3979 SDValue N = getValue(Op0); 3980 SDLoc dl = getCurSDLoc(); 3981 auto &TLI = DAG.getTargetLoweringInfo(); 3982 3983 // Normalize Vector GEP - all scalar operands should be converted to the 3984 // splat vector. 3985 bool IsVectorGEP = I.getType()->isVectorTy(); 3986 ElementCount VectorElementCount = 3987 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3988 : ElementCount::getFixed(0); 3989 3990 if (IsVectorGEP && !N.getValueType().isVector()) { 3991 LLVMContext &Context = *DAG.getContext(); 3992 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3993 N = DAG.getSplat(VT, dl, N); 3994 } 3995 3996 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3997 GTI != E; ++GTI) { 3998 const Value *Idx = GTI.getOperand(); 3999 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4000 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4001 if (Field) { 4002 // N = N + Offset 4003 uint64_t Offset = 4004 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4005 4006 // In an inbounds GEP with an offset that is nonnegative even when 4007 // interpreted as signed, assume there is no unsigned overflow. 4008 SDNodeFlags Flags; 4009 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4010 Flags.setNoUnsignedWrap(true); 4011 4012 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4013 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4014 } 4015 } else { 4016 // IdxSize is the width of the arithmetic according to IR semantics. 4017 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4018 // (and fix up the result later). 4019 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4020 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4021 TypeSize ElementSize = 4022 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 4023 // We intentionally mask away the high bits here; ElementSize may not 4024 // fit in IdxTy. 4025 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4026 bool ElementScalable = ElementSize.isScalable(); 4027 4028 // If this is a scalar constant or a splat vector of constants, 4029 // handle it quickly. 4030 const auto *C = dyn_cast<Constant>(Idx); 4031 if (C && isa<VectorType>(C->getType())) 4032 C = C->getSplatValue(); 4033 4034 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4035 if (CI && CI->isZero()) 4036 continue; 4037 if (CI && !ElementScalable) { 4038 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4039 LLVMContext &Context = *DAG.getContext(); 4040 SDValue OffsVal; 4041 if (IsVectorGEP) 4042 OffsVal = DAG.getConstant( 4043 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4044 else 4045 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4046 4047 // In an inbounds GEP with an offset that is nonnegative even when 4048 // interpreted as signed, assume there is no unsigned overflow. 4049 SDNodeFlags Flags; 4050 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4051 Flags.setNoUnsignedWrap(true); 4052 4053 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4054 4055 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4056 continue; 4057 } 4058 4059 // N = N + Idx * ElementMul; 4060 SDValue IdxN = getValue(Idx); 4061 4062 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4063 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4064 VectorElementCount); 4065 IdxN = DAG.getSplat(VT, dl, IdxN); 4066 } 4067 4068 // If the index is smaller or larger than intptr_t, truncate or extend 4069 // it. 4070 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4071 4072 if (ElementScalable) { 4073 EVT VScaleTy = N.getValueType().getScalarType(); 4074 SDValue VScale = DAG.getNode( 4075 ISD::VSCALE, dl, VScaleTy, 4076 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4077 if (IsVectorGEP) 4078 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4079 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4080 } else { 4081 // If this is a multiply by a power of two, turn it into a shl 4082 // immediately. This is a very common case. 4083 if (ElementMul != 1) { 4084 if (ElementMul.isPowerOf2()) { 4085 unsigned Amt = ElementMul.logBase2(); 4086 IdxN = DAG.getNode(ISD::SHL, dl, 4087 N.getValueType(), IdxN, 4088 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4089 } else { 4090 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4091 IdxN.getValueType()); 4092 IdxN = DAG.getNode(ISD::MUL, dl, 4093 N.getValueType(), IdxN, Scale); 4094 } 4095 } 4096 } 4097 4098 N = DAG.getNode(ISD::ADD, dl, 4099 N.getValueType(), N, IdxN); 4100 } 4101 } 4102 4103 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4104 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4105 if (IsVectorGEP) { 4106 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4107 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4108 } 4109 4110 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4111 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4112 4113 setValue(&I, N); 4114 } 4115 4116 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4117 // If this is a fixed sized alloca in the entry block of the function, 4118 // allocate it statically on the stack. 4119 if (FuncInfo.StaticAllocaMap.count(&I)) 4120 return; // getValue will auto-populate this. 4121 4122 SDLoc dl = getCurSDLoc(); 4123 Type *Ty = I.getAllocatedType(); 4124 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4125 auto &DL = DAG.getDataLayout(); 4126 TypeSize TySize = DL.getTypeAllocSize(Ty); 4127 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4128 4129 SDValue AllocSize = getValue(I.getArraySize()); 4130 4131 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4132 if (AllocSize.getValueType() != IntPtr) 4133 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4134 4135 if (TySize.isScalable()) 4136 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4137 DAG.getVScale(dl, IntPtr, 4138 APInt(IntPtr.getScalarSizeInBits(), 4139 TySize.getKnownMinValue()))); 4140 else { 4141 SDValue TySizeValue = 4142 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4143 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4144 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4145 } 4146 4147 // Handle alignment. If the requested alignment is less than or equal to 4148 // the stack alignment, ignore it. If the size is greater than or equal to 4149 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4150 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4151 if (*Alignment <= StackAlign) 4152 Alignment = std::nullopt; 4153 4154 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4155 // Round the size of the allocation up to the stack alignment size 4156 // by add SA-1 to the size. This doesn't overflow because we're computing 4157 // an address inside an alloca. 4158 SDNodeFlags Flags; 4159 Flags.setNoUnsignedWrap(true); 4160 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4161 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4162 4163 // Mask out the low bits for alignment purposes. 4164 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4165 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4166 4167 SDValue Ops[] = { 4168 getRoot(), AllocSize, 4169 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4170 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4171 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4172 setValue(&I, DSA); 4173 DAG.setRoot(DSA.getValue(1)); 4174 4175 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4176 } 4177 4178 static const MDNode *getRangeMetadata(const Instruction &I) { 4179 // If !noundef is not present, then !range violation results in a poison 4180 // value rather than immediate undefined behavior. In theory, transferring 4181 // these annotations to SDAG is fine, but in practice there are key SDAG 4182 // transforms that are known not to be poison-safe, such as folding logical 4183 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4184 // also present. 4185 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4186 return nullptr; 4187 return I.getMetadata(LLVMContext::MD_range); 4188 } 4189 4190 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4191 if (I.isAtomic()) 4192 return visitAtomicLoad(I); 4193 4194 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4195 const Value *SV = I.getOperand(0); 4196 if (TLI.supportSwiftError()) { 4197 // Swifterror values can come from either a function parameter with 4198 // swifterror attribute or an alloca with swifterror attribute. 4199 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4200 if (Arg->hasSwiftErrorAttr()) 4201 return visitLoadFromSwiftError(I); 4202 } 4203 4204 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4205 if (Alloca->isSwiftError()) 4206 return visitLoadFromSwiftError(I); 4207 } 4208 } 4209 4210 SDValue Ptr = getValue(SV); 4211 4212 Type *Ty = I.getType(); 4213 SmallVector<EVT, 4> ValueVTs, MemVTs; 4214 SmallVector<TypeSize, 4> Offsets; 4215 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0); 4216 unsigned NumValues = ValueVTs.size(); 4217 if (NumValues == 0) 4218 return; 4219 4220 Align Alignment = I.getAlign(); 4221 AAMDNodes AAInfo = I.getAAMetadata(); 4222 const MDNode *Ranges = getRangeMetadata(I); 4223 bool isVolatile = I.isVolatile(); 4224 MachineMemOperand::Flags MMOFlags = 4225 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4226 4227 SDValue Root; 4228 bool ConstantMemory = false; 4229 if (isVolatile) 4230 // Serialize volatile loads with other side effects. 4231 Root = getRoot(); 4232 else if (NumValues > MaxParallelChains) 4233 Root = getMemoryRoot(); 4234 else if (AA && 4235 AA->pointsToConstantMemory(MemoryLocation( 4236 SV, 4237 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4238 AAInfo))) { 4239 // Do not serialize (non-volatile) loads of constant memory with anything. 4240 Root = DAG.getEntryNode(); 4241 ConstantMemory = true; 4242 MMOFlags |= MachineMemOperand::MOInvariant; 4243 } else { 4244 // Do not serialize non-volatile loads against each other. 4245 Root = DAG.getRoot(); 4246 } 4247 4248 SDLoc dl = getCurSDLoc(); 4249 4250 if (isVolatile) 4251 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4252 4253 SmallVector<SDValue, 4> Values(NumValues); 4254 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4255 4256 unsigned ChainI = 0; 4257 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4258 // Serializing loads here may result in excessive register pressure, and 4259 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4260 // could recover a bit by hoisting nodes upward in the chain by recognizing 4261 // they are side-effect free or do not alias. The optimizer should really 4262 // avoid this case by converting large object/array copies to llvm.memcpy 4263 // (MaxParallelChains should always remain as failsafe). 4264 if (ChainI == MaxParallelChains) { 4265 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4266 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4267 ArrayRef(Chains.data(), ChainI)); 4268 Root = Chain; 4269 ChainI = 0; 4270 } 4271 4272 // TODO: MachinePointerInfo only supports a fixed length offset. 4273 MachinePointerInfo PtrInfo = 4274 !Offsets[i].isScalable() || Offsets[i].isZero() 4275 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4276 : MachinePointerInfo(); 4277 4278 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4279 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4280 MMOFlags, AAInfo, Ranges); 4281 Chains[ChainI] = L.getValue(1); 4282 4283 if (MemVTs[i] != ValueVTs[i]) 4284 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4285 4286 Values[i] = L; 4287 } 4288 4289 if (!ConstantMemory) { 4290 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4291 ArrayRef(Chains.data(), ChainI)); 4292 if (isVolatile) 4293 DAG.setRoot(Chain); 4294 else 4295 PendingLoads.push_back(Chain); 4296 } 4297 4298 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4299 DAG.getVTList(ValueVTs), Values)); 4300 } 4301 4302 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4303 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4304 "call visitStoreToSwiftError when backend supports swifterror"); 4305 4306 SmallVector<EVT, 4> ValueVTs; 4307 SmallVector<uint64_t, 4> Offsets; 4308 const Value *SrcV = I.getOperand(0); 4309 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4310 SrcV->getType(), ValueVTs, &Offsets, 0); 4311 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4312 "expect a single EVT for swifterror"); 4313 4314 SDValue Src = getValue(SrcV); 4315 // Create a virtual register, then update the virtual register. 4316 Register VReg = 4317 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4318 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4319 // Chain can be getRoot or getControlRoot. 4320 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4321 SDValue(Src.getNode(), Src.getResNo())); 4322 DAG.setRoot(CopyNode); 4323 } 4324 4325 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4326 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4327 "call visitLoadFromSwiftError when backend supports swifterror"); 4328 4329 assert(!I.isVolatile() && 4330 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4331 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4332 "Support volatile, non temporal, invariant for load_from_swift_error"); 4333 4334 const Value *SV = I.getOperand(0); 4335 Type *Ty = I.getType(); 4336 assert( 4337 (!AA || 4338 !AA->pointsToConstantMemory(MemoryLocation( 4339 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4340 I.getAAMetadata()))) && 4341 "load_from_swift_error should not be constant memory"); 4342 4343 SmallVector<EVT, 4> ValueVTs; 4344 SmallVector<uint64_t, 4> Offsets; 4345 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4346 ValueVTs, &Offsets, 0); 4347 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4348 "expect a single EVT for swifterror"); 4349 4350 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4351 SDValue L = DAG.getCopyFromReg( 4352 getRoot(), getCurSDLoc(), 4353 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4354 4355 setValue(&I, L); 4356 } 4357 4358 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4359 if (I.isAtomic()) 4360 return visitAtomicStore(I); 4361 4362 const Value *SrcV = I.getOperand(0); 4363 const Value *PtrV = I.getOperand(1); 4364 4365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4366 if (TLI.supportSwiftError()) { 4367 // Swifterror values can come from either a function parameter with 4368 // swifterror attribute or an alloca with swifterror attribute. 4369 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4370 if (Arg->hasSwiftErrorAttr()) 4371 return visitStoreToSwiftError(I); 4372 } 4373 4374 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4375 if (Alloca->isSwiftError()) 4376 return visitStoreToSwiftError(I); 4377 } 4378 } 4379 4380 SmallVector<EVT, 4> ValueVTs, MemVTs; 4381 SmallVector<TypeSize, 4> Offsets; 4382 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4383 SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0); 4384 unsigned NumValues = ValueVTs.size(); 4385 if (NumValues == 0) 4386 return; 4387 4388 // Get the lowered operands. Note that we do this after 4389 // checking if NumResults is zero, because with zero results 4390 // the operands won't have values in the map. 4391 SDValue Src = getValue(SrcV); 4392 SDValue Ptr = getValue(PtrV); 4393 4394 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4395 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4396 SDLoc dl = getCurSDLoc(); 4397 Align Alignment = I.getAlign(); 4398 AAMDNodes AAInfo = I.getAAMetadata(); 4399 4400 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4401 4402 unsigned ChainI = 0; 4403 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4404 // See visitLoad comments. 4405 if (ChainI == MaxParallelChains) { 4406 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4407 ArrayRef(Chains.data(), ChainI)); 4408 Root = Chain; 4409 ChainI = 0; 4410 } 4411 4412 // TODO: MachinePointerInfo only supports a fixed length offset. 4413 MachinePointerInfo PtrInfo = 4414 !Offsets[i].isScalable() || Offsets[i].isZero() 4415 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4416 : MachinePointerInfo(); 4417 4418 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4419 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4420 if (MemVTs[i] != ValueVTs[i]) 4421 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4422 SDValue St = 4423 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4424 Chains[ChainI] = St; 4425 } 4426 4427 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4428 ArrayRef(Chains.data(), ChainI)); 4429 setValue(&I, StoreNode); 4430 DAG.setRoot(StoreNode); 4431 } 4432 4433 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4434 bool IsCompressing) { 4435 SDLoc sdl = getCurSDLoc(); 4436 4437 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4438 MaybeAlign &Alignment) { 4439 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4440 Src0 = I.getArgOperand(0); 4441 Ptr = I.getArgOperand(1); 4442 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4443 Mask = I.getArgOperand(3); 4444 }; 4445 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4446 MaybeAlign &Alignment) { 4447 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4448 Src0 = I.getArgOperand(0); 4449 Ptr = I.getArgOperand(1); 4450 Mask = I.getArgOperand(2); 4451 Alignment = std::nullopt; 4452 }; 4453 4454 Value *PtrOperand, *MaskOperand, *Src0Operand; 4455 MaybeAlign Alignment; 4456 if (IsCompressing) 4457 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4458 else 4459 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4460 4461 SDValue Ptr = getValue(PtrOperand); 4462 SDValue Src0 = getValue(Src0Operand); 4463 SDValue Mask = getValue(MaskOperand); 4464 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4465 4466 EVT VT = Src0.getValueType(); 4467 if (!Alignment) 4468 Alignment = DAG.getEVTAlign(VT); 4469 4470 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4471 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4472 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4473 SDValue StoreNode = 4474 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4475 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4476 DAG.setRoot(StoreNode); 4477 setValue(&I, StoreNode); 4478 } 4479 4480 // Get a uniform base for the Gather/Scatter intrinsic. 4481 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4482 // We try to represent it as a base pointer + vector of indices. 4483 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4484 // The first operand of the GEP may be a single pointer or a vector of pointers 4485 // Example: 4486 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4487 // or 4488 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4489 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4490 // 4491 // When the first GEP operand is a single pointer - it is the uniform base we 4492 // are looking for. If first operand of the GEP is a splat vector - we 4493 // extract the splat value and use it as a uniform base. 4494 // In all other cases the function returns 'false'. 4495 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4496 ISD::MemIndexType &IndexType, SDValue &Scale, 4497 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4498 uint64_t ElemSize) { 4499 SelectionDAG& DAG = SDB->DAG; 4500 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4501 const DataLayout &DL = DAG.getDataLayout(); 4502 4503 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4504 4505 // Handle splat constant pointer. 4506 if (auto *C = dyn_cast<Constant>(Ptr)) { 4507 C = C->getSplatValue(); 4508 if (!C) 4509 return false; 4510 4511 Base = SDB->getValue(C); 4512 4513 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4514 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4515 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4516 IndexType = ISD::SIGNED_SCALED; 4517 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4518 return true; 4519 } 4520 4521 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4522 if (!GEP || GEP->getParent() != CurBB) 4523 return false; 4524 4525 if (GEP->getNumOperands() != 2) 4526 return false; 4527 4528 const Value *BasePtr = GEP->getPointerOperand(); 4529 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4530 4531 // Make sure the base is scalar and the index is a vector. 4532 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4533 return false; 4534 4535 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4536 if (ScaleVal.isScalable()) 4537 return false; 4538 4539 // Target may not support the required addressing mode. 4540 if (ScaleVal != 1 && 4541 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4542 return false; 4543 4544 Base = SDB->getValue(BasePtr); 4545 Index = SDB->getValue(IndexVal); 4546 IndexType = ISD::SIGNED_SCALED; 4547 4548 Scale = 4549 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4550 return true; 4551 } 4552 4553 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4554 SDLoc sdl = getCurSDLoc(); 4555 4556 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4557 const Value *Ptr = I.getArgOperand(1); 4558 SDValue Src0 = getValue(I.getArgOperand(0)); 4559 SDValue Mask = getValue(I.getArgOperand(3)); 4560 EVT VT = Src0.getValueType(); 4561 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4562 ->getMaybeAlignValue() 4563 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4564 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4565 4566 SDValue Base; 4567 SDValue Index; 4568 ISD::MemIndexType IndexType; 4569 SDValue Scale; 4570 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4571 I.getParent(), VT.getScalarStoreSize()); 4572 4573 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4574 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4575 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4576 // TODO: Make MachineMemOperands aware of scalable 4577 // vectors. 4578 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4579 if (!UniformBase) { 4580 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4581 Index = getValue(Ptr); 4582 IndexType = ISD::SIGNED_SCALED; 4583 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4584 } 4585 4586 EVT IdxVT = Index.getValueType(); 4587 EVT EltTy = IdxVT.getVectorElementType(); 4588 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4589 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4590 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4591 } 4592 4593 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4594 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4595 Ops, MMO, IndexType, false); 4596 DAG.setRoot(Scatter); 4597 setValue(&I, Scatter); 4598 } 4599 4600 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4601 SDLoc sdl = getCurSDLoc(); 4602 4603 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4604 MaybeAlign &Alignment) { 4605 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4606 Ptr = I.getArgOperand(0); 4607 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4608 Mask = I.getArgOperand(2); 4609 Src0 = I.getArgOperand(3); 4610 }; 4611 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4612 MaybeAlign &Alignment) { 4613 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4614 Ptr = I.getArgOperand(0); 4615 Alignment = std::nullopt; 4616 Mask = I.getArgOperand(1); 4617 Src0 = I.getArgOperand(2); 4618 }; 4619 4620 Value *PtrOperand, *MaskOperand, *Src0Operand; 4621 MaybeAlign Alignment; 4622 if (IsExpanding) 4623 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4624 else 4625 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4626 4627 SDValue Ptr = getValue(PtrOperand); 4628 SDValue Src0 = getValue(Src0Operand); 4629 SDValue Mask = getValue(MaskOperand); 4630 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4631 4632 EVT VT = Src0.getValueType(); 4633 if (!Alignment) 4634 Alignment = DAG.getEVTAlign(VT); 4635 4636 AAMDNodes AAInfo = I.getAAMetadata(); 4637 const MDNode *Ranges = getRangeMetadata(I); 4638 4639 // Do not serialize masked loads of constant memory with anything. 4640 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4641 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4642 4643 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4644 4645 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4646 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4647 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4648 4649 SDValue Load = 4650 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4651 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4652 if (AddToChain) 4653 PendingLoads.push_back(Load.getValue(1)); 4654 setValue(&I, Load); 4655 } 4656 4657 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4658 SDLoc sdl = getCurSDLoc(); 4659 4660 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4661 const Value *Ptr = I.getArgOperand(0); 4662 SDValue Src0 = getValue(I.getArgOperand(3)); 4663 SDValue Mask = getValue(I.getArgOperand(2)); 4664 4665 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4666 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4667 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4668 ->getMaybeAlignValue() 4669 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4670 4671 const MDNode *Ranges = getRangeMetadata(I); 4672 4673 SDValue Root = DAG.getRoot(); 4674 SDValue Base; 4675 SDValue Index; 4676 ISD::MemIndexType IndexType; 4677 SDValue Scale; 4678 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4679 I.getParent(), VT.getScalarStoreSize()); 4680 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4681 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4682 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4683 // TODO: Make MachineMemOperands aware of scalable 4684 // vectors. 4685 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4686 4687 if (!UniformBase) { 4688 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4689 Index = getValue(Ptr); 4690 IndexType = ISD::SIGNED_SCALED; 4691 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4692 } 4693 4694 EVT IdxVT = Index.getValueType(); 4695 EVT EltTy = IdxVT.getVectorElementType(); 4696 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4697 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4698 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4699 } 4700 4701 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4702 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4703 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4704 4705 PendingLoads.push_back(Gather.getValue(1)); 4706 setValue(&I, Gather); 4707 } 4708 4709 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4710 SDLoc dl = getCurSDLoc(); 4711 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4712 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4713 SyncScope::ID SSID = I.getSyncScopeID(); 4714 4715 SDValue InChain = getRoot(); 4716 4717 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4718 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4719 4720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4721 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4722 4723 MachineFunction &MF = DAG.getMachineFunction(); 4724 MachineMemOperand *MMO = MF.getMachineMemOperand( 4725 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4726 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4727 FailureOrdering); 4728 4729 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4730 dl, MemVT, VTs, InChain, 4731 getValue(I.getPointerOperand()), 4732 getValue(I.getCompareOperand()), 4733 getValue(I.getNewValOperand()), MMO); 4734 4735 SDValue OutChain = L.getValue(2); 4736 4737 setValue(&I, L); 4738 DAG.setRoot(OutChain); 4739 } 4740 4741 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4742 SDLoc dl = getCurSDLoc(); 4743 ISD::NodeType NT; 4744 switch (I.getOperation()) { 4745 default: llvm_unreachable("Unknown atomicrmw operation"); 4746 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4747 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4748 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4749 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4750 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4751 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4752 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4753 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4754 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4755 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4756 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4757 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4758 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4759 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4760 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4761 case AtomicRMWInst::UIncWrap: 4762 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4763 break; 4764 case AtomicRMWInst::UDecWrap: 4765 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4766 break; 4767 } 4768 AtomicOrdering Ordering = I.getOrdering(); 4769 SyncScope::ID SSID = I.getSyncScopeID(); 4770 4771 SDValue InChain = getRoot(); 4772 4773 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4775 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4776 4777 MachineFunction &MF = DAG.getMachineFunction(); 4778 MachineMemOperand *MMO = MF.getMachineMemOperand( 4779 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4780 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4781 4782 SDValue L = 4783 DAG.getAtomic(NT, dl, MemVT, InChain, 4784 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4785 MMO); 4786 4787 SDValue OutChain = L.getValue(1); 4788 4789 setValue(&I, L); 4790 DAG.setRoot(OutChain); 4791 } 4792 4793 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4794 SDLoc dl = getCurSDLoc(); 4795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4796 SDValue Ops[3]; 4797 Ops[0] = getRoot(); 4798 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4799 TLI.getFenceOperandTy(DAG.getDataLayout())); 4800 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4801 TLI.getFenceOperandTy(DAG.getDataLayout())); 4802 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4803 setValue(&I, N); 4804 DAG.setRoot(N); 4805 } 4806 4807 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4808 SDLoc dl = getCurSDLoc(); 4809 AtomicOrdering Order = I.getOrdering(); 4810 SyncScope::ID SSID = I.getSyncScopeID(); 4811 4812 SDValue InChain = getRoot(); 4813 4814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4815 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4816 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4817 4818 if (!TLI.supportsUnalignedAtomics() && 4819 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4820 report_fatal_error("Cannot generate unaligned atomic load"); 4821 4822 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4823 4824 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4825 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4826 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4827 4828 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4829 4830 SDValue Ptr = getValue(I.getPointerOperand()); 4831 4832 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4833 // TODO: Once this is better exercised by tests, it should be merged with 4834 // the normal path for loads to prevent future divergence. 4835 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4836 if (MemVT != VT) 4837 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4838 4839 setValue(&I, L); 4840 SDValue OutChain = L.getValue(1); 4841 if (!I.isUnordered()) 4842 DAG.setRoot(OutChain); 4843 else 4844 PendingLoads.push_back(OutChain); 4845 return; 4846 } 4847 4848 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4849 Ptr, MMO); 4850 4851 SDValue OutChain = L.getValue(1); 4852 if (MemVT != VT) 4853 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4854 4855 setValue(&I, L); 4856 DAG.setRoot(OutChain); 4857 } 4858 4859 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4860 SDLoc dl = getCurSDLoc(); 4861 4862 AtomicOrdering Ordering = I.getOrdering(); 4863 SyncScope::ID SSID = I.getSyncScopeID(); 4864 4865 SDValue InChain = getRoot(); 4866 4867 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4868 EVT MemVT = 4869 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4870 4871 if (!TLI.supportsUnalignedAtomics() && 4872 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4873 report_fatal_error("Cannot generate unaligned atomic store"); 4874 4875 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4876 4877 MachineFunction &MF = DAG.getMachineFunction(); 4878 MachineMemOperand *MMO = MF.getMachineMemOperand( 4879 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4880 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4881 4882 SDValue Val = getValue(I.getValueOperand()); 4883 if (Val.getValueType() != MemVT) 4884 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4885 SDValue Ptr = getValue(I.getPointerOperand()); 4886 4887 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4888 // TODO: Once this is better exercised by tests, it should be merged with 4889 // the normal path for stores to prevent future divergence. 4890 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4891 setValue(&I, S); 4892 DAG.setRoot(S); 4893 return; 4894 } 4895 SDValue OutChain = 4896 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 4897 4898 setValue(&I, OutChain); 4899 DAG.setRoot(OutChain); 4900 } 4901 4902 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4903 /// node. 4904 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4905 unsigned Intrinsic) { 4906 // Ignore the callsite's attributes. A specific call site may be marked with 4907 // readnone, but the lowering code will expect the chain based on the 4908 // definition. 4909 const Function *F = I.getCalledFunction(); 4910 bool HasChain = !F->doesNotAccessMemory(); 4911 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4912 4913 // Build the operand list. 4914 SmallVector<SDValue, 8> Ops; 4915 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4916 if (OnlyLoad) { 4917 // We don't need to serialize loads against other loads. 4918 Ops.push_back(DAG.getRoot()); 4919 } else { 4920 Ops.push_back(getRoot()); 4921 } 4922 } 4923 4924 // Info is set by getTgtMemIntrinsic 4925 TargetLowering::IntrinsicInfo Info; 4926 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4927 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4928 DAG.getMachineFunction(), 4929 Intrinsic); 4930 4931 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4932 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4933 Info.opc == ISD::INTRINSIC_W_CHAIN) 4934 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4935 TLI.getPointerTy(DAG.getDataLayout()))); 4936 4937 // Add all operands of the call to the operand list. 4938 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4939 const Value *Arg = I.getArgOperand(i); 4940 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4941 Ops.push_back(getValue(Arg)); 4942 continue; 4943 } 4944 4945 // Use TargetConstant instead of a regular constant for immarg. 4946 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4947 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4948 assert(CI->getBitWidth() <= 64 && 4949 "large intrinsic immediates not handled"); 4950 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4951 } else { 4952 Ops.push_back( 4953 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4954 } 4955 } 4956 4957 SmallVector<EVT, 4> ValueVTs; 4958 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4959 4960 if (HasChain) 4961 ValueVTs.push_back(MVT::Other); 4962 4963 SDVTList VTs = DAG.getVTList(ValueVTs); 4964 4965 // Propagate fast-math-flags from IR to node(s). 4966 SDNodeFlags Flags; 4967 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4968 Flags.copyFMF(*FPMO); 4969 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4970 4971 // Create the node. 4972 SDValue Result; 4973 // In some cases, custom collection of operands from CallInst I may be needed. 4974 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4975 if (IsTgtIntrinsic) { 4976 // This is target intrinsic that touches memory 4977 // 4978 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4979 // didn't yield anything useful. 4980 MachinePointerInfo MPI; 4981 if (Info.ptrVal) 4982 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4983 else if (Info.fallbackAddressSpace) 4984 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4985 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4986 Info.memVT, MPI, Info.align, Info.flags, 4987 Info.size, I.getAAMetadata()); 4988 } else if (!HasChain) { 4989 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4990 } else if (!I.getType()->isVoidTy()) { 4991 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4992 } else { 4993 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4994 } 4995 4996 if (HasChain) { 4997 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4998 if (OnlyLoad) 4999 PendingLoads.push_back(Chain); 5000 else 5001 DAG.setRoot(Chain); 5002 } 5003 5004 if (!I.getType()->isVoidTy()) { 5005 if (!isa<VectorType>(I.getType())) 5006 Result = lowerRangeToAssertZExt(DAG, I, Result); 5007 5008 MaybeAlign Alignment = I.getRetAlign(); 5009 5010 // Insert `assertalign` node if there's an alignment. 5011 if (InsertAssertAlign && Alignment) { 5012 Result = 5013 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5014 } 5015 5016 setValue(&I, Result); 5017 } 5018 } 5019 5020 /// GetSignificand - Get the significand and build it into a floating-point 5021 /// number with exponent of 1: 5022 /// 5023 /// Op = (Op & 0x007fffff) | 0x3f800000; 5024 /// 5025 /// where Op is the hexadecimal representation of floating point value. 5026 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5027 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5028 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5029 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5030 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5031 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5032 } 5033 5034 /// GetExponent - Get the exponent: 5035 /// 5036 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5037 /// 5038 /// where Op is the hexadecimal representation of floating point value. 