xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 386b66b2fc297cda121a3cc8a36887a6ecbcfc68)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       Optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165                                 const SDValue *Parts, unsigned NumParts,
166                                 MVT PartVT, EVT ValueVT, const Value *V,
167                                 Optional<CallingConv::ID> CC = None,
168                                 Optional<ISD::NodeType> AssertOp = None) {
169   // Let the target assemble the parts if it wants to
170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172                                                    PartVT, ValueVT, CC))
173     return Val;
174 
175   if (ValueVT.isVector())
176     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177                                   CC);
178 
179   assert(NumParts > 0 && "No parts to assemble!");
180   SDValue Val = Parts[0];
181 
182   if (NumParts > 1) {
183     // Assemble the value from multiple parts.
184     if (ValueVT.isInteger()) {
185       unsigned PartBits = PartVT.getSizeInBits();
186       unsigned ValueBits = ValueVT.getSizeInBits();
187 
188       // Assemble the power of 2 part.
189       unsigned RoundParts =
190           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200                               PartVT, HalfVT, V);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202                               RoundParts / 2, PartVT, HalfVT, V);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi =
227             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                         TLI.getPointerTy(DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
249     }
250   }
251 
252   // There is now one part, held in Val.  Correct it to match ValueVT.
253   // PartEVT is the type of the register class that holds the value.
254   // ValueVT is the type of the inline asm operation.
255   EVT PartEVT = Val.getValueType();
256 
257   if (PartEVT == ValueVT)
258     return Val;
259 
260   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261       ValueVT.bitsLT(PartEVT)) {
262     // For an FP value in an integer part, we need to truncate to the right
263     // width first.
264     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
265     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
266   }
267 
268   // Handle types that have the same size.
269   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
271 
272   // Handle types with different sizes.
273   if (PartEVT.isInteger() && ValueVT.isInteger()) {
274     if (ValueVT.bitsLT(PartEVT)) {
275       // For a truncate, see if we have any information to
276       // indicate whether the truncated bits will always be
277       // zero or sign-extension.
278       if (AssertOp.hasValue())
279         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280                           DAG.getValueType(ValueVT));
281       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
282     }
283     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
284   }
285 
286   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287     // FP_ROUND's are always exact here.
288     if (ValueVT.bitsLT(Val.getValueType()))
289       return DAG.getNode(
290           ISD::FP_ROUND, DL, ValueVT, Val,
291           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
292 
293     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
294   }
295 
296   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297   // then truncating.
298   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299       ValueVT.bitsLT(PartEVT)) {
300     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
302   }
303 
304   report_fatal_error("Unknown mismatch in getCopyFromParts!");
305 }
306 
307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308                                               const Twine &ErrMsg) {
309   const Instruction *I = dyn_cast_or_null<Instruction>(V);
310   if (!V)
311     return Ctx.emitError(ErrMsg);
312 
313   const char *AsmError = ", possible invalid constraint for vector type";
314   if (const CallInst *CI = dyn_cast<CallInst>(I))
315     if (CI->isInlineAsm())
316       return Ctx.emitError(I, ErrMsg + AsmError);
317 
318   return Ctx.emitError(I, ErrMsg);
319 }
320 
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent.  If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327                                       const SDValue *Parts, unsigned NumParts,
328                                       MVT PartVT, EVT ValueVT, const Value *V,
329                                       Optional<CallingConv::ID> CallConv) {
330   assert(ValueVT.isVector() && "Not a vector value");
331   assert(NumParts > 0 && "No parts to assemble!");
332   const bool IsABIRegCopy = CallConv.hasValue();
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   SDValue Val = Parts[0];
336 
337   // Handle a multi-element vector.
338   if (NumParts > 1) {
339     EVT IntermediateVT;
340     MVT RegisterVT;
341     unsigned NumIntermediates;
342     unsigned NumRegs;
343 
344     if (IsABIRegCopy) {
345       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347           NumIntermediates, RegisterVT);
348     } else {
349       NumRegs =
350           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351                                      NumIntermediates, RegisterVT);
352     }
353 
354     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355     NumParts = NumRegs; // Silence a compiler warning.
356     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357     assert(RegisterVT.getSizeInBits() ==
358            Parts[0].getSimpleValueType().getSizeInBits() &&
359            "Part type sizes don't match!");
360 
361     // Assemble the parts into intermediate operands.
362     SmallVector<SDValue, 8> Ops(NumIntermediates);
363     if (NumIntermediates == NumParts) {
364       // If the register was not expanded, truncate or copy the value,
365       // as appropriate.
366       for (unsigned i = 0; i != NumParts; ++i)
367         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368                                   PartVT, IntermediateVT, V, CallConv);
369     } else if (NumParts > 0) {
370       // If the intermediate type was expanded, build the intermediate
371       // operands from the parts.
372       assert(NumParts % NumIntermediates == 0 &&
373              "Must expand into a divisible number of parts!");
374       unsigned Factor = NumParts / NumIntermediates;
375       for (unsigned i = 0; i != NumIntermediates; ++i)
376         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377                                   PartVT, IntermediateVT, V, CallConv);
378     }
379 
380     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381     // intermediate operands.
382     EVT BuiltVectorTy =
383         IntermediateVT.isVector()
384             ? EVT::getVectorVT(
385                   *DAG.getContext(), IntermediateVT.getScalarType(),
386                   IntermediateVT.getVectorElementCount() * NumParts)
387             : EVT::getVectorVT(*DAG.getContext(),
388                                IntermediateVT.getScalarType(),
389                                NumIntermediates);
390     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391                                                 : ISD::BUILD_VECTOR,
392                       DL, BuiltVectorTy, Ops);
393   }
394 
395   // There is now one part, held in Val.  Correct it to match ValueVT.
396   EVT PartEVT = Val.getValueType();
397 
398   if (PartEVT == ValueVT)
399     return Val;
400 
401   if (PartEVT.isVector()) {
402     // If the element type of the source/dest vectors are the same, but the
403     // parts vector has more elements than the value vector, then we have a
404     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
405     // elements we want.
406     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
413                          DAG.getVectorIdxConstant(0, DL));
414     }
415 
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
421       "Cannot handle this kind of promotion");
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424 
425   }
426 
427   // Trivial bitcast if the types are the same size and the destination
428   // vector type is legal.
429   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
430       TLI.isTypeLegal(ValueVT))
431     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
432 
433   if (ValueVT.getVectorNumElements() != 1) {
434      // Certain ABIs require that vectors are passed as integers. For vectors
435      // are the same size, this is an obvious bitcast.
436      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
437        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438      } else if (ValueVT.bitsLT(PartEVT)) {
439        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
440        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
441        // Drop the extra bits.
442        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
443        return DAG.getBitcast(ValueVT, Val);
444      }
445 
446      diagnosePossiblyInvalidConstraint(
447          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
448      return DAG.getUNDEF(ValueVT);
449   }
450 
451   // Handle cases such as i8 -> <1 x i1>
452   EVT ValueSVT = ValueVT.getVectorElementType();
453   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
454     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
455       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
456     else
457       Val = ValueVT.isFloatingPoint()
458                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
459                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
460   }
461 
462   return DAG.getBuildVector(ValueVT, DL, Val);
463 }
464 
465 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
466                                  SDValue Val, SDValue *Parts, unsigned NumParts,
467                                  MVT PartVT, const Value *V,
468                                  Optional<CallingConv::ID> CallConv);
469 
470 /// getCopyToParts - Create a series of nodes that contain the specified value
471 /// split into legal parts.  If the parts contain more bits than Val, then, for
472 /// integers, ExtendKind can be used to specify how to generate the extra bits.
473 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
474                            SDValue *Parts, unsigned NumParts, MVT PartVT,
475                            const Value *V,
476                            Optional<CallingConv::ID> CallConv = None,
477                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
478   // Let the target split the parts if it wants to
479   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
480   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
481                                       CallConv))
482     return;
483   EVT ValueVT = Val.getValueType();
484 
485   // Handle the vector case separately.
486   if (ValueVT.isVector())
487     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
488                                 CallConv);
489 
490   unsigned PartBits = PartVT.getSizeInBits();
491   unsigned OrigNumParts = NumParts;
492   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
493          "Copying to an illegal type!");
494 
495   if (NumParts == 0)
496     return;
497 
498   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
499   EVT PartEVT = PartVT;
500   if (PartEVT == ValueVT) {
501     assert(NumParts == 1 && "No-op copy with multiple parts!");
502     Parts[0] = Val;
503     return;
504   }
505 
506   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
507     // If the parts cover more bits than the value has, promote the value.
508     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
509       assert(NumParts == 1 && "Do not know what to promote to!");
510       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
511     } else {
512       if (ValueVT.isFloatingPoint()) {
513         // FP values need to be bitcast, then extended if they are being put
514         // into a larger container.
515         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
516         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
517       }
518       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
519              ValueVT.isInteger() &&
520              "Unknown mismatch!");
521       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
522       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
523       if (PartVT == MVT::x86mmx)
524         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     }
526   } else if (PartBits == ValueVT.getSizeInBits()) {
527     // Different types of the same size.
528     assert(NumParts == 1 && PartEVT != ValueVT);
529     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
530   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
531     // If the parts cover less bits than value has, truncate the value.
532     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533            ValueVT.isInteger() &&
534            "Unknown mismatch!");
535     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
537     if (PartVT == MVT::x86mmx)
538       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   }
540 
541   // The value may have changed - recompute ValueVT.
542   ValueVT = Val.getValueType();
543   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
544          "Failed to tile the value with PartVT!");
545 
546   if (NumParts == 1) {
547     if (PartEVT != ValueVT) {
548       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
549                                         "scalar-to-vector conversion failed");
550       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
551     }
552 
553     Parts[0] = Val;
554     return;
555   }
556 
557   // Expand the value into multiple parts.
558   if (NumParts & (NumParts - 1)) {
559     // The number of parts is not a power of 2.  Split off and copy the tail.
560     assert(PartVT.isInteger() && ValueVT.isInteger() &&
561            "Do not know what to expand to!");
562     unsigned RoundParts = 1 << Log2_32(NumParts);
563     unsigned RoundBits = RoundParts * PartBits;
564     unsigned OddParts = NumParts - RoundParts;
565     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
566       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
567 
568     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
569                    CallConv);
570 
571     if (DAG.getDataLayout().isBigEndian())
572       // The odd parts were reversed by getCopyToParts - unreverse them.
573       std::reverse(Parts + RoundParts, Parts + NumParts);
574 
575     NumParts = RoundParts;
576     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
577     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
578   }
579 
580   // The number of parts is a power of 2.  Repeatedly bisect the value using
581   // EXTRACT_ELEMENT.
582   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
583                          EVT::getIntegerVT(*DAG.getContext(),
584                                            ValueVT.getSizeInBits()),
585                          Val);
586 
587   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
588     for (unsigned i = 0; i < NumParts; i += StepSize) {
589       unsigned ThisBits = StepSize * PartBits / 2;
590       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
591       SDValue &Part0 = Parts[i];
592       SDValue &Part1 = Parts[i+StepSize/2];
593 
594       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
595                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
596       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
597                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
598 
599       if (ThisBits == PartBits && ThisVT != PartVT) {
600         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
601         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
602       }
603     }
604   }
605 
606   if (DAG.getDataLayout().isBigEndian())
607     std::reverse(Parts, Parts + OrigNumParts);
608 }
609 
610 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
611                                      const SDLoc &DL, EVT PartVT) {
612   if (!PartVT.isVector())
613     return SDValue();
614 
615   EVT ValueVT = Val.getValueType();
616   ElementCount PartNumElts = PartVT.getVectorElementCount();
617   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
618 
619   // We only support widening vectors with equivalent element types and
620   // fixed/scalable properties. If a target needs to widen a fixed-length type
621   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
622   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
623       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
624       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
625     return SDValue();
626 
627   // Widening a scalable vector to another scalable vector is done by inserting
628   // the vector into a larger undef one.
629   if (PartNumElts.isScalable())
630     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
631                        Val, DAG.getVectorIdxConstant(0, DL));
632 
633   EVT ElementVT = PartVT.getVectorElementType();
634   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
635   // undef elements.
636   SmallVector<SDValue, 16> Ops;
637   DAG.ExtractVectorElements(Val, Ops);
638   SDValue EltUndef = DAG.getUNDEF(ElementVT);
639   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
640 
641   // FIXME: Use CONCAT for 2x -> 4x.
642   return DAG.getBuildVector(PartVT, DL, Ops);
643 }
644 
645 /// getCopyToPartsVector - Create a series of nodes that contain the specified
646 /// value split into legal parts.
