1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 // Limit the width of DAG chains. This is important in general to prevent 82 // prevent DAG-based analysis from blowing up. For example, alias analysis and 83 // load clustering may not complete in reasonable time. It is difficult to 84 // recognize and avoid this situation within each individual analysis, and 85 // future analyses are likely to have the same behavior. Limiting DAG width is 86 // the safe approach, and will be especially important with global DAGs. 87 // 88 // MaxParallelChains default is arbitrarily high to avoid affecting 89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 90 // sequence over this should have been converted to llvm.memcpy by the 91 // frontend. It easy to induce this behavior with .ll code such as: 92 // %buffer = alloca [4096 x i8] 93 // %data = load [4096 x i8]* %argPtr 94 // store [4096 x i8] %data, [4096 x i8]* %buffer 95 static const unsigned MaxParallelChains = 64; 96 97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 98 const SDValue *Parts, unsigned NumParts, 99 MVT PartVT, EVT ValueVT, const Value *V); 100 101 /// getCopyFromParts - Create a value that contains the specified legal parts 102 /// combined into the value they represent. If the parts combine to a type 103 /// larger then ValueVT then AssertOp can be used to specify whether the extra 104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 105 /// (ISD::AssertSext). 106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 107 const SDValue *Parts, 108 unsigned NumParts, MVT PartVT, EVT ValueVT, 109 const Value *V, 110 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 111 if (ValueVT.isVector()) 112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 113 PartVT, ValueVT, V); 114 115 assert(NumParts > 0 && "No parts to assemble!"); 116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 117 SDValue Val = Parts[0]; 118 119 if (NumParts > 1) { 120 // Assemble the value from multiple parts. 121 if (ValueVT.isInteger()) { 122 unsigned PartBits = PartVT.getSizeInBits(); 123 unsigned ValueBits = ValueVT.getSizeInBits(); 124 125 // Assemble the power of 2 part. 126 unsigned RoundParts = NumParts & (NumParts - 1) ? 127 1 << Log2_32(NumParts) : NumParts; 128 unsigned RoundBits = PartBits * RoundParts; 129 EVT RoundVT = RoundBits == ValueBits ? 130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 131 SDValue Lo, Hi; 132 133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 134 135 if (RoundParts > 2) { 136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 137 PartVT, HalfVT, V); 138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 139 RoundParts / 2, PartVT, HalfVT, V); 140 } else { 141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 143 } 144 145 if (TLI.isBigEndian()) 146 std::swap(Lo, Hi); 147 148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 149 150 if (RoundParts < NumParts) { 151 // Assemble the trailing non-power-of-2 part. 152 unsigned OddParts = NumParts - RoundParts; 153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 154 Hi = getCopyFromParts(DAG, DL, 155 Parts + RoundParts, OddParts, PartVT, OddVT, V); 156 157 // Combine the round and odd parts. 158 Lo = Val; 159 if (TLI.isBigEndian()) 160 std::swap(Lo, Hi); 161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 164 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 165 TLI.getPointerTy())); 166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 168 } 169 } else if (PartVT.isFloatingPoint()) { 170 // FP split into multiple FP parts (for ppcf128) 171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 172 "Unexpected split"); 173 SDValue Lo, Hi; 174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 176 if (TLI.hasBigEndianPartOrdering(ValueVT)) 177 std::swap(Lo, Hi); 178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 179 } else { 180 // FP split into integer parts (soft fp) 181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 182 !PartVT.isVector() && "Unexpected split"); 183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 185 } 186 } 187 188 // There is now one part, held in Val. Correct it to match ValueVT. 189 EVT PartEVT = Val.getValueType(); 190 191 if (PartEVT == ValueVT) 192 return Val; 193 194 if (PartEVT.isInteger() && ValueVT.isInteger()) { 195 if (ValueVT.bitsLT(PartEVT)) { 196 // For a truncate, see if we have any information to 197 // indicate whether the truncated bits will always be 198 // zero or sign-extension. 199 if (AssertOp != ISD::DELETED_NODE) 200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 201 DAG.getValueType(ValueVT)); 202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 203 } 204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 208 // FP_ROUND's are always exact here. 209 if (ValueVT.bitsLT(Val.getValueType())) 210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 211 DAG.getTargetConstant(1, DL, TLI.getPointerTy())); 212 213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 214 } 215 216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 218 219 llvm_unreachable("Unknown mismatch!"); 220 } 221 222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 223 const Twine &ErrMsg) { 224 const Instruction *I = dyn_cast_or_null<Instruction>(V); 225 if (!V) 226 return Ctx.emitError(ErrMsg); 227 228 const char *AsmError = ", possible invalid constraint for vector type"; 229 if (const CallInst *CI = dyn_cast<CallInst>(I)) 230 if (isa<InlineAsm>(CI->getCalledValue())) 231 return Ctx.emitError(I, ErrMsg + AsmError); 232 233 return Ctx.emitError(I, ErrMsg); 234 } 235 236 /// getCopyFromPartsVector - Create a value that contains the specified legal 237 /// parts combined into the value they represent. If the parts combine to a 238 /// type larger then ValueVT then AssertOp can be used to specify whether the 239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 240 /// ValueVT (ISD::AssertSext). 241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 242 const SDValue *Parts, unsigned NumParts, 243 MVT PartVT, EVT ValueVT, const Value *V) { 244 assert(ValueVT.isVector() && "Not a vector value"); 245 assert(NumParts > 0 && "No parts to assemble!"); 246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 247 SDValue Val = Parts[0]; 248 249 // Handle a multi-element vector. 250 if (NumParts > 1) { 251 EVT IntermediateVT; 252 MVT RegisterVT; 253 unsigned NumIntermediates; 254 unsigned NumRegs = 255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 256 NumIntermediates, RegisterVT); 257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 258 NumParts = NumRegs; // Silence a compiler warning. 259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 260 assert(RegisterVT == Parts[0].getSimpleValueType() && 261 "Part type doesn't match part!"); 262 263 // Assemble the parts into intermediate operands. 264 SmallVector<SDValue, 8> Ops(NumIntermediates); 265 if (NumIntermediates == NumParts) { 266 // If the register was not expanded, truncate or copy the value, 267 // as appropriate. 268 for (unsigned i = 0; i != NumParts; ++i) 269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 270 PartVT, IntermediateVT, V); 271 } else if (NumParts > 0) { 272 // If the intermediate type was expanded, build the intermediate 273 // operands from the parts. 274 assert(NumParts % NumIntermediates == 0 && 275 "Must expand into a divisible number of parts!"); 276 unsigned Factor = NumParts / NumIntermediates; 277 for (unsigned i = 0; i != NumIntermediates; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 279 PartVT, IntermediateVT, V); 280 } 281 282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 283 // intermediate operands. 284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 285 : ISD::BUILD_VECTOR, 286 DL, ValueVT, Ops); 287 } 288 289 // There is now one part, held in Val. Correct it to match ValueVT. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isVector()) { 296 // If the element type of the source/dest vectors are the same, but the 297 // parts vector has more elements than the value vector, then we have a 298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 299 // elements we want. 300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 302 "Cannot narrow, it would be a lossy transformation"); 303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 304 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 305 } 306 307 // Vector/Vector bitcast. 308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 312 "Cannot handle this kind of promotion"); 313 // Promoted vector extract 314 bool Smaller = ValueVT.bitsLE(PartEVT); 315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 316 DL, ValueVT, Val); 317 318 } 319 320 // Trivial bitcast if the types are the same size and the destination 321 // vector type is legal. 322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 323 TLI.isTypeLegal(ValueVT)) 324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 325 326 // Handle cases such as i8 -> <1 x i1> 327 if (ValueVT.getVectorNumElements() != 1) { 328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 329 "non-trivial scalar-to-vector conversion"); 330 return DAG.getUNDEF(ValueVT); 331 } 332 333 if (ValueVT.getVectorNumElements() == 1 && 334 ValueVT.getVectorElementType() != PartEVT) { 335 bool Smaller = ValueVT.bitsLE(PartEVT); 336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 337 DL, ValueVT.getScalarType(), Val); 338 } 339 340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 341 } 342 343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 344 SDValue Val, SDValue *Parts, unsigned NumParts, 345 MVT PartVT, const Value *V); 346 347 /// getCopyToParts - Create a series of nodes that contain the specified value 348 /// split into legal parts. If the parts contain more bits than Val, then, for 349 /// integers, ExtendKind can be used to specify how to generate the extra bits. 350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 351 SDValue Val, SDValue *Parts, unsigned NumParts, 352 MVT PartVT, const Value *V, 353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 354 EVT ValueVT = Val.getValueType(); 355 356 // Handle the vector case separately. 357 if (ValueVT.isVector()) 358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 359 360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (NumParts == 0) 366 return; 367 368 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 369 EVT PartEVT = PartVT; 370 if (PartEVT == ValueVT) { 371 assert(NumParts == 1 && "No-op copy with multiple parts!"); 372 Parts[0] = Val; 373 return; 374 } 375 376 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 377 // If the parts cover more bits than the value has, promote the value. 378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 379 assert(NumParts == 1 && "Do not know what to promote to!"); 380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 381 } else { 382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 383 ValueVT.isInteger() && 384 "Unknown mismatch!"); 385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 387 if (PartVT == MVT::x86mmx) 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } 390 } else if (PartBits == ValueVT.getSizeInBits()) { 391 // Different types of the same size. 392 assert(NumParts == 1 && PartEVT != ValueVT); 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 395 // If the parts cover less bits than value has, truncate the value. 396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 397 ValueVT.isInteger() && 398 "Unknown mismatch!"); 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 401 if (PartVT == MVT::x86mmx) 402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 403 } 404 405 // The value may have changed - recompute ValueVT. 406 ValueVT = Val.getValueType(); 407 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 408 "Failed to tile the value with PartVT!"); 409 410 if (NumParts == 1) { 411 if (PartEVT != ValueVT) 412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 413 "scalar-to-vector conversion failed"); 414 415 Parts[0] = Val; 416 return; 417 } 418 419 // Expand the value into multiple parts. 420 if (NumParts & (NumParts - 1)) { 421 // The number of parts is not a power of 2. Split off and copy the tail. 422 assert(PartVT.isInteger() && ValueVT.isInteger() && 423 "Do not know what to expand to!"); 424 unsigned RoundParts = 1 << Log2_32(NumParts); 425 unsigned RoundBits = RoundParts * PartBits; 426 unsigned OddParts = NumParts - RoundParts; 427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 428 DAG.getIntPtrConstant(RoundBits, DL)); 429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 430 431 if (TLI.isBigEndian()) 432 // The odd parts were reversed by getCopyToParts - unreverse them. 433 std::reverse(Parts + RoundParts, Parts + NumParts); 434 435 NumParts = RoundParts; 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 } 439 440 // The number of parts is a power of 2. Repeatedly bisect the value using 441 // EXTRACT_ELEMENT. 442 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 443 EVT::getIntegerVT(*DAG.getContext(), 444 ValueVT.getSizeInBits()), 445 Val); 446 447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 448 for (unsigned i = 0; i < NumParts; i += StepSize) { 449 unsigned ThisBits = StepSize * PartBits / 2; 450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 451 SDValue &Part0 = Parts[i]; 452 SDValue &Part1 = Parts[i+StepSize/2]; 453 454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 457 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 458 459 if (ThisBits == PartBits && ThisVT != PartVT) { 460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 462 } 463 } 464 } 465 466 if (TLI.isBigEndian()) 467 std::reverse(Parts, Parts + OrigNumParts); 468 } 469 470 471 /// getCopyToPartsVector - Create a series of nodes that contain the specified 472 /// value split into legal parts. 473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V) { 476 EVT ValueVT = Val.getValueType(); 477 assert(ValueVT.isVector() && "Not a vector"); 478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 479 480 if (NumParts == 1) { 481 EVT PartEVT = PartVT; 482 if (PartEVT == ValueVT) { 483 // Nothing to do. 484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 485 // Bitconvert vector->vector case. 486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 487 } else if (PartVT.isVector() && 488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 490 EVT ElementVT = PartVT.getVectorElementType(); 491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 492 // undef elements. 493 SmallVector<SDValue, 16> Ops; 494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 496 ElementVT, Val, DAG.getConstant(i, DL, 497 TLI.getVectorIdxTy()))); 498 499 for (unsigned i = ValueVT.getVectorNumElements(), 500 e = PartVT.getVectorNumElements(); i != e; ++i) 501 Ops.push_back(DAG.getUNDEF(ElementVT)); 502 503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 504 505 // FIXME: Use CONCAT for 2x -> 4x. 506 507 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 509 } else if (PartVT.isVector() && 510 PartEVT.getVectorElementType().bitsGE( 511 ValueVT.getVectorElementType()) && 512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 513 514 // Promoted vector extract 515 bool Smaller = PartEVT.bitsLE(ValueVT); 516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 517 DL, PartVT, Val); 518 } else{ 519 // Vector -> scalar conversion. 520 assert(ValueVT.getVectorNumElements() == 1 && 521 "Only trivial vector-to-scalar conversions should get here!"); 522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 523 PartVT, Val, 524 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 525 526 bool Smaller = ValueVT.bitsLE(PartVT); 527 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 528 DL, PartVT, Val); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy())); 556 else 557 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 558 IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy())); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &tli, 587 unsigned Reg, Type *Ty) { 588 ComputeValueVTs(tli, Ty, ValueVTs); 589 590 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 591 EVT ValueVT = ValueVTs[Value]; 592 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 593 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 602 /// this value and returns the result as a ValueVT value. This uses 603 /// Chain/Flag as the input and updates them for the output Chain/Flag. 604 /// If the Flag pointer is NULL, no flag is used. 605 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 606 FunctionLoweringInfo &FuncInfo, 607 SDLoc dl, 608 SDValue &Chain, SDValue *Flag, 609 const Value *V) const { 610 // A Value with type {} or [0 x %t] needs no registers. 611 if (ValueVTs.empty()) 612 return SDValue(); 613 614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 615 616 // Assemble the legal parts into the final values. 617 SmallVector<SDValue, 4> Values(ValueVTs.size()); 618 SmallVector<SDValue, 8> Parts; 619 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 620 // Copy the legal parts from the registers. 621 EVT ValueVT = ValueVTs[Value]; 622 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 623 MVT RegisterVT = RegVTs[Value]; 624 625 Parts.resize(NumRegs); 626 for (unsigned i = 0; i != NumRegs; ++i) { 627 SDValue P; 628 if (!Flag) { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 630 } else { 631 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 632 *Flag = P.getValue(2); 633 } 634 635 Chain = P.getValue(1); 636 Parts[i] = P; 637 638 // If the source register was virtual and if we know something about it, 639 // add an assert node. 640 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 641 !RegisterVT.isInteger() || RegisterVT.isVector()) 642 continue; 643 644 const FunctionLoweringInfo::LiveOutInfo *LOI = 645 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 646 if (!LOI) 647 continue; 648 649 unsigned RegSize = RegisterVT.getSizeInBits(); 650 unsigned NumSignBits = LOI->NumSignBits; 651 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 652 653 if (NumZeroBits == RegSize) { 654 // The current value is a zero. 655 // Explicitly express that as it would be easier for 656 // optimizations to kick in. 657 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 658 continue; 659 } 660 661 // FIXME: We capture more information than the dag can represent. For 662 // now, just use the tightest assertzext/assertsext possible. 663 bool isSExt = true; 664 EVT FromVT(MVT::Other); 665 if (NumSignBits == RegSize) 666 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 667 else if (NumZeroBits >= RegSize-1) 668 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 669 else if (NumSignBits > RegSize-8) 670 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 671 else if (NumZeroBits >= RegSize-8) 672 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 673 else if (NumSignBits > RegSize-16) 674 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 675 else if (NumZeroBits >= RegSize-16) 676 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 677 else if (NumSignBits > RegSize-32) 678 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 679 else if (NumZeroBits >= RegSize-32) 680 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 681 else 682 continue; 683 684 // Add an assertion node. 685 assert(FromVT != MVT::Other); 686 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 687 RegisterVT, P, DAG.getValueType(FromVT)); 688 } 689 690 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 691 NumRegs, RegisterVT, ValueVT, V); 692 Part += NumRegs; 693 Parts.clear(); 694 } 695 696 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 697 } 698 699 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 700 /// specified value into the registers specified by this object. This uses 701 /// Chain/Flag as the input and updates them for the output Chain/Flag. 702 /// If the Flag pointer is NULL, no flag is used. 703 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 704 SDValue &Chain, SDValue *Flag, const Value *V, 705 ISD::NodeType PreferredExtendType) const { 706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 707 ISD::NodeType ExtendKind = PreferredExtendType; 708 709 // Get the list of the values's legal parts. 710 unsigned NumRegs = Regs.size(); 711 SmallVector<SDValue, 8> Parts(NumRegs); 712 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 713 EVT ValueVT = ValueVTs[Value]; 714 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 715 MVT RegisterVT = RegVTs[Value]; 716 717 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 718 ExtendKind = ISD::ZERO_EXTEND; 719 720 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 721 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 722 Part += NumParts; 723 } 724 725 // Copy the parts into the registers. 726 SmallVector<SDValue, 8> Chains(NumRegs); 727 for (unsigned i = 0; i != NumRegs; ++i) { 728 SDValue Part; 729 if (!Flag) { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 731 } else { 732 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 733 *Flag = Part.getValue(1); 734 } 735 736 Chains[i] = Part.getValue(0); 737 } 738 739 if (NumRegs == 1 || Flag) 740 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 741 // flagged to it. That is the CopyToReg nodes and the user are considered 742 // a single scheduling unit. If we create a TokenFactor and return it as 743 // chain, then the TokenFactor is both a predecessor (operand) of the 744 // user as well as a successor (the TF operands are flagged to the user). 745 // c1, f1 = CopyToReg 746 // c2, f2 = CopyToReg 747 // c3 = TokenFactor c1, c2 748 // ... 749 // = op c3, ..., f2 750 Chain = Chains[NumRegs-1]; 751 else 752 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 753 } 754 755 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 756 /// operand list. This adds the code marker and includes the number of 757 /// values added into it. 758 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 759 unsigned MatchingIdx, SDLoc dl, 760 SelectionDAG &DAG, 761 std::vector<SDValue> &Ops) const { 762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 763 764 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 765 if (HasMatching) 766 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 767 else if (!Regs.empty() && 768 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 769 // Put the register class of the virtual registers in the flag word. That 770 // way, later passes can recompute register class constraints for inline 771 // assembly as well as normal instructions. 772 // Don't do this for tied operands that can use the regclass information 773 // from the def. 774 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 775 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 776 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 777 } 778 779 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 780 Ops.push_back(Res); 781 782 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 783 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 784 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 785 MVT RegisterVT = RegVTs[Value]; 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 788 unsigned TheReg = Regs[Reg++]; 789 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 790 791 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 792 // If we clobbered the stack pointer, MFI should know about it. 793 assert(DAG.getMachineFunction().getFrameInfo()-> 794 hasInlineAsmWithSPAdjust()); 795 } 796 } 797 } 798 } 799 800 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 801 const TargetLibraryInfo *li) { 802 AA = &aa; 803 GFI = gfi; 804 LibInfo = li; 805 DL = DAG.getTarget().getDataLayout(); 806 Context = DAG.getContext(); 807 LPadToCallSiteMap.clear(); 808 } 809 810 /// clear - Clear out the current SelectionDAG and the associated 811 /// state and prepare this SelectionDAGBuilder object to be used 812 /// for a new block. This doesn't clear out information about 813 /// additional blocks that are needed to complete switch lowering 814 /// or PHI node updating; that information is cleared out as it is 815 /// consumed. 816 void SelectionDAGBuilder::clear() { 817 NodeMap.clear(); 818 UnusedArgNodeMap.clear(); 819 PendingLoads.clear(); 820 PendingExports.clear(); 821 CurInst = nullptr; 822 HasTailCall = false; 823 SDNodeOrder = LowestSDNodeOrder; 824 StatepointLowering.clear(); 825 } 826 827 /// clearDanglingDebugInfo - Clear the dangling debug information 828 /// map. This function is separated from the clear so that debug 829 /// information that is dangling in a basic block can be properly 830 /// resolved in a different basic block. This allows the 831 /// SelectionDAG to resolve dangling debug information attached 832 /// to PHI nodes. 833 void SelectionDAGBuilder::clearDanglingDebugInfo() { 834 DanglingDebugInfoMap.clear(); 835 } 836 837 /// getRoot - Return the current virtual root of the Selection DAG, 838 /// flushing any PendingLoad items. This must be done before emitting 839 /// a store or any other node that may need to be ordered after any 840 /// prior load instructions. 841 /// 842 SDValue SelectionDAGBuilder::getRoot() { 843 if (PendingLoads.empty()) 844 return DAG.getRoot(); 845 846 if (PendingLoads.size() == 1) { 847 SDValue Root = PendingLoads[0]; 848 DAG.setRoot(Root); 849 PendingLoads.clear(); 850 return Root; 851 } 852 853 // Otherwise, we have to make a token factor node. 854 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 855 PendingLoads); 856 PendingLoads.clear(); 857 DAG.setRoot(Root); 858 return Root; 859 } 860 861 /// getControlRoot - Similar to getRoot, but instead of flushing all the 862 /// PendingLoad items, flush all the PendingExports items. It is necessary 863 /// to do this before emitting a terminator instruction. 864 /// 865 SDValue SelectionDAGBuilder::getControlRoot() { 866 SDValue Root = DAG.getRoot(); 867 868 if (PendingExports.empty()) 869 return Root; 870 871 // Turn all of the CopyToReg chains into one factored node. 872 if (Root.getOpcode() != ISD::EntryToken) { 873 unsigned i = 0, e = PendingExports.size(); 874 for (; i != e; ++i) { 875 assert(PendingExports[i].getNode()->getNumOperands() > 1); 876 if (PendingExports[i].getNode()->getOperand(0) == Root) 877 break; // Don't add the root if we already indirectly depend on it. 878 } 879 880 if (i == e) 881 PendingExports.push_back(Root); 882 } 883 884 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 885 PendingExports); 886 PendingExports.clear(); 887 DAG.setRoot(Root); 888 return Root; 889 } 890 891 void SelectionDAGBuilder::visit(const Instruction &I) { 892 // Set up outgoing PHI node register values before emitting the terminator. 893 if (isa<TerminatorInst>(&I)) 894 HandlePHINodesInSuccessorBlocks(I.getParent()); 895 896 ++SDNodeOrder; 897 898 CurInst = &I; 899 900 visit(I.getOpcode(), I); 901 902 if (!isa<TerminatorInst>(&I) && !HasTailCall) 903 CopyToExportRegsIfNeeded(&I); 904 905 CurInst = nullptr; 906 } 907 908 void SelectionDAGBuilder::visitPHI(const PHINode &) { 909 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 910 } 911 912 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 913 // Note: this doesn't use InstVisitor, because it has to work with 914 // ConstantExpr's in addition to instructions. 915 switch (Opcode) { 916 default: llvm_unreachable("Unknown instruction type encountered!"); 917 // Build the switch statement using the Instruction.def file. 918 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 919 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 920 #include "llvm/IR/Instruction.def" 921 } 922 } 923 924 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 925 // generate the debug data structures now that we've seen its definition. 926 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 927 SDValue Val) { 928 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 929 if (DDI.getDI()) { 930 const DbgValueInst *DI = DDI.getDI(); 931 DebugLoc dl = DDI.getdl(); 932 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 933 DILocalVariable *Variable = DI->getVariable(); 934 DIExpression *Expr = DI->getExpression(); 935 assert(Variable->isValidLocationForIntrinsic(dl) && 936 "Expected inlined-at fields to agree"); 937 uint64_t Offset = DI->getOffset(); 938 // A dbg.value for an alloca is always indirect. 939 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 940 SDDbgValue *SDV; 941 if (Val.getNode()) { 942 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 943 Val)) { 944 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 945 IsIndirect, Offset, dl, DbgSDNodeOrder); 946 DAG.AddDbgValue(SDV, Val.getNode(), false); 947 } 948 } else 949 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 950 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 951 } 952 } 953 954 /// getCopyFromRegs - If there was virtual register allocated for the value V 955 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 956 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 957 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 958 SDValue res; 959 960 if (It != FuncInfo.ValueMap.end()) { 961 unsigned InReg = It->second; 962 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 963 Ty); 964 SDValue Chain = DAG.getEntryNode(); 965 res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 966 resolveDanglingDebugInfo(V, res); 967 } 968 969 return res; 970 } 971 972 /// getValue - Return an SDValue for the given Value. 973 SDValue SelectionDAGBuilder::getValue(const Value *V) { 974 // If we already have an SDValue for this value, use it. It's important 975 // to do this first, so that we don't create a CopyFromReg if we already 976 // have a regular SDValue. 977 SDValue &N = NodeMap[V]; 978 if (N.getNode()) return N; 979 980 // If there's a virtual register allocated and initialized for this 981 // value, use it. 982 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 983 if (copyFromReg.getNode()) { 984 return copyFromReg; 985 } 986 987 // Otherwise create a new SDValue and remember it. 988 SDValue Val = getValueImpl(V); 989 NodeMap[V] = Val; 990 resolveDanglingDebugInfo(V, Val); 991 return Val; 992 } 993 994 // Return true if SDValue exists for the given Value 995 bool SelectionDAGBuilder::findValue(const Value *V) const { 996 return (NodeMap.find(V) != NodeMap.end()) || 997 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 998 } 999 1000 /// getNonRegisterValue - Return an SDValue for the given Value, but 1001 /// don't look in FuncInfo.ValueMap for a virtual register. 1002 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1003 // If we already have an SDValue for this value, use it. 1004 SDValue &N = NodeMap[V]; 1005 if (N.getNode()) return N; 1006 1007 // Otherwise create a new SDValue and remember it. 1008 SDValue Val = getValueImpl(V); 1009 NodeMap[V] = Val; 1010 resolveDanglingDebugInfo(V, Val); 1011 return Val; 1012 } 1013 1014 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1015 /// Create an SDValue for the given value. 1016 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1017 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1018 1019 if (const Constant *C = dyn_cast<Constant>(V)) { 1020 EVT VT = TLI.getValueType(V->getType(), true); 1021 1022 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1023 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1024 1025 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1026 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1027 1028 if (isa<ConstantPointerNull>(C)) { 1029 unsigned AS = V->getType()->getPointerAddressSpace(); 1030 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS)); 1031 } 1032 1033 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1034 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1035 1036 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1037 return DAG.getUNDEF(VT); 1038 1039 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1040 visit(CE->getOpcode(), *CE); 1041 SDValue N1 = NodeMap[V]; 1042 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1043 return N1; 1044 } 1045 1046 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1047 SmallVector<SDValue, 4> Constants; 1048 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1049 OI != OE; ++OI) { 1050 SDNode *Val = getValue(*OI).getNode(); 1051 // If the operand is an empty aggregate, there are no values. 1052 if (!Val) continue; 1053 // Add each leaf value from the operand to the Constants list 1054 // to form a flattened list of all the values. 1055 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1056 Constants.push_back(SDValue(Val, i)); 1057 } 1058 1059 return DAG.getMergeValues(Constants, getCurSDLoc()); 1060 } 1061 1062 if (const ConstantDataSequential *CDS = 1063 dyn_cast<ConstantDataSequential>(C)) { 1064 SmallVector<SDValue, 4> Ops; 1065 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1066 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1067 // Add each leaf value from the operand to the Constants list 1068 // to form a flattened list of all the values. 1069 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1070 Ops.push_back(SDValue(Val, i)); 1071 } 1072 1073 if (isa<ArrayType>(CDS->getType())) 1074 return DAG.getMergeValues(Ops, getCurSDLoc()); 1075 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1076 VT, Ops); 1077 } 1078 1079 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1080 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1081 "Unknown struct or array constant!"); 1082 1083 SmallVector<EVT, 4> ValueVTs; 1084 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1085 unsigned NumElts = ValueVTs.size(); 1086 if (NumElts == 0) 1087 return SDValue(); // empty struct 1088 SmallVector<SDValue, 4> Constants(NumElts); 1089 for (unsigned i = 0; i != NumElts; ++i) { 1090 EVT EltVT = ValueVTs[i]; 1091 if (isa<UndefValue>(C)) 1092 Constants[i] = DAG.getUNDEF(EltVT); 1093 else if (EltVT.isFloatingPoint()) 1094 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1095 else 1096 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1097 } 1098 1099 return DAG.getMergeValues(Constants, getCurSDLoc()); 1100 } 1101 1102 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1103 return DAG.getBlockAddress(BA, VT); 1104 1105 VectorType *VecTy = cast<VectorType>(V->getType()); 1106 unsigned NumElements = VecTy->getNumElements(); 1107 1108 // Now that we know the number and type of the elements, get that number of 1109 // elements into the Ops array based on what kind of constant it is. 1110 SmallVector<SDValue, 16> Ops; 1111 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1112 for (unsigned i = 0; i != NumElements; ++i) 1113 Ops.push_back(getValue(CV->getOperand(i))); 1114 } else { 1115 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1116 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1117 1118 SDValue Op; 1119 if (EltVT.isFloatingPoint()) 1120 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1121 else 1122 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1123 Ops.assign(NumElements, Op); 1124 } 1125 1126 // Create a BUILD_VECTOR node. 1127 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1128 } 1129 1130 // If this is a static alloca, generate it as the frameindex instead of 1131 // computation. 1132 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1133 DenseMap<const AllocaInst*, int>::iterator SI = 1134 FuncInfo.StaticAllocaMap.find(AI); 1135 if (SI != FuncInfo.StaticAllocaMap.end()) 1136 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1137 } 1138 1139 // If this is an instruction which fast-isel has deferred, select it now. 1140 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1141 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1142 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1143 SDValue Chain = DAG.getEntryNode(); 1144 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1145 } 1146 1147 llvm_unreachable("Can't get register for value!"); 1148 } 1149 1150 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1151 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1152 SDValue Chain = getControlRoot(); 1153 SmallVector<ISD::OutputArg, 8> Outs; 1154 SmallVector<SDValue, 8> OutVals; 1155 1156 if (!FuncInfo.CanLowerReturn) { 1157 unsigned DemoteReg = FuncInfo.DemoteRegister; 1158 const Function *F = I.getParent()->getParent(); 1159 1160 // Emit a store of the return value through the virtual register. 