1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/FastISel.h" 28 #include "llvm/CodeGen/FunctionLoweringInfo.h" 29 #include "llvm/CodeGen/GCMetadata.h" 30 #include "llvm/CodeGen/GCStrategy.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 39 #include "llvm/CodeGen/StackMaps.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GetElementPtrTypeIterator.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Statepoint.h" 56 #include "llvm/MC/MCSymbol.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MathExtras.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetFrameLowering.h" 63 #include "llvm/Target/TargetInstrInfo.h" 64 #include "llvm/Target/TargetIntrinsicInfo.h" 65 #include "llvm/Target/TargetLowering.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include "llvm/Target/TargetSubtargetInfo.h" 68 #include <algorithm> 69 #include <utility> 70 using namespace llvm; 71 72 #define DEBUG_TYPE "isel" 73 74 /// LimitFloatPrecision - Generate low-precision inline sequences for 75 /// some float libcalls (6, 8 or 12 bits). 76 static unsigned LimitFloatPrecision; 77 78 static cl::opt<unsigned, true> 79 LimitFPPrecision("limit-float-precision", 80 cl::desc("Generate low-precision inline sequences " 81 "for some float libcalls"), 82 cl::location(LimitFloatPrecision), 83 cl::init(0)); 84 85 static cl::opt<bool> 86 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 87 cl::desc("Enable fast-math-flags for DAG nodes")); 88 89 // Limit the width of DAG chains. This is important in general to prevent 90 // DAG-based analysis from blowing up. For example, alias analysis and 91 // load clustering may not complete in reasonable time. It is difficult to 92 // recognize and avoid this situation within each individual analysis, and 93 // future analyses are likely to have the same behavior. Limiting DAG width is 94 // the safe approach and will be especially important with global DAGs. 95 // 96 // MaxParallelChains default is arbitrarily high to avoid affecting 97 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 98 // sequence over this should have been converted to llvm.memcpy by the 99 // frontend. It easy to induce this behavior with .ll code such as: 100 // %buffer = alloca [4096 x i8] 101 // %data = load [4096 x i8]* %argPtr 102 // store [4096 x i8] %data, [4096 x i8]* %buffer 103 static const unsigned MaxParallelChains = 64; 104 105 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 106 const SDValue *Parts, unsigned NumParts, 107 MVT PartVT, EVT ValueVT, const Value *V); 108 109 /// getCopyFromParts - Create a value that contains the specified legal parts 110 /// combined into the value they represent. If the parts combine to a type 111 /// larger then ValueVT then AssertOp can be used to specify whether the extra 112 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 113 /// (ISD::AssertSext). 114 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 115 const SDValue *Parts, 116 unsigned NumParts, MVT PartVT, EVT ValueVT, 117 const Value *V, 118 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 119 if (ValueVT.isVector()) 120 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 121 PartVT, ValueVT, V); 122 123 assert(NumParts > 0 && "No parts to assemble!"); 124 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 125 SDValue Val = Parts[0]; 126 127 if (NumParts > 1) { 128 // Assemble the value from multiple parts. 129 if (ValueVT.isInteger()) { 130 unsigned PartBits = PartVT.getSizeInBits(); 131 unsigned ValueBits = ValueVT.getSizeInBits(); 132 133 // Assemble the power of 2 part. 134 unsigned RoundParts = NumParts & (NumParts - 1) ? 135 1 << Log2_32(NumParts) : NumParts; 136 unsigned RoundBits = PartBits * RoundParts; 137 EVT RoundVT = RoundBits == ValueBits ? 138 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 139 SDValue Lo, Hi; 140 141 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 142 143 if (RoundParts > 2) { 144 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 145 PartVT, HalfVT, V); 146 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 147 RoundParts / 2, PartVT, HalfVT, V); 148 } else { 149 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 150 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 151 } 152 153 if (DAG.getDataLayout().isBigEndian()) 154 std::swap(Lo, Hi); 155 156 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 157 158 if (RoundParts < NumParts) { 159 // Assemble the trailing non-power-of-2 part. 160 unsigned OddParts = NumParts - RoundParts; 161 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 162 Hi = getCopyFromParts(DAG, DL, 163 Parts + RoundParts, OddParts, PartVT, OddVT, V); 164 165 // Combine the round and odd parts. 166 Lo = Val; 167 if (DAG.getDataLayout().isBigEndian()) 168 std::swap(Lo, Hi); 169 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 170 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 171 Hi = 172 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 173 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 174 TLI.getPointerTy(DAG.getDataLayout()))); 175 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 176 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 177 } 178 } else if (PartVT.isFloatingPoint()) { 179 // FP split into multiple FP parts (for ppcf128) 180 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 181 "Unexpected split"); 182 SDValue Lo, Hi; 183 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 184 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 185 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 186 std::swap(Lo, Hi); 187 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 188 } else { 189 // FP split into integer parts (soft fp) 190 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 191 !PartVT.isVector() && "Unexpected split"); 192 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 193 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 194 } 195 } 196 197 // There is now one part, held in Val. Correct it to match ValueVT. 198 // PartEVT is the type of the register class that holds the value. 199 // ValueVT is the type of the inline asm operation. 200 EVT PartEVT = Val.getValueType(); 201 202 if (PartEVT == ValueVT) 203 return Val; 204 205 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 206 ValueVT.bitsLT(PartEVT)) { 207 // For an FP value in an integer part, we need to truncate to the right 208 // width first. 209 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 210 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 211 } 212 213 // Handle types that have the same size. 214 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 215 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 216 217 // Handle types with different sizes. 218 if (PartEVT.isInteger() && ValueVT.isInteger()) { 219 if (ValueVT.bitsLT(PartEVT)) { 220 // For a truncate, see if we have any information to 221 // indicate whether the truncated bits will always be 222 // zero or sign-extension. 223 if (AssertOp != ISD::DELETED_NODE) 224 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 225 DAG.getValueType(ValueVT)); 226 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 227 } 228 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 229 } 230 231 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 232 // FP_ROUND's are always exact here. 233 if (ValueVT.bitsLT(Val.getValueType())) 234 return DAG.getNode( 235 ISD::FP_ROUND, DL, ValueVT, Val, 236 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 237 238 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 239 } 240 241 llvm_unreachable("Unknown mismatch!"); 242 } 243 244 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 245 const Twine &ErrMsg) { 246 const Instruction *I = dyn_cast_or_null<Instruction>(V); 247 if (!V) 248 return Ctx.emitError(ErrMsg); 249 250 const char *AsmError = ", possible invalid constraint for vector type"; 251 if (const CallInst *CI = dyn_cast<CallInst>(I)) 252 if (isa<InlineAsm>(CI->getCalledValue())) 253 return Ctx.emitError(I, ErrMsg + AsmError); 254 255 return Ctx.emitError(I, ErrMsg); 256 } 257 258 /// getCopyFromPartsVector - Create a value that contains the specified legal 259 /// parts combined into the value they represent. If the parts combine to a 260 /// type larger then ValueVT then AssertOp can be used to specify whether the 261 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 262 /// ValueVT (ISD::AssertSext). 263 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 264 const SDValue *Parts, unsigned NumParts, 265 MVT PartVT, EVT ValueVT, const Value *V) { 266 assert(ValueVT.isVector() && "Not a vector value"); 267 assert(NumParts > 0 && "No parts to assemble!"); 268 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 269 SDValue Val = Parts[0]; 270 271 // Handle a multi-element vector. 272 if (NumParts > 1) { 273 EVT IntermediateVT; 274 MVT RegisterVT; 275 unsigned NumIntermediates; 276 unsigned NumRegs = 277 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 278 NumIntermediates, RegisterVT); 279 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 280 NumParts = NumRegs; // Silence a compiler warning. 281 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 282 assert(RegisterVT.getSizeInBits() == 283 Parts[0].getSimpleValueType().getSizeInBits() && 284 "Part type sizes don't match!"); 285 286 // Assemble the parts into intermediate operands. 287 SmallVector<SDValue, 8> Ops(NumIntermediates); 288 if (NumIntermediates == NumParts) { 289 // If the register was not expanded, truncate or copy the value, 290 // as appropriate. 291 for (unsigned i = 0; i != NumParts; ++i) 292 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 293 PartVT, IntermediateVT, V); 294 } else if (NumParts > 0) { 295 // If the intermediate type was expanded, build the intermediate 296 // operands from the parts. 297 assert(NumParts % NumIntermediates == 0 && 298 "Must expand into a divisible number of parts!"); 299 unsigned Factor = NumParts / NumIntermediates; 300 for (unsigned i = 0; i != NumIntermediates; ++i) 301 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 302 PartVT, IntermediateVT, V); 303 } 304 305 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 306 // intermediate operands. 307 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 308 : ISD::BUILD_VECTOR, 309 DL, ValueVT, Ops); 310 } 311 312 // There is now one part, held in Val. Correct it to match ValueVT. 313 EVT PartEVT = Val.getValueType(); 314 315 if (PartEVT == ValueVT) 316 return Val; 317 318 if (PartEVT.isVector()) { 319 // If the element type of the source/dest vectors are the same, but the 320 // parts vector has more elements than the value vector, then we have a 321 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 322 // elements we want. 323 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 324 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 325 "Cannot narrow, it would be a lossy transformation"); 326 return DAG.getNode( 327 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 328 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 329 } 330 331 // Vector/Vector bitcast. 332 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 333 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 334 335 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 336 "Cannot handle this kind of promotion"); 337 // Promoted vector extract 338 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 339 340 } 341 342 // Trivial bitcast if the types are the same size and the destination 343 // vector type is legal. 344 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 345 TLI.isTypeLegal(ValueVT)) 346 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 347 348 // Handle cases such as i8 -> <1 x i1> 349 if (ValueVT.getVectorNumElements() != 1) { 350 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 351 "non-trivial scalar-to-vector conversion"); 352 return DAG.getUNDEF(ValueVT); 353 } 354 355 if (ValueVT.getVectorNumElements() == 1 && 356 ValueVT.getVectorElementType() != PartEVT) 357 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 358 359 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 360 } 361 362 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 363 SDValue Val, SDValue *Parts, unsigned NumParts, 364 MVT PartVT, const Value *V); 365 366 /// getCopyToParts - Create a series of nodes that contain the specified value 367 /// split into legal parts. If the parts contain more bits than Val, then, for 368 /// integers, ExtendKind can be used to specify how to generate the extra bits. 369 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 370 SDValue Val, SDValue *Parts, unsigned NumParts, 371 MVT PartVT, const Value *V, 372 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 373 EVT ValueVT = Val.getValueType(); 374 375 // Handle the vector case separately. 376 if (ValueVT.isVector()) 377 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 378 379 unsigned PartBits = PartVT.getSizeInBits(); 380 unsigned OrigNumParts = NumParts; 381 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 382 "Copying to an illegal type!"); 383 384 if (NumParts == 0) 385 return; 386 387 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 388 EVT PartEVT = PartVT; 389 if (PartEVT == ValueVT) { 390 assert(NumParts == 1 && "No-op copy with multiple parts!"); 391 Parts[0] = Val; 392 return; 393 } 394 395 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 396 // If the parts cover more bits than the value has, promote the value. 397 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 398 assert(NumParts == 1 && "Do not know what to promote to!"); 399 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 400 } else { 401 if (ValueVT.isFloatingPoint()) { 402 // FP values need to be bitcast, then extended if they are being put 403 // into a larger container. 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 405 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 406 } 407 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 408 ValueVT.isInteger() && 409 "Unknown mismatch!"); 410 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 411 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 412 if (PartVT == MVT::x86mmx) 413 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 414 } 415 } else if (PartBits == ValueVT.getSizeInBits()) { 416 // Different types of the same size. 417 assert(NumParts == 1 && PartEVT != ValueVT); 418 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 419 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 420 // If the parts cover less bits than value has, truncate the value. 421 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 422 ValueVT.isInteger() && 423 "Unknown mismatch!"); 424 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 425 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 426 if (PartVT == MVT::x86mmx) 427 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 428 } 429 430 // The value may have changed - recompute ValueVT. 431 ValueVT = Val.getValueType(); 432 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 433 "Failed to tile the value with PartVT!"); 434 435 if (NumParts == 1) { 436 if (PartEVT != ValueVT) 437 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 438 "scalar-to-vector conversion failed"); 439 440 Parts[0] = Val; 441 return; 442 } 443 444 // Expand the value into multiple parts. 445 if (NumParts & (NumParts - 1)) { 446 // The number of parts is not a power of 2. Split off and copy the tail. 447 assert(PartVT.isInteger() && ValueVT.isInteger() && 448 "Do not know what to expand to!"); 449 unsigned RoundParts = 1 << Log2_32(NumParts); 450 unsigned RoundBits = RoundParts * PartBits; 451 unsigned OddParts = NumParts - RoundParts; 452 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 453 DAG.getIntPtrConstant(RoundBits, DL)); 454 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 455 456 if (DAG.getDataLayout().isBigEndian()) 457 // The odd parts were reversed by getCopyToParts - unreverse them. 458 std::reverse(Parts + RoundParts, Parts + NumParts); 459 460 NumParts = RoundParts; 461 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 462 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 463 } 464 465 // The number of parts is a power of 2. Repeatedly bisect the value using 466 // EXTRACT_ELEMENT. 467 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 468 EVT::getIntegerVT(*DAG.getContext(), 469 ValueVT.getSizeInBits()), 470 Val); 471 472 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 473 for (unsigned i = 0; i < NumParts; i += StepSize) { 474 unsigned ThisBits = StepSize * PartBits / 2; 475 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 476 SDValue &Part0 = Parts[i]; 477 SDValue &Part1 = Parts[i+StepSize/2]; 478 479 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 480 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 481 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 482 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 483 484 if (ThisBits == PartBits && ThisVT != PartVT) { 485 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 486 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 487 } 488 } 489 } 490 491 if (DAG.getDataLayout().isBigEndian()) 492 std::reverse(Parts, Parts + OrigNumParts); 493 } 494 495 496 /// getCopyToPartsVector - Create a series of nodes that contain the specified 497 /// value split into legal parts. 498 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 499 SDValue Val, SDValue *Parts, unsigned NumParts, 500 MVT PartVT, const Value *V) { 501 EVT ValueVT = Val.getValueType(); 502 assert(ValueVT.isVector() && "Not a vector"); 503 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 504 505 if (NumParts == 1) { 506 EVT PartEVT = PartVT; 507 if (PartEVT == ValueVT) { 508 // Nothing to do. 509 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 510 // Bitconvert vector->vector case. 511 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 512 } else if (PartVT.isVector() && 513 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 514 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 515 EVT ElementVT = PartVT.getVectorElementType(); 516 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 517 // undef elements. 518 SmallVector<SDValue, 16> Ops; 519 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getNode( 521 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 522 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 523 524 for (unsigned i = ValueVT.getVectorNumElements(), 525 e = PartVT.getVectorNumElements(); i != e; ++i) 526 Ops.push_back(DAG.getUNDEF(ElementVT)); 527 528 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 529 530 // FIXME: Use CONCAT for 2x -> 4x. 531 532 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 533 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 534 } else if (PartVT.isVector() && 535 PartEVT.getVectorElementType().bitsGE( 536 ValueVT.getVectorElementType()) && 537 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 538 539 // Promoted vector extract 540 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 541 } else{ 542 // Vector -> scalar conversion. 543 assert(ValueVT.getVectorNumElements() == 1 && 544 "Only trivial vector-to-scalar conversions should get here!"); 545 Val = DAG.getNode( 546 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 547 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 548 549 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 550 } 551 552 Parts[0] = Val; 553 return; 554 } 555 556 // Handle a multi-element vector. 557 EVT IntermediateVT; 558 MVT RegisterVT; 559 unsigned NumIntermediates; 560 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 561 IntermediateVT, 562 NumIntermediates, RegisterVT); 563 unsigned NumElements = ValueVT.getVectorNumElements(); 564 565 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 566 NumParts = NumRegs; // Silence a compiler warning. 567 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 568 569 // Split the vector into intermediate operands. 570 SmallVector<SDValue, 8> Ops(NumIntermediates); 571 for (unsigned i = 0; i != NumIntermediates; ++i) { 572 if (IntermediateVT.isVector()) 573 Ops[i] = 574 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 575 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 576 TLI.getVectorIdxTy(DAG.getDataLayout()))); 577 else 578 Ops[i] = DAG.getNode( 579 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 580 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 581 } 582 583 // Split the intermediate operands into legal parts. 584 if (NumParts == NumIntermediates) { 585 // If the register was not expanded, promote or copy the value, 586 // as appropriate. 587 for (unsigned i = 0; i != NumParts; ++i) 588 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 589 } else if (NumParts > 0) { 590 // If the intermediate type was expanded, split each the value into 591 // legal parts. 592 assert(NumIntermediates != 0 && "division by zero"); 593 assert(NumParts % NumIntermediates == 0 && 594 "Must expand into a divisible number of parts!"); 595 unsigned Factor = NumParts / NumIntermediates; 596 for (unsigned i = 0; i != NumIntermediates; ++i) 597 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 598 } 599 } 600 601 RegsForValue::RegsForValue() {} 602 603 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 604 EVT valuevt) 605 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 606 607 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 608 const DataLayout &DL, unsigned Reg, Type *Ty) { 609 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 610 611 for (EVT ValueVT : ValueVTs) { 612 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 613 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 614 for (unsigned i = 0; i != NumRegs; ++i) 615 Regs.push_back(Reg + i); 616 RegVTs.push_back(RegisterVT); 617 Reg += NumRegs; 618 } 619 } 620 621 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 622 /// this value and returns the result as a ValueVT value. This uses 623 /// Chain/Flag as the input and updates them for the output Chain/Flag. 624 /// If the Flag pointer is NULL, no flag is used. 625 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 626 FunctionLoweringInfo &FuncInfo, 627 SDLoc dl, 628 SDValue &Chain, SDValue *Flag, 629 const Value *V) const { 630 // A Value with type {} or [0 x %t] needs no registers. 631 if (ValueVTs.empty()) 632 return SDValue(); 633 634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 635 636 // Assemble the legal parts into the final values. 637 SmallVector<SDValue, 4> Values(ValueVTs.size()); 638 SmallVector<SDValue, 8> Parts; 639 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 640 // Copy the legal parts from the registers. 641 EVT ValueVT = ValueVTs[Value]; 642 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 643 MVT RegisterVT = RegVTs[Value]; 644 645 Parts.resize(NumRegs); 646 for (unsigned i = 0; i != NumRegs; ++i) { 647 SDValue P; 648 if (!Flag) { 649 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 650 } else { 651 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 652 *Flag = P.getValue(2); 653 } 654 655 Chain = P.getValue(1); 656 Parts[i] = P; 657 658 // If the source register was virtual and if we know something about it, 659 // add an assert node. 660 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 661 !RegisterVT.isInteger() || RegisterVT.isVector()) 662 continue; 663 664 const FunctionLoweringInfo::LiveOutInfo *LOI = 665 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 666 if (!LOI) 667 continue; 668 669 unsigned RegSize = RegisterVT.getSizeInBits(); 670 unsigned NumSignBits = LOI->NumSignBits; 671 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 672 673 if (NumZeroBits == RegSize) { 674 // The current value is a zero. 675 // Explicitly express that as it would be easier for 676 // optimizations to kick in. 677 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 678 continue; 679 } 680 681 // FIXME: We capture more information than the dag can represent. For 682 // now, just use the tightest assertzext/assertsext possible. 683 bool isSExt = true; 684 EVT FromVT(MVT::Other); 685 if (NumSignBits == RegSize) { 686 isSExt = true; // ASSERT SEXT 1 687 FromVT = MVT::i1; 688 } else if (NumZeroBits >= RegSize - 1) { 689 isSExt = false; // ASSERT ZEXT 1 690 FromVT = MVT::i1; 691 } else if (NumSignBits > RegSize - 8) { 692 isSExt = true; // ASSERT SEXT 8 693 FromVT = MVT::i8; 694 } else if (NumZeroBits >= RegSize - 8) { 695 isSExt = false; // ASSERT ZEXT 8 696 FromVT = MVT::i8; 697 } else if (NumSignBits > RegSize - 16) { 698 isSExt = true; // ASSERT SEXT 16 699 FromVT = MVT::i16; 700 } else if (NumZeroBits >= RegSize - 16) { 701 isSExt = false; // ASSERT ZEXT 16 702 FromVT = MVT::i16; 703 } else if (NumSignBits > RegSize - 32) { 704 isSExt = true; // ASSERT SEXT 32 705 FromVT = MVT::i32; 706 } else if (NumZeroBits >= RegSize - 32) { 707 isSExt = false; // ASSERT ZEXT 32 708 FromVT = MVT::i32; 709 } else { 710 continue; 711 } 712 // Add an assertion node. 713 assert(FromVT != MVT::Other); 714 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 715 RegisterVT, P, DAG.getValueType(FromVT)); 716 } 717 718 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 719 NumRegs, RegisterVT, ValueVT, V); 720 Part += NumRegs; 721 Parts.clear(); 722 } 723 724 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 725 } 726 727 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 728 /// specified value into the registers specified by this object. This uses 729 /// Chain/Flag as the input and updates them for the output Chain/Flag. 730 /// If the Flag pointer is NULL, no flag is used. 731 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 732 SDValue &Chain, SDValue *Flag, const Value *V, 733 ISD::NodeType PreferredExtendType) const { 734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 735 ISD::NodeType ExtendKind = PreferredExtendType; 736 737 // Get the list of the values's legal parts. 738 unsigned NumRegs = Regs.size(); 739 SmallVector<SDValue, 8> Parts(NumRegs); 740 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 741 EVT ValueVT = ValueVTs[Value]; 742 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 743 MVT RegisterVT = RegVTs[Value]; 744 745 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 746 ExtendKind = ISD::ZERO_EXTEND; 747 748 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 749 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 750 Part += NumParts; 751 } 752 753 // Copy the parts into the registers. 754 SmallVector<SDValue, 8> Chains(NumRegs); 755 for (unsigned i = 0; i != NumRegs; ++i) { 756 SDValue Part; 757 if (!Flag) { 758 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 759 } else { 760 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 761 *Flag = Part.getValue(1); 762 } 763 764 Chains[i] = Part.getValue(0); 765 } 766 767 if (NumRegs == 1 || Flag) 768 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 769 // flagged to it. That is the CopyToReg nodes and the user are considered 770 // a single scheduling unit. If we create a TokenFactor and return it as 771 // chain, then the TokenFactor is both a predecessor (operand) of the 772 // user as well as a successor (the TF operands are flagged to the user). 773 // c1, f1 = CopyToReg 774 // c2, f2 = CopyToReg 775 // c3 = TokenFactor c1, c2 776 // ... 777 // = op c3, ..., f2 778 Chain = Chains[NumRegs-1]; 779 else 780 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 781 } 782 783 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 784 /// operand list. This adds the code marker and includes the number of 785 /// values added into it. 786 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 787 unsigned MatchingIdx, SDLoc dl, 788 SelectionDAG &DAG, 789 std::vector<SDValue> &Ops) const { 790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 791 792 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 793 if (HasMatching) 794 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 795 else if (!Regs.empty() && 796 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 797 // Put the register class of the virtual registers in the flag word. That 798 // way, later passes can recompute register class constraints for inline 799 // assembly as well as normal instructions. 800 // Don't do this for tied operands that can use the regclass information 801 // from the def. 802 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 803 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 804 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 805 } 806 807 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 808 Ops.push_back(Res); 809 810 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 811 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 812 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 813 MVT RegisterVT = RegVTs[Value]; 814 for (unsigned i = 0; i != NumRegs; ++i) { 815 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 816 unsigned TheReg = Regs[Reg++]; 817 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 818 819 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 820 // If we clobbered the stack pointer, MFI should know about it. 821 assert(DAG.getMachineFunction().getFrameInfo()-> 822 hasOpaqueSPAdjustment()); 823 } 824 } 825 } 826 } 827 828 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 829 const TargetLibraryInfo *li) { 830 AA = &aa; 831 GFI = gfi; 832 LibInfo = li; 833 DL = &DAG.getDataLayout(); 834 Context = DAG.getContext(); 835 LPadToCallSiteMap.clear(); 836 } 837 838 /// clear - Clear out the current SelectionDAG and the associated 839 /// state and prepare this SelectionDAGBuilder object to be used 840 /// for a new block. This doesn't clear out information about 841 /// additional blocks that are needed to complete switch lowering 842 /// or PHI node updating; that information is cleared out as it is 843 /// consumed. 844 void SelectionDAGBuilder::clear() { 845 NodeMap.clear(); 846 UnusedArgNodeMap.clear(); 847 PendingLoads.clear(); 848 PendingExports.clear(); 849 CurInst = nullptr; 850 HasTailCall = false; 851 SDNodeOrder = LowestSDNodeOrder; 852 StatepointLowering.clear(); 853 } 854 855 /// clearDanglingDebugInfo - Clear the dangling debug information 856 /// map. This function is separated from the clear so that debug 857 /// information that is dangling in a basic block can be properly 858 /// resolved in a different basic block. This allows the 859 /// SelectionDAG to resolve dangling debug information attached 860 /// to PHI nodes. 861 void SelectionDAGBuilder::clearDanglingDebugInfo() { 862 DanglingDebugInfoMap.clear(); 863 } 864 865 /// getRoot - Return the current virtual root of the Selection DAG, 866 /// flushing any PendingLoad items. This must be done before emitting 867 /// a store or any other node that may need to be ordered after any 868 /// prior load instructions. 869 /// 870 SDValue SelectionDAGBuilder::getRoot() { 871 if (PendingLoads.empty()) 872 return DAG.getRoot(); 873 874 if (PendingLoads.size() == 1) { 875 SDValue Root = PendingLoads[0]; 876 DAG.setRoot(Root); 877 PendingLoads.clear(); 878 return Root; 879 } 880 881 // Otherwise, we have to make a token factor node. 882 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 883 PendingLoads); 884 PendingLoads.clear(); 885 DAG.setRoot(Root); 886 return Root; 887 } 888 889 /// getControlRoot - Similar to getRoot, but instead of flushing all the 890 /// PendingLoad items, flush all the PendingExports items. It is necessary 891 /// to do this before emitting a terminator instruction. 892 /// 893 SDValue SelectionDAGBuilder::getControlRoot() { 894 SDValue Root = DAG.getRoot(); 895 896 if (PendingExports.empty()) 897 return Root; 898 899 // Turn all of the CopyToReg chains into one factored node. 900 if (Root.getOpcode() != ISD::EntryToken) { 901 unsigned i = 0, e = PendingExports.size(); 902 for (; i != e; ++i) { 903 assert(PendingExports[i].getNode()->getNumOperands() > 1); 904 if (PendingExports[i].getNode()->getOperand(0) == Root) 905 break; // Don't add the root if we already indirectly depend on it. 906 } 907 908 if (i == e) 909 PendingExports.push_back(Root); 910 } 911 912 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 913 PendingExports); 914 PendingExports.clear(); 915 DAG.setRoot(Root); 916 return Root; 917 } 918 919 void SelectionDAGBuilder::visit(const Instruction &I) { 920 // Set up outgoing PHI node register values before emitting the terminator. 921 if (isa<TerminatorInst>(&I)) 922 HandlePHINodesInSuccessorBlocks(I.getParent()); 923 924 ++SDNodeOrder; 925 926 CurInst = &I; 927 928 visit(I.getOpcode(), I); 929 930 if (!isa<TerminatorInst>(&I) && !HasTailCall && 931 !isStatepoint(&I)) // statepoints handle their exports internally 932 CopyToExportRegsIfNeeded(&I); 933 934 CurInst = nullptr; 935 } 936 937 void SelectionDAGBuilder::visitPHI(const PHINode &) { 938 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 939 } 940 941 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 942 // Note: this doesn't use InstVisitor, because it has to work with 943 // ConstantExpr's in addition to instructions. 944 switch (Opcode) { 945 default: llvm_unreachable("Unknown instruction type encountered!"); 946 // Build the switch statement using the Instruction.def file. 947 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 948 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 949 #include "llvm/IR/Instruction.def" 950 } 951 } 952 953 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 954 // generate the debug data structures now that we've seen its definition. 955 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 956 SDValue Val) { 957 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 958 if (DDI.getDI()) { 959 const DbgValueInst *DI = DDI.getDI(); 960 DebugLoc dl = DDI.getdl(); 961 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 962 DILocalVariable *Variable = DI->getVariable(); 963 DIExpression *Expr = DI->getExpression(); 964 assert(Variable->isValidLocationForIntrinsic(dl) && 965 "Expected inlined-at fields to agree"); 966 uint64_t Offset = DI->getOffset(); 967 SDDbgValue *SDV; 968 if (Val.getNode()) { 969 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 970 Val)) { 971 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 972 false, Offset, dl, DbgSDNodeOrder); 973 DAG.AddDbgValue(SDV, Val.getNode(), false); 974 } 975 } else 976 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 977 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 978 } 979 } 980 981 /// getCopyFromRegs - If there was virtual register allocated for the value V 982 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 983 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 984 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 985 SDValue Result; 986 987 if (It != FuncInfo.ValueMap.end()) { 988 unsigned InReg = It->second; 989 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 990 DAG.getDataLayout(), InReg, Ty); 991 SDValue Chain = DAG.getEntryNode(); 992 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 993 resolveDanglingDebugInfo(V, Result); 994 } 995 996 return Result; 997 } 998 999 /// getValue - Return an SDValue for the given Value. 1000 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1001 // If we already have an SDValue for this value, use it. It's important 1002 // to do this first, so that we don't create a CopyFromReg if we already 1003 // have a regular SDValue. 1004 SDValue &N = NodeMap[V]; 1005 if (N.getNode()) return N; 1006 1007 // If there's a virtual register allocated and initialized for this 1008 // value, use it. 1009 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1010 return copyFromReg; 1011 1012 // Otherwise create a new SDValue and remember it. 1013 SDValue Val = getValueImpl(V); 1014 NodeMap[V] = Val; 1015 resolveDanglingDebugInfo(V, Val); 1016 return Val; 1017 } 1018 1019 // Return true if SDValue exists for the given Value 1020 bool SelectionDAGBuilder::findValue(const Value *V) const { 1021 return (NodeMap.find(V) != NodeMap.end()) || 1022 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1023 } 1024 1025 /// getNonRegisterValue - Return an SDValue for the given Value, but 1026 /// don't look in FuncInfo.ValueMap for a virtual register. 1027 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1028 // If we already have an SDValue for this value, use it. 1029 SDValue &N = NodeMap[V]; 1030 if (N.getNode()) { 1031 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1032 // Remove the debug location from the node as the node is about to be used 1033 // in a location which may differ from the original debug location. This 1034 // is relevant to Constant and ConstantFP nodes because they can appear 1035 // as constant expressions inside PHI nodes. 1036 N->setDebugLoc(DebugLoc()); 1037 } 1038 return N; 1039 } 1040 1041 // Otherwise create a new SDValue and remember it. 1042 SDValue Val = getValueImpl(V); 1043 NodeMap[V] = Val; 1044 resolveDanglingDebugInfo(V, Val); 1045 return Val; 1046 } 1047 1048 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1049 /// Create an SDValue for the given value. 1050 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1052 1053 if (const Constant *C = dyn_cast<Constant>(V)) { 1054 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1055 1056 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1057 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1058 1059 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1060 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1061 1062 if (isa<ConstantPointerNull>(C)) { 1063 unsigned AS = V->getType()->getPointerAddressSpace(); 1064 return DAG.getConstant(0, getCurSDLoc(), 1065 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1066 } 1067 1068 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1069 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1070 1071 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1072 return DAG.getUNDEF(VT); 1073 1074 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1075 visit(CE->getOpcode(), *CE); 1076 SDValue N1 = NodeMap[V]; 1077 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1078 return N1; 1079 } 1080 1081 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1082 SmallVector<SDValue, 4> Constants; 1083 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1084 OI != OE; ++OI) { 1085 SDNode *Val = getValue(*OI).getNode(); 1086 // If the operand is an empty aggregate, there are no values. 1087 if (!Val) continue; 1088 // Add each leaf value from the operand to the Constants list 1089 // to form a flattened list of all the values. 1090 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1091 Constants.push_back(SDValue(Val, i)); 1092 } 1093 1094 return DAG.getMergeValues(Constants, getCurSDLoc()); 1095 } 1096 1097 if (const ConstantDataSequential *CDS = 1098 dyn_cast<ConstantDataSequential>(C)) { 1099 SmallVector<SDValue, 4> Ops; 1100 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1101 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1102 // Add each leaf value from the operand to the Constants list 1103 // to form a flattened list of all the values. 