5039 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5040 const TargetLowering &TLI, const SDLoc &dl) { 5041 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5042 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5043 SDValue t1 = DAG.getNode( 5044 ISD::SRL, dl, MVT::i32, t0, 5045 DAG.getConstant(23, dl, 5046 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5047 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5048 DAG.getConstant(127, dl, MVT::i32)); 5049 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5050 } 5051 5052 /// getF32Constant - Get 32-bit floating point constant. 5053 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5054 const SDLoc &dl) { 5055 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5056 MVT::f32); 5057 } 5058 5059 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5060 SelectionDAG &DAG) { 5061 // TODO: What fast-math-flags should be set on the floating-point nodes? 5062 5063 // IntegerPartOfX = ((int32_t)(t0); 5064 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5065 5066 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5067 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5068 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5069 5070 // IntegerPartOfX <<= 23; 5071 IntegerPartOfX = 5072 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5073 DAG.getConstant(23, dl, 5074 DAG.getTargetLoweringInfo().getShiftAmountTy( 5075 MVT::i32, DAG.getDataLayout()))); 5076 5077 SDValue TwoToFractionalPartOfX; 5078 if (LimitFloatPrecision <= 6) { 5079 // For floating-point precision of 6: 5080 // 5081 // TwoToFractionalPartOfX = 5082 // 0.997535578f + 5083 // (0.735607626f + 0.252464424f * x) * x; 5084 // 5085 // error 0.0144103317, which is 6 bits 5086 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5087 getF32Constant(DAG, 0x3e814304, dl)); 5088 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5089 getF32Constant(DAG, 0x3f3c50c8, dl)); 5090 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5091 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5092 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5093 } else if (LimitFloatPrecision <= 12) { 5094 // For floating-point precision of 12: 5095 // 5096 // TwoToFractionalPartOfX = 5097 // 0.999892986f + 5098 // (0.696457318f + 5099 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5100 // 5101 // error 0.000107046256, which is 13 to 14 bits 5102 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5103 getF32Constant(DAG, 0x3da235e3, dl)); 5104 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5105 getF32Constant(DAG, 0x3e65b8f3, dl)); 5106 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5107 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5108 getF32Constant(DAG, 0x3f324b07, dl)); 5109 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5110 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5111 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5112 } else { // LimitFloatPrecision <= 18 5113 // For floating-point precision of 18: 5114 // 5115 // TwoToFractionalPartOfX = 5116 // 0.999999982f + 5117 // (0.693148872f + 5118 // (0.240227044f + 5119 // (0.554906021e-1f + 5120 // (0.961591928e-2f + 5121 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5122 // error 2.47208000*10^(-7), which is better than 18 bits 5123 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5124 getF32Constant(DAG, 0x3924b03e, dl)); 5125 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5126 getF32Constant(DAG, 0x3ab24b87, dl)); 5127 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5128 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5129 getF32Constant(DAG, 0x3c1d8c17, dl)); 5130 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5131 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5132 getF32Constant(DAG, 0x3d634a1d, dl)); 5133 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5134 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5135 getF32Constant(DAG, 0x3e75fe14, dl)); 5136 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5137 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5138 getF32Constant(DAG, 0x3f317234, dl)); 5139 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5140 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5141 getF32Constant(DAG, 0x3f800000, dl)); 5142 } 5143 5144 // Add the exponent into the result in integer domain. 5145 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5146 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5147 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5148 } 5149 5150 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5151 /// limited-precision mode. 5152 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5153 const TargetLowering &TLI, SDNodeFlags Flags) { 5154 if (Op.getValueType() == MVT::f32 && 5155 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5156 5157 // Put the exponent in the right bit position for later addition to the 5158 // final result: 5159 // 5160 // t0 = Op * log2(e) 5161 5162 // TODO: What fast-math-flags should be set here? 5163 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5164 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5165 return getLimitedPrecisionExp2(t0, dl, DAG); 5166 } 5167 5168 // No special expansion. 5169 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5170 } 5171 5172 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5173 /// limited-precision mode. 5174 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5175 const TargetLowering &TLI, SDNodeFlags Flags) { 5176 // TODO: What fast-math-flags should be set on the floating-point nodes? 5177 5178 if (Op.getValueType() == MVT::f32 && 5179 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5180 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5181 5182 // Scale the exponent by log(2). 5183 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5184 SDValue LogOfExponent = 5185 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5186 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5187 5188 // Get the significand and build it into a floating-point number with 5189 // exponent of 1. 5190 SDValue X = GetSignificand(DAG, Op1, dl); 5191 5192 SDValue LogOfMantissa; 5193 if (LimitFloatPrecision <= 6) { 5194 // For floating-point precision of 6: 5195 // 5196 // LogofMantissa = 5197 // -1.1609546f + 5198 // (1.4034025f - 0.23903021f * x) * x; 5199 // 5200 // error 0.0034276066, which is better than 8 bits 5201 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5202 getF32Constant(DAG, 0xbe74c456, dl)); 5203 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5204 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5205 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5206 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5207 getF32Constant(DAG, 0x3f949a29, dl)); 5208 } else if (LimitFloatPrecision <= 12) { 5209 // For floating-point precision of 12: 5210 // 5211 // LogOfMantissa = 5212 // -1.7417939f + 5213 // (2.8212026f + 5214 // (-1.4699568f + 5215 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5216 // 5217 // error 0.000061011436, which is 14 bits 5218 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5219 getF32Constant(DAG, 0xbd67b6d6, dl)); 5220 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5221 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5222 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5223 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5224 getF32Constant(DAG, 0x3fbc278b, dl)); 5225 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5226 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5227 getF32Constant(DAG, 0x40348e95, dl)); 5228 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5229 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5230 getF32Constant(DAG, 0x3fdef31a, dl)); 5231 } else { // LimitFloatPrecision <= 18 5232 // For floating-point precision of 18: 5233 // 5234 // LogOfMantissa = 5235 // -2.1072184f + 5236 // (4.2372794f + 5237 // (-3.7029485f + 5238 // (2.2781945f + 5239 // (-0.87823314f + 5240 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5241 // 5242 // error 0.0000023660568, which is better than 18 bits 5243 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5244 getF32Constant(DAG, 0xbc91e5ac, dl)); 5245 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5246 getF32Constant(DAG, 0x3e4350aa, dl)); 5247 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5248 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5249 getF32Constant(DAG, 0x3f60d3e3, dl)); 5250 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5251 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5252 getF32Constant(DAG, 0x4011cdf0, dl)); 5253 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5254 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5255 getF32Constant(DAG, 0x406cfd1c, dl)); 5256 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5257 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5258 getF32Constant(DAG, 0x408797cb, dl)); 5259 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5260 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5261 getF32Constant(DAG, 0x4006dcab, dl)); 5262 } 5263 5264 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5265 } 5266 5267 // No special expansion. 5268 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5269 } 5270 5271 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5272 /// limited-precision mode. 5273 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5274 const TargetLowering &TLI, SDNodeFlags Flags) { 5275 // TODO: What fast-math-flags should be set on the floating-point nodes? 5276 5277 if (Op.getValueType() == MVT::f32 && 5278 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5279 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5280 5281 // Get the exponent. 5282 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5283 5284 // Get the significand and build it into a floating-point number with 5285 // exponent of 1. 5286 SDValue X = GetSignificand(DAG, Op1, dl); 5287 5288 // Different possible minimax approximations of significand in 5289 // floating-point for various degrees of accuracy over [1,2]. 5290 SDValue Log2ofMantissa; 5291 if (LimitFloatPrecision <= 6) { 5292 // For floating-point precision of 6: 5293 // 5294 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5295 // 5296 // error 0.0049451742, which is more than 7 bits 5297 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5298 getF32Constant(DAG, 0xbeb08fe0, dl)); 5299 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5300 getF32Constant(DAG, 0x40019463, dl)); 5301 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5302 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5303 getF32Constant(DAG, 0x3fd6633d, dl)); 5304 } else if (LimitFloatPrecision <= 12) { 5305 // For floating-point precision of 12: 5306 // 5307 // Log2ofMantissa = 5308 // -2.51285454f + 5309 // (4.07009056f + 5310 // (-2.12067489f + 5311 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5312 // 5313 // error 0.0000876136000, which is better than 13 bits 5314 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5315 getF32Constant(DAG, 0xbda7262e, dl)); 5316 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5317 getF32Constant(DAG, 0x3f25280b, dl)); 5318 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5319 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5320 getF32Constant(DAG, 0x4007b923, dl)); 5321 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5322 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5323 getF32Constant(DAG, 0x40823e2f, dl)); 5324 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5325 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5326 getF32Constant(DAG, 0x4020d29c, dl)); 5327 } else { // LimitFloatPrecision <= 18 5328 // For floating-point precision of 18: 5329 // 5330 // Log2ofMantissa = 5331 // -3.0400495f + 5332 // (6.1129976f + 5333 // (-5.3420409f + 5334 // (3.2865683f + 5335 // (-1.2669343f + 5336 // (0.27515199f - 5337 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5338 // 5339 // error 0.0000018516, which is better than 18 bits 5340 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5341 getF32Constant(DAG, 0xbcd2769e, dl)); 5342 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5343 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5344 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5345 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5346 getF32Constant(DAG, 0x3fa22ae7, dl)); 5347 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5348 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5349 getF32Constant(DAG, 0x40525723, dl)); 5350 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5351 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5352 getF32Constant(DAG, 0x40aaf200, dl)); 5353 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5354 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5355 getF32Constant(DAG, 0x40c39dad, dl)); 5356 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5357 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5358 getF32Constant(DAG, 0x4042902c, dl)); 5359 } 5360 5361 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5362 } 5363 5364 // No special expansion. 5365 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5366 } 5367 5368 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5369 /// limited-precision mode. 5370 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5371 const TargetLowering &TLI, SDNodeFlags Flags) { 5372 // TODO: What fast-math-flags should be set on the floating-point nodes? 5373 5374 if (Op.getValueType() == MVT::f32 && 5375 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5376 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5377 5378 // Scale the exponent by log10(2) [0.30102999f]. 5379 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5380 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5381 getF32Constant(DAG, 0x3e9a209a, dl)); 5382 5383 // Get the significand and build it into a floating-point number with 5384 // exponent of 1. 5385 SDValue X = GetSignificand(DAG, Op1, dl); 5386 5387 SDValue Log10ofMantissa; 5388 if (LimitFloatPrecision <= 6) { 5389 // For floating-point precision of 6: 5390 // 5391 // Log10ofMantissa = 5392 // -0.50419619f + 5393 // (0.60948995f - 0.10380950f * x) * x; 5394 // 5395 // error 0.0014886165, which is 6 bits 5396 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5397 getF32Constant(DAG, 0xbdd49a13, dl)); 5398 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5399 getF32Constant(DAG, 0x3f1c0789, dl)); 5400 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5401 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5402 getF32Constant(DAG, 0x3f011300, dl)); 5403 } else if (LimitFloatPrecision <= 12) { 5404 // For floating-point precision of 12: 5405 // 5406 // Log10ofMantissa = 5407 // -0.64831180f + 5408 // (0.91751397f + 5409 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5410 // 5411 // error 0.00019228036, which is better than 12 bits 5412 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5413 getF32Constant(DAG, 0x3d431f31, dl)); 5414 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5415 getF32Constant(DAG, 0x3ea21fb2, dl)); 5416 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5417 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5418 getF32Constant(DAG, 0x3f6ae232, dl)); 5419 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5420 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5421 getF32Constant(DAG, 0x3f25f7c3, dl)); 5422 } else { // LimitFloatPrecision <= 18 5423 // For floating-point precision of 18: 5424 // 5425 // Log10ofMantissa = 5426 // -0.84299375f + 5427 // (1.5327582f + 5428 // (-1.0688956f + 5429 // (0.49102474f + 5430 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5431 // 5432 // error 0.0000037995730, which is better than 18 bits 5433 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5434 getF32Constant(DAG, 0x3c5d51ce, dl)); 5435 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5436 getF32Constant(DAG, 0x3e00685a, dl)); 5437 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5438 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5439 getF32Constant(DAG, 0x3efb6798, dl)); 5440 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5441 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5442 getF32Constant(DAG, 0x3f88d192, dl)); 5443 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5444 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5445 getF32Constant(DAG, 0x3fc4316c, dl)); 5446 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5447 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5448 getF32Constant(DAG, 0x3f57ce70, dl)); 5449 } 5450 5451 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5452 } 5453 5454 // No special expansion. 5455 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5456 } 5457 5458 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5459 /// limited-precision mode. 5460 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5461 const TargetLowering &TLI, SDNodeFlags Flags) { 5462 if (Op.getValueType() == MVT::f32 && 5463 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5464 return getLimitedPrecisionExp2(Op, dl, DAG); 5465 5466 // No special expansion. 5467 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5468 } 5469 5470 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5471 /// limited-precision mode with x == 10.0f. 5472 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5473 SelectionDAG &DAG, const TargetLowering &TLI, 5474 SDNodeFlags Flags) { 5475 bool IsExp10 = false; 5476 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5477 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5478 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5479 APFloat Ten(10.0f); 5480 IsExp10 = LHSC->isExactlyValue(Ten); 5481 } 5482 } 5483 5484 // TODO: What fast-math-flags should be set on the FMUL node? 5485 if (IsExp10) { 5486 // Put the exponent in the right bit position for later addition to the 5487 // final result: 5488 // 5489 // #define LOG2OF10 3.3219281f 5490 // t0 = Op * LOG2OF10; 5491 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5492 getF32Constant(DAG, 0x40549a78, dl)); 5493 return getLimitedPrecisionExp2(t0, dl, DAG); 5494 } 5495 5496 // No special expansion. 5497 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5498 } 5499 5500 /// ExpandPowI - Expand a llvm.powi intrinsic. 5501 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5502 SelectionDAG &DAG) { 5503 // If RHS is a constant, we can expand this out to a multiplication tree if 5504 // it's beneficial on the target, otherwise we end up lowering to a call to 5505 // __powidf2 (for example). 5506 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5507 unsigned Val = RHSC->getSExtValue(); 5508 5509 // powi(x, 0) -> 1.0 5510 if (Val == 0) 5511 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5512 5513 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5514 Val, DAG.shouldOptForSize())) { 5515 // Get the exponent as a positive value. 5516 if ((int)Val < 0) 5517 Val = -Val; 5518 // We use the simple binary decomposition method to generate the multiply 5519 // sequence. There are more optimal ways to do this (for example, 5520 // powi(x,15) generates one more multiply than it should), but this has 5521 // the benefit of being both really simple and much better than a libcall. 5522 SDValue Res; // Logically starts equal to 1.0 5523 SDValue CurSquare = LHS; 5524 // TODO: Intrinsics should have fast-math-flags that propagate to these 5525 // nodes. 5526 while (Val) { 5527 if (Val & 1) { 5528 if (Res.getNode()) 5529 Res = 5530 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5531 else 5532 Res = CurSquare; // 1.0*CurSquare. 5533 } 5534 5535 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5536 CurSquare, CurSquare); 5537 Val >>= 1; 5538 } 5539 5540 // If the original was negative, invert the result, producing 1/(x*x*x). 5541 if (RHSC->getSExtValue() < 0) 5542 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5543 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5544 return Res; 5545 } 5546 } 5547 5548 // Otherwise, expand to a libcall. 5549 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5550 } 5551 5552 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5553 SDValue LHS, SDValue RHS, SDValue Scale, 5554 SelectionDAG &DAG, const TargetLowering &TLI) { 5555 EVT VT = LHS.getValueType(); 5556 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5557 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5558 LLVMContext &Ctx = *DAG.getContext(); 5559 5560 // If the type is legal but the operation isn't, this node might survive all 5561 // the way to operation legalization. If we end up there and we do not have 5562 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5563 // node. 5564 5565 // Coax the legalizer into expanding the node during type legalization instead 5566 // by bumping the size by one bit. This will force it to Promote, enabling the 5567 // early expansion and avoiding the need to expand later. 5568 5569 // We don't have to do this if Scale is 0; that can always be expanded, unless 5570 // it's a saturating signed operation. Those can experience true integer 5571 // division overflow, a case which we must avoid. 5572 5573 // FIXME: We wouldn't have to do this (or any of the early 5574 // expansion/promotion) if it was possible to expand a libcall of an 5575 // illegal type during operation legalization. But it's not, so things 5576 // get a bit hacky. 5577 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5578 if ((ScaleInt > 0 || (Saturating && Signed)) && 5579 (TLI.isTypeLegal(VT) || 5580 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5581 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5582 Opcode, VT, ScaleInt); 5583 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5584 EVT PromVT; 5585 if (VT.isScalarInteger()) 5586 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5587 else if (VT.isVector()) { 5588 PromVT = VT.getVectorElementType(); 5589 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5590 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5591 } else 5592 llvm_unreachable("Wrong VT for DIVFIX?"); 5593 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5594 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5595 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5596 // For saturating operations, we need to shift up the LHS to get the 5597 // proper saturation width, and then shift down again afterwards. 5598 if (Saturating) 5599 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5600 DAG.getConstant(1, DL, ShiftTy)); 5601 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5602 if (Saturating) 5603 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5604 DAG.getConstant(1, DL, ShiftTy)); 5605 return DAG.getZExtOrTrunc(Res, DL, VT); 5606 } 5607 } 5608 5609 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5610 } 5611 5612 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5613 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5614 static void 5615 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5616 const SDValue &N) { 5617 switch (N.getOpcode()) { 5618 case ISD::CopyFromReg: { 5619 SDValue Op = N.getOperand(1); 5620 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5621 Op.getValueType().getSizeInBits()); 5622 return; 5623 } 5624 case ISD::BITCAST: 5625 case ISD::AssertZext: 5626 case ISD::AssertSext: 5627 case ISD::TRUNCATE: 5628 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5629 return; 5630 case ISD::BUILD_PAIR: 5631 case ISD::BUILD_VECTOR: 5632 case ISD::CONCAT_VECTORS: 5633 for (SDValue Op : N->op_values()) 5634 getUnderlyingArgRegs(Regs, Op); 5635 return; 5636 default: 5637 return; 5638 } 5639 } 5640 5641 /// If the DbgValueInst is a dbg_value of a function argument, create the 5642 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5643 /// instruction selection, they will be inserted to the entry BB. 5644 /// We don't currently support this for variadic dbg_values, as they shouldn't 5645 /// appear for function arguments or in the prologue. 5646 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5647 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5648 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5649 const Argument *Arg = dyn_cast<Argument>(V); 5650 if (!Arg) 5651 return false; 5652 5653 MachineFunction &MF = DAG.getMachineFunction(); 5654 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5655 5656 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5657 // we've been asked to pursue. 5658 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5659 bool Indirect) { 5660 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5661 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5662 // pointing at the VReg, which will be patched up later. 5663 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5664 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5665 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5666 /* isKill */ false, /* isDead */ false, 5667 /* isUndef */ false, /* isEarlyClobber */ false, 5668 /* SubReg */ 0, /* isDebug */ true)}); 5669 5670 auto *NewDIExpr = FragExpr; 5671 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5672 // the DIExpression. 5673 if (Indirect) 5674 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5675 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5676 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5677 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5678 } else { 5679 // Create a completely standard DBG_VALUE. 5680 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5681 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5682 } 5683 }; 5684 5685 if (Kind == FuncArgumentDbgValueKind::Value) { 5686 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5687 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5688 // the entry block. 5689 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5690 if (!IsInEntryBlock) 5691 return false; 5692 5693 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5694 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5695 // variable that also is a param. 5696 // 5697 // Although, if we are at the top of the entry block already, we can still 5698 // emit using ArgDbgValue. This might catch some situations when the 5699 // dbg.value refers to an argument that isn't used in the entry block, so 5700 // any CopyToReg node would be optimized out and the only way to express 5701 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5702 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5703 // we should only emit as ArgDbgValue if the Variable is an argument to the 5704 // current function, and the dbg.value intrinsic is found in the entry 5705 // block. 5706 bool VariableIsFunctionInputArg = Variable->isParameter() && 5707 !DL->getInlinedAt(); 5708 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5709 if (!IsInPrologue && !VariableIsFunctionInputArg) 5710 return false; 5711 5712 // Here we assume that a function argument on IR level only can be used to 5713 // describe one input parameter on source level. If we for example have 5714 // source code like this 5715 // 5716 // struct A { long x, y; }; 5717 // void foo(struct A a, long b) { 5718 // ... 5719 // b = a.x; 5720 // ... 5721 // } 5722 // 5723 // and IR like this 5724 // 5725 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5726 // entry: 5727 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5728 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5729 // call void @llvm.dbg.value(metadata i32 %b, "b", 5730 // ... 5731 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5732 // ... 5733 // 5734 // then the last dbg.value is describing a parameter "b" using a value that 5735 // is an argument. But since we already has used %a1 to describe a parameter 5736 // we should not handle that last dbg.value here (that would result in an 5737 // incorrect hoisting of the DBG_VALUE to the function entry). 5738 // Notice that we allow one dbg.value per IR level argument, to accommodate 5739 // for the situation with fragments above. 5740 if (VariableIsFunctionInputArg) { 5741 unsigned ArgNo = Arg->getArgNo(); 5742 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5743 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5744 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5745 return false; 5746 FuncInfo.DescribedArgs.set(ArgNo); 5747 } 5748 } 5749 5750 bool IsIndirect = false; 5751 std::optional<MachineOperand> Op; 5752 // Some arguments' frame index is recorded during argument lowering. 5753 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5754 if (FI != std::numeric_limits<int>::max()) 5755 Op = MachineOperand::CreateFI(FI); 5756 5757 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5758 if (!Op && N.getNode()) { 5759 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5760 Register Reg; 5761 if (ArgRegsAndSizes.size() == 1) 5762 Reg = ArgRegsAndSizes.front().first; 5763 5764 if (Reg && Reg.isVirtual()) { 5765 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5766 Register PR = RegInfo.getLiveInPhysReg(Reg); 5767 if (PR) 5768 Reg = PR; 5769 } 5770 if (Reg) { 5771 Op = MachineOperand::CreateReg(Reg, false); 5772 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5773 } 5774 } 5775 5776 if (!Op && N.getNode()) { 5777 // Check if frame index is available. 5778 SDValue LCandidate = peekThroughBitcasts(N); 5779 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5780 if (FrameIndexSDNode *FINode = 5781 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5782 Op = MachineOperand::CreateFI(FINode->getIndex()); 5783 } 5784 5785 if (!Op) { 5786 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5787 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5788 SplitRegs) { 5789 unsigned Offset = 0; 5790 for (const auto &RegAndSize : SplitRegs) { 5791 // If the expression is already a fragment, the current register 5792 // offset+size might extend beyond the fragment. In this case, only 5793 // the register bits that are inside the fragment are relevant. 5794 int RegFragmentSizeInBits = RegAndSize.second; 5795 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5796 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5797 // The register is entirely outside the expression fragment, 5798 // so is irrelevant for debug info. 5799 if (Offset >= ExprFragmentSizeInBits) 5800 break; 5801 // The register is partially outside the expression fragment, only 5802 // the low bits within the fragment are relevant for debug info. 5803 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5804 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5805 } 5806 } 5807 5808 auto FragmentExpr = DIExpression::createFragmentExpression( 5809 Expr, Offset, RegFragmentSizeInBits); 5810 Offset += RegAndSize.second; 5811 // If a valid fragment expression cannot be created, the variable's 5812 // correct value cannot be determined and so it is set as Undef. 5813 if (!FragmentExpr) { 5814 SDDbgValue *SDV = DAG.getConstantDbgValue( 5815 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5816 DAG.AddDbgValue(SDV, false); 5817 continue; 5818 } 5819 MachineInstr *NewMI = 5820 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5821 Kind != FuncArgumentDbgValueKind::Value); 5822 FuncInfo.ArgDbgValues.push_back(NewMI); 5823 } 5824 }; 5825 5826 // Check if ValueMap has reg number. 5827 DenseMap<const Value *, Register>::const_iterator 5828 VMI = FuncInfo.ValueMap.find(V); 5829 if (VMI != FuncInfo.ValueMap.end()) { 5830 const auto &TLI = DAG.getTargetLoweringInfo(); 5831 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5832 V->getType(), std::nullopt); 5833 if (RFV.occupiesMultipleRegs()) { 5834 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5835 return true; 5836 } 5837 5838 Op = MachineOperand::CreateReg(VMI->second, false); 5839 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5840 } else if (ArgRegsAndSizes.size() > 1) { 5841 // This was split due to the calling convention, and no virtual register 5842 // mapping exists for the value. 5843 splitMultiRegDbgValue(ArgRegsAndSizes); 5844 return true; 5845 } 5846 } 5847 5848 if (!Op) 5849 return false; 5850 5851 assert(Variable->isValidLocationForIntrinsic(DL) && 5852 "Expected inlined-at fields to agree"); 5853 MachineInstr *NewMI = nullptr; 5854 5855 if (Op->isReg()) 5856 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5857 else 5858 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5859 Variable, Expr); 5860 5861 // Otherwise, use ArgDbgValues. 5862 FuncInfo.ArgDbgValues.push_back(NewMI); 5863 return true; 5864 } 5865 5866 /// Return the appropriate SDDbgValue based on N. 5867 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5868 DILocalVariable *Variable, 5869 DIExpression *Expr, 5870 const DebugLoc &dl, 5871 unsigned DbgSDNodeOrder) { 5872 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5873 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5874 // stack slot locations. 5875 // 5876 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5877 // debug values here after optimization: 5878 // 5879 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5880 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5881 // 5882 // Both describe the direct values of their associated variables. 5883 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5884 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5885 } 5886 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5887 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5888 } 5889 5890 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5891 switch (Intrinsic) { 5892 case Intrinsic::smul_fix: 5893 return ISD::SMULFIX; 5894 case Intrinsic::umul_fix: 5895 return ISD::UMULFIX; 5896 case Intrinsic::smul_fix_sat: 5897 return ISD::SMULFIXSAT; 5898 case Intrinsic::umul_fix_sat: 5899 return ISD::UMULFIXSAT; 5900 case Intrinsic::sdiv_fix: 5901 return ISD::SDIVFIX; 5902 case Intrinsic::udiv_fix: 5903 return ISD::UDIVFIX; 5904 case Intrinsic::sdiv_fix_sat: 5905 return ISD::SDIVFIXSAT; 5906 case Intrinsic::udiv_fix_sat: 5907 return ISD::UDIVFIXSAT; 5908 default: 5909 llvm_unreachable("Unhandled fixed point intrinsic"); 5910 } 5911 } 5912 5913 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5914 const char *FunctionName) { 5915 assert(FunctionName && "FunctionName must not be nullptr"); 5916 SDValue Callee = DAG.getExternalSymbol( 5917 FunctionName, 5918 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5919 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5920 } 5921 5922 /// Given a @llvm.call.preallocated.setup, return the corresponding 5923 /// preallocated call. 5924 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5925 assert(cast<CallBase>(PreallocatedSetup) 5926 ->getCalledFunction() 5927 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5928 "expected call_preallocated_setup Value"); 5929 for (const auto *U : PreallocatedSetup->users()) { 5930 auto *UseCall = cast<CallBase>(U); 5931 const Function *Fn = UseCall->getCalledFunction(); 5932 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5933 return UseCall; 5934 } 5935 } 5936 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5937 } 5938 5939 /// If DI is a debug value with an EntryValue expression, lower it using the 5940 /// corresponding physical register of the associated Argument value 5941 /// (guaranteed to exist by the verifier). 5942 bool SelectionDAGBuilder::visitEntryValueDbgValue(const DbgValueInst &DI) { 5943 DILocalVariable *Variable = DI.getVariable(); 5944 DIExpression *Expr = DI.getExpression(); 5945 if (!Expr->isEntryValue() || !hasSingleElement(DI.getValues())) 5946 return false; 5947 5948 // These properties are guaranteed by the verifier. 5949 Argument *Arg = cast<Argument>(DI.getValue(0)); 5950 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 5951 5952 auto ArgIt = FuncInfo.ValueMap.find(Arg); 5953 if (ArgIt == FuncInfo.ValueMap.end()) { 5954 LLVM_DEBUG( 5955 dbgs() << "Dropping dbg.value: expression is entry_value but " 5956 "couldn't find an associated register for the Argument\n"); 5957 return true; 5958 } 5959 Register ArgVReg = ArgIt->getSecond(); 5960 5961 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 5962 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 5963 SDDbgValue *SDV = 5964 DAG.getVRegDbgValue(Variable, Expr, PhysReg, false /*IsIndidrect*/, 5965 DI.getDebugLoc(), SDNodeOrder); 5966 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 5967 return true; 5968 } 5969 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 5970 "couldn't find a physical register\n"); 5971 return true; 5972 } 5973 5974 /// Lower the call to the specified intrinsic function. 