1161 // Leave Outs empty so that LowerReturn won't try to load return 1162 // registers the usual way. 1163 SmallVector<EVT, 1> PtrValueVTs; 1164 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1165 PtrValueVTs); 1166 1167 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1168 SDValue RetOp = getValue(I.getOperand(0)); 1169 1170 SmallVector<EVT, 4> ValueVTs; 1171 SmallVector<uint64_t, 4> Offsets; 1172 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1173 unsigned NumValues = ValueVTs.size(); 1174 1175 SmallVector<SDValue, 4> Chains(NumValues); 1176 for (unsigned i = 0; i != NumValues; ++i) { 1177 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1178 RetPtr.getValueType(), RetPtr, 1179 DAG.getIntPtrConstant(Offsets[i], 1180 getCurSDLoc())); 1181 Chains[i] = 1182 DAG.getStore(Chain, getCurSDLoc(), 1183 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1184 // FIXME: better loc info would be nice. 1185 Add, MachinePointerInfo(), false, false, 0); 1186 } 1187 1188 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1189 MVT::Other, Chains); 1190 } else if (I.getNumOperands() != 0) { 1191 SmallVector<EVT, 4> ValueVTs; 1192 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1193 unsigned NumValues = ValueVTs.size(); 1194 if (NumValues) { 1195 SDValue RetOp = getValue(I.getOperand(0)); 1196 1197 const Function *F = I.getParent()->getParent(); 1198 1199 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1200 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1201 Attribute::SExt)) 1202 ExtendKind = ISD::SIGN_EXTEND; 1203 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1204 Attribute::ZExt)) 1205 ExtendKind = ISD::ZERO_EXTEND; 1206 1207 LLVMContext &Context = F->getContext(); 1208 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1209 Attribute::InReg); 1210 1211 for (unsigned j = 0; j != NumValues; ++j) { 1212 EVT VT = ValueVTs[j]; 1213 1214 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1215 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1216 1217 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1218 MVT PartVT = TLI.getRegisterType(Context, VT); 1219 SmallVector<SDValue, 4> Parts(NumParts); 1220 getCopyToParts(DAG, getCurSDLoc(), 1221 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1222 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1223 1224 // 'inreg' on function refers to return value 1225 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1226 if (RetInReg) 1227 Flags.setInReg(); 1228 1229 // Propagate extension type if any 1230 if (ExtendKind == ISD::SIGN_EXTEND) 1231 Flags.setSExt(); 1232 else if (ExtendKind == ISD::ZERO_EXTEND) 1233 Flags.setZExt(); 1234 1235 for (unsigned i = 0; i < NumParts; ++i) { 1236 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1237 VT, /*isfixed=*/true, 0, 0)); 1238 OutVals.push_back(Parts[i]); 1239 } 1240 } 1241 } 1242 } 1243 1244 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1245 CallingConv::ID CallConv = 1246 DAG.getMachineFunction().getFunction()->getCallingConv(); 1247 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1248 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1249 1250 // Verify that the target's LowerReturn behaved as expected. 1251 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1252 "LowerReturn didn't return a valid chain!"); 1253 1254 // Update the DAG with the new chain value resulting from return lowering. 1255 DAG.setRoot(Chain); 1256 } 1257 1258 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1259 /// created for it, emit nodes to copy the value into the virtual 1260 /// registers. 1261 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1262 // Skip empty types 1263 if (V->getType()->isEmptyTy()) 1264 return; 1265 1266 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1267 if (VMI != FuncInfo.ValueMap.end()) { 1268 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1269 CopyValueToVirtualRegister(V, VMI->second); 1270 } 1271 } 1272 1273 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1274 /// the current basic block, add it to ValueMap now so that we'll get a 1275 /// CopyTo/FromReg. 1276 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1277 // No need to export constants. 1278 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1279 1280 // Already exported? 1281 if (FuncInfo.isExportedInst(V)) return; 1282 1283 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1284 CopyValueToVirtualRegister(V, Reg); 1285 } 1286 1287 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1288 const BasicBlock *FromBB) { 1289 // The operands of the setcc have to be in this block. We don't know 1290 // how to export them from some other block. 1291 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1292 // Can export from current BB. 1293 if (VI->getParent() == FromBB) 1294 return true; 1295 1296 // Is already exported, noop. 1297 return FuncInfo.isExportedInst(V); 1298 } 1299 1300 // If this is an argument, we can export it if the BB is the entry block or 1301 // if it is already exported. 1302 if (isa<Argument>(V)) { 1303 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1304 return true; 1305 1306 // Otherwise, can only export this if it is already exported. 1307 return FuncInfo.isExportedInst(V); 1308 } 1309 1310 // Otherwise, constants can always be exported. 1311 return true; 1312 } 1313 1314 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1315 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1316 const MachineBasicBlock *Dst) const { 1317 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1318 if (!BPI) 1319 return 0; 1320 const BasicBlock *SrcBB = Src->getBasicBlock(); 1321 const BasicBlock *DstBB = Dst->getBasicBlock(); 1322 return BPI->getEdgeWeight(SrcBB, DstBB); 1323 } 1324 1325 void SelectionDAGBuilder:: 1326 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1327 uint32_t Weight /* = 0 */) { 1328 if (!Weight) 1329 Weight = getEdgeWeight(Src, Dst); 1330 Src->addSuccessor(Dst, Weight); 1331 } 1332 1333 1334 static bool InBlock(const Value *V, const BasicBlock *BB) { 1335 if (const Instruction *I = dyn_cast<Instruction>(V)) 1336 return I->getParent() == BB; 1337 return true; 1338 } 1339 1340 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1341 /// This function emits a branch and is used at the leaves of an OR or an 1342 /// AND operator tree. 1343 /// 1344 void 1345 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1346 MachineBasicBlock *TBB, 1347 MachineBasicBlock *FBB, 1348 MachineBasicBlock *CurBB, 1349 MachineBasicBlock *SwitchBB, 1350 uint32_t TWeight, 1351 uint32_t FWeight) { 1352 const BasicBlock *BB = CurBB->getBasicBlock(); 1353 1354 // If the leaf of the tree is a comparison, merge the condition into 1355 // the caseblock. 1356 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1357 // The operands of the cmp have to be in this block. We don't know 1358 // how to export them from some other block. If this is the first block 1359 // of the sequence, no exporting is needed. 1360 if (CurBB == SwitchBB || 1361 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1362 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1363 ISD::CondCode Condition; 1364 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1365 Condition = getICmpCondCode(IC->getPredicate()); 1366 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1367 Condition = getFCmpCondCode(FC->getPredicate()); 1368 if (TM.Options.NoNaNsFPMath) 1369 Condition = getFCmpCodeWithoutNaN(Condition); 1370 } else { 1371 (void)Condition; // silence warning. 1372 llvm_unreachable("Unknown compare instruction"); 1373 } 1374 1375 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1376 TBB, FBB, CurBB, TWeight, FWeight); 1377 SwitchCases.push_back(CB); 1378 return; 1379 } 1380 } 1381 1382 // Create a CaseBlock record representing this branch. 1383 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1384 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1385 SwitchCases.push_back(CB); 1386 } 1387 1388 /// Scale down both weights to fit into uint32_t. 1389 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1390 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1391 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1392 NewTrue = NewTrue / Scale; 1393 NewFalse = NewFalse / Scale; 1394 } 1395 1396 /// FindMergedConditions - If Cond is an expression like 1397 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1398 MachineBasicBlock *TBB, 1399 MachineBasicBlock *FBB, 1400 MachineBasicBlock *CurBB, 1401 MachineBasicBlock *SwitchBB, 1402 unsigned Opc, uint32_t TWeight, 1403 uint32_t FWeight) { 1404 // If this node is not part of the or/and tree, emit it as a branch. 1405 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1406 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1407 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1408 BOp->getParent() != CurBB->getBasicBlock() || 1409 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1410 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1411 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1412 TWeight, FWeight); 1413 return; 1414 } 1415 1416 // Create TmpBB after CurBB. 1417 MachineFunction::iterator BBI = CurBB; 1418 MachineFunction &MF = DAG.getMachineFunction(); 1419 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1420 CurBB->getParent()->insert(++BBI, TmpBB); 1421 1422 if (Opc == Instruction::Or) { 1423 // Codegen X | Y as: 1424 // BB1: 1425 // jmp_if_X TBB 1426 // jmp TmpBB 1427 // TmpBB: 1428 // jmp_if_Y TBB 1429 // jmp FBB 1430 // 1431 1432 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1433 // The requirement is that 1434 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1435 // = TrueProb for orignal BB. 1436 // Assuming the orignal weights are A and B, one choice is to set BB1's 1437 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1438 // assumes that 1439 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1440 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1441 // TmpBB, but the math is more complicated. 1442 1443 uint64_t NewTrueWeight = TWeight; 1444 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1445 ScaleWeights(NewTrueWeight, NewFalseWeight); 1446 // Emit the LHS condition. 1447 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1448 NewTrueWeight, NewFalseWeight); 1449 1450 NewTrueWeight = TWeight; 1451 NewFalseWeight = 2 * (uint64_t)FWeight; 1452 ScaleWeights(NewTrueWeight, NewFalseWeight); 1453 // Emit the RHS condition into TmpBB. 1454 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1455 NewTrueWeight, NewFalseWeight); 1456 } else { 1457 assert(Opc == Instruction::And && "Unknown merge op!"); 1458 // Codegen X & Y as: 1459 // BB1: 1460 // jmp_if_X TmpBB 1461 // jmp FBB 1462 // TmpBB: 1463 // jmp_if_Y TBB 1464 // jmp FBB 1465 // 1466 // This requires creation of TmpBB after CurBB. 1467 1468 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1469 // The requirement is that 1470 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1471 // = FalseProb for orignal BB. 1472 // Assuming the orignal weights are A and B, one choice is to set BB1's 1473 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1474 // assumes that 1475 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1476 1477 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1478 uint64_t NewFalseWeight = FWeight; 1479 ScaleWeights(NewTrueWeight, NewFalseWeight); 1480 // Emit the LHS condition. 1481 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1482 NewTrueWeight, NewFalseWeight); 1483 1484 NewTrueWeight = 2 * (uint64_t)TWeight; 1485 NewFalseWeight = FWeight; 1486 ScaleWeights(NewTrueWeight, NewFalseWeight); 1487 // Emit the RHS condition into TmpBB. 1488 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1489 NewTrueWeight, NewFalseWeight); 1490 } 1491 } 1492 1493 /// If the set of cases should be emitted as a series of branches, return true. 1494 /// If we should emit this as a bunch of and/or'd together conditions, return 1495 /// false. 1496 bool 1497 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1498 if (Cases.size() != 2) return true; 1499 1500 // If this is two comparisons of the same values or'd or and'd together, they 1501 // will get folded into a single comparison, so don't emit two blocks. 1502 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1503 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1504 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1505 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1506 return false; 1507 } 1508 1509 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1510 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1511 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1512 Cases[0].CC == Cases[1].CC && 1513 isa<Constant>(Cases[0].CmpRHS) && 1514 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1515 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1516 return false; 1517 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1518 return false; 1519 } 1520 1521 return true; 1522 } 1523 1524 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1525 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1526 1527 // Update machine-CFG edges. 1528 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1529 1530 if (I.isUnconditional()) { 1531 // Update machine-CFG edges. 1532 BrMBB->addSuccessor(Succ0MBB); 1533 1534 // If this is not a fall-through branch or optimizations are switched off, 1535 // emit the branch. 1536 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1537 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1538 MVT::Other, getControlRoot(), 1539 DAG.getBasicBlock(Succ0MBB))); 1540 1541 return; 1542 } 1543 1544 // If this condition is one of the special cases we handle, do special stuff 1545 // now. 1546 const Value *CondVal = I.getCondition(); 1547 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1548 1549 // If this is a series of conditions that are or'd or and'd together, emit 1550 // this as a sequence of branches instead of setcc's with and/or operations. 1551 // As long as jumps are not expensive, this should improve performance. 1552 // For example, instead of something like: 1553 // cmp A, B 1554 // C = seteq 1555 // cmp D, E 1556 // F = setle 1557 // or C, F 1558 // jnz foo 1559 // Emit: 1560 // cmp A, B 1561 // je foo 1562 // cmp D, E 1563 // jle foo 1564 // 1565 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1566 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1567 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1568 BOp->getOpcode() == Instruction::Or)) { 1569 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1570 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1571 getEdgeWeight(BrMBB, Succ1MBB)); 1572 // If the compares in later blocks need to use values not currently 1573 // exported from this block, export them now. This block should always 1574 // be the first entry. 1575 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1576 1577 // Allow some cases to be rejected. 1578 if (ShouldEmitAsBranches(SwitchCases)) { 1579 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1580 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1581 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1582 } 1583 1584 // Emit the branch for this block. 1585 visitSwitchCase(SwitchCases[0], BrMBB); 1586 SwitchCases.erase(SwitchCases.begin()); 1587 return; 1588 } 1589 1590 // Okay, we decided not to do this, remove any inserted MBB's and clear 1591 // SwitchCases. 1592 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1593 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1594 1595 SwitchCases.clear(); 1596 } 1597 } 1598 1599 // Create a CaseBlock record representing this branch. 1600 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1601 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1602 1603 // Use visitSwitchCase to actually insert the fast branch sequence for this 1604 // cond branch. 1605 visitSwitchCase(CB, BrMBB); 1606 } 1607 1608 /// visitSwitchCase - Emits the necessary code to represent a single node in 1609 /// the binary search tree resulting from lowering a switch instruction. 1610 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1611 MachineBasicBlock *SwitchBB) { 1612 SDValue Cond; 1613 SDValue CondLHS = getValue(CB.CmpLHS); 1614 SDLoc dl = getCurSDLoc(); 1615 1616 // Build the setcc now. 1617 if (!CB.CmpMHS) { 1618 // Fold "(X == true)" to X and "(X == false)" to !X to 1619 // handle common cases produced by branch lowering. 1620 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1621 CB.CC == ISD::SETEQ) 1622 Cond = CondLHS; 1623 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1624 CB.CC == ISD::SETEQ) { 1625 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1626 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1627 } else 1628 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1629 } else { 1630 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1631 1632 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1633 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1634 1635 SDValue CmpOp = getValue(CB.CmpMHS); 1636 EVT VT = CmpOp.getValueType(); 1637 1638 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1639 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1640 ISD::SETLE); 1641 } else { 1642 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1643 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1644 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1645 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1646 } 1647 } 1648 1649 // Update successor info 1650 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1651 // TrueBB and FalseBB are always different unless the incoming IR is 1652 // degenerate. This only happens when running llc on weird IR. 1653 if (CB.TrueBB != CB.FalseBB) 1654 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1655 1656 // If the lhs block is the next block, invert the condition so that we can 1657 // fall through to the lhs instead of the rhs block. 1658 if (CB.TrueBB == NextBlock(SwitchBB)) { 1659 std::swap(CB.TrueBB, CB.FalseBB); 1660 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1661 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1662 } 1663 1664 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1665 MVT::Other, getControlRoot(), Cond, 1666 DAG.getBasicBlock(CB.TrueBB)); 1667 1668 // Insert the false branch. Do this even if it's a fall through branch, 1669 // this makes it easier to do DAG optimizations which require inverting 1670 // the branch condition. 1671 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1672 DAG.getBasicBlock(CB.FalseBB)); 1673 1674 DAG.setRoot(BrCond); 1675 } 1676 1677 /// visitJumpTable - Emit JumpTable node in the current MBB 1678 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1679 // Emit the code for the jump table 1680 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1681 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1682 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1683 JT.Reg, PTy); 1684 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1685 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1686 MVT::Other, Index.getValue(1), 1687 Table, Index); 1688 DAG.setRoot(BrJumpTable); 1689 } 1690 1691 /// visitJumpTableHeader - This function emits necessary code to produce index 1692 /// in the JumpTable from switch case. 1693 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1694 JumpTableHeader &JTH, 1695 MachineBasicBlock *SwitchBB) { 1696 SDLoc dl = getCurSDLoc(); 1697 1698 // Subtract the lowest switch case value from the value being switched on and 1699 // conditional branch to default mbb if the result is greater than the 1700 // difference between smallest and largest cases. 1701 SDValue SwitchOp = getValue(JTH.SValue); 1702 EVT VT = SwitchOp.getValueType(); 1703 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1704 DAG.getConstant(JTH.First, dl, VT)); 1705 1706 // The SDNode we just created, which holds the value being switched on minus 1707 // the smallest case value, needs to be copied to a virtual register so it 1708 // can be used as an index into the jump table in a subsequent basic block. 1709 // This value may be smaller or larger than the target's pointer type, and 1710 // therefore require extension or truncating. 1711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1712 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy()); 1713 1714 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1715 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1716 JumpTableReg, SwitchOp); 1717 JT.Reg = JumpTableReg; 1718 1719 // Emit the range check for the jump table, and branch to the default block 1720 // for the switch statement if the value being switched on exceeds the largest 1721 // case in the switch. 1722 SDValue CMP = 1723 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1724 Sub.getValueType()), 1725 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), 1726 ISD::SETUGT); 1727 1728 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1729 MVT::Other, CopyTo, CMP, 1730 DAG.getBasicBlock(JT.Default)); 1731 1732 // Avoid emitting unnecessary branches to the next block. 1733 if (JT.MBB != NextBlock(SwitchBB)) 1734 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1735 DAG.getBasicBlock(JT.MBB)); 1736 1737 DAG.setRoot(BrCond); 1738 } 1739 1740 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1741 /// tail spliced into a stack protector check success bb. 1742 /// 1743 /// For a high level explanation of how this fits into the stack protector 1744 /// generation see the comment on the declaration of class 1745 /// StackProtectorDescriptor. 1746 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1747 MachineBasicBlock *ParentBB) { 1748 1749 // First create the loads to the guard/stack slot for the comparison. 1750 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1751 EVT PtrTy = TLI.getPointerTy(); 1752 1753 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1754 int FI = MFI->getStackProtectorIndex(); 1755 1756 const Value *IRGuard = SPD.getGuard(); 1757 SDValue GuardPtr = getValue(IRGuard); 1758 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1759 1760 unsigned Align = 1761 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1762 1763 SDValue Guard; 1764 SDLoc dl = getCurSDLoc(); 1765 1766 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1767 // guard value from the virtual register holding the value. Otherwise, emit a 1768 // volatile load to retrieve the stack guard value. 1769 unsigned GuardReg = SPD.getGuardReg(); 1770 1771 if (GuardReg && TLI.useLoadStackGuardNode()) 1772 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1773 PtrTy); 1774 else 1775 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1776 GuardPtr, MachinePointerInfo(IRGuard, 0), 1777 true, false, false, Align); 1778 1779 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1780 StackSlotPtr, 1781 MachinePointerInfo::getFixedStack(FI), 1782 true, false, false, Align); 1783 1784 // Perform the comparison via a subtract/getsetcc. 1785 EVT VT = Guard.getValueType(); 1786 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1787 1788 SDValue Cmp = 1789 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1790 Sub.getValueType()), 1791 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1792 1793 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1794 // branch to failure MBB. 1795 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1796 MVT::Other, StackSlot.getOperand(0), 1797 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1798 // Otherwise branch to success MBB. 1799 SDValue Br = DAG.getNode(ISD::BR, dl, 1800 MVT::Other, BrCond, 1801 DAG.getBasicBlock(SPD.getSuccessMBB())); 1802 1803 DAG.setRoot(Br); 1804 } 1805 1806 /// Codegen the failure basic block for a stack protector check. 1807 /// 1808 /// A failure stack protector machine basic block consists simply of a call to 1809 /// __stack_chk_fail(). 1810 /// 1811 /// For a high level explanation of how this fits into the stack protector 1812 /// generation see the comment on the declaration of class 1813 /// StackProtectorDescriptor. 1814 void 1815 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1817 SDValue Chain = 1818 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1819 nullptr, 0, false, getCurSDLoc(), false, false).second; 1820 DAG.setRoot(Chain); 1821 } 1822 1823 /// visitBitTestHeader - This function emits necessary code to produce value 1824 /// suitable for "bit tests" 1825 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1826 MachineBasicBlock *SwitchBB) { 1827 SDLoc dl = getCurSDLoc(); 1828 1829 // Subtract the minimum value 1830 SDValue SwitchOp = getValue(B.SValue); 1831 EVT VT = SwitchOp.getValueType(); 1832 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1833 DAG.getConstant(B.First, dl, VT)); 1834 1835 // Check range 1836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1837 SDValue RangeCmp = 1838 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1839 Sub.getValueType()), 1840 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1841 1842 // Determine the type of the test operands. 1843 bool UsePtrType = false; 1844 if (!TLI.isTypeLegal(VT)) 1845 UsePtrType = true; 1846 else { 1847 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1848 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1849 // Switch table case range are encoded into series of masks. 1850 // Just use pointer type, it's guaranteed to fit. 1851 UsePtrType = true; 1852 break; 1853 } 1854 } 1855 if (UsePtrType) { 1856 VT = TLI.getPointerTy(); 1857 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1858 } 1859 1860 B.RegVT = VT.getSimpleVT(); 1861 B.Reg = FuncInfo.CreateReg(B.RegVT); 1862 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1863 1864 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1865 1866 addSuccessorWithWeight(SwitchBB, B.Default); 1867 addSuccessorWithWeight(SwitchBB, MBB); 1868 1869 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1870 MVT::Other, CopyTo, RangeCmp, 1871 DAG.getBasicBlock(B.Default)); 1872 1873 // Avoid emitting unnecessary branches to the next block. 1874 if (MBB != NextBlock(SwitchBB)) 1875 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1876 DAG.getBasicBlock(MBB)); 1877 1878 DAG.setRoot(BrRange); 1879 } 1880 1881 /// visitBitTestCase - this function produces one "bit test" 1882 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1883 MachineBasicBlock* NextMBB, 1884 uint32_t BranchWeightToNext, 1885 unsigned Reg, 1886 BitTestCase &B, 1887 MachineBasicBlock *SwitchBB) { 1888 SDLoc dl = getCurSDLoc(); 1889 MVT VT = BB.RegVT; 1890 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1891 SDValue Cmp; 1892 unsigned PopCount = countPopulation(B.Mask); 1893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1894 if (PopCount == 1) { 1895 // Testing for a single bit; just compare the shift count with what it 1896 // would need to be to shift a 1 bit in that position. 1897 Cmp = DAG.getSetCC( 1898 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1899 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); 1900 } else if (PopCount == BB.Range) { 1901 // There is only one zero bit in the range, test for it directly. 1902 Cmp = DAG.getSetCC( 1903 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1904 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); 1905 } else { 1906 // Make desired shift 1907 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1908 DAG.getConstant(1, dl, VT), ShiftOp); 1909 1910 // Emit bit tests and jumps 1911 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1912 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1913 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1914 DAG.getConstant(0, dl, VT), ISD::SETNE); 1915 } 1916 1917 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1918 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1919 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1920 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1921 1922 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1923 MVT::Other, getControlRoot(), 1924 Cmp, DAG.getBasicBlock(B.TargetBB)); 1925 1926 // Avoid emitting unnecessary branches to the next block. 1927 if (NextMBB != NextBlock(SwitchBB)) 1928 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1929 DAG.getBasicBlock(NextMBB)); 1930 1931 DAG.setRoot(BrAnd); 1932 } 1933 1934 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1935 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1936 1937 // Retrieve successors. 1938 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1939 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1940 1941 const Value *Callee(I.getCalledValue()); 1942 const Function *Fn = dyn_cast<Function>(Callee); 1943 if (isa<InlineAsm>(Callee)) 1944 visitInlineAsm(&I); 1945 else if (Fn && Fn->isIntrinsic()) { 1946 switch (Fn->getIntrinsicID()) { 1947 default: 1948 llvm_unreachable("Cannot invoke this intrinsic"); 1949 case Intrinsic::donothing: 1950 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1951 break; 1952 case Intrinsic::experimental_patchpoint_void: 1953 case Intrinsic::experimental_patchpoint_i64: 1954 visitPatchpoint(&I, LandingPad); 1955 break; 1956 case Intrinsic::experimental_gc_statepoint: 1957 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1958 break; 1959 } 1960 } else 1961 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1962 1963 // If the value of the invoke is used outside of its defining block, make it 1964 // available as a virtual register. 1965 // We already took care of the exported value for the statepoint instruction 1966 // during call to the LowerStatepoint. 1967 if (!isStatepoint(I)) { 1968 CopyToExportRegsIfNeeded(&I); 1969 } 1970 1971 // Update successor info 1972 addSuccessorWithWeight(InvokeMBB, Return); 1973 addSuccessorWithWeight(InvokeMBB, LandingPad); 1974 1975 // Drop into normal successor. 1976 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1977 MVT::Other, getControlRoot(), 1978 DAG.getBasicBlock(Return))); 1979 } 1980 1981 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1982 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1983 } 1984 1985 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1986 assert(FuncInfo.MBB->isLandingPad() && 1987 "Call to landingpad not in landing pad!"); 1988 1989 MachineBasicBlock *MBB = FuncInfo.MBB; 1990 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1991 AddLandingPadInfo(LP, MMI, MBB); 1992 1993 // If there aren't registers to copy the values into (e.g., during SjLj 1994 // exceptions), then don't bother to create these DAG nodes. 1995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1996 if (TLI.getExceptionPointerRegister() == 0 && 1997 TLI.getExceptionSelectorRegister() == 0) 1998 return; 1999 2000 SmallVector<EVT, 2> ValueVTs; 2001 SDLoc dl = getCurSDLoc(); 2002 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2003 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2004 2005 // Get the two live-in registers as SDValues. The physregs have already been 2006 // copied into virtual registers. 2007 SDValue Ops[2]; 2008 if (FuncInfo.ExceptionPointerVirtReg) { 2009 Ops[0] = DAG.getZExtOrTrunc( 2010 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2011 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2012 dl, ValueVTs[0]); 2013 } else { 2014 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy()); 2015 } 2016 Ops[1] = DAG.getZExtOrTrunc( 2017 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2018 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2019 dl, ValueVTs[1]); 2020 2021 // Merge into one. 2022 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2023 DAG.getVTList(ValueVTs), Ops); 2024 setValue(&LP, Res); 2025 } 2026 2027 unsigned 2028 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2029 MachineBasicBlock *LPadBB) { 2030 SDValue Chain = getControlRoot(); 2031 SDLoc dl = getCurSDLoc(); 2032 2033 // Get the typeid that we will dispatch on later. 2034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2035 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2036 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2037 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2038 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy()); 2039 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2040 2041 // Branch to the main landing pad block. 2042 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2043 ClauseMBB->addSuccessor(LPadBB); 2044 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2045 DAG.getBasicBlock(LPadBB))); 2046 return VReg; 2047 } 2048 2049 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2050 #ifndef NDEBUG 2051 for (const CaseCluster &CC : Clusters) 2052 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2053 #endif 2054 2055 std::sort(Clusters.begin(), Clusters.end(), 2056 [](const CaseCluster &a, const CaseCluster &b) { 2057 return a.Low->getValue().slt(b.Low->getValue()); 2058 }); 2059 2060 // Merge adjacent clusters with the same destination. 2061 const unsigned N = Clusters.size(); 2062 unsigned DstIndex = 0; 2063 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2064 CaseCluster &CC = Clusters[SrcIndex]; 2065 const ConstantInt *CaseVal = CC.Low; 2066 MachineBasicBlock *Succ = CC.MBB; 2067 2068 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2069 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2070 // If this case has the same successor and is a neighbour, merge it into 2071 // the previous cluster. 2072 Clusters[DstIndex - 1].High = CaseVal; 2073 Clusters[DstIndex - 1].Weight += CC.Weight; 2074 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2075 } else { 2076 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2077 sizeof(Clusters[SrcIndex])); 2078 } 2079 } 2080 Clusters.resize(DstIndex); 2081 } 2082 2083 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2084 MachineBasicBlock *Last) { 2085 // Update JTCases. 2086 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2087 if (JTCases[i].first.HeaderBB == First) 2088 JTCases[i].first.HeaderBB = Last; 2089 2090 // Update BitTestCases. 2091 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2092 if (BitTestCases[i].Parent == First) 2093 BitTestCases[i].Parent = Last; 2094 } 2095 2096 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2097 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2098 2099 // Update machine-CFG edges with unique successors. 2100 SmallSet<BasicBlock*, 32> Done; 2101 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2102 BasicBlock *BB = I.getSuccessor(i); 2103 bool Inserted = Done.insert(BB).second; 2104 if (!Inserted) 2105 continue; 2106 2107 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2108 addSuccessorWithWeight(IndirectBrMBB, Succ); 2109 } 2110 2111 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2112 MVT::Other, getControlRoot(), 2113 getValue(I.getAddress()))); 2114 } 2115 2116 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2117 if (DAG.getTarget().Options.TrapUnreachable) 2118 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2119 } 2120 2121 void SelectionDAGBuilder::visitFSub(const User &I) { 2122 // -0.0 - X --> fneg 2123 Type *Ty = I.getType(); 2124 if (isa<Constant>(I.getOperand(0)) && 2125 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2126 SDValue Op2 = getValue(I.getOperand(1)); 2127 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2128 Op2.getValueType(), Op2)); 2129 return; 2130 } 2131 2132 visitBinary(I, ISD::FSUB); 2133 } 2134 2135 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2136 SDValue Op1 = getValue(I.getOperand(0)); 2137 SDValue Op2 = getValue(I.getOperand(1)); 2138 2139 bool nuw = false; 2140 bool nsw = false; 2141 bool exact = false; 2142 FastMathFlags FMF; 2143 2144 if (const OverflowingBinaryOperator *OFBinOp = 2145 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2146 nuw = OFBinOp->hasNoUnsignedWrap(); 2147 nsw = OFBinOp->hasNoSignedWrap(); 2148 } 2149 if (const PossiblyExactOperator *ExactOp = 2150 dyn_cast<const PossiblyExactOperator>(&I)) 2151 exact = ExactOp->isExact(); 2152 2153 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2154 FMF = FPOp->getFastMathFlags(); 2155 2156 SDNodeFlags Flags; 2157 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2158 Flags.setExact(exact); 2159 Flags.setNoInfs(FMF.noInfs()); 2160 Flags.setNoNaNs(FMF.noNaNs()); 2161 Flags.setNoSignedWrap(nsw); 2162 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2163 Flags.setNoUnsignedWrap(nuw); 2164 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2165 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2166 Op1, Op2, &Flags); 2167 setValue(&I, BinNodeValue); 2168 } 2169 2170 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2171 SDValue Op1 = getValue(I.getOperand(0)); 2172 SDValue Op2 = getValue(I.getOperand(1)); 2173 2174 EVT ShiftTy = 2175 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2176 2177 // Coerce the shift amount to the right type if we can. 2178 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2179 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2180 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2181 SDLoc DL = getCurSDLoc(); 2182 2183 // If the operand is smaller than the shift count type, promote it. 2184 if (ShiftSize > Op2Size) 2185 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2186 2187 // If the operand is larger than the shift count type but the shift 2188 // count type has enough bits to represent any shift value, truncate 2189 // it now. This is a common case and it exposes the truncate to 2190 // optimization early. 