647 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
648                                  SDValue Val, SDValue *Parts, unsigned NumParts,
649                                  MVT PartVT, const Value *V,
650                                  Optional<CallingConv::ID> CallConv) {
651   EVT ValueVT = Val.getValueType();
652   assert(ValueVT.isVector() && "Not a vector");
653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
654   const bool IsABIRegCopy = CallConv.hasValue();
655 
656   if (NumParts == 1) {
657     EVT PartEVT = PartVT;
658     if (PartEVT == ValueVT) {
659       // Nothing to do.
660     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
661       // Bitconvert vector->vector case.
662       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
663     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
664       Val = Widened;
665     } else if (PartVT.isVector() &&
666                PartEVT.getVectorElementType().bitsGE(
667                    ValueVT.getVectorElementType()) &&
668                PartEVT.getVectorElementCount() ==
669                    ValueVT.getVectorElementCount()) {
670 
671       // Promoted vector extract
672       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
673     } else {
674       if (ValueVT.getVectorElementCount().isScalar()) {
675         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
676                           DAG.getVectorIdxConstant(0, DL));
677       } else {
678         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
679         assert(PartVT.getFixedSizeInBits() > ValueSize &&
680                "lossy conversion of vector to scalar type");
681         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
682         Val = DAG.getBitcast(IntermediateType, Val);
683         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
684       }
685     }
686 
687     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
688     Parts[0] = Val;
689     return;
690   }
691 
692   // Handle a multi-element vector.
693   EVT IntermediateVT;
694   MVT RegisterVT;
695   unsigned NumIntermediates;
696   unsigned NumRegs;
697   if (IsABIRegCopy) {
698     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
699         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
700         NumIntermediates, RegisterVT);
701   } else {
702     NumRegs =
703         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
704                                    NumIntermediates, RegisterVT);
705   }
706 
707   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
708   NumParts = NumRegs; // Silence a compiler warning.
709   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
710 
711   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
712          "Mixing scalable and fixed vectors when copying in parts");
713 
714   Optional<ElementCount> DestEltCnt;
715 
716   if (IntermediateVT.isVector())
717     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
718   else
719     DestEltCnt = ElementCount::getFixed(NumIntermediates);
720 
721   EVT BuiltVectorTy = EVT::getVectorVT(
722       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
723 
724   if (ValueVT == BuiltVectorTy) {
725     // Nothing to do.
726   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
727     // Bitconvert vector->vector case.
728     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
729   } else if (SDValue Widened =
730                  widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
731     Val = Widened;
732   } else if (BuiltVectorTy.getVectorElementType().bitsGE(
733                  ValueVT.getVectorElementType()) &&
734              BuiltVectorTy.getVectorElementCount() ==
735                  ValueVT.getVectorElementCount()) {
736     // Promoted vector extract
737     Val = DAG.getAnyExtOrTrunc(Val, DL, BuiltVectorTy);
738   }
739 
740   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
741 
742   // Split the vector into intermediate operands.
743   SmallVector<SDValue, 8> Ops(NumIntermediates);
744   for (unsigned i = 0; i != NumIntermediates; ++i) {
745     if (IntermediateVT.isVector()) {
746       // This does something sensible for scalable vectors - see the
747       // definition of EXTRACT_SUBVECTOR for further details.
748       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
749       Ops[i] =
750           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
751                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
752     } else {
753       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
754                            DAG.getVectorIdxConstant(i, DL));
755     }
756   }
757 
758   // Split the intermediate operands into legal parts.
759   if (NumParts == NumIntermediates) {
760     // If the register was not expanded, promote or copy the value,
761     // as appropriate.
762     for (unsigned i = 0; i != NumParts; ++i)
763       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
764   } else if (NumParts > 0) {
765     // If the intermediate type was expanded, split each the value into
766     // legal parts.
767     assert(NumIntermediates != 0 && "division by zero");
768     assert(NumParts % NumIntermediates == 0 &&
769            "Must expand into a divisible number of parts!");
770     unsigned Factor = NumParts / NumIntermediates;
771     for (unsigned i = 0; i != NumIntermediates; ++i)
772       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
773                      CallConv);
774   }
775 }
776 
777 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
778                            EVT valuevt, Optional<CallingConv::ID> CC)
779     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
780       RegCount(1, regs.size()), CallConv(CC) {}
781 
782 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
783                            const DataLayout &DL, unsigned Reg, Type *Ty,
784                            Optional<CallingConv::ID> CC) {
785   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
786 
787   CallConv = CC;
788 
789   for (EVT ValueVT : ValueVTs) {
790     unsigned NumRegs =
791         isABIMangled()
792             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
793             : TLI.getNumRegisters(Context, ValueVT);
794     MVT RegisterVT =
795         isABIMangled()
796             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
797             : TLI.getRegisterType(Context, ValueVT);
798     for (unsigned i = 0; i != NumRegs; ++i)
799       Regs.push_back(Reg + i);
800     RegVTs.push_back(RegisterVT);
801     RegCount.push_back(NumRegs);
802     Reg += NumRegs;
803   }
804 }
805 
806 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
807                                       FunctionLoweringInfo &FuncInfo,
808                                       const SDLoc &dl, SDValue &Chain,
809                                       SDValue *Flag, const Value *V) const {
810   // A Value with type {} or [0 x %t] needs no registers.
811   if (ValueVTs.empty())
812     return SDValue();
813 
814   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
815 
816   // Assemble the legal parts into the final values.
817   SmallVector<SDValue, 4> Values(ValueVTs.size());
818   SmallVector<SDValue, 8> Parts;
819   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
820     // Copy the legal parts from the registers.
821     EVT ValueVT = ValueVTs[Value];
822     unsigned NumRegs = RegCount[Value];
823     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
824                                           *DAG.getContext(),
825                                           CallConv.getValue(), RegVTs[Value])
826                                     : RegVTs[Value];
827 
828     Parts.resize(NumRegs);
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       SDValue P;
831       if (!Flag) {
832         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
833       } else {
834         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
835         *Flag = P.getValue(2);
836       }
837 
838       Chain = P.getValue(1);
839       Parts[i] = P;
840 
841       // If the source register was virtual and if we know something about it,
842       // add an assert node.
843       if (!Register::isVirtualRegister(Regs[Part + i]) ||
844           !RegisterVT.isInteger())
845         continue;
846 
847       const FunctionLoweringInfo::LiveOutInfo *LOI =
848         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
849       if (!LOI)
850         continue;
851 
852       unsigned RegSize = RegisterVT.getScalarSizeInBits();
853       unsigned NumSignBits = LOI->NumSignBits;
854       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
855 
856       if (NumZeroBits == RegSize) {
857         // The current value is a zero.
858         // Explicitly express that as it would be easier for
859         // optimizations to kick in.
860         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
861         continue;
862       }
863 
864       // FIXME: We capture more information than the dag can represent.  For
865       // now, just use the tightest assertzext/assertsext possible.
866       bool isSExt;
867       EVT FromVT(MVT::Other);
868       if (NumZeroBits) {
869         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
870         isSExt = false;
871       } else if (NumSignBits > 1) {
872         FromVT =
873             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
874         isSExt = true;
875       } else {
876         continue;
877       }
878       // Add an assertion node.
879       assert(FromVT != MVT::Other);
880       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
881                              RegisterVT, P, DAG.getValueType(FromVT));
882     }
883 
884     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
885                                      RegisterVT, ValueVT, V, CallConv);
886     Part += NumRegs;
887     Parts.clear();
888   }
889 
890   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
891 }
892 
893 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
894                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
895                                  const Value *V,
896                                  ISD::NodeType PreferredExtendType) const {
897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
898   ISD::NodeType ExtendKind = PreferredExtendType;
899 
900   // Get the list of the values's legal parts.
901   unsigned NumRegs = Regs.size();
902   SmallVector<SDValue, 8> Parts(NumRegs);
903   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
904     unsigned NumParts = RegCount[Value];
905 
906     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
907                                           *DAG.getContext(),
908                                           CallConv.getValue(), RegVTs[Value])
909                                     : RegVTs[Value];
910 
911     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
912       ExtendKind = ISD::ZERO_EXTEND;
913 
914     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
915                    NumParts, RegisterVT, V, CallConv, ExtendKind);
916     Part += NumParts;
917   }
918 
919   // Copy the parts into the registers.
920   SmallVector<SDValue, 8> Chains(NumRegs);
921   for (unsigned i = 0; i != NumRegs; ++i) {
922     SDValue Part;
923     if (!Flag) {
924       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
925     } else {
926       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
927       *Flag = Part.getValue(1);
928     }
929 
930     Chains[i] = Part.getValue(0);
931   }
932 
933   if (NumRegs == 1 || Flag)
934     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
935     // flagged to it. That is the CopyToReg nodes and the user are considered
936     // a single scheduling unit. If we create a TokenFactor and return it as
937     // chain, then the TokenFactor is both a predecessor (operand) of the
938     // user as well as a successor (the TF operands are flagged to the user).
939     // c1, f1 = CopyToReg
940     // c2, f2 = CopyToReg
941     // c3     = TokenFactor c1, c2
942     // ...
943     //        = op c3, ..., f2
944     Chain = Chains[NumRegs-1];
945   else
946     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
947 }
948 
949 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
950                                         unsigned MatchingIdx, const SDLoc &dl,
951                                         SelectionDAG &DAG,
952                                         std::vector<SDValue> &Ops) const {
953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
954 
955   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
956   if (HasMatching)
957     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
958   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
959     // Put the register class of the virtual registers in the flag word.  That
960     // way, later passes can recompute register class constraints for inline
961     // assembly as well as normal instructions.
962     // Don't do this for tied operands that can use the regclass information
963     // from the def.
964     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
965     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
966     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
967   }
968 
969   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
970   Ops.push_back(Res);
971 
972   if (Code == InlineAsm::Kind_Clobber) {
973     // Clobbers should always have a 1:1 mapping with registers, and may
974     // reference registers that have illegal (e.g. vector) types. Hence, we
975     // shouldn't try to apply any sort of splitting logic to them.
976     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
977            "No 1:1 mapping from clobbers to regs?");
978     Register SP = TLI.getStackPointerRegisterToSaveRestore();
979     (void)SP;
980     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
981       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
982       assert(
983           (Regs[I] != SP ||
984            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
985           "If we clobbered the stack pointer, MFI should know about it.");
986     }
987     return;
988   }
989 
990   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
991     MVT RegisterVT = RegVTs[Value];
992     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
993                                            RegisterVT);
994     for (unsigned i = 0; i != NumRegs; ++i) {
995       assert(Reg < Regs.size() && "Mismatch in # registers expected");
996       unsigned TheReg = Regs[Reg++];
997       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
998     }
999   }
1000 }
1001 
1002 SmallVector<std::pair<unsigned, TypeSize>, 4>
1003 RegsForValue::getRegsAndSizes() const {
1004   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1005   unsigned I = 0;
1006   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1007     unsigned RegCount = std::get<0>(CountAndVT);
1008     MVT RegisterVT = std::get<1>(CountAndVT);
1009     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1010     for (unsigned E = I + RegCount; I != E; ++I)
1011       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1012   }
1013   return OutVec;
1014 }
1015 
1016 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1017                                const TargetLibraryInfo *li) {
1018   AA = aa;
1019   GFI = gfi;
1020   LibInfo = li;
1021   DL = &DAG.getDataLayout();
1022   Context = DAG.getContext();
1023   LPadToCallSiteMap.clear();
1024   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1025 }
1026 
1027 void SelectionDAGBuilder::clear() {
1028   NodeMap.clear();
1029   UnusedArgNodeMap.clear();
1030   PendingLoads.clear();
1031   PendingExports.clear();
1032   PendingConstrainedFP.clear();
1033   PendingConstrainedFPStrict.clear();
1034   CurInst = nullptr;
1035   HasTailCall = false;
1036   SDNodeOrder = LowestSDNodeOrder;
1037   StatepointLowering.clear();
1038 }
1039 
1040 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1041   DanglingDebugInfoMap.clear();
1042 }
1043 
1044 // Update DAG root to include dependencies on Pending chains.
1045 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1046   SDValue Root = DAG.getRoot();
1047 
1048   if (Pending.empty())
1049     return Root;
1050 
1051   // Add current root to PendingChains, unless we already indirectly
1052   // depend on it.
1053   if (Root.getOpcode() != ISD::EntryToken) {
1054     unsigned i = 0, e = Pending.size();
1055     for (; i != e; ++i) {
1056       assert(Pending[i].getNode()->getNumOperands() > 1);
1057       if (Pending[i].getNode()->getOperand(0) == Root)
1058         break;  // Don't add the root if we already indirectly depend on it.