5975 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5976 unsigned Intrinsic) { 5977 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5978 SDLoc sdl = getCurSDLoc(); 5979 DebugLoc dl = getCurDebugLoc(); 5980 SDValue Res; 5981 5982 SDNodeFlags Flags; 5983 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5984 Flags.copyFMF(*FPOp); 5985 5986 switch (Intrinsic) { 5987 default: 5988 // By default, turn this into a target intrinsic node. 5989 visitTargetIntrinsic(I, Intrinsic); 5990 return; 5991 case Intrinsic::vscale: { 5992 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5993 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5994 return; 5995 } 5996 case Intrinsic::vastart: visitVAStart(I); return; 5997 case Intrinsic::vaend: visitVAEnd(I); return; 5998 case Intrinsic::vacopy: visitVACopy(I); return; 5999 case Intrinsic::returnaddress: 6000 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6001 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6002 getValue(I.getArgOperand(0)))); 6003 return; 6004 case Intrinsic::addressofreturnaddress: 6005 setValue(&I, 6006 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6007 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6008 return; 6009 case Intrinsic::sponentry: 6010 setValue(&I, 6011 DAG.getNode(ISD::SPONENTRY, sdl, 6012 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6013 return; 6014 case Intrinsic::frameaddress: 6015 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6016 TLI.getFrameIndexTy(DAG.getDataLayout()), 6017 getValue(I.getArgOperand(0)))); 6018 return; 6019 case Intrinsic::read_volatile_register: 6020 case Intrinsic::read_register: { 6021 Value *Reg = I.getArgOperand(0); 6022 SDValue Chain = getRoot(); 6023 SDValue RegName = 6024 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6025 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6026 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6027 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6028 setValue(&I, Res); 6029 DAG.setRoot(Res.getValue(1)); 6030 return; 6031 } 6032 case Intrinsic::write_register: { 6033 Value *Reg = I.getArgOperand(0); 6034 Value *RegValue = I.getArgOperand(1); 6035 SDValue Chain = getRoot(); 6036 SDValue RegName = 6037 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6038 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6039 RegName, getValue(RegValue))); 6040 return; 6041 } 6042 case Intrinsic::memcpy: { 6043 const auto &MCI = cast<MemCpyInst>(I); 6044 SDValue Op1 = getValue(I.getArgOperand(0)); 6045 SDValue Op2 = getValue(I.getArgOperand(1)); 6046 SDValue Op3 = getValue(I.getArgOperand(2)); 6047 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6048 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6049 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6050 Align Alignment = std::min(DstAlign, SrcAlign); 6051 bool isVol = MCI.isVolatile(); 6052 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6053 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6054 // node. 6055 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6056 SDValue MC = DAG.getMemcpy( 6057 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6058 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6059 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6060 updateDAGForMaybeTailCall(MC); 6061 return; 6062 } 6063 case Intrinsic::memcpy_inline: { 6064 const auto &MCI = cast<MemCpyInlineInst>(I); 6065 SDValue Dst = getValue(I.getArgOperand(0)); 6066 SDValue Src = getValue(I.getArgOperand(1)); 6067 SDValue Size = getValue(I.getArgOperand(2)); 6068 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6069 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6070 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6071 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6072 Align Alignment = std::min(DstAlign, SrcAlign); 6073 bool isVol = MCI.isVolatile(); 6074 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6075 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6076 // node. 6077 SDValue MC = DAG.getMemcpy( 6078 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6079 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6080 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6081 updateDAGForMaybeTailCall(MC); 6082 return; 6083 } 6084 case Intrinsic::memset: { 6085 const auto &MSI = cast<MemSetInst>(I); 6086 SDValue Op1 = getValue(I.getArgOperand(0)); 6087 SDValue Op2 = getValue(I.getArgOperand(1)); 6088 SDValue Op3 = getValue(I.getArgOperand(2)); 6089 // @llvm.memset defines 0 and 1 to both mean no alignment. 6090 Align Alignment = MSI.getDestAlign().valueOrOne(); 6091 bool isVol = MSI.isVolatile(); 6092 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6093 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6094 SDValue MS = DAG.getMemset( 6095 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6096 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6097 updateDAGForMaybeTailCall(MS); 6098 return; 6099 } 6100 case Intrinsic::memset_inline: { 6101 const auto &MSII = cast<MemSetInlineInst>(I); 6102 SDValue Dst = getValue(I.getArgOperand(0)); 6103 SDValue Value = getValue(I.getArgOperand(1)); 6104 SDValue Size = getValue(I.getArgOperand(2)); 6105 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6106 // @llvm.memset defines 0 and 1 to both mean no alignment. 6107 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6108 bool isVol = MSII.isVolatile(); 6109 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6110 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6111 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6112 /* AlwaysInline */ true, isTC, 6113 MachinePointerInfo(I.getArgOperand(0)), 6114 I.getAAMetadata()); 6115 updateDAGForMaybeTailCall(MC); 6116 return; 6117 } 6118 case Intrinsic::memmove: { 6119 const auto &MMI = cast<MemMoveInst>(I); 6120 SDValue Op1 = getValue(I.getArgOperand(0)); 6121 SDValue Op2 = getValue(I.getArgOperand(1)); 6122 SDValue Op3 = getValue(I.getArgOperand(2)); 6123 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6124 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6125 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6126 Align Alignment = std::min(DstAlign, SrcAlign); 6127 bool isVol = MMI.isVolatile(); 6128 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6129 // FIXME: Support passing different dest/src alignments to the memmove DAG 6130 // node. 6131 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6132 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6133 isTC, MachinePointerInfo(I.getArgOperand(0)), 6134 MachinePointerInfo(I.getArgOperand(1)), 6135 I.getAAMetadata(), AA); 6136 updateDAGForMaybeTailCall(MM); 6137 return; 6138 } 6139 case Intrinsic::memcpy_element_unordered_atomic: { 6140 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6141 SDValue Dst = getValue(MI.getRawDest()); 6142 SDValue Src = getValue(MI.getRawSource()); 6143 SDValue Length = getValue(MI.getLength()); 6144 6145 Type *LengthTy = MI.getLength()->getType(); 6146 unsigned ElemSz = MI.getElementSizeInBytes(); 6147 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6148 SDValue MC = 6149 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6150 isTC, MachinePointerInfo(MI.getRawDest()), 6151 MachinePointerInfo(MI.getRawSource())); 6152 updateDAGForMaybeTailCall(MC); 6153 return; 6154 } 6155 case Intrinsic::memmove_element_unordered_atomic: { 6156 auto &MI = cast<AtomicMemMoveInst>(I); 6157 SDValue Dst = getValue(MI.getRawDest()); 6158 SDValue Src = getValue(MI.getRawSource()); 6159 SDValue Length = getValue(MI.getLength()); 6160 6161 Type *LengthTy = MI.getLength()->getType(); 6162 unsigned ElemSz = MI.getElementSizeInBytes(); 6163 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6164 SDValue MC = 6165 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6166 isTC, MachinePointerInfo(MI.getRawDest()), 6167 MachinePointerInfo(MI.getRawSource())); 6168 updateDAGForMaybeTailCall(MC); 6169 return; 6170 } 6171 case Intrinsic::memset_element_unordered_atomic: { 6172 auto &MI = cast<AtomicMemSetInst>(I); 6173 SDValue Dst = getValue(MI.getRawDest()); 6174 SDValue Val = getValue(MI.getValue()); 6175 SDValue Length = getValue(MI.getLength()); 6176 6177 Type *LengthTy = MI.getLength()->getType(); 6178 unsigned ElemSz = MI.getElementSizeInBytes(); 6179 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6180 SDValue MC = 6181 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6182 isTC, MachinePointerInfo(MI.getRawDest())); 6183 updateDAGForMaybeTailCall(MC); 6184 return; 6185 } 6186 case Intrinsic::call_preallocated_setup: { 6187 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6188 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6189 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6190 getRoot(), SrcValue); 6191 setValue(&I, Res); 6192 DAG.setRoot(Res); 6193 return; 6194 } 6195 case Intrinsic::call_preallocated_arg: { 6196 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6197 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6198 SDValue Ops[3]; 6199 Ops[0] = getRoot(); 6200 Ops[1] = SrcValue; 6201 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6202 MVT::i32); // arg index 6203 SDValue Res = DAG.getNode( 6204 ISD::PREALLOCATED_ARG, sdl, 6205 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6206 setValue(&I, Res); 6207 DAG.setRoot(Res.getValue(1)); 6208 return; 6209 } 6210 case Intrinsic::dbg_declare: { 6211 const auto &DI = cast<DbgDeclareInst>(I); 6212 // Debug intrinsics are handled separately in assignment tracking mode. 6213 // Some intrinsics are handled right after Argument lowering. 6214 if (AssignmentTrackingEnabled || 6215 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6216 return; 6217 // Assume dbg.declare can not currently use DIArgList, i.e. 6218 // it is non-variadic. 6219 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6220 DILocalVariable *Variable = DI.getVariable(); 6221 DIExpression *Expression = DI.getExpression(); 6222 dropDanglingDebugInfo(Variable, Expression); 6223 assert(Variable && "Missing variable"); 6224 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6225 << "\n"); 6226 // Check if address has undef value. 6227 const Value *Address = DI.getVariableLocationOp(0); 6228 if (!Address || isa<UndefValue>(Address) || 6229 (Address->use_empty() && !isa<Argument>(Address))) { 6230 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6231 << " (bad/undef/unused-arg address)\n"); 6232 return; 6233 } 6234 6235 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6236 6237 SDValue &N = NodeMap[Address]; 6238 if (!N.getNode() && isa<Argument>(Address)) 6239 // Check unused arguments map. 6240 N = UnusedArgNodeMap[Address]; 6241 SDDbgValue *SDV; 6242 if (N.getNode()) { 6243 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6244 Address = BCI->getOperand(0); 6245 // Parameters are handled specially. 6246 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6247 if (isParameter && FINode) { 6248 // Byval parameter. We have a frame index at this point. 6249 SDV = 6250 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6251 /*IsIndirect*/ true, dl, SDNodeOrder); 6252 } else if (isa<Argument>(Address)) { 6253 // Address is an argument, so try to emit its dbg value using 6254 // virtual register info from the FuncInfo.ValueMap. 6255 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6256 FuncArgumentDbgValueKind::Declare, N); 6257 return; 6258 } else { 6259 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6260 true, dl, SDNodeOrder); 6261 } 6262 DAG.AddDbgValue(SDV, isParameter); 6263 } else { 6264 // If Address is an argument then try to emit its dbg value using 6265 // virtual register info from the FuncInfo.ValueMap. 6266 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6267 FuncArgumentDbgValueKind::Declare, N)) { 6268 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6269 << " (could not emit func-arg dbg_value)\n"); 6270 } 6271 } 6272 return; 6273 } 6274 case Intrinsic::dbg_label: { 6275 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6276 DILabel *Label = DI.getLabel(); 6277 assert(Label && "Missing label"); 6278 6279 SDDbgLabel *SDV; 6280 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6281 DAG.AddDbgLabel(SDV); 6282 return; 6283 } 6284 case Intrinsic::dbg_assign: { 6285 // Debug intrinsics are handled seperately in assignment tracking mode. 6286 if (AssignmentTrackingEnabled) 6287 return; 6288 // If assignment tracking hasn't been enabled then fall through and treat 6289 // the dbg.assign as a dbg.value. 6290 [[fallthrough]]; 6291 } 6292 case Intrinsic::dbg_value: { 6293 // Debug intrinsics are handled seperately in assignment tracking mode. 6294 if (AssignmentTrackingEnabled) 6295 return; 6296 const DbgValueInst &DI = cast<DbgValueInst>(I); 6297 assert(DI.getVariable() && "Missing variable"); 6298 6299 DILocalVariable *Variable = DI.getVariable(); 6300 DIExpression *Expression = DI.getExpression(); 6301 dropDanglingDebugInfo(Variable, Expression); 6302 6303 if (visitEntryValueDbgValue(DI)) 6304 return; 6305 6306 if (DI.isKillLocation()) { 6307 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6308 return; 6309 } 6310 6311 SmallVector<Value *, 4> Values(DI.getValues()); 6312 if (Values.empty()) 6313 return; 6314 6315 bool IsVariadic = DI.hasArgList(); 6316 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6317 SDNodeOrder, IsVariadic)) 6318 addDanglingDebugInfo(&DI, SDNodeOrder); 6319 return; 6320 } 6321 6322 case Intrinsic::eh_typeid_for: { 6323 // Find the type id for the given typeinfo. 6324 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6325 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6326 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6327 setValue(&I, Res); 6328 return; 6329 } 6330 6331 case Intrinsic::eh_return_i32: 6332 case Intrinsic::eh_return_i64: 6333 DAG.getMachineFunction().setCallsEHReturn(true); 6334 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6335 MVT::Other, 6336 getControlRoot(), 6337 getValue(I.getArgOperand(0)), 6338 getValue(I.getArgOperand(1)))); 6339 return; 6340 case Intrinsic::eh_unwind_init: 6341 DAG.getMachineFunction().setCallsUnwindInit(true); 6342 return; 6343 case Intrinsic::eh_dwarf_cfa: 6344 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6345 TLI.getPointerTy(DAG.getDataLayout()), 6346 getValue(I.getArgOperand(0)))); 6347 return; 6348 case Intrinsic::eh_sjlj_callsite: { 6349 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6350 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6351 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6352 6353 MMI.setCurrentCallSite(CI->getZExtValue()); 6354 return; 6355 } 6356 case Intrinsic::eh_sjlj_functioncontext: { 6357 // Get and store the index of the function context. 6358 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6359 AllocaInst *FnCtx = 6360 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6361 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6362 MFI.setFunctionContextIndex(FI); 6363 return; 6364 } 6365 case Intrinsic::eh_sjlj_setjmp: { 6366 SDValue Ops[2]; 6367 Ops[0] = getRoot(); 6368 Ops[1] = getValue(I.getArgOperand(0)); 6369 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6370 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6371 setValue(&I, Op.getValue(0)); 6372 DAG.setRoot(Op.getValue(1)); 6373 return; 6374 } 6375 case Intrinsic::eh_sjlj_longjmp: 6376 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6377 getRoot(), getValue(I.getArgOperand(0)))); 6378 return; 6379 case Intrinsic::eh_sjlj_setup_dispatch: 6380 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6381 getRoot())); 6382 return; 6383 case Intrinsic::masked_gather: 6384 visitMaskedGather(I); 6385 return; 6386 case Intrinsic::masked_load: 6387 visitMaskedLoad(I); 6388 return; 6389 case Intrinsic::masked_scatter: 6390 visitMaskedScatter(I); 6391 return; 6392 case Intrinsic::masked_store: 6393 visitMaskedStore(I); 6394 return; 6395 case Intrinsic::masked_expandload: 6396 visitMaskedLoad(I, true /* IsExpanding */); 6397 return; 6398 case Intrinsic::masked_compressstore: 6399 visitMaskedStore(I, true /* IsCompressing */); 6400 return; 6401 case Intrinsic::powi: 6402 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6403 getValue(I.getArgOperand(1)), DAG)); 6404 return; 6405 case Intrinsic::log: 6406 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6407 return; 6408 case Intrinsic::log2: 6409 setValue(&I, 6410 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6411 return; 6412 case Intrinsic::log10: 6413 setValue(&I, 6414 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6415 return; 6416 case Intrinsic::exp: 6417 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6418 return; 6419 case Intrinsic::exp2: 6420 setValue(&I, 6421 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6422 return; 6423 case Intrinsic::pow: 6424 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6425 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6426 return; 6427 case Intrinsic::sqrt: 6428 case Intrinsic::fabs: 6429 case Intrinsic::sin: 6430 case Intrinsic::cos: 6431 case Intrinsic::exp10: 6432 case Intrinsic::floor: 6433 case Intrinsic::ceil: 6434 case Intrinsic::trunc: 6435 case Intrinsic::rint: 6436 case Intrinsic::nearbyint: 6437 case Intrinsic::round: 6438 case Intrinsic::roundeven: 6439 case Intrinsic::canonicalize: { 6440 unsigned Opcode; 6441 switch (Intrinsic) { 6442 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6443 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6444 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6445 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6446 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6447 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6448 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6449 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6450 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6451 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6452 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6453 case Intrinsic::round: Opcode = ISD::FROUND; break; 6454 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6455 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6456 } 6457 6458 setValue(&I, DAG.getNode(Opcode, sdl, 6459 getValue(I.getArgOperand(0)).getValueType(), 6460 getValue(I.getArgOperand(0)), Flags)); 6461 return; 6462 } 6463 case Intrinsic::lround: 6464 case Intrinsic::llround: 6465 case Intrinsic::lrint: 6466 case Intrinsic::llrint: { 6467 unsigned Opcode; 6468 switch (Intrinsic) { 6469 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6470 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6471 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6472 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6473 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6474 } 6475 6476 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6477 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6478 getValue(I.getArgOperand(0)))); 6479 return; 6480 } 6481 case Intrinsic::minnum: 6482 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6483 getValue(I.getArgOperand(0)).getValueType(), 6484 getValue(I.getArgOperand(0)), 6485 getValue(I.getArgOperand(1)), Flags)); 6486 return; 6487 case Intrinsic::maxnum: 6488 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6489 getValue(I.getArgOperand(0)).getValueType(), 6490 getValue(I.getArgOperand(0)), 6491 getValue(I.getArgOperand(1)), Flags)); 6492 return; 6493 case Intrinsic::minimum: 6494 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6495 getValue(I.getArgOperand(0)).getValueType(), 6496 getValue(I.getArgOperand(0)), 6497 getValue(I.getArgOperand(1)), Flags)); 6498 return; 6499 case Intrinsic::maximum: 6500 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6501 getValue(I.getArgOperand(0)).getValueType(), 6502 getValue(I.getArgOperand(0)), 6503 getValue(I.getArgOperand(1)), Flags)); 6504 return; 6505 case Intrinsic::copysign: 6506 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6507 getValue(I.getArgOperand(0)).getValueType(), 6508 getValue(I.getArgOperand(0)), 6509 getValue(I.getArgOperand(1)), Flags)); 6510 return; 6511 case Intrinsic::ldexp: 6512 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6513 getValue(I.getArgOperand(0)).getValueType(), 6514 getValue(I.getArgOperand(0)), 6515 getValue(I.getArgOperand(1)), Flags)); 6516 return; 6517 case Intrinsic::frexp: { 6518 SmallVector<EVT, 2> ValueVTs; 6519 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6520 SDVTList VTs = DAG.getVTList(ValueVTs); 6521 setValue(&I, 6522 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6523 return; 6524 } 6525 case Intrinsic::arithmetic_fence: { 6526 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6527 getValue(I.getArgOperand(0)).getValueType(), 6528 getValue(I.getArgOperand(0)), Flags)); 6529 return; 6530 } 6531 case Intrinsic::fma: 6532 setValue(&I, DAG.getNode( 6533 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6534 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6535 getValue(I.getArgOperand(2)), Flags)); 6536 return; 6537 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6538 case Intrinsic::INTRINSIC: 6539 #include "llvm/IR/ConstrainedOps.def" 6540 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6541 return; 6542 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6543 #include "llvm/IR/VPIntrinsics.def" 6544 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6545 return; 6546 case Intrinsic::fptrunc_round: { 6547 // Get the last argument, the metadata and convert it to an integer in the 6548 // call 6549 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6550 std::optional<RoundingMode> RoundMode = 6551 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6552 6553 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6554 6555 // Propagate fast-math-flags from IR to node(s). 6556 SDNodeFlags Flags; 6557 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6558 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6559 6560 SDValue Result; 6561 Result = DAG.getNode( 6562 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6563 DAG.getTargetConstant((int)*RoundMode, sdl, 6564 TLI.getPointerTy(DAG.getDataLayout()))); 6565 setValue(&I, Result); 6566 6567 return; 6568 } 6569 case Intrinsic::fmuladd: { 6570 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6571 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6572 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6573 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6574 getValue(I.getArgOperand(0)).getValueType(), 6575 getValue(I.getArgOperand(0)), 6576 getValue(I.getArgOperand(1)), 6577 getValue(I.getArgOperand(2)), Flags)); 6578 } else { 6579 // TODO: Intrinsic calls should have fast-math-flags. 6580 SDValue Mul = DAG.getNode( 6581 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6582 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6583 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6584 getValue(I.getArgOperand(0)).getValueType(), 6585 Mul, getValue(I.getArgOperand(2)), Flags); 6586 setValue(&I, Add); 6587 } 6588 return; 6589 } 6590 case Intrinsic::convert_to_fp16: 6591 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6592 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6593 getValue(I.getArgOperand(0)), 6594 DAG.getTargetConstant(0, sdl, 6595 MVT::i32)))); 6596 return; 6597 case Intrinsic::convert_from_fp16: 6598 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6599 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6600 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6601 getValue(I.getArgOperand(0))))); 6602 return; 6603 case Intrinsic::fptosi_sat: { 6604 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6605 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6606 getValue(I.getArgOperand(0)), 6607 DAG.getValueType(VT.getScalarType()))); 6608 return; 6609 } 6610 case Intrinsic::fptoui_sat: { 6611 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6612 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6613 getValue(I.getArgOperand(0)), 6614 DAG.getValueType(VT.getScalarType()))); 6615 return; 6616 } 6617 case Intrinsic::set_rounding: 6618 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6619 {getRoot(), getValue(I.getArgOperand(0))}); 6620 setValue(&I, Res); 6621 DAG.setRoot(Res.getValue(0)); 6622 return; 6623 case Intrinsic::is_fpclass: { 6624 const DataLayout DLayout = DAG.getDataLayout(); 6625 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6626 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6627 FPClassTest Test = static_cast<FPClassTest>( 6628 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6629 MachineFunction &MF = DAG.getMachineFunction(); 6630 const Function &F = MF.getFunction(); 6631 SDValue Op = getValue(I.getArgOperand(0)); 6632 SDNodeFlags Flags; 6633 Flags.setNoFPExcept( 6634 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6635 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6636 // expansion can use illegal types. Making expansion early allows 6637 // legalizing these types prior to selection. 6638 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6639 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6640 setValue(&I, Result); 6641 return; 6642 } 6643 6644 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6645 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6646 setValue(&I, V); 6647 return; 6648 } 6649 case Intrinsic::get_fpenv: { 6650 const DataLayout DLayout = DAG.getDataLayout(); 6651 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6652 Align TempAlign = DAG.getEVTAlign(EnvVT); 6653 SDValue Chain = getRoot(); 6654 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6655 // and temporary storage in stack. 6656 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6657 Res = DAG.getNode( 6658 ISD::GET_FPENV, sdl, 6659 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6660 MVT::Other), 6661 Chain); 6662 } else { 6663 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6664 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6665 auto MPI = 6666 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6667 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6668 MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize, 6669 TempAlign); 6670 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6671 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6672 } 6673 setValue(&I, Res); 6674 DAG.setRoot(Res.getValue(1)); 6675 return; 6676 } 6677 case Intrinsic::set_fpenv: { 6678 const DataLayout DLayout = DAG.getDataLayout(); 6679 SDValue Env = getValue(I.getArgOperand(0)); 6680 EVT EnvVT = Env.getValueType(); 6681 Align TempAlign = DAG.getEVTAlign(EnvVT); 6682 SDValue Chain = getRoot(); 6683 // If SET_FPENV is custom or legal, use it. Otherwise use loading 6684 // environment from memory. 6685 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 6686 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 6687 } else { 6688 // Allocate space in stack, copy environment bits into it and use this 6689 // memory in SET_FPENV_MEM. 6690 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6691 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6692 auto MPI = 6693 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6694 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 6695 MachineMemOperand::MOStore); 6696 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6697 MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, 6698 TempAlign); 6699 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6700 } 6701 DAG.setRoot(Chain); 6702 return; 6703 } 6704 case Intrinsic::reset_fpenv: 6705 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 6706 return; 6707 case Intrinsic::get_fpmode: 6708 Res = DAG.getNode( 6709 ISD::GET_FPMODE, sdl, 6710 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6711 MVT::Other), 6712 DAG.getRoot()); 6713 setValue(&I, Res); 6714 DAG.setRoot(Res.getValue(1)); 6715 return; 6716 case Intrinsic::set_fpmode: 6717 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 6718 getValue(I.getArgOperand(0))); 6719 DAG.setRoot(Res); 6720 return; 6721 case Intrinsic::reset_fpmode: { 6722 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 6723 DAG.setRoot(Res); 6724 return; 6725 } 6726 case Intrinsic::pcmarker: { 6727 SDValue Tmp = getValue(I.getArgOperand(0)); 6728 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6729 return; 6730 } 6731 case Intrinsic::readcyclecounter: { 6732 SDValue Op = getRoot(); 6733 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6734 DAG.getVTList(MVT::i64, MVT::Other), Op); 6735 setValue(&I, Res); 6736 DAG.setRoot(Res.getValue(1)); 6737 return; 6738 } 6739 case Intrinsic::bitreverse: 6740 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6741 getValue(I.getArgOperand(0)).getValueType(), 6742 getValue(I.getArgOperand(0)))); 6743 return; 6744 case Intrinsic::bswap: 6745 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6746 getValue(I.getArgOperand(0)).getValueType(), 6747 getValue(I.getArgOperand(0)))); 6748 return; 6749 case Intrinsic::cttz: { 6750 SDValue Arg = getValue(I.getArgOperand(0)); 6751 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6752 EVT Ty = Arg.getValueType(); 6753 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6754 sdl, Ty, Arg)); 6755 return; 6756 } 6757 case Intrinsic::ctlz: { 6758 SDValue Arg = getValue(I.getArgOperand(0)); 6759 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6760 EVT Ty = Arg.getValueType(); 6761 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6762 sdl, Ty, Arg)); 6763 return; 6764 } 6765 case Intrinsic::ctpop: { 6766 SDValue Arg = getValue(I.getArgOperand(0)); 6767 EVT Ty = Arg.getValueType(); 6768 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6769 return; 6770 } 6771 case Intrinsic::fshl: 6772 case Intrinsic::fshr: { 6773 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6774 SDValue X = getValue(I.getArgOperand(0)); 6775 SDValue Y = getValue(I.getArgOperand(1)); 6776 SDValue Z = getValue(I.getArgOperand(2)); 6777 EVT VT = X.getValueType(); 6778 6779 if (X == Y) { 6780 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6781 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6782 } else { 6783 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6784 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6785 } 6786 return; 6787 } 6788 case Intrinsic::sadd_sat: { 6789 SDValue Op1 = getValue(I.getArgOperand(0)); 6790 SDValue Op2 = getValue(I.getArgOperand(1)); 6791 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6792 return; 6793 } 6794 case Intrinsic::uadd_sat: { 6795 SDValue Op1 = getValue(I.getArgOperand(0)); 6796 SDValue Op2 = getValue(I.getArgOperand(1)); 6797 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6798 return; 6799 } 6800 case Intrinsic::ssub_sat: { 6801 SDValue Op1 = getValue(I.getArgOperand(0)); 6802 SDValue Op2 = getValue(I.getArgOperand(1)); 6803 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6804 return; 6805 } 6806 case Intrinsic::usub_sat: { 6807 SDValue Op1 = getValue(I.getArgOperand(0)); 6808 SDValue Op2 = getValue(I.getArgOperand(1)); 6809 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6810 return; 6811 } 6812 case Intrinsic::sshl_sat: { 6813 SDValue Op1 = getValue(I.getArgOperand(0)); 6814 SDValue Op2 = getValue(I.getArgOperand(1)); 6815 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6816 return; 6817 } 6818 case Intrinsic::ushl_sat: { 6819 SDValue Op1 = getValue(I.getArgOperand(0)); 6820 SDValue Op2 = getValue(I.getArgOperand(1)); 6821 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6822 return; 6823 } 6824 case Intrinsic::smul_fix: 6825 case Intrinsic::umul_fix: 6826 case Intrinsic::smul_fix_sat: 6827 case Intrinsic::umul_fix_sat: { 6828 SDValue Op1 = getValue(I.getArgOperand(0)); 6829 SDValue Op2 = getValue(I.getArgOperand(1)); 6830 SDValue Op3 = getValue(I.getArgOperand(2)); 6831 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6832 Op1.getValueType(), Op1, Op2, Op3)); 6833 return; 6834 } 6835 case Intrinsic::sdiv_fix: 6836 case Intrinsic::udiv_fix: 6837 case Intrinsic::sdiv_fix_sat: 6838 case Intrinsic::udiv_fix_sat: { 6839 SDValue Op1 = getValue(I.getArgOperand(0)); 6840 SDValue Op2 = getValue(I.getArgOperand(1)); 6841 SDValue Op3 = getValue(I.getArgOperand(2)); 6842 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6843 Op1, Op2, Op3, DAG, TLI)); 6844 return; 6845 } 6846 case Intrinsic::smax: { 6847 SDValue Op1 = getValue(I.getArgOperand(0)); 6848 SDValue Op2 = getValue(I.getArgOperand(1)); 6849 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6850 return; 6851 } 6852 case Intrinsic::smin: { 6853 SDValue Op1 = getValue(I.getArgOperand(0)); 6854 SDValue Op2 = getValue(I.getArgOperand(1)); 6855 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6856 return; 6857 } 6858 case Intrinsic::umax: { 6859 SDValue Op1 = getValue(I.getArgOperand(0)); 6860 SDValue Op2 = getValue(I.getArgOperand(1)); 6861 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6862 return; 6863 } 6864 case Intrinsic::umin: { 6865 SDValue Op1 = getValue(I.getArgOperand(0)); 6866 SDValue Op2 = getValue(I.getArgOperand(1)); 6867 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6868 return; 6869 } 6870 case Intrinsic::abs: { 6871 // TODO: Preserve "int min is poison" arg in SDAG? 6872 SDValue Op1 = getValue(I.getArgOperand(0)); 6873 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6874 return; 6875 } 6876 case Intrinsic::stacksave: { 6877 SDValue Op = getRoot(); 6878 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6879 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6880 setValue(&I, Res); 6881 DAG.setRoot(Res.getValue(1)); 6882 return; 6883 } 6884 case Intrinsic::stackrestore: 6885 Res = getValue(I.getArgOperand(0)); 6886 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6887 return; 6888 case Intrinsic::get_dynamic_area_offset: { 6889 SDValue Op = getRoot(); 6890 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6891 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6892 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6893 // target. 6894 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6895 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6896 " intrinsic!"); 6897 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6898 Op); 6899 DAG.setRoot(Op); 6900 setValue(&I, Res); 6901 return; 6902 } 6903 case Intrinsic::stackguard: { 6904 MachineFunction &MF = DAG.getMachineFunction(); 6905 const Module &M = *MF.getFunction().getParent(); 6906 SDValue Chain = getRoot(); 6907 if (TLI.useLoadStackGuardNode()) { 6908 Res = getLoadStackGuard(DAG, sdl, Chain); 6909 } else { 6910 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6911 const Value *Global = TLI.getSDagStackGuard(M); 6912 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6913 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6914 MachinePointerInfo(Global, 0), Align, 6915 MachineMemOperand::MOVolatile); 6916 } 6917 if (TLI.useStackGuardXorFP()) 6918 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6919 DAG.setRoot(Chain); 6920 setValue(&I, Res); 6921 return; 6922 } 6923 case Intrinsic::stackprotector: { 6924 // Emit code into the DAG to store the stack guard onto the stack. 6925 MachineFunction &MF = DAG.getMachineFunction(); 6926 MachineFrameInfo &MFI = MF.getFrameInfo(); 6927 SDValue Src, Chain = getRoot(); 6928 6929 if (TLI.useLoadStackGuardNode()) 6930 Src = getLoadStackGuard(DAG, sdl, Chain); 6931 else 6932 Src = getValue(I.getArgOperand(0)); // The guard's value. 6933 6934 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6935 6936 int FI = FuncInfo.StaticAllocaMap[Slot]; 6937 MFI.setStackProtectorIndex(FI); 6938 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6939 6940 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6941 6942 // Store the stack protector onto the stack. 6943 Res = DAG.getStore( 6944 Chain, sdl, Src, FIN, 6945 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6946 MaybeAlign(), MachineMemOperand::MOVolatile); 6947 setValue(&I, Res); 6948 DAG.setRoot(Res); 6949 return; 6950 } 6951 case Intrinsic::objectsize: 6952 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6953 6954 case Intrinsic::is_constant: 6955 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6956 6957 case Intrinsic::annotation: 6958 case Intrinsic::ptr_annotation: 6959 case Intrinsic::launder_invariant_group: 6960 case Intrinsic::strip_invariant_group: 6961 // Drop the intrinsic, but forward the value 6962 setValue(&I, getValue(I.getOperand(0))); 6963 return; 6964 6965 case Intrinsic::assume: 6966 case Intrinsic::experimental_noalias_scope_decl: 6967 case Intrinsic::var_annotation: 6968 case Intrinsic::sideeffect: 6969 // Discard annotate attributes, noalias scope declarations, assumptions, and 6970 // artificial side-effects. 6971 return; 6972 6973 case Intrinsic::codeview_annotation: { 6974 // Emit a label associated with this metadata. 6975 MachineFunction &MF = DAG.getMachineFunction(); 6976 MCSymbol *Label = 6977 MF.getMMI().getContext().createTempSymbol("annotation", true); 6978 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6979 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6980 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6981 DAG.setRoot(Res); 6982 return; 6983 } 6984 6985 case Intrinsic::init_trampoline: { 6986 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6987 6988 SDValue Ops[6]; 6989 Ops[0] = getRoot(); 6990 Ops[1] = getValue(I.getArgOperand(0)); 6991 Ops[2] = getValue(I.getArgOperand(1)); 6992 Ops[3] = getValue(I.getArgOperand(2)); 6993 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6994 Ops[5] = DAG.getSrcValue(F); 6995 6996 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6997 6998 DAG.setRoot(Res); 6999 return; 7000 } 7001 case Intrinsic::adjust_trampoline: 7002 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7003 TLI.getPointerTy(DAG.getDataLayout()), 7004 getValue(I.getArgOperand(0)))); 7005 return; 7006 case Intrinsic::gcroot: { 7007 assert(DAG.getMachineFunction().getFunction().hasGC() && 7008 "only valid in functions with gc specified, enforced by Verifier"); 7009 assert(GFI && "implied by previous"); 7010 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7011 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7012 7013 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7014 GFI->addStackRoot(FI->getIndex(), TypeMap); 7015 return; 7016 } 7017 case Intrinsic::gcread: 7018 case Intrinsic::gcwrite: 7019 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7020 case Intrinsic::get_rounding: 7021 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7022 setValue(&I, Res); 7023 DAG.setRoot(Res.getValue(1)); 7024 return; 7025 7026 case Intrinsic::expect: 7027 // Just replace __builtin_expect(exp, c) with EXP. 7028 setValue(&I, getValue(I.getArgOperand(0))); 7029 return; 7030 7031 case Intrinsic::ubsantrap: 7032 case Intrinsic::debugtrap: 7033 case Intrinsic::trap: { 7034 StringRef TrapFuncName = 7035 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7036 if (TrapFuncName.empty()) { 7037 switch (Intrinsic) { 7038 case Intrinsic::trap: 7039 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7040 break; 7041 case Intrinsic::debugtrap: 7042 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7043 break; 7044 case Intrinsic::ubsantrap: 7045 DAG.setRoot(DAG.getNode( 7046 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7047 DAG.getTargetConstant( 7048 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7049 MVT::i32))); 7050 break; 7051 default: llvm_unreachable("unknown trap intrinsic"); 7052 } 7053 return; 7054 } 7055 TargetLowering::ArgListTy Args; 7056 if (Intrinsic == Intrinsic::ubsantrap) { 7057 Args.push_back(TargetLoweringBase::ArgListEntry()); 7058 Args[0].Val = I.getArgOperand(0); 7059 Args[0].Node = getValue(Args[0].Val); 7060 Args[0].Ty = Args[0].Val->getType(); 7061 } 7062 7063 TargetLowering::CallLoweringInfo CLI(DAG); 7064 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7065 CallingConv::C, I.getType(), 7066 DAG.getExternalSymbol(TrapFuncName.data(), 7067 TLI.getPointerTy(DAG.getDataLayout())), 7068 std::move(Args)); 7069 7070 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7071 DAG.setRoot(Result.second); 7072 return; 7073 } 7074 7075 case Intrinsic::uadd_with_overflow: 7076 case Intrinsic::sadd_with_overflow: 7077 case Intrinsic::usub_with_overflow: 7078 case Intrinsic::ssub_with_overflow: 7079 case Intrinsic::umul_with_overflow: 7080 case Intrinsic::smul_with_overflow: { 7081 ISD::NodeType Op; 7082 switch (Intrinsic) { 7083 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7084 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7085 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7086 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7087 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7088 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7089 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7090 } 7091 SDValue Op1 = getValue(I.getArgOperand(0)); 7092 SDValue Op2 = getValue(I.getArgOperand(1)); 7093 7094 EVT ResultVT = Op1.getValueType(); 7095 EVT OverflowVT = MVT::i1; 7096 if (ResultVT.isVector()) 7097 OverflowVT = EVT::getVectorVT( 7098 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7099 7100 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7101 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7102 return; 7103 } 7104 case Intrinsic::prefetch: { 7105 SDValue Ops[5]; 7106 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7107 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7108 Ops[0] = DAG.getRoot(); 7109 Ops[1] = getValue(I.getArgOperand(0)); 7110 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7111 MVT::i32); 7112 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7113 MVT::i32); 7114 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7115 MVT::i32); 7116 SDValue Result = DAG.getMemIntrinsicNode( 7117 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7118 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7119 /* align */ std::nullopt, Flags); 7120 7121 // Chain the prefetch in parallell with any pending loads, to stay out of 7122 // the way of later optimizations. 