2191 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2192 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2193 // Otherwise we'll need to temporarily settle for some other convenient 2194 // type. Type legalization will make adjustments once the shiftee is split. 2195 else 2196 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2197 } 2198 2199 bool nuw = false; 2200 bool nsw = false; 2201 bool exact = false; 2202 2203 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2204 2205 if (const OverflowingBinaryOperator *OFBinOp = 2206 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2207 nuw = OFBinOp->hasNoUnsignedWrap(); 2208 nsw = OFBinOp->hasNoSignedWrap(); 2209 } 2210 if (const PossiblyExactOperator *ExactOp = 2211 dyn_cast<const PossiblyExactOperator>(&I)) 2212 exact = ExactOp->isExact(); 2213 } 2214 2215 SDNodeFlags Flags; 2216 Flags.setExact(exact); 2217 Flags.setNoSignedWrap(nsw); 2218 Flags.setNoUnsignedWrap(nuw); 2219 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2220 &Flags); 2221 setValue(&I, Res); 2222 } 2223 2224 void SelectionDAGBuilder::visitSDiv(const User &I) { 2225 SDValue Op1 = getValue(I.getOperand(0)); 2226 SDValue Op2 = getValue(I.getOperand(1)); 2227 2228 // Turn exact SDivs into multiplications. 2229 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2230 // exact bit. 2231 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2232 !isa<ConstantSDNode>(Op1) && 2233 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2234 setValue(&I, DAG.getTargetLoweringInfo() 2235 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2236 else 2237 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2238 Op1, Op2)); 2239 } 2240 2241 void SelectionDAGBuilder::visitICmp(const User &I) { 2242 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2243 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2244 predicate = IC->getPredicate(); 2245 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2246 predicate = ICmpInst::Predicate(IC->getPredicate()); 2247 SDValue Op1 = getValue(I.getOperand(0)); 2248 SDValue Op2 = getValue(I.getOperand(1)); 2249 ISD::CondCode Opcode = getICmpCondCode(predicate); 2250 2251 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2252 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2253 } 2254 2255 void SelectionDAGBuilder::visitFCmp(const User &I) { 2256 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2257 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2258 predicate = FC->getPredicate(); 2259 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2260 predicate = FCmpInst::Predicate(FC->getPredicate()); 2261 SDValue Op1 = getValue(I.getOperand(0)); 2262 SDValue Op2 = getValue(I.getOperand(1)); 2263 ISD::CondCode Condition = getFCmpCondCode(predicate); 2264 if (TM.Options.NoNaNsFPMath) 2265 Condition = getFCmpCodeWithoutNaN(Condition); 2266 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2267 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2268 } 2269 2270 void SelectionDAGBuilder::visitSelect(const User &I) { 2271 SmallVector<EVT, 4> ValueVTs; 2272 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2273 unsigned NumValues = ValueVTs.size(); 2274 if (NumValues == 0) return; 2275 2276 SmallVector<SDValue, 4> Values(NumValues); 2277 SDValue Cond = getValue(I.getOperand(0)); 2278 SDValue TrueVal = getValue(I.getOperand(1)); 2279 SDValue FalseVal = getValue(I.getOperand(2)); 2280 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2281 ISD::VSELECT : ISD::SELECT; 2282 2283 for (unsigned i = 0; i != NumValues; ++i) 2284 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2285 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2286 Cond, 2287 SDValue(TrueVal.getNode(), 2288 TrueVal.getResNo() + i), 2289 SDValue(FalseVal.getNode(), 2290 FalseVal.getResNo() + i)); 2291 2292 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2293 DAG.getVTList(ValueVTs), Values)); 2294 } 2295 2296 void SelectionDAGBuilder::visitTrunc(const User &I) { 2297 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2298 SDValue N = getValue(I.getOperand(0)); 2299 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2300 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2301 } 2302 2303 void SelectionDAGBuilder::visitZExt(const User &I) { 2304 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2305 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2306 SDValue N = getValue(I.getOperand(0)); 2307 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2308 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2309 } 2310 2311 void SelectionDAGBuilder::visitSExt(const User &I) { 2312 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2313 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2314 SDValue N = getValue(I.getOperand(0)); 2315 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2316 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2317 } 2318 2319 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2320 // FPTrunc is never a no-op cast, no need to check 2321 SDValue N = getValue(I.getOperand(0)); 2322 SDLoc dl = getCurSDLoc(); 2323 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2324 EVT DestVT = TLI.getValueType(I.getType()); 2325 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2326 DAG.getTargetConstant(0, dl, TLI.getPointerTy()))); 2327 } 2328 2329 void SelectionDAGBuilder::visitFPExt(const User &I) { 2330 // FPExt is never a no-op cast, no need to check 2331 SDValue N = getValue(I.getOperand(0)); 2332 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2333 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2334 } 2335 2336 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2337 // FPToUI is never a no-op cast, no need to check 2338 SDValue N = getValue(I.getOperand(0)); 2339 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2340 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2341 } 2342 2343 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2344 // FPToSI is never a no-op cast, no need to check 2345 SDValue N = getValue(I.getOperand(0)); 2346 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2347 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2348 } 2349 2350 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2351 // UIToFP is never a no-op cast, no need to check 2352 SDValue N = getValue(I.getOperand(0)); 2353 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2354 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2355 } 2356 2357 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2358 // SIToFP is never a no-op cast, no need to check 2359 SDValue N = getValue(I.getOperand(0)); 2360 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2361 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2362 } 2363 2364 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2365 // What to do depends on the size of the integer and the size of the pointer. 2366 // We can either truncate, zero extend, or no-op, accordingly. 2367 SDValue N = getValue(I.getOperand(0)); 2368 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2369 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2370 } 2371 2372 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2373 // What to do depends on the size of the integer and the size of the pointer. 2374 // We can either truncate, zero extend, or no-op, accordingly. 2375 SDValue N = getValue(I.getOperand(0)); 2376 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2377 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2378 } 2379 2380 void SelectionDAGBuilder::visitBitCast(const User &I) { 2381 SDValue N = getValue(I.getOperand(0)); 2382 SDLoc dl = getCurSDLoc(); 2383 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2384 2385 // BitCast assures us that source and destination are the same size so this is 2386 // either a BITCAST or a no-op. 2387 if (DestVT != N.getValueType()) 2388 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2389 DestVT, N)); // convert types. 2390 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2391 // might fold any kind of constant expression to an integer constant and that 2392 // is not what we are looking for. Only regcognize a bitcast of a genuine 2393 // constant integer as an opaque constant. 2394 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2395 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2396 /*isOpaque*/true)); 2397 else 2398 setValue(&I, N); // noop cast. 2399 } 2400 2401 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2403 const Value *SV = I.getOperand(0); 2404 SDValue N = getValue(SV); 2405 EVT DestVT = TLI.getValueType(I.getType()); 2406 2407 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2408 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2409 2410 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2411 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2412 2413 setValue(&I, N); 2414 } 2415 2416 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2417 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2418 SDValue InVec = getValue(I.getOperand(0)); 2419 SDValue InVal = getValue(I.getOperand(1)); 2420 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2421 getCurSDLoc(), TLI.getVectorIdxTy()); 2422 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2423 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2424 } 2425 2426 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2428 SDValue InVec = getValue(I.getOperand(0)); 2429 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2430 getCurSDLoc(), TLI.getVectorIdxTy()); 2431 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2432 TLI.getValueType(I.getType()), InVec, InIdx)); 2433 } 2434 2435 // Utility for visitShuffleVector - Return true if every element in Mask, 2436 // beginning from position Pos and ending in Pos+Size, falls within the 2437 // specified sequential range [L, L+Pos). or is undef. 2438 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2439 unsigned Pos, unsigned Size, int Low) { 2440 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2441 if (Mask[i] >= 0 && Mask[i] != Low) 2442 return false; 2443 return true; 2444 } 2445 2446 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2447 SDValue Src1 = getValue(I.getOperand(0)); 2448 SDValue Src2 = getValue(I.getOperand(1)); 2449 2450 SmallVector<int, 8> Mask; 2451 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2452 unsigned MaskNumElts = Mask.size(); 2453 2454 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2455 EVT VT = TLI.getValueType(I.getType()); 2456 EVT SrcVT = Src1.getValueType(); 2457 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2458 2459 if (SrcNumElts == MaskNumElts) { 2460 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2461 &Mask[0])); 2462 return; 2463 } 2464 2465 // Normalize the shuffle vector since mask and vector length don't match. 2466 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2467 // Mask is longer than the source vectors and is a multiple of the source 2468 // vectors. We can use concatenate vector to make the mask and vectors 2469 // lengths match. 2470 if (SrcNumElts*2 == MaskNumElts) { 2471 // First check for Src1 in low and Src2 in high 2472 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2473 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2474 // The shuffle is concatenating two vectors together. 2475 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2476 VT, Src1, Src2)); 2477 return; 2478 } 2479 // Then check for Src2 in low and Src1 in high 2480 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2481 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2482 // The shuffle is concatenating two vectors together. 2483 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2484 VT, Src2, Src1)); 2485 return; 2486 } 2487 } 2488 2489 // Pad both vectors with undefs to make them the same length as the mask. 2490 unsigned NumConcat = MaskNumElts / SrcNumElts; 2491 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2492 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2493 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2494 2495 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2496 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2497 MOps1[0] = Src1; 2498 MOps2[0] = Src2; 2499 2500 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2501 getCurSDLoc(), VT, MOps1); 2502 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2503 getCurSDLoc(), VT, MOps2); 2504 2505 // Readjust mask for new input vector length. 2506 SmallVector<int, 8> MappedOps; 2507 for (unsigned i = 0; i != MaskNumElts; ++i) { 2508 int Idx = Mask[i]; 2509 if (Idx >= (int)SrcNumElts) 2510 Idx -= SrcNumElts - MaskNumElts; 2511 MappedOps.push_back(Idx); 2512 } 2513 2514 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2515 &MappedOps[0])); 2516 return; 2517 } 2518 2519 if (SrcNumElts > MaskNumElts) { 2520 // Analyze the access pattern of the vector to see if we can extract 2521 // two subvectors and do the shuffle. The analysis is done by calculating 2522 // the range of elements the mask access on both vectors. 2523 int MinRange[2] = { static_cast<int>(SrcNumElts), 2524 static_cast<int>(SrcNumElts)}; 2525 int MaxRange[2] = {-1, -1}; 2526 2527 for (unsigned i = 0; i != MaskNumElts; ++i) { 2528 int Idx = Mask[i]; 2529 unsigned Input = 0; 2530 if (Idx < 0) 2531 continue; 2532 2533 if (Idx >= (int)SrcNumElts) { 2534 Input = 1; 2535 Idx -= SrcNumElts; 2536 } 2537 if (Idx > MaxRange[Input]) 2538 MaxRange[Input] = Idx; 2539 if (Idx < MinRange[Input]) 2540 MinRange[Input] = Idx; 2541 } 2542 2543 // Check if the access is smaller than the vector size and can we find 2544 // a reasonable extract index. 2545 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2546 // Extract. 2547 int StartIdx[2]; // StartIdx to extract from 2548 for (unsigned Input = 0; Input < 2; ++Input) { 2549 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2550 RangeUse[Input] = 0; // Unused 2551 StartIdx[Input] = 0; 2552 continue; 2553 } 2554 2555 // Find a good start index that is a multiple of the mask length. Then 2556 // see if the rest of the elements are in range. 2557 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2558 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2559 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2560 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2561 } 2562 2563 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2564 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2565 return; 2566 } 2567 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2568 // Extract appropriate subvector and generate a vector shuffle 2569 for (unsigned Input = 0; Input < 2; ++Input) { 2570 SDValue &Src = Input == 0 ? Src1 : Src2; 2571 if (RangeUse[Input] == 0) 2572 Src = DAG.getUNDEF(VT); 2573 else { 2574 SDLoc dl = getCurSDLoc(); 2575 Src = DAG.getNode( 2576 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2577 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy())); 2578 } 2579 } 2580 2581 // Calculate new mask. 2582 SmallVector<int, 8> MappedOps; 2583 for (unsigned i = 0; i != MaskNumElts; ++i) { 2584 int Idx = Mask[i]; 2585 if (Idx >= 0) { 2586 if (Idx < (int)SrcNumElts) 2587 Idx -= StartIdx[0]; 2588 else 2589 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2590 } 2591 MappedOps.push_back(Idx); 2592 } 2593 2594 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2595 &MappedOps[0])); 2596 return; 2597 } 2598 } 2599 2600 // We can't use either concat vectors or extract subvectors so fall back to 2601 // replacing the shuffle with extract and build vector. 2602 // to insert and build vector. 2603 EVT EltVT = VT.getVectorElementType(); 2604 EVT IdxVT = TLI.getVectorIdxTy(); 2605 SDLoc dl = getCurSDLoc(); 2606 SmallVector<SDValue,8> Ops; 2607 for (unsigned i = 0; i != MaskNumElts; ++i) { 2608 int Idx = Mask[i]; 2609 SDValue Res; 2610 2611 if (Idx < 0) { 2612 Res = DAG.getUNDEF(EltVT); 2613 } else { 2614 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2615 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2616 2617 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2618 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2619 } 2620 2621 Ops.push_back(Res); 2622 } 2623 2624 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2625 } 2626 2627 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2628 const Value *Op0 = I.getOperand(0); 2629 const Value *Op1 = I.getOperand(1); 2630 Type *AggTy = I.getType(); 2631 Type *ValTy = Op1->getType(); 2632 bool IntoUndef = isa<UndefValue>(Op0); 2633 bool FromUndef = isa<UndefValue>(Op1); 2634 2635 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2636 2637 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2638 SmallVector<EVT, 4> AggValueVTs; 2639 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2640 SmallVector<EVT, 4> ValValueVTs; 2641 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2642 2643 unsigned NumAggValues = AggValueVTs.size(); 2644 unsigned NumValValues = ValValueVTs.size(); 2645 SmallVector<SDValue, 4> Values(NumAggValues); 2646 2647 // Ignore an insertvalue that produces an empty object 2648 if (!NumAggValues) { 2649 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2650 return; 2651 } 2652 2653 SDValue Agg = getValue(Op0); 2654 unsigned i = 0; 2655 // Copy the beginning value(s) from the original aggregate. 2656 for (; i != LinearIndex; ++i) 2657 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2658 SDValue(Agg.getNode(), Agg.getResNo() + i); 2659 // Copy values from the inserted value(s). 2660 if (NumValValues) { 2661 SDValue Val = getValue(Op1); 2662 for (; i != LinearIndex + NumValValues; ++i) 2663 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2664 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2665 } 2666 // Copy remaining value(s) from the original aggregate. 2667 for (; i != NumAggValues; ++i) 2668 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2669 SDValue(Agg.getNode(), Agg.getResNo() + i); 2670 2671 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2672 DAG.getVTList(AggValueVTs), Values)); 2673 } 2674 2675 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2676 const Value *Op0 = I.getOperand(0); 2677 Type *AggTy = Op0->getType(); 2678 Type *ValTy = I.getType(); 2679 bool OutOfUndef = isa<UndefValue>(Op0); 2680 2681 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2682 2683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2684 SmallVector<EVT, 4> ValValueVTs; 2685 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2686 2687 unsigned NumValValues = ValValueVTs.size(); 2688 2689 // Ignore a extractvalue that produces an empty object 2690 if (!NumValValues) { 2691 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2692 return; 2693 } 2694 2695 SmallVector<SDValue, 4> Values(NumValValues); 2696 2697 SDValue Agg = getValue(Op0); 2698 // Copy out the selected value(s). 2699 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2700 Values[i - LinearIndex] = 2701 OutOfUndef ? 2702 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2703 SDValue(Agg.getNode(), Agg.getResNo() + i); 2704 2705 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2706 DAG.getVTList(ValValueVTs), Values)); 2707 } 2708 2709 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2710 Value *Op0 = I.getOperand(0); 2711 // Note that the pointer operand may be a vector of pointers. Take the scalar 2712 // element which holds a pointer. 2713 Type *Ty = Op0->getType()->getScalarType(); 2714 unsigned AS = Ty->getPointerAddressSpace(); 2715 SDValue N = getValue(Op0); 2716 SDLoc dl = getCurSDLoc(); 2717 2718 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2719 OI != E; ++OI) { 2720 const Value *Idx = *OI; 2721 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2722 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2723 if (Field) { 2724 // N = N + Offset 2725 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2726 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2727 DAG.getConstant(Offset, dl, N.getValueType())); 2728 } 2729 2730 Ty = StTy->getElementType(Field); 2731 } else { 2732 Ty = cast<SequentialType>(Ty)->getElementType(); 2733 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2734 unsigned PtrSize = PtrTy.getSizeInBits(); 2735 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2736 2737 // If this is a constant subscript, handle it quickly. 2738 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2739 if (CI->isZero()) 2740 continue; 2741 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2742 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2743 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2744 continue; 2745 } 2746 2747 // N = N + Idx * ElementSize; 2748 SDValue IdxN = getValue(Idx); 2749 2750 // If the index is smaller or larger than intptr_t, truncate or extend 2751 // it. 2752 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2753 2754 // If this is a multiply by a power of two, turn it into a shl 2755 // immediately. This is a very common case. 2756 if (ElementSize != 1) { 2757 if (ElementSize.isPowerOf2()) { 2758 unsigned Amt = ElementSize.logBase2(); 2759 IdxN = DAG.getNode(ISD::SHL, dl, 2760 N.getValueType(), IdxN, 2761 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2762 } else { 2763 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2764 IdxN = DAG.getNode(ISD::MUL, dl, 2765 N.getValueType(), IdxN, Scale); 2766 } 2767 } 2768 2769 N = DAG.getNode(ISD::ADD, dl, 2770 N.getValueType(), N, IdxN); 2771 } 2772 } 2773 2774 setValue(&I, N); 2775 } 2776 2777 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2778 // If this is a fixed sized alloca in the entry block of the function, 2779 // allocate it statically on the stack. 2780 if (FuncInfo.StaticAllocaMap.count(&I)) 2781 return; // getValue will auto-populate this. 2782 2783 SDLoc dl = getCurSDLoc(); 2784 Type *Ty = I.getAllocatedType(); 2785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2786 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2787 unsigned Align = 2788 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2789 I.getAlignment()); 2790 2791 SDValue AllocSize = getValue(I.getArraySize()); 2792 2793 EVT IntPtr = TLI.getPointerTy(); 2794 if (AllocSize.getValueType() != IntPtr) 2795 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2796 2797 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2798 AllocSize, 2799 DAG.getConstant(TySize, dl, IntPtr)); 2800 2801 // Handle alignment. If the requested alignment is less than or equal to 2802 // the stack alignment, ignore it. If the size is greater than or equal to 2803 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2804 unsigned StackAlign = 2805 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2806 if (Align <= StackAlign) 2807 Align = 0; 2808 2809 // Round the size of the allocation up to the stack alignment size 2810 // by add SA-1 to the size. 2811 AllocSize = DAG.getNode(ISD::ADD, dl, 2812 AllocSize.getValueType(), AllocSize, 2813 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2814 2815 // Mask out the low bits for alignment purposes. 2816 AllocSize = DAG.getNode(ISD::AND, dl, 2817 AllocSize.getValueType(), AllocSize, 2818 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2819 dl)); 2820 2821 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2822 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2823 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2824 setValue(&I, DSA); 2825 DAG.setRoot(DSA.getValue(1)); 2826 2827 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2828 } 2829 2830 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2831 if (I.isAtomic()) 2832 return visitAtomicLoad(I); 2833 2834 const Value *SV = I.getOperand(0); 2835 SDValue Ptr = getValue(SV); 2836 2837 Type *Ty = I.getType(); 2838 2839 bool isVolatile = I.isVolatile(); 2840 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2841 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2842 unsigned Alignment = I.getAlignment(); 2843 2844 AAMDNodes AAInfo; 2845 I.getAAMetadata(AAInfo); 2846 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2847 2848 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2849 SmallVector<EVT, 4> ValueVTs; 2850 SmallVector<uint64_t, 4> Offsets; 2851 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2852 unsigned NumValues = ValueVTs.size(); 2853 if (NumValues == 0) 2854 return; 2855 2856 SDValue Root; 2857 bool ConstantMemory = false; 2858 if (isVolatile || NumValues > MaxParallelChains) 2859 // Serialize volatile loads with other side effects. 2860 Root = getRoot(); 2861 else if (AA->pointsToConstantMemory( 2862 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2863 // Do not serialize (non-volatile) loads of constant memory with anything. 2864 Root = DAG.getEntryNode(); 2865 ConstantMemory = true; 2866 } else { 2867 // Do not serialize non-volatile loads against each other. 2868 Root = DAG.getRoot(); 2869 } 2870 2871 SDLoc dl = getCurSDLoc(); 2872 2873 if (isVolatile) 2874 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2875 2876 SmallVector<SDValue, 4> Values(NumValues); 2877 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2878 NumValues)); 2879 EVT PtrVT = Ptr.getValueType(); 2880 unsigned ChainI = 0; 2881 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2882 // Serializing loads here may result in excessive register pressure, and 2883 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2884 // could recover a bit by hoisting nodes upward in the chain by recognizing 2885 // they are side-effect free or do not alias. The optimizer should really 2886 // avoid this case by converting large object/array copies to llvm.memcpy 2887 // (MaxParallelChains should always remain as failsafe). 2888 if (ChainI == MaxParallelChains) { 2889 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2890 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2891 makeArrayRef(Chains.data(), ChainI)); 2892 Root = Chain; 2893 ChainI = 0; 2894 } 2895 SDValue A = DAG.getNode(ISD::ADD, dl, 2896 PtrVT, Ptr, 2897 DAG.getConstant(Offsets[i], dl, PtrVT)); 2898 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2899 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2900 isNonTemporal, isInvariant, Alignment, AAInfo, 2901 Ranges); 2902 2903 Values[i] = L; 2904 Chains[ChainI] = L.getValue(1); 2905 } 2906 2907 if (!ConstantMemory) { 2908 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2909 makeArrayRef(Chains.data(), ChainI)); 2910 if (isVolatile) 2911 DAG.setRoot(Chain); 2912 else 2913 PendingLoads.push_back(Chain); 2914 } 2915 2916 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2917 DAG.getVTList(ValueVTs), Values)); 2918 } 2919 2920 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2921 if (I.isAtomic()) 2922 return visitAtomicStore(I); 2923 2924 const Value *SrcV = I.getOperand(0); 2925 const Value *PtrV = I.getOperand(1); 2926 2927 SmallVector<EVT, 4> ValueVTs; 2928 SmallVector<uint64_t, 4> Offsets; 2929 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2930 ValueVTs, &Offsets); 2931 unsigned NumValues = ValueVTs.size(); 2932 if (NumValues == 0) 2933 return; 2934 2935 // Get the lowered operands. Note that we do this after 2936 // checking if NumResults is zero, because with zero results 2937 // the operands won't have values in the map. 2938 SDValue Src = getValue(SrcV); 2939 SDValue Ptr = getValue(PtrV); 2940 2941 SDValue Root = getRoot(); 2942 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2943 NumValues)); 2944 EVT PtrVT = Ptr.getValueType(); 2945 bool isVolatile = I.isVolatile(); 2946 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2947 unsigned Alignment = I.getAlignment(); 2948 SDLoc dl = getCurSDLoc(); 2949 2950 AAMDNodes AAInfo; 2951 I.getAAMetadata(AAInfo); 2952 2953 unsigned ChainI = 0; 2954 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2955 // See visitLoad comments. 2956 if (ChainI == MaxParallelChains) { 2957 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2958 makeArrayRef(Chains.data(), ChainI)); 2959 Root = Chain; 2960 ChainI = 0; 2961 } 2962 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 2963 DAG.getConstant(Offsets[i], dl, PtrVT)); 2964 SDValue St = DAG.getStore(Root, dl, 2965 SDValue(Src.getNode(), Src.getResNo() + i), 2966 Add, MachinePointerInfo(PtrV, Offsets[i]), 2967 isVolatile, isNonTemporal, Alignment, AAInfo); 2968 Chains[ChainI] = St; 2969 } 2970 2971 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2972 makeArrayRef(Chains.data(), ChainI)); 2973 DAG.setRoot(StoreNode); 2974 } 2975 2976 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 2977 SDLoc sdl = getCurSDLoc(); 2978 2979 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 2980 Value *PtrOperand = I.getArgOperand(1); 2981 SDValue Ptr = getValue(PtrOperand); 2982 SDValue Src0 = getValue(I.getArgOperand(0)); 2983 SDValue Mask = getValue(I.getArgOperand(3)); 2984 EVT VT = Src0.getValueType(); 2985 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 2986 if (!Alignment) 2987 Alignment = DAG.getEVTAlignment(VT); 2988 2989 AAMDNodes AAInfo; 2990 I.getAAMetadata(AAInfo); 2991 2992 MachineMemOperand *MMO = 2993 DAG.getMachineFunction(). 2994 getMachineMemOperand(MachinePointerInfo(PtrOperand), 2995 MachineMemOperand::MOStore, VT.getStoreSize(), 2996 Alignment, AAInfo); 2997 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 2998 MMO, false); 2999 DAG.setRoot(StoreNode); 3000 setValue(&I, StoreNode); 3001 } 3002 3003 // Gather/scatter receive a vector of pointers. 3004 // This vector of pointers may be represented as a base pointer + vector of 3005 // indices, it depends on GEP and instruction preceeding GEP 3006 // that calculates indices 3007 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3008 SelectionDAGBuilder* SDB) { 3009 3010 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3011 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3012 if (!Gep || Gep->getNumOperands() > 2) 3013 return false; 3014 ShuffleVectorInst *ShuffleInst = 3015 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3016 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3017 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3018 Instruction::InsertElement) 3019 return false; 3020 3021 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3022 3023 SelectionDAG& DAG = SDB->DAG; 3024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3025 // Check is the Ptr is inside current basic block 3026 // If not, look for the shuffle instruction 3027 if (SDB->findValue(Ptr)) 3028 Base = SDB->getValue(Ptr); 3029 else if (SDB->findValue(ShuffleInst)) { 3030 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3031 SDLoc sdl = ShuffleNode; 3032 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3033 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3034 DAG.getConstant(0, sdl, TLI.getVectorIdxTy())); 3035 SDB->setValue(Ptr, Base); 3036 } 3037 else 3038 return false; 3039 3040 Value *IndexVal = Gep->getOperand(1); 3041 if (SDB->findValue(IndexVal)) { 3042 Index = SDB->getValue(IndexVal); 3043 3044 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3045 IndexVal = Sext->getOperand(0); 3046 if (SDB->findValue(IndexVal)) 3047 Index = SDB->getValue(IndexVal); 3048 } 3049 return true; 3050 } 3051 return false; 3052 } 3053 3054 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3055 SDLoc sdl = getCurSDLoc(); 3056 3057 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3058 Value *Ptr = I.getArgOperand(1); 3059 SDValue Src0 = getValue(I.getArgOperand(0)); 3060 SDValue Mask = getValue(I.getArgOperand(3)); 3061 EVT VT = Src0.getValueType(); 3062 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3063 if (!Alignment) 3064 Alignment = DAG.getEVTAlignment(VT); 3065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3066 3067 AAMDNodes AAInfo; 3068 I.getAAMetadata(AAInfo); 3069 3070 SDValue Base; 3071 SDValue Index; 3072 Value *BasePtr = Ptr; 3073 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3074 3075 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3076 MachineMemOperand *MMO = DAG.getMachineFunction(). 3077 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3078 MachineMemOperand::MOStore, VT.getStoreSize(), 3079 Alignment, AAInfo); 3080 if (!UniformBase) { 3081 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3082 Index = getValue(Ptr); 3083 } 3084 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3085 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3086 Ops, MMO); 3087 DAG.setRoot(Scatter); 3088 setValue(&I, Scatter); 3089 } 3090 3091 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3092 SDLoc sdl = getCurSDLoc(); 3093 3094 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3095 Value *PtrOperand = I.getArgOperand(0); 3096 SDValue Ptr = getValue(PtrOperand); 3097 SDValue Src0 = getValue(I.getArgOperand(3)); 3098 SDValue Mask = getValue(I.getArgOperand(2)); 3099 3100 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3101 EVT VT = TLI.getValueType(I.getType()); 3102 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3103 if (!Alignment) 3104 Alignment = DAG.getEVTAlignment(VT); 3105 3106 AAMDNodes AAInfo; 3107 I.getAAMetadata(AAInfo); 3108 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3109 3110 SDValue InChain = DAG.getRoot(); 3111 if (AA->pointsToConstantMemory( 3112 AliasAnalysis::Location(PtrOperand, 3113 AA->getTypeStoreSize(I.getType()), 3114 AAInfo))) { 3115 // Do not serialize (non-volatile) loads of constant memory with anything. 3116 InChain = DAG.getEntryNode(); 3117 } 3118 3119 MachineMemOperand *MMO = 3120 DAG.getMachineFunction(). 3121 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3122 MachineMemOperand::MOLoad, VT.getStoreSize(), 3123 Alignment, AAInfo, Ranges); 3124 3125 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3126 ISD::NON_EXTLOAD); 3127 SDValue OutChain = Load.getValue(1); 3128 DAG.setRoot(OutChain); 3129 setValue(&I, Load); 3130 } 3131 3132 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3133 SDLoc sdl = getCurSDLoc(); 3134 3135 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3136 Value *Ptr = I.getArgOperand(0); 3137 SDValue Src0 = getValue(I.getArgOperand(3)); 3138 SDValue Mask = getValue(I.getArgOperand(2)); 3139 3140 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3141 EVT VT = TLI.getValueType(I.getType()); 3142 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3143 if (!Alignment) 3144 Alignment = DAG.getEVTAlignment(VT); 3145 3146 AAMDNodes AAInfo; 3147 I.getAAMetadata(AAInfo); 3148 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3149 3150 SDValue Root = DAG.getRoot(); 3151 SDValue Base; 3152 SDValue Index; 3153 Value *BasePtr = Ptr; 3154 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3155 bool ConstantMemory = false; 3156 if (UniformBase && AA->pointsToConstantMemory( 3157 AliasAnalysis::Location(BasePtr, 3158 AA->getTypeStoreSize(I.getType()), 3159 AAInfo))) { 3160 // Do not serialize (non-volatile) loads of constant memory with anything. 