1059     }
1060 
1061     if (i == e)
1062       Pending.push_back(Root);
1063   }
1064 
1065   if (Pending.size() == 1)
1066     Root = Pending[0];
1067   else
1068     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1069 
1070   DAG.setRoot(Root);
1071   Pending.clear();
1072   return Root;
1073 }
1074 
1075 SDValue SelectionDAGBuilder::getMemoryRoot() {
1076   return updateRoot(PendingLoads);
1077 }
1078 
1079 SDValue SelectionDAGBuilder::getRoot() {
1080   // Chain up all pending constrained intrinsics together with all
1081   // pending loads, by simply appending them to PendingLoads and
1082   // then calling getMemoryRoot().
1083   PendingLoads.reserve(PendingLoads.size() +
1084                        PendingConstrainedFP.size() +
1085                        PendingConstrainedFPStrict.size());
1086   PendingLoads.append(PendingConstrainedFP.begin(),
1087                       PendingConstrainedFP.end());
1088   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1089                       PendingConstrainedFPStrict.end());
1090   PendingConstrainedFP.clear();
1091   PendingConstrainedFPStrict.clear();
1092   return getMemoryRoot();
1093 }
1094 
1095 SDValue SelectionDAGBuilder::getControlRoot() {
1096   // We need to emit pending fpexcept.strict constrained intrinsics,
1097   // so append them to the PendingExports list.
1098   PendingExports.append(PendingConstrainedFPStrict.begin(),
1099                         PendingConstrainedFPStrict.end());
1100   PendingConstrainedFPStrict.clear();
1101   return updateRoot(PendingExports);
1102 }
1103 
1104 void SelectionDAGBuilder::visit(const Instruction &I) {
1105   // Set up outgoing PHI node register values before emitting the terminator.
1106   if (I.isTerminator()) {
1107     HandlePHINodesInSuccessorBlocks(I.getParent());
1108   }
1109 
1110   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1111   if (!isa<DbgInfoIntrinsic>(I))
1112     ++SDNodeOrder;
1113 
1114   CurInst = &I;
1115 
1116   visit(I.getOpcode(), I);
1117 
1118   if (!I.isTerminator() && !HasTailCall &&
1119       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1120     CopyToExportRegsIfNeeded(&I);
1121 
1122   CurInst = nullptr;
1123 }
1124 
1125 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1126   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1127 }
1128 
1129 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1130   // Note: this doesn't use InstVisitor, because it has to work with
1131   // ConstantExpr's in addition to instructions.
1132   switch (Opcode) {
1133   default: llvm_unreachable("Unknown instruction type encountered!");
1134     // Build the switch statement using the Instruction.def file.
1135 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1136     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1137 #include "llvm/IR/Instruction.def"
1138   }
1139 }
1140 
1141 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1142                                                DebugLoc DL, unsigned Order) {
1143   // We treat variadic dbg_values differently at this stage.
1144   if (DI->hasArgList()) {
1145     // For variadic dbg_values we will now insert an undef.
1146     // FIXME: We can potentially recover these!
1147     SmallVector<SDDbgOperand, 2> Locs;
1148     for (const Value *V : DI->getValues()) {
1149       auto Undef = UndefValue::get(V->getType());
1150       Locs.push_back(SDDbgOperand::fromConst(Undef));
1151     }
1152     SDDbgValue *SDV = DAG.getDbgValueList(
1153         DI->getVariable(), DI->getExpression(), Locs, {},
1154         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1155     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1156   } else {
1157     // TODO: Dangling debug info will eventually either be resolved or produce
1158     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1159     // between the original dbg.value location and its resolved DBG_VALUE,
1160     // which we should ideally fill with an extra Undef DBG_VALUE.
1161     assert(DI->getNumVariableLocationOps() == 1 &&
1162            "DbgValueInst without an ArgList should have a single location "
1163            "operand.");
1164     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1165   }
1166 }
1167 
1168 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1169                                                 const DIExpression *Expr) {
1170   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1171     const DbgValueInst *DI = DDI.getDI();
1172     DIVariable *DanglingVariable = DI->getVariable();
1173     DIExpression *DanglingExpr = DI->getExpression();
1174     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1175       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1176       return true;
1177     }
1178     return false;
1179   };
1180 
1181   for (auto &DDIMI : DanglingDebugInfoMap) {
1182     DanglingDebugInfoVector &DDIV = DDIMI.second;
1183 
1184     // If debug info is to be dropped, run it through final checks to see
1185     // whether it can be salvaged.
1186     for (auto &DDI : DDIV)
1187       if (isMatchingDbgValue(DDI))
1188         salvageUnresolvedDbgValue(DDI);
1189 
1190     erase_if(DDIV, isMatchingDbgValue);
1191   }
1192 }
1193 
1194 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1195 // generate the debug data structures now that we've seen its definition.
1196 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1197                                                    SDValue Val) {
1198   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1199   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1200     return;
1201 
1202   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1203   for (auto &DDI : DDIV) {
1204     const DbgValueInst *DI = DDI.getDI();
1205     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1206     assert(DI && "Ill-formed DanglingDebugInfo");
1207     DebugLoc dl = DDI.getdl();
1208     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1209     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1210     DILocalVariable *Variable = DI->getVariable();
1211     DIExpression *Expr = DI->getExpression();
1212     assert(Variable->isValidLocationForIntrinsic(dl) &&
1213            "Expected inlined-at fields to agree");
1214     SDDbgValue *SDV;
1215     if (Val.getNode()) {
1216       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1217       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1218       // we couldn't resolve it directly when examining the DbgValue intrinsic
1219       // in the first place we should not be more successful here). Unless we
1220       // have some test case that prove this to be correct we should avoid
1221       // calling EmitFuncArgumentDbgValue here.
1222       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1223         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1224                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1225         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1226         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1227         // inserted after the definition of Val when emitting the instructions
1228         // after ISel. An alternative could be to teach
1229         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1230         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1231                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1232                    << ValSDNodeOrder << "\n");
1233         SDV = getDbgValue(Val, Variable, Expr, dl,
1234                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1235         DAG.AddDbgValue(SDV, false);
1236       } else
1237         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1238                           << "in EmitFuncArgumentDbgValue\n");
1239     } else {
1240       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1241       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1242       auto SDV =
1243           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1244       DAG.AddDbgValue(SDV, false);
1245     }
1246   }
1247   DDIV.clear();
1248 }
1249 
1250 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1251   assert(!DDI.getDI()->hasArgList() &&
1252          "Not implemented for variadic dbg_values");
1253   Value *V = DDI.getDI()->getValue(0);
1254   DILocalVariable *Var = DDI.getDI()->getVariable();
1255   DIExpression *Expr = DDI.getDI()->getExpression();
1256   DebugLoc DL = DDI.getdl();
1257   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1258   unsigned SDOrder = DDI.getSDNodeOrder();
1259   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1260   // that DW_OP_stack_value is desired.
1261   assert(isa<DbgValueInst>(DDI.getDI()));
1262   bool StackValue = true;
1263 
1264   // Can this Value can be encoded without any further work?
1265   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1266     return;
1267 
1268   // Attempt to salvage back through as many instructions as possible. Bail if
1269   // a non-instruction is seen, such as a constant expression or global
1270   // variable. FIXME: Further work could recover those too.
1271   while (isa<Instruction>(V)) {
1272     Instruction &VAsInst = *cast<Instruction>(V);
1273     // Temporary "0", awaiting real implementation.
1274     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue, 0);
1275 
1276     // If we cannot salvage any further, and haven't yet found a suitable debug
1277     // expression, bail out.
1278     if (!NewExpr)
1279       break;
1280 
1281     // New value and expr now represent this debuginfo.
1282     V = VAsInst.getOperand(0);
1283     Expr = NewExpr;
1284 
1285     // Some kind of simplification occurred: check whether the operand of the
1286     // salvaged debug expression can be encoded in this DAG.
1287     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1288                          /*IsVariadic=*/false)) {
1289       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1290                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1291       return;
1292     }
1293   }
1294 
1295   // This was the final opportunity to salvage this debug information, and it
1296   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1297   // any earlier variable location.
1298   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1299   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1300   DAG.AddDbgValue(SDV, false);
1301 
1302   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1303                     << "\n");
1304   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1305                     << "\n");
1306 }
1307 
1308 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1309                                            DILocalVariable *Var,
1310                                            DIExpression *Expr, DebugLoc dl,
1311                                            DebugLoc InstDL, unsigned Order,
1312                                            bool IsVariadic) {
1313   if (Values.empty())
1314     return true;
1315   SmallVector<SDDbgOperand> LocationOps;
1316   SmallVector<SDNode *> Dependencies;
1317   for (const Value *V : Values) {
1318     // Constant value.
1319     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1320         isa<ConstantPointerNull>(V)) {
1321       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1322       continue;
1323     }
1324 
1325     // If the Value is a frame index, we can create a FrameIndex debug value
1326     // without relying on the DAG at all.
1327     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1328       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1329       if (SI != FuncInfo.StaticAllocaMap.end()) {
1330         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1331         continue;
1332       }
1333     }
1334 
1335     // Do not use getValue() in here; we don't want to generate code at
1336     // this point if it hasn't been done yet.
1337     SDValue N = NodeMap[V];
1338     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1339       N = UnusedArgNodeMap[V];
1340     if (N.getNode()) {
1341       // Only emit func arg dbg value for non-variadic dbg.values for now.
1342       if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1343         return true;
1344       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1345         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1346         // describe stack slot locations.
1347         //
1348         // Consider "int x = 0; int *px = &x;". There are two kinds of
1349         // interesting debug values here after optimization:
1350         //
1351         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1352         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1353         //
1354         // Both describe the direct values of their associated variables.
1355         Dependencies.push_back(N.getNode());
1356         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1357         continue;
1358       }
1359       LocationOps.emplace_back(
1360           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1361       continue;
1362     }
1363 
1364     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1365     // Special rules apply for the first dbg.values of parameter variables in a
1366     // function. Identify them by the fact they reference Argument Values, that
1367     // they're parameters, and they are parameters of the current function. We
1368     // need to let them dangle until they get an SDNode.
1369     bool IsParamOfFunc =
1370         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1371     if (IsParamOfFunc)
1372       return false;
1373 
1374     // The value is not used in this block yet (or it would have an SDNode).
1375     // We still want the value to appear for the user if possible -- if it has
1376     // an associated VReg, we can refer to that instead.
1377     auto VMI = FuncInfo.ValueMap.find(V);
1378     if (VMI != FuncInfo.ValueMap.end()) {
1379       unsigned Reg = VMI->second;
1380       // If this is a PHI node, it may be split up into several MI PHI nodes
1381       // (in FunctionLoweringInfo::set).
1382       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1383                        V->getType(), None);
1384       if (RFV.occupiesMultipleRegs()) {
1385         // FIXME: We could potentially support variadic dbg_values here.
1386         if (IsVariadic)
1387           return false;
1388         unsigned Offset = 0;
1389         unsigned BitsToDescribe = 0;
1390         if (auto VarSize = Var->getSizeInBits())
1391           BitsToDescribe = *VarSize;
1392         if (auto Fragment = Expr->getFragmentInfo())
1393           BitsToDescribe = Fragment->SizeInBits;
1394         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1395           // Bail out if all bits are described already.
1396           if (Offset >= BitsToDescribe)
1397             break;
1398           // TODO: handle scalable vectors.
1399           unsigned RegisterSize = RegAndSize.second;
1400           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1401                                       ? BitsToDescribe - Offset
1402                                       : RegisterSize;
1403           auto FragmentExpr = DIExpression::createFragmentExpression(
1404               Expr, Offset, FragmentSize);
1405           if (!FragmentExpr)
1406             continue;
1407           SDDbgValue *SDV = DAG.getVRegDbgValue(
1408               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1409           DAG.AddDbgValue(SDV, false);
1410           Offset += RegisterSize;
1411         }
1412         return true;
1413       }
1414       // We can use simple vreg locations for variadic dbg_values as well.
1415       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1416       continue;
1417     }
1418     // We failed to create a SDDbgOperand for V.
1419     return false;
1420   }
1421 
1422   // We have created a SDDbgOperand for each Value in Values.
1423   // Should use Order instead of SDNodeOrder?