1104 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1105 Ops.push_back(SDValue(Val, i)); 1106 } 1107 1108 if (isa<ArrayType>(CDS->getType())) 1109 return DAG.getMergeValues(Ops, getCurSDLoc()); 1110 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1111 VT, Ops); 1112 } 1113 1114 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1115 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1116 "Unknown struct or array constant!"); 1117 1118 SmallVector<EVT, 4> ValueVTs; 1119 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1120 unsigned NumElts = ValueVTs.size(); 1121 if (NumElts == 0) 1122 return SDValue(); // empty struct 1123 SmallVector<SDValue, 4> Constants(NumElts); 1124 for (unsigned i = 0; i != NumElts; ++i) { 1125 EVT EltVT = ValueVTs[i]; 1126 if (isa<UndefValue>(C)) 1127 Constants[i] = DAG.getUNDEF(EltVT); 1128 else if (EltVT.isFloatingPoint()) 1129 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1130 else 1131 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1132 } 1133 1134 return DAG.getMergeValues(Constants, getCurSDLoc()); 1135 } 1136 1137 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1138 return DAG.getBlockAddress(BA, VT); 1139 1140 VectorType *VecTy = cast<VectorType>(V->getType()); 1141 unsigned NumElements = VecTy->getNumElements(); 1142 1143 // Now that we know the number and type of the elements, get that number of 1144 // elements into the Ops array based on what kind of constant it is. 1145 SmallVector<SDValue, 16> Ops; 1146 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1147 for (unsigned i = 0; i != NumElements; ++i) 1148 Ops.push_back(getValue(CV->getOperand(i))); 1149 } else { 1150 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1151 EVT EltVT = 1152 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1153 1154 SDValue Op; 1155 if (EltVT.isFloatingPoint()) 1156 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1157 else 1158 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1159 Ops.assign(NumElements, Op); 1160 } 1161 1162 // Create a BUILD_VECTOR node. 1163 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1164 } 1165 1166 // If this is a static alloca, generate it as the frameindex instead of 1167 // computation. 1168 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1169 DenseMap<const AllocaInst*, int>::iterator SI = 1170 FuncInfo.StaticAllocaMap.find(AI); 1171 if (SI != FuncInfo.StaticAllocaMap.end()) 1172 return DAG.getFrameIndex(SI->second, 1173 TLI.getPointerTy(DAG.getDataLayout())); 1174 } 1175 1176 // If this is an instruction which fast-isel has deferred, select it now. 1177 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1178 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1179 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1180 Inst->getType()); 1181 SDValue Chain = DAG.getEntryNode(); 1182 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1183 } 1184 1185 llvm_unreachable("Can't get register for value!"); 1186 } 1187 1188 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1189 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1190 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1191 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1192 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1193 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1194 if (IsMSVCCXX || IsCoreCLR) 1195 CatchPadMBB->setIsEHFuncletEntry(); 1196 1197 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1198 } 1199 1200 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1201 // Update machine-CFG edge. 1202 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1203 FuncInfo.MBB->addSuccessor(TargetMBB); 1204 1205 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1206 bool IsSEH = isAsynchronousEHPersonality(Pers); 1207 if (IsSEH) { 1208 // If this is not a fall-through branch or optimizations are switched off, 1209 // emit the branch. 1210 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1211 TM.getOptLevel() == CodeGenOpt::None) 1212 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1213 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1214 return; 1215 } 1216 1217 // Figure out the funclet membership for the catchret's successor. 1218 // This will be used by the FuncletLayout pass to determine how to order the 1219 // BB's. 1220 // A 'catchret' returns to the outer scope's color. 1221 Value *ParentPad = I.getCatchSwitchParentPad(); 1222 const BasicBlock *SuccessorColor; 1223 if (isa<ConstantTokenNone>(ParentPad)) 1224 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1225 else 1226 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1227 assert(SuccessorColor && "No parent funclet for catchret!"); 1228 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1229 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1230 1231 // Create the terminator node. 1232 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1233 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1234 DAG.getBasicBlock(SuccessorColorMBB)); 1235 DAG.setRoot(Ret); 1236 } 1237 1238 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1239 // Don't emit any special code for the cleanuppad instruction. It just marks 1240 // the start of a funclet. 1241 FuncInfo.MBB->setIsEHFuncletEntry(); 1242 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1243 } 1244 1245 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1246 /// many places it could ultimately go. In the IR, we have a single unwind 1247 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1248 /// This function skips over imaginary basic blocks that hold catchswitch 1249 /// instructions, and finds all the "real" machine 1250 /// basic block destinations. As those destinations may not be successors of 1251 /// EHPadBB, here we also calculate the edge probability to those destinations. 1252 /// The passed-in Prob is the edge probability to EHPadBB. 1253 static void findUnwindDestinations( 1254 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1255 BranchProbability Prob, 1256 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1257 &UnwindDests) { 1258 EHPersonality Personality = 1259 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1260 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1261 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1262 1263 while (EHPadBB) { 1264 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1265 BasicBlock *NewEHPadBB = nullptr; 1266 if (isa<LandingPadInst>(Pad)) { 1267 // Stop on landingpads. They are not funclets. 1268 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1269 break; 1270 } else if (isa<CleanupPadInst>(Pad)) { 1271 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1272 // personalities. 1273 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1274 UnwindDests.back().first->setIsEHFuncletEntry(); 1275 break; 1276 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1277 // Add the catchpad handlers to the possible destinations. 1278 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1279 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1280 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1281 if (IsMSVCCXX || IsCoreCLR) 1282 UnwindDests.back().first->setIsEHFuncletEntry(); 1283 } 1284 NewEHPadBB = CatchSwitch->getUnwindDest(); 1285 } else { 1286 continue; 1287 } 1288 1289 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1290 if (BPI && NewEHPadBB) 1291 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1292 EHPadBB = NewEHPadBB; 1293 } 1294 } 1295 1296 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1297 // Update successor info. 1298 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1299 auto UnwindDest = I.getUnwindDest(); 1300 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1301 BranchProbability UnwindDestProb = 1302 (BPI && UnwindDest) 1303 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1304 : BranchProbability::getZero(); 1305 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1306 for (auto &UnwindDest : UnwindDests) { 1307 UnwindDest.first->setIsEHPad(); 1308 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1309 } 1310 FuncInfo.MBB->normalizeSuccProbs(); 1311 1312 // Create the terminator node. 1313 SDValue Ret = 1314 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1315 DAG.setRoot(Ret); 1316 } 1317 1318 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1319 report_fatal_error("visitCatchSwitch not yet implemented!"); 1320 } 1321 1322 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1323 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1324 auto &DL = DAG.getDataLayout(); 1325 SDValue Chain = getControlRoot(); 1326 SmallVector<ISD::OutputArg, 8> Outs; 1327 SmallVector<SDValue, 8> OutVals; 1328 1329 if (!FuncInfo.CanLowerReturn) { 1330 unsigned DemoteReg = FuncInfo.DemoteRegister; 1331 const Function *F = I.getParent()->getParent(); 1332 1333 // Emit a store of the return value through the virtual register. 1334 // Leave Outs empty so that LowerReturn won't try to load return 1335 // registers the usual way. 1336 SmallVector<EVT, 1> PtrValueVTs; 1337 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1338 PtrValueVTs); 1339 1340 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1341 DemoteReg, PtrValueVTs[0]); 1342 SDValue RetOp = getValue(I.getOperand(0)); 1343 1344 SmallVector<EVT, 4> ValueVTs; 1345 SmallVector<uint64_t, 4> Offsets; 1346 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1347 unsigned NumValues = ValueVTs.size(); 1348 1349 // An aggregate return value cannot wrap around the address space, so 1350 // offsets to its parts don't wrap either. 1351 SDNodeFlags Flags; 1352 Flags.setNoUnsignedWrap(true); 1353 1354 SmallVector<SDValue, 4> Chains(NumValues); 1355 for (unsigned i = 0; i != NumValues; ++i) { 1356 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1357 RetPtr.getValueType(), RetPtr, 1358 DAG.getIntPtrConstant(Offsets[i], 1359 getCurSDLoc()), 1360 &Flags); 1361 Chains[i] = 1362 DAG.getStore(Chain, getCurSDLoc(), 1363 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1364 // FIXME: better loc info would be nice. 1365 Add, MachinePointerInfo(), false, false, 0); 1366 } 1367 1368 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1369 MVT::Other, Chains); 1370 } else if (I.getNumOperands() != 0) { 1371 SmallVector<EVT, 4> ValueVTs; 1372 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1373 unsigned NumValues = ValueVTs.size(); 1374 if (NumValues) { 1375 SDValue RetOp = getValue(I.getOperand(0)); 1376 1377 const Function *F = I.getParent()->getParent(); 1378 1379 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1380 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1381 Attribute::SExt)) 1382 ExtendKind = ISD::SIGN_EXTEND; 1383 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1384 Attribute::ZExt)) 1385 ExtendKind = ISD::ZERO_EXTEND; 1386 1387 LLVMContext &Context = F->getContext(); 1388 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1389 Attribute::InReg); 1390 1391 for (unsigned j = 0; j != NumValues; ++j) { 1392 EVT VT = ValueVTs[j]; 1393 1394 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1395 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1396 1397 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1398 MVT PartVT = TLI.getRegisterType(Context, VT); 1399 SmallVector<SDValue, 4> Parts(NumParts); 1400 getCopyToParts(DAG, getCurSDLoc(), 1401 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1402 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1403 1404 // 'inreg' on function refers to return value 1405 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1406 if (RetInReg) 1407 Flags.setInReg(); 1408 1409 // Propagate extension type if any 1410 if (ExtendKind == ISD::SIGN_EXTEND) 1411 Flags.setSExt(); 1412 else if (ExtendKind == ISD::ZERO_EXTEND) 1413 Flags.setZExt(); 1414 1415 for (unsigned i = 0; i < NumParts; ++i) { 1416 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1417 VT, /*isfixed=*/true, 0, 0)); 1418 OutVals.push_back(Parts[i]); 1419 } 1420 } 1421 } 1422 } 1423 1424 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1425 CallingConv::ID CallConv = 1426 DAG.getMachineFunction().getFunction()->getCallingConv(); 1427 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1428 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1429 1430 // Verify that the target's LowerReturn behaved as expected. 1431 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1432 "LowerReturn didn't return a valid chain!"); 1433 1434 // Update the DAG with the new chain value resulting from return lowering. 1435 DAG.setRoot(Chain); 1436 } 1437 1438 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1439 /// created for it, emit nodes to copy the value into the virtual 1440 /// registers. 1441 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1442 // Skip empty types 1443 if (V->getType()->isEmptyTy()) 1444 return; 1445 1446 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1447 if (VMI != FuncInfo.ValueMap.end()) { 1448 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1449 CopyValueToVirtualRegister(V, VMI->second); 1450 } 1451 } 1452 1453 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1454 /// the current basic block, add it to ValueMap now so that we'll get a 1455 /// CopyTo/FromReg. 1456 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1457 // No need to export constants. 1458 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1459 1460 // Already exported? 1461 if (FuncInfo.isExportedInst(V)) return; 1462 1463 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1464 CopyValueToVirtualRegister(V, Reg); 1465 } 1466 1467 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1468 const BasicBlock *FromBB) { 1469 // The operands of the setcc have to be in this block. We don't know 1470 // how to export them from some other block. 1471 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1472 // Can export from current BB. 1473 if (VI->getParent() == FromBB) 1474 return true; 1475 1476 // Is already exported, noop. 1477 return FuncInfo.isExportedInst(V); 1478 } 1479 1480 // If this is an argument, we can export it if the BB is the entry block or 1481 // if it is already exported. 1482 if (isa<Argument>(V)) { 1483 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1484 return true; 1485 1486 // Otherwise, can only export this if it is already exported. 1487 return FuncInfo.isExportedInst(V); 1488 } 1489 1490 // Otherwise, constants can always be exported. 1491 return true; 1492 } 1493 1494 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1495 BranchProbability 1496 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1497 const MachineBasicBlock *Dst) const { 1498 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1499 const BasicBlock *SrcBB = Src->getBasicBlock(); 1500 const BasicBlock *DstBB = Dst->getBasicBlock(); 1501 if (!BPI) { 1502 // If BPI is not available, set the default probability as 1 / N, where N is 1503 // the number of successors. 1504 auto SuccSize = std::max<uint32_t>( 1505 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1506 return BranchProbability(1, SuccSize); 1507 } 1508 return BPI->getEdgeProbability(SrcBB, DstBB); 1509 } 1510 1511 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1512 MachineBasicBlock *Dst, 1513 BranchProbability Prob) { 1514 if (!FuncInfo.BPI) 1515 Src->addSuccessorWithoutProb(Dst); 1516 else { 1517 if (Prob.isUnknown()) 1518 Prob = getEdgeProbability(Src, Dst); 1519 Src->addSuccessor(Dst, Prob); 1520 } 1521 } 1522 1523 static bool InBlock(const Value *V, const BasicBlock *BB) { 1524 if (const Instruction *I = dyn_cast<Instruction>(V)) 1525 return I->getParent() == BB; 1526 return true; 1527 } 1528 1529 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1530 /// This function emits a branch and is used at the leaves of an OR or an 1531 /// AND operator tree. 1532 /// 1533 void 1534 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1535 MachineBasicBlock *TBB, 1536 MachineBasicBlock *FBB, 1537 MachineBasicBlock *CurBB, 1538 MachineBasicBlock *SwitchBB, 1539 BranchProbability TProb, 1540 BranchProbability FProb) { 1541 const BasicBlock *BB = CurBB->getBasicBlock(); 1542 1543 // If the leaf of the tree is a comparison, merge the condition into 1544 // the caseblock. 1545 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1546 // The operands of the cmp have to be in this block. We don't know 1547 // how to export them from some other block. If this is the first block 1548 // of the sequence, no exporting is needed. 1549 if (CurBB == SwitchBB || 1550 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1551 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1552 ISD::CondCode Condition; 1553 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1554 Condition = getICmpCondCode(IC->getPredicate()); 1555 } else { 1556 const FCmpInst *FC = cast<FCmpInst>(Cond); 1557 Condition = getFCmpCondCode(FC->getPredicate()); 1558 if (TM.Options.NoNaNsFPMath) 1559 Condition = getFCmpCodeWithoutNaN(Condition); 1560 } 1561 1562 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1563 TBB, FBB, CurBB, TProb, FProb); 1564 SwitchCases.push_back(CB); 1565 return; 1566 } 1567 } 1568 1569 // Create a CaseBlock record representing this branch. 1570 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1571 nullptr, TBB, FBB, CurBB, TProb, FProb); 1572 SwitchCases.push_back(CB); 1573 } 1574 1575 /// FindMergedConditions - If Cond is an expression like 1576 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1577 MachineBasicBlock *TBB, 1578 MachineBasicBlock *FBB, 1579 MachineBasicBlock *CurBB, 1580 MachineBasicBlock *SwitchBB, 1581 Instruction::BinaryOps Opc, 1582 BranchProbability TProb, 1583 BranchProbability FProb) { 1584 // If this node is not part of the or/and tree, emit it as a branch. 1585 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1586 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1587 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1588 BOp->getParent() != CurBB->getBasicBlock() || 1589 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1590 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1591 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1592 TProb, FProb); 1593 return; 1594 } 1595 1596 // Create TmpBB after CurBB. 1597 MachineFunction::iterator BBI(CurBB); 1598 MachineFunction &MF = DAG.getMachineFunction(); 1599 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1600 CurBB->getParent()->insert(++BBI, TmpBB); 1601 1602 if (Opc == Instruction::Or) { 1603 // Codegen X | Y as: 1604 // BB1: 1605 // jmp_if_X TBB 1606 // jmp TmpBB 1607 // TmpBB: 1608 // jmp_if_Y TBB 1609 // jmp FBB 1610 // 1611 1612 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1613 // The requirement is that 1614 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1615 // = TrueProb for original BB. 1616 // Assuming the original probabilities are A and B, one choice is to set 1617 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1618 // A/(1+B) and 2B/(1+B). This choice assumes that 1619 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1620 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1621 // TmpBB, but the math is more complicated. 1622 1623 auto NewTrueProb = TProb / 2; 1624 auto NewFalseProb = TProb / 2 + FProb; 1625 // Emit the LHS condition. 1626 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1627 NewTrueProb, NewFalseProb); 1628 1629 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1630 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1631 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1632 // Emit the RHS condition into TmpBB. 1633 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1634 Probs[0], Probs[1]); 1635 } else { 1636 assert(Opc == Instruction::And && "Unknown merge op!"); 1637 // Codegen X & Y as: 1638 // BB1: 1639 // jmp_if_X TmpBB 1640 // jmp FBB 1641 // TmpBB: 1642 // jmp_if_Y TBB 1643 // jmp FBB 1644 // 1645 // This requires creation of TmpBB after CurBB. 1646 1647 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1648 // The requirement is that 1649 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1650 // = FalseProb for original BB. 1651 // Assuming the original probabilities are A and B, one choice is to set 1652 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1653 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1654 // TrueProb for BB1 * FalseProb for TmpBB. 1655 1656 auto NewTrueProb = TProb + FProb / 2; 1657 auto NewFalseProb = FProb / 2; 1658 // Emit the LHS condition. 1659 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1660 NewTrueProb, NewFalseProb); 1661 1662 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1663 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1664 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1665 // Emit the RHS condition into TmpBB. 1666 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1667 Probs[0], Probs[1]); 1668 } 1669 } 1670 1671 /// If the set of cases should be emitted as a series of branches, return true. 1672 /// If we should emit this as a bunch of and/or'd together conditions, return 1673 /// false. 1674 bool 1675 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1676 if (Cases.size() != 2) return true; 1677 1678 // If this is two comparisons of the same values or'd or and'd together, they 1679 // will get folded into a single comparison, so don't emit two blocks. 1680 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1681 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1682 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1683 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1684 return false; 1685 } 1686 1687 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1688 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1689 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1690 Cases[0].CC == Cases[1].CC && 1691 isa<Constant>(Cases[0].CmpRHS) && 1692 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1693 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1694 return false; 1695 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1696 return false; 1697 } 1698 1699 return true; 1700 } 1701 1702 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1703 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1704 1705 // Update machine-CFG edges. 1706 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1707 1708 if (I.isUnconditional()) { 1709 // Update machine-CFG edges. 1710 BrMBB->addSuccessor(Succ0MBB); 1711 1712 // If this is not a fall-through branch or optimizations are switched off, 1713 // emit the branch. 1714 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1715 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1716 MVT::Other, getControlRoot(), 1717 DAG.getBasicBlock(Succ0MBB))); 1718 1719 return; 1720 } 1721 1722 // If this condition is one of the special cases we handle, do special stuff 1723 // now. 1724 const Value *CondVal = I.getCondition(); 1725 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1726 1727 // If this is a series of conditions that are or'd or and'd together, emit 1728 // this as a sequence of branches instead of setcc's with and/or operations. 1729 // As long as jumps are not expensive, this should improve performance. 1730 // For example, instead of something like: 1731 // cmp A, B 1732 // C = seteq 1733 // cmp D, E 1734 // F = setle 1735 // or C, F 1736 // jnz foo 1737 // Emit: 1738 // cmp A, B 1739 // je foo 1740 // cmp D, E 1741 // jle foo 1742 // 1743 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1744 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1745 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1746 !I.getMetadata(LLVMContext::MD_unpredictable) && 1747 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1748 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1749 Opcode, 1750 getEdgeProbability(BrMBB, Succ0MBB), 1751 getEdgeProbability(BrMBB, Succ1MBB)); 1752 // If the compares in later blocks need to use values not currently 1753 // exported from this block, export them now. This block should always 1754 // be the first entry. 1755 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1756 1757 // Allow some cases to be rejected. 1758 if (ShouldEmitAsBranches(SwitchCases)) { 1759 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1760 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1761 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1762 } 1763 1764 // Emit the branch for this block. 1765 visitSwitchCase(SwitchCases[0], BrMBB); 1766 SwitchCases.erase(SwitchCases.begin()); 1767 return; 1768 } 1769 1770 // Okay, we decided not to do this, remove any inserted MBB's and clear 1771 // SwitchCases. 1772 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1773 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1774 1775 SwitchCases.clear(); 1776 } 1777 } 1778 1779 // Create a CaseBlock record representing this branch. 1780 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1781 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1782 1783 // Use visitSwitchCase to actually insert the fast branch sequence for this 1784 // cond branch. 1785 visitSwitchCase(CB, BrMBB); 1786 } 1787 1788 /// visitSwitchCase - Emits the necessary code to represent a single node in 1789 /// the binary search tree resulting from lowering a switch instruction. 1790 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1791 MachineBasicBlock *SwitchBB) { 1792 SDValue Cond; 1793 SDValue CondLHS = getValue(CB.CmpLHS); 1794 SDLoc dl = getCurSDLoc(); 1795 1796 // Build the setcc now. 1797 if (!CB.CmpMHS) { 1798 // Fold "(X == true)" to X and "(X == false)" to !X to 1799 // handle common cases produced by branch lowering. 1800 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1801 CB.CC == ISD::SETEQ) 1802 Cond = CondLHS; 1803 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1804 CB.CC == ISD::SETEQ) { 1805 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1806 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1807 } else 1808 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1809 } else { 1810 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1811 1812 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1813 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1814 1815 SDValue CmpOp = getValue(CB.CmpMHS); 1816 EVT VT = CmpOp.getValueType(); 1817 1818 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1819 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1820 ISD::SETLE); 1821 } else { 1822 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1823 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1824 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1825 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1826 } 1827 } 1828 1829 // Update successor info 1830 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1831 // TrueBB and FalseBB are always different unless the incoming IR is 1832 // degenerate. This only happens when running llc on weird IR. 1833 if (CB.TrueBB != CB.FalseBB) 1834 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1835 SwitchBB->normalizeSuccProbs(); 1836 1837 // If the lhs block is the next block, invert the condition so that we can 1838 // fall through to the lhs instead of the rhs block. 1839 if (CB.TrueBB == NextBlock(SwitchBB)) { 1840 std::swap(CB.TrueBB, CB.FalseBB); 1841 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1842 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1843 } 1844 1845 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1846 MVT::Other, getControlRoot(), Cond, 1847 DAG.getBasicBlock(CB.TrueBB)); 1848 1849 // Insert the false branch. Do this even if it's a fall through branch, 1850 // this makes it easier to do DAG optimizations which require inverting 1851 // the branch condition. 1852 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1853 DAG.getBasicBlock(CB.FalseBB)); 1854 1855 DAG.setRoot(BrCond); 1856 } 1857 1858 /// visitJumpTable - Emit JumpTable node in the current MBB 1859 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1860 // Emit the code for the jump table 1861 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1862 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1863 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1864 JT.Reg, PTy); 1865 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1866 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1867 MVT::Other, Index.getValue(1), 1868 Table, Index); 1869 DAG.setRoot(BrJumpTable); 1870 } 1871 1872 /// visitJumpTableHeader - This function emits necessary code to produce index 1873 /// in the JumpTable from switch case. 1874 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1875 JumpTableHeader &JTH, 1876 MachineBasicBlock *SwitchBB) { 1877 SDLoc dl = getCurSDLoc(); 1878 1879 // Subtract the lowest switch case value from the value being switched on and 1880 // conditional branch to default mbb if the result is greater than the 1881 // difference between smallest and largest cases. 1882 SDValue SwitchOp = getValue(JTH.SValue); 1883 EVT VT = SwitchOp.getValueType(); 1884 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1885 DAG.getConstant(JTH.First, dl, VT)); 1886 1887 // The SDNode we just created, which holds the value being switched on minus 1888 // the smallest case value, needs to be copied to a virtual register so it 1889 // can be used as an index into the jump table in a subsequent basic block. 1890 // This value may be smaller or larger than the target's pointer type, and 1891 // therefore require extension or truncating. 1892 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1893 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1894 1895 unsigned JumpTableReg = 1896 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1897 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1898 JumpTableReg, SwitchOp); 1899 JT.Reg = JumpTableReg; 1900 1901 // Emit the range check for the jump table, and branch to the default block 1902 // for the switch statement if the value being switched on exceeds the largest 1903 // case in the switch. 1904 SDValue CMP = DAG.getSetCC( 1905 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1906 Sub.getValueType()), 1907 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1908 1909 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1910 MVT::Other, CopyTo, CMP, 1911 DAG.getBasicBlock(JT.Default)); 1912 1913 // Avoid emitting unnecessary branches to the next block. 1914 if (JT.MBB != NextBlock(SwitchBB)) 1915 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1916 DAG.getBasicBlock(JT.MBB)); 1917 1918 DAG.setRoot(BrCond); 1919 } 1920 1921 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1922 /// tail spliced into a stack protector check success bb. 1923 /// 1924 /// For a high level explanation of how this fits into the stack protector 1925 /// generation see the comment on the declaration of class 1926 /// StackProtectorDescriptor. 1927 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1928 MachineBasicBlock *ParentBB) { 1929 1930 // First create the loads to the guard/stack slot for the comparison. 1931 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1932 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1933 1934 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1935 int FI = MFI->getStackProtectorIndex(); 1936 1937 const Value *IRGuard = SPD.getGuard(); 1938 SDValue GuardPtr = getValue(IRGuard); 1939 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1940 1941 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1942 1943 SDValue Guard; 1944 SDLoc dl = getCurSDLoc(); 1945 1946 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1947 // guard value from the virtual register holding the value. Otherwise, emit a 1948 // volatile load to retrieve the stack guard value. 1949 unsigned GuardReg = SPD.getGuardReg(); 1950 1951 if (GuardReg && TLI.useLoadStackGuardNode()) 1952 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1953 PtrTy); 1954 else 1955 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1956 GuardPtr, MachinePointerInfo(IRGuard, 0), 1957 true, false, false, Align); 1958 1959 SDValue StackSlot = DAG.getLoad( 1960 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1961 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1962 false, false, Align); 1963 1964 // Perform the comparison via a subtract/getsetcc. 1965 EVT VT = Guard.getValueType(); 1966 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1967 1968 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1969 *DAG.getContext(), 1970 Sub.getValueType()), 1971 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1972 1973 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1974 // branch to failure MBB. 1975 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1976 MVT::Other, StackSlot.getOperand(0), 1977 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1978 // Otherwise branch to success MBB. 1979 SDValue Br = DAG.getNode(ISD::BR, dl, 1980 MVT::Other, BrCond, 1981 DAG.getBasicBlock(SPD.getSuccessMBB())); 1982 1983 DAG.setRoot(Br); 1984 } 1985 1986 /// Codegen the failure basic block for a stack protector check. 1987 /// 1988 /// A failure stack protector machine basic block consists simply of a call to 1989 /// __stack_chk_fail(). 1990 /// 1991 /// For a high level explanation of how this fits into the stack protector 1992 /// generation see the comment on the declaration of class 1993 /// StackProtectorDescriptor. 1994 void 1995 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1997 SDValue Chain = 1998 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1999 None, false, getCurSDLoc(), false, false).second; 2000 DAG.setRoot(Chain); 2001 } 2002 2003 /// visitBitTestHeader - This function emits necessary code to produce value 2004 /// suitable for "bit tests" 2005 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2006 MachineBasicBlock *SwitchBB) { 2007 SDLoc dl = getCurSDLoc(); 2008 2009 // Subtract the minimum value 2010 SDValue SwitchOp = getValue(B.SValue); 2011 EVT VT = SwitchOp.getValueType(); 2012 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2013 DAG.getConstant(B.First, dl, VT)); 2014 2015 // Check range 2016 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2017 SDValue RangeCmp = DAG.getSetCC( 2018 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2019 Sub.getValueType()), 2020 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2021 2022 // Determine the type of the test operands. 2023 bool UsePtrType = false; 2024 if (!TLI.isTypeLegal(VT)) 2025 UsePtrType = true; 2026 else { 2027 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2028 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2029 // Switch table case range are encoded into series of masks. 2030 // Just use pointer type, it's guaranteed to fit. 2031 UsePtrType = true; 2032 break; 2033 } 2034 } 2035 if (UsePtrType) { 2036 VT = TLI.getPointerTy(DAG.getDataLayout()); 2037 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2038 } 2039 2040 B.RegVT = VT.getSimpleVT(); 2041 B.Reg = FuncInfo.CreateReg(B.RegVT); 2042 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2043 2044 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2045 2046 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2047 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2048 SwitchBB->normalizeSuccProbs(); 2049 2050 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2051 MVT::Other, CopyTo, RangeCmp, 2052 DAG.getBasicBlock(B.Default)); 2053 2054 // Avoid emitting unnecessary branches to the next block. 2055 if (MBB != NextBlock(SwitchBB)) 2056 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2057 DAG.getBasicBlock(MBB)); 2058 2059 DAG.setRoot(BrRange); 2060 } 2061 2062 /// visitBitTestCase - this function produces one "bit test" 2063 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2064 MachineBasicBlock* NextMBB, 2065 BranchProbability BranchProbToNext, 2066 unsigned Reg, 2067 BitTestCase &B, 2068 MachineBasicBlock *SwitchBB) { 2069 SDLoc dl = getCurSDLoc(); 2070 MVT VT = BB.RegVT; 2071 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2072 SDValue Cmp; 2073 unsigned PopCount = countPopulation(B.Mask); 2074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2075 if (PopCount == 1) { 2076 // Testing for a single bit; just compare the shift count with what it 2077 // would need to be to shift a 1 bit in that position. 2078 Cmp = DAG.getSetCC( 2079 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2080 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2081 ISD::SETEQ); 2082 } else if (PopCount == BB.Range) { 2083 // There is only one zero bit in the range, test for it directly. 2084 Cmp = DAG.getSetCC( 2085 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2086 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2087 ISD::SETNE); 2088 } else { 2089 // Make desired shift 2090 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2091 DAG.getConstant(1, dl, VT), ShiftOp); 2092 2093 // Emit bit tests and jumps 2094 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2095 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2096 Cmp = DAG.getSetCC( 2097 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2098 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2099 } 2100 2101 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2102 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2103 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2104 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2105 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2106 // one as they are relative probabilities (and thus work more like weights), 2107 // and hence we need to normalize them to let the sum of them become one. 2108 SwitchBB->normalizeSuccProbs(); 2109 2110 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2111 MVT::Other, getControlRoot(), 2112 Cmp, DAG.getBasicBlock(B.TargetBB)); 2113 2114 // Avoid emitting unnecessary branches to the next block. 2115 if (NextMBB != NextBlock(SwitchBB)) 2116 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2117 DAG.getBasicBlock(NextMBB)); 2118 2119 DAG.setRoot(BrAnd); 2120 } 2121 2122 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2123 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2124 2125 // Retrieve successors. Look through artificial IR level blocks like 2126 // catchswitch for successors. 2127 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2128 const BasicBlock *EHPadBB = I.getSuccessor(1); 2129 2130 #ifndef NDEBUG 2131 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2132 // have to do anything here to lower funclet bundles. 2133 for (unsigned i = 0, e = I.getNumOperandBundles(); i != e; ++i) 2134 assert((I.getOperandBundleAt(i).isDeoptOperandBundle() || 2135 I.getOperandBundleAt(i).isFuncletOperandBundle()) && 2136 "Cannot lower invokes with arbitrary operand bundles yet!"); 2137 #endif 2138 2139 const Value *Callee(I.getCalledValue()); 2140 const Function *Fn = dyn_cast<Function>(Callee); 2141 if (isa<InlineAsm>(Callee)) 2142 visitInlineAsm(&I); 2143 else if (Fn && Fn->isIntrinsic()) { 2144 switch (Fn->getIntrinsicID()) { 2145 default: 2146 llvm_unreachable("Cannot invoke this intrinsic"); 2147 case Intrinsic::donothing: 2148 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2149 break; 2150 case Intrinsic::experimental_patchpoint_void: 2151 case Intrinsic::experimental_patchpoint_i64: 2152 visitPatchpoint(&I, EHPadBB); 2153 break; 2154 case Intrinsic::experimental_gc_statepoint: 2155 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2156 break; 2157 } 2158 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2159 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2160 // Eventually we will support lowering the @llvm.experimental.deoptimize 2161 // intrinsic, and right now there are no plans to support other intrinsics 2162 // with deopt state. 2163 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2164 } else { 2165 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2166 } 2167 2168 // If the value of the invoke is used outside of its defining block, make it 2169 // available as a virtual register. 2170 // We already took care of the exported value for the statepoint instruction 2171 // during call to the LowerStatepoint. 2172 if (!isStatepoint(I)) { 2173 CopyToExportRegsIfNeeded(&I); 2174 } 2175 2176 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2177 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2178 BranchProbability EHPadBBProb = 2179 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2180 : BranchProbability::getZero(); 2181 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2182 2183 // Update successor info. 2184 addSuccessorWithProb(InvokeMBB, Return); 2185 for (auto &UnwindDest : UnwindDests) { 2186 UnwindDest.first->setIsEHPad(); 2187 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2188 } 2189 InvokeMBB->normalizeSuccProbs(); 2190 2191 // Drop into normal successor. 2192 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2193 MVT::Other, getControlRoot(), 2194 DAG.getBasicBlock(Return))); 2195 } 2196 2197 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2198 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2199 } 2200 2201 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2202 assert(FuncInfo.MBB->isEHPad() && 2203 "Call to landingpad not in landing pad!"); 2204 2205 MachineBasicBlock *MBB = FuncInfo.MBB; 2206 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2207 AddLandingPadInfo(LP, MMI, MBB); 2208 2209 // If there aren't registers to copy the values into (e.g., during SjLj 2210 // exceptions), then don't bother to create these DAG nodes. 