3161 Root = DAG.getEntryNode(); 3162 ConstantMemory = true; 3163 } 3164 3165 MachineMemOperand *MMO = 3166 DAG.getMachineFunction(). 3167 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3168 MachineMemOperand::MOLoad, VT.getStoreSize(), 3169 Alignment, AAInfo, Ranges); 3170 3171 if (!UniformBase) { 3172 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3173 Index = getValue(Ptr); 3174 } 3175 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3176 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3177 Ops, MMO); 3178 3179 SDValue OutChain = Gather.getValue(1); 3180 if (!ConstantMemory) 3181 PendingLoads.push_back(OutChain); 3182 setValue(&I, Gather); 3183 } 3184 3185 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3186 SDLoc dl = getCurSDLoc(); 3187 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3188 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3189 SynchronizationScope Scope = I.getSynchScope(); 3190 3191 SDValue InChain = getRoot(); 3192 3193 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3194 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3195 SDValue L = DAG.getAtomicCmpSwap( 3196 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3197 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3198 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3199 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3200 3201 SDValue OutChain = L.getValue(2); 3202 3203 setValue(&I, L); 3204 DAG.setRoot(OutChain); 3205 } 3206 3207 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3208 SDLoc dl = getCurSDLoc(); 3209 ISD::NodeType NT; 3210 switch (I.getOperation()) { 3211 default: llvm_unreachable("Unknown atomicrmw operation"); 3212 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3213 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3214 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3215 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3216 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3217 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3218 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3219 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3220 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3221 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3222 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3223 } 3224 AtomicOrdering Order = I.getOrdering(); 3225 SynchronizationScope Scope = I.getSynchScope(); 3226 3227 SDValue InChain = getRoot(); 3228 3229 SDValue L = 3230 DAG.getAtomic(NT, dl, 3231 getValue(I.getValOperand()).getSimpleValueType(), 3232 InChain, 3233 getValue(I.getPointerOperand()), 3234 getValue(I.getValOperand()), 3235 I.getPointerOperand(), 3236 /* Alignment=*/ 0, Order, Scope); 3237 3238 SDValue OutChain = L.getValue(1); 3239 3240 setValue(&I, L); 3241 DAG.setRoot(OutChain); 3242 } 3243 3244 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3245 SDLoc dl = getCurSDLoc(); 3246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3247 SDValue Ops[3]; 3248 Ops[0] = getRoot(); 3249 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy()); 3250 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy()); 3251 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3252 } 3253 3254 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3255 SDLoc dl = getCurSDLoc(); 3256 AtomicOrdering Order = I.getOrdering(); 3257 SynchronizationScope Scope = I.getSynchScope(); 3258 3259 SDValue InChain = getRoot(); 3260 3261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3262 EVT VT = TLI.getValueType(I.getType()); 3263 3264 if (I.getAlignment() < VT.getSizeInBits() / 8) 3265 report_fatal_error("Cannot generate unaligned atomic load"); 3266 3267 MachineMemOperand *MMO = 3268 DAG.getMachineFunction(). 3269 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3270 MachineMemOperand::MOVolatile | 3271 MachineMemOperand::MOLoad, 3272 VT.getStoreSize(), 3273 I.getAlignment() ? I.getAlignment() : 3274 DAG.getEVTAlignment(VT)); 3275 3276 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3277 SDValue L = 3278 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3279 getValue(I.getPointerOperand()), MMO, 3280 Order, Scope); 3281 3282 SDValue OutChain = L.getValue(1); 3283 3284 setValue(&I, L); 3285 DAG.setRoot(OutChain); 3286 } 3287 3288 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3289 SDLoc dl = getCurSDLoc(); 3290 3291 AtomicOrdering Order = I.getOrdering(); 3292 SynchronizationScope Scope = I.getSynchScope(); 3293 3294 SDValue InChain = getRoot(); 3295 3296 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3297 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3298 3299 if (I.getAlignment() < VT.getSizeInBits() / 8) 3300 report_fatal_error("Cannot generate unaligned atomic store"); 3301 3302 SDValue OutChain = 3303 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3304 InChain, 3305 getValue(I.getPointerOperand()), 3306 getValue(I.getValueOperand()), 3307 I.getPointerOperand(), I.getAlignment(), 3308 Order, Scope); 3309 3310 DAG.setRoot(OutChain); 3311 } 3312 3313 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3314 /// node. 3315 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3316 unsigned Intrinsic) { 3317 bool HasChain = !I.doesNotAccessMemory(); 3318 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3319 3320 // Build the operand list. 3321 SmallVector<SDValue, 8> Ops; 3322 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3323 if (OnlyLoad) { 3324 // We don't need to serialize loads against other loads. 3325 Ops.push_back(DAG.getRoot()); 3326 } else { 3327 Ops.push_back(getRoot()); 3328 } 3329 } 3330 3331 // Info is set by getTgtMemInstrinsic 3332 TargetLowering::IntrinsicInfo Info; 3333 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3334 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3335 3336 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3337 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3338 Info.opc == ISD::INTRINSIC_W_CHAIN) 3339 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3340 TLI.getPointerTy())); 3341 3342 // Add all operands of the call to the operand list. 3343 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3344 SDValue Op = getValue(I.getArgOperand(i)); 3345 Ops.push_back(Op); 3346 } 3347 3348 SmallVector<EVT, 4> ValueVTs; 3349 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3350 3351 if (HasChain) 3352 ValueVTs.push_back(MVT::Other); 3353 3354 SDVTList VTs = DAG.getVTList(ValueVTs); 3355 3356 // Create the node. 3357 SDValue Result; 3358 if (IsTgtIntrinsic) { 3359 // This is target intrinsic that touches memory 3360 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3361 VTs, Ops, Info.memVT, 3362 MachinePointerInfo(Info.ptrVal, Info.offset), 3363 Info.align, Info.vol, 3364 Info.readMem, Info.writeMem, Info.size); 3365 } else if (!HasChain) { 3366 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3367 } else if (!I.getType()->isVoidTy()) { 3368 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3369 } else { 3370 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3371 } 3372 3373 if (HasChain) { 3374 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3375 if (OnlyLoad) 3376 PendingLoads.push_back(Chain); 3377 else 3378 DAG.setRoot(Chain); 3379 } 3380 3381 if (!I.getType()->isVoidTy()) { 3382 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3383 EVT VT = TLI.getValueType(PTy); 3384 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3385 } 3386 3387 setValue(&I, Result); 3388 } 3389 } 3390 3391 /// GetSignificand - Get the significand and build it into a floating-point 3392 /// number with exponent of 1: 3393 /// 3394 /// Op = (Op & 0x007fffff) | 0x3f800000; 3395 /// 3396 /// where Op is the hexadecimal representation of floating point value. 3397 static SDValue 3398 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3399 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3400 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3401 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3402 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3403 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3404 } 3405 3406 /// GetExponent - Get the exponent: 3407 /// 3408 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3409 /// 3410 /// where Op is the hexadecimal representation of floating point value. 3411 static SDValue 3412 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3413 SDLoc dl) { 3414 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3415 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3416 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3417 DAG.getConstant(23, dl, TLI.getPointerTy())); 3418 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3419 DAG.getConstant(127, dl, MVT::i32)); 3420 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3421 } 3422 3423 /// getF32Constant - Get 32-bit floating point constant. 3424 static SDValue 3425 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3426 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3427 MVT::f32); 3428 } 3429 3430 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3431 SelectionDAG &DAG) { 3432 // IntegerPartOfX = ((int32_t)(t0); 3433 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3434 3435 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3436 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3437 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3438 3439 // IntegerPartOfX <<= 23; 3440 IntegerPartOfX = DAG.getNode( 3441 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3442 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy())); 3443 3444 SDValue TwoToFractionalPartOfX; 3445 if (LimitFloatPrecision <= 6) { 3446 // For floating-point precision of 6: 3447 // 3448 // TwoToFractionalPartOfX = 3449 // 0.997535578f + 3450 // (0.735607626f + 0.252464424f * x) * x; 3451 // 3452 // error 0.0144103317, which is 6 bits 3453 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3454 getF32Constant(DAG, 0x3e814304, dl)); 3455 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3456 getF32Constant(DAG, 0x3f3c50c8, dl)); 3457 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3458 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3459 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3460 } else if (LimitFloatPrecision <= 12) { 3461 // For floating-point precision of 12: 3462 // 3463 // TwoToFractionalPartOfX = 3464 // 0.999892986f + 3465 // (0.696457318f + 3466 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3467 // 3468 // error 0.000107046256, which is 13 to 14 bits 3469 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3470 getF32Constant(DAG, 0x3da235e3, dl)); 3471 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3472 getF32Constant(DAG, 0x3e65b8f3, dl)); 3473 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3474 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3475 getF32Constant(DAG, 0x3f324b07, dl)); 3476 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3477 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3478 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3479 } else { // LimitFloatPrecision <= 18 3480 // For floating-point precision of 18: 3481 // 3482 // TwoToFractionalPartOfX = 3483 // 0.999999982f + 3484 // (0.693148872f + 3485 // (0.240227044f + 3486 // (0.554906021e-1f + 3487 // (0.961591928e-2f + 3488 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3489 // error 2.47208000*10^(-7), which is better than 18 bits 3490 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3491 getF32Constant(DAG, 0x3924b03e, dl)); 3492 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3493 getF32Constant(DAG, 0x3ab24b87, dl)); 3494 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3495 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3496 getF32Constant(DAG, 0x3c1d8c17, dl)); 3497 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3498 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3499 getF32Constant(DAG, 0x3d634a1d, dl)); 3500 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3501 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3502 getF32Constant(DAG, 0x3e75fe14, dl)); 3503 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3504 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3505 getF32Constant(DAG, 0x3f317234, dl)); 3506 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3507 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3508 getF32Constant(DAG, 0x3f800000, dl)); 3509 } 3510 3511 // Add the exponent into the result in integer domain. 3512 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3513 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3514 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3515 } 3516 3517 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3518 /// limited-precision mode. 3519 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3520 const TargetLowering &TLI) { 3521 if (Op.getValueType() == MVT::f32 && 3522 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3523 3524 // Put the exponent in the right bit position for later addition to the 3525 // final result: 3526 // 3527 // #define LOG2OFe 1.4426950f 3528 // t0 = Op * LOG2OFe 3529 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3530 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3531 return getLimitedPrecisionExp2(t0, dl, DAG); 3532 } 3533 3534 // No special expansion. 3535 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3536 } 3537 3538 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3539 /// limited-precision mode. 3540 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3541 const TargetLowering &TLI) { 3542 if (Op.getValueType() == MVT::f32 && 3543 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3544 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3545 3546 // Scale the exponent by log(2) [0.69314718f]. 3547 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3548 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3549 getF32Constant(DAG, 0x3f317218, dl)); 3550 3551 // Get the significand and build it into a floating-point number with 3552 // exponent of 1. 3553 SDValue X = GetSignificand(DAG, Op1, dl); 3554 3555 SDValue LogOfMantissa; 3556 if (LimitFloatPrecision <= 6) { 3557 // For floating-point precision of 6: 3558 // 3559 // LogofMantissa = 3560 // -1.1609546f + 3561 // (1.4034025f - 0.23903021f * x) * x; 3562 // 3563 // error 0.0034276066, which is better than 8 bits 3564 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3565 getF32Constant(DAG, 0xbe74c456, dl)); 3566 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3567 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3568 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3569 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3570 getF32Constant(DAG, 0x3f949a29, dl)); 3571 } else if (LimitFloatPrecision <= 12) { 3572 // For floating-point precision of 12: 3573 // 3574 // LogOfMantissa = 3575 // -1.7417939f + 3576 // (2.8212026f + 3577 // (-1.4699568f + 3578 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3579 // 3580 // error 0.000061011436, which is 14 bits 3581 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3582 getF32Constant(DAG, 0xbd67b6d6, dl)); 3583 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3584 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3585 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3586 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3587 getF32Constant(DAG, 0x3fbc278b, dl)); 3588 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3589 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3590 getF32Constant(DAG, 0x40348e95, dl)); 3591 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3592 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3593 getF32Constant(DAG, 0x3fdef31a, dl)); 3594 } else { // LimitFloatPrecision <= 18 3595 // For floating-point precision of 18: 3596 // 3597 // LogOfMantissa = 3598 // -2.1072184f + 3599 // (4.2372794f + 3600 // (-3.7029485f + 3601 // (2.2781945f + 3602 // (-0.87823314f + 3603 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3604 // 3605 // error 0.0000023660568, which is better than 18 bits 3606 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3607 getF32Constant(DAG, 0xbc91e5ac, dl)); 3608 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3609 getF32Constant(DAG, 0x3e4350aa, dl)); 3610 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3611 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3612 getF32Constant(DAG, 0x3f60d3e3, dl)); 3613 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3614 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3615 getF32Constant(DAG, 0x4011cdf0, dl)); 3616 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3617 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3618 getF32Constant(DAG, 0x406cfd1c, dl)); 3619 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3620 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3621 getF32Constant(DAG, 0x408797cb, dl)); 3622 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3623 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3624 getF32Constant(DAG, 0x4006dcab, dl)); 3625 } 3626 3627 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3628 } 3629 3630 // No special expansion. 3631 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3632 } 3633 3634 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3635 /// limited-precision mode. 3636 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3637 const TargetLowering &TLI) { 3638 if (Op.getValueType() == MVT::f32 && 3639 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3640 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3641 3642 // Get the exponent. 3643 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3644 3645 // Get the significand and build it into a floating-point number with 3646 // exponent of 1. 3647 SDValue X = GetSignificand(DAG, Op1, dl); 3648 3649 // Different possible minimax approximations of significand in 3650 // floating-point for various degrees of accuracy over [1,2]. 3651 SDValue Log2ofMantissa; 3652 if (LimitFloatPrecision <= 6) { 3653 // For floating-point precision of 6: 3654 // 3655 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3656 // 3657 // error 0.0049451742, which is more than 7 bits 3658 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3659 getF32Constant(DAG, 0xbeb08fe0, dl)); 3660 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3661 getF32Constant(DAG, 0x40019463, dl)); 3662 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3663 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3664 getF32Constant(DAG, 0x3fd6633d, dl)); 3665 } else if (LimitFloatPrecision <= 12) { 3666 // For floating-point precision of 12: 3667 // 3668 // Log2ofMantissa = 3669 // -2.51285454f + 3670 // (4.07009056f + 3671 // (-2.12067489f + 3672 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3673 // 3674 // error 0.0000876136000, which is better than 13 bits 3675 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3676 getF32Constant(DAG, 0xbda7262e, dl)); 3677 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3678 getF32Constant(DAG, 0x3f25280b, dl)); 3679 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3680 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3681 getF32Constant(DAG, 0x4007b923, dl)); 3682 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3683 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3684 getF32Constant(DAG, 0x40823e2f, dl)); 3685 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3686 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3687 getF32Constant(DAG, 0x4020d29c, dl)); 3688 } else { // LimitFloatPrecision <= 18 3689 // For floating-point precision of 18: 3690 // 3691 // Log2ofMantissa = 3692 // -3.0400495f + 3693 // (6.1129976f + 3694 // (-5.3420409f + 3695 // (3.2865683f + 3696 // (-1.2669343f + 3697 // (0.27515199f - 3698 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3699 // 3700 // error 0.0000018516, which is better than 18 bits 3701 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3702 getF32Constant(DAG, 0xbcd2769e, dl)); 3703 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3704 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3705 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3706 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3707 getF32Constant(DAG, 0x3fa22ae7, dl)); 3708 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3709 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3710 getF32Constant(DAG, 0x40525723, dl)); 3711 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3712 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3713 getF32Constant(DAG, 0x40aaf200, dl)); 3714 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3715 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3716 getF32Constant(DAG, 0x40c39dad, dl)); 3717 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3718 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3719 getF32Constant(DAG, 0x4042902c, dl)); 3720 } 3721 3722 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3723 } 3724 3725 // No special expansion. 3726 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3727 } 3728 3729 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3730 /// limited-precision mode. 3731 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3732 const TargetLowering &TLI) { 3733 if (Op.getValueType() == MVT::f32 && 3734 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3735 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3736 3737 // Scale the exponent by log10(2) [0.30102999f]. 3738 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3739 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3740 getF32Constant(DAG, 0x3e9a209a, dl)); 3741 3742 // Get the significand and build it into a floating-point number with 3743 // exponent of 1. 3744 SDValue X = GetSignificand(DAG, Op1, dl); 3745 3746 SDValue Log10ofMantissa; 3747 if (LimitFloatPrecision <= 6) { 3748 // For floating-point precision of 6: 3749 // 3750 // Log10ofMantissa = 3751 // -0.50419619f + 3752 // (0.60948995f - 0.10380950f * x) * x; 3753 // 3754 // error 0.0014886165, which is 6 bits 3755 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3756 getF32Constant(DAG, 0xbdd49a13, dl)); 3757 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3758 getF32Constant(DAG, 0x3f1c0789, dl)); 3759 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3760 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3761 getF32Constant(DAG, 0x3f011300, dl)); 3762 } else if (LimitFloatPrecision <= 12) { 3763 // For floating-point precision of 12: 3764 // 3765 // Log10ofMantissa = 3766 // -0.64831180f + 3767 // (0.91751397f + 3768 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3769 // 3770 // error 0.00019228036, which is better than 12 bits 3771 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3772 getF32Constant(DAG, 0x3d431f31, dl)); 3773 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3774 getF32Constant(DAG, 0x3ea21fb2, dl)); 3775 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3776 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3777 getF32Constant(DAG, 0x3f6ae232, dl)); 3778 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3779 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3780 getF32Constant(DAG, 0x3f25f7c3, dl)); 3781 } else { // LimitFloatPrecision <= 18 3782 // For floating-point precision of 18: 3783 // 3784 // Log10ofMantissa = 3785 // -0.84299375f + 3786 // (1.5327582f + 3787 // (-1.0688956f + 3788 // (0.49102474f + 3789 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3790 // 3791 // error 0.0000037995730, which is better than 18 bits 3792 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3793 getF32Constant(DAG, 0x3c5d51ce, dl)); 3794 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3795 getF32Constant(DAG, 0x3e00685a, dl)); 3796 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3797 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3798 getF32Constant(DAG, 0x3efb6798, dl)); 3799 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3800 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3801 getF32Constant(DAG, 0x3f88d192, dl)); 3802 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3803 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3804 getF32Constant(DAG, 0x3fc4316c, dl)); 3805 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3806 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3807 getF32Constant(DAG, 0x3f57ce70, dl)); 3808 } 3809 3810 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3811 } 3812 3813 // No special expansion. 3814 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3815 } 3816 3817 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3818 /// limited-precision mode. 3819 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3820 const TargetLowering &TLI) { 3821 if (Op.getValueType() == MVT::f32 && 3822 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3823 return getLimitedPrecisionExp2(Op, dl, DAG); 3824 3825 // No special expansion. 3826 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3827 } 3828 3829 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3830 /// limited-precision mode with x == 10.0f. 3831 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3832 SelectionDAG &DAG, const TargetLowering &TLI) { 3833 bool IsExp10 = false; 3834 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3835 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3836 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3837 APFloat Ten(10.0f); 3838 IsExp10 = LHSC->isExactlyValue(Ten); 3839 } 3840 } 3841 3842 if (IsExp10) { 3843 // Put the exponent in the right bit position for later addition to the 3844 // final result: 3845 // 3846 // #define LOG2OF10 3.3219281f 3847 // t0 = Op * LOG2OF10; 3848 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3849 getF32Constant(DAG, 0x40549a78, dl)); 3850 return getLimitedPrecisionExp2(t0, dl, DAG); 3851 } 3852 3853 // No special expansion. 3854 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3855 } 3856 3857 3858 /// ExpandPowI - Expand a llvm.powi intrinsic. 3859 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3860 SelectionDAG &DAG) { 3861 // If RHS is a constant, we can expand this out to a multiplication tree, 3862 // otherwise we end up lowering to a call to __powidf2 (for example). When 3863 // optimizing for size, we only want to do this if the expansion would produce 3864 // a small number of multiplies, otherwise we do the full expansion. 3865 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3866 // Get the exponent as a positive value. 3867 unsigned Val = RHSC->getSExtValue(); 3868 if ((int)Val < 0) Val = -Val; 3869 3870 // powi(x, 0) -> 1.0 3871 if (Val == 0) 3872 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3873 3874 const Function *F = DAG.getMachineFunction().getFunction(); 3875 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3876 // If optimizing for size, don't insert too many multiplies. This 3877 // inserts up to 5 multiplies. 3878 countPopulation(Val) + Log2_32(Val) < 7) { 3879 // We use the simple binary decomposition method to generate the multiply 3880 // sequence. There are more optimal ways to do this (for example, 3881 // powi(x,15) generates one more multiply than it should), but this has 3882 // the benefit of being both really simple and much better than a libcall. 3883 SDValue Res; // Logically starts equal to 1.0 3884 SDValue CurSquare = LHS; 3885 while (Val) { 3886 if (Val & 1) { 3887 if (Res.getNode()) 3888 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3889 else 3890 Res = CurSquare; // 1.0*CurSquare. 3891 } 3892 3893 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3894 CurSquare, CurSquare); 3895 Val >>= 1; 3896 } 3897 3898 // If the original was negative, invert the result, producing 1/(x*x*x). 3899 if (RHSC->getSExtValue() < 0) 3900 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3901 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3902 return Res; 3903 } 3904 } 3905 3906 // Otherwise, expand to a libcall. 3907 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3908 } 3909 3910 // getTruncatedArgReg - Find underlying register used for an truncated 3911 // argument. 3912 static unsigned getTruncatedArgReg(const SDValue &N) { 3913 if (N.getOpcode() != ISD::TRUNCATE) 3914 return 0; 3915 3916 const SDValue &Ext = N.getOperand(0); 3917 if (Ext.getOpcode() == ISD::AssertZext || 3918 Ext.getOpcode() == ISD::AssertSext) { 3919 const SDValue &CFR = Ext.getOperand(0); 3920 if (CFR.getOpcode() == ISD::CopyFromReg) 3921 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3922 if (CFR.getOpcode() == ISD::TRUNCATE) 3923 return getTruncatedArgReg(CFR); 3924 } 3925 return 0; 3926 } 3927 3928 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3929 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3930 /// At the end of instruction selection, they will be inserted to the entry BB. 3931 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3932 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 3933 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3934 const Argument *Arg = dyn_cast<Argument>(V); 3935 if (!Arg) 3936 return false; 3937 3938 MachineFunction &MF = DAG.getMachineFunction(); 3939 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3940 3941 // Ignore inlined function arguments here. 3942 // 3943 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3944 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3945 return false; 3946 3947 Optional<MachineOperand> Op; 3948 // Some arguments' frame index is recorded during argument lowering. 3949 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 3950 Op = MachineOperand::CreateFI(FI); 3951 3952 if (!Op && N.getNode()) { 3953 unsigned Reg; 3954 if (N.getOpcode() == ISD::CopyFromReg) 3955 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3956 else 3957 Reg = getTruncatedArgReg(N); 3958 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3959 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3960 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3961 if (PR) 3962 Reg = PR; 3963 } 3964 if (Reg) 3965 Op = MachineOperand::CreateReg(Reg, false); 3966 } 3967 3968 if (!Op) { 3969 // Check if ValueMap has reg number. 3970 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3971 if (VMI != FuncInfo.ValueMap.end()) 3972 Op = MachineOperand::CreateReg(VMI->second, false); 3973 } 3974 3975 if (!Op && N.getNode()) 3976 // Check if frame index is available. 3977 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 3978 if (FrameIndexSDNode *FINode = 3979 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 3980 Op = MachineOperand::CreateFI(FINode->getIndex()); 3981 3982 if (!Op) 3983 return false; 3984 3985 assert(Variable->isValidLocationForIntrinsic(DL) && 3986 "Expected inlined-at fields to agree"); 3987 if (Op->isReg()) 3988 FuncInfo.ArgDbgValues.push_back( 3989 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 3990 Op->getReg(), Offset, Variable, Expr)); 3991 else 3992 FuncInfo.ArgDbgValues.push_back( 3993 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 3994 .addOperand(*Op) 3995 .addImm(Offset) 3996 .addMetadata(Variable) 3997 .addMetadata(Expr)); 3998 3999 return true; 4000 } 4001 4002 // VisualStudio defines setjmp as _setjmp 4003 #if defined(_MSC_VER) && defined(setjmp) && \ 4004 !defined(setjmp_undefined_for_msvc) 4005 # pragma push_macro("setjmp") 4006 # undef setjmp 4007 # define setjmp_undefined_for_msvc 4008 #endif 4009 4010 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4011 /// we want to emit this as a call to a named external function, return the name 4012 /// otherwise lower it and return null. 4013 const char * 4014 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4015 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4016 SDLoc sdl = getCurSDLoc(); 4017 DebugLoc dl = getCurDebugLoc(); 4018 SDValue Res; 4019 4020 switch (Intrinsic) { 4021 default: 4022 // By default, turn this into a target intrinsic node. 4023 visitTargetIntrinsic(I, Intrinsic); 4024 return nullptr; 4025 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4026 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4027 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4028 case Intrinsic::returnaddress: 4029 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4030 getValue(I.getArgOperand(0)))); 4031 return nullptr; 4032 case Intrinsic::frameaddress: 4033 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4034 getValue(I.getArgOperand(0)))); 4035 return nullptr; 4036 case Intrinsic::read_register: { 4037 Value *Reg = I.getArgOperand(0); 4038 SDValue RegName = 4039 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4040 EVT VT = TLI.getValueType(I.getType()); 4041 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4042 return nullptr; 4043 } 4044 case Intrinsic::write_register: { 4045 Value *Reg = I.getArgOperand(0); 4046 Value *RegValue = I.getArgOperand(1); 4047 SDValue Chain = getValue(RegValue).getOperand(0); 4048 SDValue RegName = 4049 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4050 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4051 RegName, getValue(RegValue))); 4052 return nullptr; 4053 } 4054 case Intrinsic::setjmp: 4055 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4056 case Intrinsic::longjmp: 4057 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4058 case Intrinsic::memcpy: { 4059 // FIXME: this definition of "user defined address space" is x86-specific 4060 // Assert for address < 256 since we support only user defined address 4061 // spaces. 4062 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4063 < 256 && 4064 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4065 < 256 && 4066 "Unknown address space"); 4067 SDValue Op1 = getValue(I.getArgOperand(0)); 4068 SDValue Op2 = getValue(I.getArgOperand(1)); 4069 SDValue Op3 = getValue(I.getArgOperand(2)); 4070 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4071 if (!Align) 4072 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4073 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4074 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4075 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4076 false, isTC, 4077 MachinePointerInfo(I.getArgOperand(0)), 4078 MachinePointerInfo(I.getArgOperand(1))); 4079 updateDAGForMaybeTailCall(MC); 4080 return nullptr; 4081 } 4082 case Intrinsic::memset: { 4083 // FIXME: this definition of "user defined address space" is x86-specific 4084 // Assert for address < 256 since we support only user defined address 4085 // spaces. 4086 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4087 < 256 && 4088 "Unknown address space"); 4089 SDValue Op1 = getValue(I.getArgOperand(0)); 4090 SDValue Op2 = getValue(I.getArgOperand(1)); 4091 SDValue Op3 = getValue(I.getArgOperand(2)); 4092 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4093 if (!Align) 4094 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4095 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4096 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4097 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4098 isTC, MachinePointerInfo(I.getArgOperand(0))); 4099 updateDAGForMaybeTailCall(MS); 4100 return nullptr; 4101 } 4102 case Intrinsic::memmove: { 4103 // FIXME: this definition of "user defined address space" is x86-specific 4104 // Assert for address < 256 since we support only user defined address 4105 // spaces. 4106 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4107 < 256 && 4108 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4109 < 256 && 4110 "Unknown address space"); 4111 SDValue Op1 = getValue(I.getArgOperand(0)); 4112 SDValue Op2 = getValue(I.getArgOperand(1)); 4113 SDValue Op3 = getValue(I.getArgOperand(2)); 4114 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4115 if (!Align) 4116 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4117 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4118 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4119 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4120 isTC, MachinePointerInfo(I.getArgOperand(0)), 4121 MachinePointerInfo(I.getArgOperand(1))); 4122 updateDAGForMaybeTailCall(MM); 4123 return nullptr; 4124 } 4125 case Intrinsic::dbg_declare: { 4126 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4127 DILocalVariable *Variable = DI.getVariable(); 4128 DIExpression *Expression = DI.getExpression(); 4129 const Value *Address = DI.getAddress(); 4130 assert(Variable && "Missing variable"); 4131 if (!Address) { 4132 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4133 return nullptr; 4134 } 4135 4136 // Check if address has undef value. 