7123 PendingLoads.push_back(Result); 7124 Result = getRoot(); 7125 DAG.setRoot(Result); 7126 return; 7127 } 7128 case Intrinsic::lifetime_start: 7129 case Intrinsic::lifetime_end: { 7130 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7131 // Stack coloring is not enabled in O0, discard region information. 7132 if (TM.getOptLevel() == CodeGenOptLevel::None) 7133 return; 7134 7135 const int64_t ObjectSize = 7136 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7137 Value *const ObjectPtr = I.getArgOperand(1); 7138 SmallVector<const Value *, 4> Allocas; 7139 getUnderlyingObjects(ObjectPtr, Allocas); 7140 7141 for (const Value *Alloca : Allocas) { 7142 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7143 7144 // Could not find an Alloca. 7145 if (!LifetimeObject) 7146 continue; 7147 7148 // First check that the Alloca is static, otherwise it won't have a 7149 // valid frame index. 7150 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7151 if (SI == FuncInfo.StaticAllocaMap.end()) 7152 return; 7153 7154 const int FrameIndex = SI->second; 7155 int64_t Offset; 7156 if (GetPointerBaseWithConstantOffset( 7157 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7158 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7159 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7160 Offset); 7161 DAG.setRoot(Res); 7162 } 7163 return; 7164 } 7165 case Intrinsic::pseudoprobe: { 7166 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7167 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7168 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7169 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7170 DAG.setRoot(Res); 7171 return; 7172 } 7173 case Intrinsic::invariant_start: 7174 // Discard region information. 7175 setValue(&I, 7176 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7177 return; 7178 case Intrinsic::invariant_end: 7179 // Discard region information. 7180 return; 7181 case Intrinsic::clear_cache: 7182 /// FunctionName may be null. 7183 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7184 lowerCallToExternalSymbol(I, FunctionName); 7185 return; 7186 case Intrinsic::donothing: 7187 case Intrinsic::seh_try_begin: 7188 case Intrinsic::seh_scope_begin: 7189 case Intrinsic::seh_try_end: 7190 case Intrinsic::seh_scope_end: 7191 // ignore 7192 return; 7193 case Intrinsic::experimental_stackmap: 7194 visitStackmap(I); 7195 return; 7196 case Intrinsic::experimental_patchpoint_void: 7197 case Intrinsic::experimental_patchpoint_i64: 7198 visitPatchpoint(I); 7199 return; 7200 case Intrinsic::experimental_gc_statepoint: 7201 LowerStatepoint(cast<GCStatepointInst>(I)); 7202 return; 7203 case Intrinsic::experimental_gc_result: 7204 visitGCResult(cast<GCResultInst>(I)); 7205 return; 7206 case Intrinsic::experimental_gc_relocate: 7207 visitGCRelocate(cast<GCRelocateInst>(I)); 7208 return; 7209 case Intrinsic::instrprof_cover: 7210 llvm_unreachable("instrprof failed to lower a cover"); 7211 case Intrinsic::instrprof_increment: 7212 llvm_unreachable("instrprof failed to lower an increment"); 7213 case Intrinsic::instrprof_timestamp: 7214 llvm_unreachable("instrprof failed to lower a timestamp"); 7215 case Intrinsic::instrprof_value_profile: 7216 llvm_unreachable("instrprof failed to lower a value profiling call"); 7217 case Intrinsic::instrprof_mcdc_parameters: 7218 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7219 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7220 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7221 case Intrinsic::instrprof_mcdc_condbitmap_update: 7222 llvm_unreachable("instrprof failed to lower an mcdc condbitmap update"); 7223 case Intrinsic::localescape: { 7224 MachineFunction &MF = DAG.getMachineFunction(); 7225 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7226 7227 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7228 // is the same on all targets. 7229 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7230 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7231 if (isa<ConstantPointerNull>(Arg)) 7232 continue; // Skip null pointers. They represent a hole in index space. 7233 AllocaInst *Slot = cast<AllocaInst>(Arg); 7234 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7235 "can only escape static allocas"); 7236 int FI = FuncInfo.StaticAllocaMap[Slot]; 7237 MCSymbol *FrameAllocSym = 7238 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7239 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7240 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7241 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7242 .addSym(FrameAllocSym) 7243 .addFrameIndex(FI); 7244 } 7245 7246 return; 7247 } 7248 7249 case Intrinsic::localrecover: { 7250 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7251 MachineFunction &MF = DAG.getMachineFunction(); 7252 7253 // Get the symbol that defines the frame offset. 7254 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7255 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7256 unsigned IdxVal = 7257 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7258 MCSymbol *FrameAllocSym = 7259 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7260 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7261 7262 Value *FP = I.getArgOperand(1); 7263 SDValue FPVal = getValue(FP); 7264 EVT PtrVT = FPVal.getValueType(); 7265 7266 // Create a MCSymbol for the label to avoid any target lowering 7267 // that would make this PC relative. 7268 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7269 SDValue OffsetVal = 7270 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7271 7272 // Add the offset to the FP. 7273 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7274 setValue(&I, Add); 7275 7276 return; 7277 } 7278 7279 case Intrinsic::eh_exceptionpointer: 7280 case Intrinsic::eh_exceptioncode: { 7281 // Get the exception pointer vreg, copy from it, and resize it to fit. 7282 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7283 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7284 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7285 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7286 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7287 if (Intrinsic == Intrinsic::eh_exceptioncode) 7288 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7289 setValue(&I, N); 7290 return; 7291 } 7292 case Intrinsic::xray_customevent: { 7293 // Here we want to make sure that the intrinsic behaves as if it has a 7294 // specific calling convention. 7295 const auto &Triple = DAG.getTarget().getTargetTriple(); 7296 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7297 return; 7298 7299 SmallVector<SDValue, 8> Ops; 7300 7301 // We want to say that we always want the arguments in registers. 7302 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7303 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7304 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7305 SDValue Chain = getRoot(); 7306 Ops.push_back(LogEntryVal); 7307 Ops.push_back(StrSizeVal); 7308 Ops.push_back(Chain); 7309 7310 // We need to enforce the calling convention for the callsite, so that 7311 // argument ordering is enforced correctly, and that register allocation can 7312 // see that some registers may be assumed clobbered and have to preserve 7313 // them across calls to the intrinsic. 7314 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7315 sdl, NodeTys, Ops); 7316 SDValue patchableNode = SDValue(MN, 0); 7317 DAG.setRoot(patchableNode); 7318 setValue(&I, patchableNode); 7319 return; 7320 } 7321 case Intrinsic::xray_typedevent: { 7322 // Here we want to make sure that the intrinsic behaves as if it has a 7323 // specific calling convention. 7324 const auto &Triple = DAG.getTarget().getTargetTriple(); 7325 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7326 return; 7327 7328 SmallVector<SDValue, 8> Ops; 7329 7330 // We want to say that we always want the arguments in registers. 7331 // It's unclear to me how manipulating the selection DAG here forces callers 7332 // to provide arguments in registers instead of on the stack. 7333 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7334 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7335 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7336 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7337 SDValue Chain = getRoot(); 7338 Ops.push_back(LogTypeId); 7339 Ops.push_back(LogEntryVal); 7340 Ops.push_back(StrSizeVal); 7341 Ops.push_back(Chain); 7342 7343 // We need to enforce the calling convention for the callsite, so that 7344 // argument ordering is enforced correctly, and that register allocation can 7345 // see that some registers may be assumed clobbered and have to preserve 7346 // them across calls to the intrinsic. 7347 MachineSDNode *MN = DAG.getMachineNode( 7348 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7349 SDValue patchableNode = SDValue(MN, 0); 7350 DAG.setRoot(patchableNode); 7351 setValue(&I, patchableNode); 7352 return; 7353 } 7354 case Intrinsic::experimental_deoptimize: 7355 LowerDeoptimizeCall(&I); 7356 return; 7357 case Intrinsic::experimental_stepvector: 7358 visitStepVector(I); 7359 return; 7360 case Intrinsic::vector_reduce_fadd: 7361 case Intrinsic::vector_reduce_fmul: 7362 case Intrinsic::vector_reduce_add: 7363 case Intrinsic::vector_reduce_mul: 7364 case Intrinsic::vector_reduce_and: 7365 case Intrinsic::vector_reduce_or: 7366 case Intrinsic::vector_reduce_xor: 7367 case Intrinsic::vector_reduce_smax: 7368 case Intrinsic::vector_reduce_smin: 7369 case Intrinsic::vector_reduce_umax: 7370 case Intrinsic::vector_reduce_umin: 7371 case Intrinsic::vector_reduce_fmax: 7372 case Intrinsic::vector_reduce_fmin: 7373 case Intrinsic::vector_reduce_fmaximum: 7374 case Intrinsic::vector_reduce_fminimum: 7375 visitVectorReduce(I, Intrinsic); 7376 return; 7377 7378 case Intrinsic::icall_branch_funnel: { 7379 SmallVector<SDValue, 16> Ops; 7380 Ops.push_back(getValue(I.getArgOperand(0))); 7381 7382 int64_t Offset; 7383 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7384 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7385 if (!Base) 7386 report_fatal_error( 7387 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7388 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7389 7390 struct BranchFunnelTarget { 7391 int64_t Offset; 7392 SDValue Target; 7393 }; 7394 SmallVector<BranchFunnelTarget, 8> Targets; 7395 7396 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7397 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7398 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7399 if (ElemBase != Base) 7400 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7401 "to the same GlobalValue"); 7402 7403 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7404 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7405 if (!GA) 7406 report_fatal_error( 7407 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7408 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7409 GA->getGlobal(), sdl, Val.getValueType(), 7410 GA->getOffset())}); 7411 } 7412 llvm::sort(Targets, 7413 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7414 return T1.Offset < T2.Offset; 7415 }); 7416 7417 for (auto &T : Targets) { 7418 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7419 Ops.push_back(T.Target); 7420 } 7421 7422 Ops.push_back(DAG.getRoot()); // Chain 7423 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7424 MVT::Other, Ops), 7425 0); 7426 DAG.setRoot(N); 7427 setValue(&I, N); 7428 HasTailCall = true; 7429 return; 7430 } 7431 7432 case Intrinsic::wasm_landingpad_index: 7433 // Information this intrinsic contained has been transferred to 7434 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7435 // delete it now. 7436 return; 7437 7438 case Intrinsic::aarch64_settag: 7439 case Intrinsic::aarch64_settag_zero: { 7440 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7441 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7442 SDValue Val = TSI.EmitTargetCodeForSetTag( 7443 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7444 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7445 ZeroMemory); 7446 DAG.setRoot(Val); 7447 setValue(&I, Val); 7448 return; 7449 } 7450 case Intrinsic::amdgcn_cs_chain: { 7451 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7452 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7453 "Non-zero flags not supported yet"); 7454 7455 // At this point we don't care if it's amdgpu_cs_chain or 7456 // amdgpu_cs_chain_preserve. 7457 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7458 7459 Type *RetTy = I.getType(); 7460 assert(RetTy->isVoidTy() && "Should not return"); 7461 7462 SDValue Callee = getValue(I.getOperand(0)); 7463 7464 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7465 // We'll also tack the value of the EXEC mask at the end. 7466 TargetLowering::ArgListTy Args; 7467 Args.reserve(3); 7468 7469 for (unsigned Idx : {2, 3, 1}) { 7470 TargetLowering::ArgListEntry Arg; 7471 Arg.Node = getValue(I.getOperand(Idx)); 7472 Arg.Ty = I.getOperand(Idx)->getType(); 7473 Arg.setAttributes(&I, Idx); 7474 Args.push_back(Arg); 7475 } 7476 7477 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7478 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7479 Args[2].IsInReg = true; // EXEC should be inreg 7480 7481 TargetLowering::CallLoweringInfo CLI(DAG); 7482 CLI.setDebugLoc(getCurSDLoc()) 7483 .setChain(getRoot()) 7484 .setCallee(CC, RetTy, Callee, std::move(Args)) 7485 .setNoReturn(true) 7486 .setTailCall(true) 7487 .setConvergent(I.isConvergent()); 7488 CLI.CB = &I; 7489 std::pair<SDValue, SDValue> Result = 7490 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7491 (void)Result; 7492 assert(!Result.first.getNode() && !Result.second.getNode() && 7493 "Should've lowered as tail call"); 7494 7495 HasTailCall = true; 7496 return; 7497 } 7498 case Intrinsic::ptrmask: { 7499 SDValue Ptr = getValue(I.getOperand(0)); 7500 SDValue Mask = getValue(I.getOperand(1)); 7501 7502 EVT PtrVT = Ptr.getValueType(); 7503 assert(PtrVT == Mask.getValueType() && 7504 "Pointers with different index type are not supported by SDAG"); 7505 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7506 return; 7507 } 7508 case Intrinsic::threadlocal_address: { 7509 setValue(&I, getValue(I.getOperand(0))); 7510 return; 7511 } 7512 case Intrinsic::get_active_lane_mask: { 7513 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7514 SDValue Index = getValue(I.getOperand(0)); 7515 EVT ElementVT = Index.getValueType(); 7516 7517 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7518 visitTargetIntrinsic(I, Intrinsic); 7519 return; 7520 } 7521 7522 SDValue TripCount = getValue(I.getOperand(1)); 7523 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7524 CCVT.getVectorElementCount()); 7525 7526 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7527 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7528 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7529 SDValue VectorInduction = DAG.getNode( 7530 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7531 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7532 VectorTripCount, ISD::CondCode::SETULT); 7533 setValue(&I, SetCC); 7534 return; 7535 } 7536 case Intrinsic::experimental_get_vector_length: { 7537 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7538 "Expected positive VF"); 7539 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7540 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7541 7542 SDValue Count = getValue(I.getOperand(0)); 7543 EVT CountVT = Count.getValueType(); 7544 7545 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7546 visitTargetIntrinsic(I, Intrinsic); 7547 return; 7548 } 7549 7550 // Expand to a umin between the trip count and the maximum elements the type 7551 // can hold. 7552 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7553 7554 // Extend the trip count to at least the result VT. 7555 if (CountVT.bitsLT(VT)) { 7556 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7557 CountVT = VT; 7558 } 7559 7560 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7561 ElementCount::get(VF, IsScalable)); 7562 7563 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7564 // Clip to the result type if needed. 7565 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7566 7567 setValue(&I, Trunc); 7568 return; 7569 } 7570 case Intrinsic::experimental_cttz_elts: { 7571 auto DL = getCurSDLoc(); 7572 SDValue Op = getValue(I.getOperand(0)); 7573 EVT OpVT = Op.getValueType(); 7574 7575 if (!TLI.shouldExpandCttzElements(OpVT)) { 7576 visitTargetIntrinsic(I, Intrinsic); 7577 return; 7578 } 7579 7580 if (OpVT.getScalarType() != MVT::i1) { 7581 // Compare the input vector elements to zero & use to count trailing zeros 7582 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7583 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7584 OpVT.getVectorElementCount()); 7585 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7586 } 7587 7588 // Find the smallest "sensible" element type to use for the expansion. 7589 ConstantRange CR( 7590 APInt(64, OpVT.getVectorElementCount().getKnownMinValue())); 7591 if (OpVT.isScalableVT()) 7592 CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64)); 7593 7594 // If the zero-is-poison flag is set, we can assume the upper limit 7595 // of the result is VF-1. 7596 if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero()) 7597 CR = CR.subtract(APInt(64, 1)); 7598 7599 unsigned EltWidth = I.getType()->getScalarSizeInBits(); 7600 EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits()); 7601 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8); 7602 7603 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 7604 7605 // Create the new vector type & get the vector length 7606 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 7607 OpVT.getVectorElementCount()); 7608 7609 SDValue VL = 7610 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 7611 7612 SDValue StepVec = DAG.getStepVector(DL, NewVT); 7613 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 7614 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 7615 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 7616 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 7617 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 7618 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 7619 7620 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7621 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 7622 7623 setValue(&I, Ret); 7624 return; 7625 } 7626 case Intrinsic::vector_insert: { 7627 SDValue Vec = getValue(I.getOperand(0)); 7628 SDValue SubVec = getValue(I.getOperand(1)); 7629 SDValue Index = getValue(I.getOperand(2)); 7630 7631 // The intrinsic's index type is i64, but the SDNode requires an index type 7632 // suitable for the target. Convert the index as required. 7633 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7634 if (Index.getValueType() != VectorIdxTy) 7635 Index = DAG.getVectorIdxConstant( 7636 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7637 7638 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7639 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7640 Index)); 7641 return; 7642 } 7643 case Intrinsic::vector_extract: { 7644 SDValue Vec = getValue(I.getOperand(0)); 7645 SDValue Index = getValue(I.getOperand(1)); 7646 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7647 7648 // The intrinsic's index type is i64, but the SDNode requires an index type 7649 // suitable for the target. Convert the index as required. 7650 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7651 if (Index.getValueType() != VectorIdxTy) 7652 Index = DAG.getVectorIdxConstant( 7653 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7654 7655 setValue(&I, 7656 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7657 return; 7658 } 7659 case Intrinsic::experimental_vector_reverse: 7660 visitVectorReverse(I); 7661 return; 7662 case Intrinsic::experimental_vector_splice: 7663 visitVectorSplice(I); 7664 return; 7665 case Intrinsic::callbr_landingpad: 7666 visitCallBrLandingPad(I); 7667 return; 7668 case Intrinsic::experimental_vector_interleave2: 7669 visitVectorInterleave(I); 7670 return; 7671 case Intrinsic::experimental_vector_deinterleave2: 7672 visitVectorDeinterleave(I); 7673 return; 7674 } 7675 } 7676 7677 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7678 const ConstrainedFPIntrinsic &FPI) { 7679 SDLoc sdl = getCurSDLoc(); 7680 7681 // We do not need to serialize constrained FP intrinsics against 7682 // each other or against (nonvolatile) loads, so they can be 7683 // chained like loads. 7684 SDValue Chain = DAG.getRoot(); 7685 SmallVector<SDValue, 4> Opers; 7686 Opers.push_back(Chain); 7687 if (FPI.isUnaryOp()) { 7688 Opers.push_back(getValue(FPI.getArgOperand(0))); 7689 } else if (FPI.isTernaryOp()) { 7690 Opers.push_back(getValue(FPI.getArgOperand(0))); 7691 Opers.push_back(getValue(FPI.getArgOperand(1))); 7692 Opers.push_back(getValue(FPI.getArgOperand(2))); 7693 } else { 7694 Opers.push_back(getValue(FPI.getArgOperand(0))); 7695 Opers.push_back(getValue(FPI.getArgOperand(1))); 7696 } 7697 7698 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7699 assert(Result.getNode()->getNumValues() == 2); 7700 7701 // Push node to the appropriate list so that future instructions can be 7702 // chained up correctly. 7703 SDValue OutChain = Result.getValue(1); 7704 switch (EB) { 7705 case fp::ExceptionBehavior::ebIgnore: 7706 // The only reason why ebIgnore nodes still need to be chained is that 7707 // they might depend on the current rounding mode, and therefore must 7708 // not be moved across instruction that may change that mode. 7709 [[fallthrough]]; 7710 case fp::ExceptionBehavior::ebMayTrap: 7711 // These must not be moved across calls or instructions that may change 7712 // floating-point exception masks. 7713 PendingConstrainedFP.push_back(OutChain); 7714 break; 7715 case fp::ExceptionBehavior::ebStrict: 7716 // These must not be moved across calls or instructions that may change 7717 // floating-point exception masks or read floating-point exception flags. 7718 // In addition, they cannot be optimized out even if unused. 7719 PendingConstrainedFPStrict.push_back(OutChain); 7720 break; 7721 } 7722 }; 7723 7724 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7725 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7726 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7727 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7728 7729 SDNodeFlags Flags; 7730 if (EB == fp::ExceptionBehavior::ebIgnore) 7731 Flags.setNoFPExcept(true); 7732 7733 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7734 Flags.copyFMF(*FPOp); 7735 7736 unsigned Opcode; 7737 switch (FPI.getIntrinsicID()) { 7738 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7739 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7740 case Intrinsic::INTRINSIC: \ 7741 Opcode = ISD::STRICT_##DAGN; \ 7742 break; 7743 #include "llvm/IR/ConstrainedOps.def" 7744 case Intrinsic::experimental_constrained_fmuladd: { 7745 Opcode = ISD::STRICT_FMA; 7746 // Break fmuladd into fmul and fadd. 7747 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7748 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7749 Opers.pop_back(); 7750 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7751 pushOutChain(Mul, EB); 7752 Opcode = ISD::STRICT_FADD; 7753 Opers.clear(); 7754 Opers.push_back(Mul.getValue(1)); 7755 Opers.push_back(Mul.getValue(0)); 7756 Opers.push_back(getValue(FPI.getArgOperand(2))); 7757 } 7758 break; 7759 } 7760 } 7761 7762 // A few strict DAG nodes carry additional operands that are not 7763 // set up by the default code above. 7764 switch (Opcode) { 7765 default: break; 7766 case ISD::STRICT_FP_ROUND: 7767 Opers.push_back( 7768 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7769 break; 7770 case ISD::STRICT_FSETCC: 7771 case ISD::STRICT_FSETCCS: { 7772 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7773 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7774 if (TM.Options.NoNaNsFPMath) 7775 Condition = getFCmpCodeWithoutNaN(Condition); 7776 Opers.push_back(DAG.getCondCode(Condition)); 7777 break; 7778 } 7779 } 7780 7781 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7782 pushOutChain(Result, EB); 7783 7784 SDValue FPResult = Result.getValue(0); 7785 setValue(&FPI, FPResult); 7786 } 7787 7788 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7789 std::optional<unsigned> ResOPC; 7790 switch (VPIntrin.getIntrinsicID()) { 7791 case Intrinsic::vp_ctlz: { 7792 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7793 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7794 break; 7795 } 7796 case Intrinsic::vp_cttz: { 7797 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7798 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7799 break; 7800 } 7801 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7802 case Intrinsic::VPID: \ 7803 ResOPC = ISD::VPSD; \ 7804 break; 7805 #include "llvm/IR/VPIntrinsics.def" 7806 } 7807 7808 if (!ResOPC) 7809 llvm_unreachable( 7810 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7811 7812 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7813 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7814 if (VPIntrin.getFastMathFlags().allowReassoc()) 7815 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7816 : ISD::VP_REDUCE_FMUL; 7817 } 7818 7819 return *ResOPC; 7820 } 7821 7822 void SelectionDAGBuilder::visitVPLoad( 7823 const VPIntrinsic &VPIntrin, EVT VT, 7824 const SmallVectorImpl<SDValue> &OpValues) { 7825 SDLoc DL = getCurSDLoc(); 7826 Value *PtrOperand = VPIntrin.getArgOperand(0); 7827 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7828 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7829 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7830 SDValue LD; 7831 // Do not serialize variable-length loads of constant memory with 7832 // anything. 7833 if (!Alignment) 7834 Alignment = DAG.getEVTAlign(VT); 7835 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7836 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7837 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7838 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7839 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7840 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7841 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7842 MMO, false /*IsExpanding */); 7843 if (AddToChain) 7844 PendingLoads.push_back(LD.getValue(1)); 7845 setValue(&VPIntrin, LD); 7846 } 7847 7848 void SelectionDAGBuilder::visitVPGather( 7849 const VPIntrinsic &VPIntrin, EVT VT, 7850 const SmallVectorImpl<SDValue> &OpValues) { 7851 SDLoc DL = getCurSDLoc(); 7852 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7853 Value *PtrOperand = VPIntrin.getArgOperand(0); 7854 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7855 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7856 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7857 SDValue LD; 7858 if (!Alignment) 7859 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7860 unsigned AS = 7861 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7862 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7863 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7864 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7865 SDValue Base, Index, Scale; 7866 ISD::MemIndexType IndexType; 7867 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7868 this, VPIntrin.getParent(), 7869 VT.getScalarStoreSize()); 7870 if (!UniformBase) { 7871 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7872 Index = getValue(PtrOperand); 7873 IndexType = ISD::SIGNED_SCALED; 7874 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7875 } 7876 EVT IdxVT = Index.getValueType(); 7877 EVT EltTy = IdxVT.getVectorElementType(); 7878 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7879 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7880 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7881 } 7882 LD = DAG.getGatherVP( 7883 DAG.getVTList(VT, MVT::Other), VT, DL, 7884 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7885 IndexType); 7886 PendingLoads.push_back(LD.getValue(1)); 7887 setValue(&VPIntrin, LD); 7888 } 7889 7890 void SelectionDAGBuilder::visitVPStore( 7891 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7892 SDLoc DL = getCurSDLoc(); 7893 Value *PtrOperand = VPIntrin.getArgOperand(1); 7894 EVT VT = OpValues[0].getValueType(); 7895 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7896 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7897 SDValue ST; 7898 if (!Alignment) 7899 Alignment = DAG.getEVTAlign(VT); 7900 SDValue Ptr = OpValues[1]; 7901 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7902 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7903 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7904 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7905 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7906 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7907 /* IsTruncating */ false, /*IsCompressing*/ false); 7908 DAG.setRoot(ST); 7909 setValue(&VPIntrin, ST); 7910 } 7911 7912 void SelectionDAGBuilder::visitVPScatter( 7913 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7914 SDLoc DL = getCurSDLoc(); 7915 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7916 Value *PtrOperand = VPIntrin.getArgOperand(1); 7917 EVT VT = OpValues[0].getValueType(); 7918 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7919 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7920 SDValue ST; 7921 if (!Alignment) 7922 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7923 unsigned AS = 7924 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7925 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7926 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7927 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7928 SDValue Base, Index, Scale; 7929 ISD::MemIndexType IndexType; 7930 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7931 this, VPIntrin.getParent(), 7932 VT.getScalarStoreSize()); 7933 if (!UniformBase) { 7934 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7935 Index = getValue(PtrOperand); 7936 IndexType = ISD::SIGNED_SCALED; 7937 Scale = 7938 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7939 } 7940 EVT IdxVT = Index.getValueType(); 7941 EVT EltTy = IdxVT.getVectorElementType(); 7942 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7943 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7944 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7945 } 7946 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7947 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7948 OpValues[2], OpValues[3]}, 7949 MMO, IndexType); 7950 DAG.setRoot(ST); 7951 setValue(&VPIntrin, ST); 7952 } 7953 7954 void SelectionDAGBuilder::visitVPStridedLoad( 7955 const VPIntrinsic &VPIntrin, EVT VT, 7956 const SmallVectorImpl<SDValue> &OpValues) { 7957 SDLoc DL = getCurSDLoc(); 7958 Value *PtrOperand = VPIntrin.getArgOperand(0); 7959 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7960 if (!Alignment) 7961 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7962 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7963 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7964 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7965 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7966 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7967 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7968 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7969 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7970 7971 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7972 OpValues[2], OpValues[3], MMO, 7973 false /*IsExpanding*/); 7974 7975 if (AddToChain) 7976 PendingLoads.push_back(LD.getValue(1)); 7977 setValue(&VPIntrin, LD); 7978 } 7979 7980 void SelectionDAGBuilder::visitVPStridedStore( 7981 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7982 SDLoc DL = getCurSDLoc(); 7983 Value *PtrOperand = VPIntrin.getArgOperand(1); 7984 EVT VT = OpValues[0].getValueType(); 7985 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7986 if (!Alignment) 7987 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7988 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7989 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7990 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7991 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7992 7993 SDValue ST = DAG.getStridedStoreVP( 7994 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7995 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7996 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7997 /*IsCompressing*/ false); 7998 7999 DAG.setRoot(ST); 8000 setValue(&VPIntrin, ST); 8001 } 8002 8003 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8005 SDLoc DL = getCurSDLoc(); 8006 8007 ISD::CondCode Condition; 8008 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8009 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8010 if (IsFP) { 8011 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8012 // flags, but calls that don't return floating-point types can't be 8013 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8014 Condition = getFCmpCondCode(CondCode); 8015 if (TM.Options.NoNaNsFPMath) 8016 Condition = getFCmpCodeWithoutNaN(Condition); 8017 } else { 8018 Condition = getICmpCondCode(CondCode); 8019 } 8020 8021 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8022 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8023 // #2 is the condition code 8024 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8025 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8026 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8027 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8028 "Unexpected target EVL type"); 8029 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8030 8031 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8032 VPIntrin.getType()); 8033 setValue(&VPIntrin, 8034 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8035 } 8036 8037 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8038 const VPIntrinsic &VPIntrin) { 8039 SDLoc DL = getCurSDLoc(); 8040 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8041 8042 auto IID = VPIntrin.getIntrinsicID(); 8043 8044 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8045 return visitVPCmp(*CmpI); 8046 8047 SmallVector<EVT, 4> ValueVTs; 8048 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8049 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8050 SDVTList VTs = DAG.getVTList(ValueVTs); 8051 8052 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8053 8054 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8055 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8056 "Unexpected target EVL type"); 8057 8058 // Request operands. 