2211 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2212 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2213 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2214 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2215 return; 2216 2217 // If landingpad's return type is token type, we don't create DAG nodes 2218 // for its exception pointer and selector value. The extraction of exception 2219 // pointer or selector value from token type landingpads is not currently 2220 // supported. 2221 if (LP.getType()->isTokenTy()) 2222 return; 2223 2224 SmallVector<EVT, 2> ValueVTs; 2225 SDLoc dl = getCurSDLoc(); 2226 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2227 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2228 2229 // Get the two live-in registers as SDValues. The physregs have already been 2230 // copied into virtual registers. 2231 SDValue Ops[2]; 2232 if (FuncInfo.ExceptionPointerVirtReg) { 2233 Ops[0] = DAG.getZExtOrTrunc( 2234 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2235 FuncInfo.ExceptionPointerVirtReg, 2236 TLI.getPointerTy(DAG.getDataLayout())), 2237 dl, ValueVTs[0]); 2238 } else { 2239 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2240 } 2241 Ops[1] = DAG.getZExtOrTrunc( 2242 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2243 FuncInfo.ExceptionSelectorVirtReg, 2244 TLI.getPointerTy(DAG.getDataLayout())), 2245 dl, ValueVTs[1]); 2246 2247 // Merge into one. 2248 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2249 DAG.getVTList(ValueVTs), Ops); 2250 setValue(&LP, Res); 2251 } 2252 2253 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2254 #ifndef NDEBUG 2255 for (const CaseCluster &CC : Clusters) 2256 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2257 #endif 2258 2259 std::sort(Clusters.begin(), Clusters.end(), 2260 [](const CaseCluster &a, const CaseCluster &b) { 2261 return a.Low->getValue().slt(b.Low->getValue()); 2262 }); 2263 2264 // Merge adjacent clusters with the same destination. 2265 const unsigned N = Clusters.size(); 2266 unsigned DstIndex = 0; 2267 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2268 CaseCluster &CC = Clusters[SrcIndex]; 2269 const ConstantInt *CaseVal = CC.Low; 2270 MachineBasicBlock *Succ = CC.MBB; 2271 2272 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2273 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2274 // If this case has the same successor and is a neighbour, merge it into 2275 // the previous cluster. 2276 Clusters[DstIndex - 1].High = CaseVal; 2277 Clusters[DstIndex - 1].Prob += CC.Prob; 2278 } else { 2279 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2280 sizeof(Clusters[SrcIndex])); 2281 } 2282 } 2283 Clusters.resize(DstIndex); 2284 } 2285 2286 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2287 MachineBasicBlock *Last) { 2288 // Update JTCases. 2289 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2290 if (JTCases[i].first.HeaderBB == First) 2291 JTCases[i].first.HeaderBB = Last; 2292 2293 // Update BitTestCases. 2294 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2295 if (BitTestCases[i].Parent == First) 2296 BitTestCases[i].Parent = Last; 2297 } 2298 2299 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2300 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2301 2302 // Update machine-CFG edges with unique successors. 2303 SmallSet<BasicBlock*, 32> Done; 2304 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2305 BasicBlock *BB = I.getSuccessor(i); 2306 bool Inserted = Done.insert(BB).second; 2307 if (!Inserted) 2308 continue; 2309 2310 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2311 addSuccessorWithProb(IndirectBrMBB, Succ); 2312 } 2313 IndirectBrMBB->normalizeSuccProbs(); 2314 2315 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2316 MVT::Other, getControlRoot(), 2317 getValue(I.getAddress()))); 2318 } 2319 2320 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2321 if (DAG.getTarget().Options.TrapUnreachable) 2322 DAG.setRoot( 2323 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2324 } 2325 2326 void SelectionDAGBuilder::visitFSub(const User &I) { 2327 // -0.0 - X --> fneg 2328 Type *Ty = I.getType(); 2329 if (isa<Constant>(I.getOperand(0)) && 2330 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2331 SDValue Op2 = getValue(I.getOperand(1)); 2332 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2333 Op2.getValueType(), Op2)); 2334 return; 2335 } 2336 2337 visitBinary(I, ISD::FSUB); 2338 } 2339 2340 /// Checks if the given instruction performs a vector reduction, in which case 2341 /// we have the freedom to alter the elements in the result as long as the 2342 /// reduction of them stays unchanged. 2343 static bool isVectorReductionOp(const User *I) { 2344 const Instruction *Inst = dyn_cast<Instruction>(I); 2345 if (!Inst || !Inst->getType()->isVectorTy()) 2346 return false; 2347 2348 auto OpCode = Inst->getOpcode(); 2349 switch (OpCode) { 2350 case Instruction::Add: 2351 case Instruction::Mul: 2352 case Instruction::And: 2353 case Instruction::Or: 2354 case Instruction::Xor: 2355 break; 2356 case Instruction::FAdd: 2357 case Instruction::FMul: 2358 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2359 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2360 break; 2361 // Fall through. 2362 default: 2363 return false; 2364 } 2365 2366 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2367 unsigned ElemNumToReduce = ElemNum; 2368 2369 // Do DFS search on the def-use chain from the given instruction. We only 2370 // allow four kinds of operations during the search until we reach the 2371 // instruction that extracts the first element from the vector: 2372 // 2373 // 1. The reduction operation of the same opcode as the given instruction. 2374 // 2375 // 2. PHI node. 2376 // 2377 // 3. ShuffleVector instruction together with a reduction operation that 2378 // does a partial reduction. 2379 // 2380 // 4. ExtractElement that extracts the first element from the vector, and we 2381 // stop searching the def-use chain here. 2382 // 2383 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2384 // from 1-3 to the stack to continue the DFS. The given instruction is not 2385 // a reduction operation if we meet any other instructions other than those 2386 // listed above. 2387 2388 SmallVector<const User *, 16> UsersToVisit{Inst}; 2389 SmallPtrSet<const User *, 16> Visited; 2390 bool ReduxExtracted = false; 2391 2392 while (!UsersToVisit.empty()) { 2393 auto User = UsersToVisit.back(); 2394 UsersToVisit.pop_back(); 2395 if (!Visited.insert(User).second) 2396 continue; 2397 2398 for (const auto &U : User->users()) { 2399 auto Inst = dyn_cast<Instruction>(U); 2400 if (!Inst) 2401 return false; 2402 2403 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2404 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2405 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2406 return false; 2407 UsersToVisit.push_back(U); 2408 } else if (const ShuffleVectorInst *ShufInst = 2409 dyn_cast<ShuffleVectorInst>(U)) { 2410 // Detect the following pattern: A ShuffleVector instruction together 2411 // with a reduction that do partial reduction on the first and second 2412 // ElemNumToReduce / 2 elements, and store the result in 2413 // ElemNumToReduce / 2 elements in another vector. 2414 2415 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2416 if (ResultElements < ElemNum) 2417 return false; 2418 2419 if (ElemNumToReduce == 1) 2420 return false; 2421 if (!isa<UndefValue>(U->getOperand(1))) 2422 return false; 2423 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2424 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2425 return false; 2426 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2427 if (ShufInst->getMaskValue(i) != -1) 2428 return false; 2429 2430 // There is only one user of this ShuffleVector instruction, which 2431 // must be a reduction operation. 2432 if (!U->hasOneUse()) 2433 return false; 2434 2435 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2436 if (!U2 || U2->getOpcode() != OpCode) 2437 return false; 2438 2439 // Check operands of the reduction operation. 2440 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2441 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2442 UsersToVisit.push_back(U2); 2443 ElemNumToReduce /= 2; 2444 } else 2445 return false; 2446 } else if (isa<ExtractElementInst>(U)) { 2447 // At this moment we should have reduced all elements in the vector. 2448 if (ElemNumToReduce != 1) 2449 return false; 2450 2451 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2452 if (!Val || Val->getZExtValue() != 0) 2453 return false; 2454 2455 ReduxExtracted = true; 2456 } else 2457 return false; 2458 } 2459 } 2460 return ReduxExtracted; 2461 } 2462 2463 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2464 SDValue Op1 = getValue(I.getOperand(0)); 2465 SDValue Op2 = getValue(I.getOperand(1)); 2466 2467 bool nuw = false; 2468 bool nsw = false; 2469 bool exact = false; 2470 bool vec_redux = false; 2471 FastMathFlags FMF; 2472 2473 if (const OverflowingBinaryOperator *OFBinOp = 2474 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2475 nuw = OFBinOp->hasNoUnsignedWrap(); 2476 nsw = OFBinOp->hasNoSignedWrap(); 2477 } 2478 if (const PossiblyExactOperator *ExactOp = 2479 dyn_cast<const PossiblyExactOperator>(&I)) 2480 exact = ExactOp->isExact(); 2481 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2482 FMF = FPOp->getFastMathFlags(); 2483 2484 if (isVectorReductionOp(&I)) { 2485 vec_redux = true; 2486 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2487 } 2488 2489 SDNodeFlags Flags; 2490 Flags.setExact(exact); 2491 Flags.setNoSignedWrap(nsw); 2492 Flags.setNoUnsignedWrap(nuw); 2493 Flags.setVectorReduction(vec_redux); 2494 if (EnableFMFInDAG) { 2495 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2496 Flags.setNoInfs(FMF.noInfs()); 2497 Flags.setNoNaNs(FMF.noNaNs()); 2498 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2499 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2500 } 2501 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2502 Op1, Op2, &Flags); 2503 setValue(&I, BinNodeValue); 2504 } 2505 2506 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2507 SDValue Op1 = getValue(I.getOperand(0)); 2508 SDValue Op2 = getValue(I.getOperand(1)); 2509 2510 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2511 Op2.getValueType(), DAG.getDataLayout()); 2512 2513 // Coerce the shift amount to the right type if we can. 2514 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2515 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2516 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2517 SDLoc DL = getCurSDLoc(); 2518 2519 // If the operand is smaller than the shift count type, promote it. 2520 if (ShiftSize > Op2Size) 2521 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2522 2523 // If the operand is larger than the shift count type but the shift 2524 // count type has enough bits to represent any shift value, truncate 2525 // it now. This is a common case and it exposes the truncate to 2526 // optimization early. 2527 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2528 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2529 // Otherwise we'll need to temporarily settle for some other convenient 2530 // type. Type legalization will make adjustments once the shiftee is split. 2531 else 2532 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2533 } 2534 2535 bool nuw = false; 2536 bool nsw = false; 2537 bool exact = false; 2538 2539 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2540 2541 if (const OverflowingBinaryOperator *OFBinOp = 2542 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2543 nuw = OFBinOp->hasNoUnsignedWrap(); 2544 nsw = OFBinOp->hasNoSignedWrap(); 2545 } 2546 if (const PossiblyExactOperator *ExactOp = 2547 dyn_cast<const PossiblyExactOperator>(&I)) 2548 exact = ExactOp->isExact(); 2549 } 2550 SDNodeFlags Flags; 2551 Flags.setExact(exact); 2552 Flags.setNoSignedWrap(nsw); 2553 Flags.setNoUnsignedWrap(nuw); 2554 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2555 &Flags); 2556 setValue(&I, Res); 2557 } 2558 2559 void SelectionDAGBuilder::visitSDiv(const User &I) { 2560 SDValue Op1 = getValue(I.getOperand(0)); 2561 SDValue Op2 = getValue(I.getOperand(1)); 2562 2563 SDNodeFlags Flags; 2564 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2565 cast<PossiblyExactOperator>(&I)->isExact()); 2566 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2567 Op2, &Flags)); 2568 } 2569 2570 void SelectionDAGBuilder::visitICmp(const User &I) { 2571 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2572 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2573 predicate = IC->getPredicate(); 2574 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2575 predicate = ICmpInst::Predicate(IC->getPredicate()); 2576 SDValue Op1 = getValue(I.getOperand(0)); 2577 SDValue Op2 = getValue(I.getOperand(1)); 2578 ISD::CondCode Opcode = getICmpCondCode(predicate); 2579 2580 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2581 I.getType()); 2582 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2583 } 2584 2585 void SelectionDAGBuilder::visitFCmp(const User &I) { 2586 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2587 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2588 predicate = FC->getPredicate(); 2589 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2590 predicate = FCmpInst::Predicate(FC->getPredicate()); 2591 SDValue Op1 = getValue(I.getOperand(0)); 2592 SDValue Op2 = getValue(I.getOperand(1)); 2593 ISD::CondCode Condition = getFCmpCondCode(predicate); 2594 2595 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2596 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2597 // further optimization, but currently FMF is only applicable to binary nodes. 2598 if (TM.Options.NoNaNsFPMath) 2599 Condition = getFCmpCodeWithoutNaN(Condition); 2600 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2601 I.getType()); 2602 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2603 } 2604 2605 void SelectionDAGBuilder::visitSelect(const User &I) { 2606 SmallVector<EVT, 4> ValueVTs; 2607 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2608 ValueVTs); 2609 unsigned NumValues = ValueVTs.size(); 2610 if (NumValues == 0) return; 2611 2612 SmallVector<SDValue, 4> Values(NumValues); 2613 SDValue Cond = getValue(I.getOperand(0)); 2614 SDValue LHSVal = getValue(I.getOperand(1)); 2615 SDValue RHSVal = getValue(I.getOperand(2)); 2616 auto BaseOps = {Cond}; 2617 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2618 ISD::VSELECT : ISD::SELECT; 2619 2620 // Min/max matching is only viable if all output VTs are the same. 2621 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2622 EVT VT = ValueVTs[0]; 2623 LLVMContext &Ctx = *DAG.getContext(); 2624 auto &TLI = DAG.getTargetLoweringInfo(); 2625 2626 // We care about the legality of the operation after it has been type 2627 // legalized. 2628 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2629 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2630 VT = TLI.getTypeToTransformTo(Ctx, VT); 2631 2632 // If the vselect is legal, assume we want to leave this as a vector setcc + 2633 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2634 // min/max is legal on the scalar type. 2635 bool UseScalarMinMax = VT.isVector() && 2636 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2637 2638 Value *LHS, *RHS; 2639 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2640 ISD::NodeType Opc = ISD::DELETED_NODE; 2641 switch (SPR.Flavor) { 2642 case SPF_UMAX: Opc = ISD::UMAX; break; 2643 case SPF_UMIN: Opc = ISD::UMIN; break; 2644 case SPF_SMAX: Opc = ISD::SMAX; break; 2645 case SPF_SMIN: Opc = ISD::SMIN; break; 2646 case SPF_FMINNUM: 2647 switch (SPR.NaNBehavior) { 2648 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2649 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2650 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2651 case SPNB_RETURNS_ANY: { 2652 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2653 Opc = ISD::FMINNUM; 2654 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2655 Opc = ISD::FMINNAN; 2656 else if (UseScalarMinMax) 2657 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2658 ISD::FMINNUM : ISD::FMINNAN; 2659 break; 2660 } 2661 } 2662 break; 2663 case SPF_FMAXNUM: 2664 switch (SPR.NaNBehavior) { 2665 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2666 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2667 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2668 case SPNB_RETURNS_ANY: 2669 2670 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2671 Opc = ISD::FMAXNUM; 2672 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2673 Opc = ISD::FMAXNAN; 2674 else if (UseScalarMinMax) 2675 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2676 ISD::FMAXNUM : ISD::FMAXNAN; 2677 break; 2678 } 2679 break; 2680 default: break; 2681 } 2682 2683 if (Opc != ISD::DELETED_NODE && 2684 (TLI.isOperationLegalOrCustom(Opc, VT) || 2685 (UseScalarMinMax && 2686 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2687 // If the underlying comparison instruction is used by any other 2688 // instruction, the consumed instructions won't be destroyed, so it is 2689 // not profitable to convert to a min/max. 2690 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2691 OpCode = Opc; 2692 LHSVal = getValue(LHS); 2693 RHSVal = getValue(RHS); 2694 BaseOps = {}; 2695 } 2696 } 2697 2698 for (unsigned i = 0; i != NumValues; ++i) { 2699 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2700 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2701 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2702 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2703 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2704 Ops); 2705 } 2706 2707 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2708 DAG.getVTList(ValueVTs), Values)); 2709 } 2710 2711 void SelectionDAGBuilder::visitTrunc(const User &I) { 2712 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2713 SDValue N = getValue(I.getOperand(0)); 2714 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2715 I.getType()); 2716 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2717 } 2718 2719 void SelectionDAGBuilder::visitZExt(const User &I) { 2720 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2721 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2722 SDValue N = getValue(I.getOperand(0)); 2723 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2724 I.getType()); 2725 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2726 } 2727 2728 void SelectionDAGBuilder::visitSExt(const User &I) { 2729 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2730 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2731 SDValue N = getValue(I.getOperand(0)); 2732 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2733 I.getType()); 2734 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2735 } 2736 2737 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2738 // FPTrunc is never a no-op cast, no need to check 2739 SDValue N = getValue(I.getOperand(0)); 2740 SDLoc dl = getCurSDLoc(); 2741 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2742 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2743 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2744 DAG.getTargetConstant( 2745 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2746 } 2747 2748 void SelectionDAGBuilder::visitFPExt(const User &I) { 2749 // FPExt is never a no-op cast, no need to check 2750 SDValue N = getValue(I.getOperand(0)); 2751 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2752 I.getType()); 2753 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2754 } 2755 2756 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2757 // FPToUI is never a no-op cast, no need to check 2758 SDValue N = getValue(I.getOperand(0)); 2759 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2760 I.getType()); 2761 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2762 } 2763 2764 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2765 // FPToSI is never a no-op cast, no need to check 2766 SDValue N = getValue(I.getOperand(0)); 2767 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2768 I.getType()); 2769 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2770 } 2771 2772 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2773 // UIToFP is never a no-op cast, no need to check 2774 SDValue N = getValue(I.getOperand(0)); 2775 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2776 I.getType()); 2777 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2778 } 2779 2780 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2781 // SIToFP is never a no-op cast, no need to check 2782 SDValue N = getValue(I.getOperand(0)); 2783 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2784 I.getType()); 2785 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2786 } 2787 2788 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2789 // What to do depends on the size of the integer and the size of the pointer. 2790 // We can either truncate, zero extend, or no-op, accordingly. 2791 SDValue N = getValue(I.getOperand(0)); 2792 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2793 I.getType()); 2794 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2795 } 2796 2797 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2798 // What to do depends on the size of the integer and the size of the pointer. 2799 // We can either truncate, zero extend, or no-op, accordingly. 2800 SDValue N = getValue(I.getOperand(0)); 2801 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2802 I.getType()); 2803 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2804 } 2805 2806 void SelectionDAGBuilder::visitBitCast(const User &I) { 2807 SDValue N = getValue(I.getOperand(0)); 2808 SDLoc dl = getCurSDLoc(); 2809 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2810 I.getType()); 2811 2812 // BitCast assures us that source and destination are the same size so this is 2813 // either a BITCAST or a no-op. 2814 if (DestVT != N.getValueType()) 2815 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2816 DestVT, N)); // convert types. 2817 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2818 // might fold any kind of constant expression to an integer constant and that 2819 // is not what we are looking for. Only regcognize a bitcast of a genuine 2820 // constant integer as an opaque constant. 2821 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2822 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2823 /*isOpaque*/true)); 2824 else 2825 setValue(&I, N); // noop cast. 2826 } 2827 2828 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2830 const Value *SV = I.getOperand(0); 2831 SDValue N = getValue(SV); 2832 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2833 2834 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2835 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2836 2837 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2838 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2839 2840 setValue(&I, N); 2841 } 2842 2843 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2844 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2845 SDValue InVec = getValue(I.getOperand(0)); 2846 SDValue InVal = getValue(I.getOperand(1)); 2847 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2848 TLI.getVectorIdxTy(DAG.getDataLayout())); 2849 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2850 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2851 InVec, InVal, InIdx)); 2852 } 2853 2854 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2855 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2856 SDValue InVec = getValue(I.getOperand(0)); 2857 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2858 TLI.getVectorIdxTy(DAG.getDataLayout())); 2859 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2860 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2861 InVec, InIdx)); 2862 } 2863 2864 // Utility for visitShuffleVector - Return true if every element in Mask, 2865 // beginning from position Pos and ending in Pos+Size, falls within the 2866 // specified sequential range [L, L+Pos). or is undef. 2867 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2868 unsigned Pos, unsigned Size, int Low) { 2869 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2870 if (Mask[i] >= 0 && Mask[i] != Low) 2871 return false; 2872 return true; 2873 } 2874 2875 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2876 SDValue Src1 = getValue(I.getOperand(0)); 2877 SDValue Src2 = getValue(I.getOperand(1)); 2878 2879 SmallVector<int, 8> Mask; 2880 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2881 unsigned MaskNumElts = Mask.size(); 2882 2883 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2884 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2885 EVT SrcVT = Src1.getValueType(); 2886 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2887 2888 if (SrcNumElts == MaskNumElts) { 2889 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2890 &Mask[0])); 2891 return; 2892 } 2893 2894 // Normalize the shuffle vector since mask and vector length don't match. 2895 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2896 // Mask is longer than the source vectors and is a multiple of the source 2897 // vectors. We can use concatenate vector to make the mask and vectors 2898 // lengths match. 2899 if (SrcNumElts*2 == MaskNumElts) { 2900 // First check for Src1 in low and Src2 in high 2901 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2902 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2903 // The shuffle is concatenating two vectors together. 2904 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2905 VT, Src1, Src2)); 2906 return; 2907 } 2908 // Then check for Src2 in low and Src1 in high 2909 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2910 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2911 // The shuffle is concatenating two vectors together. 2912 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2913 VT, Src2, Src1)); 2914 return; 2915 } 2916 } 2917 2918 // Pad both vectors with undefs to make them the same length as the mask. 2919 unsigned NumConcat = MaskNumElts / SrcNumElts; 2920 bool Src1U = Src1.isUndef(); 2921 bool Src2U = Src2.isUndef(); 2922 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2923 2924 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2925 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2926 MOps1[0] = Src1; 2927 MOps2[0] = Src2; 2928 2929 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2930 getCurSDLoc(), VT, MOps1); 2931 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2932 getCurSDLoc(), VT, MOps2); 2933 2934 // Readjust mask for new input vector length. 2935 SmallVector<int, 8> MappedOps; 2936 for (unsigned i = 0; i != MaskNumElts; ++i) { 2937 int Idx = Mask[i]; 2938 if (Idx >= (int)SrcNumElts) 2939 Idx -= SrcNumElts - MaskNumElts; 2940 MappedOps.push_back(Idx); 2941 } 2942 2943 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2944 &MappedOps[0])); 2945 return; 2946 } 2947 2948 if (SrcNumElts > MaskNumElts) { 2949 // Analyze the access pattern of the vector to see if we can extract 2950 // two subvectors and do the shuffle. The analysis is done by calculating 2951 // the range of elements the mask access on both vectors. 2952 int MinRange[2] = { static_cast<int>(SrcNumElts), 2953 static_cast<int>(SrcNumElts)}; 2954 int MaxRange[2] = {-1, -1}; 2955 2956 for (unsigned i = 0; i != MaskNumElts; ++i) { 2957 int Idx = Mask[i]; 2958 unsigned Input = 0; 2959 if (Idx < 0) 2960 continue; 2961 2962 if (Idx >= (int)SrcNumElts) { 2963 Input = 1; 2964 Idx -= SrcNumElts; 2965 } 2966 if (Idx > MaxRange[Input]) 2967 MaxRange[Input] = Idx; 2968 if (Idx < MinRange[Input]) 2969 MinRange[Input] = Idx; 2970 } 2971 2972 // Check if the access is smaller than the vector size and can we find 2973 // a reasonable extract index. 2974 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2975 // Extract. 2976 int StartIdx[2]; // StartIdx to extract from 2977 for (unsigned Input = 0; Input < 2; ++Input) { 2978 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2979 RangeUse[Input] = 0; // Unused 2980 StartIdx[Input] = 0; 2981 continue; 2982 } 2983 2984 // Find a good start index that is a multiple of the mask length. Then 2985 // see if the rest of the elements are in range. 2986 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2987 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2988 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2989 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2990 } 2991 2992 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2993 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2994 return; 2995 } 2996 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2997 // Extract appropriate subvector and generate a vector shuffle 2998 for (unsigned Input = 0; Input < 2; ++Input) { 2999 SDValue &Src = Input == 0 ? Src1 : Src2; 3000 if (RangeUse[Input] == 0) 3001 Src = DAG.getUNDEF(VT); 3002 else { 3003 SDLoc dl = getCurSDLoc(); 3004 Src = DAG.getNode( 3005 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 3006 DAG.getConstant(StartIdx[Input], dl, 3007 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3008 } 3009 } 3010 3011 // Calculate new mask. 3012 SmallVector<int, 8> MappedOps; 3013 for (unsigned i = 0; i != MaskNumElts; ++i) { 3014 int Idx = Mask[i]; 3015 if (Idx >= 0) { 3016 if (Idx < (int)SrcNumElts) 3017 Idx -= StartIdx[0]; 3018 else 3019 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3020 } 3021 MappedOps.push_back(Idx); 3022 } 3023 3024 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3025 &MappedOps[0])); 3026 return; 3027 } 3028 } 3029 3030 // We can't use either concat vectors or extract subvectors so fall back to 3031 // replacing the shuffle with extract and build vector. 3032 // to insert and build vector. 3033 EVT EltVT = VT.getVectorElementType(); 3034 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3035 SDLoc dl = getCurSDLoc(); 3036 SmallVector<SDValue,8> Ops; 3037 for (unsigned i = 0; i != MaskNumElts; ++i) { 3038 int Idx = Mask[i]; 3039 SDValue Res; 3040 3041 if (Idx < 0) { 3042 Res = DAG.getUNDEF(EltVT); 3043 } else { 3044 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3045 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3046 3047 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3048 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 3049 } 3050 3051 Ops.push_back(Res); 3052 } 3053 3054 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 3055 } 3056 3057 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3058 const Value *Op0 = I.getOperand(0); 3059 const Value *Op1 = I.getOperand(1); 3060 Type *AggTy = I.getType(); 3061 Type *ValTy = Op1->getType(); 3062 bool IntoUndef = isa<UndefValue>(Op0); 3063 bool FromUndef = isa<UndefValue>(Op1); 3064 3065 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3066 3067 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3068 SmallVector<EVT, 4> AggValueVTs; 3069 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3070 SmallVector<EVT, 4> ValValueVTs; 3071 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3072 3073 unsigned NumAggValues = AggValueVTs.size(); 3074 unsigned NumValValues = ValValueVTs.size(); 3075 SmallVector<SDValue, 4> Values(NumAggValues); 3076 3077 // Ignore an insertvalue that produces an empty object 3078 if (!NumAggValues) { 3079 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3080 return; 3081 } 3082 3083 SDValue Agg = getValue(Op0); 3084 unsigned i = 0; 3085 // Copy the beginning value(s) from the original aggregate. 3086 for (; i != LinearIndex; ++i) 3087 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3088 SDValue(Agg.getNode(), Agg.getResNo() + i); 3089 // Copy values from the inserted value(s). 3090 if (NumValValues) { 3091 SDValue Val = getValue(Op1); 3092 for (; i != LinearIndex + NumValValues; ++i) 3093 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3094 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3095 } 3096 // Copy remaining value(s) from the original aggregate. 3097 for (; i != NumAggValues; ++i) 3098 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3099 SDValue(Agg.getNode(), Agg.getResNo() + i); 3100 3101 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3102 DAG.getVTList(AggValueVTs), Values)); 3103 } 3104 3105 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3106 const Value *Op0 = I.getOperand(0); 3107 Type *AggTy = Op0->getType(); 3108 Type *ValTy = I.getType(); 3109 bool OutOfUndef = isa<UndefValue>(Op0); 3110 3111 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3112 3113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3114 SmallVector<EVT, 4> ValValueVTs; 3115 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3116 3117 unsigned NumValValues = ValValueVTs.size(); 3118 3119 // Ignore a extractvalue that produces an empty object 3120 if (!NumValValues) { 3121 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3122 return; 3123 } 3124 3125 SmallVector<SDValue, 4> Values(NumValValues); 3126 3127 SDValue Agg = getValue(Op0); 3128 // Copy out the selected value(s). 3129 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3130 Values[i - LinearIndex] = 3131 OutOfUndef ? 3132 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3133 SDValue(Agg.getNode(), Agg.getResNo() + i); 3134 3135 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3136 DAG.getVTList(ValValueVTs), Values)); 3137 } 3138 3139 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3140 Value *Op0 = I.getOperand(0); 3141 // Note that the pointer operand may be a vector of pointers. Take the scalar 3142 // element which holds a pointer. 3143 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3144 SDValue N = getValue(Op0); 3145 SDLoc dl = getCurSDLoc(); 3146 3147 // Normalize Vector GEP - all scalar operands should be converted to the 3148 // splat vector. 3149 unsigned VectorWidth = I.getType()->isVectorTy() ? 3150 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3151 3152 if (VectorWidth && !N.getValueType().isVector()) { 3153 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 3154 SmallVector<SDValue, 16> Ops(VectorWidth, N); 3155 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3156 } 3157 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3158 GTI != E; ++GTI) { 3159 const Value *Idx = GTI.getOperand(); 3160 if (StructType *StTy = dyn_cast<StructType>(*GTI)) { 3161 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3162 if (Field) { 3163 // N = N + Offset 3164 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3165 3166 // In an inbouds GEP with an offset that is nonnegative even when 3167 // interpreted as signed, assume there is no unsigned overflow. 3168 SDNodeFlags Flags; 3169 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3170 Flags.setNoUnsignedWrap(true); 3171 3172 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3173 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3174 } 3175 } else { 3176 MVT PtrTy = 3177 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3178 unsigned PtrSize = PtrTy.getSizeInBits(); 3179 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3180 3181 // If this is a scalar constant or a splat vector of constants, 3182 // handle it quickly. 3183 const auto *CI = dyn_cast<ConstantInt>(Idx); 3184 if (!CI && isa<ConstantDataVector>(Idx) && 3185 cast<ConstantDataVector>(Idx)->getSplatValue()) 3186 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3187 3188 if (CI) { 3189 if (CI->isZero()) 3190 continue; 3191 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3192 SDValue OffsVal = VectorWidth ? 3193 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3194 DAG.getConstant(Offs, dl, PtrTy); 3195 3196 // In an inbouds GEP with an offset that is nonnegative even when 3197 // interpreted as signed, assume there is no unsigned overflow. 3198 SDNodeFlags Flags; 3199 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3200 Flags.setNoUnsignedWrap(true); 3201 3202 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3203 continue; 3204 } 3205 3206 // N = N + Idx * ElementSize; 3207 SDValue IdxN = getValue(Idx); 3208 3209 if (!IdxN.getValueType().isVector() && VectorWidth) { 3210 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3211 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3212 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3213 } 3214 // If the index is smaller or larger than intptr_t, truncate or extend 3215 // it. 3216 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3217 3218 // If this is a multiply by a power of two, turn it into a shl 3219 // immediately. This is a very common case. 3220 if (ElementSize != 1) { 3221 if (ElementSize.isPowerOf2()) { 3222 unsigned Amt = ElementSize.logBase2(); 3223 IdxN = DAG.getNode(ISD::SHL, dl, 3224 N.getValueType(), IdxN, 3225 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3226 } else { 3227 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3228 IdxN = DAG.getNode(ISD::MUL, dl, 3229 N.getValueType(), IdxN, Scale); 3230 } 3231 } 3232 3233 N = DAG.getNode(ISD::ADD, dl, 3234 N.getValueType(), N, IdxN); 3235 } 3236 } 3237 3238 setValue(&I, N); 3239 } 3240 3241 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3242 // If this is a fixed sized alloca in the entry block of the function, 3243 // allocate it statically on the stack. 3244 if (FuncInfo.StaticAllocaMap.count(&I)) 3245 return; // getValue will auto-populate this. 3246 3247 SDLoc dl = getCurSDLoc(); 3248 Type *Ty = I.getAllocatedType(); 3249 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3250 auto &DL = DAG.getDataLayout(); 3251 uint64_t TySize = DL.getTypeAllocSize(Ty); 3252 unsigned Align = 3253 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3254 3255 SDValue AllocSize = getValue(I.getArraySize()); 3256 3257 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3258 if (AllocSize.getValueType() != IntPtr) 3259 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3260 3261 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3262 AllocSize, 3263 DAG.getConstant(TySize, dl, IntPtr)); 3264 3265 // Handle alignment. If the requested alignment is less than or equal to 3266 // the stack alignment, ignore it. If the size is greater than or equal to 3267 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3268 unsigned StackAlign = 3269 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3270 if (Align <= StackAlign) 3271 Align = 0; 3272 3273 // Round the size of the allocation up to the stack alignment size 3274 // by add SA-1 to the size. This doesn't overflow because we're computing 3275 // an address inside an alloca. 3276 SDNodeFlags Flags; 3277 Flags.setNoUnsignedWrap(true); 3278 AllocSize = DAG.getNode(ISD::ADD, dl, 3279 AllocSize.getValueType(), AllocSize, 3280 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3281 3282 // Mask out the low bits for alignment purposes. 3283 AllocSize = DAG.getNode(ISD::AND, dl, 3284 AllocSize.getValueType(), AllocSize, 3285 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3286 dl)); 3287 3288 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3289 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3290 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3291 setValue(&I, DSA); 3292 DAG.setRoot(DSA.getValue(1)); 3293 3294 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3295 } 3296 3297 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3298 if (I.isAtomic()) 3299 return visitAtomicLoad(I); 3300 3301 const Value *SV = I.getOperand(0); 3302 SDValue Ptr = getValue(SV); 3303 3304 Type *Ty = I.getType(); 3305 3306 bool isVolatile = I.isVolatile(); 3307 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3308 3309 // The IR notion of invariant_load only guarantees that all *non-faulting* 3310 // invariant loads result in the same value. The MI notion of invariant load 3311 // guarantees that the load can be legally moved to any location within its 3312 // containing function. The MI notion of invariant_load is stronger than the 3313 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3314 // with a guarantee that the location being loaded from is dereferenceable 3315 // throughout the function's lifetime. 