4137 if (isa<UndefValue>(Address) || 4138 (Address->use_empty() && !isa<Argument>(Address))) { 4139 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4140 return nullptr; 4141 } 4142 4143 SDValue &N = NodeMap[Address]; 4144 if (!N.getNode() && isa<Argument>(Address)) 4145 // Check unused arguments map. 4146 N = UnusedArgNodeMap[Address]; 4147 SDDbgValue *SDV; 4148 if (N.getNode()) { 4149 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4150 Address = BCI->getOperand(0); 4151 // Parameters are handled specially. 4152 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4153 isa<Argument>(Address); 4154 4155 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4156 4157 if (isParameter && !AI) { 4158 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4159 if (FINode) 4160 // Byval parameter. We have a frame index at this point. 4161 SDV = DAG.getFrameIndexDbgValue( 4162 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4163 else { 4164 // Address is an argument, so try to emit its dbg value using 4165 // virtual register info from the FuncInfo.ValueMap. 4166 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4167 N); 4168 return nullptr; 4169 } 4170 } else if (AI) 4171 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4172 true, 0, dl, SDNodeOrder); 4173 else { 4174 // Can't do anything with other non-AI cases yet. 4175 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4176 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4177 DEBUG(Address->dump()); 4178 return nullptr; 4179 } 4180 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4181 } else { 4182 // If Address is an argument then try to emit its dbg value using 4183 // virtual register info from the FuncInfo.ValueMap. 4184 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4185 N)) { 4186 // If variable is pinned by a alloca in dominating bb then 4187 // use StaticAllocaMap. 4188 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4189 if (AI->getParent() != DI.getParent()) { 4190 DenseMap<const AllocaInst*, int>::iterator SI = 4191 FuncInfo.StaticAllocaMap.find(AI); 4192 if (SI != FuncInfo.StaticAllocaMap.end()) { 4193 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4194 0, dl, SDNodeOrder); 4195 DAG.AddDbgValue(SDV, nullptr, false); 4196 return nullptr; 4197 } 4198 } 4199 } 4200 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4201 } 4202 } 4203 return nullptr; 4204 } 4205 case Intrinsic::dbg_value: { 4206 const DbgValueInst &DI = cast<DbgValueInst>(I); 4207 assert(DI.getVariable() && "Missing variable"); 4208 4209 DILocalVariable *Variable = DI.getVariable(); 4210 DIExpression *Expression = DI.getExpression(); 4211 uint64_t Offset = DI.getOffset(); 4212 const Value *V = DI.getValue(); 4213 if (!V) 4214 return nullptr; 4215 4216 SDDbgValue *SDV; 4217 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4218 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4219 SDNodeOrder); 4220 DAG.AddDbgValue(SDV, nullptr, false); 4221 } else { 4222 // Do not use getValue() in here; we don't want to generate code at 4223 // this point if it hasn't been done yet. 4224 SDValue N = NodeMap[V]; 4225 if (!N.getNode() && isa<Argument>(V)) 4226 // Check unused arguments map. 4227 N = UnusedArgNodeMap[V]; 4228 if (N.getNode()) { 4229 // A dbg.value for an alloca is always indirect. 4230 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4231 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4232 IsIndirect, N)) { 4233 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4234 IsIndirect, Offset, dl, SDNodeOrder); 4235 DAG.AddDbgValue(SDV, N.getNode(), false); 4236 } 4237 } else if (!V->use_empty() ) { 4238 // Do not call getValue(V) yet, as we don't want to generate code. 4239 // Remember it for later. 4240 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4241 DanglingDebugInfoMap[V] = DDI; 4242 } else { 4243 // We may expand this to cover more cases. One case where we have no 4244 // data available is an unreferenced parameter. 4245 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4246 } 4247 } 4248 4249 // Build a debug info table entry. 4250 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4251 V = BCI->getOperand(0); 4252 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4253 // Don't handle byval struct arguments or VLAs, for example. 4254 if (!AI) { 4255 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4256 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4257 return nullptr; 4258 } 4259 DenseMap<const AllocaInst*, int>::iterator SI = 4260 FuncInfo.StaticAllocaMap.find(AI); 4261 if (SI == FuncInfo.StaticAllocaMap.end()) 4262 return nullptr; // VLAs. 4263 return nullptr; 4264 } 4265 4266 case Intrinsic::eh_typeid_for: { 4267 // Find the type id for the given typeinfo. 4268 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4269 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4270 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4271 setValue(&I, Res); 4272 return nullptr; 4273 } 4274 4275 case Intrinsic::eh_return_i32: 4276 case Intrinsic::eh_return_i64: 4277 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4278 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4279 MVT::Other, 4280 getControlRoot(), 4281 getValue(I.getArgOperand(0)), 4282 getValue(I.getArgOperand(1)))); 4283 return nullptr; 4284 case Intrinsic::eh_unwind_init: 4285 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4286 return nullptr; 4287 case Intrinsic::eh_dwarf_cfa: { 4288 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4289 TLI.getPointerTy()); 4290 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4291 CfaArg.getValueType(), 4292 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4293 CfaArg.getValueType()), 4294 CfaArg); 4295 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4296 DAG.getConstant(0, sdl, TLI.getPointerTy())); 4297 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4298 FA, Offset)); 4299 return nullptr; 4300 } 4301 case Intrinsic::eh_sjlj_callsite: { 4302 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4303 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4304 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4305 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4306 4307 MMI.setCurrentCallSite(CI->getZExtValue()); 4308 return nullptr; 4309 } 4310 case Intrinsic::eh_sjlj_functioncontext: { 4311 // Get and store the index of the function context. 4312 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4313 AllocaInst *FnCtx = 4314 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4315 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4316 MFI->setFunctionContextIndex(FI); 4317 return nullptr; 4318 } 4319 case Intrinsic::eh_sjlj_setjmp: { 4320 SDValue Ops[2]; 4321 Ops[0] = getRoot(); 4322 Ops[1] = getValue(I.getArgOperand(0)); 4323 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4324 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4325 setValue(&I, Op.getValue(0)); 4326 DAG.setRoot(Op.getValue(1)); 4327 return nullptr; 4328 } 4329 case Intrinsic::eh_sjlj_longjmp: { 4330 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4331 getRoot(), getValue(I.getArgOperand(0)))); 4332 return nullptr; 4333 } 4334 4335 case Intrinsic::masked_gather: 4336 visitMaskedGather(I); 4337 return nullptr; 4338 case Intrinsic::masked_load: 4339 visitMaskedLoad(I); 4340 return nullptr; 4341 case Intrinsic::masked_scatter: 4342 visitMaskedScatter(I); 4343 return nullptr; 4344 case Intrinsic::masked_store: 4345 visitMaskedStore(I); 4346 return nullptr; 4347 case Intrinsic::x86_mmx_pslli_w: 4348 case Intrinsic::x86_mmx_pslli_d: 4349 case Intrinsic::x86_mmx_pslli_q: 4350 case Intrinsic::x86_mmx_psrli_w: 4351 case Intrinsic::x86_mmx_psrli_d: 4352 case Intrinsic::x86_mmx_psrli_q: 4353 case Intrinsic::x86_mmx_psrai_w: 4354 case Intrinsic::x86_mmx_psrai_d: { 4355 SDValue ShAmt = getValue(I.getArgOperand(1)); 4356 if (isa<ConstantSDNode>(ShAmt)) { 4357 visitTargetIntrinsic(I, Intrinsic); 4358 return nullptr; 4359 } 4360 unsigned NewIntrinsic = 0; 4361 EVT ShAmtVT = MVT::v2i32; 4362 switch (Intrinsic) { 4363 case Intrinsic::x86_mmx_pslli_w: 4364 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4365 break; 4366 case Intrinsic::x86_mmx_pslli_d: 4367 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4368 break; 4369 case Intrinsic::x86_mmx_pslli_q: 4370 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4371 break; 4372 case Intrinsic::x86_mmx_psrli_w: 4373 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4374 break; 4375 case Intrinsic::x86_mmx_psrli_d: 4376 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4377 break; 4378 case Intrinsic::x86_mmx_psrli_q: 4379 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4380 break; 4381 case Intrinsic::x86_mmx_psrai_w: 4382 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4383 break; 4384 case Intrinsic::x86_mmx_psrai_d: 4385 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4386 break; 4387 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4388 } 4389 4390 // The vector shift intrinsics with scalars uses 32b shift amounts but 4391 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4392 // to be zero. 4393 // We must do this early because v2i32 is not a legal type. 4394 SDValue ShOps[2]; 4395 ShOps[0] = ShAmt; 4396 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4397 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4398 EVT DestVT = TLI.getValueType(I.getType()); 4399 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4400 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4401 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4402 getValue(I.getArgOperand(0)), ShAmt); 4403 setValue(&I, Res); 4404 return nullptr; 4405 } 4406 case Intrinsic::convertff: 4407 case Intrinsic::convertfsi: 4408 case Intrinsic::convertfui: 4409 case Intrinsic::convertsif: 4410 case Intrinsic::convertuif: 4411 case Intrinsic::convertss: 4412 case Intrinsic::convertsu: 4413 case Intrinsic::convertus: 4414 case Intrinsic::convertuu: { 4415 ISD::CvtCode Code = ISD::CVT_INVALID; 4416 switch (Intrinsic) { 4417 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4418 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4419 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4420 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4421 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4422 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4423 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4424 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4425 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4426 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4427 } 4428 EVT DestVT = TLI.getValueType(I.getType()); 4429 const Value *Op1 = I.getArgOperand(0); 4430 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4431 DAG.getValueType(DestVT), 4432 DAG.getValueType(getValue(Op1).getValueType()), 4433 getValue(I.getArgOperand(1)), 4434 getValue(I.getArgOperand(2)), 4435 Code); 4436 setValue(&I, Res); 4437 return nullptr; 4438 } 4439 case Intrinsic::powi: 4440 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4441 getValue(I.getArgOperand(1)), DAG)); 4442 return nullptr; 4443 case Intrinsic::log: 4444 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4445 return nullptr; 4446 case Intrinsic::log2: 4447 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4448 return nullptr; 4449 case Intrinsic::log10: 4450 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4451 return nullptr; 4452 case Intrinsic::exp: 4453 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4454 return nullptr; 4455 case Intrinsic::exp2: 4456 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4457 return nullptr; 4458 case Intrinsic::pow: 4459 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4460 getValue(I.getArgOperand(1)), DAG, TLI)); 4461 return nullptr; 4462 case Intrinsic::sqrt: 4463 case Intrinsic::fabs: 4464 case Intrinsic::sin: 4465 case Intrinsic::cos: 4466 case Intrinsic::floor: 4467 case Intrinsic::ceil: 4468 case Intrinsic::trunc: 4469 case Intrinsic::rint: 4470 case Intrinsic::nearbyint: 4471 case Intrinsic::round: { 4472 unsigned Opcode; 4473 switch (Intrinsic) { 4474 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4475 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4476 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4477 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4478 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4479 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4480 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4481 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4482 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4483 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4484 case Intrinsic::round: Opcode = ISD::FROUND; break; 4485 } 4486 4487 setValue(&I, DAG.getNode(Opcode, sdl, 4488 getValue(I.getArgOperand(0)).getValueType(), 4489 getValue(I.getArgOperand(0)))); 4490 return nullptr; 4491 } 4492 case Intrinsic::minnum: 4493 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4494 getValue(I.getArgOperand(0)).getValueType(), 4495 getValue(I.getArgOperand(0)), 4496 getValue(I.getArgOperand(1)))); 4497 return nullptr; 4498 case Intrinsic::maxnum: 4499 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4500 getValue(I.getArgOperand(0)).getValueType(), 4501 getValue(I.getArgOperand(0)), 4502 getValue(I.getArgOperand(1)))); 4503 return nullptr; 4504 case Intrinsic::copysign: 4505 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4506 getValue(I.getArgOperand(0)).getValueType(), 4507 getValue(I.getArgOperand(0)), 4508 getValue(I.getArgOperand(1)))); 4509 return nullptr; 4510 case Intrinsic::fma: 4511 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4512 getValue(I.getArgOperand(0)).getValueType(), 4513 getValue(I.getArgOperand(0)), 4514 getValue(I.getArgOperand(1)), 4515 getValue(I.getArgOperand(2)))); 4516 return nullptr; 4517 case Intrinsic::fmuladd: { 4518 EVT VT = TLI.getValueType(I.getType()); 4519 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4520 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4521 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4522 getValue(I.getArgOperand(0)).getValueType(), 4523 getValue(I.getArgOperand(0)), 4524 getValue(I.getArgOperand(1)), 4525 getValue(I.getArgOperand(2)))); 4526 } else { 4527 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4528 getValue(I.getArgOperand(0)).getValueType(), 4529 getValue(I.getArgOperand(0)), 4530 getValue(I.getArgOperand(1))); 4531 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4532 getValue(I.getArgOperand(0)).getValueType(), 4533 Mul, 4534 getValue(I.getArgOperand(2))); 4535 setValue(&I, Add); 4536 } 4537 return nullptr; 4538 } 4539 case Intrinsic::convert_to_fp16: 4540 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4541 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4542 getValue(I.getArgOperand(0)), 4543 DAG.getTargetConstant(0, sdl, 4544 MVT::i32)))); 4545 return nullptr; 4546 case Intrinsic::convert_from_fp16: 4547 setValue(&I, 4548 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4549 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4550 getValue(I.getArgOperand(0))))); 4551 return nullptr; 4552 case Intrinsic::pcmarker: { 4553 SDValue Tmp = getValue(I.getArgOperand(0)); 4554 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4555 return nullptr; 4556 } 4557 case Intrinsic::readcyclecounter: { 4558 SDValue Op = getRoot(); 4559 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4560 DAG.getVTList(MVT::i64, MVT::Other), Op); 4561 setValue(&I, Res); 4562 DAG.setRoot(Res.getValue(1)); 4563 return nullptr; 4564 } 4565 case Intrinsic::bswap: 4566 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4567 getValue(I.getArgOperand(0)).getValueType(), 4568 getValue(I.getArgOperand(0)))); 4569 return nullptr; 4570 case Intrinsic::cttz: { 4571 SDValue Arg = getValue(I.getArgOperand(0)); 4572 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4573 EVT Ty = Arg.getValueType(); 4574 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4575 sdl, Ty, Arg)); 4576 return nullptr; 4577 } 4578 case Intrinsic::ctlz: { 4579 SDValue Arg = getValue(I.getArgOperand(0)); 4580 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4581 EVT Ty = Arg.getValueType(); 4582 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4583 sdl, Ty, Arg)); 4584 return nullptr; 4585 } 4586 case Intrinsic::ctpop: { 4587 SDValue Arg = getValue(I.getArgOperand(0)); 4588 EVT Ty = Arg.getValueType(); 4589 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4590 return nullptr; 4591 } 4592 case Intrinsic::stacksave: { 4593 SDValue Op = getRoot(); 4594 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4595 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4596 setValue(&I, Res); 4597 DAG.setRoot(Res.getValue(1)); 4598 return nullptr; 4599 } 4600 case Intrinsic::stackrestore: { 4601 Res = getValue(I.getArgOperand(0)); 4602 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4603 return nullptr; 4604 } 4605 case Intrinsic::stackprotector: { 4606 // Emit code into the DAG to store the stack guard onto the stack. 4607 MachineFunction &MF = DAG.getMachineFunction(); 4608 MachineFrameInfo *MFI = MF.getFrameInfo(); 4609 EVT PtrTy = TLI.getPointerTy(); 4610 SDValue Src, Chain = getRoot(); 4611 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4612 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4613 4614 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4615 // global variable __stack_chk_guard. 4616 if (!GV) 4617 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4618 if (BC->getOpcode() == Instruction::BitCast) 4619 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4620 4621 if (GV && TLI.useLoadStackGuardNode()) { 4622 // Emit a LOAD_STACK_GUARD node. 4623 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4624 sdl, PtrTy, Chain); 4625 MachinePointerInfo MPInfo(GV); 4626 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4627 unsigned Flags = MachineMemOperand::MOLoad | 4628 MachineMemOperand::MOInvariant; 4629 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4630 PtrTy.getSizeInBits() / 8, 4631 DAG.getEVTAlignment(PtrTy)); 4632 Node->setMemRefs(MemRefs, MemRefs + 1); 4633 4634 // Copy the guard value to a virtual register so that it can be 4635 // retrieved in the epilogue. 4636 Src = SDValue(Node, 0); 4637 const TargetRegisterClass *RC = 4638 TLI.getRegClassFor(Src.getSimpleValueType()); 4639 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4640 4641 SPDescriptor.setGuardReg(Reg); 4642 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4643 } else { 4644 Src = getValue(I.getArgOperand(0)); // The guard's value. 4645 } 4646 4647 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4648 4649 int FI = FuncInfo.StaticAllocaMap[Slot]; 4650 MFI->setStackProtectorIndex(FI); 4651 4652 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4653 4654 // Store the stack protector onto the stack. 4655 Res = DAG.getStore(Chain, sdl, Src, FIN, 4656 MachinePointerInfo::getFixedStack(FI), 4657 true, false, 0); 4658 setValue(&I, Res); 4659 DAG.setRoot(Res); 4660 return nullptr; 4661 } 4662 case Intrinsic::objectsize: { 4663 // If we don't know by now, we're never going to know. 4664 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4665 4666 assert(CI && "Non-constant type in __builtin_object_size?"); 4667 4668 SDValue Arg = getValue(I.getCalledValue()); 4669 EVT Ty = Arg.getValueType(); 4670 4671 if (CI->isZero()) 4672 Res = DAG.getConstant(-1ULL, sdl, Ty); 4673 else 4674 Res = DAG.getConstant(0, sdl, Ty); 4675 4676 setValue(&I, Res); 4677 return nullptr; 4678 } 4679 case Intrinsic::annotation: 4680 case Intrinsic::ptr_annotation: 4681 // Drop the intrinsic, but forward the value 4682 setValue(&I, getValue(I.getOperand(0))); 4683 return nullptr; 4684 case Intrinsic::assume: 4685 case Intrinsic::var_annotation: 4686 // Discard annotate attributes and assumptions 4687 return nullptr; 4688 4689 case Intrinsic::init_trampoline: { 4690 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4691 4692 SDValue Ops[6]; 4693 Ops[0] = getRoot(); 4694 Ops[1] = getValue(I.getArgOperand(0)); 4695 Ops[2] = getValue(I.getArgOperand(1)); 4696 Ops[3] = getValue(I.getArgOperand(2)); 4697 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4698 Ops[5] = DAG.getSrcValue(F); 4699 4700 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4701 4702 DAG.setRoot(Res); 4703 return nullptr; 4704 } 4705 case Intrinsic::adjust_trampoline: { 4706 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4707 TLI.getPointerTy(), 4708 getValue(I.getArgOperand(0)))); 4709 return nullptr; 4710 } 4711 case Intrinsic::gcroot: 4712 if (GFI) { 4713 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4714 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4715 4716 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4717 GFI->addStackRoot(FI->getIndex(), TypeMap); 4718 } 4719 return nullptr; 4720 case Intrinsic::gcread: 4721 case Intrinsic::gcwrite: 4722 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4723 case Intrinsic::flt_rounds: 4724 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4725 return nullptr; 4726 4727 case Intrinsic::expect: { 4728 // Just replace __builtin_expect(exp, c) with EXP. 4729 setValue(&I, getValue(I.getArgOperand(0))); 4730 return nullptr; 4731 } 4732 4733 case Intrinsic::debugtrap: 4734 case Intrinsic::trap: { 4735 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4736 if (TrapFuncName.empty()) { 4737 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4738 ISD::TRAP : ISD::DEBUGTRAP; 4739 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4740 return nullptr; 4741 } 4742 TargetLowering::ArgListTy Args; 4743 4744 TargetLowering::CallLoweringInfo CLI(DAG); 4745 CLI.setDebugLoc(sdl).setChain(getRoot()) 4746 .setCallee(CallingConv::C, I.getType(), 4747 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4748 std::move(Args), 0); 4749 4750 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4751 DAG.setRoot(Result.second); 4752 return nullptr; 4753 } 4754 4755 case Intrinsic::uadd_with_overflow: 4756 case Intrinsic::sadd_with_overflow: 4757 case Intrinsic::usub_with_overflow: 4758 case Intrinsic::ssub_with_overflow: 4759 case Intrinsic::umul_with_overflow: 4760 case Intrinsic::smul_with_overflow: { 4761 ISD::NodeType Op; 4762 switch (Intrinsic) { 4763 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4764 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4765 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4766 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4767 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4768 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4769 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4770 } 4771 SDValue Op1 = getValue(I.getArgOperand(0)); 4772 SDValue Op2 = getValue(I.getArgOperand(1)); 4773 4774 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4775 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4776 return nullptr; 4777 } 4778 case Intrinsic::prefetch: { 4779 SDValue Ops[5]; 4780 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4781 Ops[0] = getRoot(); 4782 Ops[1] = getValue(I.getArgOperand(0)); 4783 Ops[2] = getValue(I.getArgOperand(1)); 4784 Ops[3] = getValue(I.getArgOperand(2)); 4785 Ops[4] = getValue(I.getArgOperand(3)); 4786 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4787 DAG.getVTList(MVT::Other), Ops, 4788 EVT::getIntegerVT(*Context, 8), 4789 MachinePointerInfo(I.getArgOperand(0)), 4790 0, /* align */ 4791 false, /* volatile */ 4792 rw==0, /* read */ 4793 rw==1)); /* write */ 4794 return nullptr; 4795 } 4796 case Intrinsic::lifetime_start: 4797 case Intrinsic::lifetime_end: { 4798 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4799 // Stack coloring is not enabled in O0, discard region information. 4800 if (TM.getOptLevel() == CodeGenOpt::None) 4801 return nullptr; 4802 4803 SmallVector<Value *, 4> Allocas; 4804 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4805 4806 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4807 E = Allocas.end(); Object != E; ++Object) { 4808 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4809 4810 // Could not find an Alloca. 4811 if (!LifetimeObject) 4812 continue; 4813 4814 // First check that the Alloca is static, otherwise it won't have a 4815 // valid frame index. 4816 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4817 if (SI == FuncInfo.StaticAllocaMap.end()) 4818 return nullptr; 4819 4820 int FI = SI->second; 4821 4822 SDValue Ops[2]; 4823 Ops[0] = getRoot(); 4824 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4825 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4826 4827 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4828 DAG.setRoot(Res); 4829 } 4830 return nullptr; 4831 } 4832 case Intrinsic::invariant_start: 4833 // Discard region information. 4834 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4835 return nullptr; 4836 case Intrinsic::invariant_end: 4837 // Discard region information. 4838 return nullptr; 4839 case Intrinsic::stackprotectorcheck: { 4840 // Do not actually emit anything for this basic block. Instead we initialize 4841 // the stack protector descriptor and export the guard variable so we can 4842 // access it in FinishBasicBlock. 4843 const BasicBlock *BB = I.getParent(); 4844 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4845 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4846 4847 // Flush our exports since we are going to process a terminator. 4848 (void)getControlRoot(); 4849 return nullptr; 4850 } 4851 case Intrinsic::clear_cache: 4852 return TLI.getClearCacheBuiltinName(); 4853 case Intrinsic::eh_actions: 4854 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4855 return nullptr; 4856 case Intrinsic::donothing: 4857 // ignore 4858 return nullptr; 4859 case Intrinsic::experimental_stackmap: { 4860 visitStackmap(I); 4861 return nullptr; 4862 } 4863 case Intrinsic::experimental_patchpoint_void: 4864 case Intrinsic::experimental_patchpoint_i64: { 4865 visitPatchpoint(&I); 4866 return nullptr; 4867 } 4868 case Intrinsic::experimental_gc_statepoint: { 4869 visitStatepoint(I); 4870 return nullptr; 4871 } 4872 case Intrinsic::experimental_gc_result_int: 4873 case Intrinsic::experimental_gc_result_float: 4874 case Intrinsic::experimental_gc_result_ptr: 4875 case Intrinsic::experimental_gc_result: { 4876 visitGCResult(I); 4877 return nullptr; 4878 } 4879 case Intrinsic::experimental_gc_relocate: { 4880 visitGCRelocate(I); 4881 return nullptr; 4882 } 4883 case Intrinsic::instrprof_increment: 4884 llvm_unreachable("instrprof failed to lower an increment"); 4885 4886 case Intrinsic::frameescape: { 4887 MachineFunction &MF = DAG.getMachineFunction(); 4888 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4889 4890 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4891 // is the same on all targets. 4892 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4893 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4894 if (isa<ConstantPointerNull>(Arg)) 4895 continue; // Skip null pointers. They represent a hole in index space. 4896 AllocaInst *Slot = cast<AllocaInst>(Arg); 4897 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4898 "can only escape static allocas"); 4899 int FI = FuncInfo.StaticAllocaMap[Slot]; 4900 MCSymbol *FrameAllocSym = 4901 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4902 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4903 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4904 TII->get(TargetOpcode::FRAME_ALLOC)) 4905 .addSym(FrameAllocSym) 4906 .addFrameIndex(FI); 4907 } 4908 4909 return nullptr; 4910 } 4911 4912 case Intrinsic::framerecover: { 4913 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4914 MachineFunction &MF = DAG.getMachineFunction(); 4915 MVT PtrVT = TLI.getPointerTy(0); 4916 4917 // Get the symbol that defines the frame offset. 4918 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4919 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4920 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4921 MCSymbol *FrameAllocSym = 4922 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4923 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4924 4925 // Create a TargetExternalSymbol for the label to avoid any target lowering 4926 // that would make this PC relative. 4927 StringRef Name = FrameAllocSym->getName(); 4928 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 4929 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 4930 SDValue OffsetVal = 4931 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4932 4933 // Add the offset to the FP. 4934 Value *FP = I.getArgOperand(1); 4935 SDValue FPVal = getValue(FP); 4936 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4937 setValue(&I, Add); 4938 4939 return nullptr; 4940 } 4941 case Intrinsic::eh_begincatch: 4942 case Intrinsic::eh_endcatch: 4943 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4944 case Intrinsic::eh_exceptioncode: { 4945 unsigned Reg = TLI.getExceptionPointerRegister(); 4946 assert(Reg && "cannot get exception code on this platform"); 4947 MVT PtrVT = TLI.getPointerTy(); 4948 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 4949 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 4950 SDValue N = 4951 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 4952 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 4953 setValue(&I, N); 4954 return nullptr; 4955 } 4956 } 4957 } 4958 4959 std::pair<SDValue, SDValue> 4960 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 4961 MachineBasicBlock *LandingPad) { 4962 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4963 MCSymbol *BeginLabel = nullptr; 4964 4965 if (LandingPad) { 4966 // Insert a label before the invoke call to mark the try range. This can be 4967 // used to detect deletion of the invoke via the MachineModuleInfo. 4968 BeginLabel = MMI.getContext().CreateTempSymbol(); 4969 4970 // For SjLj, keep track of which landing pads go with which invokes 4971 // so as to maintain the ordering of pads in the LSDA. 4972 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4973 if (CallSiteIndex) { 4974 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4975 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 4976 4977 // Now that the call site is handled, stop tracking it. 4978 MMI.setCurrentCallSite(0); 4979 } 4980 4981 // Both PendingLoads and PendingExports must be flushed here; 4982 // this call might not return. 4983 (void)getRoot(); 4984 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 4985 4986 CLI.setChain(getRoot()); 4987 } 4988 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4989 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4990 4991 assert((CLI.IsTailCall || Result.second.getNode()) && 4992 "Non-null chain expected with non-tail call!"); 4993 assert((Result.second.getNode() || !Result.first.getNode()) && 4994 "Null value expected with tail call!"); 4995 4996 if (!Result.second.getNode()) { 4997 // As a special case, a null chain means that a tail call has been emitted 4998 // and the DAG root is already updated. 4999 HasTailCall = true; 5000 5001 // Since there's no actual continuation from this block, nothing can be 5002 // relying on us setting vregs for them. 5003 PendingExports.clear(); 5004 } else { 5005 DAG.setRoot(Result.second); 5006 } 5007 5008 if (LandingPad) { 5009 // Insert a label at the end of the invoke call to mark the try range. This 5010 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5011 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5012 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5013 5014 // Inform MachineModuleInfo of range. 5015 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5016 } 5017 5018 return Result; 5019 } 5020 5021 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5022 bool isTailCall, 5023 MachineBasicBlock *LandingPad) { 5024 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5025 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5026 Type *RetTy = FTy->getReturnType(); 5027 5028 TargetLowering::ArgListTy Args; 5029 TargetLowering::ArgListEntry Entry; 5030 Args.reserve(CS.arg_size()); 5031 5032 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5033 i != e; ++i) { 5034 const Value *V = *i; 5035 5036 // Skip empty types 5037 if (V->getType()->isEmptyTy()) 5038 continue; 5039 5040 SDValue ArgNode = getValue(V); 5041 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5042 5043 // Skip the first return-type Attribute to get to params. 5044 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5045 Args.push_back(Entry); 5046 5047 // If we have an explicit sret argument that is an Instruction, (i.e., it 5048 // might point to function-local memory), we can't meaningfully tail-call. 5049 if (Entry.isSRet && isa<Instruction>(V)) 5050 isTailCall = false; 5051 } 5052 5053 // Check if target-independent constraints permit a tail call here. 5054 // Target-dependent constraints are checked within TLI->LowerCallTo. 5055 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5056 isTailCall = false; 5057 5058 TargetLowering::CallLoweringInfo CLI(DAG); 5059 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5060 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5061 .setTailCall(isTailCall); 5062 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5063 5064 if (Result.first.getNode()) 5065 setValue(CS.getInstruction(), Result.first); 5066 } 5067 5068 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5069 /// value is equal or not-equal to zero. 5070 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5071 for (const User *U : V->users()) { 5072 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5073 if (IC->isEquality()) 5074 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5075 if (C->isNullValue()) 5076 continue; 5077 // Unknown instruction. 5078 return false; 5079 } 5080 return true; 5081 } 5082 5083 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5084 Type *LoadTy, 5085 SelectionDAGBuilder &Builder) { 5086 5087 // Check to see if this load can be trivially constant folded, e.g. if the 5088 // input is from a string literal. 5089 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5090 // Cast pointer to the type we really want to load. 5091 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5092 PointerType::getUnqual(LoadTy)); 5093 5094 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5095 const_cast<Constant *>(LoadInput), *Builder.DL)) 5096 return Builder.getValue(LoadCst); 5097 } 5098 5099 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5100 // still constant memory, the input chain can be the entry node. 5101 SDValue Root; 5102 bool ConstantMemory = false; 5103 5104 // Do not serialize (non-volatile) loads of constant memory with anything. 5105 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5106 Root = Builder.DAG.getEntryNode(); 5107 ConstantMemory = true; 5108 } else { 5109 // Do not serialize non-volatile loads against each other. 5110 Root = Builder.DAG.getRoot(); 5111 } 5112 5113 SDValue Ptr = Builder.getValue(PtrVal); 5114 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5115 Ptr, MachinePointerInfo(PtrVal), 5116 false /*volatile*/, 5117 false /*nontemporal*/, 5118 false /*isinvariant*/, 1 /* align=1 */); 5119 5120 if (!ConstantMemory) 5121 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5122 return LoadVal; 5123 } 5124 5125 /// processIntegerCallValue - Record the value for an instruction that 5126 /// produces an integer result, converting the type where necessary. 