8059 SmallVector<SDValue, 7> OpValues; 8060 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8061 auto Op = getValue(VPIntrin.getArgOperand(I)); 8062 if (I == EVLParamPos) 8063 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8064 OpValues.push_back(Op); 8065 } 8066 8067 switch (Opcode) { 8068 default: { 8069 SDNodeFlags SDFlags; 8070 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8071 SDFlags.copyFMF(*FPMO); 8072 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8073 setValue(&VPIntrin, Result); 8074 break; 8075 } 8076 case ISD::VP_LOAD: 8077 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8078 break; 8079 case ISD::VP_GATHER: 8080 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8081 break; 8082 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8083 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8084 break; 8085 case ISD::VP_STORE: 8086 visitVPStore(VPIntrin, OpValues); 8087 break; 8088 case ISD::VP_SCATTER: 8089 visitVPScatter(VPIntrin, OpValues); 8090 break; 8091 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8092 visitVPStridedStore(VPIntrin, OpValues); 8093 break; 8094 case ISD::VP_FMULADD: { 8095 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8096 SDNodeFlags SDFlags; 8097 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8098 SDFlags.copyFMF(*FPMO); 8099 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8100 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8101 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8102 } else { 8103 SDValue Mul = DAG.getNode( 8104 ISD::VP_FMUL, DL, VTs, 8105 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8106 SDValue Add = 8107 DAG.getNode(ISD::VP_FADD, DL, VTs, 8108 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8109 setValue(&VPIntrin, Add); 8110 } 8111 break; 8112 } 8113 case ISD::VP_IS_FPCLASS: { 8114 const DataLayout DLayout = DAG.getDataLayout(); 8115 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8116 auto Constant = cast<ConstantSDNode>(OpValues[1])->getZExtValue(); 8117 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8118 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8119 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8120 setValue(&VPIntrin, V); 8121 return; 8122 } 8123 case ISD::VP_INTTOPTR: { 8124 SDValue N = OpValues[0]; 8125 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8126 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8127 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8128 OpValues[2]); 8129 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8130 OpValues[2]); 8131 setValue(&VPIntrin, N); 8132 break; 8133 } 8134 case ISD::VP_PTRTOINT: { 8135 SDValue N = OpValues[0]; 8136 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8137 VPIntrin.getType()); 8138 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8139 VPIntrin.getOperand(0)->getType()); 8140 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8141 OpValues[2]); 8142 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8143 OpValues[2]); 8144 setValue(&VPIntrin, N); 8145 break; 8146 } 8147 case ISD::VP_ABS: 8148 case ISD::VP_CTLZ: 8149 case ISD::VP_CTLZ_ZERO_UNDEF: 8150 case ISD::VP_CTTZ: 8151 case ISD::VP_CTTZ_ZERO_UNDEF: { 8152 SDValue Result = 8153 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8154 setValue(&VPIntrin, Result); 8155 break; 8156 } 8157 } 8158 } 8159 8160 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8161 const BasicBlock *EHPadBB, 8162 MCSymbol *&BeginLabel) { 8163 MachineFunction &MF = DAG.getMachineFunction(); 8164 MachineModuleInfo &MMI = MF.getMMI(); 8165 8166 // Insert a label before the invoke call to mark the try range. This can be 8167 // used to detect deletion of the invoke via the MachineModuleInfo. 8168 BeginLabel = MMI.getContext().createTempSymbol(); 8169 8170 // For SjLj, keep track of which landing pads go with which invokes 8171 // so as to maintain the ordering of pads in the LSDA. 8172 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8173 if (CallSiteIndex) { 8174 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8175 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8176 8177 // Now that the call site is handled, stop tracking it. 8178 MMI.setCurrentCallSite(0); 8179 } 8180 8181 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8182 } 8183 8184 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8185 const BasicBlock *EHPadBB, 8186 MCSymbol *BeginLabel) { 8187 assert(BeginLabel && "BeginLabel should've been set"); 8188 8189 MachineFunction &MF = DAG.getMachineFunction(); 8190 MachineModuleInfo &MMI = MF.getMMI(); 8191 8192 // Insert a label at the end of the invoke call to mark the try range. This 8193 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8194 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8195 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8196 8197 // Inform MachineModuleInfo of range. 8198 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8199 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8200 // actually use outlined funclets and their LSDA info style. 8201 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8202 assert(II && "II should've been set"); 8203 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8204 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8205 } else if (!isScopedEHPersonality(Pers)) { 8206 assert(EHPadBB); 8207 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8208 } 8209 8210 return Chain; 8211 } 8212 8213 std::pair<SDValue, SDValue> 8214 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8215 const BasicBlock *EHPadBB) { 8216 MCSymbol *BeginLabel = nullptr; 8217 8218 if (EHPadBB) { 8219 // Both PendingLoads and PendingExports must be flushed here; 8220 // this call might not return. 8221 (void)getRoot(); 8222 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8223 CLI.setChain(getRoot()); 8224 } 8225 8226 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8227 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8228 8229 assert((CLI.IsTailCall || Result.second.getNode()) && 8230 "Non-null chain expected with non-tail call!"); 8231 assert((Result.second.getNode() || !Result.first.getNode()) && 8232 "Null value expected with tail call!"); 8233 8234 if (!Result.second.getNode()) { 8235 // As a special case, a null chain means that a tail call has been emitted 8236 // and the DAG root is already updated. 8237 HasTailCall = true; 8238 8239 // Since there's no actual continuation from this block, nothing can be 8240 // relying on us setting vregs for them. 8241 PendingExports.clear(); 8242 } else { 8243 DAG.setRoot(Result.second); 8244 } 8245 8246 if (EHPadBB) { 8247 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8248 BeginLabel)); 8249 } 8250 8251 return Result; 8252 } 8253 8254 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8255 bool isTailCall, 8256 bool isMustTailCall, 8257 const BasicBlock *EHPadBB) { 8258 auto &DL = DAG.getDataLayout(); 8259 FunctionType *FTy = CB.getFunctionType(); 8260 Type *RetTy = CB.getType(); 8261 8262 TargetLowering::ArgListTy Args; 8263 Args.reserve(CB.arg_size()); 8264 8265 const Value *SwiftErrorVal = nullptr; 8266 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8267 8268 if (isTailCall) { 8269 // Avoid emitting tail calls in functions with the disable-tail-calls 8270 // attribute. 8271 auto *Caller = CB.getParent()->getParent(); 8272 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8273 "true" && !isMustTailCall) 8274 isTailCall = false; 8275 8276 // We can't tail call inside a function with a swifterror argument. Lowering 8277 // does not support this yet. It would have to move into the swifterror 8278 // register before the call. 8279 if (TLI.supportSwiftError() && 8280 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8281 isTailCall = false; 8282 } 8283 8284 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8285 TargetLowering::ArgListEntry Entry; 8286 const Value *V = *I; 8287 8288 // Skip empty types 8289 if (V->getType()->isEmptyTy()) 8290 continue; 8291 8292 SDValue ArgNode = getValue(V); 8293 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8294 8295 Entry.setAttributes(&CB, I - CB.arg_begin()); 8296 8297 // Use swifterror virtual register as input to the call. 8298 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8299 SwiftErrorVal = V; 8300 // We find the virtual register for the actual swifterror argument. 8301 // Instead of using the Value, we use the virtual register instead. 8302 Entry.Node = 8303 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8304 EVT(TLI.getPointerTy(DL))); 8305 } 8306 8307 Args.push_back(Entry); 8308 8309 // If we have an explicit sret argument that is an Instruction, (i.e., it 8310 // might point to function-local memory), we can't meaningfully tail-call. 8311 if (Entry.IsSRet && isa<Instruction>(V)) 8312 isTailCall = false; 8313 } 8314 8315 // If call site has a cfguardtarget operand bundle, create and add an 8316 // additional ArgListEntry. 8317 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8318 TargetLowering::ArgListEntry Entry; 8319 Value *V = Bundle->Inputs[0]; 8320 SDValue ArgNode = getValue(V); 8321 Entry.Node = ArgNode; 8322 Entry.Ty = V->getType(); 8323 Entry.IsCFGuardTarget = true; 8324 Args.push_back(Entry); 8325 } 8326 8327 // Check if target-independent constraints permit a tail call here. 8328 // Target-dependent constraints are checked within TLI->LowerCallTo. 8329 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8330 isTailCall = false; 8331 8332 // Disable tail calls if there is an swifterror argument. Targets have not 8333 // been updated to support tail calls. 8334 if (TLI.supportSwiftError() && SwiftErrorVal) 8335 isTailCall = false; 8336 8337 ConstantInt *CFIType = nullptr; 8338 if (CB.isIndirectCall()) { 8339 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8340 if (!TLI.supportKCFIBundles()) 8341 report_fatal_error( 8342 "Target doesn't support calls with kcfi operand bundles."); 8343 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8344 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8345 } 8346 } 8347 8348 TargetLowering::CallLoweringInfo CLI(DAG); 8349 CLI.setDebugLoc(getCurSDLoc()) 8350 .setChain(getRoot()) 8351 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8352 .setTailCall(isTailCall) 8353 .setConvergent(CB.isConvergent()) 8354 .setIsPreallocated( 8355 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8356 .setCFIType(CFIType); 8357 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8358 8359 if (Result.first.getNode()) { 8360 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8361 setValue(&CB, Result.first); 8362 } 8363 8364 // The last element of CLI.InVals has the SDValue for swifterror return. 8365 // Here we copy it to a virtual register and update SwiftErrorMap for 8366 // book-keeping. 8367 if (SwiftErrorVal && TLI.supportSwiftError()) { 8368 // Get the last element of InVals. 8369 SDValue Src = CLI.InVals.back(); 8370 Register VReg = 8371 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8372 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8373 DAG.setRoot(CopyNode); 8374 } 8375 } 8376 8377 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8378 SelectionDAGBuilder &Builder) { 8379 // Check to see if this load can be trivially constant folded, e.g. if the 8380 // input is from a string literal. 8381 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8382 // Cast pointer to the type we really want to load. 8383 Type *LoadTy = 8384 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8385 if (LoadVT.isVector()) 8386 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8387 8388 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8389 PointerType::getUnqual(LoadTy)); 8390 8391 if (const Constant *LoadCst = 8392 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8393 LoadTy, Builder.DAG.getDataLayout())) 8394 return Builder.getValue(LoadCst); 8395 } 8396 8397 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8398 // still constant memory, the input chain can be the entry node. 8399 SDValue Root; 8400 bool ConstantMemory = false; 8401 8402 // Do not serialize (non-volatile) loads of constant memory with anything. 8403 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8404 Root = Builder.DAG.getEntryNode(); 8405 ConstantMemory = true; 8406 } else { 8407 // Do not serialize non-volatile loads against each other. 8408 Root = Builder.DAG.getRoot(); 8409 } 8410 8411 SDValue Ptr = Builder.getValue(PtrVal); 8412 SDValue LoadVal = 8413 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8414 MachinePointerInfo(PtrVal), Align(1)); 8415 8416 if (!ConstantMemory) 8417 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8418 return LoadVal; 8419 } 8420 8421 /// Record the value for an instruction that produces an integer result, 8422 /// converting the type where necessary. 8423 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8424 SDValue Value, 8425 bool IsSigned) { 8426 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8427 I.getType(), true); 8428 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8429 setValue(&I, Value); 8430 } 8431 8432 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8433 /// true and lower it. Otherwise return false, and it will be lowered like a 8434 /// normal call. 8435 /// The caller already checked that \p I calls the appropriate LibFunc with a 8436 /// correct prototype. 8437 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8438 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8439 const Value *Size = I.getArgOperand(2); 8440 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8441 if (CSize && CSize->getZExtValue() == 0) { 8442 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8443 I.getType(), true); 8444 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8445 return true; 8446 } 8447 8448 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8449 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8450 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8451 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8452 if (Res.first.getNode()) { 8453 processIntegerCallValue(I, Res.first, true); 8454 PendingLoads.push_back(Res.second); 8455 return true; 8456 } 8457 8458 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8459 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8460 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8461 return false; 8462 8463 // If the target has a fast compare for the given size, it will return a 8464 // preferred load type for that size. Require that the load VT is legal and 8465 // that the target supports unaligned loads of that type. Otherwise, return 8466 // INVALID. 8467 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8469 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8470 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8471 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8472 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8473 // TODO: Check alignment of src and dest ptrs. 8474 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8475 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8476 if (!TLI.isTypeLegal(LVT) || 8477 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8478 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8479 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8480 } 8481 8482 return LVT; 8483 }; 8484 8485 // This turns into unaligned loads. We only do this if the target natively 8486 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8487 // we'll only produce a small number of byte loads. 8488 MVT LoadVT; 8489 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8490 switch (NumBitsToCompare) { 8491 default: 8492 return false; 8493 case 16: 8494 LoadVT = MVT::i16; 8495 break; 8496 case 32: 8497 LoadVT = MVT::i32; 8498 break; 8499 case 64: 8500 case 128: 8501 case 256: 8502 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8503 break; 8504 } 8505 8506 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8507 return false; 8508 8509 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8510 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8511 8512 // Bitcast to a wide integer type if the loads are vectors. 8513 if (LoadVT.isVector()) { 8514 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8515 LoadL = DAG.getBitcast(CmpVT, LoadL); 8516 LoadR = DAG.getBitcast(CmpVT, LoadR); 8517 } 8518 8519 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8520 processIntegerCallValue(I, Cmp, false); 8521 return true; 8522 } 8523 8524 /// See if we can lower a memchr call into an optimized form. If so, return 8525 /// true and lower it. Otherwise return false, and it will be lowered like a 8526 /// normal call. 8527 /// The caller already checked that \p I calls the appropriate LibFunc with a 8528 /// correct prototype. 8529 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8530 const Value *Src = I.getArgOperand(0); 8531 const Value *Char = I.getArgOperand(1); 8532 const Value *Length = I.getArgOperand(2); 8533 8534 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8535 std::pair<SDValue, SDValue> Res = 8536 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8537 getValue(Src), getValue(Char), getValue(Length), 8538 MachinePointerInfo(Src)); 8539 if (Res.first.getNode()) { 8540 setValue(&I, Res.first); 8541 PendingLoads.push_back(Res.second); 8542 return true; 8543 } 8544 8545 return false; 8546 } 8547 8548 /// See if we can lower a mempcpy call into an optimized form. If so, return 8549 /// true and lower it. Otherwise return false, and it will be lowered like a 8550 /// normal call. 8551 /// The caller already checked that \p I calls the appropriate LibFunc with a 8552 /// correct prototype. 8553 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8554 SDValue Dst = getValue(I.getArgOperand(0)); 8555 SDValue Src = getValue(I.getArgOperand(1)); 8556 SDValue Size = getValue(I.getArgOperand(2)); 8557 8558 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8559 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8560 // DAG::getMemcpy needs Alignment to be defined. 8561 Align Alignment = std::min(DstAlign, SrcAlign); 8562 8563 SDLoc sdl = getCurSDLoc(); 8564 8565 // In the mempcpy context we need to pass in a false value for isTailCall 8566 // because the return pointer needs to be adjusted by the size of 8567 // the copied memory. 8568 SDValue Root = getMemoryRoot(); 8569 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8570 /*isTailCall=*/false, 8571 MachinePointerInfo(I.getArgOperand(0)), 8572 MachinePointerInfo(I.getArgOperand(1)), 8573 I.getAAMetadata()); 8574 assert(MC.getNode() != nullptr && 8575 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8576 DAG.setRoot(MC); 8577 8578 // Check if Size needs to be truncated or extended. 8579 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8580 8581 // Adjust return pointer to point just past the last dst byte. 8582 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8583 Dst, Size); 8584 setValue(&I, DstPlusSize); 8585 return true; 8586 } 8587 8588 /// See if we can lower a strcpy call into an optimized form. If so, return 8589 /// true and lower it, otherwise return false and it will be lowered like a 8590 /// normal call. 8591 /// The caller already checked that \p I calls the appropriate LibFunc with a 8592 /// correct prototype. 8593 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8594 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8595 8596 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8597 std::pair<SDValue, SDValue> Res = 8598 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8599 getValue(Arg0), getValue(Arg1), 8600 MachinePointerInfo(Arg0), 8601 MachinePointerInfo(Arg1), isStpcpy); 8602 if (Res.first.getNode()) { 8603 setValue(&I, Res.first); 8604 DAG.setRoot(Res.second); 8605 return true; 8606 } 8607 8608 return false; 8609 } 8610 8611 /// See if we can lower a strcmp call into an optimized form. If so, return 8612 /// true and lower it, otherwise return false and it will be lowered like a 8613 /// normal call. 8614 /// The caller already checked that \p I calls the appropriate LibFunc with a 8615 /// correct prototype. 8616 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8617 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8618 8619 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8620 std::pair<SDValue, SDValue> Res = 8621 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8622 getValue(Arg0), getValue(Arg1), 8623 MachinePointerInfo(Arg0), 8624 MachinePointerInfo(Arg1)); 8625 if (Res.first.getNode()) { 8626 processIntegerCallValue(I, Res.first, true); 8627 PendingLoads.push_back(Res.second); 8628 return true; 8629 } 8630 8631 return false; 8632 } 8633 8634 /// See if we can lower a strlen call into an optimized form. If so, return 8635 /// true and lower it, otherwise return false and it will be lowered like a 8636 /// normal call. 8637 /// The caller already checked that \p I calls the appropriate LibFunc with a 8638 /// correct prototype. 8639 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8640 const Value *Arg0 = I.getArgOperand(0); 8641 8642 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8643 std::pair<SDValue, SDValue> Res = 8644 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8645 getValue(Arg0), MachinePointerInfo(Arg0)); 8646 if (Res.first.getNode()) { 8647 processIntegerCallValue(I, Res.first, false); 8648 PendingLoads.push_back(Res.second); 8649 return true; 8650 } 8651 8652 return false; 8653 } 8654 8655 /// See if we can lower a strnlen call into an optimized form. If so, return 8656 /// true and lower it, otherwise return false and it will be lowered like a 8657 /// normal call. 8658 /// The caller already checked that \p I calls the appropriate LibFunc with a 8659 /// correct prototype. 8660 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8661 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8662 8663 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8664 std::pair<SDValue, SDValue> Res = 8665 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8666 getValue(Arg0), getValue(Arg1), 8667 MachinePointerInfo(Arg0)); 8668 if (Res.first.getNode()) { 8669 processIntegerCallValue(I, Res.first, false); 8670 PendingLoads.push_back(Res.second); 8671 return true; 8672 } 8673 8674 return false; 8675 } 8676 8677 /// See if we can lower a unary floating-point operation into an SDNode with 8678 /// the specified Opcode. If so, return true and lower it, otherwise return 8679 /// false and it will be lowered like a normal call. 8680 /// The caller already checked that \p I calls the appropriate LibFunc with a 8681 /// correct prototype. 8682 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8683 unsigned Opcode) { 8684 // We already checked this call's prototype; verify it doesn't modify errno. 8685 if (!I.onlyReadsMemory()) 8686 return false; 8687 8688 SDNodeFlags Flags; 8689 Flags.copyFMF(cast<FPMathOperator>(I)); 8690 8691 SDValue Tmp = getValue(I.getArgOperand(0)); 8692 setValue(&I, 8693 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8694 return true; 8695 } 8696 8697 /// See if we can lower a binary floating-point operation into an SDNode with 8698 /// the specified Opcode. If so, return true and lower it. Otherwise return 8699 /// false, and it will be lowered like a normal call. 8700 /// The caller already checked that \p I calls the appropriate LibFunc with a 8701 /// correct prototype. 8702 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8703 unsigned Opcode) { 8704 // We already checked this call's prototype; verify it doesn't modify errno. 8705 if (!I.onlyReadsMemory()) 8706 return false; 8707 8708 SDNodeFlags Flags; 8709 Flags.copyFMF(cast<FPMathOperator>(I)); 8710 8711 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8712 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8713 EVT VT = Tmp0.getValueType(); 8714 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8715 return true; 8716 } 8717 8718 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8719 // Handle inline assembly differently. 8720 if (I.isInlineAsm()) { 8721 visitInlineAsm(I); 8722 return; 8723 } 8724 8725 diagnoseDontCall(I); 8726 8727 if (Function *F = I.getCalledFunction()) { 8728 if (F->isDeclaration()) { 8729 // Is this an LLVM intrinsic or a target-specific intrinsic? 8730 unsigned IID = F->getIntrinsicID(); 8731 if (!IID) 8732 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8733 IID = II->getIntrinsicID(F); 8734 8735 if (IID) { 8736 visitIntrinsicCall(I, IID); 8737 return; 8738 } 8739 } 8740 8741 // Check for well-known libc/libm calls. If the function is internal, it 8742 // can't be a library call. Don't do the check if marked as nobuiltin for 8743 // some reason or the call site requires strict floating point semantics. 8744 LibFunc Func; 8745 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8746 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8747 LibInfo->hasOptimizedCodeGen(Func)) { 8748 switch (Func) { 8749 default: break; 8750 case LibFunc_bcmp: 8751 if (visitMemCmpBCmpCall(I)) 8752 return; 8753 break; 8754 case LibFunc_copysign: 8755 case LibFunc_copysignf: 8756 case LibFunc_copysignl: 8757 // We already checked this call's prototype; verify it doesn't modify 8758 // errno. 8759 if (I.onlyReadsMemory()) { 8760 SDValue LHS = getValue(I.getArgOperand(0)); 8761 SDValue RHS = getValue(I.getArgOperand(1)); 8762 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8763 LHS.getValueType(), LHS, RHS)); 8764 return; 8765 } 8766 break; 8767 case LibFunc_fabs: 8768 case LibFunc_fabsf: 8769 case LibFunc_fabsl: 8770 if (visitUnaryFloatCall(I, ISD::FABS)) 8771 return; 8772 break; 8773 case LibFunc_fmin: 8774 case LibFunc_fminf: 8775 case LibFunc_fminl: 8776 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8777 return; 8778 break; 8779 case LibFunc_fmax: 8780 case LibFunc_fmaxf: 8781 case LibFunc_fmaxl: 8782 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8783 return; 8784 break; 8785 case LibFunc_sin: 8786 case LibFunc_sinf: 8787 case LibFunc_sinl: 8788 if (visitUnaryFloatCall(I, ISD::FSIN)) 8789 return; 8790 break; 8791 case LibFunc_cos: 8792 case LibFunc_cosf: 8793 case LibFunc_cosl: 8794 if (visitUnaryFloatCall(I, ISD::FCOS)) 8795 return; 8796 break; 8797 case LibFunc_sqrt: 8798 case LibFunc_sqrtf: 8799 case LibFunc_sqrtl: 8800 case LibFunc_sqrt_finite: 8801 case LibFunc_sqrtf_finite: 8802 case LibFunc_sqrtl_finite: 8803 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8804 return; 8805 break; 8806 case LibFunc_floor: 8807 case LibFunc_floorf: 8808 case LibFunc_floorl: 8809 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8810 return; 8811 break; 8812 case LibFunc_nearbyint: 8813 case LibFunc_nearbyintf: 8814 case LibFunc_nearbyintl: 8815 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8816 return; 8817 break; 8818 case LibFunc_ceil: 8819 case LibFunc_ceilf: 8820 case LibFunc_ceill: 8821 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8822 return; 8823 break; 8824 case LibFunc_rint: 8825 case LibFunc_rintf: 8826 case LibFunc_rintl: 8827 if (visitUnaryFloatCall(I, ISD::FRINT)) 8828 return; 8829 break; 8830 case LibFunc_round: 8831 case LibFunc_roundf: 8832 case LibFunc_roundl: 8833 if (visitUnaryFloatCall(I, ISD::FROUND)) 8834 return; 8835 break; 8836 case LibFunc_trunc: 8837 case LibFunc_truncf: 8838 case LibFunc_truncl: 8839 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8840 return; 8841 break; 8842 case LibFunc_log2: 8843 case LibFunc_log2f: 8844 case LibFunc_log2l: 8845 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8846 return; 8847 break; 8848 case LibFunc_exp2: 8849 case LibFunc_exp2f: 8850 case LibFunc_exp2l: 8851 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8852 return; 8853 break; 8854 case LibFunc_exp10: 8855 case LibFunc_exp10f: 8856 case LibFunc_exp10l: 8857 if (visitUnaryFloatCall(I, ISD::FEXP10)) 8858 return; 8859 break; 8860 case LibFunc_ldexp: 8861 case LibFunc_ldexpf: 8862 case LibFunc_ldexpl: 8863 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 8864 return; 8865 break; 8866 case LibFunc_memcmp: 8867 if (visitMemCmpBCmpCall(I)) 8868 return; 8869 break; 8870 case LibFunc_mempcpy: 8871 if (visitMemPCpyCall(I)) 8872 return; 8873 break; 8874 case LibFunc_memchr: 8875 if (visitMemChrCall(I)) 8876 return; 8877 break; 8878 case LibFunc_strcpy: 8879 if (visitStrCpyCall(I, false)) 8880 return; 8881 break; 8882 case LibFunc_stpcpy: 8883 if (visitStrCpyCall(I, true)) 8884 return; 8885 break; 8886 case LibFunc_strcmp: 8887 if (visitStrCmpCall(I)) 8888 return; 8889 break; 8890 case LibFunc_strlen: 8891 if (visitStrLenCall(I)) 8892 return; 8893 break; 8894 case LibFunc_strnlen: 8895 if (visitStrNLenCall(I)) 8896 return; 8897 break; 8898 } 8899 } 8900 } 8901 8902 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8903 // have to do anything here to lower funclet bundles. 8904 // CFGuardTarget bundles are lowered in LowerCallTo. 8905 assert(!I.hasOperandBundlesOtherThan( 8906 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8907 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8908 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8909 "Cannot lower calls with arbitrary operand bundles!"); 8910 8911 SDValue Callee = getValue(I.getCalledOperand()); 8912 8913 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8914 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8915 else 8916 // Check if we can potentially perform a tail call. More detailed checking 8917 // is be done within LowerCallTo, after more information about the call is 8918 // known. 8919 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8920 } 8921 8922 namespace { 8923 8924 /// AsmOperandInfo - This contains information for each constraint that we are 8925 /// lowering. 8926 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8927 public: 8928 /// CallOperand - If this is the result output operand or a clobber 8929 /// this is null, otherwise it is the incoming operand to the CallInst. 8930 /// This gets modified as the asm is processed. 8931 SDValue CallOperand; 8932 8933 /// AssignedRegs - If this is a register or register class operand, this 8934 /// contains the set of register corresponding to the operand. 8935 RegsForValue AssignedRegs; 8936 8937 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8938 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8939 } 8940 8941 /// Whether or not this operand accesses memory 8942 bool hasMemory(const TargetLowering &TLI) const { 8943 // Indirect operand accesses access memory. 8944 if (isIndirect) 8945 return true; 8946 8947 for (const auto &Code : Codes) 8948 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8949 return true; 8950 8951 return false; 8952 } 8953 }; 8954 8955 8956 } // end anonymous namespace 8957 8958 /// Make sure that the output operand \p OpInfo and its corresponding input 8959 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8960 /// out). 8961 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8962 SDISelAsmOperandInfo &MatchingOpInfo, 8963 SelectionDAG &DAG) { 8964 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8965 return; 8966 8967 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8968 const auto &TLI = DAG.getTargetLoweringInfo(); 8969 8970 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8971 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8972 OpInfo.ConstraintVT); 8973 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8974 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8975 MatchingOpInfo.ConstraintVT); 8976 if ((OpInfo.ConstraintVT.isInteger() != 8977 MatchingOpInfo.ConstraintVT.isInteger()) || 8978 (MatchRC.second != InputRC.second)) { 8979 // FIXME: error out in a more elegant fashion 8980 report_fatal_error("Unsupported asm: input constraint" 8981 " with a matching output constraint of" 8982 " incompatible type!"); 8983 } 8984 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8985 } 8986 8987 /// Get a direct memory input to behave well as an indirect operand. 8988 /// This may introduce stores, hence the need for a \p Chain. 8989 /// \return The (possibly updated) chain. 8990 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8991 SDISelAsmOperandInfo &OpInfo, 8992 SelectionDAG &DAG) { 8993 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8994 8995 // If we don't have an indirect input, put it in the constpool if we can, 8996 // otherwise spill it to a stack slot. 8997 // TODO: This isn't quite right. We need to handle these according to 8998 // the addressing mode that the constraint wants. Also, this may take 8999 // an additional register for the computation and we don't want that 9000 // either. 9001 9002 // If the operand is a float, integer, or vector constant, spill to a 9003 // constant pool entry to get its address. 9004 const Value *OpVal = OpInfo.CallOperandVal; 9005 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9006 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9007 OpInfo.CallOperand = DAG.getConstantPool( 9008 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9009 return Chain; 9010 } 9011 9012 // Otherwise, create a stack slot and emit a store to it before the asm. 9013 Type *Ty = OpVal->getType(); 9014 auto &DL = DAG.getDataLayout(); 9015 uint64_t TySize = DL.getTypeAllocSize(Ty); 9016 MachineFunction &MF = DAG.getMachineFunction(); 9017 int SSFI = MF.getFrameInfo().CreateStackObject( 9018 TySize, DL.getPrefTypeAlign(Ty), false); 9019 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9020 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9021 MachinePointerInfo::getFixedStack(MF, SSFI), 9022 TLI.getMemValueType(DL, Ty)); 9023 OpInfo.CallOperand = StackSlot; 9024 9025 return Chain; 9026 } 9027 9028 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9029 /// specified operand. We prefer to assign virtual registers, to allow the 9030 /// register allocator to handle the assignment process. However, if the asm 9031 /// uses features that we can't model on machineinstrs, we have SDISel do the 9032 /// allocation. This produces generally horrible, but correct, code. 9033 /// 9034 /// OpInfo describes the operand 9035 /// RefOpInfo describes the matching operand if any, the operand otherwise 9036 static std::optional<unsigned> 9037 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9038 SDISelAsmOperandInfo &OpInfo, 9039 SDISelAsmOperandInfo &RefOpInfo) { 9040 LLVMContext &Context = *DAG.getContext(); 9041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9042 9043 MachineFunction &MF = DAG.getMachineFunction(); 9044 SmallVector<unsigned, 4> Regs; 9045 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9046 9047 // No work to do for memory/address operands. 9048 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9049 OpInfo.ConstraintType == TargetLowering::C_Address) 9050 return std::nullopt; 9051 9052 // If this is a constraint for a single physreg, or a constraint for a 9053 // register class, find it. 9054 unsigned AssignedReg; 9055 const TargetRegisterClass *RC; 9056 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9057 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9058 // RC is unset only on failure. Return immediately. 9059 if (!RC) 9060 return std::nullopt; 9061 9062 // Get the actual register value type. This is important, because the user 9063 // may have asked for (e.g.) the AX register in i32 type. We need to 9064 // remember that AX is actually i16 to get the right extension. 9065 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9066 9067 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9068 // If this is an FP operand in an integer register (or visa versa), or more 9069 // generally if the operand value disagrees with the register class we plan 9070 // to stick it in, fix the operand type. 9071 // 9072 // If this is an input value, the bitcast to the new type is done now. 9073 // Bitcast for output value is done at the end of visitInlineAsm(). 9074 if ((OpInfo.Type == InlineAsm::isOutput || 9075 OpInfo.Type == InlineAsm::isInput) && 9076 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9077 // Try to convert to the first EVT that the reg class contains. If the 9078 // types are identical size, use a bitcast to convert (e.g. two differing 9079 // vector types). Note: output bitcast is done at the end of 9080 // visitInlineAsm(). 9081 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9082 // Exclude indirect inputs while they are unsupported because the code 9083 // to perform the load is missing and thus OpInfo.CallOperand still 9084 // refers to the input address rather than the pointed-to value. 9085 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9086 OpInfo.CallOperand = 9087 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9088 OpInfo.ConstraintVT = RegVT; 9089 // If the operand is an FP value and we want it in integer registers, 9090 // use the corresponding integer type. This turns an f64 value into 9091 // i64, which can be passed with two i32 values on a 32-bit machine. 9092 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9093 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9094 if (OpInfo.Type == InlineAsm::isInput) 9095 OpInfo.CallOperand = 9096 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9097 OpInfo.ConstraintVT = VT; 9098 } 9099 } 9100 } 9101 9102 // No need to allocate a matching input constraint since the constraint it's 9103 // matching to has already been allocated. 9104 if (OpInfo.isMatchingInputConstraint()) 9105 return std::nullopt; 9106 9107 EVT ValueVT = OpInfo.ConstraintVT; 9108 if (OpInfo.ConstraintVT == MVT::Other) 9109 ValueVT = RegVT; 9110 9111 // Initialize NumRegs. 9112 unsigned NumRegs = 1; 9113 if (OpInfo.ConstraintVT != MVT::Other) 9114 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9115 9116 // If this is a constraint for a specific physical register, like {r17}, 9117 // assign it now. 9118 9119 // If this associated to a specific register, initialize iterator to correct 9120 // place. If virtual, make sure we have enough registers 9121 9122 // Initialize iterator if necessary 9123 TargetRegisterClass::iterator I = RC->begin(); 9124 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9125 9126 // Do not check for single registers. 9127 if (AssignedReg) { 9128 I = std::find(I, RC->end(), AssignedReg); 9129 if (I == RC->end()) { 9130 // RC does not contain the selected register, which indicates a 9131 // mismatch between the register and the required type/bitwidth. 9132 return {AssignedReg}; 9133 } 9134 } 9135 9136 for (; NumRegs; --NumRegs, ++I) { 9137 assert(I != RC->end() && "Ran out of registers to allocate!"); 9138 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9139 Regs.push_back(R); 9140 } 9141 9142 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9143 return std::nullopt; 9144 } 9145 9146 static unsigned 9147 findMatchingInlineAsmOperand(unsigned OperandNo, 9148 const std::vector<SDValue> &AsmNodeOperands) { 9149 // Scan until we find the definition we already emitted of this operand. 9150 unsigned CurOp = InlineAsm::Op_FirstOperand; 9151 for (; OperandNo; --OperandNo) { 9152 // Advance to the next operand. 