3316 3317 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3318 isDereferenceablePointer(SV, DAG.getDataLayout()); 3319 unsigned Alignment = I.getAlignment(); 3320 3321 AAMDNodes AAInfo; 3322 I.getAAMetadata(AAInfo); 3323 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3324 3325 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3326 SmallVector<EVT, 4> ValueVTs; 3327 SmallVector<uint64_t, 4> Offsets; 3328 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3329 unsigned NumValues = ValueVTs.size(); 3330 if (NumValues == 0) 3331 return; 3332 3333 SDValue Root; 3334 bool ConstantMemory = false; 3335 if (isVolatile || NumValues > MaxParallelChains) 3336 // Serialize volatile loads with other side effects. 3337 Root = getRoot(); 3338 else if (AA->pointsToConstantMemory(MemoryLocation( 3339 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3340 // Do not serialize (non-volatile) loads of constant memory with anything. 3341 Root = DAG.getEntryNode(); 3342 ConstantMemory = true; 3343 } else { 3344 // Do not serialize non-volatile loads against each other. 3345 Root = DAG.getRoot(); 3346 } 3347 3348 SDLoc dl = getCurSDLoc(); 3349 3350 if (isVolatile) 3351 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3352 3353 // An aggregate load cannot wrap around the address space, so offsets to its 3354 // parts don't wrap either. 3355 SDNodeFlags Flags; 3356 Flags.setNoUnsignedWrap(true); 3357 3358 SmallVector<SDValue, 4> Values(NumValues); 3359 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3360 EVT PtrVT = Ptr.getValueType(); 3361 unsigned ChainI = 0; 3362 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3363 // Serializing loads here may result in excessive register pressure, and 3364 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3365 // could recover a bit by hoisting nodes upward in the chain by recognizing 3366 // they are side-effect free or do not alias. The optimizer should really 3367 // avoid this case by converting large object/array copies to llvm.memcpy 3368 // (MaxParallelChains should always remain as failsafe). 3369 if (ChainI == MaxParallelChains) { 3370 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3371 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3372 makeArrayRef(Chains.data(), ChainI)); 3373 Root = Chain; 3374 ChainI = 0; 3375 } 3376 SDValue A = DAG.getNode(ISD::ADD, dl, 3377 PtrVT, Ptr, 3378 DAG.getConstant(Offsets[i], dl, PtrVT), 3379 &Flags); 3380 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3381 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3382 isNonTemporal, isInvariant, Alignment, AAInfo, 3383 Ranges); 3384 3385 Values[i] = L; 3386 Chains[ChainI] = L.getValue(1); 3387 } 3388 3389 if (!ConstantMemory) { 3390 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3391 makeArrayRef(Chains.data(), ChainI)); 3392 if (isVolatile) 3393 DAG.setRoot(Chain); 3394 else 3395 PendingLoads.push_back(Chain); 3396 } 3397 3398 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3399 DAG.getVTList(ValueVTs), Values)); 3400 } 3401 3402 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3403 if (I.isAtomic()) 3404 return visitAtomicStore(I); 3405 3406 const Value *SrcV = I.getOperand(0); 3407 const Value *PtrV = I.getOperand(1); 3408 3409 SmallVector<EVT, 4> ValueVTs; 3410 SmallVector<uint64_t, 4> Offsets; 3411 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3412 SrcV->getType(), ValueVTs, &Offsets); 3413 unsigned NumValues = ValueVTs.size(); 3414 if (NumValues == 0) 3415 return; 3416 3417 // Get the lowered operands. Note that we do this after 3418 // checking if NumResults is zero, because with zero results 3419 // the operands won't have values in the map. 3420 SDValue Src = getValue(SrcV); 3421 SDValue Ptr = getValue(PtrV); 3422 3423 SDValue Root = getRoot(); 3424 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3425 EVT PtrVT = Ptr.getValueType(); 3426 bool isVolatile = I.isVolatile(); 3427 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3428 unsigned Alignment = I.getAlignment(); 3429 SDLoc dl = getCurSDLoc(); 3430 3431 AAMDNodes AAInfo; 3432 I.getAAMetadata(AAInfo); 3433 3434 // An aggregate load cannot wrap around the address space, so offsets to its 3435 // parts don't wrap either. 3436 SDNodeFlags Flags; 3437 Flags.setNoUnsignedWrap(true); 3438 3439 unsigned ChainI = 0; 3440 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3441 // See visitLoad comments. 3442 if (ChainI == MaxParallelChains) { 3443 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3444 makeArrayRef(Chains.data(), ChainI)); 3445 Root = Chain; 3446 ChainI = 0; 3447 } 3448 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3449 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3450 SDValue St = DAG.getStore(Root, dl, 3451 SDValue(Src.getNode(), Src.getResNo() + i), 3452 Add, MachinePointerInfo(PtrV, Offsets[i]), 3453 isVolatile, isNonTemporal, Alignment, AAInfo); 3454 Chains[ChainI] = St; 3455 } 3456 3457 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3458 makeArrayRef(Chains.data(), ChainI)); 3459 DAG.setRoot(StoreNode); 3460 } 3461 3462 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3463 SDLoc sdl = getCurSDLoc(); 3464 3465 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3466 Value *PtrOperand = I.getArgOperand(1); 3467 SDValue Ptr = getValue(PtrOperand); 3468 SDValue Src0 = getValue(I.getArgOperand(0)); 3469 SDValue Mask = getValue(I.getArgOperand(3)); 3470 EVT VT = Src0.getValueType(); 3471 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3472 if (!Alignment) 3473 Alignment = DAG.getEVTAlignment(VT); 3474 3475 AAMDNodes AAInfo; 3476 I.getAAMetadata(AAInfo); 3477 3478 MachineMemOperand *MMO = 3479 DAG.getMachineFunction(). 3480 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3481 MachineMemOperand::MOStore, VT.getStoreSize(), 3482 Alignment, AAInfo); 3483 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3484 MMO, false); 3485 DAG.setRoot(StoreNode); 3486 setValue(&I, StoreNode); 3487 } 3488 3489 // Get a uniform base for the Gather/Scatter intrinsic. 3490 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3491 // We try to represent it as a base pointer + vector of indices. 3492 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3493 // The first operand of the GEP may be a single pointer or a vector of pointers 3494 // Example: 3495 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3496 // or 3497 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3498 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3499 // 3500 // When the first GEP operand is a single pointer - it is the uniform base we 3501 // are looking for. If first operand of the GEP is a splat vector - we 3502 // extract the spalt value and use it as a uniform base. 3503 // In all other cases the function returns 'false'. 3504 // 3505 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3506 SelectionDAGBuilder* SDB) { 3507 3508 SelectionDAG& DAG = SDB->DAG; 3509 LLVMContext &Context = *DAG.getContext(); 3510 3511 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3512 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3513 if (!GEP || GEP->getNumOperands() > 2) 3514 return false; 3515 3516 const Value *GEPPtr = GEP->getPointerOperand(); 3517 if (!GEPPtr->getType()->isVectorTy()) 3518 Ptr = GEPPtr; 3519 else if (!(Ptr = getSplatValue(GEPPtr))) 3520 return false; 3521 3522 Value *IndexVal = GEP->getOperand(1); 3523 3524 // The operands of the GEP may be defined in another basic block. 3525 // In this case we'll not find nodes for the operands. 3526 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3527 return false; 3528 3529 Base = SDB->getValue(Ptr); 3530 Index = SDB->getValue(IndexVal); 3531 3532 // Suppress sign extension. 3533 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3534 if (SDB->findValue(Sext->getOperand(0))) { 3535 IndexVal = Sext->getOperand(0); 3536 Index = SDB->getValue(IndexVal); 3537 } 3538 } 3539 if (!Index.getValueType().isVector()) { 3540 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3541 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3542 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3543 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3544 } 3545 return true; 3546 } 3547 3548 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3549 SDLoc sdl = getCurSDLoc(); 3550 3551 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3552 const Value *Ptr = I.getArgOperand(1); 3553 SDValue Src0 = getValue(I.getArgOperand(0)); 3554 SDValue Mask = getValue(I.getArgOperand(3)); 3555 EVT VT = Src0.getValueType(); 3556 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3557 if (!Alignment) 3558 Alignment = DAG.getEVTAlignment(VT); 3559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3560 3561 AAMDNodes AAInfo; 3562 I.getAAMetadata(AAInfo); 3563 3564 SDValue Base; 3565 SDValue Index; 3566 const Value *BasePtr = Ptr; 3567 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3568 3569 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3570 MachineMemOperand *MMO = DAG.getMachineFunction(). 3571 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3572 MachineMemOperand::MOStore, VT.getStoreSize(), 3573 Alignment, AAInfo); 3574 if (!UniformBase) { 3575 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3576 Index = getValue(Ptr); 3577 } 3578 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3579 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3580 Ops, MMO); 3581 DAG.setRoot(Scatter); 3582 setValue(&I, Scatter); 3583 } 3584 3585 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3586 SDLoc sdl = getCurSDLoc(); 3587 3588 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3589 Value *PtrOperand = I.getArgOperand(0); 3590 SDValue Ptr = getValue(PtrOperand); 3591 SDValue Src0 = getValue(I.getArgOperand(3)); 3592 SDValue Mask = getValue(I.getArgOperand(2)); 3593 3594 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3595 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3596 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3597 if (!Alignment) 3598 Alignment = DAG.getEVTAlignment(VT); 3599 3600 AAMDNodes AAInfo; 3601 I.getAAMetadata(AAInfo); 3602 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3603 3604 SDValue InChain = DAG.getRoot(); 3605 if (AA->pointsToConstantMemory(MemoryLocation( 3606 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3607 AAInfo))) { 3608 // Do not serialize (non-volatile) loads of constant memory with anything. 3609 InChain = DAG.getEntryNode(); 3610 } 3611 3612 MachineMemOperand *MMO = 3613 DAG.getMachineFunction(). 3614 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3615 MachineMemOperand::MOLoad, VT.getStoreSize(), 3616 Alignment, AAInfo, Ranges); 3617 3618 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3619 ISD::NON_EXTLOAD); 3620 SDValue OutChain = Load.getValue(1); 3621 DAG.setRoot(OutChain); 3622 setValue(&I, Load); 3623 } 3624 3625 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3626 SDLoc sdl = getCurSDLoc(); 3627 3628 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3629 const Value *Ptr = I.getArgOperand(0); 3630 SDValue Src0 = getValue(I.getArgOperand(3)); 3631 SDValue Mask = getValue(I.getArgOperand(2)); 3632 3633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3634 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3635 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3636 if (!Alignment) 3637 Alignment = DAG.getEVTAlignment(VT); 3638 3639 AAMDNodes AAInfo; 3640 I.getAAMetadata(AAInfo); 3641 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3642 3643 SDValue Root = DAG.getRoot(); 3644 SDValue Base; 3645 SDValue Index; 3646 const Value *BasePtr = Ptr; 3647 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3648 bool ConstantMemory = false; 3649 if (UniformBase && 3650 AA->pointsToConstantMemory(MemoryLocation( 3651 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3652 AAInfo))) { 3653 // Do not serialize (non-volatile) loads of constant memory with anything. 3654 Root = DAG.getEntryNode(); 3655 ConstantMemory = true; 3656 } 3657 3658 MachineMemOperand *MMO = 3659 DAG.getMachineFunction(). 3660 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3661 MachineMemOperand::MOLoad, VT.getStoreSize(), 3662 Alignment, AAInfo, Ranges); 3663 3664 if (!UniformBase) { 3665 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3666 Index = getValue(Ptr); 3667 } 3668 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3669 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3670 Ops, MMO); 3671 3672 SDValue OutChain = Gather.getValue(1); 3673 if (!ConstantMemory) 3674 PendingLoads.push_back(OutChain); 3675 setValue(&I, Gather); 3676 } 3677 3678 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3679 SDLoc dl = getCurSDLoc(); 3680 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3681 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3682 SynchronizationScope Scope = I.getSynchScope(); 3683 3684 SDValue InChain = getRoot(); 3685 3686 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3687 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3688 SDValue L = DAG.getAtomicCmpSwap( 3689 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3690 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3691 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3692 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3693 3694 SDValue OutChain = L.getValue(2); 3695 3696 setValue(&I, L); 3697 DAG.setRoot(OutChain); 3698 } 3699 3700 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3701 SDLoc dl = getCurSDLoc(); 3702 ISD::NodeType NT; 3703 switch (I.getOperation()) { 3704 default: llvm_unreachable("Unknown atomicrmw operation"); 3705 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3706 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3707 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3708 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3709 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3710 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3711 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3712 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3713 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3714 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3715 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3716 } 3717 AtomicOrdering Order = I.getOrdering(); 3718 SynchronizationScope Scope = I.getSynchScope(); 3719 3720 SDValue InChain = getRoot(); 3721 3722 SDValue L = 3723 DAG.getAtomic(NT, dl, 3724 getValue(I.getValOperand()).getSimpleValueType(), 3725 InChain, 3726 getValue(I.getPointerOperand()), 3727 getValue(I.getValOperand()), 3728 I.getPointerOperand(), 3729 /* Alignment=*/ 0, Order, Scope); 3730 3731 SDValue OutChain = L.getValue(1); 3732 3733 setValue(&I, L); 3734 DAG.setRoot(OutChain); 3735 } 3736 3737 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3738 SDLoc dl = getCurSDLoc(); 3739 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3740 SDValue Ops[3]; 3741 Ops[0] = getRoot(); 3742 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3743 TLI.getPointerTy(DAG.getDataLayout())); 3744 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3745 TLI.getPointerTy(DAG.getDataLayout())); 3746 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3747 } 3748 3749 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3750 SDLoc dl = getCurSDLoc(); 3751 AtomicOrdering Order = I.getOrdering(); 3752 SynchronizationScope Scope = I.getSynchScope(); 3753 3754 SDValue InChain = getRoot(); 3755 3756 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3757 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3758 3759 if (I.getAlignment() < VT.getSizeInBits() / 8) 3760 report_fatal_error("Cannot generate unaligned atomic load"); 3761 3762 MachineMemOperand *MMO = 3763 DAG.getMachineFunction(). 3764 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3765 MachineMemOperand::MOVolatile | 3766 MachineMemOperand::MOLoad, 3767 VT.getStoreSize(), 3768 I.getAlignment() ? I.getAlignment() : 3769 DAG.getEVTAlignment(VT)); 3770 3771 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3772 SDValue L = 3773 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3774 getValue(I.getPointerOperand()), MMO, 3775 Order, Scope); 3776 3777 SDValue OutChain = L.getValue(1); 3778 3779 setValue(&I, L); 3780 DAG.setRoot(OutChain); 3781 } 3782 3783 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3784 SDLoc dl = getCurSDLoc(); 3785 3786 AtomicOrdering Order = I.getOrdering(); 3787 SynchronizationScope Scope = I.getSynchScope(); 3788 3789 SDValue InChain = getRoot(); 3790 3791 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3792 EVT VT = 3793 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3794 3795 if (I.getAlignment() < VT.getSizeInBits() / 8) 3796 report_fatal_error("Cannot generate unaligned atomic store"); 3797 3798 SDValue OutChain = 3799 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3800 InChain, 3801 getValue(I.getPointerOperand()), 3802 getValue(I.getValueOperand()), 3803 I.getPointerOperand(), I.getAlignment(), 3804 Order, Scope); 3805 3806 DAG.setRoot(OutChain); 3807 } 3808 3809 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3810 /// node. 3811 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3812 unsigned Intrinsic) { 3813 bool HasChain = !I.doesNotAccessMemory(); 3814 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3815 3816 // Build the operand list. 3817 SmallVector<SDValue, 8> Ops; 3818 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3819 if (OnlyLoad) { 3820 // We don't need to serialize loads against other loads. 3821 Ops.push_back(DAG.getRoot()); 3822 } else { 3823 Ops.push_back(getRoot()); 3824 } 3825 } 3826 3827 // Info is set by getTgtMemInstrinsic 3828 TargetLowering::IntrinsicInfo Info; 3829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3830 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3831 3832 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3833 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3834 Info.opc == ISD::INTRINSIC_W_CHAIN) 3835 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3836 TLI.getPointerTy(DAG.getDataLayout()))); 3837 3838 // Add all operands of the call to the operand list. 3839 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3840 SDValue Op = getValue(I.getArgOperand(i)); 3841 Ops.push_back(Op); 3842 } 3843 3844 SmallVector<EVT, 4> ValueVTs; 3845 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3846 3847 if (HasChain) 3848 ValueVTs.push_back(MVT::Other); 3849 3850 SDVTList VTs = DAG.getVTList(ValueVTs); 3851 3852 // Create the node. 3853 SDValue Result; 3854 if (IsTgtIntrinsic) { 3855 // This is target intrinsic that touches memory 3856 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3857 VTs, Ops, Info.memVT, 3858 MachinePointerInfo(Info.ptrVal, Info.offset), 3859 Info.align, Info.vol, 3860 Info.readMem, Info.writeMem, Info.size); 3861 } else if (!HasChain) { 3862 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3863 } else if (!I.getType()->isVoidTy()) { 3864 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3865 } else { 3866 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3867 } 3868 3869 if (HasChain) { 3870 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3871 if (OnlyLoad) 3872 PendingLoads.push_back(Chain); 3873 else 3874 DAG.setRoot(Chain); 3875 } 3876 3877 if (!I.getType()->isVoidTy()) { 3878 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3879 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3880 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3881 } else 3882 Result = lowerRangeToAssertZExt(DAG, I, Result); 3883 3884 setValue(&I, Result); 3885 } 3886 } 3887 3888 /// GetSignificand - Get the significand and build it into a floating-point 3889 /// number with exponent of 1: 3890 /// 3891 /// Op = (Op & 0x007fffff) | 0x3f800000; 3892 /// 3893 /// where Op is the hexadecimal representation of floating point value. 3894 static SDValue 3895 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3896 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3897 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3898 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3899 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3900 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3901 } 3902 3903 /// GetExponent - Get the exponent: 3904 /// 3905 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3906 /// 3907 /// where Op is the hexadecimal representation of floating point value. 3908 static SDValue 3909 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3910 SDLoc dl) { 3911 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3912 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3913 SDValue t1 = DAG.getNode( 3914 ISD::SRL, dl, MVT::i32, t0, 3915 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3916 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3917 DAG.getConstant(127, dl, MVT::i32)); 3918 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3919 } 3920 3921 /// getF32Constant - Get 32-bit floating point constant. 3922 static SDValue 3923 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3924 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3925 MVT::f32); 3926 } 3927 3928 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3929 SelectionDAG &DAG) { 3930 // TODO: What fast-math-flags should be set on the floating-point nodes? 3931 3932 // IntegerPartOfX = ((int32_t)(t0); 3933 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3934 3935 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3936 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3937 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3938 3939 // IntegerPartOfX <<= 23; 3940 IntegerPartOfX = DAG.getNode( 3941 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3942 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3943 DAG.getDataLayout()))); 3944 3945 SDValue TwoToFractionalPartOfX; 3946 if (LimitFloatPrecision <= 6) { 3947 // For floating-point precision of 6: 3948 // 3949 // TwoToFractionalPartOfX = 3950 // 0.997535578f + 3951 // (0.735607626f + 0.252464424f * x) * x; 3952 // 3953 // error 0.0144103317, which is 6 bits 3954 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3955 getF32Constant(DAG, 0x3e814304, dl)); 3956 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3957 getF32Constant(DAG, 0x3f3c50c8, dl)); 3958 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3959 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3960 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3961 } else if (LimitFloatPrecision <= 12) { 3962 // For floating-point precision of 12: 3963 // 3964 // TwoToFractionalPartOfX = 3965 // 0.999892986f + 3966 // (0.696457318f + 3967 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3968 // 3969 // error 0.000107046256, which is 13 to 14 bits 3970 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3971 getF32Constant(DAG, 0x3da235e3, dl)); 3972 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3973 getF32Constant(DAG, 0x3e65b8f3, dl)); 3974 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3975 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3976 getF32Constant(DAG, 0x3f324b07, dl)); 3977 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3978 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3979 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3980 } else { // LimitFloatPrecision <= 18 3981 // For floating-point precision of 18: 3982 // 3983 // TwoToFractionalPartOfX = 3984 // 0.999999982f + 3985 // (0.693148872f + 3986 // (0.240227044f + 3987 // (0.554906021e-1f + 3988 // (0.961591928e-2f + 3989 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3990 // error 2.47208000*10^(-7), which is better than 18 bits 3991 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3992 getF32Constant(DAG, 0x3924b03e, dl)); 3993 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3994 getF32Constant(DAG, 0x3ab24b87, dl)); 3995 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3996 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3997 getF32Constant(DAG, 0x3c1d8c17, dl)); 3998 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3999 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4000 getF32Constant(DAG, 0x3d634a1d, dl)); 4001 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4002 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4003 getF32Constant(DAG, 0x3e75fe14, dl)); 4004 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4005 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4006 getF32Constant(DAG, 0x3f317234, dl)); 4007 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4008 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4009 getF32Constant(DAG, 0x3f800000, dl)); 4010 } 4011 4012 // Add the exponent into the result in integer domain. 4013 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4014 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4015 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4016 } 4017 4018 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4019 /// limited-precision mode. 4020 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4021 const TargetLowering &TLI) { 4022 if (Op.getValueType() == MVT::f32 && 4023 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4024 4025 // Put the exponent in the right bit position for later addition to the 4026 // final result: 4027 // 4028 // #define LOG2OFe 1.4426950f 4029 // t0 = Op * LOG2OFe 4030 4031 // TODO: What fast-math-flags should be set here? 4032 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4033 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4034 return getLimitedPrecisionExp2(t0, dl, DAG); 4035 } 4036 4037 // No special expansion. 4038 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4039 } 4040 4041 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4042 /// limited-precision mode. 4043 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4044 const TargetLowering &TLI) { 4045 4046 // TODO: What fast-math-flags should be set on the floating-point nodes? 4047 4048 if (Op.getValueType() == MVT::f32 && 4049 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4050 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4051 4052 // Scale the exponent by log(2) [0.69314718f]. 4053 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4054 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4055 getF32Constant(DAG, 0x3f317218, dl)); 4056 4057 // Get the significand and build it into a floating-point number with 4058 // exponent of 1. 4059 SDValue X = GetSignificand(DAG, Op1, dl); 4060 4061 SDValue LogOfMantissa; 4062 if (LimitFloatPrecision <= 6) { 4063 // For floating-point precision of 6: 4064 // 4065 // LogofMantissa = 4066 // -1.1609546f + 4067 // (1.4034025f - 0.23903021f * x) * x; 4068 // 4069 // error 0.0034276066, which is better than 8 bits 4070 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4071 getF32Constant(DAG, 0xbe74c456, dl)); 4072 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4073 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4074 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4075 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4076 getF32Constant(DAG, 0x3f949a29, dl)); 4077 } else if (LimitFloatPrecision <= 12) { 4078 // For floating-point precision of 12: 4079 // 4080 // LogOfMantissa = 4081 // -1.7417939f + 4082 // (2.8212026f + 4083 // (-1.4699568f + 4084 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4085 // 4086 // error 0.000061011436, which is 14 bits 4087 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4088 getF32Constant(DAG, 0xbd67b6d6, dl)); 4089 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4090 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4091 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4092 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4093 getF32Constant(DAG, 0x3fbc278b, dl)); 4094 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4095 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4096 getF32Constant(DAG, 0x40348e95, dl)); 4097 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4098 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4099 getF32Constant(DAG, 0x3fdef31a, dl)); 4100 } else { // LimitFloatPrecision <= 18 4101 // For floating-point precision of 18: 4102 // 4103 // LogOfMantissa = 4104 // -2.1072184f + 4105 // (4.2372794f + 4106 // (-3.7029485f + 4107 // (2.2781945f + 4108 // (-0.87823314f + 4109 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4110 // 4111 // error 0.0000023660568, which is better than 18 bits 4112 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4113 getF32Constant(DAG, 0xbc91e5ac, dl)); 4114 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4115 getF32Constant(DAG, 0x3e4350aa, dl)); 4116 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4117 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4118 getF32Constant(DAG, 0x3f60d3e3, dl)); 4119 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4120 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4121 getF32Constant(DAG, 0x4011cdf0, dl)); 4122 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4123 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4124 getF32Constant(DAG, 0x406cfd1c, dl)); 4125 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4126 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4127 getF32Constant(DAG, 0x408797cb, dl)); 4128 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4129 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4130 getF32Constant(DAG, 0x4006dcab, dl)); 4131 } 4132 4133 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4134 } 4135 4136 // No special expansion. 4137 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4138 } 4139 4140 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4141 /// limited-precision mode. 4142 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4143 const TargetLowering &TLI) { 4144 4145 // TODO: What fast-math-flags should be set on the floating-point nodes? 4146 4147 if (Op.getValueType() == MVT::f32 && 4148 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4149 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4150 4151 // Get the exponent. 4152 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4153 4154 // Get the significand and build it into a floating-point number with 4155 // exponent of 1. 4156 SDValue X = GetSignificand(DAG, Op1, dl); 4157 4158 // Different possible minimax approximations of significand in 4159 // floating-point for various degrees of accuracy over [1,2]. 4160 SDValue Log2ofMantissa; 4161 if (LimitFloatPrecision <= 6) { 4162 // For floating-point precision of 6: 4163 // 4164 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4165 // 4166 // error 0.0049451742, which is more than 7 bits 4167 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4168 getF32Constant(DAG, 0xbeb08fe0, dl)); 4169 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4170 getF32Constant(DAG, 0x40019463, dl)); 4171 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4172 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4173 getF32Constant(DAG, 0x3fd6633d, dl)); 4174 } else if (LimitFloatPrecision <= 12) { 4175 // For floating-point precision of 12: 4176 // 4177 // Log2ofMantissa = 4178 // -2.51285454f + 4179 // (4.07009056f + 4180 // (-2.12067489f + 4181 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4182 // 4183 // error 0.0000876136000, which is better than 13 bits 4184 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4185 getF32Constant(DAG, 0xbda7262e, dl)); 4186 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4187 getF32Constant(DAG, 0x3f25280b, dl)); 4188 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4189 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4190 getF32Constant(DAG, 0x4007b923, dl)); 4191 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4192 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4193 getF32Constant(DAG, 0x40823e2f, dl)); 4194 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4195 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4196 getF32Constant(DAG, 0x4020d29c, dl)); 4197 } else { // LimitFloatPrecision <= 18 4198 // For floating-point precision of 18: 4199 // 4200 // Log2ofMantissa = 4201 // -3.0400495f + 4202 // (6.1129976f + 4203 // (-5.3420409f + 4204 // (3.2865683f + 4205 // (-1.2669343f + 4206 // (0.27515199f - 4207 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4208 // 4209 // error 0.0000018516, which is better than 18 bits 4210 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4211 getF32Constant(DAG, 0xbcd2769e, dl)); 4212 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4213 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4214 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4215 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4216 getF32Constant(DAG, 0x3fa22ae7, dl)); 4217 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4218 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4219 getF32Constant(DAG, 0x40525723, dl)); 4220 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4221 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4222 getF32Constant(DAG, 0x40aaf200, dl)); 4223 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4224 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4225 getF32Constant(DAG, 0x40c39dad, dl)); 4226 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4227 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4228 getF32Constant(DAG, 0x4042902c, dl)); 4229 } 4230 4231 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4232 } 4233 4234 // No special expansion. 4235 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4236 } 4237 4238 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4239 /// limited-precision mode. 4240 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4241 const TargetLowering &TLI) { 4242 4243 // TODO: What fast-math-flags should be set on the floating-point nodes? 4244 4245 if (Op.getValueType() == MVT::f32 && 4246 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4247 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4248 4249 // Scale the exponent by log10(2) [0.30102999f]. 4250 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4251 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4252 getF32Constant(DAG, 0x3e9a209a, dl)); 4253 4254 // Get the significand and build it into a floating-point number with 4255 // exponent of 1. 4256 SDValue X = GetSignificand(DAG, Op1, dl); 4257 4258 SDValue Log10ofMantissa; 4259 if (LimitFloatPrecision <= 6) { 4260 // For floating-point precision of 6: 4261 // 4262 // Log10ofMantissa = 4263 // -0.50419619f + 4264 // (0.60948995f - 0.10380950f * x) * x; 4265 // 4266 // error 0.0014886165, which is 6 bits 4267 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4268 getF32Constant(DAG, 0xbdd49a13, dl)); 4269 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4270 getF32Constant(DAG, 0x3f1c0789, dl)); 4271 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4272 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4273 getF32Constant(DAG, 0x3f011300, dl)); 4274 } else if (LimitFloatPrecision <= 12) { 4275 // For floating-point precision of 12: 4276 // 4277 // Log10ofMantissa = 4278 // -0.64831180f + 4279 // (0.91751397f + 4280 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4281 // 4282 // error 0.00019228036, which is better than 12 bits 4283 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4284 getF32Constant(DAG, 0x3d431f31, dl)); 4285 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4286 getF32Constant(DAG, 0x3ea21fb2, dl)); 4287 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4288 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4289 getF32Constant(DAG, 0x3f6ae232, dl)); 4290 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4291 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4292 getF32Constant(DAG, 0x3f25f7c3, dl)); 4293 } else { // LimitFloatPrecision <= 18 4294 // For floating-point precision of 18: 4295 // 4296 // Log10ofMantissa = 4297 // -0.84299375f + 4298 // (1.5327582f + 4299 // (-1.0688956f + 4300 // (0.49102474f + 4301 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4302 // 4303 // error 0.0000037995730, which is better than 18 bits 4304 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4305 getF32Constant(DAG, 0x3c5d51ce, dl)); 4306 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4307 getF32Constant(DAG, 0x3e00685a, dl)); 4308 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4309 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4310 getF32Constant(DAG, 0x3efb6798, dl)); 4311 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4312 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4313 getF32Constant(DAG, 0x3f88d192, dl)); 4314 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4315 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4316 getF32Constant(DAG, 0x3fc4316c, dl)); 4317 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4318 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4319 getF32Constant(DAG, 0x3f57ce70, dl)); 4320 } 4321 4322 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4323 } 4324 4325 // No special expansion. 4326 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4327 } 4328 4329 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4330 /// limited-precision mode. 4331 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4332 const TargetLowering &TLI) { 4333 if (Op.getValueType() == MVT::f32 && 4334 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4335 return getLimitedPrecisionExp2(Op, dl, DAG); 4336 4337 // No special expansion. 4338 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4339 } 4340 4341 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4342 /// limited-precision mode with x == 10.0f. 4343 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4344 SelectionDAG &DAG, const TargetLowering &TLI) { 4345 bool IsExp10 = false; 4346 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4347 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4348 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4349 APFloat Ten(10.0f); 4350 IsExp10 = LHSC->isExactlyValue(Ten); 4351 } 4352 } 4353 4354 // TODO: What fast-math-flags should be set on the FMUL node? 4355 if (IsExp10) { 4356 // Put the exponent in the right bit position for later addition to the 4357 // final result: 4358 // 4359 // #define LOG2OF10 3.3219281f 4360 // t0 = Op * LOG2OF10; 4361 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4362 getF32Constant(DAG, 0x40549a78, dl)); 4363 return getLimitedPrecisionExp2(t0, dl, DAG); 4364 } 4365 4366 // No special expansion. 4367 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4368 } 4369 4370 4371 /// ExpandPowI - Expand a llvm.powi intrinsic. 4372 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4373 SelectionDAG &DAG) { 4374 // If RHS is a constant, we can expand this out to a multiplication tree, 4375 // otherwise we end up lowering to a call to __powidf2 (for example). When 4376 // optimizing for size, we only want to do this if the expansion would produce 4377 // a small number of multiplies, otherwise we do the full expansion. 4378 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4379 // Get the exponent as a positive value. 4380 unsigned Val = RHSC->getSExtValue(); 4381 if ((int)Val < 0) Val = -Val; 4382 4383 // powi(x, 0) -> 1.0 4384 if (Val == 0) 4385 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4386 4387 const Function *F = DAG.getMachineFunction().getFunction(); 4388 if (!F->optForSize() || 4389 // If optimizing for size, don't insert too many multiplies. 4390 // This inserts up to 5 multiplies. 4391 countPopulation(Val) + Log2_32(Val) < 7) { 4392 // We use the simple binary decomposition method to generate the multiply 4393 // sequence. There are more optimal ways to do this (for example, 4394 // powi(x,15) generates one more multiply than it should), but this has 4395 // the benefit of being both really simple and much better than a libcall. 