5127 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5128 SDValue Value, 5129 bool IsSigned) { 5130 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5131 if (IsSigned) 5132 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5133 else 5134 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5135 setValue(&I, Value); 5136 } 5137 5138 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5139 /// If so, return true and lower it, otherwise return false and it will be 5140 /// lowered like a normal call. 5141 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5142 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5143 if (I.getNumArgOperands() != 3) 5144 return false; 5145 5146 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5147 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5148 !I.getArgOperand(2)->getType()->isIntegerTy() || 5149 !I.getType()->isIntegerTy()) 5150 return false; 5151 5152 const Value *Size = I.getArgOperand(2); 5153 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5154 if (CSize && CSize->getZExtValue() == 0) { 5155 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5156 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5157 return true; 5158 } 5159 5160 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5161 std::pair<SDValue, SDValue> Res = 5162 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5163 getValue(LHS), getValue(RHS), getValue(Size), 5164 MachinePointerInfo(LHS), 5165 MachinePointerInfo(RHS)); 5166 if (Res.first.getNode()) { 5167 processIntegerCallValue(I, Res.first, true); 5168 PendingLoads.push_back(Res.second); 5169 return true; 5170 } 5171 5172 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5173 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5174 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5175 bool ActuallyDoIt = true; 5176 MVT LoadVT; 5177 Type *LoadTy; 5178 switch (CSize->getZExtValue()) { 5179 default: 5180 LoadVT = MVT::Other; 5181 LoadTy = nullptr; 5182 ActuallyDoIt = false; 5183 break; 5184 case 2: 5185 LoadVT = MVT::i16; 5186 LoadTy = Type::getInt16Ty(CSize->getContext()); 5187 break; 5188 case 4: 5189 LoadVT = MVT::i32; 5190 LoadTy = Type::getInt32Ty(CSize->getContext()); 5191 break; 5192 case 8: 5193 LoadVT = MVT::i64; 5194 LoadTy = Type::getInt64Ty(CSize->getContext()); 5195 break; 5196 /* 5197 case 16: 5198 LoadVT = MVT::v4i32; 5199 LoadTy = Type::getInt32Ty(CSize->getContext()); 5200 LoadTy = VectorType::get(LoadTy, 4); 5201 break; 5202 */ 5203 } 5204 5205 // This turns into unaligned loads. We only do this if the target natively 5206 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5207 // we'll only produce a small number of byte loads. 5208 5209 // Require that we can find a legal MVT, and only do this if the target 5210 // supports unaligned loads of that type. Expanding into byte loads would 5211 // bloat the code. 5212 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5213 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5214 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5215 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5216 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5217 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5218 // TODO: Check alignment of src and dest ptrs. 5219 if (!TLI.isTypeLegal(LoadVT) || 5220 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5221 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5222 ActuallyDoIt = false; 5223 } 5224 5225 if (ActuallyDoIt) { 5226 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5227 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5228 5229 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5230 ISD::SETNE); 5231 processIntegerCallValue(I, Res, false); 5232 return true; 5233 } 5234 } 5235 5236 5237 return false; 5238 } 5239 5240 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5241 /// form. If so, return true and lower it, otherwise return false and it 5242 /// will be lowered like a normal call. 5243 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5244 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5245 if (I.getNumArgOperands() != 3) 5246 return false; 5247 5248 const Value *Src = I.getArgOperand(0); 5249 const Value *Char = I.getArgOperand(1); 5250 const Value *Length = I.getArgOperand(2); 5251 if (!Src->getType()->isPointerTy() || 5252 !Char->getType()->isIntegerTy() || 5253 !Length->getType()->isIntegerTy() || 5254 !I.getType()->isPointerTy()) 5255 return false; 5256 5257 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5258 std::pair<SDValue, SDValue> Res = 5259 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5260 getValue(Src), getValue(Char), getValue(Length), 5261 MachinePointerInfo(Src)); 5262 if (Res.first.getNode()) { 5263 setValue(&I, Res.first); 5264 PendingLoads.push_back(Res.second); 5265 return true; 5266 } 5267 5268 return false; 5269 } 5270 5271 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5272 /// optimized form. If so, return true and lower it, otherwise return false 5273 /// and it will be lowered like a normal call. 5274 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5275 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5276 if (I.getNumArgOperands() != 2) 5277 return false; 5278 5279 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5280 if (!Arg0->getType()->isPointerTy() || 5281 !Arg1->getType()->isPointerTy() || 5282 !I.getType()->isPointerTy()) 5283 return false; 5284 5285 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5286 std::pair<SDValue, SDValue> Res = 5287 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5288 getValue(Arg0), getValue(Arg1), 5289 MachinePointerInfo(Arg0), 5290 MachinePointerInfo(Arg1), isStpcpy); 5291 if (Res.first.getNode()) { 5292 setValue(&I, Res.first); 5293 DAG.setRoot(Res.second); 5294 return true; 5295 } 5296 5297 return false; 5298 } 5299 5300 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5301 /// If so, return true and lower it, otherwise return false and it will be 5302 /// lowered like a normal call. 5303 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5304 // Verify that the prototype makes sense. int strcmp(void*,void*) 5305 if (I.getNumArgOperands() != 2) 5306 return false; 5307 5308 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5309 if (!Arg0->getType()->isPointerTy() || 5310 !Arg1->getType()->isPointerTy() || 5311 !I.getType()->isIntegerTy()) 5312 return false; 5313 5314 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5315 std::pair<SDValue, SDValue> Res = 5316 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5317 getValue(Arg0), getValue(Arg1), 5318 MachinePointerInfo(Arg0), 5319 MachinePointerInfo(Arg1)); 5320 if (Res.first.getNode()) { 5321 processIntegerCallValue(I, Res.first, true); 5322 PendingLoads.push_back(Res.second); 5323 return true; 5324 } 5325 5326 return false; 5327 } 5328 5329 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5330 /// form. If so, return true and lower it, otherwise return false and it 5331 /// will be lowered like a normal call. 5332 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5333 // Verify that the prototype makes sense. size_t strlen(char *) 5334 if (I.getNumArgOperands() != 1) 5335 return false; 5336 5337 const Value *Arg0 = I.getArgOperand(0); 5338 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5339 return false; 5340 5341 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5342 std::pair<SDValue, SDValue> Res = 5343 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5344 getValue(Arg0), MachinePointerInfo(Arg0)); 5345 if (Res.first.getNode()) { 5346 processIntegerCallValue(I, Res.first, false); 5347 PendingLoads.push_back(Res.second); 5348 return true; 5349 } 5350 5351 return false; 5352 } 5353 5354 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5355 /// form. If so, return true and lower it, otherwise return false and it 5356 /// will be lowered like a normal call. 5357 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5358 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5359 if (I.getNumArgOperands() != 2) 5360 return false; 5361 5362 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5363 if (!Arg0->getType()->isPointerTy() || 5364 !Arg1->getType()->isIntegerTy() || 5365 !I.getType()->isIntegerTy()) 5366 return false; 5367 5368 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5369 std::pair<SDValue, SDValue> Res = 5370 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5371 getValue(Arg0), getValue(Arg1), 5372 MachinePointerInfo(Arg0)); 5373 if (Res.first.getNode()) { 5374 processIntegerCallValue(I, Res.first, false); 5375 PendingLoads.push_back(Res.second); 5376 return true; 5377 } 5378 5379 return false; 5380 } 5381 5382 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5383 /// operation (as expected), translate it to an SDNode with the specified opcode 5384 /// and return true. 5385 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5386 unsigned Opcode) { 5387 // Sanity check that it really is a unary floating-point call. 5388 if (I.getNumArgOperands() != 1 || 5389 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5390 I.getType() != I.getArgOperand(0)->getType() || 5391 !I.onlyReadsMemory()) 5392 return false; 5393 5394 SDValue Tmp = getValue(I.getArgOperand(0)); 5395 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5396 return true; 5397 } 5398 5399 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5400 /// operation (as expected), translate it to an SDNode with the specified opcode 5401 /// and return true. 5402 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5403 unsigned Opcode) { 5404 // Sanity check that it really is a binary floating-point call. 5405 if (I.getNumArgOperands() != 2 || 5406 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5407 I.getType() != I.getArgOperand(0)->getType() || 5408 I.getType() != I.getArgOperand(1)->getType() || 5409 !I.onlyReadsMemory()) 5410 return false; 5411 5412 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5413 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5414 EVT VT = Tmp0.getValueType(); 5415 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5416 return true; 5417 } 5418 5419 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5420 // Handle inline assembly differently. 5421 if (isa<InlineAsm>(I.getCalledValue())) { 5422 visitInlineAsm(&I); 5423 return; 5424 } 5425 5426 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5427 ComputeUsesVAFloatArgument(I, &MMI); 5428 5429 const char *RenameFn = nullptr; 5430 if (Function *F = I.getCalledFunction()) { 5431 if (F->isDeclaration()) { 5432 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5433 if (unsigned IID = II->getIntrinsicID(F)) { 5434 RenameFn = visitIntrinsicCall(I, IID); 5435 if (!RenameFn) 5436 return; 5437 } 5438 } 5439 if (unsigned IID = F->getIntrinsicID()) { 5440 RenameFn = visitIntrinsicCall(I, IID); 5441 if (!RenameFn) 5442 return; 5443 } 5444 } 5445 5446 // Check for well-known libc/libm calls. If the function is internal, it 5447 // can't be a library call. 5448 LibFunc::Func Func; 5449 if (!F->hasLocalLinkage() && F->hasName() && 5450 LibInfo->getLibFunc(F->getName(), Func) && 5451 LibInfo->hasOptimizedCodeGen(Func)) { 5452 switch (Func) { 5453 default: break; 5454 case LibFunc::copysign: 5455 case LibFunc::copysignf: 5456 case LibFunc::copysignl: 5457 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5458 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5459 I.getType() == I.getArgOperand(0)->getType() && 5460 I.getType() == I.getArgOperand(1)->getType() && 5461 I.onlyReadsMemory()) { 5462 SDValue LHS = getValue(I.getArgOperand(0)); 5463 SDValue RHS = getValue(I.getArgOperand(1)); 5464 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5465 LHS.getValueType(), LHS, RHS)); 5466 return; 5467 } 5468 break; 5469 case LibFunc::fabs: 5470 case LibFunc::fabsf: 5471 case LibFunc::fabsl: 5472 if (visitUnaryFloatCall(I, ISD::FABS)) 5473 return; 5474 break; 5475 case LibFunc::fmin: 5476 case LibFunc::fminf: 5477 case LibFunc::fminl: 5478 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5479 return; 5480 break; 5481 case LibFunc::fmax: 5482 case LibFunc::fmaxf: 5483 case LibFunc::fmaxl: 5484 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5485 return; 5486 break; 5487 case LibFunc::sin: 5488 case LibFunc::sinf: 5489 case LibFunc::sinl: 5490 if (visitUnaryFloatCall(I, ISD::FSIN)) 5491 return; 5492 break; 5493 case LibFunc::cos: 5494 case LibFunc::cosf: 5495 case LibFunc::cosl: 5496 if (visitUnaryFloatCall(I, ISD::FCOS)) 5497 return; 5498 break; 5499 case LibFunc::sqrt: 5500 case LibFunc::sqrtf: 5501 case LibFunc::sqrtl: 5502 case LibFunc::sqrt_finite: 5503 case LibFunc::sqrtf_finite: 5504 case LibFunc::sqrtl_finite: 5505 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5506 return; 5507 break; 5508 case LibFunc::floor: 5509 case LibFunc::floorf: 5510 case LibFunc::floorl: 5511 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5512 return; 5513 break; 5514 case LibFunc::nearbyint: 5515 case LibFunc::nearbyintf: 5516 case LibFunc::nearbyintl: 5517 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5518 return; 5519 break; 5520 case LibFunc::ceil: 5521 case LibFunc::ceilf: 5522 case LibFunc::ceill: 5523 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5524 return; 5525 break; 5526 case LibFunc::rint: 5527 case LibFunc::rintf: 5528 case LibFunc::rintl: 5529 if (visitUnaryFloatCall(I, ISD::FRINT)) 5530 return; 5531 break; 5532 case LibFunc::round: 5533 case LibFunc::roundf: 5534 case LibFunc::roundl: 5535 if (visitUnaryFloatCall(I, ISD::FROUND)) 5536 return; 5537 break; 5538 case LibFunc::trunc: 5539 case LibFunc::truncf: 5540 case LibFunc::truncl: 5541 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5542 return; 5543 break; 5544 case LibFunc::log2: 5545 case LibFunc::log2f: 5546 case LibFunc::log2l: 5547 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5548 return; 5549 break; 5550 case LibFunc::exp2: 5551 case LibFunc::exp2f: 5552 case LibFunc::exp2l: 5553 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5554 return; 5555 break; 5556 case LibFunc::memcmp: 5557 if (visitMemCmpCall(I)) 5558 return; 5559 break; 5560 case LibFunc::memchr: 5561 if (visitMemChrCall(I)) 5562 return; 5563 break; 5564 case LibFunc::strcpy: 5565 if (visitStrCpyCall(I, false)) 5566 return; 5567 break; 5568 case LibFunc::stpcpy: 5569 if (visitStrCpyCall(I, true)) 5570 return; 5571 break; 5572 case LibFunc::strcmp: 5573 if (visitStrCmpCall(I)) 5574 return; 5575 break; 5576 case LibFunc::strlen: 5577 if (visitStrLenCall(I)) 5578 return; 5579 break; 5580 case LibFunc::strnlen: 5581 if (visitStrNLenCall(I)) 5582 return; 5583 break; 5584 } 5585 } 5586 } 5587 5588 SDValue Callee; 5589 if (!RenameFn) 5590 Callee = getValue(I.getCalledValue()); 5591 else 5592 Callee = DAG.getExternalSymbol(RenameFn, 5593 DAG.getTargetLoweringInfo().getPointerTy()); 5594 5595 // Check if we can potentially perform a tail call. More detailed checking is 5596 // be done within LowerCallTo, after more information about the call is known. 5597 LowerCallTo(&I, Callee, I.isTailCall()); 5598 } 5599 5600 namespace { 5601 5602 /// AsmOperandInfo - This contains information for each constraint that we are 5603 /// lowering. 5604 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5605 public: 5606 /// CallOperand - If this is the result output operand or a clobber 5607 /// this is null, otherwise it is the incoming operand to the CallInst. 5608 /// This gets modified as the asm is processed. 5609 SDValue CallOperand; 5610 5611 /// AssignedRegs - If this is a register or register class operand, this 5612 /// contains the set of register corresponding to the operand. 5613 RegsForValue AssignedRegs; 5614 5615 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5616 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5617 } 5618 5619 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5620 /// corresponds to. If there is no Value* for this operand, it returns 5621 /// MVT::Other. 5622 EVT getCallOperandValEVT(LLVMContext &Context, 5623 const TargetLowering &TLI, 5624 const DataLayout *DL) const { 5625 if (!CallOperandVal) return MVT::Other; 5626 5627 if (isa<BasicBlock>(CallOperandVal)) 5628 return TLI.getPointerTy(); 5629 5630 llvm::Type *OpTy = CallOperandVal->getType(); 5631 5632 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5633 // If this is an indirect operand, the operand is a pointer to the 5634 // accessed type. 5635 if (isIndirect) { 5636 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5637 if (!PtrTy) 5638 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5639 OpTy = PtrTy->getElementType(); 5640 } 5641 5642 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5643 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5644 if (STy->getNumElements() == 1) 5645 OpTy = STy->getElementType(0); 5646 5647 // If OpTy is not a single value, it may be a struct/union that we 5648 // can tile with integers. 5649 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5650 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5651 switch (BitSize) { 5652 default: break; 5653 case 1: 5654 case 8: 5655 case 16: 5656 case 32: 5657 case 64: 5658 case 128: 5659 OpTy = IntegerType::get(Context, BitSize); 5660 break; 5661 } 5662 } 5663 5664 return TLI.getValueType(OpTy, true); 5665 } 5666 }; 5667 5668 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5669 5670 } // end anonymous namespace 5671 5672 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5673 /// specified operand. We prefer to assign virtual registers, to allow the 5674 /// register allocator to handle the assignment process. However, if the asm 5675 /// uses features that we can't model on machineinstrs, we have SDISel do the 5676 /// allocation. This produces generally horrible, but correct, code. 5677 /// 5678 /// OpInfo describes the operand. 5679 /// 5680 static void GetRegistersForValue(SelectionDAG &DAG, 5681 const TargetLowering &TLI, 5682 SDLoc DL, 5683 SDISelAsmOperandInfo &OpInfo) { 5684 LLVMContext &Context = *DAG.getContext(); 5685 5686 MachineFunction &MF = DAG.getMachineFunction(); 5687 SmallVector<unsigned, 4> Regs; 5688 5689 // If this is a constraint for a single physreg, or a constraint for a 5690 // register class, find it. 5691 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5692 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5693 OpInfo.ConstraintCode, 5694 OpInfo.ConstraintVT); 5695 5696 unsigned NumRegs = 1; 5697 if (OpInfo.ConstraintVT != MVT::Other) { 5698 // If this is a FP input in an integer register (or visa versa) insert a bit 5699 // cast of the input value. More generally, handle any case where the input 5700 // value disagrees with the register class we plan to stick this in. 5701 if (OpInfo.Type == InlineAsm::isInput && 5702 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5703 // Try to convert to the first EVT that the reg class contains. If the 5704 // types are identical size, use a bitcast to convert (e.g. two differing 5705 // vector types). 5706 MVT RegVT = *PhysReg.second->vt_begin(); 5707 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5708 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5709 RegVT, OpInfo.CallOperand); 5710 OpInfo.ConstraintVT = RegVT; 5711 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5712 // If the input is a FP value and we want it in FP registers, do a 5713 // bitcast to the corresponding integer type. This turns an f64 value 5714 // into i64, which can be passed with two i32 values on a 32-bit 5715 // machine. 5716 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5717 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5718 RegVT, OpInfo.CallOperand); 5719 OpInfo.ConstraintVT = RegVT; 5720 } 5721 } 5722 5723 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5724 } 5725 5726 MVT RegVT; 5727 EVT ValueVT = OpInfo.ConstraintVT; 5728 5729 // If this is a constraint for a specific physical register, like {r17}, 5730 // assign it now. 5731 if (unsigned AssignedReg = PhysReg.first) { 5732 const TargetRegisterClass *RC = PhysReg.second; 5733 if (OpInfo.ConstraintVT == MVT::Other) 5734 ValueVT = *RC->vt_begin(); 5735 5736 // Get the actual register value type. This is important, because the user 5737 // may have asked for (e.g.) the AX register in i32 type. We need to 5738 // remember that AX is actually i16 to get the right extension. 5739 RegVT = *RC->vt_begin(); 5740 5741 // This is a explicit reference to a physical register. 5742 Regs.push_back(AssignedReg); 5743 5744 // If this is an expanded reference, add the rest of the regs to Regs. 5745 if (NumRegs != 1) { 5746 TargetRegisterClass::iterator I = RC->begin(); 5747 for (; *I != AssignedReg; ++I) 5748 assert(I != RC->end() && "Didn't find reg!"); 5749 5750 // Already added the first reg. 5751 --NumRegs; ++I; 5752 for (; NumRegs; --NumRegs, ++I) { 5753 assert(I != RC->end() && "Ran out of registers to allocate!"); 5754 Regs.push_back(*I); 5755 } 5756 } 5757 5758 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5759 return; 5760 } 5761 5762 // Otherwise, if this was a reference to an LLVM register class, create vregs 5763 // for this reference. 5764 if (const TargetRegisterClass *RC = PhysReg.second) { 5765 RegVT = *RC->vt_begin(); 5766 if (OpInfo.ConstraintVT == MVT::Other) 5767 ValueVT = RegVT; 5768 5769 // Create the appropriate number of virtual registers. 5770 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5771 for (; NumRegs; --NumRegs) 5772 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5773 5774 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5775 return; 5776 } 5777 5778 // Otherwise, we couldn't allocate enough registers for this. 5779 } 5780 5781 /// visitInlineAsm - Handle a call to an InlineAsm object. 5782 /// 5783 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5784 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5785 5786 /// ConstraintOperands - Information about all of the constraints. 5787 SDISelAsmOperandInfoVector ConstraintOperands; 5788 5789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5790 TargetLowering::AsmOperandInfoVector TargetConstraints = 5791 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5792 5793 bool hasMemory = false; 5794 5795 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5796 unsigned ResNo = 0; // ResNo - The result number of the next output. 5797 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5798 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5799 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5800 5801 MVT OpVT = MVT::Other; 5802 5803 // Compute the value type for each operand. 5804 switch (OpInfo.Type) { 5805 case InlineAsm::isOutput: 5806 // Indirect outputs just consume an argument. 5807 if (OpInfo.isIndirect) { 5808 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5809 break; 5810 } 5811 5812 // The return value of the call is this value. As such, there is no 5813 // corresponding argument. 5814 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5815 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5816 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5817 } else { 5818 assert(ResNo == 0 && "Asm only has one result!"); 5819 OpVT = TLI.getSimpleValueType(CS.getType()); 5820 } 5821 ++ResNo; 5822 break; 5823 case InlineAsm::isInput: 5824 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5825 break; 5826 case InlineAsm::isClobber: 5827 // Nothing to do. 5828 break; 5829 } 5830 5831 // If this is an input or an indirect output, process the call argument. 5832 // BasicBlocks are labels, currently appearing only in asm's. 5833 if (OpInfo.CallOperandVal) { 5834 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5835 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5836 } else { 5837 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5838 } 5839 5840 OpVT = 5841 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5842 } 5843 5844 OpInfo.ConstraintVT = OpVT; 5845 5846 // Indirect operand accesses access memory. 5847 if (OpInfo.isIndirect) 5848 hasMemory = true; 5849 else { 5850 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5851 TargetLowering::ConstraintType 5852 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5853 if (CType == TargetLowering::C_Memory) { 5854 hasMemory = true; 5855 break; 5856 } 5857 } 5858 } 5859 } 5860 5861 SDValue Chain, Flag; 5862 5863 // We won't need to flush pending loads if this asm doesn't touch 5864 // memory and is nonvolatile. 5865 if (hasMemory || IA->hasSideEffects()) 5866 Chain = getRoot(); 5867 else 5868 Chain = DAG.getRoot(); 5869 5870 // Second pass over the constraints: compute which constraint option to use 5871 // and assign registers to constraints that want a specific physreg. 5872 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5873 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5874 5875 // If this is an output operand with a matching input operand, look up the 5876 // matching input. If their types mismatch, e.g. one is an integer, the 5877 // other is floating point, or their sizes are different, flag it as an 5878 // error. 5879 if (OpInfo.hasMatchingInput()) { 5880 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5881 5882 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5883 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5884 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5885 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5886 OpInfo.ConstraintVT); 5887 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5888 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5889 Input.ConstraintVT); 5890 if ((OpInfo.ConstraintVT.isInteger() != 5891 Input.ConstraintVT.isInteger()) || 5892 (MatchRC.second != InputRC.second)) { 5893 report_fatal_error("Unsupported asm: input constraint" 5894 " with a matching output constraint of" 5895 " incompatible type!"); 5896 } 5897 Input.ConstraintVT = OpInfo.ConstraintVT; 5898 } 5899 } 5900 5901 // Compute the constraint code and ConstraintType to use. 5902 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5903 5904 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5905 OpInfo.Type == InlineAsm::isClobber) 5906 continue; 5907 5908 // If this is a memory input, and if the operand is not indirect, do what we 5909 // need to to provide an address for the memory input. 5910 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5911 !OpInfo.isIndirect) { 5912 assert((OpInfo.isMultipleAlternative || 5913 (OpInfo.Type == InlineAsm::isInput)) && 5914 "Can only indirectify direct input operands!"); 5915 5916 // Memory operands really want the address of the value. If we don't have 5917 // an indirect input, put it in the constpool if we can, otherwise spill 5918 // it to a stack slot. 5919 // TODO: This isn't quite right. We need to handle these according to 5920 // the addressing mode that the constraint wants. Also, this may take 5921 // an additional register for the computation and we don't want that 5922 // either. 5923 5924 // If the operand is a float, integer, or vector constant, spill to a 5925 // constant pool entry to get its address. 5926 const Value *OpVal = OpInfo.CallOperandVal; 5927 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5928 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5929 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5930 TLI.getPointerTy()); 5931 } else { 5932 // Otherwise, create a stack slot and emit a store to it before the 5933 // asm. 5934 Type *Ty = OpVal->getType(); 5935 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5936 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5937 MachineFunction &MF = DAG.getMachineFunction(); 5938 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5939 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5940 Chain = DAG.getStore(Chain, getCurSDLoc(), 5941 OpInfo.CallOperand, StackSlot, 5942 MachinePointerInfo::getFixedStack(SSFI), 5943 false, false, 0); 5944 OpInfo.CallOperand = StackSlot; 5945 } 5946 5947 // There is no longer a Value* corresponding to this operand. 5948 OpInfo.CallOperandVal = nullptr; 5949 5950 // It is now an indirect operand. 5951 OpInfo.isIndirect = true; 5952 } 5953 5954 // If this constraint is for a specific register, allocate it before 5955 // anything else. 5956 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5957 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5958 } 5959 5960 // Second pass - Loop over all of the operands, assigning virtual or physregs 5961 // to register class operands. 5962 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5963 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5964 5965 // C_Register operands have already been allocated, Other/Memory don't need 5966 // to be. 5967 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5968 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5969 } 5970 5971 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5972 std::vector<SDValue> AsmNodeOperands; 5973 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5974 AsmNodeOperands.push_back( 5975 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5976 TLI.getPointerTy())); 5977 5978 // If we have a !srcloc metadata node associated with it, we want to attach 5979 // this to the ultimately generated inline asm machineinstr. To do this, we 5980 // pass in the third operand as this (potentially null) inline asm MDNode. 5981 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5982 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5983 5984 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 5985 // bits as operand 3. 5986 unsigned ExtraInfo = 0; 5987 if (IA->hasSideEffects()) 5988 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 5989 if (IA->isAlignStack()) 5990 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 5991 // Set the asm dialect. 5992 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 5993 5994 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 5995 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5996 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5997 5998 // Compute the constraint code and ConstraintType to use. 5999 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6000 6001 // Ideally, we would only check against memory constraints. However, the 6002 // meaning of an other constraint can be target-specific and we can't easily 6003 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6004 // for other constriants as well. 6005 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6006 OpInfo.ConstraintType == TargetLowering::C_Other) { 6007 if (OpInfo.Type == InlineAsm::isInput) 6008 ExtraInfo |= InlineAsm::Extra_MayLoad; 6009 else if (OpInfo.Type == InlineAsm::isOutput) 6010 ExtraInfo |= InlineAsm::Extra_MayStore; 6011 else if (OpInfo.Type == InlineAsm::isClobber) 6012 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6013 } 6014 } 6015 6016 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(), 6017 TLI.getPointerTy())); 6018 6019 // Loop over all of the inputs, copying the operand values into the 6020 // appropriate registers and processing the output regs. 6021 RegsForValue RetValRegs; 6022 6023 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6024 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6025 6026 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6027 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6028 6029 switch (OpInfo.Type) { 6030 case InlineAsm::isOutput: { 6031 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6032 OpInfo.ConstraintType != TargetLowering::C_Register) { 6033 // Memory output, or 'other' output (e.g. 'X' constraint). 6034 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6035 6036 unsigned ConstraintID = 6037 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6038 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6039 "Failed to convert memory constraint code to constraint id."); 6040 6041 // Add information to the INLINEASM node to know about this output. 6042 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6043 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6044 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6045 MVT::i32)); 6046 AsmNodeOperands.push_back(OpInfo.CallOperand); 6047 break; 6048 } 6049 6050 // Otherwise, this is a register or register class output. 6051 6052 // Copy the output from the appropriate register. Find a register that 6053 // we can use. 6054 if (OpInfo.AssignedRegs.Regs.empty()) { 6055 LLVMContext &Ctx = *DAG.getContext(); 6056 Ctx.emitError(CS.getInstruction(), 6057 "couldn't allocate output register for constraint '" + 6058 Twine(OpInfo.ConstraintCode) + "'"); 6059 return; 6060 } 6061 6062 // If this is an indirect operand, store through the pointer after the 6063 // asm. 6064 if (OpInfo.isIndirect) { 6065 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6066 OpInfo.CallOperandVal)); 6067 } else { 6068 // This is the result value of the call. 6069 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6070 // Concatenate this output onto the outputs list. 6071 RetValRegs.append(OpInfo.AssignedRegs); 6072 } 6073 6074 // Add information to the INLINEASM node to know that this register is 6075 // set. 6076 OpInfo.AssignedRegs 6077 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6078 ? InlineAsm::Kind_RegDefEarlyClobber 6079 : InlineAsm::Kind_RegDef, 6080 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6081 break; 6082 } 6083 case InlineAsm::isInput: { 6084 SDValue InOperandVal = OpInfo.CallOperand; 6085 6086 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6087 // If this is required to match an output register we have already set, 6088 // just use its register. 6089 unsigned OperandNo = OpInfo.getMatchedOperand(); 6090 6091 // Scan until we find the definition we already emitted of this operand. 6092 // When we find it, create a RegsForValue operand. 6093 unsigned CurOp = InlineAsm::Op_FirstOperand; 6094 for (; OperandNo; --OperandNo) { 6095 // Advance to the next operand. 6096 unsigned OpFlag = 6097 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6098 assert((InlineAsm::isRegDefKind(OpFlag) || 6099 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6100 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6101 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6102 } 6103 6104 unsigned OpFlag = 6105 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6106 if (InlineAsm::isRegDefKind(OpFlag) || 6107 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6108 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6109 if (OpInfo.isIndirect) { 6110 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6111 LLVMContext &Ctx = *DAG.getContext(); 6112 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6113 " don't know how to handle tied " 6114 "indirect register inputs"); 6115 return; 6116 } 6117 6118 RegsForValue MatchedRegs; 6119 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6120 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6121 MatchedRegs.RegVTs.push_back(RegVT); 6122 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6123 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6124 i != e; ++i) { 6125 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6126 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6127 else { 6128 LLVMContext &Ctx = *DAG.getContext(); 6129 Ctx.emitError(CS.getInstruction(), 6130 "inline asm error: This value" 6131 " type register class is not natively supported!"); 6132 return; 6133 } 6134 } 6135 SDLoc dl = getCurSDLoc(); 6136 // Use the produced MatchedRegs object to 6137 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6138 Chain, &Flag, CS.getInstruction()); 6139 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6140 true, OpInfo.getMatchedOperand(), dl, 6141 DAG, AsmNodeOperands); 6142 break; 6143 } 6144 6145 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6146 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6147 "Unexpected number of operands"); 6148 // Add information to the INLINEASM node to know about this input. 6149 // See InlineAsm.h isUseOperandTiedToDef. 6150 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6151 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6152 OpInfo.getMatchedOperand()); 6153 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(), 6154 TLI.getPointerTy())); 6155 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6156 break; 6157 } 6158 6159 // Treat indirect 'X' constraint as memory. 