9153 unsigned OpFlag = 9154 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9155 const InlineAsm::Flag F(OpFlag); 9156 assert( 9157 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9158 "Skipped past definitions?"); 9159 CurOp += F.getNumOperandRegisters() + 1; 9160 } 9161 return CurOp; 9162 } 9163 9164 namespace { 9165 9166 class ExtraFlags { 9167 unsigned Flags = 0; 9168 9169 public: 9170 explicit ExtraFlags(const CallBase &Call) { 9171 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9172 if (IA->hasSideEffects()) 9173 Flags |= InlineAsm::Extra_HasSideEffects; 9174 if (IA->isAlignStack()) 9175 Flags |= InlineAsm::Extra_IsAlignStack; 9176 if (Call.isConvergent()) 9177 Flags |= InlineAsm::Extra_IsConvergent; 9178 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9179 } 9180 9181 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9182 // Ideally, we would only check against memory constraints. However, the 9183 // meaning of an Other constraint can be target-specific and we can't easily 9184 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9185 // for Other constraints as well. 9186 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9187 OpInfo.ConstraintType == TargetLowering::C_Other) { 9188 if (OpInfo.Type == InlineAsm::isInput) 9189 Flags |= InlineAsm::Extra_MayLoad; 9190 else if (OpInfo.Type == InlineAsm::isOutput) 9191 Flags |= InlineAsm::Extra_MayStore; 9192 else if (OpInfo.Type == InlineAsm::isClobber) 9193 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9194 } 9195 } 9196 9197 unsigned get() const { return Flags; } 9198 }; 9199 9200 } // end anonymous namespace 9201 9202 static bool isFunction(SDValue Op) { 9203 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9204 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9205 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9206 9207 // In normal "call dllimport func" instruction (non-inlineasm) it force 9208 // indirect access by specifing call opcode. And usually specially print 9209 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9210 // not do in this way now. (In fact, this is similar with "Data Access" 9211 // action). So here we ignore dllimport function. 9212 if (Fn && !Fn->hasDLLImportStorageClass()) 9213 return true; 9214 } 9215 } 9216 return false; 9217 } 9218 9219 /// visitInlineAsm - Handle a call to an InlineAsm object. 9220 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9221 const BasicBlock *EHPadBB) { 9222 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9223 9224 /// ConstraintOperands - Information about all of the constraints. 9225 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9226 9227 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9228 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9229 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9230 9231 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9232 // AsmDialect, MayLoad, MayStore). 9233 bool HasSideEffect = IA->hasSideEffects(); 9234 ExtraFlags ExtraInfo(Call); 9235 9236 for (auto &T : TargetConstraints) { 9237 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9238 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9239 9240 if (OpInfo.CallOperandVal) 9241 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9242 9243 if (!HasSideEffect) 9244 HasSideEffect = OpInfo.hasMemory(TLI); 9245 9246 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9247 // FIXME: Could we compute this on OpInfo rather than T? 9248 9249 // Compute the constraint code and ConstraintType to use. 9250 TLI.ComputeConstraintToUse(T, SDValue()); 9251 9252 if (T.ConstraintType == TargetLowering::C_Immediate && 9253 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9254 // We've delayed emitting a diagnostic like the "n" constraint because 9255 // inlining could cause an integer showing up. 9256 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9257 "' expects an integer constant " 9258 "expression"); 9259 9260 ExtraInfo.update(T); 9261 } 9262 9263 // We won't need to flush pending loads if this asm doesn't touch 9264 // memory and is nonvolatile. 9265 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9266 9267 bool EmitEHLabels = isa<InvokeInst>(Call); 9268 if (EmitEHLabels) { 9269 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9270 } 9271 bool IsCallBr = isa<CallBrInst>(Call); 9272 9273 if (IsCallBr || EmitEHLabels) { 9274 // If this is a callbr or invoke we need to flush pending exports since 9275 // inlineasm_br and invoke are terminators. 9276 // We need to do this before nodes are glued to the inlineasm_br node. 9277 Chain = getControlRoot(); 9278 } 9279 9280 MCSymbol *BeginLabel = nullptr; 9281 if (EmitEHLabels) { 9282 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9283 } 9284 9285 int OpNo = -1; 9286 SmallVector<StringRef> AsmStrs; 9287 IA->collectAsmStrs(AsmStrs); 9288 9289 // Second pass over the constraints: compute which constraint option to use. 9290 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9291 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9292 OpNo++; 9293 9294 // If this is an output operand with a matching input operand, look up the 9295 // matching input. If their types mismatch, e.g. one is an integer, the 9296 // other is floating point, or their sizes are different, flag it as an 9297 // error. 9298 if (OpInfo.hasMatchingInput()) { 9299 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9300 patchMatchingInput(OpInfo, Input, DAG); 9301 } 9302 9303 // Compute the constraint code and ConstraintType to use. 9304 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9305 9306 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9307 OpInfo.Type == InlineAsm::isClobber) || 9308 OpInfo.ConstraintType == TargetLowering::C_Address) 9309 continue; 9310 9311 // In Linux PIC model, there are 4 cases about value/label addressing: 9312 // 9313 // 1: Function call or Label jmp inside the module. 9314 // 2: Data access (such as global variable, static variable) inside module. 9315 // 3: Function call or Label jmp outside the module. 9316 // 4: Data access (such as global variable) outside the module. 9317 // 9318 // Due to current llvm inline asm architecture designed to not "recognize" 9319 // the asm code, there are quite troubles for us to treat mem addressing 9320 // differently for same value/adress used in different instuctions. 9321 // For example, in pic model, call a func may in plt way or direclty 9322 // pc-related, but lea/mov a function adress may use got. 9323 // 9324 // Here we try to "recognize" function call for the case 1 and case 3 in 9325 // inline asm. And try to adjust the constraint for them. 9326 // 9327 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9328 // label, so here we don't handle jmp function label now, but we need to 9329 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9330 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9331 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9332 TM.getCodeModel() != CodeModel::Large) { 9333 OpInfo.isIndirect = false; 9334 OpInfo.ConstraintType = TargetLowering::C_Address; 9335 } 9336 9337 // If this is a memory input, and if the operand is not indirect, do what we 9338 // need to provide an address for the memory input. 9339 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9340 !OpInfo.isIndirect) { 9341 assert((OpInfo.isMultipleAlternative || 9342 (OpInfo.Type == InlineAsm::isInput)) && 9343 "Can only indirectify direct input operands!"); 9344 9345 // Memory operands really want the address of the value. 9346 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9347 9348 // There is no longer a Value* corresponding to this operand. 9349 OpInfo.CallOperandVal = nullptr; 9350 9351 // It is now an indirect operand. 9352 OpInfo.isIndirect = true; 9353 } 9354 9355 } 9356 9357 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9358 std::vector<SDValue> AsmNodeOperands; 9359 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9360 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9361 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9362 9363 // If we have a !srcloc metadata node associated with it, we want to attach 9364 // this to the ultimately generated inline asm machineinstr. To do this, we 9365 // pass in the third operand as this (potentially null) inline asm MDNode. 9366 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9367 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9368 9369 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9370 // bits as operand 3. 9371 AsmNodeOperands.push_back(DAG.getTargetConstant( 9372 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9373 9374 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9375 // this, assign virtual and physical registers for inputs and otput. 9376 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9377 // Assign Registers. 9378 SDISelAsmOperandInfo &RefOpInfo = 9379 OpInfo.isMatchingInputConstraint() 9380 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9381 : OpInfo; 9382 const auto RegError = 9383 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9384 if (RegError) { 9385 const MachineFunction &MF = DAG.getMachineFunction(); 9386 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9387 const char *RegName = TRI.getName(*RegError); 9388 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9389 "' allocated for constraint '" + 9390 Twine(OpInfo.ConstraintCode) + 9391 "' does not match required type"); 9392 return; 9393 } 9394 9395 auto DetectWriteToReservedRegister = [&]() { 9396 const MachineFunction &MF = DAG.getMachineFunction(); 9397 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9398 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9399 if (Register::isPhysicalRegister(Reg) && 9400 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9401 const char *RegName = TRI.getName(Reg); 9402 emitInlineAsmError(Call, "write to reserved register '" + 9403 Twine(RegName) + "'"); 9404 return true; 9405 } 9406 } 9407 return false; 9408 }; 9409 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9410 (OpInfo.Type == InlineAsm::isInput && 9411 !OpInfo.isMatchingInputConstraint())) && 9412 "Only address as input operand is allowed."); 9413 9414 switch (OpInfo.Type) { 9415 case InlineAsm::isOutput: 9416 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9417 const InlineAsm::ConstraintCode ConstraintID = 9418 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9419 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9420 "Failed to convert memory constraint code to constraint id."); 9421 9422 // Add information to the INLINEASM node to know about this output. 9423 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9424 OpFlags.setMemConstraint(ConstraintID); 9425 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9426 MVT::i32)); 9427 AsmNodeOperands.push_back(OpInfo.CallOperand); 9428 } else { 9429 // Otherwise, this outputs to a register (directly for C_Register / 9430 // C_RegisterClass, and a target-defined fashion for 9431 // C_Immediate/C_Other). Find a register that we can use. 9432 if (OpInfo.AssignedRegs.Regs.empty()) { 9433 emitInlineAsmError( 9434 Call, "couldn't allocate output register for constraint '" + 9435 Twine(OpInfo.ConstraintCode) + "'"); 9436 return; 9437 } 9438 9439 if (DetectWriteToReservedRegister()) 9440 return; 9441 9442 // Add information to the INLINEASM node to know that this register is 9443 // set. 9444 OpInfo.AssignedRegs.AddInlineAsmOperands( 9445 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9446 : InlineAsm::Kind::RegDef, 9447 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9448 } 9449 break; 9450 9451 case InlineAsm::isInput: 9452 case InlineAsm::isLabel: { 9453 SDValue InOperandVal = OpInfo.CallOperand; 9454 9455 if (OpInfo.isMatchingInputConstraint()) { 9456 // If this is required to match an output register we have already set, 9457 // just use its register. 9458 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9459 AsmNodeOperands); 9460 InlineAsm::Flag Flag( 9461 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue()); 9462 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9463 if (OpInfo.isIndirect) { 9464 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9465 emitInlineAsmError(Call, "inline asm not supported yet: " 9466 "don't know how to handle tied " 9467 "indirect register inputs"); 9468 return; 9469 } 9470 9471 SmallVector<unsigned, 4> Regs; 9472 MachineFunction &MF = DAG.getMachineFunction(); 9473 MachineRegisterInfo &MRI = MF.getRegInfo(); 9474 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9475 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9476 Register TiedReg = R->getReg(); 9477 MVT RegVT = R->getSimpleValueType(0); 9478 const TargetRegisterClass *RC = 9479 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9480 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9481 : TRI.getMinimalPhysRegClass(TiedReg); 9482 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9483 Regs.push_back(MRI.createVirtualRegister(RC)); 9484 9485 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9486 9487 SDLoc dl = getCurSDLoc(); 9488 // Use the produced MatchedRegs object to 9489 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9490 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9491 OpInfo.getMatchedOperand(), dl, DAG, 9492 AsmNodeOperands); 9493 break; 9494 } 9495 9496 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9497 assert(Flag.getNumOperandRegisters() == 1 && 9498 "Unexpected number of operands"); 9499 // Add information to the INLINEASM node to know about this input. 9500 // See InlineAsm.h isUseOperandTiedToDef. 9501 Flag.clearMemConstraint(); 9502 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9503 AsmNodeOperands.push_back(DAG.getTargetConstant( 9504 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9505 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9506 break; 9507 } 9508 9509 // Treat indirect 'X' constraint as memory. 9510 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9511 OpInfo.isIndirect) 9512 OpInfo.ConstraintType = TargetLowering::C_Memory; 9513 9514 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9515 OpInfo.ConstraintType == TargetLowering::C_Other) { 9516 std::vector<SDValue> Ops; 9517 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9518 Ops, DAG); 9519 if (Ops.empty()) { 9520 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9521 if (isa<ConstantSDNode>(InOperandVal)) { 9522 emitInlineAsmError(Call, "value out of range for constraint '" + 9523 Twine(OpInfo.ConstraintCode) + "'"); 9524 return; 9525 } 9526 9527 emitInlineAsmError(Call, 9528 "invalid operand for inline asm constraint '" + 9529 Twine(OpInfo.ConstraintCode) + "'"); 9530 return; 9531 } 9532 9533 // Add information to the INLINEASM node to know about this input. 9534 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9535 AsmNodeOperands.push_back(DAG.getTargetConstant( 9536 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9537 llvm::append_range(AsmNodeOperands, Ops); 9538 break; 9539 } 9540 9541 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9542 assert((OpInfo.isIndirect || 9543 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9544 "Operand must be indirect to be a mem!"); 9545 assert(InOperandVal.getValueType() == 9546 TLI.getPointerTy(DAG.getDataLayout()) && 9547 "Memory operands expect pointer values"); 9548 9549 const InlineAsm::ConstraintCode ConstraintID = 9550 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9551 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9552 "Failed to convert memory constraint code to constraint id."); 9553 9554 // Add information to the INLINEASM node to know about this input. 9555 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9556 ResOpType.setMemConstraint(ConstraintID); 9557 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9558 getCurSDLoc(), 9559 MVT::i32)); 9560 AsmNodeOperands.push_back(InOperandVal); 9561 break; 9562 } 9563 9564 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9565 const InlineAsm::ConstraintCode ConstraintID = 9566 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9567 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9568 "Failed to convert memory constraint code to constraint id."); 9569 9570 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9571 9572 SDValue AsmOp = InOperandVal; 9573 if (isFunction(InOperandVal)) { 9574 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9575 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 9576 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9577 InOperandVal.getValueType(), 9578 GA->getOffset()); 9579 } 9580 9581 // Add information to the INLINEASM node to know about this input. 9582 ResOpType.setMemConstraint(ConstraintID); 9583 9584 AsmNodeOperands.push_back( 9585 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9586 9587 AsmNodeOperands.push_back(AsmOp); 9588 break; 9589 } 9590 9591 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9592 OpInfo.ConstraintType == TargetLowering::C_Register) && 9593 "Unknown constraint type!"); 9594 9595 // TODO: Support this. 9596 if (OpInfo.isIndirect) { 9597 emitInlineAsmError( 9598 Call, "Don't know how to handle indirect register inputs yet " 9599 "for constraint '" + 9600 Twine(OpInfo.ConstraintCode) + "'"); 9601 return; 9602 } 9603 9604 // Copy the input into the appropriate registers. 9605 if (OpInfo.AssignedRegs.Regs.empty()) { 9606 emitInlineAsmError(Call, 9607 "couldn't allocate input reg for constraint '" + 9608 Twine(OpInfo.ConstraintCode) + "'"); 9609 return; 9610 } 9611 9612 if (DetectWriteToReservedRegister()) 9613 return; 9614 9615 SDLoc dl = getCurSDLoc(); 9616 9617 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 9618 &Call); 9619 9620 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 9621 0, dl, DAG, AsmNodeOperands); 9622 break; 9623 } 9624 case InlineAsm::isClobber: 9625 // Add the clobbered value to the operand list, so that the register 9626 // allocator is aware that the physreg got clobbered. 9627 if (!OpInfo.AssignedRegs.Regs.empty()) 9628 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 9629 false, 0, getCurSDLoc(), DAG, 9630 AsmNodeOperands); 9631 break; 9632 } 9633 } 9634 9635 // Finish up input operands. Set the input chain and add the flag last. 9636 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9637 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 9638 9639 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9640 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9641 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9642 Glue = Chain.getValue(1); 9643 9644 // Do additional work to generate outputs. 9645 9646 SmallVector<EVT, 1> ResultVTs; 9647 SmallVector<SDValue, 1> ResultValues; 9648 SmallVector<SDValue, 8> OutChains; 9649 9650 llvm::Type *CallResultType = Call.getType(); 9651 ArrayRef<Type *> ResultTypes; 9652 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9653 ResultTypes = StructResult->elements(); 9654 else if (!CallResultType->isVoidTy()) 9655 ResultTypes = ArrayRef(CallResultType); 9656 9657 auto CurResultType = ResultTypes.begin(); 9658 auto handleRegAssign = [&](SDValue V) { 9659 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9660 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9661 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9662 ++CurResultType; 9663 // If the type of the inline asm call site return value is different but has 9664 // same size as the type of the asm output bitcast it. One example of this 9665 // is for vectors with different width / number of elements. This can 9666 // happen for register classes that can contain multiple different value 9667 // types. The preg or vreg allocated may not have the same VT as was 9668 // expected. 9669 // 9670 // This can also happen for a return value that disagrees with the register 9671 // class it is put in, eg. a double in a general-purpose register on a 9672 // 32-bit machine. 9673 if (ResultVT != V.getValueType() && 9674 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9675 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9676 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9677 V.getValueType().isInteger()) { 9678 // If a result value was tied to an input value, the computed result 9679 // may have a wider width than the expected result. Extract the 9680 // relevant portion. 9681 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9682 } 9683 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9684 ResultVTs.push_back(ResultVT); 9685 ResultValues.push_back(V); 9686 }; 9687 9688 // Deal with output operands. 9689 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9690 if (OpInfo.Type == InlineAsm::isOutput) { 9691 SDValue Val; 9692 // Skip trivial output operands. 9693 if (OpInfo.AssignedRegs.Regs.empty()) 9694 continue; 9695 9696 switch (OpInfo.ConstraintType) { 9697 case TargetLowering::C_Register: 9698 case TargetLowering::C_RegisterClass: 9699 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9700 Chain, &Glue, &Call); 9701 break; 9702 case TargetLowering::C_Immediate: 9703 case TargetLowering::C_Other: 9704 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 9705 OpInfo, DAG); 9706 break; 9707 case TargetLowering::C_Memory: 9708 break; // Already handled. 9709 case TargetLowering::C_Address: 9710 break; // Silence warning. 9711 case TargetLowering::C_Unknown: 9712 assert(false && "Unexpected unknown constraint"); 9713 } 9714 9715 // Indirect output manifest as stores. Record output chains. 9716 if (OpInfo.isIndirect) { 9717 const Value *Ptr = OpInfo.CallOperandVal; 9718 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9719 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9720 MachinePointerInfo(Ptr)); 9721 OutChains.push_back(Store); 9722 } else { 9723 // generate CopyFromRegs to associated registers. 9724 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9725 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9726 for (const SDValue &V : Val->op_values()) 9727 handleRegAssign(V); 9728 } else 9729 handleRegAssign(Val); 9730 } 9731 } 9732 } 9733 9734 // Set results. 9735 if (!ResultValues.empty()) { 9736 assert(CurResultType == ResultTypes.end() && 9737 "Mismatch in number of ResultTypes"); 9738 assert(ResultValues.size() == ResultTypes.size() && 9739 "Mismatch in number of output operands in asm result"); 9740 9741 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9742 DAG.getVTList(ResultVTs), ResultValues); 9743 setValue(&Call, V); 9744 } 9745 9746 // Collect store chains. 9747 if (!OutChains.empty()) 9748 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9749 9750 if (EmitEHLabels) { 9751 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9752 } 9753 9754 // Only Update Root if inline assembly has a memory effect. 9755 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9756 EmitEHLabels) 9757 DAG.setRoot(Chain); 9758 } 9759 9760 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9761 const Twine &Message) { 9762 LLVMContext &Ctx = *DAG.getContext(); 9763 Ctx.emitError(&Call, Message); 9764 9765 // Make sure we leave the DAG in a valid state 9766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9767 SmallVector<EVT, 1> ValueVTs; 9768 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9769 9770 if (ValueVTs.empty()) 9771 return; 9772 9773 SmallVector<SDValue, 1> Ops; 9774 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9775 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9776 9777 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9778 } 9779 9780 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9781 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9782 MVT::Other, getRoot(), 9783 getValue(I.getArgOperand(0)), 9784 DAG.getSrcValue(I.getArgOperand(0)))); 9785 } 9786 9787 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9788 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9789 const DataLayout &DL = DAG.getDataLayout(); 9790 SDValue V = DAG.getVAArg( 9791 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9792 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9793 DL.getABITypeAlign(I.getType()).value()); 9794 DAG.setRoot(V.getValue(1)); 9795 9796 if (I.getType()->isPointerTy()) 9797 V = DAG.getPtrExtOrTrunc( 9798 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9799 setValue(&I, V); 9800 } 9801 9802 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9803 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9804 MVT::Other, getRoot(), 9805 getValue(I.getArgOperand(0)), 9806 DAG.getSrcValue(I.getArgOperand(0)))); 9807 } 9808 9809 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9810 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9811 MVT::Other, getRoot(), 9812 getValue(I.getArgOperand(0)), 9813 getValue(I.getArgOperand(1)), 9814 DAG.getSrcValue(I.getArgOperand(0)), 9815 DAG.getSrcValue(I.getArgOperand(1)))); 9816 } 9817 9818 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9819 const Instruction &I, 9820 SDValue Op) { 9821 const MDNode *Range = getRangeMetadata(I); 9822 if (!Range) 9823 return Op; 9824 9825 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9826 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9827 return Op; 9828 9829 APInt Lo = CR.getUnsignedMin(); 9830 if (!Lo.isMinValue()) 9831 return Op; 9832 9833 APInt Hi = CR.getUnsignedMax(); 9834 unsigned Bits = std::max(Hi.getActiveBits(), 9835 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9836 9837 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9838 9839 SDLoc SL = getCurSDLoc(); 9840 9841 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9842 DAG.getValueType(SmallVT)); 9843 unsigned NumVals = Op.getNode()->getNumValues(); 9844 if (NumVals == 1) 9845 return ZExt; 9846 9847 SmallVector<SDValue, 4> Ops; 9848 9849 Ops.push_back(ZExt); 9850 for (unsigned I = 1; I != NumVals; ++I) 9851 Ops.push_back(Op.getValue(I)); 9852 9853 return DAG.getMergeValues(Ops, SL); 9854 } 9855 9856 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9857 /// the call being lowered. 9858 /// 9859 /// This is a helper for lowering intrinsics that follow a target calling 9860 /// convention or require stack pointer adjustment. Only a subset of the 9861 /// intrinsic's operands need to participate in the calling convention. 9862 void SelectionDAGBuilder::populateCallLoweringInfo( 9863 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9864 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9865 AttributeSet RetAttrs, bool IsPatchPoint) { 9866 TargetLowering::ArgListTy Args; 9867 Args.reserve(NumArgs); 9868 9869 // Populate the argument list. 9870 // Attributes for args start at offset 1, after the return attribute. 9871 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9872 ArgI != ArgE; ++ArgI) { 9873 const Value *V = Call->getOperand(ArgI); 9874 9875 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9876 9877 TargetLowering::ArgListEntry Entry; 9878 Entry.Node = getValue(V); 9879 Entry.Ty = V->getType(); 9880 Entry.setAttributes(Call, ArgI); 9881 Args.push_back(Entry); 9882 } 9883 9884 CLI.setDebugLoc(getCurSDLoc()) 9885 .setChain(getRoot()) 9886 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 9887 RetAttrs) 9888 .setDiscardResult(Call->use_empty()) 9889 .setIsPatchPoint(IsPatchPoint) 9890 .setIsPreallocated( 9891 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9892 } 9893 9894 /// Add a stack map intrinsic call's live variable operands to a stackmap 9895 /// or patchpoint target node's operand list. 9896 /// 9897 /// Constants are converted to TargetConstants purely as an optimization to 9898 /// avoid constant materialization and register allocation. 9899 /// 9900 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9901 /// generate addess computation nodes, and so FinalizeISel can convert the 9902 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9903 /// address materialization and register allocation, but may also be required 9904 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9905 /// alloca in the entry block, then the runtime may assume that the alloca's 9906 /// StackMap location can be read immediately after compilation and that the 9907 /// location is valid at any point during execution (this is similar to the 9908 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9909 /// only available in a register, then the runtime would need to trap when 9910 /// execution reaches the StackMap in order to read the alloca's location. 9911 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9912 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9913 SelectionDAGBuilder &Builder) { 9914 SelectionDAG &DAG = Builder.DAG; 9915 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9916 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9917 9918 // Things on the stack are pointer-typed, meaning that they are already 9919 // legal and can be emitted directly to target nodes. 9920 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9921 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9922 } else { 9923 // Otherwise emit a target independent node to be legalised. 9924 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9925 } 9926 } 9927 } 9928 9929 /// Lower llvm.experimental.stackmap. 9930 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9931 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9932 // [live variables...]) 9933 9934 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9935 9936 SDValue Chain, InGlue, Callee; 9937 SmallVector<SDValue, 32> Ops; 9938 9939 SDLoc DL = getCurSDLoc(); 9940 Callee = getValue(CI.getCalledOperand()); 9941 9942 // The stackmap intrinsic only records the live variables (the arguments 9943 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9944 // intrinsic, this won't be lowered to a function call. This means we don't 9945 // have to worry about calling conventions and target specific lowering code. 9946 // Instead we perform the call lowering right here. 9947 // 9948 // chain, flag = CALLSEQ_START(chain, 0, 0) 9949 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9950 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9951 // 9952 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9953 InGlue = Chain.getValue(1); 9954 9955 // Add the STACKMAP operands, starting with DAG house-keeping. 9956 Ops.push_back(Chain); 9957 Ops.push_back(InGlue); 9958 9959 // Add the <id>, <numShadowBytes> operands. 9960 // 9961 // These do not require legalisation, and can be emitted directly to target 9962 // constant nodes. 9963 SDValue ID = getValue(CI.getArgOperand(0)); 9964 assert(ID.getValueType() == MVT::i64); 9965 SDValue IDConst = DAG.getTargetConstant( 9966 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9967 Ops.push_back(IDConst); 9968 9969 SDValue Shad = getValue(CI.getArgOperand(1)); 9970 assert(Shad.getValueType() == MVT::i32); 9971 SDValue ShadConst = DAG.getTargetConstant( 9972 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9973 Ops.push_back(ShadConst); 9974 9975 // Add the live variables. 9976 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9977 9978 // Create the STACKMAP node. 9979 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9980 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9981 InGlue = Chain.getValue(1); 9982 9983 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 9984 9985 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9986 9987 // Set the root to the target-lowered call chain. 9988 DAG.setRoot(Chain); 9989 9990 // Inform the Frame Information that we have a stackmap in this function. 9991 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9992 } 9993 9994 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9995 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9996 const BasicBlock *EHPadBB) { 9997 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9998 // i32 <numBytes>, 9999 // i8* <target>, 10000 // i32 <numArgs>, 10001 // [Args...], 10002 // [live variables...]) 10003 10004 CallingConv::ID CC = CB.getCallingConv(); 10005 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10006 bool HasDef = !CB.getType()->isVoidTy(); 10007 SDLoc dl = getCurSDLoc(); 10008 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10009 10010 // Handle immediate and symbolic callees. 10011 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10012 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10013 /*isTarget=*/true); 10014 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10015 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10016 SDLoc(SymbolicCallee), 10017 SymbolicCallee->getValueType(0)); 10018 10019 // Get the real number of arguments participating in the call <numArgs> 10020 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10021 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 10022 10023 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10024 // Intrinsics include all meta-operands up to but not including CC. 10025 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10026 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10027 "Not enough arguments provided to the patchpoint intrinsic"); 10028 10029 // For AnyRegCC the arguments are lowered later on manually. 10030 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10031 Type *ReturnTy = 10032 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10033 10034 TargetLowering::CallLoweringInfo CLI(DAG); 10035 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10036 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10037 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10038 10039 SDNode *CallEnd = Result.second.getNode(); 10040 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10041 CallEnd = CallEnd->getOperand(0).getNode(); 10042 10043 /// Get a call instruction from the call sequence chain. 10044 /// Tail calls are not allowed. 10045 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10046 "Expected a callseq node."); 10047 SDNode *Call = CallEnd->getOperand(0).getNode(); 10048 bool HasGlue = Call->getGluedNode(); 10049 10050 // Replace the target specific call node with the patchable intrinsic. 10051 SmallVector<SDValue, 8> Ops; 10052 10053 // Push the chain. 10054 Ops.push_back(*(Call->op_begin())); 10055 10056 // Optionally, push the glue (if any). 10057 if (HasGlue) 10058 Ops.push_back(*(Call->op_end() - 1)); 10059 10060 // Push the register mask info. 10061 if (HasGlue) 10062 Ops.push_back(*(Call->op_end() - 2)); 10063 else 10064 Ops.push_back(*(Call->op_end() - 1)); 10065 10066 // Add the <id> and <numBytes> constants. 10067 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10068 Ops.push_back(DAG.getTargetConstant( 10069 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 10070 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10071 Ops.push_back(DAG.getTargetConstant( 10072 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 10073 MVT::i32)); 10074 10075 // Add the callee. 10076 Ops.push_back(Callee); 10077 10078 // Adjust <numArgs> to account for any arguments that have been passed on the 10079 // stack instead. 10080 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10081 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10082 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10083 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10084 10085 // Add the calling convention 10086 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10087 10088 // Add the arguments we omitted previously. The register allocator should 10089 // place these in any free register. 10090 if (IsAnyRegCC) 10091 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10092 Ops.push_back(getValue(CB.getArgOperand(i))); 10093 10094 // Push the arguments from the call instruction. 10095 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10096 Ops.append(Call->op_begin() + 2, e); 10097 10098 // Push live variables for the stack map. 10099 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10100 10101 SDVTList NodeTys; 10102 if (IsAnyRegCC && HasDef) { 10103 // Create the return types based on the intrinsic definition 10104 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10105 SmallVector<EVT, 3> ValueVTs; 10106 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10107 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10108 10109 // There is always a chain and a glue type at the end 10110 ValueVTs.push_back(MVT::Other); 10111 ValueVTs.push_back(MVT::Glue); 10112 NodeTys = DAG.getVTList(ValueVTs); 10113 } else 10114 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10115 10116 // Replace the target specific call node with a PATCHPOINT node. 10117 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10118 10119 // Update the NodeMap. 10120 if (HasDef) { 10121 if (IsAnyRegCC) 10122 setValue(&CB, SDValue(PPV.getNode(), 0)); 10123 else 10124 setValue(&CB, Result.first); 10125 } 10126 10127 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10128 // call sequence. Furthermore the location of the chain and glue can change 10129 // when the AnyReg calling convention is used and the intrinsic returns a 10130 // value. 10131 if (IsAnyRegCC && HasDef) { 10132 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10133 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10134 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10135 } else 10136 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10137 DAG.DeleteNode(Call); 10138 10139 // Inform the Frame Information that we have a patchpoint in this function. 