1424   assert(!LocationOps.empty());
1425   SDDbgValue *SDV =
1426       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1427                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1428   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1429   return true;
1430 }
1431 
1432 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1433   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1434   for (auto &Pair : DanglingDebugInfoMap)
1435     for (auto &DDI : Pair.second)
1436       salvageUnresolvedDbgValue(DDI);
1437   clearDanglingDebugInfo();
1438 }
1439 
1440 /// getCopyFromRegs - If there was virtual register allocated for the value V
1441 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1442 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1443   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1444   SDValue Result;
1445 
1446   if (It != FuncInfo.ValueMap.end()) {
1447     Register InReg = It->second;
1448 
1449     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1450                      DAG.getDataLayout(), InReg, Ty,
1451                      None); // This is not an ABI copy.
1452     SDValue Chain = DAG.getEntryNode();
1453     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1454                                  V);
1455     resolveDanglingDebugInfo(V, Result);
1456   }
1457 
1458   return Result;
1459 }
1460 
1461 /// getValue - Return an SDValue for the given Value.
1462 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1463   // If we already have an SDValue for this value, use it. It's important
1464   // to do this first, so that we don't create a CopyFromReg if we already
1465   // have a regular SDValue.
1466   SDValue &N = NodeMap[V];
1467   if (N.getNode()) return N;
1468 
1469   // If there's a virtual register allocated and initialized for this
1470   // value, use it.
1471   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1472     return copyFromReg;
1473 
1474   // Otherwise create a new SDValue and remember it.
1475   SDValue Val = getValueImpl(V);
1476   NodeMap[V] = Val;
1477   resolveDanglingDebugInfo(V, Val);
1478   return Val;
1479 }
1480 
1481 /// getNonRegisterValue - Return an SDValue for the given Value, but
1482 /// don't look in FuncInfo.ValueMap for a virtual register.
1483 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1484   // If we already have an SDValue for this value, use it.
1485   SDValue &N = NodeMap[V];
1486   if (N.getNode()) {
1487     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1488       // Remove the debug location from the node as the node is about to be used
1489       // in a location which may differ from the original debug location.  This
1490       // is relevant to Constant and ConstantFP nodes because they can appear
1491       // as constant expressions inside PHI nodes.
1492       N->setDebugLoc(DebugLoc());
1493     }
1494     return N;
1495   }
1496 
1497   // Otherwise create a new SDValue and remember it.
1498   SDValue Val = getValueImpl(V);
1499   NodeMap[V] = Val;
1500   resolveDanglingDebugInfo(V, Val);
1501   return Val;
1502 }
1503 
1504 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1505 /// Create an SDValue for the given value.
1506 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1507   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1508 
1509   if (const Constant *C = dyn_cast<Constant>(V)) {
1510     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1511 
1512     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1513       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1514 
1515     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1516       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1517 
1518     if (isa<ConstantPointerNull>(C)) {
1519       unsigned AS = V->getType()->getPointerAddressSpace();
1520       return DAG.getConstant(0, getCurSDLoc(),
1521                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1522     }
1523 
1524     if (match(C, m_VScale(DAG.getDataLayout())))
1525       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1526 
1527     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1528       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1529 
1530     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1531       return DAG.getUNDEF(VT);
1532 
1533     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1534       visit(CE->getOpcode(), *CE);
1535       SDValue N1 = NodeMap[V];
1536       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1537       return N1;
1538     }
1539 
1540     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1541       SmallVector<SDValue, 4> Constants;
1542       for (const Use &U : C->operands()) {
1543         SDNode *Val = getValue(U).getNode();
1544         // If the operand is an empty aggregate, there are no values.
1545         if (!Val) continue;
1546         // Add each leaf value from the operand to the Constants list
1547         // to form a flattened list of all the values.
1548         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1549           Constants.push_back(SDValue(Val, i));
1550       }
1551 
1552       return DAG.getMergeValues(Constants, getCurSDLoc());
1553     }
1554 
1555     if (const ConstantDataSequential *CDS =
1556           dyn_cast<ConstantDataSequential>(C)) {
1557       SmallVector<SDValue, 4> Ops;
1558       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1559         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1560         // Add each leaf value from the operand to the Constants list
1561         // to form a flattened list of all the values.
1562         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1563           Ops.push_back(SDValue(Val, i));
1564       }
1565 
1566       if (isa<ArrayType>(CDS->getType()))
1567         return DAG.getMergeValues(Ops, getCurSDLoc());
1568       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1569     }
1570 
1571     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1572       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1573              "Unknown struct or array constant!");
1574 
1575       SmallVector<EVT, 4> ValueVTs;
1576       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1577       unsigned NumElts = ValueVTs.size();
1578       if (NumElts == 0)
1579         return SDValue(); // empty struct
1580       SmallVector<SDValue, 4> Constants(NumElts);
1581       for (unsigned i = 0; i != NumElts; ++i) {
1582         EVT EltVT = ValueVTs[i];
1583         if (isa<UndefValue>(C))
1584           Constants[i] = DAG.getUNDEF(EltVT);
1585         else if (EltVT.isFloatingPoint())
1586           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1587         else
1588           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1589       }
1590 
1591       return DAG.getMergeValues(Constants, getCurSDLoc());
1592     }
1593 
1594     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1595       return DAG.getBlockAddress(BA, VT);
1596 
1597     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1598       return getValue(Equiv->getGlobalValue());
1599 
1600     VectorType *VecTy = cast<VectorType>(V->getType());
1601 
1602     // Now that we know the number and type of the elements, get that number of
1603     // elements into the Ops array based on what kind of constant it is.
1604     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1605       SmallVector<SDValue, 16> Ops;
1606       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1607       for (unsigned i = 0; i != NumElements; ++i)
1608         Ops.push_back(getValue(CV->getOperand(i)));
1609 
1610       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1611     } else if (isa<ConstantAggregateZero>(C)) {
1612       EVT EltVT =
1613           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1614 
1615       SDValue Op;
1616       if (EltVT.isFloatingPoint())
1617         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1618       else
1619         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1620 
1621       if (isa<ScalableVectorType>(VecTy))
1622         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1623       else {
1624         SmallVector<SDValue, 16> Ops;
1625         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1626         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1627       }
1628     }
1629     llvm_unreachable("Unknown vector constant");
1630   }
1631 
1632   // If this is a static alloca, generate it as the frameindex instead of
1633   // computation.
1634   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1635     DenseMap<const AllocaInst*, int>::iterator SI =
1636       FuncInfo.StaticAllocaMap.find(AI);
1637     if (SI != FuncInfo.StaticAllocaMap.end())
1638       return DAG.getFrameIndex(SI->second,
1639                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1640   }
1641 
1642   // If this is an instruction which fast-isel has deferred, select it now.
1643   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1644     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1645 
1646     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1647                      Inst->getType(), None);
1648     SDValue Chain = DAG.getEntryNode();
1649     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1650   }
1651 
1652   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1653     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1654   }
1655   llvm_unreachable("Can't get register for value!");
1656 }
1657 
1658 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1659   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1660   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1661   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1662   bool IsSEH = isAsynchronousEHPersonality(Pers);
1663   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1664   if (!IsSEH)
1665     CatchPadMBB->setIsEHScopeEntry();
1666   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1667   if (IsMSVCCXX || IsCoreCLR)
1668     CatchPadMBB->setIsEHFuncletEntry();
1669 }
1670 
1671 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1672   // Update machine-CFG edge.
1673   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1674   FuncInfo.MBB->addSuccessor(TargetMBB);
1675   TargetMBB->setIsEHCatchretTarget(true);
1676   DAG.getMachineFunction().setHasEHCatchret(true);
1677 
1678   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1679   bool IsSEH = isAsynchronousEHPersonality(Pers);
1680   if (IsSEH) {
1681     // If this is not a fall-through branch or optimizations are switched off,
1682     // emit the branch.
1683     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1684         TM.getOptLevel() == CodeGenOpt::None)
1685       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1686                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1687     return;
1688   }
1689 
1690   // Figure out the funclet membership for the catchret's successor.
1691   // This will be used by the FuncletLayout pass to determine how to order the
1692   // BB's.
1693   // A 'catchret' returns to the outer scope's color.
1694   Value *ParentPad = I.getCatchSwitchParentPad();
1695   const BasicBlock *SuccessorColor;
1696   if (isa<ConstantTokenNone>(ParentPad))
1697     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1698   else
1699     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1700   assert(SuccessorColor && "No parent funclet for catchret!");
1701   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1702   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1703 
1704   // Create the terminator node.
1705   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1706                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1707                             DAG.getBasicBlock(SuccessorColorMBB));
1708   DAG.setRoot(Ret);
1709 }
1710 
1711 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1712   // Don't emit any special code for the cleanuppad instruction. It just marks
1713   // the start of an EH scope/funclet.
1714   FuncInfo.MBB->setIsEHScopeEntry();
1715   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1716   if (Pers != EHPersonality::Wasm_CXX) {
1717     FuncInfo.MBB->setIsEHFuncletEntry();
1718     FuncInfo.MBB->setIsCleanupFuncletEntry();
1719   }
1720 }
1721 
1722 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1723 // not match, it is OK to add only the first unwind destination catchpad to the
1724 // successors, because there will be at least one invoke instruction within the
1725 // catch scope that points to the next unwind destination, if one exists, so
1726 // CFGSort cannot mess up with BB sorting order.
1727 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1728 // call within them, and catchpads only consisting of 'catch (...)' have a
1729 // '__cxa_end_catch' call within them, both of which generate invokes in case
1730 // the next unwind destination exists, i.e., the next unwind destination is not
1731 // the caller.)
1732 //
1733 // Having at most one EH pad successor is also simpler and helps later
1734 // transformations.
1735 //
1736 // For example,
1737 // current:
1738 //   invoke void @foo to ... unwind label %catch.dispatch
1739 // catch.dispatch:
1740 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1741 // catch.start:
1742 //   ...
1743 //   ... in this BB or some other child BB dominated by this BB there will be an
1744 //   invoke that points to 'next' BB as an unwind destination
1745 //
1746 // next: ; We don't need to add this to 'current' BB's successor
1747 //   ...
1748 static void findWasmUnwindDestinations(
1749     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1750     BranchProbability Prob,
1751     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1752         &UnwindDests) {
1753   while (EHPadBB) {
1754     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1755     if (isa<CleanupPadInst>(Pad)) {
1756       // Stop on cleanup pads.
1757       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1758       UnwindDests.back().first->setIsEHScopeEntry();
1759       break;
1760     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1761       // Add the catchpad handlers to the possible destinations. We don't
1762       // continue to the unwind destination of the catchswitch for wasm.
1763       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1764         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1765         UnwindDests.back().first->setIsEHScopeEntry();
1766       }
1767       break;
1768     } else {
1769       continue;
1770     }
1771   }
1772 }
1773 
1774 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1775 /// many places it could ultimately go. In the IR, we have a single unwind
1776 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1777 /// This function skips over imaginary basic blocks that hold catchswitch
1778 /// instructions, and finds all the "real" machine
1779 /// basic block destinations. As those destinations may not be successors of
1780 /// EHPadBB, here we also calculate the edge probability to those destinations.
1781 /// The passed-in Prob is the edge probability to EHPadBB.
1782 static void findUnwindDestinations(
1783     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1784     BranchProbability Prob,
1785     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1786         &UnwindDests) {
1787   EHPersonality Personality =
1788     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1789   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1790   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1791   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1792   bool IsSEH = isAsynchronousEHPersonality(Personality);
1793 
1794   if (IsWasmCXX) {
1795     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1796     assert(UnwindDests.size() <= 1 &&
1797            "There should be at most one unwind destination for wasm");
1798     return;
1799   }
1800 
1801   while (EHPadBB) {
1802     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1803     BasicBlock *NewEHPadBB = nullptr;
1804     if (isa<LandingPadInst>(Pad)) {
1805       // Stop on landingpads. They are not funclets.
1806       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1807       break;
1808     } else if (isa<CleanupPadInst>(Pad)) {
1809       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1810       // personalities.
1811       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1812       UnwindDests.back().first->setIsEHScopeEntry();
1813       UnwindDests.back().first->setIsEHFuncletEntry();
1814       break;
1815     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1816       // Add the catchpad handlers to the possible destinations.
1817       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1818         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1819         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1820         if (IsMSVCCXX || IsCoreCLR)
1821           UnwindDests.back().first->setIsEHFuncletEntry();
1822         if (!IsSEH)
1823           UnwindDests.back().first->setIsEHScopeEntry();
1824       }
1825       NewEHPadBB = CatchSwitch->getUnwindDest();
1826     } else {
1827       continue;
1828     }
1829 
1830     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1831     if (BPI && NewEHPadBB)
1832       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1833     EHPadBB = NewEHPadBB;
1834   }
1835 }
1836 
1837 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1838   // Update successor info.