4396 SDValue Res; // Logically starts equal to 1.0 4397 SDValue CurSquare = LHS; 4398 // TODO: Intrinsics should have fast-math-flags that propagate to these 4399 // nodes. 4400 while (Val) { 4401 if (Val & 1) { 4402 if (Res.getNode()) 4403 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4404 else 4405 Res = CurSquare; // 1.0*CurSquare. 4406 } 4407 4408 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4409 CurSquare, CurSquare); 4410 Val >>= 1; 4411 } 4412 4413 // If the original was negative, invert the result, producing 1/(x*x*x). 4414 if (RHSC->getSExtValue() < 0) 4415 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4416 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4417 return Res; 4418 } 4419 } 4420 4421 // Otherwise, expand to a libcall. 4422 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4423 } 4424 4425 // getUnderlyingArgReg - Find underlying register used for a truncated or 4426 // bitcasted argument. 4427 static unsigned getUnderlyingArgReg(const SDValue &N) { 4428 switch (N.getOpcode()) { 4429 case ISD::CopyFromReg: 4430 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4431 case ISD::BITCAST: 4432 case ISD::AssertZext: 4433 case ISD::AssertSext: 4434 case ISD::TRUNCATE: 4435 return getUnderlyingArgReg(N.getOperand(0)); 4436 default: 4437 return 0; 4438 } 4439 } 4440 4441 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4442 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4443 /// At the end of instruction selection, they will be inserted to the entry BB. 4444 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4445 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4446 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4447 const Argument *Arg = dyn_cast<Argument>(V); 4448 if (!Arg) 4449 return false; 4450 4451 MachineFunction &MF = DAG.getMachineFunction(); 4452 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4453 4454 // Ignore inlined function arguments here. 4455 // 4456 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4457 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4458 return false; 4459 4460 Optional<MachineOperand> Op; 4461 // Some arguments' frame index is recorded during argument lowering. 4462 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4463 Op = MachineOperand::CreateFI(FI); 4464 4465 if (!Op && N.getNode()) { 4466 unsigned Reg = getUnderlyingArgReg(N); 4467 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4468 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4469 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4470 if (PR) 4471 Reg = PR; 4472 } 4473 if (Reg) 4474 Op = MachineOperand::CreateReg(Reg, false); 4475 } 4476 4477 if (!Op) { 4478 // Check if ValueMap has reg number. 4479 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4480 if (VMI != FuncInfo.ValueMap.end()) 4481 Op = MachineOperand::CreateReg(VMI->second, false); 4482 } 4483 4484 if (!Op && N.getNode()) 4485 // Check if frame index is available. 4486 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4487 if (FrameIndexSDNode *FINode = 4488 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4489 Op = MachineOperand::CreateFI(FINode->getIndex()); 4490 4491 if (!Op) 4492 return false; 4493 4494 assert(Variable->isValidLocationForIntrinsic(DL) && 4495 "Expected inlined-at fields to agree"); 4496 if (Op->isReg()) 4497 FuncInfo.ArgDbgValues.push_back( 4498 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4499 Op->getReg(), Offset, Variable, Expr)); 4500 else 4501 FuncInfo.ArgDbgValues.push_back( 4502 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4503 .addOperand(*Op) 4504 .addImm(Offset) 4505 .addMetadata(Variable) 4506 .addMetadata(Expr)); 4507 4508 return true; 4509 } 4510 4511 // VisualStudio defines setjmp as _setjmp 4512 #if defined(_MSC_VER) && defined(setjmp) && \ 4513 !defined(setjmp_undefined_for_msvc) 4514 # pragma push_macro("setjmp") 4515 # undef setjmp 4516 # define setjmp_undefined_for_msvc 4517 #endif 4518 4519 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4520 /// we want to emit this as a call to a named external function, return the name 4521 /// otherwise lower it and return null. 4522 const char * 4523 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4524 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4525 SDLoc sdl = getCurSDLoc(); 4526 DebugLoc dl = getCurDebugLoc(); 4527 SDValue Res; 4528 4529 switch (Intrinsic) { 4530 default: 4531 // By default, turn this into a target intrinsic node. 4532 visitTargetIntrinsic(I, Intrinsic); 4533 return nullptr; 4534 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4535 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4536 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4537 case Intrinsic::returnaddress: 4538 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4539 TLI.getPointerTy(DAG.getDataLayout()), 4540 getValue(I.getArgOperand(0)))); 4541 return nullptr; 4542 case Intrinsic::frameaddress: 4543 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4544 TLI.getPointerTy(DAG.getDataLayout()), 4545 getValue(I.getArgOperand(0)))); 4546 return nullptr; 4547 case Intrinsic::read_register: { 4548 Value *Reg = I.getArgOperand(0); 4549 SDValue Chain = getRoot(); 4550 SDValue RegName = 4551 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4552 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4553 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4554 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4555 setValue(&I, Res); 4556 DAG.setRoot(Res.getValue(1)); 4557 return nullptr; 4558 } 4559 case Intrinsic::write_register: { 4560 Value *Reg = I.getArgOperand(0); 4561 Value *RegValue = I.getArgOperand(1); 4562 SDValue Chain = getRoot(); 4563 SDValue RegName = 4564 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4565 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4566 RegName, getValue(RegValue))); 4567 return nullptr; 4568 } 4569 case Intrinsic::setjmp: 4570 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4571 case Intrinsic::longjmp: 4572 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4573 case Intrinsic::memcpy: { 4574 SDValue Op1 = getValue(I.getArgOperand(0)); 4575 SDValue Op2 = getValue(I.getArgOperand(1)); 4576 SDValue Op3 = getValue(I.getArgOperand(2)); 4577 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4578 if (!Align) 4579 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4580 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4581 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4582 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4583 false, isTC, 4584 MachinePointerInfo(I.getArgOperand(0)), 4585 MachinePointerInfo(I.getArgOperand(1))); 4586 updateDAGForMaybeTailCall(MC); 4587 return nullptr; 4588 } 4589 case Intrinsic::memset: { 4590 SDValue Op1 = getValue(I.getArgOperand(0)); 4591 SDValue Op2 = getValue(I.getArgOperand(1)); 4592 SDValue Op3 = getValue(I.getArgOperand(2)); 4593 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4594 if (!Align) 4595 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4596 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4597 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4598 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4599 isTC, MachinePointerInfo(I.getArgOperand(0))); 4600 updateDAGForMaybeTailCall(MS); 4601 return nullptr; 4602 } 4603 case Intrinsic::memmove: { 4604 SDValue Op1 = getValue(I.getArgOperand(0)); 4605 SDValue Op2 = getValue(I.getArgOperand(1)); 4606 SDValue Op3 = getValue(I.getArgOperand(2)); 4607 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4608 if (!Align) 4609 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4610 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4611 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4612 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4613 isTC, MachinePointerInfo(I.getArgOperand(0)), 4614 MachinePointerInfo(I.getArgOperand(1))); 4615 updateDAGForMaybeTailCall(MM); 4616 return nullptr; 4617 } 4618 case Intrinsic::dbg_declare: { 4619 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4620 DILocalVariable *Variable = DI.getVariable(); 4621 DIExpression *Expression = DI.getExpression(); 4622 const Value *Address = DI.getAddress(); 4623 assert(Variable && "Missing variable"); 4624 if (!Address) { 4625 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4626 return nullptr; 4627 } 4628 4629 // Check if address has undef value. 4630 if (isa<UndefValue>(Address) || 4631 (Address->use_empty() && !isa<Argument>(Address))) { 4632 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4633 return nullptr; 4634 } 4635 4636 SDValue &N = NodeMap[Address]; 4637 if (!N.getNode() && isa<Argument>(Address)) 4638 // Check unused arguments map. 4639 N = UnusedArgNodeMap[Address]; 4640 SDDbgValue *SDV; 4641 if (N.getNode()) { 4642 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4643 Address = BCI->getOperand(0); 4644 // Parameters are handled specially. 4645 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4646 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4647 if (isParameter && FINode) { 4648 // Byval parameter. We have a frame index at this point. 4649 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4650 FINode->getIndex(), 0, dl, SDNodeOrder); 4651 } else if (isa<Argument>(Address)) { 4652 // Address is an argument, so try to emit its dbg value using 4653 // virtual register info from the FuncInfo.ValueMap. 4654 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4655 N); 4656 return nullptr; 4657 } else { 4658 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4659 true, 0, dl, SDNodeOrder); 4660 } 4661 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4662 } else { 4663 // If Address is an argument then try to emit its dbg value using 4664 // virtual register info from the FuncInfo.ValueMap. 4665 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4666 N)) { 4667 // If variable is pinned by a alloca in dominating bb then 4668 // use StaticAllocaMap. 4669 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4670 if (AI->getParent() != DI.getParent()) { 4671 DenseMap<const AllocaInst*, int>::iterator SI = 4672 FuncInfo.StaticAllocaMap.find(AI); 4673 if (SI != FuncInfo.StaticAllocaMap.end()) { 4674 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4675 0, dl, SDNodeOrder); 4676 DAG.AddDbgValue(SDV, nullptr, false); 4677 return nullptr; 4678 } 4679 } 4680 } 4681 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4682 } 4683 } 4684 return nullptr; 4685 } 4686 case Intrinsic::dbg_value: { 4687 const DbgValueInst &DI = cast<DbgValueInst>(I); 4688 assert(DI.getVariable() && "Missing variable"); 4689 4690 DILocalVariable *Variable = DI.getVariable(); 4691 DIExpression *Expression = DI.getExpression(); 4692 uint64_t Offset = DI.getOffset(); 4693 const Value *V = DI.getValue(); 4694 if (!V) 4695 return nullptr; 4696 4697 SDDbgValue *SDV; 4698 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4699 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4700 SDNodeOrder); 4701 DAG.AddDbgValue(SDV, nullptr, false); 4702 } else { 4703 // Do not use getValue() in here; we don't want to generate code at 4704 // this point if it hasn't been done yet. 4705 SDValue N = NodeMap[V]; 4706 if (!N.getNode() && isa<Argument>(V)) 4707 // Check unused arguments map. 4708 N = UnusedArgNodeMap[V]; 4709 if (N.getNode()) { 4710 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4711 false, N)) { 4712 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4713 false, Offset, dl, SDNodeOrder); 4714 DAG.AddDbgValue(SDV, N.getNode(), false); 4715 } 4716 } else if (!V->use_empty() ) { 4717 // Do not call getValue(V) yet, as we don't want to generate code. 4718 // Remember it for later. 4719 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4720 DanglingDebugInfoMap[V] = DDI; 4721 } else { 4722 // We may expand this to cover more cases. One case where we have no 4723 // data available is an unreferenced parameter. 4724 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4725 } 4726 } 4727 4728 // Build a debug info table entry. 4729 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4730 V = BCI->getOperand(0); 4731 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4732 // Don't handle byval struct arguments or VLAs, for example. 4733 if (!AI) { 4734 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4735 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4736 return nullptr; 4737 } 4738 DenseMap<const AllocaInst*, int>::iterator SI = 4739 FuncInfo.StaticAllocaMap.find(AI); 4740 if (SI == FuncInfo.StaticAllocaMap.end()) 4741 return nullptr; // VLAs. 4742 return nullptr; 4743 } 4744 4745 case Intrinsic::eh_typeid_for: { 4746 // Find the type id for the given typeinfo. 4747 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4748 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4749 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4750 setValue(&I, Res); 4751 return nullptr; 4752 } 4753 4754 case Intrinsic::eh_return_i32: 4755 case Intrinsic::eh_return_i64: 4756 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4757 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4758 MVT::Other, 4759 getControlRoot(), 4760 getValue(I.getArgOperand(0)), 4761 getValue(I.getArgOperand(1)))); 4762 return nullptr; 4763 case Intrinsic::eh_unwind_init: 4764 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4765 return nullptr; 4766 case Intrinsic::eh_dwarf_cfa: { 4767 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4768 TLI.getPointerTy(DAG.getDataLayout())); 4769 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4770 CfaArg.getValueType(), 4771 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4772 CfaArg.getValueType()), 4773 CfaArg); 4774 SDValue FA = DAG.getNode( 4775 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4776 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4777 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4778 FA, Offset)); 4779 return nullptr; 4780 } 4781 case Intrinsic::eh_sjlj_callsite: { 4782 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4783 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4784 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4785 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4786 4787 MMI.setCurrentCallSite(CI->getZExtValue()); 4788 return nullptr; 4789 } 4790 case Intrinsic::eh_sjlj_functioncontext: { 4791 // Get and store the index of the function context. 4792 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4793 AllocaInst *FnCtx = 4794 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4795 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4796 MFI->setFunctionContextIndex(FI); 4797 return nullptr; 4798 } 4799 case Intrinsic::eh_sjlj_setjmp: { 4800 SDValue Ops[2]; 4801 Ops[0] = getRoot(); 4802 Ops[1] = getValue(I.getArgOperand(0)); 4803 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4804 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4805 setValue(&I, Op.getValue(0)); 4806 DAG.setRoot(Op.getValue(1)); 4807 return nullptr; 4808 } 4809 case Intrinsic::eh_sjlj_longjmp: { 4810 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4811 getRoot(), getValue(I.getArgOperand(0)))); 4812 return nullptr; 4813 } 4814 case Intrinsic::eh_sjlj_setup_dispatch: { 4815 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4816 getRoot())); 4817 return nullptr; 4818 } 4819 4820 case Intrinsic::masked_gather: 4821 visitMaskedGather(I); 4822 return nullptr; 4823 case Intrinsic::masked_load: 4824 visitMaskedLoad(I); 4825 return nullptr; 4826 case Intrinsic::masked_scatter: 4827 visitMaskedScatter(I); 4828 return nullptr; 4829 case Intrinsic::masked_store: 4830 visitMaskedStore(I); 4831 return nullptr; 4832 case Intrinsic::x86_mmx_pslli_w: 4833 case Intrinsic::x86_mmx_pslli_d: 4834 case Intrinsic::x86_mmx_pslli_q: 4835 case Intrinsic::x86_mmx_psrli_w: 4836 case Intrinsic::x86_mmx_psrli_d: 4837 case Intrinsic::x86_mmx_psrli_q: 4838 case Intrinsic::x86_mmx_psrai_w: 4839 case Intrinsic::x86_mmx_psrai_d: { 4840 SDValue ShAmt = getValue(I.getArgOperand(1)); 4841 if (isa<ConstantSDNode>(ShAmt)) { 4842 visitTargetIntrinsic(I, Intrinsic); 4843 return nullptr; 4844 } 4845 unsigned NewIntrinsic = 0; 4846 EVT ShAmtVT = MVT::v2i32; 4847 switch (Intrinsic) { 4848 case Intrinsic::x86_mmx_pslli_w: 4849 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4850 break; 4851 case Intrinsic::x86_mmx_pslli_d: 4852 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4853 break; 4854 case Intrinsic::x86_mmx_pslli_q: 4855 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4856 break; 4857 case Intrinsic::x86_mmx_psrli_w: 4858 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4859 break; 4860 case Intrinsic::x86_mmx_psrli_d: 4861 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4862 break; 4863 case Intrinsic::x86_mmx_psrli_q: 4864 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4865 break; 4866 case Intrinsic::x86_mmx_psrai_w: 4867 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4868 break; 4869 case Intrinsic::x86_mmx_psrai_d: 4870 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4871 break; 4872 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4873 } 4874 4875 // The vector shift intrinsics with scalars uses 32b shift amounts but 4876 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4877 // to be zero. 4878 // We must do this early because v2i32 is not a legal type. 4879 SDValue ShOps[2]; 4880 ShOps[0] = ShAmt; 4881 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4882 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4883 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4884 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4885 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4886 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4887 getValue(I.getArgOperand(0)), ShAmt); 4888 setValue(&I, Res); 4889 return nullptr; 4890 } 4891 case Intrinsic::convertff: 4892 case Intrinsic::convertfsi: 4893 case Intrinsic::convertfui: 4894 case Intrinsic::convertsif: 4895 case Intrinsic::convertuif: 4896 case Intrinsic::convertss: 4897 case Intrinsic::convertsu: 4898 case Intrinsic::convertus: 4899 case Intrinsic::convertuu: { 4900 ISD::CvtCode Code = ISD::CVT_INVALID; 4901 switch (Intrinsic) { 4902 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4903 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4904 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4905 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4906 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4907 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4908 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4909 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4910 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4911 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4912 } 4913 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4914 const Value *Op1 = I.getArgOperand(0); 4915 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4916 DAG.getValueType(DestVT), 4917 DAG.getValueType(getValue(Op1).getValueType()), 4918 getValue(I.getArgOperand(1)), 4919 getValue(I.getArgOperand(2)), 4920 Code); 4921 setValue(&I, Res); 4922 return nullptr; 4923 } 4924 case Intrinsic::powi: 4925 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4926 getValue(I.getArgOperand(1)), DAG)); 4927 return nullptr; 4928 case Intrinsic::log: 4929 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4930 return nullptr; 4931 case Intrinsic::log2: 4932 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4933 return nullptr; 4934 case Intrinsic::log10: 4935 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4936 return nullptr; 4937 case Intrinsic::exp: 4938 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4939 return nullptr; 4940 case Intrinsic::exp2: 4941 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4942 return nullptr; 4943 case Intrinsic::pow: 4944 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4945 getValue(I.getArgOperand(1)), DAG, TLI)); 4946 return nullptr; 4947 case Intrinsic::sqrt: 4948 case Intrinsic::fabs: 4949 case Intrinsic::sin: 4950 case Intrinsic::cos: 4951 case Intrinsic::floor: 4952 case Intrinsic::ceil: 4953 case Intrinsic::trunc: 4954 case Intrinsic::rint: 4955 case Intrinsic::nearbyint: 4956 case Intrinsic::round: { 4957 unsigned Opcode; 4958 switch (Intrinsic) { 4959 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4960 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4961 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4962 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4963 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4964 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4965 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4966 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4967 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4968 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4969 case Intrinsic::round: Opcode = ISD::FROUND; break; 4970 } 4971 4972 setValue(&I, DAG.getNode(Opcode, sdl, 4973 getValue(I.getArgOperand(0)).getValueType(), 4974 getValue(I.getArgOperand(0)))); 4975 return nullptr; 4976 } 4977 case Intrinsic::minnum: 4978 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4979 getValue(I.getArgOperand(0)).getValueType(), 4980 getValue(I.getArgOperand(0)), 4981 getValue(I.getArgOperand(1)))); 4982 return nullptr; 4983 case Intrinsic::maxnum: 4984 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4985 getValue(I.getArgOperand(0)).getValueType(), 4986 getValue(I.getArgOperand(0)), 4987 getValue(I.getArgOperand(1)))); 4988 return nullptr; 4989 case Intrinsic::copysign: 4990 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4991 getValue(I.getArgOperand(0)).getValueType(), 4992 getValue(I.getArgOperand(0)), 4993 getValue(I.getArgOperand(1)))); 4994 return nullptr; 4995 case Intrinsic::fma: 4996 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4997 getValue(I.getArgOperand(0)).getValueType(), 4998 getValue(I.getArgOperand(0)), 4999 getValue(I.getArgOperand(1)), 5000 getValue(I.getArgOperand(2)))); 5001 return nullptr; 5002 case Intrinsic::fmuladd: { 5003 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5004 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5005 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5006 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5007 getValue(I.getArgOperand(0)).getValueType(), 5008 getValue(I.getArgOperand(0)), 5009 getValue(I.getArgOperand(1)), 5010 getValue(I.getArgOperand(2)))); 5011 } else { 5012 // TODO: Intrinsic calls should have fast-math-flags. 5013 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5014 getValue(I.getArgOperand(0)).getValueType(), 5015 getValue(I.getArgOperand(0)), 5016 getValue(I.getArgOperand(1))); 5017 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5018 getValue(I.getArgOperand(0)).getValueType(), 5019 Mul, 5020 getValue(I.getArgOperand(2))); 5021 setValue(&I, Add); 5022 } 5023 return nullptr; 5024 } 5025 case Intrinsic::convert_to_fp16: 5026 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5027 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5028 getValue(I.getArgOperand(0)), 5029 DAG.getTargetConstant(0, sdl, 5030 MVT::i32)))); 5031 return nullptr; 5032 case Intrinsic::convert_from_fp16: 5033 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5034 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5035 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5036 getValue(I.getArgOperand(0))))); 5037 return nullptr; 5038 case Intrinsic::pcmarker: { 5039 SDValue Tmp = getValue(I.getArgOperand(0)); 5040 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5041 return nullptr; 5042 } 5043 case Intrinsic::readcyclecounter: { 5044 SDValue Op = getRoot(); 5045 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5046 DAG.getVTList(MVT::i64, MVT::Other), Op); 5047 setValue(&I, Res); 5048 DAG.setRoot(Res.getValue(1)); 5049 return nullptr; 5050 } 5051 case Intrinsic::bitreverse: 5052 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5053 getValue(I.getArgOperand(0)).getValueType(), 5054 getValue(I.getArgOperand(0)))); 5055 return nullptr; 5056 case Intrinsic::bswap: 5057 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5058 getValue(I.getArgOperand(0)).getValueType(), 5059 getValue(I.getArgOperand(0)))); 5060 return nullptr; 5061 case Intrinsic::cttz: { 5062 SDValue Arg = getValue(I.getArgOperand(0)); 5063 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5064 EVT Ty = Arg.getValueType(); 5065 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5066 sdl, Ty, Arg)); 5067 return nullptr; 5068 } 5069 case Intrinsic::ctlz: { 5070 SDValue Arg = getValue(I.getArgOperand(0)); 5071 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5072 EVT Ty = Arg.getValueType(); 5073 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5074 sdl, Ty, Arg)); 5075 return nullptr; 5076 } 5077 case Intrinsic::ctpop: { 5078 SDValue Arg = getValue(I.getArgOperand(0)); 5079 EVT Ty = Arg.getValueType(); 5080 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5081 return nullptr; 5082 } 5083 case Intrinsic::stacksave: { 5084 SDValue Op = getRoot(); 5085 Res = DAG.getNode( 5086 ISD::STACKSAVE, sdl, 5087 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5088 setValue(&I, Res); 5089 DAG.setRoot(Res.getValue(1)); 5090 return nullptr; 5091 } 5092 case Intrinsic::stackrestore: { 5093 Res = getValue(I.getArgOperand(0)); 5094 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5095 return nullptr; 5096 } 5097 case Intrinsic::get_dynamic_area_offset: { 5098 SDValue Op = getRoot(); 5099 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5100 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5101 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5102 // target. 5103 if (PtrTy != ResTy) 5104 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5105 " intrinsic!"); 5106 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5107 Op); 5108 DAG.setRoot(Op); 5109 setValue(&I, Res); 5110 return nullptr; 5111 } 5112 case Intrinsic::stackprotector: { 5113 // Emit code into the DAG to store the stack guard onto the stack. 5114 MachineFunction &MF = DAG.getMachineFunction(); 5115 MachineFrameInfo *MFI = MF.getFrameInfo(); 5116 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5117 SDValue Src, Chain = getRoot(); 5118 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5119 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5120 5121 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5122 // global variable __stack_chk_guard. 5123 if (!GV) 5124 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5125 if (BC->getOpcode() == Instruction::BitCast) 5126 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5127 5128 if (GV && TLI.useLoadStackGuardNode()) { 5129 // Emit a LOAD_STACK_GUARD node. 5130 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5131 sdl, PtrTy, Chain); 5132 MachinePointerInfo MPInfo(GV); 5133 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5134 unsigned Flags = MachineMemOperand::MOLoad | 5135 MachineMemOperand::MOInvariant; 5136 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5137 PtrTy.getSizeInBits() / 8, 5138 DAG.getEVTAlignment(PtrTy)); 5139 Node->setMemRefs(MemRefs, MemRefs + 1); 5140 5141 // Copy the guard value to a virtual register so that it can be 5142 // retrieved in the epilogue. 5143 Src = SDValue(Node, 0); 5144 const TargetRegisterClass *RC = 5145 TLI.getRegClassFor(Src.getSimpleValueType()); 5146 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5147 5148 SPDescriptor.setGuardReg(Reg); 5149 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5150 } else { 5151 Src = getValue(I.getArgOperand(0)); // The guard's value. 5152 } 5153 5154 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5155 5156 int FI = FuncInfo.StaticAllocaMap[Slot]; 5157 MFI->setStackProtectorIndex(FI); 5158 5159 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5160 5161 // Store the stack protector onto the stack. 5162 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5163 DAG.getMachineFunction(), FI), 5164 true, false, 0); 5165 setValue(&I, Res); 5166 DAG.setRoot(Res); 5167 return nullptr; 5168 } 5169 case Intrinsic::objectsize: { 5170 // If we don't know by now, we're never going to know. 5171 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5172 5173 assert(CI && "Non-constant type in __builtin_object_size?"); 5174 5175 SDValue Arg = getValue(I.getCalledValue()); 5176 EVT Ty = Arg.getValueType(); 5177 5178 if (CI->isZero()) 5179 Res = DAG.getConstant(-1ULL, sdl, Ty); 5180 else 5181 Res = DAG.getConstant(0, sdl, Ty); 5182 5183 setValue(&I, Res); 5184 return nullptr; 5185 } 5186 case Intrinsic::annotation: 5187 case Intrinsic::ptr_annotation: 5188 // Drop the intrinsic, but forward the value 5189 setValue(&I, getValue(I.getOperand(0))); 5190 return nullptr; 5191 case Intrinsic::assume: 5192 case Intrinsic::var_annotation: 5193 // Discard annotate attributes and assumptions 5194 return nullptr; 5195 5196 case Intrinsic::init_trampoline: { 5197 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5198 5199 SDValue Ops[6]; 5200 Ops[0] = getRoot(); 5201 Ops[1] = getValue(I.getArgOperand(0)); 5202 Ops[2] = getValue(I.getArgOperand(1)); 5203 Ops[3] = getValue(I.getArgOperand(2)); 5204 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5205 Ops[5] = DAG.getSrcValue(F); 5206 5207 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5208 5209 DAG.setRoot(Res); 5210 return nullptr; 5211 } 5212 case Intrinsic::adjust_trampoline: { 5213 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5214 TLI.getPointerTy(DAG.getDataLayout()), 5215 getValue(I.getArgOperand(0)))); 5216 return nullptr; 5217 } 5218 case Intrinsic::gcroot: { 5219 MachineFunction &MF = DAG.getMachineFunction(); 5220 const Function *F = MF.getFunction(); 5221 (void)F; 5222 assert(F->hasGC() && 5223 "only valid in functions with gc specified, enforced by Verifier"); 5224 assert(GFI && "implied by previous"); 5225 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5226 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5227 5228 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5229 GFI->addStackRoot(FI->getIndex(), TypeMap); 5230 return nullptr; 5231 } 5232 case Intrinsic::gcread: 5233 case Intrinsic::gcwrite: 5234 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5235 case Intrinsic::flt_rounds: 5236 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5237 return nullptr; 5238 5239 case Intrinsic::expect: { 5240 // Just replace __builtin_expect(exp, c) with EXP. 5241 setValue(&I, getValue(I.getArgOperand(0))); 5242 return nullptr; 5243 } 5244 5245 case Intrinsic::debugtrap: 5246 case Intrinsic::trap: { 5247 StringRef TrapFuncName = 5248 I.getAttributes() 5249 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5250 .getValueAsString(); 5251 if (TrapFuncName.empty()) { 5252 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5253 ISD::TRAP : ISD::DEBUGTRAP; 5254 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5255 return nullptr; 5256 } 5257 TargetLowering::ArgListTy Args; 5258 5259 TargetLowering::CallLoweringInfo CLI(DAG); 5260 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5261 CallingConv::C, I.getType(), 5262 DAG.getExternalSymbol(TrapFuncName.data(), 5263 TLI.getPointerTy(DAG.getDataLayout())), 5264 std::move(Args), 0); 5265 5266 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5267 DAG.setRoot(Result.second); 5268 return nullptr; 5269 } 5270 5271 case Intrinsic::uadd_with_overflow: 5272 case Intrinsic::sadd_with_overflow: 5273 case Intrinsic::usub_with_overflow: 5274 case Intrinsic::ssub_with_overflow: 5275 case Intrinsic::umul_with_overflow: 5276 case Intrinsic::smul_with_overflow: { 5277 ISD::NodeType Op; 5278 switch (Intrinsic) { 5279 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5280 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5281 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5282 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5283 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5284 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5285 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5286 } 5287 SDValue Op1 = getValue(I.getArgOperand(0)); 5288 SDValue Op2 = getValue(I.getArgOperand(1)); 5289 5290 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5291 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5292 return nullptr; 5293 } 5294 case Intrinsic::prefetch: { 5295 SDValue Ops[5]; 5296 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5297 Ops[0] = getRoot(); 5298 Ops[1] = getValue(I.getArgOperand(0)); 5299 Ops[2] = getValue(I.getArgOperand(1)); 5300 Ops[3] = getValue(I.getArgOperand(2)); 5301 Ops[4] = getValue(I.getArgOperand(3)); 5302 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5303 DAG.getVTList(MVT::Other), Ops, 5304 EVT::getIntegerVT(*Context, 8), 5305 MachinePointerInfo(I.getArgOperand(0)), 5306 0, /* align */ 5307 false, /* volatile */ 5308 rw==0, /* read */ 5309 rw==1)); /* write */ 5310 return nullptr; 5311 } 5312 case Intrinsic::lifetime_start: 5313 case Intrinsic::lifetime_end: { 5314 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5315 // Stack coloring is not enabled in O0, discard region information. 5316 if (TM.getOptLevel() == CodeGenOpt::None) 5317 return nullptr; 5318 5319 SmallVector<Value *, 4> Allocas; 5320 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5321 5322 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5323 E = Allocas.end(); Object != E; ++Object) { 5324 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5325 5326 // Could not find an Alloca. 5327 if (!LifetimeObject) 5328 continue; 5329 5330 // First check that the Alloca is static, otherwise it won't have a 5331 // valid frame index. 5332 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5333 if (SI == FuncInfo.StaticAllocaMap.end()) 5334 return nullptr; 5335 5336 int FI = SI->second; 5337 5338 SDValue Ops[2]; 5339 Ops[0] = getRoot(); 5340 Ops[1] = 5341 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5342 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5343 5344 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5345 DAG.setRoot(Res); 5346 } 5347 return nullptr; 5348 } 5349 case Intrinsic::invariant_start: 5350 // Discard region information. 5351 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5352 return nullptr; 5353 case Intrinsic::invariant_end: 5354 // Discard region information. 5355 return nullptr; 5356 case Intrinsic::stackprotectorcheck: { 5357 // Do not actually emit anything for this basic block. Instead we initialize 5358 // the stack protector descriptor and export the guard variable so we can 5359 // access it in FinishBasicBlock. 5360 const BasicBlock *BB = I.getParent(); 5361 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5362 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5363 5364 // Flush our exports since we are going to process a terminator. 5365 (void)getControlRoot(); 5366 return nullptr; 5367 } 5368 case Intrinsic::clear_cache: 5369 return TLI.getClearCacheBuiltinName(); 5370 case Intrinsic::donothing: 5371 // ignore 5372 return nullptr; 5373 case Intrinsic::experimental_stackmap: { 5374 visitStackmap(I); 5375 return nullptr; 5376 } 5377 case Intrinsic::experimental_patchpoint_void: 5378 case Intrinsic::experimental_patchpoint_i64: { 5379 visitPatchpoint(&I); 5380 return nullptr; 5381 } 5382 case Intrinsic::experimental_gc_statepoint: { 5383 LowerStatepoint(ImmutableStatepoint(&I)); 5384 return nullptr; 5385 } 5386 case Intrinsic::experimental_gc_result: { 5387 visitGCResult(I); 5388 return nullptr; 5389 } 5390 case Intrinsic::experimental_gc_relocate: { 5391 visitGCRelocate(cast<GCRelocateInst>(I)); 5392 return nullptr; 5393 } 5394 case Intrinsic::instrprof_increment: 5395 llvm_unreachable("instrprof failed to lower an increment"); 5396 case Intrinsic::instrprof_value_profile: 5397 llvm_unreachable("instrprof failed to lower a value profiling call"); 5398 case Intrinsic::localescape: { 5399 MachineFunction &MF = DAG.getMachineFunction(); 5400 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5401 5402 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5403 // is the same on all targets. 5404 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5405 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5406 if (isa<ConstantPointerNull>(Arg)) 5407 continue; // Skip null pointers. They represent a hole in index space. 5408 AllocaInst *Slot = cast<AllocaInst>(Arg); 5409 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5410 "can only escape static allocas"); 5411 int FI = FuncInfo.StaticAllocaMap[Slot]; 5412 MCSymbol *FrameAllocSym = 5413 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5414 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5415 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5416 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5417 .addSym(FrameAllocSym) 5418 .addFrameIndex(FI); 5419 } 5420 5421 return nullptr; 5422 } 5423 5424 case Intrinsic::localrecover: { 5425 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5426 MachineFunction &MF = DAG.getMachineFunction(); 5427 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5428 5429 // Get the symbol that defines the frame offset. 5430 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5431 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5432 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5433 MCSymbol *FrameAllocSym = 5434 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5435 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5436 5437 // Create a MCSymbol for the label to avoid any target lowering 5438 // that would make this PC relative. 5439 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5440 SDValue OffsetVal = 5441 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5442 5443 // Add the offset to the FP. 5444 Value *FP = I.getArgOperand(1); 5445 SDValue FPVal = getValue(FP); 5446 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5447 setValue(&I, Add); 5448 5449 return nullptr; 5450 } 5451 5452 case Intrinsic::eh_exceptionpointer: 5453 case Intrinsic::eh_exceptioncode: { 5454 // Get the exception pointer vreg, copy from it, and resize it to fit. 5455 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5456 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5457 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5458 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5459 SDValue N = 5460 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5461 if (Intrinsic == Intrinsic::eh_exceptioncode) 5462 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5463 setValue(&I, N); 5464 return nullptr; 5465 } 5466 } 5467 } 5468 5469 std::pair<SDValue, SDValue> 5470 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5471 const BasicBlock *EHPadBB) { 5472 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5473 MCSymbol *BeginLabel = nullptr; 5474 5475 if (EHPadBB) { 5476 // Insert a label before the invoke call to mark the try range. This can be 5477 // used to detect deletion of the invoke via the MachineModuleInfo. 5478 BeginLabel = MMI.getContext().createTempSymbol(); 5479 5480 // For SjLj, keep track of which landing pads go with which invokes 5481 // so as to maintain the ordering of pads in the LSDA. 5482 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5483 if (CallSiteIndex) { 5484 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5485 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5486 5487 // Now that the call site is handled, stop tracking it. 5488 MMI.setCurrentCallSite(0); 5489 } 5490 5491 // Both PendingLoads and PendingExports must be flushed here; 5492 // this call might not return. 5493 (void)getRoot(); 5494 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5495 5496 CLI.setChain(getRoot()); 5497 } 5498 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5499 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5500 5501 assert((CLI.IsTailCall || Result.second.getNode()) && 5502 "Non-null chain expected with non-tail call!"); 5503 assert((Result.second.getNode() || !Result.first.getNode()) && 5504 "Null value expected with tail call!"); 5505 5506 if (!Result.second.getNode()) { 5507 // As a special case, a null chain means that a tail call has been emitted 5508 // and the DAG root is already updated. 