6160 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6161 OpInfo.isIndirect) 6162 OpInfo.ConstraintType = TargetLowering::C_Memory; 6163 6164 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6165 std::vector<SDValue> Ops; 6166 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6167 Ops, DAG); 6168 if (Ops.empty()) { 6169 LLVMContext &Ctx = *DAG.getContext(); 6170 Ctx.emitError(CS.getInstruction(), 6171 "invalid operand for inline asm constraint '" + 6172 Twine(OpInfo.ConstraintCode) + "'"); 6173 return; 6174 } 6175 6176 // Add information to the INLINEASM node to know about this input. 6177 unsigned ResOpType = 6178 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6179 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6180 getCurSDLoc(), 6181 TLI.getPointerTy())); 6182 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6183 break; 6184 } 6185 6186 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6187 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6188 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6189 "Memory operands expect pointer values"); 6190 6191 unsigned ConstraintID = 6192 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6193 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6194 "Failed to convert memory constraint code to constraint id."); 6195 6196 // Add information to the INLINEASM node to know about this input. 6197 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6198 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6199 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6200 getCurSDLoc(), 6201 MVT::i32)); 6202 AsmNodeOperands.push_back(InOperandVal); 6203 break; 6204 } 6205 6206 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6207 OpInfo.ConstraintType == TargetLowering::C_Register) && 6208 "Unknown constraint type!"); 6209 6210 // TODO: Support this. 6211 if (OpInfo.isIndirect) { 6212 LLVMContext &Ctx = *DAG.getContext(); 6213 Ctx.emitError(CS.getInstruction(), 6214 "Don't know how to handle indirect register inputs yet " 6215 "for constraint '" + 6216 Twine(OpInfo.ConstraintCode) + "'"); 6217 return; 6218 } 6219 6220 // Copy the input into the appropriate registers. 6221 if (OpInfo.AssignedRegs.Regs.empty()) { 6222 LLVMContext &Ctx = *DAG.getContext(); 6223 Ctx.emitError(CS.getInstruction(), 6224 "couldn't allocate input reg for constraint '" + 6225 Twine(OpInfo.ConstraintCode) + "'"); 6226 return; 6227 } 6228 6229 SDLoc dl = getCurSDLoc(); 6230 6231 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6232 Chain, &Flag, CS.getInstruction()); 6233 6234 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6235 dl, DAG, AsmNodeOperands); 6236 break; 6237 } 6238 case InlineAsm::isClobber: { 6239 // Add the clobbered value to the operand list, so that the register 6240 // allocator is aware that the physreg got clobbered. 6241 if (!OpInfo.AssignedRegs.Regs.empty()) 6242 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6243 false, 0, getCurSDLoc(), DAG, 6244 AsmNodeOperands); 6245 break; 6246 } 6247 } 6248 } 6249 6250 // Finish up input operands. Set the input chain and add the flag last. 6251 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6252 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6253 6254 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6255 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6256 Flag = Chain.getValue(1); 6257 6258 // If this asm returns a register value, copy the result from that register 6259 // and set it as the value of the call. 6260 if (!RetValRegs.Regs.empty()) { 6261 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6262 Chain, &Flag, CS.getInstruction()); 6263 6264 // FIXME: Why don't we do this for inline asms with MRVs? 6265 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6266 EVT ResultType = TLI.getValueType(CS.getType()); 6267 6268 // If any of the results of the inline asm is a vector, it may have the 6269 // wrong width/num elts. This can happen for register classes that can 6270 // contain multiple different value types. The preg or vreg allocated may 6271 // not have the same VT as was expected. Convert it to the right type 6272 // with bit_convert. 6273 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6274 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6275 ResultType, Val); 6276 6277 } else if (ResultType != Val.getValueType() && 6278 ResultType.isInteger() && Val.getValueType().isInteger()) { 6279 // If a result value was tied to an input value, the computed result may 6280 // have a wider width than the expected result. Extract the relevant 6281 // portion. 6282 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6283 } 6284 6285 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6286 } 6287 6288 setValue(CS.getInstruction(), Val); 6289 // Don't need to use this as a chain in this case. 6290 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6291 return; 6292 } 6293 6294 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6295 6296 // Process indirect outputs, first output all of the flagged copies out of 6297 // physregs. 6298 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6299 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6300 const Value *Ptr = IndirectStoresToEmit[i].second; 6301 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6302 Chain, &Flag, IA); 6303 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6304 } 6305 6306 // Emit the non-flagged stores from the physregs. 6307 SmallVector<SDValue, 8> OutChains; 6308 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6309 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6310 StoresToEmit[i].first, 6311 getValue(StoresToEmit[i].second), 6312 MachinePointerInfo(StoresToEmit[i].second), 6313 false, false, 0); 6314 OutChains.push_back(Val); 6315 } 6316 6317 if (!OutChains.empty()) 6318 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6319 6320 DAG.setRoot(Chain); 6321 } 6322 6323 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6324 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6325 MVT::Other, getRoot(), 6326 getValue(I.getArgOperand(0)), 6327 DAG.getSrcValue(I.getArgOperand(0)))); 6328 } 6329 6330 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6331 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6332 const DataLayout &DL = *TLI.getDataLayout(); 6333 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6334 getRoot(), getValue(I.getOperand(0)), 6335 DAG.getSrcValue(I.getOperand(0)), 6336 DL.getABITypeAlignment(I.getType())); 6337 setValue(&I, V); 6338 DAG.setRoot(V.getValue(1)); 6339 } 6340 6341 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6342 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6343 MVT::Other, getRoot(), 6344 getValue(I.getArgOperand(0)), 6345 DAG.getSrcValue(I.getArgOperand(0)))); 6346 } 6347 6348 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6349 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6350 MVT::Other, getRoot(), 6351 getValue(I.getArgOperand(0)), 6352 getValue(I.getArgOperand(1)), 6353 DAG.getSrcValue(I.getArgOperand(0)), 6354 DAG.getSrcValue(I.getArgOperand(1)))); 6355 } 6356 6357 /// \brief Lower an argument list according to the target calling convention. 6358 /// 6359 /// \return A tuple of <return-value, token-chain> 6360 /// 6361 /// This is a helper for lowering intrinsics that follow a target calling 6362 /// convention or require stack pointer adjustment. Only a subset of the 6363 /// intrinsic's operands need to participate in the calling convention. 6364 std::pair<SDValue, SDValue> 6365 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6366 unsigned NumArgs, SDValue Callee, 6367 Type *ReturnTy, 6368 MachineBasicBlock *LandingPad, 6369 bool IsPatchPoint) { 6370 TargetLowering::ArgListTy Args; 6371 Args.reserve(NumArgs); 6372 6373 // Populate the argument list. 6374 // Attributes for args start at offset 1, after the return attribute. 6375 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6376 ArgI != ArgE; ++ArgI) { 6377 const Value *V = CS->getOperand(ArgI); 6378 6379 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6380 6381 TargetLowering::ArgListEntry Entry; 6382 Entry.Node = getValue(V); 6383 Entry.Ty = V->getType(); 6384 Entry.setAttributes(&CS, AttrI); 6385 Args.push_back(Entry); 6386 } 6387 6388 TargetLowering::CallLoweringInfo CLI(DAG); 6389 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6390 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6391 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6392 6393 return lowerInvokable(CLI, LandingPad); 6394 } 6395 6396 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6397 /// or patchpoint target node's operand list. 6398 /// 6399 /// Constants are converted to TargetConstants purely as an optimization to 6400 /// avoid constant materialization and register allocation. 6401 /// 6402 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6403 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6404 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6405 /// address materialization and register allocation, but may also be required 6406 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6407 /// alloca in the entry block, then the runtime may assume that the alloca's 6408 /// StackMap location can be read immediately after compilation and that the 6409 /// location is valid at any point during execution (this is similar to the 6410 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6411 /// only available in a register, then the runtime would need to trap when 6412 /// execution reaches the StackMap in order to read the alloca's location. 6413 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6414 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6415 SelectionDAGBuilder &Builder) { 6416 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6417 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6418 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6419 Ops.push_back( 6420 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6421 Ops.push_back( 6422 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6423 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6424 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6425 Ops.push_back( 6426 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6427 } else 6428 Ops.push_back(OpVal); 6429 } 6430 } 6431 6432 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6433 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6434 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6435 // [live variables...]) 6436 6437 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6438 6439 SDValue Chain, InFlag, Callee, NullPtr; 6440 SmallVector<SDValue, 32> Ops; 6441 6442 SDLoc DL = getCurSDLoc(); 6443 Callee = getValue(CI.getCalledValue()); 6444 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6445 6446 // The stackmap intrinsic only records the live variables (the arguemnts 6447 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6448 // intrinsic, this won't be lowered to a function call. This means we don't 6449 // have to worry about calling conventions and target specific lowering code. 6450 // Instead we perform the call lowering right here. 6451 // 6452 // chain, flag = CALLSEQ_START(chain, 0) 6453 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6454 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6455 // 6456 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6457 InFlag = Chain.getValue(1); 6458 6459 // Add the <id> and <numBytes> constants. 6460 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6461 Ops.push_back(DAG.getTargetConstant( 6462 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6463 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6464 Ops.push_back(DAG.getTargetConstant( 6465 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6466 MVT::i32)); 6467 6468 // Push live variables for the stack map. 6469 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6470 6471 // We are not pushing any register mask info here on the operands list, 6472 // because the stackmap doesn't clobber anything. 6473 6474 // Push the chain and the glue flag. 6475 Ops.push_back(Chain); 6476 Ops.push_back(InFlag); 6477 6478 // Create the STACKMAP node. 6479 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6480 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6481 Chain = SDValue(SM, 0); 6482 InFlag = Chain.getValue(1); 6483 6484 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6485 6486 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6487 6488 // Set the root to the target-lowered call chain. 6489 DAG.setRoot(Chain); 6490 6491 // Inform the Frame Information that we have a stackmap in this function. 6492 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6493 } 6494 6495 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6496 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6497 MachineBasicBlock *LandingPad) { 6498 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6499 // i32 <numBytes>, 6500 // i8* <target>, 6501 // i32 <numArgs>, 6502 // [Args...], 6503 // [live variables...]) 6504 6505 CallingConv::ID CC = CS.getCallingConv(); 6506 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6507 bool HasDef = !CS->getType()->isVoidTy(); 6508 SDLoc dl = getCurSDLoc(); 6509 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6510 6511 // Handle immediate and symbolic callees. 6512 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6513 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6514 /*isTarget=*/true); 6515 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6516 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6517 SDLoc(SymbolicCallee), 6518 SymbolicCallee->getValueType(0)); 6519 6520 // Get the real number of arguments participating in the call <numArgs> 6521 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6522 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6523 6524 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6525 // Intrinsics include all meta-operands up to but not including CC. 6526 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6527 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6528 "Not enough arguments provided to the patchpoint intrinsic"); 6529 6530 // For AnyRegCC the arguments are lowered later on manually. 6531 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6532 Type *ReturnTy = 6533 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6534 std::pair<SDValue, SDValue> Result = 6535 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6536 LandingPad, true); 6537 6538 SDNode *CallEnd = Result.second.getNode(); 6539 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6540 CallEnd = CallEnd->getOperand(0).getNode(); 6541 6542 /// Get a call instruction from the call sequence chain. 6543 /// Tail calls are not allowed. 6544 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6545 "Expected a callseq node."); 6546 SDNode *Call = CallEnd->getOperand(0).getNode(); 6547 bool HasGlue = Call->getGluedNode(); 6548 6549 // Replace the target specific call node with the patchable intrinsic. 6550 SmallVector<SDValue, 8> Ops; 6551 6552 // Add the <id> and <numBytes> constants. 6553 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6554 Ops.push_back(DAG.getTargetConstant( 6555 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6556 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6557 Ops.push_back(DAG.getTargetConstant( 6558 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6559 MVT::i32)); 6560 6561 // Add the callee. 6562 Ops.push_back(Callee); 6563 6564 // Adjust <numArgs> to account for any arguments that have been passed on the 6565 // stack instead. 6566 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6567 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6568 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6569 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6570 6571 // Add the calling convention 6572 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6573 6574 // Add the arguments we omitted previously. The register allocator should 6575 // place these in any free register. 6576 if (IsAnyRegCC) 6577 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6578 Ops.push_back(getValue(CS.getArgument(i))); 6579 6580 // Push the arguments from the call instruction up to the register mask. 6581 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6582 Ops.append(Call->op_begin() + 2, e); 6583 6584 // Push live variables for the stack map. 6585 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6586 6587 // Push the register mask info. 6588 if (HasGlue) 6589 Ops.push_back(*(Call->op_end()-2)); 6590 else 6591 Ops.push_back(*(Call->op_end()-1)); 6592 6593 // Push the chain (this is originally the first operand of the call, but 6594 // becomes now the last or second to last operand). 6595 Ops.push_back(*(Call->op_begin())); 6596 6597 // Push the glue flag (last operand). 6598 if (HasGlue) 6599 Ops.push_back(*(Call->op_end()-1)); 6600 6601 SDVTList NodeTys; 6602 if (IsAnyRegCC && HasDef) { 6603 // Create the return types based on the intrinsic definition 6604 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6605 SmallVector<EVT, 3> ValueVTs; 6606 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6607 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6608 6609 // There is always a chain and a glue type at the end 6610 ValueVTs.push_back(MVT::Other); 6611 ValueVTs.push_back(MVT::Glue); 6612 NodeTys = DAG.getVTList(ValueVTs); 6613 } else 6614 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6615 6616 // Replace the target specific call node with a PATCHPOINT node. 6617 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6618 dl, NodeTys, Ops); 6619 6620 // Update the NodeMap. 6621 if (HasDef) { 6622 if (IsAnyRegCC) 6623 setValue(CS.getInstruction(), SDValue(MN, 0)); 6624 else 6625 setValue(CS.getInstruction(), Result.first); 6626 } 6627 6628 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6629 // call sequence. Furthermore the location of the chain and glue can change 6630 // when the AnyReg calling convention is used and the intrinsic returns a 6631 // value. 6632 if (IsAnyRegCC && HasDef) { 6633 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6634 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6635 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6636 } else 6637 DAG.ReplaceAllUsesWith(Call, MN); 6638 DAG.DeleteNode(Call); 6639 6640 // Inform the Frame Information that we have a patchpoint in this function. 6641 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6642 } 6643 6644 /// Returns an AttributeSet representing the attributes applied to the return 6645 /// value of the given call. 6646 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6647 SmallVector<Attribute::AttrKind, 2> Attrs; 6648 if (CLI.RetSExt) 6649 Attrs.push_back(Attribute::SExt); 6650 if (CLI.RetZExt) 6651 Attrs.push_back(Attribute::ZExt); 6652 if (CLI.IsInReg) 6653 Attrs.push_back(Attribute::InReg); 6654 6655 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6656 Attrs); 6657 } 6658 6659 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6660 /// implementation, which just calls LowerCall. 6661 /// FIXME: When all targets are 6662 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6663 std::pair<SDValue, SDValue> 6664 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6665 // Handle the incoming return values from the call. 6666 CLI.Ins.clear(); 6667 Type *OrigRetTy = CLI.RetTy; 6668 SmallVector<EVT, 4> RetTys; 6669 SmallVector<uint64_t, 4> Offsets; 6670 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6671 6672 SmallVector<ISD::OutputArg, 4> Outs; 6673 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6674 6675 bool CanLowerReturn = 6676 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6677 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6678 6679 SDValue DemoteStackSlot; 6680 int DemoteStackIdx = -100; 6681 if (!CanLowerReturn) { 6682 // FIXME: equivalent assert? 6683 // assert(!CS.hasInAllocaArgument() && 6684 // "sret demotion is incompatible with inalloca"); 6685 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6686 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6687 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6688 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6689 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6690 6691 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6692 ArgListEntry Entry; 6693 Entry.Node = DemoteStackSlot; 6694 Entry.Ty = StackSlotPtrType; 6695 Entry.isSExt = false; 6696 Entry.isZExt = false; 6697 Entry.isInReg = false; 6698 Entry.isSRet = true; 6699 Entry.isNest = false; 6700 Entry.isByVal = false; 6701 Entry.isReturned = false; 6702 Entry.Alignment = Align; 6703 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6704 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6705 6706 // sret demotion isn't compatible with tail-calls, since the sret argument 6707 // points into the callers stack frame. 6708 CLI.IsTailCall = false; 6709 } else { 6710 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6711 EVT VT = RetTys[I]; 6712 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6713 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6714 for (unsigned i = 0; i != NumRegs; ++i) { 6715 ISD::InputArg MyFlags; 6716 MyFlags.VT = RegisterVT; 6717 MyFlags.ArgVT = VT; 6718 MyFlags.Used = CLI.IsReturnValueUsed; 6719 if (CLI.RetSExt) 6720 MyFlags.Flags.setSExt(); 6721 if (CLI.RetZExt) 6722 MyFlags.Flags.setZExt(); 6723 if (CLI.IsInReg) 6724 MyFlags.Flags.setInReg(); 6725 CLI.Ins.push_back(MyFlags); 6726 } 6727 } 6728 } 6729 6730 // Handle all of the outgoing arguments. 6731 CLI.Outs.clear(); 6732 CLI.OutVals.clear(); 6733 ArgListTy &Args = CLI.getArgs(); 6734 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6735 SmallVector<EVT, 4> ValueVTs; 6736 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6737 Type *FinalType = Args[i].Ty; 6738 if (Args[i].isByVal) 6739 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6740 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6741 FinalType, CLI.CallConv, CLI.IsVarArg); 6742 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6743 ++Value) { 6744 EVT VT = ValueVTs[Value]; 6745 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6746 SDValue Op = SDValue(Args[i].Node.getNode(), 6747 Args[i].Node.getResNo() + Value); 6748 ISD::ArgFlagsTy Flags; 6749 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6750 6751 if (Args[i].isZExt) 6752 Flags.setZExt(); 6753 if (Args[i].isSExt) 6754 Flags.setSExt(); 6755 if (Args[i].isInReg) 6756 Flags.setInReg(); 6757 if (Args[i].isSRet) 6758 Flags.setSRet(); 6759 if (Args[i].isByVal) 6760 Flags.setByVal(); 6761 if (Args[i].isInAlloca) { 6762 Flags.setInAlloca(); 6763 // Set the byval flag for CCAssignFn callbacks that don't know about 6764 // inalloca. This way we can know how many bytes we should've allocated 6765 // and how many bytes a callee cleanup function will pop. If we port 6766 // inalloca to more targets, we'll have to add custom inalloca handling 6767 // in the various CC lowering callbacks. 6768 Flags.setByVal(); 6769 } 6770 if (Args[i].isByVal || Args[i].isInAlloca) { 6771 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6772 Type *ElementTy = Ty->getElementType(); 6773 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6774 // For ByVal, alignment should come from FE. BE will guess if this 6775 // info is not there but there are cases it cannot get right. 6776 unsigned FrameAlign; 6777 if (Args[i].Alignment) 6778 FrameAlign = Args[i].Alignment; 6779 else 6780 FrameAlign = getByValTypeAlignment(ElementTy); 6781 Flags.setByValAlign(FrameAlign); 6782 } 6783 if (Args[i].isNest) 6784 Flags.setNest(); 6785 if (NeedsRegBlock) 6786 Flags.setInConsecutiveRegs(); 6787 Flags.setOrigAlign(OriginalAlignment); 6788 6789 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6790 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6791 SmallVector<SDValue, 4> Parts(NumParts); 6792 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6793 6794 if (Args[i].isSExt) 6795 ExtendKind = ISD::SIGN_EXTEND; 6796 else if (Args[i].isZExt) 6797 ExtendKind = ISD::ZERO_EXTEND; 6798 6799 // Conservatively only handle 'returned' on non-vectors for now 6800 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6801 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6802 "unexpected use of 'returned'"); 6803 // Before passing 'returned' to the target lowering code, ensure that 6804 // either the register MVT and the actual EVT are the same size or that 6805 // the return value and argument are extended in the same way; in these 6806 // cases it's safe to pass the argument register value unchanged as the 6807 // return register value (although it's at the target's option whether 6808 // to do so) 6809 // TODO: allow code generation to take advantage of partially preserved 6810 // registers rather than clobbering the entire register when the 6811 // parameter extension method is not compatible with the return 6812 // extension method 6813 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6814 (ExtendKind != ISD::ANY_EXTEND && 6815 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6816 Flags.setReturned(); 6817 } 6818 6819 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6820 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6821 6822 for (unsigned j = 0; j != NumParts; ++j) { 6823 // if it isn't first piece, alignment must be 1 6824 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6825 i < CLI.NumFixedArgs, 6826 i, j*Parts[j].getValueType().getStoreSize()); 6827 if (NumParts > 1 && j == 0) 6828 MyFlags.Flags.setSplit(); 6829 else if (j != 0) 6830 MyFlags.Flags.setOrigAlign(1); 6831 6832 CLI.Outs.push_back(MyFlags); 6833 CLI.OutVals.push_back(Parts[j]); 6834 } 6835 6836 if (NeedsRegBlock && Value == NumValues - 1) 6837 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6838 } 6839 } 6840 6841 SmallVector<SDValue, 4> InVals; 6842 CLI.Chain = LowerCall(CLI, InVals); 6843 6844 // Verify that the target's LowerCall behaved as expected. 6845 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6846 "LowerCall didn't return a valid chain!"); 6847 assert((!CLI.IsTailCall || InVals.empty()) && 6848 "LowerCall emitted a return value for a tail call!"); 6849 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6850 "LowerCall didn't emit the correct number of values!"); 6851 6852 // For a tail call, the return value is merely live-out and there aren't 6853 // any nodes in the DAG representing it. Return a special value to 6854 // indicate that a tail call has been emitted and no more Instructions 6855 // should be processed in the current block. 6856 if (CLI.IsTailCall) { 6857 CLI.DAG.setRoot(CLI.Chain); 6858 return std::make_pair(SDValue(), SDValue()); 6859 } 6860 6861 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6862 assert(InVals[i].getNode() && 6863 "LowerCall emitted a null value!"); 6864 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6865 "LowerCall emitted a value with the wrong type!"); 6866 }); 6867 6868 SmallVector<SDValue, 4> ReturnValues; 6869 if (!CanLowerReturn) { 6870 // The instruction result is the result of loading from the 6871 // hidden sret parameter. 6872 SmallVector<EVT, 1> PVTs; 6873 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6874 6875 ComputeValueVTs(*this, PtrRetTy, PVTs); 6876 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6877 EVT PtrVT = PVTs[0]; 6878 6879 unsigned NumValues = RetTys.size(); 6880 ReturnValues.resize(NumValues); 6881 SmallVector<SDValue, 4> Chains(NumValues); 6882 6883 for (unsigned i = 0; i < NumValues; ++i) { 6884 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6885 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6886 PtrVT)); 6887 SDValue L = CLI.DAG.getLoad( 6888 RetTys[i], CLI.DL, CLI.Chain, Add, 6889 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6890 false, false, 1); 6891 ReturnValues[i] = L; 6892 Chains[i] = L.getValue(1); 6893 } 6894 6895 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6896 } else { 6897 // Collect the legal value parts into potentially illegal values 6898 // that correspond to the original function's return values. 6899 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6900 if (CLI.RetSExt) 6901 AssertOp = ISD::AssertSext; 6902 else if (CLI.RetZExt) 6903 AssertOp = ISD::AssertZext; 6904 unsigned CurReg = 0; 6905 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6906 EVT VT = RetTys[I]; 6907 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6908 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6909 6910 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6911 NumRegs, RegisterVT, VT, nullptr, 6912 AssertOp)); 6913 CurReg += NumRegs; 6914 } 6915 6916 // For a function returning void, there is no return value. We can't create 6917 // such a node, so we just return a null return value in that case. In 6918 // that case, nothing will actually look at the value. 6919 if (ReturnValues.empty()) 6920 return std::make_pair(SDValue(), CLI.Chain); 6921 } 6922 6923 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6924 CLI.DAG.getVTList(RetTys), ReturnValues); 6925 return std::make_pair(Res, CLI.Chain); 6926 } 6927 6928 void TargetLowering::LowerOperationWrapper(SDNode *N, 6929 SmallVectorImpl<SDValue> &Results, 6930 SelectionDAG &DAG) const { 6931 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6932 if (Res.getNode()) 6933 Results.push_back(Res); 6934 } 6935 6936 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6937 llvm_unreachable("LowerOperation not implemented for this target!"); 6938 } 6939 6940 void 6941 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6942 SDValue Op = getNonRegisterValue(V); 6943 assert((Op.getOpcode() != ISD::CopyFromReg || 6944 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6945 "Copy from a reg to the same reg!"); 6946 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6947 6948 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6949 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6950 SDValue Chain = DAG.getEntryNode(); 6951 6952 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 6953 FuncInfo.PreferredExtendType.end()) 6954 ? ISD::ANY_EXTEND 6955 : FuncInfo.PreferredExtendType[V]; 6956 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 6957 PendingExports.push_back(Chain); 6958 } 6959 6960 #include "llvm/CodeGen/SelectionDAGISel.h" 6961 6962 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6963 /// entry block, return true. This includes arguments used by switches, since 6964 /// the switch may expand into multiple basic blocks. 6965 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6966 // With FastISel active, we may be splitting blocks, so force creation 6967 // of virtual registers for all non-dead arguments. 6968 if (FastISel) 6969 return A->use_empty(); 6970 6971 const BasicBlock *Entry = A->getParent()->begin(); 6972 for (const User *U : A->users()) 6973 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6974 return false; // Use not in entry block. 6975 6976 return true; 6977 } 6978 6979 void SelectionDAGISel::LowerArguments(const Function &F) { 6980 SelectionDAG &DAG = SDB->DAG; 6981 SDLoc dl = SDB->getCurSDLoc(); 6982 const DataLayout *DL = TLI->getDataLayout(); 6983 SmallVector<ISD::InputArg, 16> Ins; 6984 6985 if (!FuncInfo->CanLowerReturn) { 6986 // Put in an sret pointer parameter before all the other parameters. 6987 SmallVector<EVT, 1> ValueVTs; 6988 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6989 6990 // NOTE: Assuming that a pointer will never break down to more than one VT 6991 // or one register. 6992 ISD::ArgFlagsTy Flags; 6993 Flags.setSRet(); 6994 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 6995 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 6996 ISD::InputArg::NoArgIndex, 0); 6997 Ins.push_back(RetArg); 6998 } 6999 7000 // Set up the incoming argument description vector. 7001 unsigned Idx = 1; 7002 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7003 I != E; ++I, ++Idx) { 7004 SmallVector<EVT, 4> ValueVTs; 7005 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7006 bool isArgValueUsed = !I->use_empty(); 7007 unsigned PartBase = 0; 7008 Type *FinalType = I->getType(); 7009 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7010 FinalType = cast<PointerType>(FinalType)->getElementType(); 7011 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7012 FinalType, F.getCallingConv(), F.isVarArg()); 7013 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7014 Value != NumValues; ++Value) { 7015 EVT VT = ValueVTs[Value]; 7016 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7017 ISD::ArgFlagsTy Flags; 7018 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7019 7020 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7021 Flags.setZExt(); 7022 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7023 Flags.setSExt(); 7024 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7025 Flags.setInReg(); 7026 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7027 Flags.setSRet(); 7028 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7029 Flags.setByVal(); 7030 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7031 Flags.setInAlloca(); 7032 // Set the byval flag for CCAssignFn callbacks that don't know about 7033 // inalloca. This way we can know how many bytes we should've allocated 7034 // and how many bytes a callee cleanup function will pop. If we port 7035 // inalloca to more targets, we'll have to add custom inalloca handling 7036 // in the various CC lowering callbacks. 7037 Flags.setByVal(); 7038 } 7039 if (Flags.isByVal() || Flags.isInAlloca()) { 7040 PointerType *Ty = cast<PointerType>(I->getType()); 7041 Type *ElementTy = Ty->getElementType(); 7042 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7043 // For ByVal, alignment should be passed from FE. BE will guess if 7044 // this info is not there but there are cases it cannot get right. 7045 unsigned FrameAlign; 7046 if (F.getParamAlignment(Idx)) 7047 FrameAlign = F.getParamAlignment(Idx); 7048 else 7049 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7050 Flags.setByValAlign(FrameAlign); 7051 } 7052 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7053 Flags.setNest(); 7054 if (NeedsRegBlock) 7055 Flags.setInConsecutiveRegs(); 7056 Flags.setOrigAlign(OriginalAlignment); 7057 7058 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7059 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7060 for (unsigned i = 0; i != NumRegs; ++i) { 7061 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7062 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7063 if (NumRegs > 1 && i == 0) 7064 MyFlags.Flags.setSplit(); 7065 // if it isn't first piece, alignment must be 1 7066 else if (i > 0) 7067 MyFlags.Flags.setOrigAlign(1); 7068 Ins.push_back(MyFlags); 7069 } 7070 if (NeedsRegBlock && Value == NumValues - 1) 7071 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7072 PartBase += VT.getStoreSize(); 7073 } 7074 } 7075 7076 // Call the target to set up the argument values. 7077 SmallVector<SDValue, 8> InVals; 7078 SDValue NewRoot = TLI->LowerFormalArguments( 7079 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7080 7081 // Verify that the target's LowerFormalArguments behaved as expected. 7082 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7083 "LowerFormalArguments didn't return a valid chain!"); 7084 assert(InVals.size() == Ins.size() && 7085 "LowerFormalArguments didn't emit the correct number of values!"); 7086 DEBUG({ 7087 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7088 assert(InVals[i].getNode() && 7089 "LowerFormalArguments emitted a null value!"); 7090 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7091 "LowerFormalArguments emitted a value with the wrong type!"); 7092 } 7093 }); 7094 7095 // Update the DAG with the new chain value resulting from argument lowering. 7096 DAG.setRoot(NewRoot); 7097 7098 // Set up the argument values. 7099 unsigned i = 0; 7100 Idx = 1; 7101 if (!FuncInfo->CanLowerReturn) { 7102 // Create a virtual register for the sret pointer, and put in a copy 7103 // from the sret argument into it. 7104 SmallVector<EVT, 1> ValueVTs; 7105 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7106 MVT VT = ValueVTs[0].getSimpleVT(); 7107 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7108 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7109 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7110 RegVT, VT, nullptr, AssertOp); 7111 7112 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7113 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7114 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7115 FuncInfo->DemoteRegister = SRetReg; 7116 NewRoot = 7117 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7118 DAG.setRoot(NewRoot); 7119 7120 // i indexes lowered arguments. Bump it past the hidden sret argument. 