1839   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1840   auto UnwindDest = I.getUnwindDest();
1841   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1842   BranchProbability UnwindDestProb =
1843       (BPI && UnwindDest)
1844           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1845           : BranchProbability::getZero();
1846   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1847   for (auto &UnwindDest : UnwindDests) {
1848     UnwindDest.first->setIsEHPad();
1849     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1850   }
1851   FuncInfo.MBB->normalizeSuccProbs();
1852 
1853   // Create the terminator node.
1854   SDValue Ret =
1855       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1856   DAG.setRoot(Ret);
1857 }
1858 
1859 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1860   report_fatal_error("visitCatchSwitch not yet implemented!");
1861 }
1862 
1863 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1864   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1865   auto &DL = DAG.getDataLayout();
1866   SDValue Chain = getControlRoot();
1867   SmallVector<ISD::OutputArg, 8> Outs;
1868   SmallVector<SDValue, 8> OutVals;
1869 
1870   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1871   // lower
1872   //
1873   //   %val = call <ty> @llvm.experimental.deoptimize()
1874   //   ret <ty> %val
1875   //
1876   // differently.
1877   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1878     LowerDeoptimizingReturn();
1879     return;
1880   }
1881 
1882   if (!FuncInfo.CanLowerReturn) {
1883     unsigned DemoteReg = FuncInfo.DemoteRegister;
1884     const Function *F = I.getParent()->getParent();
1885 
1886     // Emit a store of the return value through the virtual register.
1887     // Leave Outs empty so that LowerReturn won't try to load return
1888     // registers the usual way.
1889     SmallVector<EVT, 1> PtrValueVTs;
1890     ComputeValueVTs(TLI, DL,
1891                     F->getReturnType()->getPointerTo(
1892                         DAG.getDataLayout().getAllocaAddrSpace()),
1893                     PtrValueVTs);
1894 
1895     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1896                                         DemoteReg, PtrValueVTs[0]);
1897     SDValue RetOp = getValue(I.getOperand(0));
1898 
1899     SmallVector<EVT, 4> ValueVTs, MemVTs;
1900     SmallVector<uint64_t, 4> Offsets;
1901     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1902                     &Offsets);
1903     unsigned NumValues = ValueVTs.size();
1904 
1905     SmallVector<SDValue, 4> Chains(NumValues);
1906     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1907     for (unsigned i = 0; i != NumValues; ++i) {
1908       // An aggregate return value cannot wrap around the address space, so
1909       // offsets to its parts don't wrap either.
1910       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1911                                            TypeSize::Fixed(Offsets[i]));
1912 
1913       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1914       if (MemVTs[i] != ValueVTs[i])
1915         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1916       Chains[i] = DAG.getStore(
1917           Chain, getCurSDLoc(), Val,
1918           // FIXME: better loc info would be nice.
1919           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1920           commonAlignment(BaseAlign, Offsets[i]));
1921     }
1922 
1923     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1924                         MVT::Other, Chains);
1925   } else if (I.getNumOperands() != 0) {
1926     SmallVector<EVT, 4> ValueVTs;
1927     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1928     unsigned NumValues = ValueVTs.size();
1929     if (NumValues) {
1930       SDValue RetOp = getValue(I.getOperand(0));
1931 
1932       const Function *F = I.getParent()->getParent();
1933 
1934       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1935           I.getOperand(0)->getType(), F->getCallingConv(),
1936           /*IsVarArg*/ false);
1937 
1938       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1939       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1940                                           Attribute::SExt))
1941         ExtendKind = ISD::SIGN_EXTEND;
1942       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1943                                                Attribute::ZExt))
1944         ExtendKind = ISD::ZERO_EXTEND;
1945 
1946       LLVMContext &Context = F->getContext();
1947       bool RetInReg = F->getAttributes().hasAttribute(
1948           AttributeList::ReturnIndex, Attribute::InReg);
1949 
1950       for (unsigned j = 0; j != NumValues; ++j) {
1951         EVT VT = ValueVTs[j];
1952 
1953         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1954           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1955 
1956         CallingConv::ID CC = F->getCallingConv();
1957 
1958         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1959         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1960         SmallVector<SDValue, 4> Parts(NumParts);
1961         getCopyToParts(DAG, getCurSDLoc(),
1962                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1963                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1964 
1965         // 'inreg' on function refers to return value
1966         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1967         if (RetInReg)
1968           Flags.setInReg();
1969 
1970         if (I.getOperand(0)->getType()->isPointerTy()) {
1971           Flags.setPointer();
1972           Flags.setPointerAddrSpace(
1973               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1974         }
1975 
1976         if (NeedsRegBlock) {
1977           Flags.setInConsecutiveRegs();
1978           if (j == NumValues - 1)
1979             Flags.setInConsecutiveRegsLast();
1980         }
1981 
1982         // Propagate extension type if any
1983         if (ExtendKind == ISD::SIGN_EXTEND)
1984           Flags.setSExt();
1985         else if (ExtendKind == ISD::ZERO_EXTEND)
1986           Flags.setZExt();
1987 
1988         for (unsigned i = 0; i < NumParts; ++i) {
1989           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1990                                         VT, /*isfixed=*/true, 0, 0));
1991           OutVals.push_back(Parts[i]);
1992         }
1993       }
1994     }
1995   }
1996 
1997   // Push in swifterror virtual register as the last element of Outs. This makes
1998   // sure swifterror virtual register will be returned in the swifterror
1999   // physical register.
2000   const Function *F = I.getParent()->getParent();
2001   if (TLI.supportSwiftError() &&
2002       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2003     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2004     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2005     Flags.setSwiftError();
2006     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
2007                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
2008                                   true /*isfixed*/, 1 /*origidx*/,
2009                                   0 /*partOffs*/));
2010     // Create SDNode for the swifterror virtual register.
2011     OutVals.push_back(
2012         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2013                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2014                         EVT(TLI.getPointerTy(DL))));
2015   }
2016 
2017   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2018   CallingConv::ID CallConv =
2019     DAG.getMachineFunction().getFunction().getCallingConv();
2020   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2021       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2022 
2023   // Verify that the target's LowerReturn behaved as expected.
2024   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2025          "LowerReturn didn't return a valid chain!");
2026 
2027   // Update the DAG with the new chain value resulting from return lowering.
2028   DAG.setRoot(Chain);
2029 }
2030 
2031 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2032 /// created for it, emit nodes to copy the value into the virtual
2033 /// registers.
2034 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2035   // Skip empty types
2036   if (V->getType()->isEmptyTy())
2037     return;
2038 
2039   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2040   if (VMI != FuncInfo.ValueMap.end()) {
2041     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2042     CopyValueToVirtualRegister(V, VMI->second);
2043   }
2044 }
2045 
2046 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2047 /// the current basic block, add it to ValueMap now so that we'll get a
2048 /// CopyTo/FromReg.
2049 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2050   // No need to export constants.
2051   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2052 
2053   // Already exported?
2054   if (FuncInfo.isExportedInst(V)) return;
2055 
2056   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2057   CopyValueToVirtualRegister(V, Reg);
2058 }
2059 
2060 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2061                                                      const BasicBlock *FromBB) {
2062   // The operands of the setcc have to be in this block.  We don't know
2063   // how to export them from some other block.
2064   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2065     // Can export from current BB.
2066     if (VI->getParent() == FromBB)
2067       return true;
2068 
2069     // Is already exported, noop.
2070     return FuncInfo.isExportedInst(V);
2071   }
2072 
2073   // If this is an argument, we can export it if the BB is the entry block or
2074   // if it is already exported.
2075   if (isa<Argument>(V)) {
2076     if (FromBB->isEntryBlock())
2077       return true;
2078 
2079     // Otherwise, can only export this if it is already exported.
2080     return FuncInfo.isExportedInst(V);
2081   }
2082 
2083   // Otherwise, constants can always be exported.
2084   return true;
2085 }
2086 
2087 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2088 BranchProbability
2089 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2090                                         const MachineBasicBlock *Dst) const {
2091   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2092   const BasicBlock *SrcBB = Src->getBasicBlock();
2093   const BasicBlock *DstBB = Dst->getBasicBlock();
2094   if (!BPI) {
2095     // If BPI is not available, set the default probability as 1 / N, where N is
2096     // the number of successors.
2097     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2098     return BranchProbability(1, SuccSize);
2099   }
2100   return BPI->getEdgeProbability(SrcBB, DstBB);
2101 }
2102 
2103 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2104                                                MachineBasicBlock *Dst,
2105                                                BranchProbability Prob) {
2106   if (!FuncInfo.BPI)
2107     Src->addSuccessorWithoutProb(Dst);
2108   else {
2109     if (Prob.isUnknown())
2110       Prob = getEdgeProbability(Src, Dst);
2111     Src->addSuccessor(Dst, Prob);
2112   }
2113 }
2114 
2115 static bool InBlock(const Value *V, const BasicBlock *BB) {
2116   if (const Instruction *I = dyn_cast<Instruction>(V))
2117     return I->getParent() == BB;
2118   return true;
2119 }
2120 
2121 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2122 /// This function emits a branch and is used at the leaves of an OR or an
2123 /// AND operator tree.
2124 void
2125 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2126                                                   MachineBasicBlock *TBB,
2127                                                   MachineBasicBlock *FBB,
2128                                                   MachineBasicBlock *CurBB,
2129                                                   MachineBasicBlock *SwitchBB,
2130                                                   BranchProbability TProb,
2131                                                   BranchProbability FProb,
2132                                                   bool InvertCond) {
2133   const BasicBlock *BB = CurBB->getBasicBlock();
2134 
2135   // If the leaf of the tree is a comparison, merge the condition into
2136   // the caseblock.
2137   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2138     // The operands of the cmp have to be in this block.  We don't know
2139     // how to export them from some other block.  If this is the first block
2140     // of the sequence, no exporting is needed.
2141     if (CurBB == SwitchBB ||
2142         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2143          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2144       ISD::CondCode Condition;
2145       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2146         ICmpInst::Predicate Pred =
2147             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2148         Condition = getICmpCondCode(Pred);
2149       } else {
2150         const FCmpInst *FC = cast<FCmpInst>(Cond);
2151         FCmpInst::Predicate Pred =
2152             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2153         Condition = getFCmpCondCode(Pred);
2154         if (TM.Options.NoNaNsFPMath)
2155           Condition = getFCmpCodeWithoutNaN(Condition);
2156       }
2157 
2158       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2159                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2160       SL->SwitchCases.push_back(CB);
2161       return;
2162     }
2163   }
2164 
2165   // Create a CaseBlock record representing this branch.
2166   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2167   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2168                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2169   SL->SwitchCases.push_back(CB);
2170 }
2171 
2172 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2173                                                MachineBasicBlock *TBB,
2174                                                MachineBasicBlock *FBB,
2175                                                MachineBasicBlock *CurBB,
2176                                                MachineBasicBlock *SwitchBB,
2177                                                Instruction::BinaryOps Opc,
2178                                                BranchProbability TProb,
2179                                                BranchProbability FProb,
2180                                                bool InvertCond) {
2181   // Skip over not part of the tree and remember to invert op and operands at
2182   // next level.
2183   Value *NotCond;
2184   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2185       InBlock(NotCond, CurBB->getBasicBlock())) {
2186     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2187                          !InvertCond);
2188     return;
2189   }
2190 
2191   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2192   const Value *BOpOp0, *BOpOp1;
2193   // Compute the effective opcode for Cond, taking into account whether it needs
2194   // to be inverted, e.g.
2195   //   and (not (or A, B)), C
2196   // gets lowered as
2197   //   and (and (not A, not B), C)
2198   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2199   if (BOp) {
2200     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2201                ? Instruction::And
2202                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2203                       ? Instruction::Or
2204                       : (Instruction::BinaryOps)0);
2205     if (InvertCond) {
2206       if (BOpc == Instruction::And)
2207         BOpc = Instruction::Or;
2208       else if (BOpc == Instruction::Or)
2209         BOpc = Instruction::And;
2210     }
2211   }
2212 
2213   // If this node is not part of the or/and tree, emit it as a branch.
2214   // Note that all nodes in the tree should have same opcode.
2215   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2216   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2217       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2218       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2219     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2220                                  TProb, FProb, InvertCond);
2221     return;
2222   }
2223 
2224   //  Create TmpBB after CurBB.