5509 HasTailCall = true; 5510 5511 // Since there's no actual continuation from this block, nothing can be 5512 // relying on us setting vregs for them. 5513 PendingExports.clear(); 5514 } else { 5515 DAG.setRoot(Result.second); 5516 } 5517 5518 if (EHPadBB) { 5519 // Insert a label at the end of the invoke call to mark the try range. This 5520 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5521 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5522 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5523 5524 // Inform MachineModuleInfo of range. 5525 if (MMI.hasEHFunclets()) { 5526 assert(CLI.CS); 5527 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5528 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5529 BeginLabel, EndLabel); 5530 } else { 5531 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5532 } 5533 } 5534 5535 return Result; 5536 } 5537 5538 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5539 bool isTailCall, 5540 const BasicBlock *EHPadBB) { 5541 FunctionType *FTy = CS.getFunctionType(); 5542 Type *RetTy = CS.getType(); 5543 5544 TargetLowering::ArgListTy Args; 5545 TargetLowering::ArgListEntry Entry; 5546 Args.reserve(CS.arg_size()); 5547 5548 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5549 i != e; ++i) { 5550 const Value *V = *i; 5551 5552 // Skip empty types 5553 if (V->getType()->isEmptyTy()) 5554 continue; 5555 5556 SDValue ArgNode = getValue(V); 5557 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5558 5559 // Skip the first return-type Attribute to get to params. 5560 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5561 Args.push_back(Entry); 5562 5563 // If we have an explicit sret argument that is an Instruction, (i.e., it 5564 // might point to function-local memory), we can't meaningfully tail-call. 5565 if (Entry.isSRet && isa<Instruction>(V)) 5566 isTailCall = false; 5567 } 5568 5569 // Check if target-independent constraints permit a tail call here. 5570 // Target-dependent constraints are checked within TLI->LowerCallTo. 5571 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5572 isTailCall = false; 5573 5574 TargetLowering::CallLoweringInfo CLI(DAG); 5575 CLI.setDebugLoc(getCurSDLoc()) 5576 .setChain(getRoot()) 5577 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5578 .setTailCall(isTailCall) 5579 .setConvergent(CS.isConvergent()); 5580 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5581 5582 if (Result.first.getNode()) { 5583 const Instruction *Inst = CS.getInstruction(); 5584 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5585 setValue(Inst, Result.first); 5586 } 5587 } 5588 5589 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5590 /// value is equal or not-equal to zero. 5591 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5592 for (const User *U : V->users()) { 5593 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5594 if (IC->isEquality()) 5595 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5596 if (C->isNullValue()) 5597 continue; 5598 // Unknown instruction. 5599 return false; 5600 } 5601 return true; 5602 } 5603 5604 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5605 Type *LoadTy, 5606 SelectionDAGBuilder &Builder) { 5607 5608 // Check to see if this load can be trivially constant folded, e.g. if the 5609 // input is from a string literal. 5610 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5611 // Cast pointer to the type we really want to load. 5612 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5613 PointerType::getUnqual(LoadTy)); 5614 5615 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5616 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5617 return Builder.getValue(LoadCst); 5618 } 5619 5620 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5621 // still constant memory, the input chain can be the entry node. 5622 SDValue Root; 5623 bool ConstantMemory = false; 5624 5625 // Do not serialize (non-volatile) loads of constant memory with anything. 5626 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5627 Root = Builder.DAG.getEntryNode(); 5628 ConstantMemory = true; 5629 } else { 5630 // Do not serialize non-volatile loads against each other. 5631 Root = Builder.DAG.getRoot(); 5632 } 5633 5634 SDValue Ptr = Builder.getValue(PtrVal); 5635 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5636 Ptr, MachinePointerInfo(PtrVal), 5637 false /*volatile*/, 5638 false /*nontemporal*/, 5639 false /*isinvariant*/, 1 /* align=1 */); 5640 5641 if (!ConstantMemory) 5642 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5643 return LoadVal; 5644 } 5645 5646 /// processIntegerCallValue - Record the value for an instruction that 5647 /// produces an integer result, converting the type where necessary. 5648 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5649 SDValue Value, 5650 bool IsSigned) { 5651 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5652 I.getType(), true); 5653 if (IsSigned) 5654 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5655 else 5656 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5657 setValue(&I, Value); 5658 } 5659 5660 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5661 /// If so, return true and lower it, otherwise return false and it will be 5662 /// lowered like a normal call. 5663 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5664 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5665 if (I.getNumArgOperands() != 3) 5666 return false; 5667 5668 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5669 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5670 !I.getArgOperand(2)->getType()->isIntegerTy() || 5671 !I.getType()->isIntegerTy()) 5672 return false; 5673 5674 const Value *Size = I.getArgOperand(2); 5675 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5676 if (CSize && CSize->getZExtValue() == 0) { 5677 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5678 I.getType(), true); 5679 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5680 return true; 5681 } 5682 5683 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5684 std::pair<SDValue, SDValue> Res = 5685 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5686 getValue(LHS), getValue(RHS), getValue(Size), 5687 MachinePointerInfo(LHS), 5688 MachinePointerInfo(RHS)); 5689 if (Res.first.getNode()) { 5690 processIntegerCallValue(I, Res.first, true); 5691 PendingLoads.push_back(Res.second); 5692 return true; 5693 } 5694 5695 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5696 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5697 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5698 bool ActuallyDoIt = true; 5699 MVT LoadVT; 5700 Type *LoadTy; 5701 switch (CSize->getZExtValue()) { 5702 default: 5703 LoadVT = MVT::Other; 5704 LoadTy = nullptr; 5705 ActuallyDoIt = false; 5706 break; 5707 case 2: 5708 LoadVT = MVT::i16; 5709 LoadTy = Type::getInt16Ty(CSize->getContext()); 5710 break; 5711 case 4: 5712 LoadVT = MVT::i32; 5713 LoadTy = Type::getInt32Ty(CSize->getContext()); 5714 break; 5715 case 8: 5716 LoadVT = MVT::i64; 5717 LoadTy = Type::getInt64Ty(CSize->getContext()); 5718 break; 5719 /* 5720 case 16: 5721 LoadVT = MVT::v4i32; 5722 LoadTy = Type::getInt32Ty(CSize->getContext()); 5723 LoadTy = VectorType::get(LoadTy, 4); 5724 break; 5725 */ 5726 } 5727 5728 // This turns into unaligned loads. We only do this if the target natively 5729 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5730 // we'll only produce a small number of byte loads. 5731 5732 // Require that we can find a legal MVT, and only do this if the target 5733 // supports unaligned loads of that type. Expanding into byte loads would 5734 // bloat the code. 5735 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5736 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5737 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5738 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5739 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5740 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5741 // TODO: Check alignment of src and dest ptrs. 5742 if (!TLI.isTypeLegal(LoadVT) || 5743 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5744 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5745 ActuallyDoIt = false; 5746 } 5747 5748 if (ActuallyDoIt) { 5749 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5750 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5751 5752 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5753 ISD::SETNE); 5754 processIntegerCallValue(I, Res, false); 5755 return true; 5756 } 5757 } 5758 5759 5760 return false; 5761 } 5762 5763 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5764 /// form. If so, return true and lower it, otherwise return false and it 5765 /// will be lowered like a normal call. 5766 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5767 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5768 if (I.getNumArgOperands() != 3) 5769 return false; 5770 5771 const Value *Src = I.getArgOperand(0); 5772 const Value *Char = I.getArgOperand(1); 5773 const Value *Length = I.getArgOperand(2); 5774 if (!Src->getType()->isPointerTy() || 5775 !Char->getType()->isIntegerTy() || 5776 !Length->getType()->isIntegerTy() || 5777 !I.getType()->isPointerTy()) 5778 return false; 5779 5780 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5781 std::pair<SDValue, SDValue> Res = 5782 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5783 getValue(Src), getValue(Char), getValue(Length), 5784 MachinePointerInfo(Src)); 5785 if (Res.first.getNode()) { 5786 setValue(&I, Res.first); 5787 PendingLoads.push_back(Res.second); 5788 return true; 5789 } 5790 5791 return false; 5792 } 5793 5794 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5795 /// optimized form. If so, return true and lower it, otherwise return false 5796 /// and it will be lowered like a normal call. 5797 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5798 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5799 if (I.getNumArgOperands() != 2) 5800 return false; 5801 5802 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5803 if (!Arg0->getType()->isPointerTy() || 5804 !Arg1->getType()->isPointerTy() || 5805 !I.getType()->isPointerTy()) 5806 return false; 5807 5808 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5809 std::pair<SDValue, SDValue> Res = 5810 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5811 getValue(Arg0), getValue(Arg1), 5812 MachinePointerInfo(Arg0), 5813 MachinePointerInfo(Arg1), isStpcpy); 5814 if (Res.first.getNode()) { 5815 setValue(&I, Res.first); 5816 DAG.setRoot(Res.second); 5817 return true; 5818 } 5819 5820 return false; 5821 } 5822 5823 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5824 /// If so, return true and lower it, otherwise return false and it will be 5825 /// lowered like a normal call. 5826 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5827 // Verify that the prototype makes sense. int strcmp(void*,void*) 5828 if (I.getNumArgOperands() != 2) 5829 return false; 5830 5831 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5832 if (!Arg0->getType()->isPointerTy() || 5833 !Arg1->getType()->isPointerTy() || 5834 !I.getType()->isIntegerTy()) 5835 return false; 5836 5837 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5838 std::pair<SDValue, SDValue> Res = 5839 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5840 getValue(Arg0), getValue(Arg1), 5841 MachinePointerInfo(Arg0), 5842 MachinePointerInfo(Arg1)); 5843 if (Res.first.getNode()) { 5844 processIntegerCallValue(I, Res.first, true); 5845 PendingLoads.push_back(Res.second); 5846 return true; 5847 } 5848 5849 return false; 5850 } 5851 5852 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5853 /// form. If so, return true and lower it, otherwise return false and it 5854 /// will be lowered like a normal call. 5855 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5856 // Verify that the prototype makes sense. size_t strlen(char *) 5857 if (I.getNumArgOperands() != 1) 5858 return false; 5859 5860 const Value *Arg0 = I.getArgOperand(0); 5861 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5862 return false; 5863 5864 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5865 std::pair<SDValue, SDValue> Res = 5866 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5867 getValue(Arg0), MachinePointerInfo(Arg0)); 5868 if (Res.first.getNode()) { 5869 processIntegerCallValue(I, Res.first, false); 5870 PendingLoads.push_back(Res.second); 5871 return true; 5872 } 5873 5874 return false; 5875 } 5876 5877 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5878 /// form. If so, return true and lower it, otherwise return false and it 5879 /// will be lowered like a normal call. 5880 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5881 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5882 if (I.getNumArgOperands() != 2) 5883 return false; 5884 5885 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5886 if (!Arg0->getType()->isPointerTy() || 5887 !Arg1->getType()->isIntegerTy() || 5888 !I.getType()->isIntegerTy()) 5889 return false; 5890 5891 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5892 std::pair<SDValue, SDValue> Res = 5893 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5894 getValue(Arg0), getValue(Arg1), 5895 MachinePointerInfo(Arg0)); 5896 if (Res.first.getNode()) { 5897 processIntegerCallValue(I, Res.first, false); 5898 PendingLoads.push_back(Res.second); 5899 return true; 5900 } 5901 5902 return false; 5903 } 5904 5905 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5906 /// operation (as expected), translate it to an SDNode with the specified opcode 5907 /// and return true. 5908 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5909 unsigned Opcode) { 5910 // Sanity check that it really is a unary floating-point call. 5911 if (I.getNumArgOperands() != 1 || 5912 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5913 I.getType() != I.getArgOperand(0)->getType() || 5914 !I.onlyReadsMemory()) 5915 return false; 5916 5917 SDValue Tmp = getValue(I.getArgOperand(0)); 5918 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5919 return true; 5920 } 5921 5922 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5923 /// operation (as expected), translate it to an SDNode with the specified opcode 5924 /// and return true. 5925 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5926 unsigned Opcode) { 5927 // Sanity check that it really is a binary floating-point call. 5928 if (I.getNumArgOperands() != 2 || 5929 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5930 I.getType() != I.getArgOperand(0)->getType() || 5931 I.getType() != I.getArgOperand(1)->getType() || 5932 !I.onlyReadsMemory()) 5933 return false; 5934 5935 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5936 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5937 EVT VT = Tmp0.getValueType(); 5938 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5939 return true; 5940 } 5941 5942 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5943 // Handle inline assembly differently. 5944 if (isa<InlineAsm>(I.getCalledValue())) { 5945 visitInlineAsm(&I); 5946 return; 5947 } 5948 5949 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5950 ComputeUsesVAFloatArgument(I, &MMI); 5951 5952 const char *RenameFn = nullptr; 5953 if (Function *F = I.getCalledFunction()) { 5954 if (F->isDeclaration()) { 5955 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5956 if (unsigned IID = II->getIntrinsicID(F)) { 5957 RenameFn = visitIntrinsicCall(I, IID); 5958 if (!RenameFn) 5959 return; 5960 } 5961 } 5962 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5963 RenameFn = visitIntrinsicCall(I, IID); 5964 if (!RenameFn) 5965 return; 5966 } 5967 } 5968 5969 // Check for well-known libc/libm calls. If the function is internal, it 5970 // can't be a library call. 5971 LibFunc::Func Func; 5972 if (!F->hasLocalLinkage() && F->hasName() && 5973 LibInfo->getLibFunc(F->getName(), Func) && 5974 LibInfo->hasOptimizedCodeGen(Func)) { 5975 switch (Func) { 5976 default: break; 5977 case LibFunc::copysign: 5978 case LibFunc::copysignf: 5979 case LibFunc::copysignl: 5980 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5981 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5982 I.getType() == I.getArgOperand(0)->getType() && 5983 I.getType() == I.getArgOperand(1)->getType() && 5984 I.onlyReadsMemory()) { 5985 SDValue LHS = getValue(I.getArgOperand(0)); 5986 SDValue RHS = getValue(I.getArgOperand(1)); 5987 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5988 LHS.getValueType(), LHS, RHS)); 5989 return; 5990 } 5991 break; 5992 case LibFunc::fabs: 5993 case LibFunc::fabsf: 5994 case LibFunc::fabsl: 5995 if (visitUnaryFloatCall(I, ISD::FABS)) 5996 return; 5997 break; 5998 case LibFunc::fmin: 5999 case LibFunc::fminf: 6000 case LibFunc::fminl: 6001 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6002 return; 6003 break; 6004 case LibFunc::fmax: 6005 case LibFunc::fmaxf: 6006 case LibFunc::fmaxl: 6007 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6008 return; 6009 break; 6010 case LibFunc::sin: 6011 case LibFunc::sinf: 6012 case LibFunc::sinl: 6013 if (visitUnaryFloatCall(I, ISD::FSIN)) 6014 return; 6015 break; 6016 case LibFunc::cos: 6017 case LibFunc::cosf: 6018 case LibFunc::cosl: 6019 if (visitUnaryFloatCall(I, ISD::FCOS)) 6020 return; 6021 break; 6022 case LibFunc::sqrt: 6023 case LibFunc::sqrtf: 6024 case LibFunc::sqrtl: 6025 case LibFunc::sqrt_finite: 6026 case LibFunc::sqrtf_finite: 6027 case LibFunc::sqrtl_finite: 6028 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6029 return; 6030 break; 6031 case LibFunc::floor: 6032 case LibFunc::floorf: 6033 case LibFunc::floorl: 6034 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6035 return; 6036 break; 6037 case LibFunc::nearbyint: 6038 case LibFunc::nearbyintf: 6039 case LibFunc::nearbyintl: 6040 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6041 return; 6042 break; 6043 case LibFunc::ceil: 6044 case LibFunc::ceilf: 6045 case LibFunc::ceill: 6046 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6047 return; 6048 break; 6049 case LibFunc::rint: 6050 case LibFunc::rintf: 6051 case LibFunc::rintl: 6052 if (visitUnaryFloatCall(I, ISD::FRINT)) 6053 return; 6054 break; 6055 case LibFunc::round: 6056 case LibFunc::roundf: 6057 case LibFunc::roundl: 6058 if (visitUnaryFloatCall(I, ISD::FROUND)) 6059 return; 6060 break; 6061 case LibFunc::trunc: 6062 case LibFunc::truncf: 6063 case LibFunc::truncl: 6064 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6065 return; 6066 break; 6067 case LibFunc::log2: 6068 case LibFunc::log2f: 6069 case LibFunc::log2l: 6070 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6071 return; 6072 break; 6073 case LibFunc::exp2: 6074 case LibFunc::exp2f: 6075 case LibFunc::exp2l: 6076 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6077 return; 6078 break; 6079 case LibFunc::memcmp: 6080 if (visitMemCmpCall(I)) 6081 return; 6082 break; 6083 case LibFunc::memchr: 6084 if (visitMemChrCall(I)) 6085 return; 6086 break; 6087 case LibFunc::strcpy: 6088 if (visitStrCpyCall(I, false)) 6089 return; 6090 break; 6091 case LibFunc::stpcpy: 6092 if (visitStrCpyCall(I, true)) 6093 return; 6094 break; 6095 case LibFunc::strcmp: 6096 if (visitStrCmpCall(I)) 6097 return; 6098 break; 6099 case LibFunc::strlen: 6100 if (visitStrLenCall(I)) 6101 return; 6102 break; 6103 case LibFunc::strnlen: 6104 if (visitStrNLenCall(I)) 6105 return; 6106 break; 6107 } 6108 } 6109 } 6110 6111 SDValue Callee; 6112 if (!RenameFn) 6113 Callee = getValue(I.getCalledValue()); 6114 else 6115 Callee = DAG.getExternalSymbol( 6116 RenameFn, 6117 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6118 6119 #ifndef NDEBUG 6120 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6121 // have to do anything here to lower funclet bundles. 6122 for (unsigned i = 0, e = I.getNumOperandBundles(); i != e; ++i) 6123 assert((I.getOperandBundleAt(i).isDeoptOperandBundle() || 6124 I.getOperandBundleAt(i).isFuncletOperandBundle()) && 6125 "Cannot lower calls with arbitrary operand bundles!"); 6126 #endif 6127 6128 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6129 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6130 else 6131 // Check if we can potentially perform a tail call. More detailed checking 6132 // is be done within LowerCallTo, after more information about the call is 6133 // known. 6134 LowerCallTo(&I, Callee, I.isTailCall()); 6135 } 6136 6137 namespace { 6138 6139 /// AsmOperandInfo - This contains information for each constraint that we are 6140 /// lowering. 6141 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6142 public: 6143 /// CallOperand - If this is the result output operand or a clobber 6144 /// this is null, otherwise it is the incoming operand to the CallInst. 6145 /// This gets modified as the asm is processed. 6146 SDValue CallOperand; 6147 6148 /// AssignedRegs - If this is a register or register class operand, this 6149 /// contains the set of register corresponding to the operand. 6150 RegsForValue AssignedRegs; 6151 6152 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6153 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6154 } 6155 6156 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6157 /// corresponds to. If there is no Value* for this operand, it returns 6158 /// MVT::Other. 6159 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6160 const DataLayout &DL) const { 6161 if (!CallOperandVal) return MVT::Other; 6162 6163 if (isa<BasicBlock>(CallOperandVal)) 6164 return TLI.getPointerTy(DL); 6165 6166 llvm::Type *OpTy = CallOperandVal->getType(); 6167 6168 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6169 // If this is an indirect operand, the operand is a pointer to the 6170 // accessed type. 6171 if (isIndirect) { 6172 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6173 if (!PtrTy) 6174 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6175 OpTy = PtrTy->getElementType(); 6176 } 6177 6178 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6179 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6180 if (STy->getNumElements() == 1) 6181 OpTy = STy->getElementType(0); 6182 6183 // If OpTy is not a single value, it may be a struct/union that we 6184 // can tile with integers. 6185 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6186 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6187 switch (BitSize) { 6188 default: break; 6189 case 1: 6190 case 8: 6191 case 16: 6192 case 32: 6193 case 64: 6194 case 128: 6195 OpTy = IntegerType::get(Context, BitSize); 6196 break; 6197 } 6198 } 6199 6200 return TLI.getValueType(DL, OpTy, true); 6201 } 6202 }; 6203 6204 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6205 6206 } // end anonymous namespace 6207 6208 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6209 /// specified operand. We prefer to assign virtual registers, to allow the 6210 /// register allocator to handle the assignment process. However, if the asm 6211 /// uses features that we can't model on machineinstrs, we have SDISel do the 6212 /// allocation. This produces generally horrible, but correct, code. 6213 /// 6214 /// OpInfo describes the operand. 6215 /// 6216 static void GetRegistersForValue(SelectionDAG &DAG, 6217 const TargetLowering &TLI, 6218 SDLoc DL, 6219 SDISelAsmOperandInfo &OpInfo) { 6220 LLVMContext &Context = *DAG.getContext(); 6221 6222 MachineFunction &MF = DAG.getMachineFunction(); 6223 SmallVector<unsigned, 4> Regs; 6224 6225 // If this is a constraint for a single physreg, or a constraint for a 6226 // register class, find it. 6227 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6228 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6229 OpInfo.ConstraintCode, 6230 OpInfo.ConstraintVT); 6231 6232 unsigned NumRegs = 1; 6233 if (OpInfo.ConstraintVT != MVT::Other) { 6234 // If this is a FP input in an integer register (or visa versa) insert a bit 6235 // cast of the input value. More generally, handle any case where the input 6236 // value disagrees with the register class we plan to stick this in. 6237 if (OpInfo.Type == InlineAsm::isInput && 6238 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6239 // Try to convert to the first EVT that the reg class contains. If the 6240 // types are identical size, use a bitcast to convert (e.g. two differing 6241 // vector types). 6242 MVT RegVT = *PhysReg.second->vt_begin(); 6243 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6244 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6245 RegVT, OpInfo.CallOperand); 6246 OpInfo.ConstraintVT = RegVT; 6247 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6248 // If the input is a FP value and we want it in FP registers, do a 6249 // bitcast to the corresponding integer type. This turns an f64 value 6250 // into i64, which can be passed with two i32 values on a 32-bit 6251 // machine. 6252 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6253 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6254 RegVT, OpInfo.CallOperand); 6255 OpInfo.ConstraintVT = RegVT; 6256 } 6257 } 6258 6259 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6260 } 6261 6262 MVT RegVT; 6263 EVT ValueVT = OpInfo.ConstraintVT; 6264 6265 // If this is a constraint for a specific physical register, like {r17}, 6266 // assign it now. 6267 if (unsigned AssignedReg = PhysReg.first) { 6268 const TargetRegisterClass *RC = PhysReg.second; 6269 if (OpInfo.ConstraintVT == MVT::Other) 6270 ValueVT = *RC->vt_begin(); 6271 6272 // Get the actual register value type. This is important, because the user 6273 // may have asked for (e.g.) the AX register in i32 type. We need to 6274 // remember that AX is actually i16 to get the right extension. 6275 RegVT = *RC->vt_begin(); 6276 6277 // This is a explicit reference to a physical register. 6278 Regs.push_back(AssignedReg); 6279 6280 // If this is an expanded reference, add the rest of the regs to Regs. 6281 if (NumRegs != 1) { 6282 TargetRegisterClass::iterator I = RC->begin(); 6283 for (; *I != AssignedReg; ++I) 6284 assert(I != RC->end() && "Didn't find reg!"); 6285 6286 // Already added the first reg. 6287 --NumRegs; ++I; 6288 for (; NumRegs; --NumRegs, ++I) { 6289 assert(I != RC->end() && "Ran out of registers to allocate!"); 6290 Regs.push_back(*I); 6291 } 6292 } 6293 6294 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6295 return; 6296 } 6297 6298 // Otherwise, if this was a reference to an LLVM register class, create vregs 6299 // for this reference. 6300 if (const TargetRegisterClass *RC = PhysReg.second) { 6301 RegVT = *RC->vt_begin(); 6302 if (OpInfo.ConstraintVT == MVT::Other) 6303 ValueVT = RegVT; 6304 6305 // Create the appropriate number of virtual registers. 6306 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6307 for (; NumRegs; --NumRegs) 6308 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6309 6310 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6311 return; 6312 } 6313 6314 // Otherwise, we couldn't allocate enough registers for this. 6315 } 6316 6317 /// visitInlineAsm - Handle a call to an InlineAsm object. 6318 /// 6319 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6320 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6321 6322 /// ConstraintOperands - Information about all of the constraints. 6323 SDISelAsmOperandInfoVector ConstraintOperands; 6324 6325 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6326 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6327 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6328 6329 bool hasMemory = false; 6330 6331 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6332 unsigned ResNo = 0; // ResNo - The result number of the next output. 6333 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6334 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6335 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6336 6337 MVT OpVT = MVT::Other; 6338 6339 // Compute the value type for each operand. 6340 switch (OpInfo.Type) { 6341 case InlineAsm::isOutput: 6342 // Indirect outputs just consume an argument. 6343 if (OpInfo.isIndirect) { 6344 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6345 break; 6346 } 6347 6348 // The return value of the call is this value. As such, there is no 6349 // corresponding argument. 6350 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6351 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6352 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6353 STy->getElementType(ResNo)); 6354 } else { 6355 assert(ResNo == 0 && "Asm only has one result!"); 6356 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6357 } 6358 ++ResNo; 6359 break; 6360 case InlineAsm::isInput: 6361 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6362 break; 6363 case InlineAsm::isClobber: 6364 // Nothing to do. 6365 break; 6366 } 6367 6368 // If this is an input or an indirect output, process the call argument. 6369 // BasicBlocks are labels, currently appearing only in asm's. 6370 if (OpInfo.CallOperandVal) { 6371 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6372 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6373 } else { 6374 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6375 } 6376 6377 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6378 DAG.getDataLayout()).getSimpleVT(); 6379 } 6380 6381 OpInfo.ConstraintVT = OpVT; 6382 6383 // Indirect operand accesses access memory. 6384 if (OpInfo.isIndirect) 6385 hasMemory = true; 6386 else { 6387 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6388 TargetLowering::ConstraintType 6389 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6390 if (CType == TargetLowering::C_Memory) { 6391 hasMemory = true; 6392 break; 6393 } 6394 } 6395 } 6396 } 6397 6398 SDValue Chain, Flag; 6399 6400 // We won't need to flush pending loads if this asm doesn't touch 6401 // memory and is nonvolatile. 6402 if (hasMemory || IA->hasSideEffects()) 6403 Chain = getRoot(); 6404 else 6405 Chain = DAG.getRoot(); 6406 6407 // Second pass over the constraints: compute which constraint option to use 6408 // and assign registers to constraints that want a specific physreg. 6409 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6410 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6411 6412 // If this is an output operand with a matching input operand, look up the 6413 // matching input. If their types mismatch, e.g. one is an integer, the 6414 // other is floating point, or their sizes are different, flag it as an 6415 // error. 6416 if (OpInfo.hasMatchingInput()) { 6417 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6418 6419 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6420 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6421 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6422 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6423 OpInfo.ConstraintVT); 6424 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6425 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6426 Input.ConstraintVT); 6427 if ((OpInfo.ConstraintVT.isInteger() != 6428 Input.ConstraintVT.isInteger()) || 6429 (MatchRC.second != InputRC.second)) { 6430 report_fatal_error("Unsupported asm: input constraint" 6431 " with a matching output constraint of" 6432 " incompatible type!"); 6433 } 6434 Input.ConstraintVT = OpInfo.ConstraintVT; 6435 } 6436 } 6437 6438 // Compute the constraint code and ConstraintType to use. 6439 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6440 6441 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6442 OpInfo.Type == InlineAsm::isClobber) 6443 continue; 6444 6445 // If this is a memory input, and if the operand is not indirect, do what we 6446 // need to to provide an address for the memory input. 6447 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6448 !OpInfo.isIndirect) { 6449 assert((OpInfo.isMultipleAlternative || 6450 (OpInfo.Type == InlineAsm::isInput)) && 6451 "Can only indirectify direct input operands!"); 6452 6453 // Memory operands really want the address of the value. If we don't have 6454 // an indirect input, put it in the constpool if we can, otherwise spill 6455 // it to a stack slot. 6456 // TODO: This isn't quite right. We need to handle these according to 6457 // the addressing mode that the constraint wants. Also, this may take 6458 // an additional register for the computation and we don't want that 6459 // either. 6460 6461 // If the operand is a float, integer, or vector constant, spill to a 6462 // constant pool entry to get its address. 6463 const Value *OpVal = OpInfo.CallOperandVal; 6464 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6465 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6466 OpInfo.CallOperand = DAG.getConstantPool( 6467 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6468 } else { 6469 // Otherwise, create a stack slot and emit a store to it before the 6470 // asm. 6471 Type *Ty = OpVal->getType(); 6472 auto &DL = DAG.getDataLayout(); 6473 uint64_t TySize = DL.getTypeAllocSize(Ty); 6474 unsigned Align = DL.getPrefTypeAlignment(Ty); 6475 MachineFunction &MF = DAG.getMachineFunction(); 6476 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6477 SDValue StackSlot = 6478 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6479 Chain = DAG.getStore( 6480 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6481 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6482 false, false, 0); 6483 OpInfo.CallOperand = StackSlot; 6484 } 6485 6486 // There is no longer a Value* corresponding to this operand. 6487 OpInfo.CallOperandVal = nullptr; 6488 6489 // It is now an indirect operand. 6490 OpInfo.isIndirect = true; 6491 } 6492 6493 // If this constraint is for a specific register, allocate it before 6494 // anything else. 6495 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6496 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6497 } 6498 6499 // Second pass - Loop over all of the operands, assigning virtual or physregs 6500 // to register class operands. 6501 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6502 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6503 6504 // C_Register operands have already been allocated, Other/Memory don't need 6505 // to be. 6506 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6507 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6508 } 6509 6510 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6511 std::vector<SDValue> AsmNodeOperands; 6512 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6513 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6514 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6515 6516 // If we have a !srcloc metadata node associated with it, we want to attach 6517 // this to the ultimately generated inline asm machineinstr. To do this, we 6518 // pass in the third operand as this (potentially null) inline asm MDNode. 6519 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6520 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6521 6522 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6523 // bits as operand 3. 6524 unsigned ExtraInfo = 0; 6525 if (IA->hasSideEffects()) 6526 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6527 if (IA->isAlignStack()) 6528 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6529 // Set the asm dialect. 6530 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6531 6532 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6533 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6534 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6535 6536 // Compute the constraint code and ConstraintType to use. 6537 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6538 6539 // Ideally, we would only check against memory constraints. However, the 6540 // meaning of an other constraint can be target-specific and we can't easily 6541 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6542 // for other constriants as well. 6543 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6544 OpInfo.ConstraintType == TargetLowering::C_Other) { 6545 if (OpInfo.Type == InlineAsm::isInput) 6546 ExtraInfo |= InlineAsm::Extra_MayLoad; 6547 else if (OpInfo.Type == InlineAsm::isOutput) 6548 ExtraInfo |= InlineAsm::Extra_MayStore; 6549 else if (OpInfo.Type == InlineAsm::isClobber) 6550 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6551 } 6552 } 6553 6554 AsmNodeOperands.push_back(DAG.getTargetConstant( 6555 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6556 6557 // Loop over all of the inputs, copying the operand values into the 6558 // appropriate registers and processing the output regs. 6559 RegsForValue RetValRegs; 6560 6561 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6562 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6563 6564 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6565 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6566 6567 switch (OpInfo.Type) { 6568 case InlineAsm::isOutput: { 6569 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6570 OpInfo.ConstraintType != TargetLowering::C_Register) { 6571 // Memory output, or 'other' output (e.g. 'X' constraint). 6572 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6573 6574 unsigned ConstraintID = 6575 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6576 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6577 "Failed to convert memory constraint code to constraint id."); 6578 6579 // Add information to the INLINEASM node to know about this output. 6580 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6581 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6582 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6583 MVT::i32)); 6584 AsmNodeOperands.push_back(OpInfo.CallOperand); 6585 break; 6586 } 6587 6588 // Otherwise, this is a register or register class output. 6589 6590 // Copy the output from the appropriate register. Find a register that 6591 // we can use. 6592 if (OpInfo.AssignedRegs.Regs.empty()) { 6593 LLVMContext &Ctx = *DAG.getContext(); 6594 Ctx.emitError(CS.getInstruction(), 6595 "couldn't allocate output register for constraint '" + 6596 Twine(OpInfo.ConstraintCode) + "'"); 6597 return; 6598 } 6599 6600 // If this is an indirect operand, store through the pointer after the 6601 // asm. 6602 if (OpInfo.isIndirect) { 6603 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6604 OpInfo.CallOperandVal)); 6605 } else { 6606 // This is the result value of the call. 6607 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6608 // Concatenate this output onto the outputs list. 6609 RetValRegs.append(OpInfo.AssignedRegs); 6610 } 6611 6612 // Add information to the INLINEASM node to know that this register is 6613 // set. 6614 OpInfo.AssignedRegs 6615 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6616 ? InlineAsm::Kind_RegDefEarlyClobber 6617 : InlineAsm::Kind_RegDef, 6618 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6619 break; 6620 } 6621 case InlineAsm::isInput: { 6622 SDValue InOperandVal = OpInfo.CallOperand; 6623 6624 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6625 // If this is required to match an output register we have already set, 6626 // just use its register. 6627 unsigned OperandNo = OpInfo.getMatchedOperand(); 6628 6629 // Scan until we find the definition we already emitted of this operand. 6630 // When we find it, create a RegsForValue operand. 6631 unsigned CurOp = InlineAsm::Op_FirstOperand; 6632 for (; OperandNo; --OperandNo) { 6633 // Advance to the next operand. 