7121 // Idx indexes LLVM arguments. Don't touch it. 7122 ++i; 7123 } 7124 7125 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7126 ++I, ++Idx) { 7127 SmallVector<SDValue, 4> ArgValues; 7128 SmallVector<EVT, 4> ValueVTs; 7129 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7130 unsigned NumValues = ValueVTs.size(); 7131 7132 // If this argument is unused then remember its value. It is used to generate 7133 // debugging information. 7134 if (I->use_empty() && NumValues) { 7135 SDB->setUnusedArgValue(I, InVals[i]); 7136 7137 // Also remember any frame index for use in FastISel. 7138 if (FrameIndexSDNode *FI = 7139 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7140 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7141 } 7142 7143 for (unsigned Val = 0; Val != NumValues; ++Val) { 7144 EVT VT = ValueVTs[Val]; 7145 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7146 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7147 7148 if (!I->use_empty()) { 7149 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7150 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7151 AssertOp = ISD::AssertSext; 7152 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7153 AssertOp = ISD::AssertZext; 7154 7155 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7156 NumParts, PartVT, VT, 7157 nullptr, AssertOp)); 7158 } 7159 7160 i += NumParts; 7161 } 7162 7163 // We don't need to do anything else for unused arguments. 7164 if (ArgValues.empty()) 7165 continue; 7166 7167 // Note down frame index. 7168 if (FrameIndexSDNode *FI = 7169 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7170 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7171 7172 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7173 SDB->getCurSDLoc()); 7174 7175 SDB->setValue(I, Res); 7176 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7177 if (LoadSDNode *LNode = 7178 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7179 if (FrameIndexSDNode *FI = 7180 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7181 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7182 } 7183 7184 // If this argument is live outside of the entry block, insert a copy from 7185 // wherever we got it to the vreg that other BB's will reference it as. 7186 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7187 // If we can, though, try to skip creating an unnecessary vreg. 7188 // FIXME: This isn't very clean... it would be nice to make this more 7189 // general. It's also subtly incompatible with the hacks FastISel 7190 // uses with vregs. 7191 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7192 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7193 FuncInfo->ValueMap[I] = Reg; 7194 continue; 7195 } 7196 } 7197 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7198 FuncInfo->InitializeRegForValue(I); 7199 SDB->CopyToExportRegsIfNeeded(I); 7200 } 7201 } 7202 7203 assert(i == InVals.size() && "Argument register count mismatch!"); 7204 7205 // Finally, if the target has anything special to do, allow it to do so. 7206 EmitFunctionEntryCode(); 7207 } 7208 7209 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7210 /// ensure constants are generated when needed. Remember the virtual registers 7211 /// that need to be added to the Machine PHI nodes as input. We cannot just 7212 /// directly add them, because expansion might result in multiple MBB's for one 7213 /// BB. As such, the start of the BB might correspond to a different MBB than 7214 /// the end. 7215 /// 7216 void 7217 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7218 const TerminatorInst *TI = LLVMBB->getTerminator(); 7219 7220 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7221 7222 // Check PHI nodes in successors that expect a value to be available from this 7223 // block. 7224 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7225 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7226 if (!isa<PHINode>(SuccBB->begin())) continue; 7227 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7228 7229 // If this terminator has multiple identical successors (common for 7230 // switches), only handle each succ once. 7231 if (!SuccsHandled.insert(SuccMBB).second) 7232 continue; 7233 7234 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7235 7236 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7237 // nodes and Machine PHI nodes, but the incoming operands have not been 7238 // emitted yet. 7239 for (BasicBlock::const_iterator I = SuccBB->begin(); 7240 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7241 // Ignore dead phi's. 7242 if (PN->use_empty()) continue; 7243 7244 // Skip empty types 7245 if (PN->getType()->isEmptyTy()) 7246 continue; 7247 7248 unsigned Reg; 7249 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7250 7251 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7252 unsigned &RegOut = ConstantsOut[C]; 7253 if (RegOut == 0) { 7254 RegOut = FuncInfo.CreateRegs(C->getType()); 7255 CopyValueToVirtualRegister(C, RegOut); 7256 } 7257 Reg = RegOut; 7258 } else { 7259 DenseMap<const Value *, unsigned>::iterator I = 7260 FuncInfo.ValueMap.find(PHIOp); 7261 if (I != FuncInfo.ValueMap.end()) 7262 Reg = I->second; 7263 else { 7264 assert(isa<AllocaInst>(PHIOp) && 7265 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7266 "Didn't codegen value into a register!??"); 7267 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7268 CopyValueToVirtualRegister(PHIOp, Reg); 7269 } 7270 } 7271 7272 // Remember that this register needs to added to the machine PHI node as 7273 // the input for this MBB. 7274 SmallVector<EVT, 4> ValueVTs; 7275 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7276 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7277 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7278 EVT VT = ValueVTs[vti]; 7279 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7280 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7281 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7282 Reg += NumRegisters; 7283 } 7284 } 7285 } 7286 7287 ConstantsOut.clear(); 7288 } 7289 7290 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7291 /// is 0. 7292 MachineBasicBlock * 7293 SelectionDAGBuilder::StackProtectorDescriptor:: 7294 AddSuccessorMBB(const BasicBlock *BB, 7295 MachineBasicBlock *ParentMBB, 7296 bool IsLikely, 7297 MachineBasicBlock *SuccMBB) { 7298 // If SuccBB has not been created yet, create it. 7299 if (!SuccMBB) { 7300 MachineFunction *MF = ParentMBB->getParent(); 7301 MachineFunction::iterator BBI = ParentMBB; 7302 SuccMBB = MF->CreateMachineBasicBlock(BB); 7303 MF->insert(++BBI, SuccMBB); 7304 } 7305 // Add it as a successor of ParentMBB. 7306 ParentMBB->addSuccessor( 7307 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7308 return SuccMBB; 7309 } 7310 7311 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7312 MachineFunction::iterator I = MBB; 7313 if (++I == FuncInfo.MF->end()) 7314 return nullptr; 7315 return I; 7316 } 7317 7318 /// During lowering new call nodes can be created (such as memset, etc.). 7319 /// Those will become new roots of the current DAG, but complications arise 7320 /// when they are tail calls. In such cases, the call lowering will update 7321 /// the root, but the builder still needs to know that a tail call has been 7322 /// lowered in order to avoid generating an additional return. 7323 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7324 // If the node is null, we do have a tail call. 7325 if (MaybeTC.getNode() != nullptr) 7326 DAG.setRoot(MaybeTC); 7327 else 7328 HasTailCall = true; 7329 } 7330 7331 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7332 unsigned *TotalCases, unsigned First, 7333 unsigned Last) { 7334 assert(Last >= First); 7335 assert(TotalCases[Last] >= TotalCases[First]); 7336 7337 APInt LowCase = Clusters[First].Low->getValue(); 7338 APInt HighCase = Clusters[Last].High->getValue(); 7339 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7340 7341 // FIXME: A range of consecutive cases has 100% density, but only requires one 7342 // comparison to lower. We should discriminate against such consecutive ranges 7343 // in jump tables. 7344 7345 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7346 uint64_t Range = Diff + 1; 7347 7348 uint64_t NumCases = 7349 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7350 7351 assert(NumCases < UINT64_MAX / 100); 7352 assert(Range >= NumCases); 7353 7354 return NumCases * 100 >= Range * MinJumpTableDensity; 7355 } 7356 7357 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7358 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7359 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7360 } 7361 7362 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7363 unsigned First, unsigned Last, 7364 const SwitchInst *SI, 7365 MachineBasicBlock *DefaultMBB, 7366 CaseCluster &JTCluster) { 7367 assert(First <= Last); 7368 7369 uint32_t Weight = 0; 7370 unsigned NumCmps = 0; 7371 std::vector<MachineBasicBlock*> Table; 7372 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7373 for (unsigned I = First; I <= Last; ++I) { 7374 assert(Clusters[I].Kind == CC_Range); 7375 Weight += Clusters[I].Weight; 7376 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7377 APInt Low = Clusters[I].Low->getValue(); 7378 APInt High = Clusters[I].High->getValue(); 7379 NumCmps += (Low == High) ? 1 : 2; 7380 if (I != First) { 7381 // Fill the gap between this and the previous cluster. 7382 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7383 assert(PreviousHigh.slt(Low)); 7384 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7385 for (uint64_t J = 0; J < Gap; J++) 7386 Table.push_back(DefaultMBB); 7387 } 7388 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7389 for (uint64_t J = 0; J < ClusterSize; ++J) 7390 Table.push_back(Clusters[I].MBB); 7391 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7392 } 7393 7394 unsigned NumDests = JTWeights.size(); 7395 if (isSuitableForBitTests(NumDests, NumCmps, 7396 Clusters[First].Low->getValue(), 7397 Clusters[Last].High->getValue())) { 7398 // Clusters[First..Last] should be lowered as bit tests instead. 7399 return false; 7400 } 7401 7402 // Create the MBB that will load from and jump through the table. 7403 // Note: We create it here, but it's not inserted into the function yet. 7404 MachineFunction *CurMF = FuncInfo.MF; 7405 MachineBasicBlock *JumpTableMBB = 7406 CurMF->CreateMachineBasicBlock(SI->getParent()); 7407 7408 // Add successors. Note: use table order for determinism. 7409 SmallPtrSet<MachineBasicBlock *, 8> Done; 7410 for (MachineBasicBlock *Succ : Table) { 7411 if (Done.count(Succ)) 7412 continue; 7413 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7414 Done.insert(Succ); 7415 } 7416 7417 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7418 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7419 ->createJumpTableIndex(Table); 7420 7421 // Set up the jump table info. 7422 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7423 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7424 Clusters[Last].High->getValue(), SI->getCondition(), 7425 nullptr, false); 7426 JTCases.push_back(JumpTableBlock(JTH, JT)); 7427 7428 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7429 JTCases.size() - 1, Weight); 7430 return true; 7431 } 7432 7433 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7434 const SwitchInst *SI, 7435 MachineBasicBlock *DefaultMBB) { 7436 #ifndef NDEBUG 7437 // Clusters must be non-empty, sorted, and only contain Range clusters. 7438 assert(!Clusters.empty()); 7439 for (CaseCluster &C : Clusters) 7440 assert(C.Kind == CC_Range); 7441 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7442 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7443 #endif 7444 7445 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7446 if (!areJTsAllowed(TLI)) 7447 return; 7448 7449 const int64_t N = Clusters.size(); 7450 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7451 7452 // Split Clusters into minimum number of dense partitions. The algorithm uses 7453 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7454 // for the Case Statement'" (1994), but builds the MinPartitions array in 7455 // reverse order to make it easier to reconstruct the partitions in ascending 7456 // order. In the choice between two optimal partitionings, it picks the one 7457 // which yields more jump tables. 7458 7459 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7460 SmallVector<unsigned, 8> MinPartitions(N); 7461 // LastElement[i] is the last element of the partition starting at i. 7462 SmallVector<unsigned, 8> LastElement(N); 7463 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7464 SmallVector<unsigned, 8> NumTables(N); 7465 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7466 SmallVector<unsigned, 8> TotalCases(N); 7467 7468 for (unsigned i = 0; i < N; ++i) { 7469 APInt Hi = Clusters[i].High->getValue(); 7470 APInt Lo = Clusters[i].Low->getValue(); 7471 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7472 if (i != 0) 7473 TotalCases[i] += TotalCases[i - 1]; 7474 } 7475 7476 // Base case: There is only one way to partition Clusters[N-1]. 7477 MinPartitions[N - 1] = 1; 7478 LastElement[N - 1] = N - 1; 7479 assert(MinJumpTableSize > 1); 7480 NumTables[N - 1] = 0; 7481 7482 // Note: loop indexes are signed to avoid underflow. 7483 for (int64_t i = N - 2; i >= 0; i--) { 7484 // Find optimal partitioning of Clusters[i..N-1]. 7485 // Baseline: Put Clusters[i] into a partition on its own. 7486 MinPartitions[i] = MinPartitions[i + 1] + 1; 7487 LastElement[i] = i; 7488 NumTables[i] = NumTables[i + 1]; 7489 7490 // Search for a solution that results in fewer partitions. 7491 for (int64_t j = N - 1; j > i; j--) { 7492 // Try building a partition from Clusters[i..j]. 7493 if (isDense(Clusters, &TotalCases[0], i, j)) { 7494 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7495 bool IsTable = j - i + 1 >= MinJumpTableSize; 7496 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7497 7498 // If this j leads to fewer partitions, or same number of partitions 7499 // with more lookup tables, it is a better partitioning. 7500 if (NumPartitions < MinPartitions[i] || 7501 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7502 MinPartitions[i] = NumPartitions; 7503 LastElement[i] = j; 7504 NumTables[i] = Tables; 7505 } 7506 } 7507 } 7508 } 7509 7510 // Iterate over the partitions, replacing some with jump tables in-place. 7511 unsigned DstIndex = 0; 7512 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7513 Last = LastElement[First]; 7514 assert(Last >= First); 7515 assert(DstIndex <= First); 7516 unsigned NumClusters = Last - First + 1; 7517 7518 CaseCluster JTCluster; 7519 if (NumClusters >= MinJumpTableSize && 7520 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7521 Clusters[DstIndex++] = JTCluster; 7522 } else { 7523 for (unsigned I = First; I <= Last; ++I) 7524 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7525 } 7526 } 7527 Clusters.resize(DstIndex); 7528 } 7529 7530 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7531 // FIXME: Using the pointer type doesn't seem ideal. 7532 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7533 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7534 return Range <= BW; 7535 } 7536 7537 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7538 unsigned NumCmps, 7539 const APInt &Low, 7540 const APInt &High) { 7541 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7542 // range of cases both require only one branch to lower. Just looking at the 7543 // number of clusters and destinations should be enough to decide whether to 7544 // build bit tests. 7545 7546 // To lower a range with bit tests, the range must fit the bitwidth of a 7547 // machine word. 7548 if (!rangeFitsInWord(Low, High)) 7549 return false; 7550 7551 // Decide whether it's profitable to lower this range with bit tests. Each 7552 // destination requires a bit test and branch, and there is an overall range 7553 // check branch. For a small number of clusters, separate comparisons might be 7554 // cheaper, and for many destinations, splitting the range might be better. 7555 return (NumDests == 1 && NumCmps >= 3) || 7556 (NumDests == 2 && NumCmps >= 5) || 7557 (NumDests == 3 && NumCmps >= 6); 7558 } 7559 7560 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7561 unsigned First, unsigned Last, 7562 const SwitchInst *SI, 7563 CaseCluster &BTCluster) { 7564 assert(First <= Last); 7565 if (First == Last) 7566 return false; 7567 7568 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7569 unsigned NumCmps = 0; 7570 for (int64_t I = First; I <= Last; ++I) { 7571 assert(Clusters[I].Kind == CC_Range); 7572 Dests.set(Clusters[I].MBB->getNumber()); 7573 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7574 } 7575 unsigned NumDests = Dests.count(); 7576 7577 APInt Low = Clusters[First].Low->getValue(); 7578 APInt High = Clusters[Last].High->getValue(); 7579 assert(Low.slt(High)); 7580 7581 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7582 return false; 7583 7584 APInt LowBound; 7585 APInt CmpRange; 7586 7587 const int BitWidth = 7588 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7589 assert((High - Low + 1).sle(BitWidth) && "Case range must fit in bit mask!"); 7590 7591 if (Low.isNonNegative() && High.slt(BitWidth)) { 7592 // Optimize the case where all the case values fit in a 7593 // word without having to subtract minValue. In this case, 7594 // we can optimize away the subtraction. 7595 LowBound = APInt::getNullValue(Low.getBitWidth()); 7596 CmpRange = High; 7597 } else { 7598 LowBound = Low; 7599 CmpRange = High - Low; 7600 } 7601 7602 CaseBitsVector CBV; 7603 uint32_t TotalWeight = 0; 7604 for (unsigned i = First; i <= Last; ++i) { 7605 // Find the CaseBits for this destination. 7606 unsigned j; 7607 for (j = 0; j < CBV.size(); ++j) 7608 if (CBV[j].BB == Clusters[i].MBB) 7609 break; 7610 if (j == CBV.size()) 7611 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7612 CaseBits *CB = &CBV[j]; 7613 7614 // Update Mask, Bits and ExtraWeight. 7615 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7616 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7617 for (uint64_t j = Lo; j <= Hi; ++j) { 7618 CB->Mask |= 1ULL << j; 7619 CB->Bits++; 7620 } 7621 CB->ExtraWeight += Clusters[i].Weight; 7622 TotalWeight += Clusters[i].Weight; 7623 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7624 } 7625 7626 BitTestInfo BTI; 7627 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7628 // Sort by weight first, number of bits second. 7629 if (a.ExtraWeight != b.ExtraWeight) 7630 return a.ExtraWeight > b.ExtraWeight; 7631 return a.Bits > b.Bits; 7632 }); 7633 7634 for (auto &CB : CBV) { 7635 MachineBasicBlock *BitTestBB = 7636 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7637 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7638 } 7639 BitTestCases.push_back(BitTestBlock(LowBound, CmpRange, SI->getCondition(), 7640 -1U, MVT::Other, false, nullptr, 7641 nullptr, std::move(BTI))); 7642 7643 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7644 BitTestCases.size() - 1, TotalWeight); 7645 return true; 7646 } 7647 7648 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7649 const SwitchInst *SI) { 7650 // Partition Clusters into as few subsets as possible, where each subset has a 7651 // range that fits in a machine word and has <= 3 unique destinations. 7652 7653 #ifndef NDEBUG 7654 // Clusters must be sorted and contain Range or JumpTable clusters. 7655 assert(!Clusters.empty()); 7656 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7657 for (const CaseCluster &C : Clusters) 7658 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7659 for (unsigned i = 1; i < Clusters.size(); ++i) 7660 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7661 #endif 7662 7663 // If target does not have legal shift left, do not emit bit tests at all. 7664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7665 EVT PTy = TLI.getPointerTy(); 7666 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7667 return; 7668 7669 int BitWidth = PTy.getSizeInBits(); 7670 const int64_t N = Clusters.size(); 7671 7672 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7673 SmallVector<unsigned, 8> MinPartitions(N); 7674 // LastElement[i] is the last element of the partition starting at i. 7675 SmallVector<unsigned, 8> LastElement(N); 7676 7677 // FIXME: This might not be the best algorithm for finding bit test clusters. 7678 7679 // Base case: There is only one way to partition Clusters[N-1]. 7680 MinPartitions[N - 1] = 1; 7681 LastElement[N - 1] = N - 1; 7682 7683 // Note: loop indexes are signed to avoid underflow. 7684 for (int64_t i = N - 2; i >= 0; --i) { 7685 // Find optimal partitioning of Clusters[i..N-1]. 7686 // Baseline: Put Clusters[i] into a partition on its own. 7687 MinPartitions[i] = MinPartitions[i + 1] + 1; 7688 LastElement[i] = i; 7689 7690 // Search for a solution that results in fewer partitions. 7691 // Note: the search is limited by BitWidth, reducing time complexity. 7692 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7693 // Try building a partition from Clusters[i..j]. 7694 7695 // Check the range. 7696 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7697 Clusters[j].High->getValue())) 7698 continue; 7699 7700 // Check nbr of destinations and cluster types. 7701 // FIXME: This works, but doesn't seem very efficient. 7702 bool RangesOnly = true; 7703 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7704 for (int64_t k = i; k <= j; k++) { 7705 if (Clusters[k].Kind != CC_Range) { 7706 RangesOnly = false; 7707 break; 7708 } 7709 Dests.set(Clusters[k].MBB->getNumber()); 7710 } 7711 if (!RangesOnly || Dests.count() > 3) 7712 break; 7713 7714 // Check if it's a better partition. 7715 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7716 if (NumPartitions < MinPartitions[i]) { 7717 // Found a better partition. 7718 MinPartitions[i] = NumPartitions; 7719 LastElement[i] = j; 7720 } 7721 } 7722 } 7723 7724 // Iterate over the partitions, replacing with bit-test clusters in-place. 7725 unsigned DstIndex = 0; 7726 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7727 Last = LastElement[First]; 7728 assert(First <= Last); 7729 assert(DstIndex <= First); 7730 7731 CaseCluster BitTestCluster; 7732 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7733 Clusters[DstIndex++] = BitTestCluster; 7734 } else { 7735 for (unsigned I = First; I <= Last; ++I) 7736 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7737 } 7738 } 7739 Clusters.resize(DstIndex); 7740 } 7741 7742 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7743 MachineBasicBlock *SwitchMBB, 7744 MachineBasicBlock *DefaultMBB) { 7745 MachineFunction *CurMF = FuncInfo.MF; 7746 MachineBasicBlock *NextMBB = nullptr; 7747 MachineFunction::iterator BBI = W.MBB; 7748 if (++BBI != FuncInfo.MF->end()) 7749 NextMBB = BBI; 7750 7751 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7752 7753 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7754 7755 if (Size == 2 && W.MBB == SwitchMBB) { 7756 // If any two of the cases has the same destination, and if one value 7757 // is the same as the other, but has one bit unset that the other has set, 7758 // use bit manipulation to do two compares at once. For example: 7759 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7760 // TODO: This could be extended to merge any 2 cases in switches with 3 7761 // cases. 7762 // TODO: Handle cases where W.CaseBB != SwitchBB. 7763 CaseCluster &Small = *W.FirstCluster; 7764 CaseCluster &Big = *W.LastCluster; 7765 7766 if (Small.Low == Small.High && Big.Low == Big.High && 7767 Small.MBB == Big.MBB) { 7768 const APInt &SmallValue = Small.Low->getValue(); 7769 const APInt &BigValue = Big.Low->getValue(); 7770 7771 // Check that there is only one bit different. 7772 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 7773 (SmallValue | BigValue) == BigValue) { 7774 // Isolate the common bit. 7775 APInt CommonBit = BigValue & ~SmallValue; 7776 assert((SmallValue | CommonBit) == BigValue && 7777 CommonBit.countPopulation() == 1 && "Not a common bit?"); 7778 7779 SDValue CondLHS = getValue(Cond); 7780 EVT VT = CondLHS.getValueType(); 7781 SDLoc DL = getCurSDLoc(); 7782 7783 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7784 DAG.getConstant(CommonBit, DL, VT)); 7785 SDValue Cond = DAG.getSetCC(DL, MVT::i1, Or, 7786 DAG.getConstant(BigValue, DL, VT), 7787 ISD::SETEQ); 7788 7789 // Update successor info. 7790 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7791 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7792 addSuccessorWithWeight( 7793 SwitchMBB, DefaultMBB, 7794 // The default destination is the first successor in IR. 7795 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7796 : 0); 7797 7798 // Insert the true branch. 7799 SDValue BrCond = 7800 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7801 DAG.getBasicBlock(Small.MBB)); 7802 // Insert the false branch. 7803 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7804 DAG.getBasicBlock(DefaultMBB)); 7805 7806 DAG.setRoot(BrCond); 7807 return; 7808 } 7809 } 7810 } 7811 7812 if (TM.getOptLevel() != CodeGenOpt::None) { 7813 // Order cases by weight so the most likely case will be checked first. 7814 std::sort(W.FirstCluster, W.LastCluster + 1, 7815 [](const CaseCluster &a, const CaseCluster &b) { 7816 return a.Weight > b.Weight; 7817 }); 7818 7819 // Rearrange the case blocks so that the last one falls through if possible 7820 // without without changing the order of weights. 7821 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7822 --I; 7823 if (I->Weight > W.LastCluster->Weight) 7824 break; 7825 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7826 std::swap(*I, *W.LastCluster); 7827 break; 7828 } 7829 } 7830 } 7831 7832 // Compute total weight. 7833 uint32_t UnhandledWeights = 0; 7834 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7835 UnhandledWeights += I->Weight; 7836 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7837 } 7838 7839 MachineBasicBlock *CurMBB = W.MBB; 7840 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7841 MachineBasicBlock *Fallthrough; 7842 if (I == W.LastCluster) { 7843 // For the last cluster, fall through to the default destination. 7844 Fallthrough = DefaultMBB; 7845 } else { 7846 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7847 CurMF->insert(BBI, Fallthrough); 7848 // Put Cond in a virtual register to make it available from the new blocks. 7849 ExportFromCurrentBlock(Cond); 7850 } 7851 7852 switch (I->Kind) { 7853 case CC_JumpTable: { 7854 // FIXME: Optimize away range check based on pivot comparisons. 7855 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7856 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7857 7858 // The jump block hasn't been inserted yet; insert it here. 7859 MachineBasicBlock *JumpMBB = JT->MBB; 7860 CurMF->insert(BBI, JumpMBB); 7861 addSuccessorWithWeight(CurMBB, Fallthrough); 7862 addSuccessorWithWeight(CurMBB, JumpMBB); 7863 7864 // The jump table header will be inserted in our current block, do the 7865 // range check, and fall through to our fallthrough block. 7866 JTH->HeaderBB = CurMBB; 7867 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7868 7869 // If we're in the right place, emit the jump table header right now. 7870 if (CurMBB == SwitchMBB) { 7871 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7872 JTH->Emitted = true; 7873 } 7874 break; 7875 } 7876 case CC_BitTests: { 7877 // FIXME: Optimize away range check based on pivot comparisons. 7878 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7879 7880 // The bit test blocks haven't been inserted yet; insert them here. 7881 for (BitTestCase &BTC : BTB->Cases) 7882 CurMF->insert(BBI, BTC.ThisBB); 7883 7884 // Fill in fields of the BitTestBlock. 7885 BTB->Parent = CurMBB; 7886 BTB->Default = Fallthrough; 7887 7888 // If we're in the right place, emit the bit test header header right now. 7889 if (CurMBB ==SwitchMBB) { 7890 visitBitTestHeader(*BTB, SwitchMBB); 7891 BTB->Emitted = true; 7892 } 7893 break; 7894 } 7895 case CC_Range: { 7896 const Value *RHS, *LHS, *MHS; 7897 ISD::CondCode CC; 7898 if (I->Low == I->High) { 7899 // Check Cond == I->Low. 7900 CC = ISD::SETEQ; 7901 LHS = Cond; 7902 RHS=I->Low; 7903 MHS = nullptr; 7904 } else { 7905 // Check I->Low <= Cond <= I->High. 7906 CC = ISD::SETLE; 7907 LHS = I->Low; 7908 MHS = Cond; 7909 RHS = I->High; 7910 } 7911 7912 // The false weight is the sum of all unhandled cases. 7913 UnhandledWeights -= I->Weight; 7914 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7915 UnhandledWeights); 7916 7917 if (CurMBB == SwitchMBB) 7918 visitSwitchCase(CB, SwitchMBB); 7919 else 7920 SwitchCases.push_back(CB); 7921 7922 break; 7923 } 7924 } 7925 CurMBB = Fallthrough; 7926 } 7927 } 7928 7929 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 7930 const SwitchWorkListItem &W, 7931 Value *Cond, 7932 MachineBasicBlock *SwitchMBB) { 7933 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 7934 "Clusters not sorted?"); 7935 7936 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 7937 7938 // Balance the tree based on branch weights to create a near-optimal (in terms 7939 // of search time given key frequency) binary search tree. See e.g. Kurt 7940 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 7941 CaseClusterIt LastLeft = W.FirstCluster; 7942 CaseClusterIt FirstRight = W.LastCluster; 7943 uint32_t LeftWeight = LastLeft->Weight; 7944 uint32_t RightWeight = FirstRight->Weight; 7945 7946 // Move LastLeft and FirstRight towards each other from opposite directions to 7947 // find a partitioning of the clusters which balances the weight on both 7948 // sides. 7949 while (LastLeft + 1 < FirstRight) { 7950 // Zero-weight nodes would cause skewed trees since they don't affect 7951 // LeftWeight or RightWeight. 7952 assert(LastLeft->Weight != 0); 7953 assert(FirstRight->Weight != 0); 7954 7955 if (LeftWeight < RightWeight) 7956 LeftWeight += (++LastLeft)->Weight; 7957 else 7958 RightWeight += (--FirstRight)->Weight; 7959 } 7960 assert(LastLeft + 1 == FirstRight); 7961 assert(LastLeft >= W.FirstCluster); 7962 assert(FirstRight <= W.LastCluster); 7963 7964 // Use the first element on the right as pivot since we will make less-than 7965 // comparisons against it. 7966 CaseClusterIt PivotCluster = FirstRight; 7967 assert(PivotCluster > W.FirstCluster); 7968 assert(PivotCluster <= W.LastCluster); 7969 7970 CaseClusterIt FirstLeft = W.FirstCluster; 7971 CaseClusterIt LastRight = W.LastCluster; 7972 7973 const ConstantInt *Pivot = PivotCluster->Low; 7974 7975 // New blocks will be inserted immediately after the current one. 7976 MachineFunction::iterator BBI = W.MBB; 7977 ++BBI; 7978 7979 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 7980 // we can branch to its destination directly if it's squeezed exactly in 7981 // between the known lower bound and Pivot - 1. 7982 MachineBasicBlock *LeftMBB; 7983 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 7984 FirstLeft->Low == W.GE && 7985 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 7986 LeftMBB = FirstLeft->MBB; 7987 } else { 7988 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 7989 FuncInfo.MF->insert(BBI, LeftMBB); 7990 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 7991 // Put Cond in a virtual register to make it available from the new blocks. 7992 ExportFromCurrentBlock(Cond); 7993 } 7994 7995 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 7996 // single cluster, RHS.Low == Pivot, and we can branch to its destination 7997 // directly if RHS.High equals the current upper bound. 7998 MachineBasicBlock *RightMBB; 7999 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8000 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8001 RightMBB = FirstRight->MBB; 8002 } else { 8003 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8004 FuncInfo.MF->insert(BBI, RightMBB); 8005 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8006 // Put Cond in a virtual register to make it available from the new blocks. 8007 ExportFromCurrentBlock(Cond); 8008 } 8009 8010 // Create the CaseBlock record that will be used to lower the branch. 8011 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8012 LeftWeight, RightWeight); 8013 8014 if (W.MBB == SwitchMBB) 8015 visitSwitchCase(CB, SwitchMBB); 8016 else 8017 SwitchCases.push_back(CB); 8018 } 8019 8020 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8021 // Extract cases from the switch. 8022 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8023 CaseClusterVector Clusters; 8024 Clusters.reserve(SI.getNumCases()); 8025 for (auto I : SI.cases()) { 8026 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8027 const ConstantInt *CaseVal = I.getCaseValue(); 8028 uint32_t Weight = 1; 8029 if (BPI) { 8030 Weight = BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()); 8031 assert(Weight <= UINT32_MAX / SI.getNumSuccessors()); 8032 } 8033 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8034 } 8035 8036 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8037 8038 if (TM.getOptLevel() != CodeGenOpt::None) { 8039 // Cluster adjacent cases with the same destination. 8040 sortAndRangeify(Clusters); 8041 8042 // Replace an unreachable default with the most popular destination. 8043 // FIXME: Exploit unreachable default more aggressively. 8044 bool UnreachableDefault = 8045 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8046 if (UnreachableDefault && !Clusters.empty()) { 8047 DenseMap<const BasicBlock *, unsigned> Popularity; 8048 unsigned MaxPop = 0; 8049 const BasicBlock *MaxBB = nullptr; 8050 for (auto I : SI.cases()) { 8051 const BasicBlock *BB = I.getCaseSuccessor(); 8052 if (++Popularity[BB] > MaxPop) { 8053 MaxPop = Popularity[BB]; 8054 MaxBB = BB; 8055 } 8056 } 8057 // Set new default. 8058 assert(MaxPop > 0 && MaxBB); 8059 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8060 8061 // Remove cases that were pointing to the destination that is now the 8062 // default. 8063 CaseClusterVector New; 8064 New.reserve(Clusters.size()); 8065 for (CaseCluster &CC : Clusters) { 8066 if (CC.MBB != DefaultMBB) 8067 New.push_back(CC); 8068 } 8069 Clusters = std::move(New); 8070 } 8071 } 8072 8073 // If there is only the default destination, jump there directly. 8074 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8075 if (Clusters.empty()) { 8076 SwitchMBB->addSuccessor(DefaultMBB); 8077 if (DefaultMBB != NextBlock(SwitchMBB)) { 8078 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8079 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8080 } 8081 return; 8082 } 8083 8084 if (TM.getOptLevel() != CodeGenOpt::None) { 8085 findJumpTables(Clusters, &SI, DefaultMBB); 8086 findBitTestClusters(Clusters, &SI); 8087 } 8088 8089 8090 DEBUG({ 8091 dbgs() << "Case clusters: "; 8092 for (const CaseCluster &C : Clusters) { 8093 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8094 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8095 8096 C.Low->getValue().print(dbgs(), true); 8097 if (C.Low != C.High) { 8098 dbgs() << '-'; 8099 C.High->getValue().print(dbgs(), true); 8100 } 8101 dbgs() << ' '; 8102 } 8103 dbgs() << '\n'; 8104 }); 8105 8106 assert(!Clusters.empty()); 8107 SwitchWorkList WorkList; 8108 CaseClusterIt First = Clusters.begin(); 8109 CaseClusterIt Last = Clusters.end() - 1; 8110 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8111 8112 while (!WorkList.empty()) { 8113 SwitchWorkListItem W = WorkList.back(); 8114 WorkList.pop_back(); 8115 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8116 8117 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8118 // For optimized builds, lower large range as a balanced binary tree. 8119 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8120 continue; 8121 } 8122 8123 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8124 } 8125 } 8126