2225   MachineFunction::iterator BBI(CurBB);
2226   MachineFunction &MF = DAG.getMachineFunction();
2227   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2228   CurBB->getParent()->insert(++BBI, TmpBB);
2229 
2230   if (Opc == Instruction::Or) {
2231     // Codegen X | Y as:
2232     // BB1:
2233     //   jmp_if_X TBB
2234     //   jmp TmpBB
2235     // TmpBB:
2236     //   jmp_if_Y TBB
2237     //   jmp FBB
2238     //
2239 
2240     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2241     // The requirement is that
2242     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2243     //     = TrueProb for original BB.
2244     // Assuming the original probabilities are A and B, one choice is to set
2245     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2246     // A/(1+B) and 2B/(1+B). This choice assumes that
2247     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2248     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2249     // TmpBB, but the math is more complicated.
2250 
2251     auto NewTrueProb = TProb / 2;
2252     auto NewFalseProb = TProb / 2 + FProb;
2253     // Emit the LHS condition.
2254     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2255                          NewFalseProb, InvertCond);
2256 
2257     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2258     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2259     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2260     // Emit the RHS condition into TmpBB.
2261     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2262                          Probs[1], InvertCond);
2263   } else {
2264     assert(Opc == Instruction::And && "Unknown merge op!");
2265     // Codegen X & Y as:
2266     // BB1:
2267     //   jmp_if_X TmpBB
2268     //   jmp FBB
2269     // TmpBB:
2270     //   jmp_if_Y TBB
2271     //   jmp FBB
2272     //
2273     //  This requires creation of TmpBB after CurBB.
2274 
2275     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2276     // The requirement is that
2277     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2278     //     = FalseProb for original BB.
2279     // Assuming the original probabilities are A and B, one choice is to set
2280     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2281     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2282     // TrueProb for BB1 * FalseProb for TmpBB.
2283 
2284     auto NewTrueProb = TProb + FProb / 2;
2285     auto NewFalseProb = FProb / 2;
2286     // Emit the LHS condition.
2287     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2288                          NewFalseProb, InvertCond);
2289 
2290     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2291     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2292     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2293     // Emit the RHS condition into TmpBB.
2294     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2295                          Probs[1], InvertCond);
2296   }
2297 }
2298 
2299 /// If the set of cases should be emitted as a series of branches, return true.
2300 /// If we should emit this as a bunch of and/or'd together conditions, return
2301 /// false.
2302 bool
2303 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2304   if (Cases.size() != 2) return true;
2305 
2306   // If this is two comparisons of the same values or'd or and'd together, they
2307   // will get folded into a single comparison, so don't emit two blocks.
2308   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2309        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2310       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2311        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2312     return false;
2313   }
2314 
2315   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2316   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2317   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2318       Cases[0].CC == Cases[1].CC &&
2319       isa<Constant>(Cases[0].CmpRHS) &&
2320       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2321     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2322       return false;
2323     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2324       return false;
2325   }
2326 
2327   return true;
2328 }
2329 
2330 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2331   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2332 
2333   // Update machine-CFG edges.
2334   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2335 
2336   if (I.isUnconditional()) {
2337     // Update machine-CFG edges.
2338     BrMBB->addSuccessor(Succ0MBB);
2339 
2340     // If this is not a fall-through branch or optimizations are switched off,
2341     // emit the branch.
2342     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2343       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2344                               MVT::Other, getControlRoot(),
2345                               DAG.getBasicBlock(Succ0MBB)));
2346 
2347     return;
2348   }
2349 
2350   // If this condition is one of the special cases we handle, do special stuff
2351   // now.
2352   const Value *CondVal = I.getCondition();
2353   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2354 
2355   // If this is a series of conditions that are or'd or and'd together, emit
2356   // this as a sequence of branches instead of setcc's with and/or operations.
2357   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2358   // unpredictable branches, and vector extracts because those jumps are likely
2359   // expensive for any target), this should improve performance.
2360   // For example, instead of something like:
2361   //     cmp A, B
2362   //     C = seteq
2363   //     cmp D, E
2364   //     F = setle
2365   //     or C, F
2366   //     jnz foo
2367   // Emit:
2368   //     cmp A, B
2369   //     je foo
2370   //     cmp D, E
2371   //     jle foo
2372   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2373   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2374       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2375     Value *Vec;
2376     const Value *BOp0, *BOp1;
2377     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2378     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2379       Opcode = Instruction::And;
2380     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2381       Opcode = Instruction::Or;
2382 
2383     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2384                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2385       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2386                            getEdgeProbability(BrMBB, Succ0MBB),
2387                            getEdgeProbability(BrMBB, Succ1MBB),
2388                            /*InvertCond=*/false);
2389       // If the compares in later blocks need to use values not currently
2390       // exported from this block, export them now.  This block should always
2391       // be the first entry.
2392       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2393 
2394       // Allow some cases to be rejected.
2395       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2396         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2397           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2398           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2399         }
2400 
2401         // Emit the branch for this block.
2402         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2403         SL->SwitchCases.erase(SL->SwitchCases.begin());
2404         return;
2405       }
2406 
2407       // Okay, we decided not to do this, remove any inserted MBB's and clear
2408       // SwitchCases.
2409       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2410         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2411 
2412       SL->SwitchCases.clear();
2413     }
2414   }
2415 
2416   // Create a CaseBlock record representing this branch.
2417   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2418                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2419 
2420   // Use visitSwitchCase to actually insert the fast branch sequence for this
2421   // cond branch.
2422   visitSwitchCase(CB, BrMBB);
2423 }
2424 
2425 /// visitSwitchCase - Emits the necessary code to represent a single node in
2426 /// the binary search tree resulting from lowering a switch instruction.
2427 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2428                                           MachineBasicBlock *SwitchBB) {
2429   SDValue Cond;
2430   SDValue CondLHS = getValue(CB.CmpLHS);
2431   SDLoc dl = CB.DL;
2432 
2433   if (CB.CC == ISD::SETTRUE) {
2434     // Branch or fall through to TrueBB.
2435     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2436     SwitchBB->normalizeSuccProbs();
2437     if (CB.TrueBB != NextBlock(SwitchBB)) {
2438       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2439                               DAG.getBasicBlock(CB.TrueBB)));
2440     }
2441     return;
2442   }
2443 
2444   auto &TLI = DAG.getTargetLoweringInfo();
2445   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2446 
2447   // Build the setcc now.
2448   if (!CB.CmpMHS) {
2449     // Fold "(X == true)" to X and "(X == false)" to !X to
2450     // handle common cases produced by branch lowering.
2451     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2452         CB.CC == ISD::SETEQ)
2453       Cond = CondLHS;
2454     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2455              CB.CC == ISD::SETEQ) {
2456       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2457       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2458     } else {
2459       SDValue CondRHS = getValue(CB.CmpRHS);
2460 
2461       // If a pointer's DAG type is larger than its memory type then the DAG
2462       // values are zero-extended. This breaks signed comparisons so truncate
2463       // back to the underlying type before doing the compare.
2464       if (CondLHS.getValueType() != MemVT) {
2465         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2466         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2467       }
2468       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2469     }
2470   } else {
2471     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2472 
2473     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2474     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2475 
2476     SDValue CmpOp = getValue(CB.CmpMHS);
2477     EVT VT = CmpOp.getValueType();
2478 
2479     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2480       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2481                           ISD::SETLE);
2482     } else {
2483       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2484                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2485       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2486                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2487     }
2488   }
2489 
2490   // Update successor info
2491   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2492   // TrueBB and FalseBB are always different unless the incoming IR is
2493   // degenerate. This only happens when running llc on weird IR.
2494   if (CB.TrueBB != CB.FalseBB)
2495     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2496   SwitchBB->normalizeSuccProbs();
2497 
2498   // If the lhs block is the next block, invert the condition so that we can
2499   // fall through to the lhs instead of the rhs block.
2500   if (CB.TrueBB == NextBlock(SwitchBB)) {
2501     std::swap(CB.TrueBB, CB.FalseBB);
2502     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2503     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2504   }
2505 
2506   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2507                                MVT::Other, getControlRoot(), Cond,
2508                                DAG.getBasicBlock(CB.TrueBB));
2509 
2510   // Insert the false branch. Do this even if it's a fall through branch,
2511   // this makes it easier to do DAG optimizations which require inverting
2512   // the branch condition.
2513   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2514                        DAG.getBasicBlock(CB.FalseBB));
2515 
2516   DAG.setRoot(BrCond);
2517 }
2518 
2519 /// visitJumpTable - Emit JumpTable node in the current MBB
2520 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2521   // Emit the code for the jump table
2522   assert(JT.Reg != -1U && "Should lower JT Header first!");
2523   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2524   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2525                                      JT.Reg, PTy);
2526   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2527   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2528                                     MVT::Other, Index.getValue(1),
2529                                     Table, Index);
2530   DAG.setRoot(BrJumpTable);
2531 }
2532 
2533 /// visitJumpTableHeader - This function emits necessary code to produce index
2534 /// in the JumpTable from switch case.
2535 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2536                                                JumpTableHeader &JTH,
2537                                                MachineBasicBlock *SwitchBB) {
2538   SDLoc dl = getCurSDLoc();
2539 
2540   // Subtract the lowest switch case value from the value being switched on.
2541   SDValue SwitchOp = getValue(JTH.SValue);
2542   EVT VT = SwitchOp.getValueType();
2543   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2544                             DAG.getConstant(JTH.First, dl, VT));
2545 
2546   // The SDNode we just created, which holds the value being switched on minus
2547   // the smallest case value, needs to be copied to a virtual register so it
2548   // can be used as an index into the jump table in a subsequent basic block.
2549   // This value may be smaller or larger than the target's pointer type, and
2550   // therefore require extension or truncating.
2551   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2552   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2553 
2554   unsigned JumpTableReg =
2555       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2556   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2557                                     JumpTableReg, SwitchOp);
2558   JT.Reg = JumpTableReg;
2559 
2560   if (!JTH.OmitRangeCheck) {
2561     // Emit the range check for the jump table, and branch to the default block
2562     // for the switch statement if the value being switched on exceeds the
2563     // largest case in the switch.
2564     SDValue CMP = DAG.getSetCC(
2565         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2566                                    Sub.getValueType()),
2567         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2568 
2569     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2570                                  MVT::Other, CopyTo, CMP,
2571                                  DAG.getBasicBlock(JT.Default));
2572 
2573     // Avoid emitting unnecessary branches to the next block.
2574     if (JT.MBB != NextBlock(SwitchBB))
2575       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2576                            DAG.getBasicBlock(JT.MBB));
2577 
2578     DAG.setRoot(BrCond);
2579   } else {
2580     // Avoid emitting unnecessary branches to the next block.
2581     if (JT.MBB != NextBlock(SwitchBB))
2582       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2583                               DAG.getBasicBlock(JT.MBB)));
2584     else
2585       DAG.setRoot(CopyTo);
2586   }
2587 }
2588 
2589 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2590 /// variable if there exists one.
2591 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2592                                  SDValue &Chain) {
2593   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2594   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2595   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2596   MachineFunction &MF = DAG.getMachineFunction();
2597   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2598   MachineSDNode *Node =
2599       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2600   if (Global) {
2601     MachinePointerInfo MPInfo(Global);
2602     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2603                  MachineMemOperand::MODereferenceable;
2604     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2605         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2606     DAG.setNodeMemRefs(Node, {MemRef});
2607   }
2608   if (PtrTy != PtrMemTy)
2609     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2610   return SDValue(Node, 0);
2611 }
2612 
2613 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2614 /// tail spliced into a stack protector check success bb.
2615 ///
2616 /// For a high level explanation of how this fits into the stack protector
2617 /// generation see the comment on the declaration of class
2618 /// StackProtectorDescriptor.
2619 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2620                                                   MachineBasicBlock *ParentBB) {
2621 
2622   // First create the loads to the guard/stack slot for the comparison.
2623   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2624   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2625   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2626 
2627   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2628   int FI = MFI.getStackProtectorIndex();
2629 
2630   SDValue Guard;
2631   SDLoc dl = getCurSDLoc();
2632   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2633   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2634   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2635 
2636   // Generate code to load the content of the guard slot.
2637   SDValue GuardVal = DAG.getLoad(
2638       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2639       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2640       MachineMemOperand::MOVolatile);
2641 
2642   if (TLI.useStackGuardXorFP())
2643     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2644 
2645   // Retrieve guard check function, nullptr if instrumentation is inlined.
2646   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2647     // The target provides a guard check function to validate the guard value.
2648     // Generate a call to that function with the content of the guard slot as
2649     // argument.