6634 unsigned OpFlag = 6635 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6636 assert((InlineAsm::isRegDefKind(OpFlag) || 6637 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6638 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6639 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6640 } 6641 6642 unsigned OpFlag = 6643 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6644 if (InlineAsm::isRegDefKind(OpFlag) || 6645 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6646 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6647 if (OpInfo.isIndirect) { 6648 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6649 LLVMContext &Ctx = *DAG.getContext(); 6650 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6651 " don't know how to handle tied " 6652 "indirect register inputs"); 6653 return; 6654 } 6655 6656 RegsForValue MatchedRegs; 6657 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6658 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6659 MatchedRegs.RegVTs.push_back(RegVT); 6660 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6661 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6662 i != e; ++i) { 6663 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6664 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6665 else { 6666 LLVMContext &Ctx = *DAG.getContext(); 6667 Ctx.emitError(CS.getInstruction(), 6668 "inline asm error: This value" 6669 " type register class is not natively supported!"); 6670 return; 6671 } 6672 } 6673 SDLoc dl = getCurSDLoc(); 6674 // Use the produced MatchedRegs object to 6675 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6676 Chain, &Flag, CS.getInstruction()); 6677 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6678 true, OpInfo.getMatchedOperand(), dl, 6679 DAG, AsmNodeOperands); 6680 break; 6681 } 6682 6683 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6684 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6685 "Unexpected number of operands"); 6686 // Add information to the INLINEASM node to know about this input. 6687 // See InlineAsm.h isUseOperandTiedToDef. 6688 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6689 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6690 OpInfo.getMatchedOperand()); 6691 AsmNodeOperands.push_back(DAG.getTargetConstant( 6692 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6693 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6694 break; 6695 } 6696 6697 // Treat indirect 'X' constraint as memory. 6698 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6699 OpInfo.isIndirect) 6700 OpInfo.ConstraintType = TargetLowering::C_Memory; 6701 6702 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6703 std::vector<SDValue> Ops; 6704 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6705 Ops, DAG); 6706 if (Ops.empty()) { 6707 LLVMContext &Ctx = *DAG.getContext(); 6708 Ctx.emitError(CS.getInstruction(), 6709 "invalid operand for inline asm constraint '" + 6710 Twine(OpInfo.ConstraintCode) + "'"); 6711 return; 6712 } 6713 6714 // Add information to the INLINEASM node to know about this input. 6715 unsigned ResOpType = 6716 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6717 AsmNodeOperands.push_back(DAG.getTargetConstant( 6718 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6719 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6720 break; 6721 } 6722 6723 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6724 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6725 assert(InOperandVal.getValueType() == 6726 TLI.getPointerTy(DAG.getDataLayout()) && 6727 "Memory operands expect pointer values"); 6728 6729 unsigned ConstraintID = 6730 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6731 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6732 "Failed to convert memory constraint code to constraint id."); 6733 6734 // Add information to the INLINEASM node to know about this input. 6735 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6736 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6737 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6738 getCurSDLoc(), 6739 MVT::i32)); 6740 AsmNodeOperands.push_back(InOperandVal); 6741 break; 6742 } 6743 6744 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6745 OpInfo.ConstraintType == TargetLowering::C_Register) && 6746 "Unknown constraint type!"); 6747 6748 // TODO: Support this. 6749 if (OpInfo.isIndirect) { 6750 LLVMContext &Ctx = *DAG.getContext(); 6751 Ctx.emitError(CS.getInstruction(), 6752 "Don't know how to handle indirect register inputs yet " 6753 "for constraint '" + 6754 Twine(OpInfo.ConstraintCode) + "'"); 6755 return; 6756 } 6757 6758 // Copy the input into the appropriate registers. 6759 if (OpInfo.AssignedRegs.Regs.empty()) { 6760 LLVMContext &Ctx = *DAG.getContext(); 6761 Ctx.emitError(CS.getInstruction(), 6762 "couldn't allocate input reg for constraint '" + 6763 Twine(OpInfo.ConstraintCode) + "'"); 6764 return; 6765 } 6766 6767 SDLoc dl = getCurSDLoc(); 6768 6769 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6770 Chain, &Flag, CS.getInstruction()); 6771 6772 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6773 dl, DAG, AsmNodeOperands); 6774 break; 6775 } 6776 case InlineAsm::isClobber: { 6777 // Add the clobbered value to the operand list, so that the register 6778 // allocator is aware that the physreg got clobbered. 6779 if (!OpInfo.AssignedRegs.Regs.empty()) 6780 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6781 false, 0, getCurSDLoc(), DAG, 6782 AsmNodeOperands); 6783 break; 6784 } 6785 } 6786 } 6787 6788 // Finish up input operands. Set the input chain and add the flag last. 6789 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6790 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6791 6792 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6793 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6794 Flag = Chain.getValue(1); 6795 6796 // If this asm returns a register value, copy the result from that register 6797 // and set it as the value of the call. 6798 if (!RetValRegs.Regs.empty()) { 6799 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6800 Chain, &Flag, CS.getInstruction()); 6801 6802 // FIXME: Why don't we do this for inline asms with MRVs? 6803 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6804 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6805 6806 // If any of the results of the inline asm is a vector, it may have the 6807 // wrong width/num elts. This can happen for register classes that can 6808 // contain multiple different value types. The preg or vreg allocated may 6809 // not have the same VT as was expected. Convert it to the right type 6810 // with bit_convert. 6811 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6812 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6813 ResultType, Val); 6814 6815 } else if (ResultType != Val.getValueType() && 6816 ResultType.isInteger() && Val.getValueType().isInteger()) { 6817 // If a result value was tied to an input value, the computed result may 6818 // have a wider width than the expected result. Extract the relevant 6819 // portion. 6820 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6821 } 6822 6823 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6824 } 6825 6826 setValue(CS.getInstruction(), Val); 6827 // Don't need to use this as a chain in this case. 6828 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6829 return; 6830 } 6831 6832 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6833 6834 // Process indirect outputs, first output all of the flagged copies out of 6835 // physregs. 6836 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6837 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6838 const Value *Ptr = IndirectStoresToEmit[i].second; 6839 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6840 Chain, &Flag, IA); 6841 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6842 } 6843 6844 // Emit the non-flagged stores from the physregs. 6845 SmallVector<SDValue, 8> OutChains; 6846 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6847 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6848 StoresToEmit[i].first, 6849 getValue(StoresToEmit[i].second), 6850 MachinePointerInfo(StoresToEmit[i].second), 6851 false, false, 0); 6852 OutChains.push_back(Val); 6853 } 6854 6855 if (!OutChains.empty()) 6856 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6857 6858 DAG.setRoot(Chain); 6859 } 6860 6861 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6862 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6863 MVT::Other, getRoot(), 6864 getValue(I.getArgOperand(0)), 6865 DAG.getSrcValue(I.getArgOperand(0)))); 6866 } 6867 6868 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6870 const DataLayout &DL = DAG.getDataLayout(); 6871 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6872 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6873 DAG.getSrcValue(I.getOperand(0)), 6874 DL.getABITypeAlignment(I.getType())); 6875 setValue(&I, V); 6876 DAG.setRoot(V.getValue(1)); 6877 } 6878 6879 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6880 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6881 MVT::Other, getRoot(), 6882 getValue(I.getArgOperand(0)), 6883 DAG.getSrcValue(I.getArgOperand(0)))); 6884 } 6885 6886 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6887 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6888 MVT::Other, getRoot(), 6889 getValue(I.getArgOperand(0)), 6890 getValue(I.getArgOperand(1)), 6891 DAG.getSrcValue(I.getArgOperand(0)), 6892 DAG.getSrcValue(I.getArgOperand(1)))); 6893 } 6894 6895 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 6896 const Instruction &I, 6897 SDValue Op) { 6898 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 6899 if (!Range) 6900 return Op; 6901 6902 Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue(); 6903 if (!Lo->isNullValue()) 6904 return Op; 6905 6906 Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue(); 6907 unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2(); 6908 6909 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 6910 6911 SDLoc SL = getCurSDLoc(); 6912 6913 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), 6914 Op, DAG.getValueType(SmallVT)); 6915 unsigned NumVals = Op.getNode()->getNumValues(); 6916 if (NumVals == 1) 6917 return ZExt; 6918 6919 SmallVector<SDValue, 4> Ops; 6920 6921 Ops.push_back(ZExt); 6922 for (unsigned I = 1; I != NumVals; ++I) 6923 Ops.push_back(Op.getValue(I)); 6924 6925 return DAG.getMergeValues(Ops, SL); 6926 } 6927 6928 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 6929 /// the call being lowered. 6930 /// 6931 /// This is a helper for lowering intrinsics that follow a target calling 6932 /// convention or require stack pointer adjustment. Only a subset of the 6933 /// intrinsic's operands need to participate in the calling convention. 6934 void SelectionDAGBuilder::populateCallLoweringInfo( 6935 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 6936 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 6937 bool IsPatchPoint) { 6938 TargetLowering::ArgListTy Args; 6939 Args.reserve(NumArgs); 6940 6941 // Populate the argument list. 6942 // Attributes for args start at offset 1, after the return attribute. 6943 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6944 ArgI != ArgE; ++ArgI) { 6945 const Value *V = CS->getOperand(ArgI); 6946 6947 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6948 6949 TargetLowering::ArgListEntry Entry; 6950 Entry.Node = getValue(V); 6951 Entry.Ty = V->getType(); 6952 Entry.setAttributes(&CS, AttrI); 6953 Args.push_back(Entry); 6954 } 6955 6956 CLI.setDebugLoc(getCurSDLoc()) 6957 .setChain(getRoot()) 6958 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), 6959 NumArgs) 6960 .setDiscardResult(CS->use_empty()) 6961 .setIsPatchPoint(IsPatchPoint); 6962 } 6963 6964 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6965 /// or patchpoint target node's operand list. 6966 /// 6967 /// Constants are converted to TargetConstants purely as an optimization to 6968 /// avoid constant materialization and register allocation. 6969 /// 6970 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6971 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6972 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6973 /// address materialization and register allocation, but may also be required 6974 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6975 /// alloca in the entry block, then the runtime may assume that the alloca's 6976 /// StackMap location can be read immediately after compilation and that the 6977 /// location is valid at any point during execution (this is similar to the 6978 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6979 /// only available in a register, then the runtime would need to trap when 6980 /// execution reaches the StackMap in order to read the alloca's location. 6981 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6982 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6983 SelectionDAGBuilder &Builder) { 6984 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6985 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6986 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6987 Ops.push_back( 6988 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6989 Ops.push_back( 6990 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6991 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6992 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6993 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6994 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6995 } else 6996 Ops.push_back(OpVal); 6997 } 6998 } 6999 7000 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7001 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7002 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7003 // [live variables...]) 7004 7005 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7006 7007 SDValue Chain, InFlag, Callee, NullPtr; 7008 SmallVector<SDValue, 32> Ops; 7009 7010 SDLoc DL = getCurSDLoc(); 7011 Callee = getValue(CI.getCalledValue()); 7012 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7013 7014 // The stackmap intrinsic only records the live variables (the arguemnts 7015 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7016 // intrinsic, this won't be lowered to a function call. This means we don't 7017 // have to worry about calling conventions and target specific lowering code. 7018 // Instead we perform the call lowering right here. 7019 // 7020 // chain, flag = CALLSEQ_START(chain, 0) 7021 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7022 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7023 // 7024 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7025 InFlag = Chain.getValue(1); 7026 7027 // Add the <id> and <numBytes> constants. 7028 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7029 Ops.push_back(DAG.getTargetConstant( 7030 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7031 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7032 Ops.push_back(DAG.getTargetConstant( 7033 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7034 MVT::i32)); 7035 7036 // Push live variables for the stack map. 7037 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7038 7039 // We are not pushing any register mask info here on the operands list, 7040 // because the stackmap doesn't clobber anything. 7041 7042 // Push the chain and the glue flag. 7043 Ops.push_back(Chain); 7044 Ops.push_back(InFlag); 7045 7046 // Create the STACKMAP node. 7047 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7048 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7049 Chain = SDValue(SM, 0); 7050 InFlag = Chain.getValue(1); 7051 7052 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7053 7054 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7055 7056 // Set the root to the target-lowered call chain. 7057 DAG.setRoot(Chain); 7058 7059 // Inform the Frame Information that we have a stackmap in this function. 7060 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7061 } 7062 7063 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7064 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7065 const BasicBlock *EHPadBB) { 7066 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7067 // i32 <numBytes>, 7068 // i8* <target>, 7069 // i32 <numArgs>, 7070 // [Args...], 7071 // [live variables...]) 7072 7073 CallingConv::ID CC = CS.getCallingConv(); 7074 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7075 bool HasDef = !CS->getType()->isVoidTy(); 7076 SDLoc dl = getCurSDLoc(); 7077 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7078 7079 // Handle immediate and symbolic callees. 7080 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7081 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7082 /*isTarget=*/true); 7083 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7084 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7085 SDLoc(SymbolicCallee), 7086 SymbolicCallee->getValueType(0)); 7087 7088 // Get the real number of arguments participating in the call <numArgs> 7089 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7090 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7091 7092 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7093 // Intrinsics include all meta-operands up to but not including CC. 7094 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7095 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7096 "Not enough arguments provided to the patchpoint intrinsic"); 7097 7098 // For AnyRegCC the arguments are lowered later on manually. 7099 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7100 Type *ReturnTy = 7101 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7102 7103 TargetLowering::CallLoweringInfo CLI(DAG); 7104 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7105 true); 7106 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7107 7108 SDNode *CallEnd = Result.second.getNode(); 7109 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7110 CallEnd = CallEnd->getOperand(0).getNode(); 7111 7112 /// Get a call instruction from the call sequence chain. 7113 /// Tail calls are not allowed. 7114 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7115 "Expected a callseq node."); 7116 SDNode *Call = CallEnd->getOperand(0).getNode(); 7117 bool HasGlue = Call->getGluedNode(); 7118 7119 // Replace the target specific call node with the patchable intrinsic. 7120 SmallVector<SDValue, 8> Ops; 7121 7122 // Add the <id> and <numBytes> constants. 7123 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7124 Ops.push_back(DAG.getTargetConstant( 7125 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7126 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7127 Ops.push_back(DAG.getTargetConstant( 7128 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7129 MVT::i32)); 7130 7131 // Add the callee. 7132 Ops.push_back(Callee); 7133 7134 // Adjust <numArgs> to account for any arguments that have been passed on the 7135 // stack instead. 7136 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7137 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7138 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7139 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7140 7141 // Add the calling convention 7142 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7143 7144 // Add the arguments we omitted previously. The register allocator should 7145 // place these in any free register. 7146 if (IsAnyRegCC) 7147 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7148 Ops.push_back(getValue(CS.getArgument(i))); 7149 7150 // Push the arguments from the call instruction up to the register mask. 7151 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7152 Ops.append(Call->op_begin() + 2, e); 7153 7154 // Push live variables for the stack map. 7155 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7156 7157 // Push the register mask info. 7158 if (HasGlue) 7159 Ops.push_back(*(Call->op_end()-2)); 7160 else 7161 Ops.push_back(*(Call->op_end()-1)); 7162 7163 // Push the chain (this is originally the first operand of the call, but 7164 // becomes now the last or second to last operand). 7165 Ops.push_back(*(Call->op_begin())); 7166 7167 // Push the glue flag (last operand). 7168 if (HasGlue) 7169 Ops.push_back(*(Call->op_end()-1)); 7170 7171 SDVTList NodeTys; 7172 if (IsAnyRegCC && HasDef) { 7173 // Create the return types based on the intrinsic definition 7174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7175 SmallVector<EVT, 3> ValueVTs; 7176 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7177 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7178 7179 // There is always a chain and a glue type at the end 7180 ValueVTs.push_back(MVT::Other); 7181 ValueVTs.push_back(MVT::Glue); 7182 NodeTys = DAG.getVTList(ValueVTs); 7183 } else 7184 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7185 7186 // Replace the target specific call node with a PATCHPOINT node. 7187 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7188 dl, NodeTys, Ops); 7189 7190 // Update the NodeMap. 7191 if (HasDef) { 7192 if (IsAnyRegCC) 7193 setValue(CS.getInstruction(), SDValue(MN, 0)); 7194 else 7195 setValue(CS.getInstruction(), Result.first); 7196 } 7197 7198 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7199 // call sequence. Furthermore the location of the chain and glue can change 7200 // when the AnyReg calling convention is used and the intrinsic returns a 7201 // value. 7202 if (IsAnyRegCC && HasDef) { 7203 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7204 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7205 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7206 } else 7207 DAG.ReplaceAllUsesWith(Call, MN); 7208 DAG.DeleteNode(Call); 7209 7210 // Inform the Frame Information that we have a patchpoint in this function. 7211 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7212 } 7213 7214 /// Returns an AttributeSet representing the attributes applied to the return 7215 /// value of the given call. 7216 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7217 SmallVector<Attribute::AttrKind, 2> Attrs; 7218 if (CLI.RetSExt) 7219 Attrs.push_back(Attribute::SExt); 7220 if (CLI.RetZExt) 7221 Attrs.push_back(Attribute::ZExt); 7222 if (CLI.IsInReg) 7223 Attrs.push_back(Attribute::InReg); 7224 7225 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7226 Attrs); 7227 } 7228 7229 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7230 /// implementation, which just calls LowerCall. 7231 /// FIXME: When all targets are 7232 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7233 std::pair<SDValue, SDValue> 7234 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7235 // Handle the incoming return values from the call. 7236 CLI.Ins.clear(); 7237 Type *OrigRetTy = CLI.RetTy; 7238 SmallVector<EVT, 4> RetTys; 7239 SmallVector<uint64_t, 4> Offsets; 7240 auto &DL = CLI.DAG.getDataLayout(); 7241 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7242 7243 SmallVector<ISD::OutputArg, 4> Outs; 7244 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7245 7246 bool CanLowerReturn = 7247 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7248 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7249 7250 SDValue DemoteStackSlot; 7251 int DemoteStackIdx = -100; 7252 if (!CanLowerReturn) { 7253 // FIXME: equivalent assert? 7254 // assert(!CS.hasInAllocaArgument() && 7255 // "sret demotion is incompatible with inalloca"); 7256 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7257 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7258 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7259 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7260 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7261 7262 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7263 ArgListEntry Entry; 7264 Entry.Node = DemoteStackSlot; 7265 Entry.Ty = StackSlotPtrType; 7266 Entry.isSExt = false; 7267 Entry.isZExt = false; 7268 Entry.isInReg = false; 7269 Entry.isSRet = true; 7270 Entry.isNest = false; 7271 Entry.isByVal = false; 7272 Entry.isReturned = false; 7273 Entry.Alignment = Align; 7274 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7275 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7276 7277 // sret demotion isn't compatible with tail-calls, since the sret argument 7278 // points into the callers stack frame. 7279 CLI.IsTailCall = false; 7280 } else { 7281 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7282 EVT VT = RetTys[I]; 7283 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7284 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7285 for (unsigned i = 0; i != NumRegs; ++i) { 7286 ISD::InputArg MyFlags; 7287 MyFlags.VT = RegisterVT; 7288 MyFlags.ArgVT = VT; 7289 MyFlags.Used = CLI.IsReturnValueUsed; 7290 if (CLI.RetSExt) 7291 MyFlags.Flags.setSExt(); 7292 if (CLI.RetZExt) 7293 MyFlags.Flags.setZExt(); 7294 if (CLI.IsInReg) 7295 MyFlags.Flags.setInReg(); 7296 CLI.Ins.push_back(MyFlags); 7297 } 7298 } 7299 } 7300 7301 // Handle all of the outgoing arguments. 7302 CLI.Outs.clear(); 7303 CLI.OutVals.clear(); 7304 ArgListTy &Args = CLI.getArgs(); 7305 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7306 SmallVector<EVT, 4> ValueVTs; 7307 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7308 Type *FinalType = Args[i].Ty; 7309 if (Args[i].isByVal) 7310 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7311 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7312 FinalType, CLI.CallConv, CLI.IsVarArg); 7313 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7314 ++Value) { 7315 EVT VT = ValueVTs[Value]; 7316 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7317 SDValue Op = SDValue(Args[i].Node.getNode(), 7318 Args[i].Node.getResNo() + Value); 7319 ISD::ArgFlagsTy Flags; 7320 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7321 7322 if (Args[i].isZExt) 7323 Flags.setZExt(); 7324 if (Args[i].isSExt) 7325 Flags.setSExt(); 7326 if (Args[i].isInReg) 7327 Flags.setInReg(); 7328 if (Args[i].isSRet) 7329 Flags.setSRet(); 7330 if (Args[i].isByVal) 7331 Flags.setByVal(); 7332 if (Args[i].isInAlloca) { 7333 Flags.setInAlloca(); 7334 // Set the byval flag for CCAssignFn callbacks that don't know about 7335 // inalloca. This way we can know how many bytes we should've allocated 7336 // and how many bytes a callee cleanup function will pop. If we port 7337 // inalloca to more targets, we'll have to add custom inalloca handling 7338 // in the various CC lowering callbacks. 7339 Flags.setByVal(); 7340 } 7341 if (Args[i].isByVal || Args[i].isInAlloca) { 7342 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7343 Type *ElementTy = Ty->getElementType(); 7344 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7345 // For ByVal, alignment should come from FE. BE will guess if this 7346 // info is not there but there are cases it cannot get right. 7347 unsigned FrameAlign; 7348 if (Args[i].Alignment) 7349 FrameAlign = Args[i].Alignment; 7350 else 7351 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7352 Flags.setByValAlign(FrameAlign); 7353 } 7354 if (Args[i].isNest) 7355 Flags.setNest(); 7356 if (NeedsRegBlock) 7357 Flags.setInConsecutiveRegs(); 7358 Flags.setOrigAlign(OriginalAlignment); 7359 7360 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7361 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7362 SmallVector<SDValue, 4> Parts(NumParts); 7363 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7364 7365 if (Args[i].isSExt) 7366 ExtendKind = ISD::SIGN_EXTEND; 7367 else if (Args[i].isZExt) 7368 ExtendKind = ISD::ZERO_EXTEND; 7369 7370 // Conservatively only handle 'returned' on non-vectors for now 7371 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7372 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7373 "unexpected use of 'returned'"); 7374 // Before passing 'returned' to the target lowering code, ensure that 7375 // either the register MVT and the actual EVT are the same size or that 7376 // the return value and argument are extended in the same way; in these 7377 // cases it's safe to pass the argument register value unchanged as the 7378 // return register value (although it's at the target's option whether 7379 // to do so) 7380 // TODO: allow code generation to take advantage of partially preserved 7381 // registers rather than clobbering the entire register when the 7382 // parameter extension method is not compatible with the return 7383 // extension method 7384 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7385 (ExtendKind != ISD::ANY_EXTEND && 7386 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7387 Flags.setReturned(); 7388 } 7389 7390 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7391 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7392 7393 for (unsigned j = 0; j != NumParts; ++j) { 7394 // if it isn't first piece, alignment must be 1 7395 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7396 i < CLI.NumFixedArgs, 7397 i, j*Parts[j].getValueType().getStoreSize()); 7398 if (NumParts > 1 && j == 0) 7399 MyFlags.Flags.setSplit(); 7400 else if (j != 0) { 7401 MyFlags.Flags.setOrigAlign(1); 7402 if (j == NumParts - 1) 7403 MyFlags.Flags.setSplitEnd(); 7404 } 7405 7406 CLI.Outs.push_back(MyFlags); 7407 CLI.OutVals.push_back(Parts[j]); 7408 } 7409 7410 if (NeedsRegBlock && Value == NumValues - 1) 7411 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7412 } 7413 } 7414 7415 SmallVector<SDValue, 4> InVals; 7416 CLI.Chain = LowerCall(CLI, InVals); 7417 7418 // Verify that the target's LowerCall behaved as expected. 7419 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7420 "LowerCall didn't return a valid chain!"); 7421 assert((!CLI.IsTailCall || InVals.empty()) && 7422 "LowerCall emitted a return value for a tail call!"); 7423 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7424 "LowerCall didn't emit the correct number of values!"); 7425 7426 // For a tail call, the return value is merely live-out and there aren't 7427 // any nodes in the DAG representing it. Return a special value to 7428 // indicate that a tail call has been emitted and no more Instructions 7429 // should be processed in the current block. 7430 if (CLI.IsTailCall) { 7431 CLI.DAG.setRoot(CLI.Chain); 7432 return std::make_pair(SDValue(), SDValue()); 7433 } 7434 7435 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7436 assert(InVals[i].getNode() && 7437 "LowerCall emitted a null value!"); 7438 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7439 "LowerCall emitted a value with the wrong type!"); 7440 }); 7441 7442 SmallVector<SDValue, 4> ReturnValues; 7443 if (!CanLowerReturn) { 7444 // The instruction result is the result of loading from the 7445 // hidden sret parameter. 7446 SmallVector<EVT, 1> PVTs; 7447 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7448 7449 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7450 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7451 EVT PtrVT = PVTs[0]; 7452 7453 unsigned NumValues = RetTys.size(); 7454 ReturnValues.resize(NumValues); 7455 SmallVector<SDValue, 4> Chains(NumValues); 7456 7457 // An aggregate return value cannot wrap around the address space, so 7458 // offsets to its parts don't wrap either. 7459 SDNodeFlags Flags; 7460 Flags.setNoUnsignedWrap(true); 7461 7462 for (unsigned i = 0; i < NumValues; ++i) { 7463 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7464 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7465 PtrVT), &Flags); 7466 SDValue L = CLI.DAG.getLoad( 7467 RetTys[i], CLI.DL, CLI.Chain, Add, 7468 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7469 DemoteStackIdx, Offsets[i]), 7470 false, false, false, 1); 7471 ReturnValues[i] = L; 7472 Chains[i] = L.getValue(1); 7473 } 7474 7475 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7476 } else { 7477 // Collect the legal value parts into potentially illegal values 7478 // that correspond to the original function's return values. 7479 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7480 if (CLI.RetSExt) 7481 AssertOp = ISD::AssertSext; 7482 else if (CLI.RetZExt) 7483 AssertOp = ISD::AssertZext; 7484 unsigned CurReg = 0; 7485 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7486 EVT VT = RetTys[I]; 7487 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7488 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7489 7490 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7491 NumRegs, RegisterVT, VT, nullptr, 7492 AssertOp)); 7493 CurReg += NumRegs; 7494 } 7495 7496 // For a function returning void, there is no return value. We can't create 7497 // such a node, so we just return a null return value in that case. In 7498 // that case, nothing will actually look at the value. 7499 if (ReturnValues.empty()) 7500 return std::make_pair(SDValue(), CLI.Chain); 7501 } 7502 7503 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7504 CLI.DAG.getVTList(RetTys), ReturnValues); 7505 return std::make_pair(Res, CLI.Chain); 7506 } 7507 7508 void TargetLowering::LowerOperationWrapper(SDNode *N, 7509 SmallVectorImpl<SDValue> &Results, 7510 SelectionDAG &DAG) const { 7511 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7512 Results.push_back(Res); 7513 } 7514 7515 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7516 llvm_unreachable("LowerOperation not implemented for this target!"); 7517 } 7518 7519 void 7520 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7521 SDValue Op = getNonRegisterValue(V); 7522 assert((Op.getOpcode() != ISD::CopyFromReg || 7523 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7524 "Copy from a reg to the same reg!"); 7525 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7526 7527 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7528 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7529 V->getType()); 7530 SDValue Chain = DAG.getEntryNode(); 7531 7532 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7533 FuncInfo.PreferredExtendType.end()) 7534 ? ISD::ANY_EXTEND 7535 : FuncInfo.PreferredExtendType[V]; 7536 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7537 PendingExports.push_back(Chain); 7538 } 7539 7540 #include "llvm/CodeGen/SelectionDAGISel.h" 7541 7542 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7543 /// entry block, return true. This includes arguments used by switches, since 7544 /// the switch may expand into multiple basic blocks. 7545 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7546 // With FastISel active, we may be splitting blocks, so force creation 7547 // of virtual registers for all non-dead arguments. 7548 if (FastISel) 7549 return A->use_empty(); 7550 7551 const BasicBlock &Entry = A->getParent()->front(); 7552 for (const User *U : A->users()) 7553 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7554 return false; // Use not in entry block. 7555 7556 return true; 7557 } 7558 7559 void SelectionDAGISel::LowerArguments(const Function &F) { 7560 SelectionDAG &DAG = SDB->DAG; 7561 SDLoc dl = SDB->getCurSDLoc(); 7562 const DataLayout &DL = DAG.getDataLayout(); 7563 SmallVector<ISD::InputArg, 16> Ins; 7564 7565 if (!FuncInfo->CanLowerReturn) { 7566 // Put in an sret pointer parameter before all the other parameters. 7567 SmallVector<EVT, 1> ValueVTs; 7568 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7569 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7570 7571 // NOTE: Assuming that a pointer will never break down to more than one VT 7572 // or one register. 7573 ISD::ArgFlagsTy Flags; 7574 Flags.setSRet(); 7575 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7576 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7577 ISD::InputArg::NoArgIndex, 0); 7578 Ins.push_back(RetArg); 7579 } 7580 7581 // Set up the incoming argument description vector. 7582 unsigned Idx = 1; 7583 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7584 I != E; ++I, ++Idx) { 7585 SmallVector<EVT, 4> ValueVTs; 7586 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7587 bool isArgValueUsed = !I->use_empty(); 7588 unsigned PartBase = 0; 7589 Type *FinalType = I->getType(); 7590 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7591 FinalType = cast<PointerType>(FinalType)->getElementType(); 7592 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7593 FinalType, F.getCallingConv(), F.isVarArg()); 7594 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7595 Value != NumValues; ++Value) { 7596 EVT VT = ValueVTs[Value]; 7597 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7598 ISD::ArgFlagsTy Flags; 7599 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7600 7601 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7602 Flags.setZExt(); 7603 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7604 Flags.setSExt(); 7605 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7606 Flags.setInReg(); 7607 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7608 Flags.setSRet(); 7609 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7610 Flags.setByVal(); 7611 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7612 Flags.setInAlloca(); 7613 // Set the byval flag for CCAssignFn callbacks that don't know about 7614 // inalloca. This way we can know how many bytes we should've allocated 7615 // and how many bytes a callee cleanup function will pop. If we port 7616 // inalloca to more targets, we'll have to add custom inalloca handling 7617 // in the various CC lowering callbacks. 7618 Flags.setByVal(); 7619 } 7620 if (F.getCallingConv() == CallingConv::X86_INTR) { 7621 // IA Interrupt passes frame (1st parameter) by value in the stack. 7622 if (Idx == 1) 7623 Flags.setByVal(); 7624 } 7625 if (Flags.isByVal() || Flags.isInAlloca()) { 7626 PointerType *Ty = cast<PointerType>(I->getType()); 7627 Type *ElementTy = Ty->getElementType(); 7628 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7629 // For ByVal, alignment should be passed from FE. BE will guess if 7630 // this info is not there but there are cases it cannot get right. 7631 unsigned FrameAlign; 7632 if (F.getParamAlignment(Idx)) 7633 FrameAlign = F.getParamAlignment(Idx); 7634 else 7635 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7636 Flags.setByValAlign(FrameAlign); 7637 } 7638 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7639 Flags.setNest(); 7640 if (NeedsRegBlock) 7641 Flags.setInConsecutiveRegs(); 7642 Flags.setOrigAlign(OriginalAlignment); 7643 7644 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7645 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7646 for (unsigned i = 0; i != NumRegs; ++i) { 7647 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7648 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7649 if (NumRegs > 1 && i == 0) 7650 MyFlags.Flags.setSplit(); 7651 // if it isn't first piece, alignment must be 1 7652 else if (i > 0) { 7653 MyFlags.Flags.setOrigAlign(1); 7654 if (i == NumRegs - 1) 7655 MyFlags.Flags.setSplitEnd(); 7656 } 7657 Ins.push_back(MyFlags); 7658 } 7659 if (NeedsRegBlock && Value == NumValues - 1) 7660 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7661 PartBase += VT.getStoreSize(); 7662 } 7663 } 7664 7665 // Call the target to set up the argument values. 7666 SmallVector<SDValue, 8> InVals; 7667 SDValue NewRoot = TLI->LowerFormalArguments( 7668 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7669 7670 // Verify that the target's LowerFormalArguments behaved as expected. 7671 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7672 "LowerFormalArguments didn't return a valid chain!"); 7673 assert(InVals.size() == Ins.size() && 7674 "LowerFormalArguments didn't emit the correct number of values!"); 7675 DEBUG({ 7676 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7677 assert(InVals[i].getNode() && 7678 "LowerFormalArguments emitted a null value!"); 7679 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7680 "LowerFormalArguments emitted a value with the wrong type!"); 7681 } 7682 }); 7683 7684 // Update the DAG with the new chain value resulting from argument lowering. 7685 DAG.setRoot(NewRoot); 7686 7687 // Set up the argument values. 7688 unsigned i = 0; 7689 Idx = 1; 7690 if (!FuncInfo->CanLowerReturn) { 7691 // Create a virtual register for the sret pointer, and put in a copy 7692 // from the sret argument into it. 7693 SmallVector<EVT, 1> ValueVTs; 7694 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7695 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7696 MVT VT = ValueVTs[0].getSimpleVT(); 7697 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7698 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7699 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7700 RegVT, VT, nullptr, AssertOp); 7701 7702 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7703 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7704 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7705 FuncInfo->DemoteRegister = SRetReg; 7706 NewRoot = 7707 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7708 DAG.setRoot(NewRoot); 7709 7710 // i indexes lowered arguments. Bump it past the hidden sret argument. 