10140 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10141 } 10142 10143 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10144 unsigned Intrinsic) { 10145 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10146 SDValue Op1 = getValue(I.getArgOperand(0)); 10147 SDValue Op2; 10148 if (I.arg_size() > 1) 10149 Op2 = getValue(I.getArgOperand(1)); 10150 SDLoc dl = getCurSDLoc(); 10151 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10152 SDValue Res; 10153 SDNodeFlags SDFlags; 10154 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10155 SDFlags.copyFMF(*FPMO); 10156 10157 switch (Intrinsic) { 10158 case Intrinsic::vector_reduce_fadd: 10159 if (SDFlags.hasAllowReassociation()) 10160 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10161 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10162 SDFlags); 10163 else 10164 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10165 break; 10166 case Intrinsic::vector_reduce_fmul: 10167 if (SDFlags.hasAllowReassociation()) 10168 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10169 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10170 SDFlags); 10171 else 10172 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10173 break; 10174 case Intrinsic::vector_reduce_add: 10175 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10176 break; 10177 case Intrinsic::vector_reduce_mul: 10178 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10179 break; 10180 case Intrinsic::vector_reduce_and: 10181 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10182 break; 10183 case Intrinsic::vector_reduce_or: 10184 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10185 break; 10186 case Intrinsic::vector_reduce_xor: 10187 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10188 break; 10189 case Intrinsic::vector_reduce_smax: 10190 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10191 break; 10192 case Intrinsic::vector_reduce_smin: 10193 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10194 break; 10195 case Intrinsic::vector_reduce_umax: 10196 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10197 break; 10198 case Intrinsic::vector_reduce_umin: 10199 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10200 break; 10201 case Intrinsic::vector_reduce_fmax: 10202 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10203 break; 10204 case Intrinsic::vector_reduce_fmin: 10205 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10206 break; 10207 case Intrinsic::vector_reduce_fmaximum: 10208 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10209 break; 10210 case Intrinsic::vector_reduce_fminimum: 10211 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10212 break; 10213 default: 10214 llvm_unreachable("Unhandled vector reduce intrinsic"); 10215 } 10216 setValue(&I, Res); 10217 } 10218 10219 /// Returns an AttributeList representing the attributes applied to the return 10220 /// value of the given call. 10221 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10222 SmallVector<Attribute::AttrKind, 2> Attrs; 10223 if (CLI.RetSExt) 10224 Attrs.push_back(Attribute::SExt); 10225 if (CLI.RetZExt) 10226 Attrs.push_back(Attribute::ZExt); 10227 if (CLI.IsInReg) 10228 Attrs.push_back(Attribute::InReg); 10229 10230 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10231 Attrs); 10232 } 10233 10234 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10235 /// implementation, which just calls LowerCall. 10236 /// FIXME: When all targets are 10237 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10238 std::pair<SDValue, SDValue> 10239 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10240 // Handle the incoming return values from the call. 10241 CLI.Ins.clear(); 10242 Type *OrigRetTy = CLI.RetTy; 10243 SmallVector<EVT, 4> RetTys; 10244 SmallVector<uint64_t, 4> Offsets; 10245 auto &DL = CLI.DAG.getDataLayout(); 10246 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0); 10247 10248 if (CLI.IsPostTypeLegalization) { 10249 // If we are lowering a libcall after legalization, split the return type. 10250 SmallVector<EVT, 4> OldRetTys; 10251 SmallVector<uint64_t, 4> OldOffsets; 10252 RetTys.swap(OldRetTys); 10253 Offsets.swap(OldOffsets); 10254 10255 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10256 EVT RetVT = OldRetTys[i]; 10257 uint64_t Offset = OldOffsets[i]; 10258 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10259 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10260 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10261 RetTys.append(NumRegs, RegisterVT); 10262 for (unsigned j = 0; j != NumRegs; ++j) 10263 Offsets.push_back(Offset + j * RegisterVTByteSZ); 10264 } 10265 } 10266 10267 SmallVector<ISD::OutputArg, 4> Outs; 10268 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10269 10270 bool CanLowerReturn = 10271 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10272 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10273 10274 SDValue DemoteStackSlot; 10275 int DemoteStackIdx = -100; 10276 if (!CanLowerReturn) { 10277 // FIXME: equivalent assert? 10278 // assert(!CS.hasInAllocaArgument() && 10279 // "sret demotion is incompatible with inalloca"); 10280 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10281 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10282 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10283 DemoteStackIdx = 10284 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10285 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10286 DL.getAllocaAddrSpace()); 10287 10288 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10289 ArgListEntry Entry; 10290 Entry.Node = DemoteStackSlot; 10291 Entry.Ty = StackSlotPtrType; 10292 Entry.IsSExt = false; 10293 Entry.IsZExt = false; 10294 Entry.IsInReg = false; 10295 Entry.IsSRet = true; 10296 Entry.IsNest = false; 10297 Entry.IsByVal = false; 10298 Entry.IsByRef = false; 10299 Entry.IsReturned = false; 10300 Entry.IsSwiftSelf = false; 10301 Entry.IsSwiftAsync = false; 10302 Entry.IsSwiftError = false; 10303 Entry.IsCFGuardTarget = false; 10304 Entry.Alignment = Alignment; 10305 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10306 CLI.NumFixedArgs += 1; 10307 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10308 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10309 10310 // sret demotion isn't compatible with tail-calls, since the sret argument 10311 // points into the callers stack frame. 10312 CLI.IsTailCall = false; 10313 } else { 10314 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10315 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10316 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10317 ISD::ArgFlagsTy Flags; 10318 if (NeedsRegBlock) { 10319 Flags.setInConsecutiveRegs(); 10320 if (I == RetTys.size() - 1) 10321 Flags.setInConsecutiveRegsLast(); 10322 } 10323 EVT VT = RetTys[I]; 10324 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10325 CLI.CallConv, VT); 10326 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10327 CLI.CallConv, VT); 10328 for (unsigned i = 0; i != NumRegs; ++i) { 10329 ISD::InputArg MyFlags; 10330 MyFlags.Flags = Flags; 10331 MyFlags.VT = RegisterVT; 10332 MyFlags.ArgVT = VT; 10333 MyFlags.Used = CLI.IsReturnValueUsed; 10334 if (CLI.RetTy->isPointerTy()) { 10335 MyFlags.Flags.setPointer(); 10336 MyFlags.Flags.setPointerAddrSpace( 10337 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10338 } 10339 if (CLI.RetSExt) 10340 MyFlags.Flags.setSExt(); 10341 if (CLI.RetZExt) 10342 MyFlags.Flags.setZExt(); 10343 if (CLI.IsInReg) 10344 MyFlags.Flags.setInReg(); 10345 CLI.Ins.push_back(MyFlags); 10346 } 10347 } 10348 } 10349 10350 // We push in swifterror return as the last element of CLI.Ins. 10351 ArgListTy &Args = CLI.getArgs(); 10352 if (supportSwiftError()) { 10353 for (const ArgListEntry &Arg : Args) { 10354 if (Arg.IsSwiftError) { 10355 ISD::InputArg MyFlags; 10356 MyFlags.VT = getPointerTy(DL); 10357 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10358 MyFlags.Flags.setSwiftError(); 10359 CLI.Ins.push_back(MyFlags); 10360 } 10361 } 10362 } 10363 10364 // Handle all of the outgoing arguments. 10365 CLI.Outs.clear(); 10366 CLI.OutVals.clear(); 10367 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10368 SmallVector<EVT, 4> ValueVTs; 10369 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10370 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10371 Type *FinalType = Args[i].Ty; 10372 if (Args[i].IsByVal) 10373 FinalType = Args[i].IndirectType; 10374 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10375 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10376 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10377 ++Value) { 10378 EVT VT = ValueVTs[Value]; 10379 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10380 SDValue Op = SDValue(Args[i].Node.getNode(), 10381 Args[i].Node.getResNo() + Value); 10382 ISD::ArgFlagsTy Flags; 10383 10384 // Certain targets (such as MIPS), may have a different ABI alignment 10385 // for a type depending on the context. Give the target a chance to 10386 // specify the alignment it wants. 10387 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10388 Flags.setOrigAlign(OriginalAlignment); 10389 10390 if (Args[i].Ty->isPointerTy()) { 10391 Flags.setPointer(); 10392 Flags.setPointerAddrSpace( 10393 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10394 } 10395 if (Args[i].IsZExt) 10396 Flags.setZExt(); 10397 if (Args[i].IsSExt) 10398 Flags.setSExt(); 10399 if (Args[i].IsInReg) { 10400 // If we are using vectorcall calling convention, a structure that is 10401 // passed InReg - is surely an HVA 10402 if (CLI.CallConv == CallingConv::X86_VectorCall && 10403 isa<StructType>(FinalType)) { 10404 // The first value of a structure is marked 10405 if (0 == Value) 10406 Flags.setHvaStart(); 10407 Flags.setHva(); 10408 } 10409 // Set InReg Flag 10410 Flags.setInReg(); 10411 } 10412 if (Args[i].IsSRet) 10413 Flags.setSRet(); 10414 if (Args[i].IsSwiftSelf) 10415 Flags.setSwiftSelf(); 10416 if (Args[i].IsSwiftAsync) 10417 Flags.setSwiftAsync(); 10418 if (Args[i].IsSwiftError) 10419 Flags.setSwiftError(); 10420 if (Args[i].IsCFGuardTarget) 10421 Flags.setCFGuardTarget(); 10422 if (Args[i].IsByVal) 10423 Flags.setByVal(); 10424 if (Args[i].IsByRef) 10425 Flags.setByRef(); 10426 if (Args[i].IsPreallocated) { 10427 Flags.setPreallocated(); 10428 // Set the byval flag for CCAssignFn callbacks that don't know about 10429 // preallocated. This way we can know how many bytes we should've 10430 // allocated and how many bytes a callee cleanup function will pop. If 10431 // we port preallocated to more targets, we'll have to add custom 10432 // preallocated handling in the various CC lowering callbacks. 10433 Flags.setByVal(); 10434 } 10435 if (Args[i].IsInAlloca) { 10436 Flags.setInAlloca(); 10437 // Set the byval flag for CCAssignFn callbacks that don't know about 10438 // inalloca. This way we can know how many bytes we should've allocated 10439 // and how many bytes a callee cleanup function will pop. If we port 10440 // inalloca to more targets, we'll have to add custom inalloca handling 10441 // in the various CC lowering callbacks. 10442 Flags.setByVal(); 10443 } 10444 Align MemAlign; 10445 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10446 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10447 Flags.setByValSize(FrameSize); 10448 10449 // info is not there but there are cases it cannot get right. 10450 if (auto MA = Args[i].Alignment) 10451 MemAlign = *MA; 10452 else 10453 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10454 } else if (auto MA = Args[i].Alignment) { 10455 MemAlign = *MA; 10456 } else { 10457 MemAlign = OriginalAlignment; 10458 } 10459 Flags.setMemAlign(MemAlign); 10460 if (Args[i].IsNest) 10461 Flags.setNest(); 10462 if (NeedsRegBlock) 10463 Flags.setInConsecutiveRegs(); 10464 10465 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10466 CLI.CallConv, VT); 10467 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10468 CLI.CallConv, VT); 10469 SmallVector<SDValue, 4> Parts(NumParts); 10470 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10471 10472 if (Args[i].IsSExt) 10473 ExtendKind = ISD::SIGN_EXTEND; 10474 else if (Args[i].IsZExt) 10475 ExtendKind = ISD::ZERO_EXTEND; 10476 10477 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10478 // for now. 10479 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10480 CanLowerReturn) { 10481 assert((CLI.RetTy == Args[i].Ty || 10482 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10483 CLI.RetTy->getPointerAddressSpace() == 10484 Args[i].Ty->getPointerAddressSpace())) && 10485 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10486 // Before passing 'returned' to the target lowering code, ensure that 10487 // either the register MVT and the actual EVT are the same size or that 10488 // the return value and argument are extended in the same way; in these 10489 // cases it's safe to pass the argument register value unchanged as the 10490 // return register value (although it's at the target's option whether 10491 // to do so) 10492 // TODO: allow code generation to take advantage of partially preserved 10493 // registers rather than clobbering the entire register when the 10494 // parameter extension method is not compatible with the return 10495 // extension method 10496 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10497 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10498 CLI.RetZExt == Args[i].IsZExt)) 10499 Flags.setReturned(); 10500 } 10501 10502 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10503 CLI.CallConv, ExtendKind); 10504 10505 for (unsigned j = 0; j != NumParts; ++j) { 10506 // if it isn't first piece, alignment must be 1 10507 // For scalable vectors the scalable part is currently handled 10508 // by individual targets, so we just use the known minimum size here. 10509 ISD::OutputArg MyFlags( 10510 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10511 i < CLI.NumFixedArgs, i, 10512 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10513 if (NumParts > 1 && j == 0) 10514 MyFlags.Flags.setSplit(); 10515 else if (j != 0) { 10516 MyFlags.Flags.setOrigAlign(Align(1)); 10517 if (j == NumParts - 1) 10518 MyFlags.Flags.setSplitEnd(); 10519 } 10520 10521 CLI.Outs.push_back(MyFlags); 10522 CLI.OutVals.push_back(Parts[j]); 10523 } 10524 10525 if (NeedsRegBlock && Value == NumValues - 1) 10526 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10527 } 10528 } 10529 10530 SmallVector<SDValue, 4> InVals; 10531 CLI.Chain = LowerCall(CLI, InVals); 10532 10533 // Update CLI.InVals to use outside of this function. 10534 CLI.InVals = InVals; 10535 10536 // Verify that the target's LowerCall behaved as expected. 10537 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10538 "LowerCall didn't return a valid chain!"); 10539 assert((!CLI.IsTailCall || InVals.empty()) && 10540 "LowerCall emitted a return value for a tail call!"); 10541 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10542 "LowerCall didn't emit the correct number of values!"); 10543 10544 // For a tail call, the return value is merely live-out and there aren't 10545 // any nodes in the DAG representing it. Return a special value to 10546 // indicate that a tail call has been emitted and no more Instructions 10547 // should be processed in the current block. 10548 if (CLI.IsTailCall) { 10549 CLI.DAG.setRoot(CLI.Chain); 10550 return std::make_pair(SDValue(), SDValue()); 10551 } 10552 10553 #ifndef NDEBUG 10554 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10555 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10556 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10557 "LowerCall emitted a value with the wrong type!"); 10558 } 10559 #endif 10560 10561 SmallVector<SDValue, 4> ReturnValues; 10562 if (!CanLowerReturn) { 10563 // The instruction result is the result of loading from the 10564 // hidden sret parameter. 10565 SmallVector<EVT, 1> PVTs; 10566 Type *PtrRetTy = 10567 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10568 10569 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10570 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10571 EVT PtrVT = PVTs[0]; 10572 10573 unsigned NumValues = RetTys.size(); 10574 ReturnValues.resize(NumValues); 10575 SmallVector<SDValue, 4> Chains(NumValues); 10576 10577 // An aggregate return value cannot wrap around the address space, so 10578 // offsets to its parts don't wrap either. 10579 SDNodeFlags Flags; 10580 Flags.setNoUnsignedWrap(true); 10581 10582 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10583 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10584 for (unsigned i = 0; i < NumValues; ++i) { 10585 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10586 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10587 PtrVT), Flags); 10588 SDValue L = CLI.DAG.getLoad( 10589 RetTys[i], CLI.DL, CLI.Chain, Add, 10590 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10591 DemoteStackIdx, Offsets[i]), 10592 HiddenSRetAlign); 10593 ReturnValues[i] = L; 10594 Chains[i] = L.getValue(1); 10595 } 10596 10597 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10598 } else { 10599 // Collect the legal value parts into potentially illegal values 10600 // that correspond to the original function's return values. 10601 std::optional<ISD::NodeType> AssertOp; 10602 if (CLI.RetSExt) 10603 AssertOp = ISD::AssertSext; 10604 else if (CLI.RetZExt) 10605 AssertOp = ISD::AssertZext; 10606 unsigned CurReg = 0; 10607 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10608 EVT VT = RetTys[I]; 10609 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10610 CLI.CallConv, VT); 10611 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10612 CLI.CallConv, VT); 10613 10614 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10615 NumRegs, RegisterVT, VT, nullptr, 10616 CLI.CallConv, AssertOp)); 10617 CurReg += NumRegs; 10618 } 10619 10620 // For a function returning void, there is no return value. We can't create 10621 // such a node, so we just return a null return value in that case. In 10622 // that case, nothing will actually look at the value. 10623 if (ReturnValues.empty()) 10624 return std::make_pair(SDValue(), CLI.Chain); 10625 } 10626 10627 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10628 CLI.DAG.getVTList(RetTys), ReturnValues); 10629 return std::make_pair(Res, CLI.Chain); 10630 } 10631 10632 /// Places new result values for the node in Results (their number 10633 /// and types must exactly match those of the original return values of 10634 /// the node), or leaves Results empty, which indicates that the node is not 10635 /// to be custom lowered after all. 10636 void TargetLowering::LowerOperationWrapper(SDNode *N, 10637 SmallVectorImpl<SDValue> &Results, 10638 SelectionDAG &DAG) const { 10639 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10640 10641 if (!Res.getNode()) 10642 return; 10643 10644 // If the original node has one result, take the return value from 10645 // LowerOperation as is. It might not be result number 0. 10646 if (N->getNumValues() == 1) { 10647 Results.push_back(Res); 10648 return; 10649 } 10650 10651 // If the original node has multiple results, then the return node should 10652 // have the same number of results. 10653 assert((N->getNumValues() == Res->getNumValues()) && 10654 "Lowering returned the wrong number of results!"); 10655 10656 // Places new result values base on N result number. 10657 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10658 Results.push_back(Res.getValue(I)); 10659 } 10660 10661 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10662 llvm_unreachable("LowerOperation not implemented for this target!"); 10663 } 10664 10665 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10666 unsigned Reg, 10667 ISD::NodeType ExtendType) { 10668 SDValue Op = getNonRegisterValue(V); 10669 assert((Op.getOpcode() != ISD::CopyFromReg || 10670 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10671 "Copy from a reg to the same reg!"); 10672 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10673 10674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10675 // If this is an InlineAsm we have to match the registers required, not the 10676 // notional registers required by the type. 10677 10678 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10679 std::nullopt); // This is not an ABI copy. 10680 SDValue Chain = DAG.getEntryNode(); 10681 10682 if (ExtendType == ISD::ANY_EXTEND) { 10683 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10684 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10685 ExtendType = PreferredExtendIt->second; 10686 } 10687 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10688 PendingExports.push_back(Chain); 10689 } 10690 10691 #include "llvm/CodeGen/SelectionDAGISel.h" 10692 10693 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10694 /// entry block, return true. This includes arguments used by switches, since 10695 /// the switch may expand into multiple basic blocks. 10696 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10697 // With FastISel active, we may be splitting blocks, so force creation 10698 // of virtual registers for all non-dead arguments. 10699 if (FastISel) 10700 return A->use_empty(); 10701 10702 const BasicBlock &Entry = A->getParent()->front(); 10703 for (const User *U : A->users()) 10704 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10705 return false; // Use not in entry block. 10706 10707 return true; 10708 } 10709 10710 using ArgCopyElisionMapTy = 10711 DenseMap<const Argument *, 10712 std::pair<const AllocaInst *, const StoreInst *>>; 10713 10714 /// Scan the entry block of the function in FuncInfo for arguments that look 10715 /// like copies into a local alloca. Record any copied arguments in 10716 /// ArgCopyElisionCandidates. 10717 static void 10718 findArgumentCopyElisionCandidates(const DataLayout &DL, 10719 FunctionLoweringInfo *FuncInfo, 10720 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10721 // Record the state of every static alloca used in the entry block. Argument 10722 // allocas are all used in the entry block, so we need approximately as many 10723 // entries as we have arguments. 10724 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10725 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10726 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10727 StaticAllocas.reserve(NumArgs * 2); 10728 10729 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10730 if (!V) 10731 return nullptr; 10732 V = V->stripPointerCasts(); 10733 const auto *AI = dyn_cast<AllocaInst>(V); 10734 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10735 return nullptr; 10736 auto Iter = StaticAllocas.insert({AI, Unknown}); 10737 return &Iter.first->second; 10738 }; 10739 10740 // Look for stores of arguments to static allocas. Look through bitcasts and 10741 // GEPs to handle type coercions, as long as the alloca is fully initialized 10742 // by the store. Any non-store use of an alloca escapes it and any subsequent 10743 // unanalyzed store might write it. 10744 // FIXME: Handle structs initialized with multiple stores. 10745 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10746 // Look for stores, and handle non-store uses conservatively. 10747 const auto *SI = dyn_cast<StoreInst>(&I); 10748 if (!SI) { 10749 // We will look through cast uses, so ignore them completely. 10750 if (I.isCast()) 10751 continue; 10752 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10753 // to allocas. 10754 if (I.isDebugOrPseudoInst()) 10755 continue; 10756 // This is an unknown instruction. Assume it escapes or writes to all 10757 // static alloca operands. 10758 for (const Use &U : I.operands()) { 10759 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10760 *Info = StaticAllocaInfo::Clobbered; 10761 } 10762 continue; 10763 } 10764 10765 // If the stored value is a static alloca, mark it as escaped. 10766 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10767 *Info = StaticAllocaInfo::Clobbered; 10768 10769 // Check if the destination is a static alloca. 10770 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10771 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10772 if (!Info) 10773 continue; 10774 const AllocaInst *AI = cast<AllocaInst>(Dst); 10775 10776 // Skip allocas that have been initialized or clobbered. 10777 if (*Info != StaticAllocaInfo::Unknown) 10778 continue; 10779 10780 // Check if the stored value is an argument, and that this store fully 10781 // initializes the alloca. 10782 // If the argument type has padding bits we can't directly forward a pointer 10783 // as the upper bits may contain garbage. 10784 // Don't elide copies from the same argument twice. 10785 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10786 const auto *Arg = dyn_cast<Argument>(Val); 10787 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10788 Arg->getType()->isEmptyTy() || 10789 DL.getTypeStoreSize(Arg->getType()) != 10790 DL.getTypeAllocSize(AI->getAllocatedType()) || 10791 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10792 ArgCopyElisionCandidates.count(Arg)) { 10793 *Info = StaticAllocaInfo::Clobbered; 10794 continue; 10795 } 10796 10797 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10798 << '\n'); 10799 10800 // Mark this alloca and store for argument copy elision. 10801 *Info = StaticAllocaInfo::Elidable; 10802 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10803 10804 // Stop scanning if we've seen all arguments. This will happen early in -O0 10805 // builds, which is useful, because -O0 builds have large entry blocks and 10806 // many allocas. 10807 if (ArgCopyElisionCandidates.size() == NumArgs) 10808 break; 10809 } 10810 } 10811 10812 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10813 /// ArgVal is a load from a suitable fixed stack object. 10814 static void tryToElideArgumentCopy( 10815 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10816 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10817 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10818 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10819 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 10820 // Check if this is a load from a fixed stack object. 10821 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 10822 if (!LNode) 10823 return; 10824 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10825 if (!FINode) 10826 return; 10827 10828 // Check that the fixed stack object is the right size and alignment. 10829 // Look at the alignment that the user wrote on the alloca instead of looking 10830 // at the stack object. 10831 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10832 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10833 const AllocaInst *AI = ArgCopyIter->second.first; 10834 int FixedIndex = FINode->getIndex(); 10835 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10836 int OldIndex = AllocaIndex; 10837 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10838 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10839 LLVM_DEBUG( 10840 dbgs() << " argument copy elision failed due to bad fixed stack " 10841 "object size\n"); 10842 return; 10843 } 10844 Align RequiredAlignment = AI->getAlign(); 10845 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10846 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10847 "greater than stack argument alignment (" 10848 << DebugStr(RequiredAlignment) << " vs " 10849 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10850 return; 10851 } 10852 10853 // Perform the elision. Delete the old stack object and replace its only use 10854 // in the variable info map. Mark the stack object as mutable. 10855 LLVM_DEBUG({ 10856 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10857 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10858 << '\n'; 10859 }); 10860 MFI.RemoveStackObject(OldIndex); 10861 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10862 AllocaIndex = FixedIndex; 10863 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10864 for (SDValue ArgVal : ArgVals) 10865 Chains.push_back(ArgVal.getValue(1)); 10866 10867 // Avoid emitting code for the store implementing the copy. 10868 const StoreInst *SI = ArgCopyIter->second.second; 10869 ElidedArgCopyInstrs.insert(SI); 10870 10871 // Check for uses of the argument again so that we can avoid exporting ArgVal 10872 // if it is't used by anything other than the store. 10873 for (const Value *U : Arg.users()) { 10874 if (U != SI) { 10875 ArgHasUses = true; 10876 break; 10877 } 10878 } 10879 } 10880 10881 void SelectionDAGISel::LowerArguments(const Function &F) { 10882 SelectionDAG &DAG = SDB->DAG; 10883 SDLoc dl = SDB->getCurSDLoc(); 10884 const DataLayout &DL = DAG.getDataLayout(); 10885 SmallVector<ISD::InputArg, 16> Ins; 10886 10887 // In Naked functions we aren't going to save any registers. 10888 if (F.hasFnAttribute(Attribute::Naked)) 10889 return; 10890 10891 if (!FuncInfo->CanLowerReturn) { 10892 // Put in an sret pointer parameter before all the other parameters. 10893 SmallVector<EVT, 1> ValueVTs; 10894 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10895 PointerType::get(F.getContext(), 10896 DAG.getDataLayout().getAllocaAddrSpace()), 10897 ValueVTs); 10898 10899 // NOTE: Assuming that a pointer will never break down to more than one VT 10900 // or one register. 10901 ISD::ArgFlagsTy Flags; 10902 Flags.setSRet(); 10903 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10904 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10905 ISD::InputArg::NoArgIndex, 0); 10906 Ins.push_back(RetArg); 10907 } 10908 10909 // Look for stores of arguments to static allocas. Mark such arguments with a 10910 // flag to ask the target to give us the memory location of that argument if 10911 // available. 10912 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10913 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10914 ArgCopyElisionCandidates); 10915 10916 // Set up the incoming argument description vector. 10917 for (const Argument &Arg : F.args()) { 10918 unsigned ArgNo = Arg.getArgNo(); 10919 SmallVector<EVT, 4> ValueVTs; 10920 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10921 bool isArgValueUsed = !Arg.use_empty(); 10922 unsigned PartBase = 0; 10923 Type *FinalType = Arg.getType(); 10924 if (Arg.hasAttribute(Attribute::ByVal)) 10925 FinalType = Arg.getParamByValType(); 10926 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10927 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10928 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10929 Value != NumValues; ++Value) { 10930 EVT VT = ValueVTs[Value]; 10931 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10932 ISD::ArgFlagsTy Flags; 10933 10934 10935 if (Arg.getType()->isPointerTy()) { 10936 Flags.setPointer(); 10937 Flags.setPointerAddrSpace( 10938 cast<PointerType>(Arg.getType())->getAddressSpace()); 10939 } 10940 if (Arg.hasAttribute(Attribute::ZExt)) 10941 Flags.setZExt(); 10942 if (Arg.hasAttribute(Attribute::SExt)) 10943 Flags.setSExt(); 10944 if (Arg.hasAttribute(Attribute::InReg)) { 10945 // If we are using vectorcall calling convention, a structure that is 10946 // passed InReg - is surely an HVA 10947 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10948 isa<StructType>(Arg.getType())) { 10949 // The first value of a structure is marked 10950 if (0 == Value) 10951 Flags.setHvaStart(); 10952 Flags.setHva(); 10953 } 10954 // Set InReg Flag 10955 Flags.setInReg(); 10956 } 10957 if (Arg.hasAttribute(Attribute::StructRet)) 10958 Flags.setSRet(); 10959 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10960 Flags.setSwiftSelf(); 10961 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10962 Flags.setSwiftAsync(); 10963 if (Arg.hasAttribute(Attribute::SwiftError)) 10964 Flags.setSwiftError(); 10965 if (Arg.hasAttribute(Attribute::ByVal)) 10966 Flags.setByVal(); 10967 if (Arg.hasAttribute(Attribute::ByRef)) 10968 Flags.setByRef(); 10969 if (Arg.hasAttribute(Attribute::InAlloca)) { 10970 Flags.setInAlloca(); 10971 // Set the byval flag for CCAssignFn callbacks that don't know about 10972 // inalloca. This way we can know how many bytes we should've allocated 10973 // and how many bytes a callee cleanup function will pop. If we port 10974 // inalloca to more targets, we'll have to add custom inalloca handling 10975 // in the various CC lowering callbacks. 10976 Flags.setByVal(); 10977 } 10978 if (Arg.hasAttribute(Attribute::Preallocated)) { 10979 Flags.setPreallocated(); 10980 // Set the byval flag for CCAssignFn callbacks that don't know about 10981 // preallocated. This way we can know how many bytes we should've 10982 // allocated and how many bytes a callee cleanup function will pop. If 10983 // we port preallocated to more targets, we'll have to add custom 10984 // preallocated handling in the various CC lowering callbacks. 10985 Flags.setByVal(); 10986 } 10987 10988 // Certain targets (such as MIPS), may have a different ABI alignment 10989 // for a type depending on the context. Give the target a chance to 10990 // specify the alignment it wants. 10991 const Align OriginalAlignment( 10992 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10993 Flags.setOrigAlign(OriginalAlignment); 10994 10995 Align MemAlign; 10996 Type *ArgMemTy = nullptr; 10997 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10998 Flags.isByRef()) { 10999 if (!ArgMemTy) 11000 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11001 11002 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11003 11004 // For in-memory arguments, size and alignment should be passed from FE. 11005 // BE will guess if this info is not there but there are cases it cannot 11006 // get right. 11007 if (auto ParamAlign = Arg.getParamStackAlign()) 11008 MemAlign = *ParamAlign; 11009 else if ((ParamAlign = Arg.getParamAlign())) 11010 MemAlign = *ParamAlign; 11011 else 11012 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11013 if (Flags.isByRef()) 11014 Flags.setByRefSize(MemSize); 11015 else 11016 Flags.setByValSize(MemSize); 11017 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11018 MemAlign = *ParamAlign; 11019 } else { 11020 MemAlign = OriginalAlignment; 11021 } 11022 Flags.setMemAlign(MemAlign); 11023 11024 if (Arg.hasAttribute(Attribute::Nest)) 11025 Flags.setNest(); 11026 if (NeedsRegBlock) 11027 Flags.setInConsecutiveRegs(); 11028 if (ArgCopyElisionCandidates.count(&Arg)) 11029 Flags.setCopyElisionCandidate(); 11030 if (Arg.hasAttribute(Attribute::Returned)) 11031 Flags.setReturned(); 11032 11033 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11034 *CurDAG->getContext(), F.getCallingConv(), VT); 11035 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11036 *CurDAG->getContext(), F.getCallingConv(), VT); 11037 for (unsigned i = 0; i != NumRegs; ++i) { 11038 // For scalable vectors, use the minimum size; individual targets 11039 // are responsible for handling scalable vector arguments and 11040 // return values. 11041 ISD::InputArg MyFlags( 11042 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11043 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11044 if (NumRegs > 1 && i == 0) 11045 MyFlags.Flags.setSplit(); 11046 // if it isn't first piece, alignment must be 1 11047 else if (i > 0) { 11048 MyFlags.Flags.setOrigAlign(Align(1)); 11049 if (i == NumRegs - 1) 11050 MyFlags.Flags.setSplitEnd(); 11051 } 11052 Ins.push_back(MyFlags); 11053 } 11054 if (NeedsRegBlock && Value == NumValues - 1) 11055 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11056 PartBase += VT.getStoreSize().getKnownMinValue(); 11057 } 11058 } 11059 11060 // Call the target to set up the argument values. 11061 SmallVector<SDValue, 8> InVals; 11062 SDValue NewRoot = TLI->LowerFormalArguments( 11063 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11064 11065 // Verify that the target's LowerFormalArguments behaved as expected. 11066 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11067 "LowerFormalArguments didn't return a valid chain!"); 11068 assert(InVals.size() == Ins.size() && 11069 "LowerFormalArguments didn't emit the correct number of values!"); 11070 LLVM_DEBUG({ 11071 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11072 assert(InVals[i].getNode() && 11073 "LowerFormalArguments emitted a null value!"); 11074 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11075 "LowerFormalArguments emitted a value with the wrong type!"); 11076 } 11077 }); 11078 11079 // Update the DAG with the new chain value resulting from argument lowering. 11080 DAG.setRoot(NewRoot); 11081 11082 // Set up the argument values. 11083 unsigned i = 0; 11084 if (!FuncInfo->CanLowerReturn) { 11085 // Create a virtual register for the sret pointer, and put in a copy 11086 // from the sret argument into it. 11087 SmallVector<EVT, 1> ValueVTs; 11088 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11089 PointerType::get(F.getContext(), 11090 DAG.getDataLayout().getAllocaAddrSpace()), 11091 ValueVTs); 11092 MVT VT = ValueVTs[0].getSimpleVT(); 11093 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11094 std::optional<ISD::NodeType> AssertOp; 11095 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 11096 nullptr, F.getCallingConv(), AssertOp); 11097 11098 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11099 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11100 Register SRetReg = 11101 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11102 FuncInfo->DemoteRegister = SRetReg; 11103 NewRoot = 11104 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11105 DAG.setRoot(NewRoot); 11106 11107 // i indexes lowered arguments. Bump it past the hidden sret argument. 11108 ++i; 11109 } 11110 11111 SmallVector<SDValue, 4> Chains; 11112 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11113 for (const Argument &Arg : F.args()) { 11114 SmallVector<SDValue, 4> ArgValues; 11115 SmallVector<EVT, 4> ValueVTs; 11116 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11117 unsigned NumValues = ValueVTs.size(); 11118 if (NumValues == 0) 11119 continue; 11120 11121 bool ArgHasUses = !Arg.use_empty(); 11122 11123 // Elide the copying store if the target loaded this argument from a 11124 // suitable fixed stack object. 11125 if (Ins[i].Flags.isCopyElisionCandidate()) { 11126 unsigned NumParts = 0; 11127 for (EVT VT : ValueVTs) 11128 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11129 F.getCallingConv(), VT); 11130 11131 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11132 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11133 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11134 } 11135 11136 // If this argument is unused then remember its value. It is used to generate 11137 // debugging information. 11138 bool isSwiftErrorArg = 11139 TLI->supportSwiftError() && 11140 Arg.hasAttribute(Attribute::SwiftError); 11141 if (!ArgHasUses && !isSwiftErrorArg) { 11142 SDB->setUnusedArgValue(&Arg, InVals[i]); 11143 11144 // Also remember any frame index for use in FastISel. 11145 if (FrameIndexSDNode *FI = 11146 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11147 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11148 } 11149 11150 for (unsigned Val = 0; Val != NumValues; ++Val) { 11151 EVT VT = ValueVTs[Val]; 11152 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11153 F.getCallingConv(), VT); 11154 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11155 *CurDAG->getContext(), F.getCallingConv(), VT); 11156 11157 // Even an apparent 'unused' swifterror argument needs to be returned. So 11158 // we do generate a copy for it that can be used on return from the 11159 // function. 