2650     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2651     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2652 
2653     TargetLowering::ArgListTy Args;
2654     TargetLowering::ArgListEntry Entry;
2655     Entry.Node = GuardVal;
2656     Entry.Ty = FnTy->getParamType(0);
2657     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2658       Entry.IsInReg = true;
2659     Args.push_back(Entry);
2660 
2661     TargetLowering::CallLoweringInfo CLI(DAG);
2662     CLI.setDebugLoc(getCurSDLoc())
2663         .setChain(DAG.getEntryNode())
2664         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2665                    getValue(GuardCheckFn), std::move(Args));
2666 
2667     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2668     DAG.setRoot(Result.second);
2669     return;
2670   }
2671 
2672   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2673   // Otherwise, emit a volatile load to retrieve the stack guard value.
2674   SDValue Chain = DAG.getEntryNode();
2675   if (TLI.useLoadStackGuardNode()) {
2676     Guard = getLoadStackGuard(DAG, dl, Chain);
2677   } else {
2678     const Value *IRGuard = TLI.getSDagStackGuard(M);
2679     SDValue GuardPtr = getValue(IRGuard);
2680 
2681     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2682                         MachinePointerInfo(IRGuard, 0), Align,
2683                         MachineMemOperand::MOVolatile);
2684   }
2685 
2686   // Perform the comparison via a getsetcc.
2687   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2688                                                         *DAG.getContext(),
2689                                                         Guard.getValueType()),
2690                              Guard, GuardVal, ISD::SETNE);
2691 
2692   // If the guard/stackslot do not equal, branch to failure MBB.
2693   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2694                                MVT::Other, GuardVal.getOperand(0),
2695                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2696   // Otherwise branch to success MBB.
2697   SDValue Br = DAG.getNode(ISD::BR, dl,
2698                            MVT::Other, BrCond,
2699                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2700 
2701   DAG.setRoot(Br);
2702 }
2703 
2704 /// Codegen the failure basic block for a stack protector check.
2705 ///
2706 /// A failure stack protector machine basic block consists simply of a call to
2707 /// __stack_chk_fail().
2708 ///
2709 /// For a high level explanation of how this fits into the stack protector
2710 /// generation see the comment on the declaration of class
2711 /// StackProtectorDescriptor.
2712 void
2713 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2715   TargetLowering::MakeLibCallOptions CallOptions;
2716   CallOptions.setDiscardResult(true);
2717   SDValue Chain =
2718       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2719                       None, CallOptions, getCurSDLoc()).second;
2720   // On PS4, the "return address" must still be within the calling function,
2721   // even if it's at the very end, so emit an explicit TRAP here.
2722   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2723   if (TM.getTargetTriple().isPS4CPU())
2724     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2725   // WebAssembly needs an unreachable instruction after a non-returning call,
2726   // because the function return type can be different from __stack_chk_fail's
2727   // return type (void).
2728   if (TM.getTargetTriple().isWasm())
2729     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2730 
2731   DAG.setRoot(Chain);
2732 }
2733 
2734 /// visitBitTestHeader - This function emits necessary code to produce value
2735 /// suitable for "bit tests"
2736 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2737                                              MachineBasicBlock *SwitchBB) {
2738   SDLoc dl = getCurSDLoc();
2739 
2740   // Subtract the minimum value.
2741   SDValue SwitchOp = getValue(B.SValue);
2742   EVT VT = SwitchOp.getValueType();
2743   SDValue RangeSub =
2744       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2745 
2746   // Determine the type of the test operands.
2747   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2748   bool UsePtrType = false;
2749   if (!TLI.isTypeLegal(VT)) {
2750     UsePtrType = true;
2751   } else {
2752     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2753       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2754         // Switch table case range are encoded into series of masks.
2755         // Just use pointer type, it's guaranteed to fit.
2756         UsePtrType = true;
2757         break;
2758       }
2759   }
2760   SDValue Sub = RangeSub;
2761   if (UsePtrType) {
2762     VT = TLI.getPointerTy(DAG.getDataLayout());
2763     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2764   }
2765 
2766   B.RegVT = VT.getSimpleVT();
2767   B.Reg = FuncInfo.CreateReg(B.RegVT);
2768   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2769 
2770   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2771 
2772   if (!B.OmitRangeCheck)
2773     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2774   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2775   SwitchBB->normalizeSuccProbs();
2776 
2777   SDValue Root = CopyTo;
2778   if (!B.OmitRangeCheck) {
2779     // Conditional branch to the default block.
2780     SDValue RangeCmp = DAG.getSetCC(dl,
2781         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2782                                RangeSub.getValueType()),
2783         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2784         ISD::SETUGT);
2785 
2786     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2787                        DAG.getBasicBlock(B.Default));
2788   }
2789 
2790   // Avoid emitting unnecessary branches to the next block.
2791   if (MBB != NextBlock(SwitchBB))
2792     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2793 
2794   DAG.setRoot(Root);
2795 }
2796 
2797 /// visitBitTestCase - this function produces one "bit test"
2798 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2799                                            MachineBasicBlock* NextMBB,
2800                                            BranchProbability BranchProbToNext,
2801                                            unsigned Reg,
2802                                            BitTestCase &B,
2803                                            MachineBasicBlock *SwitchBB) {
2804   SDLoc dl = getCurSDLoc();
2805   MVT VT = BB.RegVT;
2806   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2807   SDValue Cmp;
2808   unsigned PopCount = countPopulation(B.Mask);
2809   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2810   if (PopCount == 1) {
2811     // Testing for a single bit; just compare the shift count with what it
2812     // would need to be to shift a 1 bit in that position.
2813     Cmp = DAG.getSetCC(
2814         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2815         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2816         ISD::SETEQ);
2817   } else if (PopCount == BB.Range) {
2818     // There is only one zero bit in the range, test for it directly.
2819     Cmp = DAG.getSetCC(
2820         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2821         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2822         ISD::SETNE);
2823   } else {
2824     // Make desired shift
2825     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2826                                     DAG.getConstant(1, dl, VT), ShiftOp);
2827 
2828     // Emit bit tests and jumps
2829     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2830                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2831     Cmp = DAG.getSetCC(
2832         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2833         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2834   }
2835 
2836   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2837   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2838   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2839   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2840   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2841   // one as they are relative probabilities (and thus work more like weights),
2842   // and hence we need to normalize them to let the sum of them become one.
2843   SwitchBB->normalizeSuccProbs();
2844 
2845   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2846                               MVT::Other, getControlRoot(),
2847                               Cmp, DAG.getBasicBlock(B.TargetBB));
2848 
2849   // Avoid emitting unnecessary branches to the next block.
2850   if (NextMBB != NextBlock(SwitchBB))
2851     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2852                         DAG.getBasicBlock(NextMBB));
2853 
2854   DAG.setRoot(BrAnd);
2855 }
2856 
2857 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2858   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2859 
2860   // Retrieve successors. Look through artificial IR level blocks like
2861   // catchswitch for successors.
2862   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2863   const BasicBlock *EHPadBB = I.getSuccessor(1);
2864 
2865   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2866   // have to do anything here to lower funclet bundles.
2867   assert(!I.hasOperandBundlesOtherThan(
2868              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2869               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2870               LLVMContext::OB_cfguardtarget,
2871               LLVMContext::OB_clang_arc_attachedcall}) &&
2872          "Cannot lower invokes with arbitrary operand bundles yet!");
2873 
2874   const Value *Callee(I.getCalledOperand());
2875   const Function *Fn = dyn_cast<Function>(Callee);
2876   if (isa<InlineAsm>(Callee))
2877     visitInlineAsm(I, EHPadBB);
2878   else if (Fn && Fn->isIntrinsic()) {
2879     switch (Fn->getIntrinsicID()) {
2880     default:
2881       llvm_unreachable("Cannot invoke this intrinsic");
2882     case Intrinsic::donothing:
2883       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2884     case Intrinsic::seh_try_begin:
2885     case Intrinsic::seh_scope_begin:
2886     case Intrinsic::seh_try_end:
2887     case Intrinsic::seh_scope_end:
2888       break;
2889     case Intrinsic::experimental_patchpoint_void:
2890     case Intrinsic::experimental_patchpoint_i64:
2891       visitPatchpoint(I, EHPadBB);
2892       break;
2893     case Intrinsic::experimental_gc_statepoint:
2894       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2895       break;
2896     case Intrinsic::wasm_rethrow: {
2897       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2898       // special because it can be invoked, so we manually lower it to a DAG
2899       // node here.
2900       SmallVector<SDValue, 8> Ops;
2901       Ops.push_back(getRoot()); // inchain
2902       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2903       Ops.push_back(
2904           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2905                                 TLI.getPointerTy(DAG.getDataLayout())));
2906       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2907       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2908       break;
2909     }
2910     }
2911   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2912     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2913     // Eventually we will support lowering the @llvm.experimental.deoptimize
2914     // intrinsic, and right now there are no plans to support other intrinsics
2915     // with deopt state.
2916     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2917   } else {
2918     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2919   }
2920 
2921   // If the value of the invoke is used outside of its defining block, make it
2922   // available as a virtual register.
2923   // We already took care of the exported value for the statepoint instruction
2924   // during call to the LowerStatepoint.
2925   if (!isa<GCStatepointInst>(I)) {
2926     CopyToExportRegsIfNeeded(&I);
2927   }
2928 
2929   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2930   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2931   BranchProbability EHPadBBProb =
2932       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2933           : BranchProbability::getZero();
2934   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2935 
2936   // Update successor info.
2937   addSuccessorWithProb(InvokeMBB, Return);
2938   for (auto &UnwindDest : UnwindDests) {
2939     UnwindDest.first->setIsEHPad();
2940     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2941   }
2942   InvokeMBB->normalizeSuccProbs();
2943 
2944   // Drop into normal successor.
2945   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2946                           DAG.getBasicBlock(Return)));
2947 }
2948 
2949 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2950   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2951 
2952   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2953   // have to do anything here to lower funclet bundles.
2954   assert(!I.hasOperandBundlesOtherThan(
2955              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2956          "Cannot lower callbrs with arbitrary operand bundles yet!");
2957 
2958   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2959   visitInlineAsm(I);
2960   CopyToExportRegsIfNeeded(&I);
2961 
2962   // Retrieve successors.
2963   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2964 
2965   // Update successor info.
2966   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2967   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2968     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2969     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2970     Target->setIsInlineAsmBrIndirectTarget();
2971   }
2972   CallBrMBB->normalizeSuccProbs();
2973 
2974   // Drop into default successor.
2975   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2976                           MVT::Other, getControlRoot(),
2977                           DAG.getBasicBlock(Return)));
2978 }
2979 
2980 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2981   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2982 }
2983 
2984 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2985   assert(FuncInfo.MBB->isEHPad() &&
2986          "Call to landingpad not in landing pad!");
2987 
2988   // If there aren't registers to copy the values into (e.g., during SjLj
2989   // exceptions), then don't bother to create these DAG nodes.
2990   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2991   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2992   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2993       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2994     return;
2995 
2996   // If landingpad's return type is token type, we don't create DAG nodes
2997   // for its exception pointer and selector value. The extraction of exception
2998   // pointer or selector value from token type landingpads is not currently
2999   // supported.
3000   if (LP.getType()->isTokenTy())
3001     return;
3002 
3003   SmallVector<EVT, 2> ValueVTs;
3004   SDLoc dl = getCurSDLoc();
3005   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3006   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3007 
3008   // Get the two live-in registers as SDValues. The physregs have already been
3009   // copied into virtual registers.
3010   SDValue Ops[2];
3011   if (FuncInfo.ExceptionPointerVirtReg) {
3012     Ops[0] = DAG.getZExtOrTrunc(
3013         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3014                            FuncInfo.ExceptionPointerVirtReg,
3015                            TLI.getPointerTy(DAG.getDataLayout())),
3016         dl, ValueVTs[0]);
3017   } else {
3018     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3019   }
3020   Ops[1] = DAG.getZExtOrTrunc(
3021       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3022                          FuncInfo.ExceptionSelectorVirtReg,
3023                          TLI.getPointerTy(DAG.getDataLayout())),
3024       dl, ValueVTs[1]);
3025 
3026   // Merge into one.
3027   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3028                             DAG.getVTList(ValueVTs), Ops);
3029   setValue(&LP, Res);
3030 }
3031 
3032 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3033                                            MachineBasicBlock *Last) {
3034   // Update JTCases.
3035   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
3036     if (SL->JTCases[i].first.HeaderBB == First)
3037       SL->JTCases[i].first.HeaderBB = Last;
3038 
3039   // Update BitTestCases.
3040   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
3041     if (SL->BitTestCases[i].Parent == First)
3042       SL->BitTestCases[i].Parent = Last;
3043 }
3044 
3045 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3046   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3047 
3048   // Update machine-CFG edges with unique successors.