7711 // Idx indexes LLVM arguments. Don't touch it. 7712 ++i; 7713 } 7714 7715 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7716 ++I, ++Idx) { 7717 SmallVector<SDValue, 4> ArgValues; 7718 SmallVector<EVT, 4> ValueVTs; 7719 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7720 unsigned NumValues = ValueVTs.size(); 7721 7722 // If this argument is unused then remember its value. It is used to generate 7723 // debugging information. 7724 if (I->use_empty() && NumValues) { 7725 SDB->setUnusedArgValue(&*I, InVals[i]); 7726 7727 // Also remember any frame index for use in FastISel. 7728 if (FrameIndexSDNode *FI = 7729 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7730 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7731 } 7732 7733 for (unsigned Val = 0; Val != NumValues; ++Val) { 7734 EVT VT = ValueVTs[Val]; 7735 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7736 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7737 7738 if (!I->use_empty()) { 7739 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7740 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7741 AssertOp = ISD::AssertSext; 7742 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7743 AssertOp = ISD::AssertZext; 7744 7745 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7746 NumParts, PartVT, VT, 7747 nullptr, AssertOp)); 7748 } 7749 7750 i += NumParts; 7751 } 7752 7753 // We don't need to do anything else for unused arguments. 7754 if (ArgValues.empty()) 7755 continue; 7756 7757 // Note down frame index. 7758 if (FrameIndexSDNode *FI = 7759 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7760 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7761 7762 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7763 SDB->getCurSDLoc()); 7764 7765 SDB->setValue(&*I, Res); 7766 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7767 if (LoadSDNode *LNode = 7768 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7769 if (FrameIndexSDNode *FI = 7770 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7771 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7772 } 7773 7774 // If this argument is live outside of the entry block, insert a copy from 7775 // wherever we got it to the vreg that other BB's will reference it as. 7776 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7777 // If we can, though, try to skip creating an unnecessary vreg. 7778 // FIXME: This isn't very clean... it would be nice to make this more 7779 // general. It's also subtly incompatible with the hacks FastISel 7780 // uses with vregs. 7781 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7782 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7783 FuncInfo->ValueMap[&*I] = Reg; 7784 continue; 7785 } 7786 } 7787 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7788 FuncInfo->InitializeRegForValue(&*I); 7789 SDB->CopyToExportRegsIfNeeded(&*I); 7790 } 7791 } 7792 7793 assert(i == InVals.size() && "Argument register count mismatch!"); 7794 7795 // Finally, if the target has anything special to do, allow it to do so. 7796 EmitFunctionEntryCode(); 7797 } 7798 7799 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7800 /// ensure constants are generated when needed. Remember the virtual registers 7801 /// that need to be added to the Machine PHI nodes as input. We cannot just 7802 /// directly add them, because expansion might result in multiple MBB's for one 7803 /// BB. As such, the start of the BB might correspond to a different MBB than 7804 /// the end. 7805 /// 7806 void 7807 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7808 const TerminatorInst *TI = LLVMBB->getTerminator(); 7809 7810 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7811 7812 // Check PHI nodes in successors that expect a value to be available from this 7813 // block. 7814 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7815 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7816 if (!isa<PHINode>(SuccBB->begin())) continue; 7817 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7818 7819 // If this terminator has multiple identical successors (common for 7820 // switches), only handle each succ once. 7821 if (!SuccsHandled.insert(SuccMBB).second) 7822 continue; 7823 7824 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7825 7826 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7827 // nodes and Machine PHI nodes, but the incoming operands have not been 7828 // emitted yet. 7829 for (BasicBlock::const_iterator I = SuccBB->begin(); 7830 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7831 // Ignore dead phi's. 7832 if (PN->use_empty()) continue; 7833 7834 // Skip empty types 7835 if (PN->getType()->isEmptyTy()) 7836 continue; 7837 7838 unsigned Reg; 7839 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7840 7841 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7842 unsigned &RegOut = ConstantsOut[C]; 7843 if (RegOut == 0) { 7844 RegOut = FuncInfo.CreateRegs(C->getType()); 7845 CopyValueToVirtualRegister(C, RegOut); 7846 } 7847 Reg = RegOut; 7848 } else { 7849 DenseMap<const Value *, unsigned>::iterator I = 7850 FuncInfo.ValueMap.find(PHIOp); 7851 if (I != FuncInfo.ValueMap.end()) 7852 Reg = I->second; 7853 else { 7854 assert(isa<AllocaInst>(PHIOp) && 7855 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7856 "Didn't codegen value into a register!??"); 7857 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7858 CopyValueToVirtualRegister(PHIOp, Reg); 7859 } 7860 } 7861 7862 // Remember that this register needs to added to the machine PHI node as 7863 // the input for this MBB. 7864 SmallVector<EVT, 4> ValueVTs; 7865 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7866 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7867 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7868 EVT VT = ValueVTs[vti]; 7869 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7870 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7871 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7872 Reg += NumRegisters; 7873 } 7874 } 7875 } 7876 7877 ConstantsOut.clear(); 7878 } 7879 7880 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7881 /// is 0. 7882 MachineBasicBlock * 7883 SelectionDAGBuilder::StackProtectorDescriptor:: 7884 AddSuccessorMBB(const BasicBlock *BB, 7885 MachineBasicBlock *ParentMBB, 7886 bool IsLikely, 7887 MachineBasicBlock *SuccMBB) { 7888 // If SuccBB has not been created yet, create it. 7889 if (!SuccMBB) { 7890 MachineFunction *MF = ParentMBB->getParent(); 7891 MachineFunction::iterator BBI(ParentMBB); 7892 SuccMBB = MF->CreateMachineBasicBlock(BB); 7893 MF->insert(++BBI, SuccMBB); 7894 } 7895 // Add it as a successor of ParentMBB. 7896 ParentMBB->addSuccessor( 7897 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7898 return SuccMBB; 7899 } 7900 7901 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7902 MachineFunction::iterator I(MBB); 7903 if (++I == FuncInfo.MF->end()) 7904 return nullptr; 7905 return &*I; 7906 } 7907 7908 /// During lowering new call nodes can be created (such as memset, etc.). 7909 /// Those will become new roots of the current DAG, but complications arise 7910 /// when they are tail calls. In such cases, the call lowering will update 7911 /// the root, but the builder still needs to know that a tail call has been 7912 /// lowered in order to avoid generating an additional return. 7913 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7914 // If the node is null, we do have a tail call. 7915 if (MaybeTC.getNode() != nullptr) 7916 DAG.setRoot(MaybeTC); 7917 else 7918 HasTailCall = true; 7919 } 7920 7921 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7922 unsigned *TotalCases, unsigned First, 7923 unsigned Last) { 7924 assert(Last >= First); 7925 assert(TotalCases[Last] >= TotalCases[First]); 7926 7927 APInt LowCase = Clusters[First].Low->getValue(); 7928 APInt HighCase = Clusters[Last].High->getValue(); 7929 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7930 7931 // FIXME: A range of consecutive cases has 100% density, but only requires one 7932 // comparison to lower. We should discriminate against such consecutive ranges 7933 // in jump tables. 7934 7935 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7936 uint64_t Range = Diff + 1; 7937 7938 uint64_t NumCases = 7939 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7940 7941 assert(NumCases < UINT64_MAX / 100); 7942 assert(Range >= NumCases); 7943 7944 return NumCases * 100 >= Range * MinJumpTableDensity; 7945 } 7946 7947 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7948 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7949 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7950 } 7951 7952 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7953 unsigned First, unsigned Last, 7954 const SwitchInst *SI, 7955 MachineBasicBlock *DefaultMBB, 7956 CaseCluster &JTCluster) { 7957 assert(First <= Last); 7958 7959 auto Prob = BranchProbability::getZero(); 7960 unsigned NumCmps = 0; 7961 std::vector<MachineBasicBlock*> Table; 7962 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7963 7964 // Initialize probabilities in JTProbs. 7965 for (unsigned I = First; I <= Last; ++I) 7966 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7967 7968 for (unsigned I = First; I <= Last; ++I) { 7969 assert(Clusters[I].Kind == CC_Range); 7970 Prob += Clusters[I].Prob; 7971 APInt Low = Clusters[I].Low->getValue(); 7972 APInt High = Clusters[I].High->getValue(); 7973 NumCmps += (Low == High) ? 1 : 2; 7974 if (I != First) { 7975 // Fill the gap between this and the previous cluster. 7976 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7977 assert(PreviousHigh.slt(Low)); 7978 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7979 for (uint64_t J = 0; J < Gap; J++) 7980 Table.push_back(DefaultMBB); 7981 } 7982 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7983 for (uint64_t J = 0; J < ClusterSize; ++J) 7984 Table.push_back(Clusters[I].MBB); 7985 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7986 } 7987 7988 unsigned NumDests = JTProbs.size(); 7989 if (isSuitableForBitTests(NumDests, NumCmps, 7990 Clusters[First].Low->getValue(), 7991 Clusters[Last].High->getValue())) { 7992 // Clusters[First..Last] should be lowered as bit tests instead. 7993 return false; 7994 } 7995 7996 // Create the MBB that will load from and jump through the table. 7997 // Note: We create it here, but it's not inserted into the function yet. 7998 MachineFunction *CurMF = FuncInfo.MF; 7999 MachineBasicBlock *JumpTableMBB = 8000 CurMF->CreateMachineBasicBlock(SI->getParent()); 8001 8002 // Add successors. Note: use table order for determinism. 8003 SmallPtrSet<MachineBasicBlock *, 8> Done; 8004 for (MachineBasicBlock *Succ : Table) { 8005 if (Done.count(Succ)) 8006 continue; 8007 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8008 Done.insert(Succ); 8009 } 8010 JumpTableMBB->normalizeSuccProbs(); 8011 8012 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8013 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8014 ->createJumpTableIndex(Table); 8015 8016 // Set up the jump table info. 8017 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8018 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8019 Clusters[Last].High->getValue(), SI->getCondition(), 8020 nullptr, false); 8021 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8022 8023 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8024 JTCases.size() - 1, Prob); 8025 return true; 8026 } 8027 8028 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8029 const SwitchInst *SI, 8030 MachineBasicBlock *DefaultMBB) { 8031 #ifndef NDEBUG 8032 // Clusters must be non-empty, sorted, and only contain Range clusters. 8033 assert(!Clusters.empty()); 8034 for (CaseCluster &C : Clusters) 8035 assert(C.Kind == CC_Range); 8036 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8037 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8038 #endif 8039 8040 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8041 if (!areJTsAllowed(TLI)) 8042 return; 8043 8044 const int64_t N = Clusters.size(); 8045 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 8046 8047 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8048 SmallVector<unsigned, 8> TotalCases(N); 8049 8050 for (unsigned i = 0; i < N; ++i) { 8051 APInt Hi = Clusters[i].High->getValue(); 8052 APInt Lo = Clusters[i].Low->getValue(); 8053 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8054 if (i != 0) 8055 TotalCases[i] += TotalCases[i - 1]; 8056 } 8057 8058 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 8059 // Cheap case: the whole range might be suitable for jump table. 8060 CaseCluster JTCluster; 8061 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8062 Clusters[0] = JTCluster; 8063 Clusters.resize(1); 8064 return; 8065 } 8066 } 8067 8068 // The algorithm below is not suitable for -O0. 8069 if (TM.getOptLevel() == CodeGenOpt::None) 8070 return; 8071 8072 // Split Clusters into minimum number of dense partitions. The algorithm uses 8073 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8074 // for the Case Statement'" (1994), but builds the MinPartitions array in 8075 // reverse order to make it easier to reconstruct the partitions in ascending 8076 // order. In the choice between two optimal partitionings, it picks the one 8077 // which yields more jump tables. 8078 8079 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8080 SmallVector<unsigned, 8> MinPartitions(N); 8081 // LastElement[i] is the last element of the partition starting at i. 8082 SmallVector<unsigned, 8> LastElement(N); 8083 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 8084 SmallVector<unsigned, 8> NumTables(N); 8085 8086 // Base case: There is only one way to partition Clusters[N-1]. 8087 MinPartitions[N - 1] = 1; 8088 LastElement[N - 1] = N - 1; 8089 assert(MinJumpTableSize > 1); 8090 NumTables[N - 1] = 0; 8091 8092 // Note: loop indexes are signed to avoid underflow. 8093 for (int64_t i = N - 2; i >= 0; i--) { 8094 // Find optimal partitioning of Clusters[i..N-1]. 8095 // Baseline: Put Clusters[i] into a partition on its own. 8096 MinPartitions[i] = MinPartitions[i + 1] + 1; 8097 LastElement[i] = i; 8098 NumTables[i] = NumTables[i + 1]; 8099 8100 // Search for a solution that results in fewer partitions. 8101 for (int64_t j = N - 1; j > i; j--) { 8102 // Try building a partition from Clusters[i..j]. 8103 if (isDense(Clusters, &TotalCases[0], i, j)) { 8104 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8105 bool IsTable = j - i + 1 >= MinJumpTableSize; 8106 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 8107 8108 // If this j leads to fewer partitions, or same number of partitions 8109 // with more lookup tables, it is a better partitioning. 8110 if (NumPartitions < MinPartitions[i] || 8111 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 8112 MinPartitions[i] = NumPartitions; 8113 LastElement[i] = j; 8114 NumTables[i] = Tables; 8115 } 8116 } 8117 } 8118 } 8119 8120 // Iterate over the partitions, replacing some with jump tables in-place. 8121 unsigned DstIndex = 0; 8122 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8123 Last = LastElement[First]; 8124 assert(Last >= First); 8125 assert(DstIndex <= First); 8126 unsigned NumClusters = Last - First + 1; 8127 8128 CaseCluster JTCluster; 8129 if (NumClusters >= MinJumpTableSize && 8130 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8131 Clusters[DstIndex++] = JTCluster; 8132 } else { 8133 for (unsigned I = First; I <= Last; ++I) 8134 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8135 } 8136 } 8137 Clusters.resize(DstIndex); 8138 } 8139 8140 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8141 // FIXME: Using the pointer type doesn't seem ideal. 8142 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8143 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8144 return Range <= BW; 8145 } 8146 8147 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8148 unsigned NumCmps, 8149 const APInt &Low, 8150 const APInt &High) { 8151 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8152 // range of cases both require only one branch to lower. Just looking at the 8153 // number of clusters and destinations should be enough to decide whether to 8154 // build bit tests. 8155 8156 // To lower a range with bit tests, the range must fit the bitwidth of a 8157 // machine word. 8158 if (!rangeFitsInWord(Low, High)) 8159 return false; 8160 8161 // Decide whether it's profitable to lower this range with bit tests. Each 8162 // destination requires a bit test and branch, and there is an overall range 8163 // check branch. For a small number of clusters, separate comparisons might be 8164 // cheaper, and for many destinations, splitting the range might be better. 8165 return (NumDests == 1 && NumCmps >= 3) || 8166 (NumDests == 2 && NumCmps >= 5) || 8167 (NumDests == 3 && NumCmps >= 6); 8168 } 8169 8170 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8171 unsigned First, unsigned Last, 8172 const SwitchInst *SI, 8173 CaseCluster &BTCluster) { 8174 assert(First <= Last); 8175 if (First == Last) 8176 return false; 8177 8178 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8179 unsigned NumCmps = 0; 8180 for (int64_t I = First; I <= Last; ++I) { 8181 assert(Clusters[I].Kind == CC_Range); 8182 Dests.set(Clusters[I].MBB->getNumber()); 8183 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8184 } 8185 unsigned NumDests = Dests.count(); 8186 8187 APInt Low = Clusters[First].Low->getValue(); 8188 APInt High = Clusters[Last].High->getValue(); 8189 assert(Low.slt(High)); 8190 8191 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8192 return false; 8193 8194 APInt LowBound; 8195 APInt CmpRange; 8196 8197 const int BitWidth = DAG.getTargetLoweringInfo() 8198 .getPointerTy(DAG.getDataLayout()) 8199 .getSizeInBits(); 8200 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8201 8202 // Check if the clusters cover a contiguous range such that no value in the 8203 // range will jump to the default statement. 8204 bool ContiguousRange = true; 8205 for (int64_t I = First + 1; I <= Last; ++I) { 8206 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8207 ContiguousRange = false; 8208 break; 8209 } 8210 } 8211 8212 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8213 // Optimize the case where all the case values fit in a word without having 8214 // to subtract minValue. In this case, we can optimize away the subtraction. 8215 LowBound = APInt::getNullValue(Low.getBitWidth()); 8216 CmpRange = High; 8217 ContiguousRange = false; 8218 } else { 8219 LowBound = Low; 8220 CmpRange = High - Low; 8221 } 8222 8223 CaseBitsVector CBV; 8224 auto TotalProb = BranchProbability::getZero(); 8225 for (unsigned i = First; i <= Last; ++i) { 8226 // Find the CaseBits for this destination. 8227 unsigned j; 8228 for (j = 0; j < CBV.size(); ++j) 8229 if (CBV[j].BB == Clusters[i].MBB) 8230 break; 8231 if (j == CBV.size()) 8232 CBV.push_back( 8233 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8234 CaseBits *CB = &CBV[j]; 8235 8236 // Update Mask, Bits and ExtraProb. 8237 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8238 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8239 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8240 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8241 CB->Bits += Hi - Lo + 1; 8242 CB->ExtraProb += Clusters[i].Prob; 8243 TotalProb += Clusters[i].Prob; 8244 } 8245 8246 BitTestInfo BTI; 8247 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8248 // Sort by probability first, number of bits second. 8249 if (a.ExtraProb != b.ExtraProb) 8250 return a.ExtraProb > b.ExtraProb; 8251 return a.Bits > b.Bits; 8252 }); 8253 8254 for (auto &CB : CBV) { 8255 MachineBasicBlock *BitTestBB = 8256 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8257 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8258 } 8259 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8260 SI->getCondition(), -1U, MVT::Other, false, 8261 ContiguousRange, nullptr, nullptr, std::move(BTI), 8262 TotalProb); 8263 8264 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8265 BitTestCases.size() - 1, TotalProb); 8266 return true; 8267 } 8268 8269 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8270 const SwitchInst *SI) { 8271 // Partition Clusters into as few subsets as possible, where each subset has a 8272 // range that fits in a machine word and has <= 3 unique destinations. 8273 8274 #ifndef NDEBUG 8275 // Clusters must be sorted and contain Range or JumpTable clusters. 8276 assert(!Clusters.empty()); 8277 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8278 for (const CaseCluster &C : Clusters) 8279 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8280 for (unsigned i = 1; i < Clusters.size(); ++i) 8281 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8282 #endif 8283 8284 // The algorithm below is not suitable for -O0. 8285 if (TM.getOptLevel() == CodeGenOpt::None) 8286 return; 8287 8288 // If target does not have legal shift left, do not emit bit tests at all. 8289 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8290 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8291 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8292 return; 8293 8294 int BitWidth = PTy.getSizeInBits(); 8295 const int64_t N = Clusters.size(); 8296 8297 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8298 SmallVector<unsigned, 8> MinPartitions(N); 8299 // LastElement[i] is the last element of the partition starting at i. 8300 SmallVector<unsigned, 8> LastElement(N); 8301 8302 // FIXME: This might not be the best algorithm for finding bit test clusters. 8303 8304 // Base case: There is only one way to partition Clusters[N-1]. 8305 MinPartitions[N - 1] = 1; 8306 LastElement[N - 1] = N - 1; 8307 8308 // Note: loop indexes are signed to avoid underflow. 8309 for (int64_t i = N - 2; i >= 0; --i) { 8310 // Find optimal partitioning of Clusters[i..N-1]. 8311 // Baseline: Put Clusters[i] into a partition on its own. 8312 MinPartitions[i] = MinPartitions[i + 1] + 1; 8313 LastElement[i] = i; 8314 8315 // Search for a solution that results in fewer partitions. 8316 // Note: the search is limited by BitWidth, reducing time complexity. 8317 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8318 // Try building a partition from Clusters[i..j]. 8319 8320 // Check the range. 8321 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8322 Clusters[j].High->getValue())) 8323 continue; 8324 8325 // Check nbr of destinations and cluster types. 8326 // FIXME: This works, but doesn't seem very efficient. 8327 bool RangesOnly = true; 8328 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8329 for (int64_t k = i; k <= j; k++) { 8330 if (Clusters[k].Kind != CC_Range) { 8331 RangesOnly = false; 8332 break; 8333 } 8334 Dests.set(Clusters[k].MBB->getNumber()); 8335 } 8336 if (!RangesOnly || Dests.count() > 3) 8337 break; 8338 8339 // Check if it's a better partition. 8340 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8341 if (NumPartitions < MinPartitions[i]) { 8342 // Found a better partition. 8343 MinPartitions[i] = NumPartitions; 8344 LastElement[i] = j; 8345 } 8346 } 8347 } 8348 8349 // Iterate over the partitions, replacing with bit-test clusters in-place. 8350 unsigned DstIndex = 0; 8351 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8352 Last = LastElement[First]; 8353 assert(First <= Last); 8354 assert(DstIndex <= First); 8355 8356 CaseCluster BitTestCluster; 8357 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8358 Clusters[DstIndex++] = BitTestCluster; 8359 } else { 8360 size_t NumClusters = Last - First + 1; 8361 std::memmove(&Clusters[DstIndex], &Clusters[First], 8362 sizeof(Clusters[0]) * NumClusters); 8363 DstIndex += NumClusters; 8364 } 8365 } 8366 Clusters.resize(DstIndex); 8367 } 8368 8369 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8370 MachineBasicBlock *SwitchMBB, 8371 MachineBasicBlock *DefaultMBB) { 8372 MachineFunction *CurMF = FuncInfo.MF; 8373 MachineBasicBlock *NextMBB = nullptr; 8374 MachineFunction::iterator BBI(W.MBB); 8375 if (++BBI != FuncInfo.MF->end()) 8376 NextMBB = &*BBI; 8377 8378 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8379 8380 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8381 8382 if (Size == 2 && W.MBB == SwitchMBB) { 8383 // If any two of the cases has the same destination, and if one value 8384 // is the same as the other, but has one bit unset that the other has set, 8385 // use bit manipulation to do two compares at once. For example: 8386 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8387 // TODO: This could be extended to merge any 2 cases in switches with 3 8388 // cases. 8389 // TODO: Handle cases where W.CaseBB != SwitchBB. 8390 CaseCluster &Small = *W.FirstCluster; 8391 CaseCluster &Big = *W.LastCluster; 8392 8393 if (Small.Low == Small.High && Big.Low == Big.High && 8394 Small.MBB == Big.MBB) { 8395 const APInt &SmallValue = Small.Low->getValue(); 8396 const APInt &BigValue = Big.Low->getValue(); 8397 8398 // Check that there is only one bit different. 8399 APInt CommonBit = BigValue ^ SmallValue; 8400 if (CommonBit.isPowerOf2()) { 8401 SDValue CondLHS = getValue(Cond); 8402 EVT VT = CondLHS.getValueType(); 8403 SDLoc DL = getCurSDLoc(); 8404 8405 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8406 DAG.getConstant(CommonBit, DL, VT)); 8407 SDValue Cond = DAG.getSetCC( 8408 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8409 ISD::SETEQ); 8410 8411 // Update successor info. 8412 // Both Small and Big will jump to Small.BB, so we sum up the 8413 // probabilities. 8414 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8415 if (BPI) 8416 addSuccessorWithProb( 8417 SwitchMBB, DefaultMBB, 8418 // The default destination is the first successor in IR. 8419 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8420 else 8421 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8422 8423 // Insert the true branch. 8424 SDValue BrCond = 8425 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8426 DAG.getBasicBlock(Small.MBB)); 8427 // Insert the false branch. 8428 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8429 DAG.getBasicBlock(DefaultMBB)); 8430 8431 DAG.setRoot(BrCond); 8432 return; 8433 } 8434 } 8435 } 8436 8437 if (TM.getOptLevel() != CodeGenOpt::None) { 8438 // Order cases by probability so the most likely case will be checked first. 8439 std::sort(W.FirstCluster, W.LastCluster + 1, 8440 [](const CaseCluster &a, const CaseCluster &b) { 8441 return a.Prob > b.Prob; 8442 }); 8443 8444 // Rearrange the case blocks so that the last one falls through if possible 8445 // without without changing the order of probabilities. 8446 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8447 --I; 8448 if (I->Prob > W.LastCluster->Prob) 8449 break; 8450 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8451 std::swap(*I, *W.LastCluster); 8452 break; 8453 } 8454 } 8455 } 8456 8457 // Compute total probability. 8458 BranchProbability DefaultProb = W.DefaultProb; 8459 BranchProbability UnhandledProbs = DefaultProb; 8460 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8461 UnhandledProbs += I->Prob; 8462 8463 MachineBasicBlock *CurMBB = W.MBB; 8464 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8465 MachineBasicBlock *Fallthrough; 8466 if (I == W.LastCluster) { 8467 // For the last cluster, fall through to the default destination. 8468 Fallthrough = DefaultMBB; 8469 } else { 8470 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8471 CurMF->insert(BBI, Fallthrough); 8472 // Put Cond in a virtual register to make it available from the new blocks. 8473 ExportFromCurrentBlock(Cond); 8474 } 8475 UnhandledProbs -= I->Prob; 8476 8477 switch (I->Kind) { 8478 case CC_JumpTable: { 8479 // FIXME: Optimize away range check based on pivot comparisons. 8480 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8481 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8482 8483 // The jump block hasn't been inserted yet; insert it here. 8484 MachineBasicBlock *JumpMBB = JT->MBB; 8485 CurMF->insert(BBI, JumpMBB); 8486 8487 auto JumpProb = I->Prob; 8488 auto FallthroughProb = UnhandledProbs; 8489 8490 // If the default statement is a target of the jump table, we evenly 8491 // distribute the default probability to successors of CurMBB. Also 8492 // update the probability on the edge from JumpMBB to Fallthrough. 8493 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8494 SE = JumpMBB->succ_end(); 8495 SI != SE; ++SI) { 8496 if (*SI == DefaultMBB) { 8497 JumpProb += DefaultProb / 2; 8498 FallthroughProb -= DefaultProb / 2; 8499 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8500 JumpMBB->normalizeSuccProbs(); 8501 break; 8502 } 8503 } 8504 8505 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8506 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8507 CurMBB->normalizeSuccProbs(); 8508 8509 // The jump table header will be inserted in our current block, do the 8510 // range check, and fall through to our fallthrough block. 8511 JTH->HeaderBB = CurMBB; 8512 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8513 8514 // If we're in the right place, emit the jump table header right now. 8515 if (CurMBB == SwitchMBB) { 8516 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8517 JTH->Emitted = true; 8518 } 8519 break; 8520 } 8521 case CC_BitTests: { 8522 // FIXME: Optimize away range check based on pivot comparisons. 8523 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8524 8525 // The bit test blocks haven't been inserted yet; insert them here. 8526 for (BitTestCase &BTC : BTB->Cases) 8527 CurMF->insert(BBI, BTC.ThisBB); 8528 8529 // Fill in fields of the BitTestBlock. 8530 BTB->Parent = CurMBB; 8531 BTB->Default = Fallthrough; 8532 8533 BTB->DefaultProb = UnhandledProbs; 8534 // If the cases in bit test don't form a contiguous range, we evenly 8535 // distribute the probability on the edge to Fallthrough to two 8536 // successors of CurMBB. 8537 if (!BTB->ContiguousRange) { 8538 BTB->Prob += DefaultProb / 2; 8539 BTB->DefaultProb -= DefaultProb / 2; 8540 } 8541 8542 // If we're in the right place, emit the bit test header right now. 8543 if (CurMBB == SwitchMBB) { 8544 visitBitTestHeader(*BTB, SwitchMBB); 8545 BTB->Emitted = true; 8546 } 8547 break; 8548 } 8549 case CC_Range: { 8550 const Value *RHS, *LHS, *MHS; 8551 ISD::CondCode CC; 8552 if (I->Low == I->High) { 8553 // Check Cond == I->Low. 8554 CC = ISD::SETEQ; 8555 LHS = Cond; 8556 RHS=I->Low; 8557 MHS = nullptr; 8558 } else { 8559 // Check I->Low <= Cond <= I->High. 8560 CC = ISD::SETLE; 8561 LHS = I->Low; 8562 MHS = Cond; 8563 RHS = I->High; 8564 } 8565 8566 // The false probability is the sum of all unhandled cases. 8567 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8568 UnhandledProbs); 8569 8570 if (CurMBB == SwitchMBB) 8571 visitSwitchCase(CB, SwitchMBB); 8572 else 8573 SwitchCases.push_back(CB); 8574 8575 break; 8576 } 8577 } 8578 CurMBB = Fallthrough; 8579 } 8580 } 8581 8582 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8583 CaseClusterIt First, 8584 CaseClusterIt Last) { 8585 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8586 if (X.Prob != CC.Prob) 8587 return X.Prob > CC.Prob; 8588 8589 // Ties are broken by comparing the case value. 8590 return X.Low->getValue().slt(CC.Low->getValue()); 8591 }); 8592 } 8593 8594 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8595 const SwitchWorkListItem &W, 8596 Value *Cond, 8597 MachineBasicBlock *SwitchMBB) { 8598 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8599 "Clusters not sorted?"); 8600 8601 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8602 8603 // Balance the tree based on branch probabilities to create a near-optimal (in 8604 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8605 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8606 CaseClusterIt LastLeft = W.FirstCluster; 8607 CaseClusterIt FirstRight = W.LastCluster; 8608 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8609 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8610 8611 // Move LastLeft and FirstRight towards each other from opposite directions to 8612 // find a partitioning of the clusters which balances the probability on both 8613 // sides. If LeftProb and RightProb are equal, alternate which side is 8614 // taken to ensure 0-probability nodes are distributed evenly. 8615 unsigned I = 0; 8616 while (LastLeft + 1 < FirstRight) { 8617 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8618 LeftProb += (++LastLeft)->Prob; 8619 else 8620 RightProb += (--FirstRight)->Prob; 8621 I++; 8622 } 8623 8624 for (;;) { 8625 // Our binary search tree differs from a typical BST in that ours can have up 8626 // to three values in each leaf. The pivot selection above doesn't take that 8627 // into account, which means the tree might require more nodes and be less 8628 // efficient. We compensate for this here. 8629 8630 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8631 unsigned NumRight = W.LastCluster - FirstRight + 1; 8632 8633 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8634 // If one side has less than 3 clusters, and the other has more than 3, 8635 // consider taking a cluster from the other side. 8636 8637 if (NumLeft < NumRight) { 8638 // Consider moving the first cluster on the right to the left side. 8639 CaseCluster &CC = *FirstRight; 8640 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8641 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8642 if (LeftSideRank <= RightSideRank) { 8643 // Moving the cluster to the left does not demote it. 8644 ++LastLeft; 8645 ++FirstRight; 8646 continue; 8647 } 8648 } else { 8649 assert(NumRight < NumLeft); 8650 // Consider moving the last element on the left to the right side. 8651 CaseCluster &CC = *LastLeft; 8652 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8653 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8654 if (RightSideRank <= LeftSideRank) { 8655 // Moving the cluster to the right does not demot it. 8656 --LastLeft; 8657 --FirstRight; 8658 continue; 8659 } 8660 } 8661 } 8662 break; 8663 } 8664 8665 assert(LastLeft + 1 == FirstRight); 8666 assert(LastLeft >= W.FirstCluster); 8667 assert(FirstRight <= W.LastCluster); 8668 8669 // Use the first element on the right as pivot since we will make less-than 8670 // comparisons against it. 8671 CaseClusterIt PivotCluster = FirstRight; 8672 assert(PivotCluster > W.FirstCluster); 8673 assert(PivotCluster <= W.LastCluster); 8674 8675 CaseClusterIt FirstLeft = W.FirstCluster; 8676 CaseClusterIt LastRight = W.LastCluster; 8677 8678 const ConstantInt *Pivot = PivotCluster->Low; 8679 8680 // New blocks will be inserted immediately after the current one. 8681 MachineFunction::iterator BBI(W.MBB); 8682 ++BBI; 8683 8684 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8685 // we can branch to its destination directly if it's squeezed exactly in 8686 // between the known lower bound and Pivot - 1. 8687 MachineBasicBlock *LeftMBB; 8688 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8689 FirstLeft->Low == W.GE && 8690 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8691 LeftMBB = FirstLeft->MBB; 8692 } else { 8693 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8694 FuncInfo.MF->insert(BBI, LeftMBB); 8695 WorkList.push_back( 8696 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8697 // Put Cond in a virtual register to make it available from the new blocks. 8698 ExportFromCurrentBlock(Cond); 8699 } 8700 8701 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8702 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8703 // directly if RHS.High equals the current upper bound. 8704 MachineBasicBlock *RightMBB; 8705 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8706 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8707 RightMBB = FirstRight->MBB; 8708 } else { 8709 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8710 FuncInfo.MF->insert(BBI, RightMBB); 8711 WorkList.push_back( 8712 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8713 // Put Cond in a virtual register to make it available from the new blocks. 8714 ExportFromCurrentBlock(Cond); 8715 } 8716 8717 // Create the CaseBlock record that will be used to lower the branch. 8718 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8719 LeftProb, RightProb); 8720 8721 if (W.MBB == SwitchMBB) 8722 visitSwitchCase(CB, SwitchMBB); 8723 else 8724 SwitchCases.push_back(CB); 8725 } 8726 8727 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8728 // Extract cases from the switch. 8729 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8730 CaseClusterVector Clusters; 8731 Clusters.reserve(SI.getNumCases()); 8732 for (auto I : SI.cases()) { 8733 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8734 const ConstantInt *CaseVal = I.getCaseValue(); 8735 BranchProbability Prob = 8736 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8737 : BranchProbability(1, SI.getNumCases() + 1); 8738 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8739 } 8740 8741 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8742 8743 // Cluster adjacent cases with the same destination. We do this at all 8744 // optimization levels because it's cheap to do and will make codegen faster 8745 // if there are many clusters. 8746 sortAndRangeify(Clusters); 8747 8748 if (TM.getOptLevel() != CodeGenOpt::None) { 8749 // Replace an unreachable default with the most popular destination. 8750 // FIXME: Exploit unreachable default more aggressively. 8751 bool UnreachableDefault = 8752 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8753 if (UnreachableDefault && !Clusters.empty()) { 8754 DenseMap<const BasicBlock *, unsigned> Popularity; 8755 unsigned MaxPop = 0; 8756 const BasicBlock *MaxBB = nullptr; 8757 for (auto I : SI.cases()) { 8758 const BasicBlock *BB = I.getCaseSuccessor(); 8759 if (++Popularity[BB] > MaxPop) { 8760 MaxPop = Popularity[BB]; 8761 MaxBB = BB; 8762 } 8763 } 8764 // Set new default. 8765 assert(MaxPop > 0 && MaxBB); 8766 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8767 8768 // Remove cases that were pointing to the destination that is now the 8769 // default. 8770 CaseClusterVector New; 8771 New.reserve(Clusters.size()); 8772 for (CaseCluster &CC : Clusters) { 8773 if (CC.MBB != DefaultMBB) 8774 New.push_back(CC); 8775 } 8776 Clusters = std::move(New); 8777 } 8778 } 8779 8780 // If there is only the default destination, jump there directly. 8781 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8782 if (Clusters.empty()) { 8783 SwitchMBB->addSuccessor(DefaultMBB); 8784 if (DefaultMBB != NextBlock(SwitchMBB)) { 8785 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8786 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8787 } 8788 return; 8789 } 8790 8791 findJumpTables(Clusters, &SI, DefaultMBB); 8792 findBitTestClusters(Clusters, &SI); 8793 8794 DEBUG({ 8795 dbgs() << "Case clusters: "; 8796 for (const CaseCluster &C : Clusters) { 8797 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8798 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8799 8800 C.Low->getValue().print(dbgs(), true); 8801 if (C.Low != C.High) { 8802 dbgs() << '-'; 8803 C.High->getValue().print(dbgs(), true); 8804 } 8805 dbgs() << ' '; 8806 } 8807 dbgs() << '\n'; 8808 }); 8809 8810 assert(!Clusters.empty()); 8811 SwitchWorkList WorkList; 8812 CaseClusterIt First = Clusters.begin(); 8813 CaseClusterIt Last = Clusters.end() - 1; 8814 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8815 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8816 8817 while (!WorkList.empty()) { 8818 SwitchWorkListItem W = WorkList.back(); 8819 WorkList.pop_back(); 8820 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8821 8822 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8823 // For optimized builds, lower large range as a balanced binary tree. 8824 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8825 continue; 8826 } 8827 8828 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8829 } 8830 } 8831