11160 if (ArgHasUses || isSwiftErrorArg) { 11161 std::optional<ISD::NodeType> AssertOp; 11162 if (Arg.hasAttribute(Attribute::SExt)) 11163 AssertOp = ISD::AssertSext; 11164 else if (Arg.hasAttribute(Attribute::ZExt)) 11165 AssertOp = ISD::AssertZext; 11166 11167 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11168 PartVT, VT, nullptr, 11169 F.getCallingConv(), AssertOp)); 11170 } 11171 11172 i += NumParts; 11173 } 11174 11175 // We don't need to do anything else for unused arguments. 11176 if (ArgValues.empty()) 11177 continue; 11178 11179 // Note down frame index. 11180 if (FrameIndexSDNode *FI = 11181 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11182 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11183 11184 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11185 SDB->getCurSDLoc()); 11186 11187 SDB->setValue(&Arg, Res); 11188 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11189 // We want to associate the argument with the frame index, among 11190 // involved operands, that correspond to the lowest address. The 11191 // getCopyFromParts function, called earlier, is swapping the order of 11192 // the operands to BUILD_PAIR depending on endianness. The result of 11193 // that swapping is that the least significant bits of the argument will 11194 // be in the first operand of the BUILD_PAIR node, and the most 11195 // significant bits will be in the second operand. 11196 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11197 if (LoadSDNode *LNode = 11198 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11199 if (FrameIndexSDNode *FI = 11200 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11201 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11202 } 11203 11204 // Analyses past this point are naive and don't expect an assertion. 11205 if (Res.getOpcode() == ISD::AssertZext) 11206 Res = Res.getOperand(0); 11207 11208 // Update the SwiftErrorVRegDefMap. 11209 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11210 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11211 if (Register::isVirtualRegister(Reg)) 11212 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11213 Reg); 11214 } 11215 11216 // If this argument is live outside of the entry block, insert a copy from 11217 // wherever we got it to the vreg that other BB's will reference it as. 11218 if (Res.getOpcode() == ISD::CopyFromReg) { 11219 // If we can, though, try to skip creating an unnecessary vreg. 11220 // FIXME: This isn't very clean... it would be nice to make this more 11221 // general. 11222 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11223 if (Register::isVirtualRegister(Reg)) { 11224 FuncInfo->ValueMap[&Arg] = Reg; 11225 continue; 11226 } 11227 } 11228 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11229 FuncInfo->InitializeRegForValue(&Arg); 11230 SDB->CopyToExportRegsIfNeeded(&Arg); 11231 } 11232 } 11233 11234 if (!Chains.empty()) { 11235 Chains.push_back(NewRoot); 11236 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11237 } 11238 11239 DAG.setRoot(NewRoot); 11240 11241 assert(i == InVals.size() && "Argument register count mismatch!"); 11242 11243 // If any argument copy elisions occurred and we have debug info, update the 11244 // stale frame indices used in the dbg.declare variable info table. 11245 if (!ArgCopyElisionFrameIndexMap.empty()) { 11246 for (MachineFunction::VariableDbgInfo &VI : 11247 MF->getInStackSlotVariableDbgInfo()) { 11248 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11249 if (I != ArgCopyElisionFrameIndexMap.end()) 11250 VI.updateStackSlot(I->second); 11251 } 11252 } 11253 11254 // Finally, if the target has anything special to do, allow it to do so. 11255 emitFunctionEntryCode(); 11256 } 11257 11258 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11259 /// ensure constants are generated when needed. Remember the virtual registers 11260 /// that need to be added to the Machine PHI nodes as input. We cannot just 11261 /// directly add them, because expansion might result in multiple MBB's for one 11262 /// BB. As such, the start of the BB might correspond to a different MBB than 11263 /// the end. 11264 void 11265 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11266 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11267 11268 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11269 11270 // Check PHI nodes in successors that expect a value to be available from this 11271 // block. 11272 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11273 if (!isa<PHINode>(SuccBB->begin())) continue; 11274 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11275 11276 // If this terminator has multiple identical successors (common for 11277 // switches), only handle each succ once. 11278 if (!SuccsHandled.insert(SuccMBB).second) 11279 continue; 11280 11281 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11282 11283 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11284 // nodes and Machine PHI nodes, but the incoming operands have not been 11285 // emitted yet. 11286 for (const PHINode &PN : SuccBB->phis()) { 11287 // Ignore dead phi's. 11288 if (PN.use_empty()) 11289 continue; 11290 11291 // Skip empty types 11292 if (PN.getType()->isEmptyTy()) 11293 continue; 11294 11295 unsigned Reg; 11296 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11297 11298 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11299 unsigned &RegOut = ConstantsOut[C]; 11300 if (RegOut == 0) { 11301 RegOut = FuncInfo.CreateRegs(C); 11302 // We need to zero/sign extend ConstantInt phi operands to match 11303 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11304 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11305 if (auto *CI = dyn_cast<ConstantInt>(C)) 11306 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11307 : ISD::ZERO_EXTEND; 11308 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11309 } 11310 Reg = RegOut; 11311 } else { 11312 DenseMap<const Value *, Register>::iterator I = 11313 FuncInfo.ValueMap.find(PHIOp); 11314 if (I != FuncInfo.ValueMap.end()) 11315 Reg = I->second; 11316 else { 11317 assert(isa<AllocaInst>(PHIOp) && 11318 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11319 "Didn't codegen value into a register!??"); 11320 Reg = FuncInfo.CreateRegs(PHIOp); 11321 CopyValueToVirtualRegister(PHIOp, Reg); 11322 } 11323 } 11324 11325 // Remember that this register needs to added to the machine PHI node as 11326 // the input for this MBB. 11327 SmallVector<EVT, 4> ValueVTs; 11328 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11329 for (EVT VT : ValueVTs) { 11330 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11331 for (unsigned i = 0; i != NumRegisters; ++i) 11332 FuncInfo.PHINodesToUpdate.push_back( 11333 std::make_pair(&*MBBI++, Reg + i)); 11334 Reg += NumRegisters; 11335 } 11336 } 11337 } 11338 11339 ConstantsOut.clear(); 11340 } 11341 11342 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11343 MachineFunction::iterator I(MBB); 11344 if (++I == FuncInfo.MF->end()) 11345 return nullptr; 11346 return &*I; 11347 } 11348 11349 /// During lowering new call nodes can be created (such as memset, etc.). 11350 /// Those will become new roots of the current DAG, but complications arise 11351 /// when they are tail calls. In such cases, the call lowering will update 11352 /// the root, but the builder still needs to know that a tail call has been 11353 /// lowered in order to avoid generating an additional return. 11354 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11355 // If the node is null, we do have a tail call. 11356 if (MaybeTC.getNode() != nullptr) 11357 DAG.setRoot(MaybeTC); 11358 else 11359 HasTailCall = true; 11360 } 11361 11362 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11363 MachineBasicBlock *SwitchMBB, 11364 MachineBasicBlock *DefaultMBB) { 11365 MachineFunction *CurMF = FuncInfo.MF; 11366 MachineBasicBlock *NextMBB = nullptr; 11367 MachineFunction::iterator BBI(W.MBB); 11368 if (++BBI != FuncInfo.MF->end()) 11369 NextMBB = &*BBI; 11370 11371 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11372 11373 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11374 11375 if (Size == 2 && W.MBB == SwitchMBB) { 11376 // If any two of the cases has the same destination, and if one value 11377 // is the same as the other, but has one bit unset that the other has set, 11378 // use bit manipulation to do two compares at once. For example: 11379 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11380 // TODO: This could be extended to merge any 2 cases in switches with 3 11381 // cases. 11382 // TODO: Handle cases where W.CaseBB != SwitchBB. 11383 CaseCluster &Small = *W.FirstCluster; 11384 CaseCluster &Big = *W.LastCluster; 11385 11386 if (Small.Low == Small.High && Big.Low == Big.High && 11387 Small.MBB == Big.MBB) { 11388 const APInt &SmallValue = Small.Low->getValue(); 11389 const APInt &BigValue = Big.Low->getValue(); 11390 11391 // Check that there is only one bit different. 11392 APInt CommonBit = BigValue ^ SmallValue; 11393 if (CommonBit.isPowerOf2()) { 11394 SDValue CondLHS = getValue(Cond); 11395 EVT VT = CondLHS.getValueType(); 11396 SDLoc DL = getCurSDLoc(); 11397 11398 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11399 DAG.getConstant(CommonBit, DL, VT)); 11400 SDValue Cond = DAG.getSetCC( 11401 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11402 ISD::SETEQ); 11403 11404 // Update successor info. 11405 // Both Small and Big will jump to Small.BB, so we sum up the 11406 // probabilities. 11407 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11408 if (BPI) 11409 addSuccessorWithProb( 11410 SwitchMBB, DefaultMBB, 11411 // The default destination is the first successor in IR. 11412 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11413 else 11414 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11415 11416 // Insert the true branch. 11417 SDValue BrCond = 11418 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11419 DAG.getBasicBlock(Small.MBB)); 11420 // Insert the false branch. 11421 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11422 DAG.getBasicBlock(DefaultMBB)); 11423 11424 DAG.setRoot(BrCond); 11425 return; 11426 } 11427 } 11428 } 11429 11430 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11431 // Here, we order cases by probability so the most likely case will be 11432 // checked first. However, two clusters can have the same probability in 11433 // which case their relative ordering is non-deterministic. So we use Low 11434 // as a tie-breaker as clusters are guaranteed to never overlap. 11435 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11436 [](const CaseCluster &a, const CaseCluster &b) { 11437 return a.Prob != b.Prob ? 11438 a.Prob > b.Prob : 11439 a.Low->getValue().slt(b.Low->getValue()); 11440 }); 11441 11442 // Rearrange the case blocks so that the last one falls through if possible 11443 // without changing the order of probabilities. 11444 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11445 --I; 11446 if (I->Prob > W.LastCluster->Prob) 11447 break; 11448 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11449 std::swap(*I, *W.LastCluster); 11450 break; 11451 } 11452 } 11453 } 11454 11455 // Compute total probability. 11456 BranchProbability DefaultProb = W.DefaultProb; 11457 BranchProbability UnhandledProbs = DefaultProb; 11458 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11459 UnhandledProbs += I->Prob; 11460 11461 MachineBasicBlock *CurMBB = W.MBB; 11462 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11463 bool FallthroughUnreachable = false; 11464 MachineBasicBlock *Fallthrough; 11465 if (I == W.LastCluster) { 11466 // For the last cluster, fall through to the default destination. 11467 Fallthrough = DefaultMBB; 11468 FallthroughUnreachable = isa<UnreachableInst>( 11469 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11470 } else { 11471 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11472 CurMF->insert(BBI, Fallthrough); 11473 // Put Cond in a virtual register to make it available from the new blocks. 11474 ExportFromCurrentBlock(Cond); 11475 } 11476 UnhandledProbs -= I->Prob; 11477 11478 switch (I->Kind) { 11479 case CC_JumpTable: { 11480 // FIXME: Optimize away range check based on pivot comparisons. 11481 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11482 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11483 11484 // The jump block hasn't been inserted yet; insert it here. 11485 MachineBasicBlock *JumpMBB = JT->MBB; 11486 CurMF->insert(BBI, JumpMBB); 11487 11488 auto JumpProb = I->Prob; 11489 auto FallthroughProb = UnhandledProbs; 11490 11491 // If the default statement is a target of the jump table, we evenly 11492 // distribute the default probability to successors of CurMBB. Also 11493 // update the probability on the edge from JumpMBB to Fallthrough. 11494 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11495 SE = JumpMBB->succ_end(); 11496 SI != SE; ++SI) { 11497 if (*SI == DefaultMBB) { 11498 JumpProb += DefaultProb / 2; 11499 FallthroughProb -= DefaultProb / 2; 11500 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11501 JumpMBB->normalizeSuccProbs(); 11502 break; 11503 } 11504 } 11505 11506 // If the default clause is unreachable, propagate that knowledge into 11507 // JTH->FallthroughUnreachable which will use it to suppress the range 11508 // check. 11509 // 11510 // However, don't do this if we're doing branch target enforcement, 11511 // because a table branch _without_ a range check can be a tempting JOP 11512 // gadget - out-of-bounds inputs that are impossible in correct 11513 // execution become possible again if an attacker can influence the 11514 // control flow. So if an attacker doesn't already have a BTI bypass 11515 // available, we don't want them to be able to get one out of this 11516 // table branch. 11517 if (FallthroughUnreachable) { 11518 Function &CurFunc = CurMF->getFunction(); 11519 bool HasBranchTargetEnforcement = false; 11520 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11521 HasBranchTargetEnforcement = 11522 CurFunc.getFnAttribute("branch-target-enforcement") 11523 .getValueAsBool(); 11524 } else { 11525 HasBranchTargetEnforcement = 11526 CurMF->getMMI().getModule()->getModuleFlag( 11527 "branch-target-enforcement"); 11528 } 11529 if (!HasBranchTargetEnforcement) 11530 JTH->FallthroughUnreachable = true; 11531 } 11532 11533 if (!JTH->FallthroughUnreachable) 11534 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11535 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11536 CurMBB->normalizeSuccProbs(); 11537 11538 // The jump table header will be inserted in our current block, do the 11539 // range check, and fall through to our fallthrough block. 11540 JTH->HeaderBB = CurMBB; 11541 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11542 11543 // If we're in the right place, emit the jump table header right now. 11544 if (CurMBB == SwitchMBB) { 11545 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11546 JTH->Emitted = true; 11547 } 11548 break; 11549 } 11550 case CC_BitTests: { 11551 // FIXME: Optimize away range check based on pivot comparisons. 11552 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11553 11554 // The bit test blocks haven't been inserted yet; insert them here. 11555 for (BitTestCase &BTC : BTB->Cases) 11556 CurMF->insert(BBI, BTC.ThisBB); 11557 11558 // Fill in fields of the BitTestBlock. 11559 BTB->Parent = CurMBB; 11560 BTB->Default = Fallthrough; 11561 11562 BTB->DefaultProb = UnhandledProbs; 11563 // If the cases in bit test don't form a contiguous range, we evenly 11564 // distribute the probability on the edge to Fallthrough to two 11565 // successors of CurMBB. 11566 if (!BTB->ContiguousRange) { 11567 BTB->Prob += DefaultProb / 2; 11568 BTB->DefaultProb -= DefaultProb / 2; 11569 } 11570 11571 if (FallthroughUnreachable) 11572 BTB->FallthroughUnreachable = true; 11573 11574 // If we're in the right place, emit the bit test header right now. 11575 if (CurMBB == SwitchMBB) { 11576 visitBitTestHeader(*BTB, SwitchMBB); 11577 BTB->Emitted = true; 11578 } 11579 break; 11580 } 11581 case CC_Range: { 11582 const Value *RHS, *LHS, *MHS; 11583 ISD::CondCode CC; 11584 if (I->Low == I->High) { 11585 // Check Cond == I->Low. 11586 CC = ISD::SETEQ; 11587 LHS = Cond; 11588 RHS=I->Low; 11589 MHS = nullptr; 11590 } else { 11591 // Check I->Low <= Cond <= I->High. 11592 CC = ISD::SETLE; 11593 LHS = I->Low; 11594 MHS = Cond; 11595 RHS = I->High; 11596 } 11597 11598 // If Fallthrough is unreachable, fold away the comparison. 11599 if (FallthroughUnreachable) 11600 CC = ISD::SETTRUE; 11601 11602 // The false probability is the sum of all unhandled cases. 11603 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11604 getCurSDLoc(), I->Prob, UnhandledProbs); 11605 11606 if (CurMBB == SwitchMBB) 11607 visitSwitchCase(CB, SwitchMBB); 11608 else 11609 SL->SwitchCases.push_back(CB); 11610 11611 break; 11612 } 11613 } 11614 CurMBB = Fallthrough; 11615 } 11616 } 11617 11618 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11619 CaseClusterIt First, 11620 CaseClusterIt Last) { 11621 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11622 if (X.Prob != CC.Prob) 11623 return X.Prob > CC.Prob; 11624 11625 // Ties are broken by comparing the case value. 11626 return X.Low->getValue().slt(CC.Low->getValue()); 11627 }); 11628 } 11629 11630 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11631 const SwitchWorkListItem &W, 11632 Value *Cond, 11633 MachineBasicBlock *SwitchMBB) { 11634 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11635 "Clusters not sorted?"); 11636 11637 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11638 11639 // Balance the tree based on branch probabilities to create a near-optimal (in 11640 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11641 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11642 CaseClusterIt LastLeft = W.FirstCluster; 11643 CaseClusterIt FirstRight = W.LastCluster; 11644 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11645 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11646 11647 // Move LastLeft and FirstRight towards each other from opposite directions to 11648 // find a partitioning of the clusters which balances the probability on both 11649 // sides. If LeftProb and RightProb are equal, alternate which side is 11650 // taken to ensure 0-probability nodes are distributed evenly. 11651 unsigned I = 0; 11652 while (LastLeft + 1 < FirstRight) { 11653 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11654 LeftProb += (++LastLeft)->Prob; 11655 else 11656 RightProb += (--FirstRight)->Prob; 11657 I++; 11658 } 11659 11660 while (true) { 11661 // Our binary search tree differs from a typical BST in that ours can have up 11662 // to three values in each leaf. The pivot selection above doesn't take that 11663 // into account, which means the tree might require more nodes and be less 11664 // efficient. We compensate for this here. 11665 11666 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11667 unsigned NumRight = W.LastCluster - FirstRight + 1; 11668 11669 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11670 // If one side has less than 3 clusters, and the other has more than 3, 11671 // consider taking a cluster from the other side. 11672 11673 if (NumLeft < NumRight) { 11674 // Consider moving the first cluster on the right to the left side. 11675 CaseCluster &CC = *FirstRight; 11676 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11677 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11678 if (LeftSideRank <= RightSideRank) { 11679 // Moving the cluster to the left does not demote it. 11680 ++LastLeft; 11681 ++FirstRight; 11682 continue; 11683 } 11684 } else { 11685 assert(NumRight < NumLeft); 11686 // Consider moving the last element on the left to the right side. 11687 CaseCluster &CC = *LastLeft; 11688 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11689 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11690 if (RightSideRank <= LeftSideRank) { 11691 // Moving the cluster to the right does not demot it. 11692 --LastLeft; 11693 --FirstRight; 11694 continue; 11695 } 11696 } 11697 } 11698 break; 11699 } 11700 11701 assert(LastLeft + 1 == FirstRight); 11702 assert(LastLeft >= W.FirstCluster); 11703 assert(FirstRight <= W.LastCluster); 11704 11705 // Use the first element on the right as pivot since we will make less-than 11706 // comparisons against it. 11707 CaseClusterIt PivotCluster = FirstRight; 11708 assert(PivotCluster > W.FirstCluster); 11709 assert(PivotCluster <= W.LastCluster); 11710 11711 CaseClusterIt FirstLeft = W.FirstCluster; 11712 CaseClusterIt LastRight = W.LastCluster; 11713 11714 const ConstantInt *Pivot = PivotCluster->Low; 11715 11716 // New blocks will be inserted immediately after the current one. 11717 MachineFunction::iterator BBI(W.MBB); 11718 ++BBI; 11719 11720 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11721 // we can branch to its destination directly if it's squeezed exactly in 11722 // between the known lower bound and Pivot - 1. 11723 MachineBasicBlock *LeftMBB; 11724 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11725 FirstLeft->Low == W.GE && 11726 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11727 LeftMBB = FirstLeft->MBB; 11728 } else { 11729 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11730 FuncInfo.MF->insert(BBI, LeftMBB); 11731 WorkList.push_back( 11732 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11733 // Put Cond in a virtual register to make it available from the new blocks. 11734 ExportFromCurrentBlock(Cond); 11735 } 11736 11737 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11738 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11739 // directly if RHS.High equals the current upper bound. 11740 MachineBasicBlock *RightMBB; 11741 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11742 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11743 RightMBB = FirstRight->MBB; 11744 } else { 11745 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11746 FuncInfo.MF->insert(BBI, RightMBB); 11747 WorkList.push_back( 11748 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11749 // Put Cond in a virtual register to make it available from the new blocks. 11750 ExportFromCurrentBlock(Cond); 11751 } 11752 11753 // Create the CaseBlock record that will be used to lower the branch. 11754 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11755 getCurSDLoc(), LeftProb, RightProb); 11756 11757 if (W.MBB == SwitchMBB) 11758 visitSwitchCase(CB, SwitchMBB); 11759 else 11760 SL->SwitchCases.push_back(CB); 11761 } 11762 11763 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11764 // from the swith statement. 11765 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11766 BranchProbability PeeledCaseProb) { 11767 if (PeeledCaseProb == BranchProbability::getOne()) 11768 return BranchProbability::getZero(); 11769 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11770 11771 uint32_t Numerator = CaseProb.getNumerator(); 11772 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11773 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11774 } 11775 11776 // Try to peel the top probability case if it exceeds the threshold. 11777 // Return current MachineBasicBlock for the switch statement if the peeling 11778 // does not occur. 11779 // If the peeling is performed, return the newly created MachineBasicBlock 11780 // for the peeled switch statement. Also update Clusters to remove the peeled 11781 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11782 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11783 const SwitchInst &SI, CaseClusterVector &Clusters, 11784 BranchProbability &PeeledCaseProb) { 11785 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11786 // Don't perform if there is only one cluster or optimizing for size. 11787 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11788 TM.getOptLevel() == CodeGenOptLevel::None || 11789 SwitchMBB->getParent()->getFunction().hasMinSize()) 11790 return SwitchMBB; 11791 11792 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11793 unsigned PeeledCaseIndex = 0; 11794 bool SwitchPeeled = false; 11795 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11796 CaseCluster &CC = Clusters[Index]; 11797 if (CC.Prob < TopCaseProb) 11798 continue; 11799 TopCaseProb = CC.Prob; 11800 PeeledCaseIndex = Index; 11801 SwitchPeeled = true; 11802 } 11803 if (!SwitchPeeled) 11804 return SwitchMBB; 11805 11806 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11807 << TopCaseProb << "\n"); 11808 11809 // Record the MBB for the peeled switch statement. 11810 MachineFunction::iterator BBI(SwitchMBB); 11811 ++BBI; 11812 MachineBasicBlock *PeeledSwitchMBB = 11813 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11814 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11815 11816 ExportFromCurrentBlock(SI.getCondition()); 11817 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11818 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11819 nullptr, nullptr, TopCaseProb.getCompl()}; 11820 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11821 11822 Clusters.erase(PeeledCaseIt); 11823 for (CaseCluster &CC : Clusters) { 11824 LLVM_DEBUG( 11825 dbgs() << "Scale the probablity for one cluster, before scaling: " 11826 << CC.Prob << "\n"); 11827 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11828 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11829 } 11830 PeeledCaseProb = TopCaseProb; 11831 return PeeledSwitchMBB; 11832 } 11833 11834 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11835 // Extract cases from the switch. 11836 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11837 CaseClusterVector Clusters; 11838 Clusters.reserve(SI.getNumCases()); 11839 for (auto I : SI.cases()) { 11840 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11841 const ConstantInt *CaseVal = I.getCaseValue(); 11842 BranchProbability Prob = 11843 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11844 : BranchProbability(1, SI.getNumCases() + 1); 11845 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11846 } 11847 11848 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11849 11850 // Cluster adjacent cases with the same destination. We do this at all 11851 // optimization levels because it's cheap to do and will make codegen faster 11852 // if there are many clusters. 11853 sortAndRangeify(Clusters); 11854 11855 // The branch probablity of the peeled case. 11856 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11857 MachineBasicBlock *PeeledSwitchMBB = 11858 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11859 11860 // If there is only the default destination, jump there directly. 11861 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11862 if (Clusters.empty()) { 11863 assert(PeeledSwitchMBB == SwitchMBB); 11864 SwitchMBB->addSuccessor(DefaultMBB); 11865 if (DefaultMBB != NextBlock(SwitchMBB)) { 11866 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11867 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11868 } 11869 return; 11870 } 11871 11872 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 11873 DAG.getBFI()); 11874 SL->findBitTestClusters(Clusters, &SI); 11875 11876 LLVM_DEBUG({ 11877 dbgs() << "Case clusters: "; 11878 for (const CaseCluster &C : Clusters) { 11879 if (C.Kind == CC_JumpTable) 11880 dbgs() << "JT:"; 11881 if (C.Kind == CC_BitTests) 11882 dbgs() << "BT:"; 11883 11884 C.Low->getValue().print(dbgs(), true); 11885 if (C.Low != C.High) { 11886 dbgs() << '-'; 11887 C.High->getValue().print(dbgs(), true); 11888 } 11889 dbgs() << ' '; 11890 } 11891 dbgs() << '\n'; 11892 }); 11893 11894 assert(!Clusters.empty()); 11895 SwitchWorkList WorkList; 11896 CaseClusterIt First = Clusters.begin(); 11897 CaseClusterIt Last = Clusters.end() - 1; 11898 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11899 // Scale the branchprobability for DefaultMBB if the peel occurs and 11900 // DefaultMBB is not replaced. 11901 if (PeeledCaseProb != BranchProbability::getZero() && 11902 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11903 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11904 WorkList.push_back( 11905 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11906 11907 while (!WorkList.empty()) { 11908 SwitchWorkListItem W = WorkList.pop_back_val(); 11909 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11910 11911 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 11912 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11913 // For optimized builds, lower large range as a balanced binary tree. 11914 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11915 continue; 11916 } 11917 11918 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11919 } 11920 } 11921 11922 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11923 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11924 auto DL = getCurSDLoc(); 11925 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11926 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11927 } 11928 11929 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11930 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11931 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11932 11933 SDLoc DL = getCurSDLoc(); 11934 SDValue V = getValue(I.getOperand(0)); 11935 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11936 11937 if (VT.isScalableVector()) { 11938 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11939 return; 11940 } 11941 11942 // Use VECTOR_SHUFFLE for the fixed-length vector 11943 // to maintain existing behavior. 11944 SmallVector<int, 8> Mask; 11945 unsigned NumElts = VT.getVectorMinNumElements(); 11946 for (unsigned i = 0; i != NumElts; ++i) 11947 Mask.push_back(NumElts - 1 - i); 11948 11949 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11950 } 11951 11952 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 11953 auto DL = getCurSDLoc(); 11954 SDValue InVec = getValue(I.getOperand(0)); 11955 EVT OutVT = 11956 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 11957 11958 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 11959 11960 // ISD Node needs the input vectors split into two equal parts 11961 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11962 DAG.getVectorIdxConstant(0, DL)); 11963 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11964 DAG.getVectorIdxConstant(OutNumElts, DL)); 11965 11966 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11967 // legalisation and combines. 11968 if (OutVT.isFixedLengthVector()) { 11969 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11970 createStrideMask(0, 2, OutNumElts)); 11971 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11972 createStrideMask(1, 2, OutNumElts)); 11973 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 11974 setValue(&I, Res); 11975 return; 11976 } 11977 11978 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 11979 DAG.getVTList(OutVT, OutVT), Lo, Hi); 11980 setValue(&I, Res); 11981 } 11982 11983 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 11984 auto DL = getCurSDLoc(); 11985 EVT InVT = getValue(I.getOperand(0)).getValueType(); 11986 SDValue InVec0 = getValue(I.getOperand(0)); 11987 SDValue InVec1 = getValue(I.getOperand(1)); 11988 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11989 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11990 11991 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11992 // legalisation and combines. 11993 if (OutVT.isFixedLengthVector()) { 11994 unsigned NumElts = InVT.getVectorMinNumElements(); 11995 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 11996 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 11997 createInterleaveMask(NumElts, 2))); 11998 return; 11999 } 12000 12001 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12002 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12003 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12004 Res.getValue(1)); 12005 setValue(&I, Res); 12006 } 12007 12008 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12009 SmallVector<EVT, 4> ValueVTs; 12010 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12011 ValueVTs); 12012 unsigned NumValues = ValueVTs.size(); 12013 if (NumValues == 0) return; 12014 12015 SmallVector<SDValue, 4> Values(NumValues); 12016 SDValue Op = getValue(I.getOperand(0)); 12017 12018 for (unsigned i = 0; i != NumValues; ++i) 12019 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12020 SDValue(Op.getNode(), Op.getResNo() + i)); 12021 12022 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12023 DAG.getVTList(ValueVTs), Values)); 12024 } 12025 12026 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12027 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12028 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12029 12030 SDLoc DL = getCurSDLoc(); 12031 SDValue V1 = getValue(I.getOperand(0)); 12032 SDValue V2 = getValue(I.getOperand(1)); 12033 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12034 12035 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12036 if (VT.isScalableVector()) { 12037 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 12038 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12039 DAG.getConstant(Imm, DL, IdxVT))); 12040 return; 12041 } 12042 12043 unsigned NumElts = VT.getVectorNumElements(); 12044 12045 uint64_t Idx = (NumElts + Imm) % NumElts; 12046 12047 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12048 SmallVector<int, 8> Mask; 12049 for (unsigned i = 0; i < NumElts; ++i) 12050 Mask.push_back(Idx + i); 12051 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12052 } 12053 12054 // Consider the following MIR after SelectionDAG, which produces output in 12055 // phyregs in the first case or virtregs in the second case. 12056 // 12057 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12058 // %5:gr32 = COPY $ebx 12059 // %6:gr32 = COPY $edx 12060 // %1:gr32 = COPY %6:gr32 12061 // %0:gr32 = COPY %5:gr32 12062 // 12063 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12064 // %1:gr32 = COPY %6:gr32 12065 // %0:gr32 = COPY %5:gr32 12066 // 12067 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12068 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12069 // 12070 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12071 // to a single virtreg (such as %0). The remaining outputs monotonically 12072 // increase in virtreg number from there. If a callbr has no outputs, then it 12073 // should not have a corresponding callbr landingpad; in fact, the callbr 12074 // landingpad would not even be able to refer to such a callbr. 12075 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12076 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12077 // There is definitely at least one copy. 12078 assert(MI->getOpcode() == TargetOpcode::COPY && 12079 "start of copy chain MUST be COPY"); 12080 Reg = MI->getOperand(1).getReg(); 12081 MI = MRI.def_begin(Reg)->getParent(); 12082 // There may be an optional second copy. 12083 if (MI->getOpcode() == TargetOpcode::COPY) { 12084 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12085 Reg = MI->getOperand(1).getReg(); 12086 assert(Reg.isPhysical() && "expected COPY of physical register"); 12087 MI = MRI.def_begin(Reg)->getParent(); 12088 } 12089 // The start of the chain must be an INLINEASM_BR. 12090 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12091 "end of copy chain MUST be INLINEASM_BR"); 12092 return Reg; 12093 } 12094 12095 // We must do this walk rather than the simpler 12096 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12097 // otherwise we will end up with copies of virtregs only valid along direct 12098 // edges. 12099 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12100 SmallVector<EVT, 8> ResultVTs; 12101 SmallVector<SDValue, 8> ResultValues; 12102 const auto *CBR = 12103 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12104 12105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12106 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12107 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12108 12109 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12110 SDValue Chain = DAG.getRoot(); 12111 12112 // Re-parse the asm constraints string. 12113 TargetLowering::AsmOperandInfoVector TargetConstraints = 12114 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12115 for (auto &T : TargetConstraints) { 12116 SDISelAsmOperandInfo OpInfo(T); 12117 if (OpInfo.Type != InlineAsm::isOutput) 12118 continue; 12119 12120 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12121 // individual constraint. 12122 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12123 12124 switch (OpInfo.ConstraintType) { 12125 case TargetLowering::C_Register: 12126 case TargetLowering::C_RegisterClass: { 12127 // Fill in OpInfo.AssignedRegs.Regs. 12128 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12129 12130 // getRegistersForValue may produce 1 to many registers based on whether 12131 // the OpInfo.ConstraintVT is legal on the target or not. 12132 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12133 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12134 if (Register::isPhysicalRegister(OriginalDef)) 12135 FuncInfo.MBB->addLiveIn(OriginalDef); 12136 // Update the assigned registers to use the original defs. 12137 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12138 } 12139 12140 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12141 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12142 ResultValues.push_back(V); 12143 ResultVTs.push_back(OpInfo.ConstraintVT); 12144 break; 12145 } 12146 case TargetLowering::C_Other: { 12147 SDValue Flag; 12148 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12149 OpInfo, DAG); 12150 ++InitialDef; 12151 ResultValues.push_back(V); 12152 ResultVTs.push_back(OpInfo.ConstraintVT); 12153 break; 12154 } 12155 default: 12156 break; 12157 } 12158 } 12159 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12160 DAG.getVTList(ResultVTs), ResultValues); 12161 setValue(&I, V); 12162 } 12163