3049   SmallSet<BasicBlock*, 32> Done;
3050   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3051     BasicBlock *BB = I.getSuccessor(i);
3052     bool Inserted = Done.insert(BB).second;
3053     if (!Inserted)
3054         continue;
3055 
3056     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3057     addSuccessorWithProb(IndirectBrMBB, Succ);
3058   }
3059   IndirectBrMBB->normalizeSuccProbs();
3060 
3061   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3062                           MVT::Other, getControlRoot(),
3063                           getValue(I.getAddress())));
3064 }
3065 
3066 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3067   if (!DAG.getTarget().Options.TrapUnreachable)
3068     return;
3069 
3070   // We may be able to ignore unreachable behind a noreturn call.
3071   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3072     const BasicBlock &BB = *I.getParent();
3073     if (&I != &BB.front()) {
3074       BasicBlock::const_iterator PredI =
3075         std::prev(BasicBlock::const_iterator(&I));
3076       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3077         if (Call->doesNotReturn())
3078           return;
3079       }
3080     }
3081   }
3082 
3083   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3084 }
3085 
3086 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3087   SDNodeFlags Flags;
3088 
3089   SDValue Op = getValue(I.getOperand(0));
3090   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3091                                     Op, Flags);
3092   setValue(&I, UnNodeValue);
3093 }
3094 
3095 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3096   SDNodeFlags Flags;
3097   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3098     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3099     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3100   }
3101   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3102     Flags.setExact(ExactOp->isExact());
3103   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3104     Flags.copyFMF(*FPOp);
3105 
3106   SDValue Op1 = getValue(I.getOperand(0));
3107   SDValue Op2 = getValue(I.getOperand(1));
3108   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3109                                      Op1, Op2, Flags);
3110   setValue(&I, BinNodeValue);
3111 }
3112 
3113 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3114   SDValue Op1 = getValue(I.getOperand(0));
3115   SDValue Op2 = getValue(I.getOperand(1));
3116 
3117   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3118       Op1.getValueType(), DAG.getDataLayout());
3119 
3120   // Coerce the shift amount to the right type if we can.
3121   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3122     unsigned ShiftSize = ShiftTy.getSizeInBits();
3123     unsigned Op2Size = Op2.getValueSizeInBits();
3124     SDLoc DL = getCurSDLoc();
3125 
3126     // If the operand is smaller than the shift count type, promote it.
3127     if (ShiftSize > Op2Size)
3128       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3129 
3130     // If the operand is larger than the shift count type but the shift
3131     // count type has enough bits to represent any shift value, truncate
3132     // it now. This is a common case and it exposes the truncate to
3133     // optimization early.
3134     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3135       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3136     // Otherwise we'll need to temporarily settle for some other convenient
3137     // type.  Type legalization will make adjustments once the shiftee is split.
3138     else
3139       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3140   }
3141 
3142   bool nuw = false;
3143   bool nsw = false;
3144   bool exact = false;
3145 
3146   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3147 
3148     if (const OverflowingBinaryOperator *OFBinOp =
3149             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3150       nuw = OFBinOp->hasNoUnsignedWrap();
3151       nsw = OFBinOp->hasNoSignedWrap();
3152     }
3153     if (const PossiblyExactOperator *ExactOp =
3154             dyn_cast<const PossiblyExactOperator>(&I))
3155       exact = ExactOp->isExact();
3156   }
3157   SDNodeFlags Flags;
3158   Flags.setExact(exact);
3159   Flags.setNoSignedWrap(nsw);
3160   Flags.setNoUnsignedWrap(nuw);
3161   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3162                             Flags);
3163   setValue(&I, Res);
3164 }
3165 
3166 void SelectionDAGBuilder::visitSDiv(const User &I) {
3167   SDValue Op1 = getValue(I.getOperand(0));
3168   SDValue Op2 = getValue(I.getOperand(1));
3169 
3170   SDNodeFlags Flags;
3171   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3172                  cast<PossiblyExactOperator>(&I)->isExact());
3173   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3174                            Op2, Flags));
3175 }
3176 
3177 void SelectionDAGBuilder::visitICmp(const User &I) {
3178   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3179   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3180     predicate = IC->getPredicate();
3181   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3182     predicate = ICmpInst::Predicate(IC->getPredicate());
3183   SDValue Op1 = getValue(I.getOperand(0));
3184   SDValue Op2 = getValue(I.getOperand(1));
3185   ISD::CondCode Opcode = getICmpCondCode(predicate);
3186 
3187   auto &TLI = DAG.getTargetLoweringInfo();
3188   EVT MemVT =
3189       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3190 
3191   // If a pointer's DAG type is larger than its memory type then the DAG values
3192   // are zero-extended. This breaks signed comparisons so truncate back to the
3193   // underlying type before doing the compare.
3194   if (Op1.getValueType() != MemVT) {
3195     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3196     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3197   }
3198 
3199   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3200                                                         I.getType());
3201   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3202 }
3203 
3204 void SelectionDAGBuilder::visitFCmp(const User &I) {
3205   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3206   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3207     predicate = FC->getPredicate();
3208   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3209     predicate = FCmpInst::Predicate(FC->getPredicate());
3210   SDValue Op1 = getValue(I.getOperand(0));
3211   SDValue Op2 = getValue(I.getOperand(1));
3212 
3213   ISD::CondCode Condition = getFCmpCondCode(predicate);
3214   auto *FPMO = cast<FPMathOperator>(&I);
3215   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3216     Condition = getFCmpCodeWithoutNaN(Condition);
3217 
3218   SDNodeFlags Flags;
3219   Flags.copyFMF(*FPMO);
3220   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3221 
3222   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3223                                                         I.getType());
3224   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3225 }
3226 
3227 // Check if the condition of the select has one use or two users that are both
3228 // selects with the same condition.
3229 static bool hasOnlySelectUsers(const Value *Cond) {
3230   return llvm::all_of(Cond->users(), [](const Value *V) {
3231     return isa<SelectInst>(V);
3232   });
3233 }
3234 
3235 void SelectionDAGBuilder::visitSelect(const User &I) {
3236   SmallVector<EVT, 4> ValueVTs;
3237   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3238                   ValueVTs);
3239   unsigned NumValues = ValueVTs.size();
3240   if (NumValues == 0) return;
3241 
3242   SmallVector<SDValue, 4> Values(NumValues);
3243   SDValue Cond     = getValue(I.getOperand(0));
3244   SDValue LHSVal   = getValue(I.getOperand(1));
3245   SDValue RHSVal   = getValue(I.getOperand(2));
3246   SmallVector<SDValue, 1> BaseOps(1, Cond);
3247   ISD::NodeType OpCode =
3248       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3249 
3250   bool IsUnaryAbs = false;
3251   bool Negate = false;
3252 
3253   SDNodeFlags Flags;
3254   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3255     Flags.copyFMF(*FPOp);
3256 
3257   // Min/max matching is only viable if all output VTs are the same.
3258   if (is_splat(ValueVTs)) {
3259     EVT VT = ValueVTs[0];
3260     LLVMContext &Ctx = *DAG.getContext();
3261     auto &TLI = DAG.getTargetLoweringInfo();
3262 
3263     // We care about the legality of the operation after it has been type
3264     // legalized.
3265     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3266       VT = TLI.getTypeToTransformTo(Ctx, VT);
3267 
3268     // If the vselect is legal, assume we want to leave this as a vector setcc +
3269     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3270     // min/max is legal on the scalar type.
3271     bool UseScalarMinMax = VT.isVector() &&
3272       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3273 
3274     Value *LHS, *RHS;
3275     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3276     ISD::NodeType Opc = ISD::DELETED_NODE;
3277     switch (SPR.Flavor) {
3278     case SPF_UMAX:    Opc = ISD::UMAX; break;
3279     case SPF_UMIN:    Opc = ISD::UMIN; break;
3280     case SPF_SMAX:    Opc = ISD::SMAX; break;
3281     case SPF_SMIN:    Opc = ISD::SMIN; break;
3282     case SPF_FMINNUM:
3283       switch (SPR.NaNBehavior) {
3284       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3285       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3286       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3287       case SPNB_RETURNS_ANY: {
3288         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3289           Opc = ISD::FMINNUM;
3290         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3291           Opc = ISD::FMINIMUM;
3292         else if (UseScalarMinMax)
3293           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3294             ISD::FMINNUM : ISD::FMINIMUM;
3295         break;
3296       }
3297       }
3298       break;
3299     case SPF_FMAXNUM:
3300       switch (SPR.NaNBehavior) {
3301       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3302       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3303       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3304       case SPNB_RETURNS_ANY:
3305 
3306         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3307           Opc = ISD::FMAXNUM;
3308         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3309           Opc = ISD::FMAXIMUM;
3310         else if (UseScalarMinMax)
3311           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3312             ISD::FMAXNUM : ISD::FMAXIMUM;
3313         break;
3314       }
3315       break;
3316     case SPF_NABS:
3317       Negate = true;
3318       LLVM_FALLTHROUGH;
3319     case SPF_ABS:
3320       IsUnaryAbs = true;
3321       Opc = ISD::ABS;
3322       break;
3323     default: break;
3324     }
3325 
3326     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3327         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3328          (UseScalarMinMax &&
3329           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3330         // If the underlying comparison instruction is used by any other
3331         // instruction, the consumed instructions won't be destroyed, so it is
3332         // not profitable to convert to a min/max.
3333         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3334       OpCode = Opc;
3335       LHSVal = getValue(LHS);
3336       RHSVal = getValue(RHS);
3337       BaseOps.clear();
3338     }
3339 
3340     if (IsUnaryAbs) {
3341       OpCode = Opc;
3342       LHSVal = getValue(LHS);
3343       BaseOps.clear();
3344     }
3345   }
3346 
3347   if (IsUnaryAbs) {
3348     for (unsigned i = 0; i != NumValues; ++i) {
3349       SDLoc dl = getCurSDLoc();
3350       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3351       Values[i] =
3352           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3353       if (Negate)
3354         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3355                                 Values[i]);
3356     }
3357   } else {
3358     for (unsigned i = 0; i != NumValues; ++i) {
3359       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3360       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3361       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3362       Values[i] = DAG.getNode(
3363           OpCode, getCurSDLoc(),
3364           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3365     }
3366   }
3367 
3368   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3369                            DAG.getVTList(ValueVTs), Values));
3370 }
3371 
3372 void SelectionDAGBuilder::visitTrunc(const User &I) {
3373   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3374   SDValue N = getValue(I.getOperand(0));
3375   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3376                                                         I.getType());
3377   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3378 }
3379 
3380 void SelectionDAGBuilder::visitZExt(const User &I) {
3381   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3382   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3383   SDValue N = getValue(I.getOperand(0));
3384   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3385                                                         I.getType());
3386   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3387 }
3388 
3389 void SelectionDAGBuilder::visitSExt(const User &I) {
3390   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3391   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3392   SDValue N = getValue(I.getOperand(0));
3393   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3394                                                         I.getType());
3395   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3396 }
3397 
3398 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3399   // FPTrunc is never a no-op cast, no need to check
3400   SDValue N = getValue(I.getOperand(0));
3401   SDLoc dl = getCurSDLoc();
3402   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3403   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3404   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3405                            DAG.getTargetConstant(
3406                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3407 }
3408 
3409 void SelectionDAGBuilder::visitFPExt(const User &I) {
3410   // FPExt is never a no-op cast, no need to check
3411   SDValue N = getValue(I.getOperand(0));
3412   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3413                                                         I.getType());
3414   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3415 }
3416 
3417 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3418   // FPToUI is never a no-op cast, no need to check
3419   SDValue N = getValue(I.getOperand(0));
3420   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3421                                                         I.getType());
3422   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3423 }
3424 
3425 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3426   // FPToSI is never a no-op cast, no need to check
3427   SDValue N = getValue(I.getOperand(0));
3428   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3429                                                         I.getType());
3430   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3431 }
3432 
3433 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3434   // UIToFP is never a no-op cast, no need to check
3435   SDValue N = getValue(I.getOperand(0));
3436   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3437                                                         I.getType());
3438   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3439 }
3440 
3441 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3442   // SIToFP is never a no-op cast, no need to check
3443   SDValue N = getValue(I.getOperand(0));
3444   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3445                                                         I.getType());
3446   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3447 }
3448 
3449 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3450   // What to do depends on the size of the integer and the size of the pointer.
3451   // We can either truncate, zero extend, or no-op, accordingly.
3452   SDValue N = getValue(I.getOperand(0));
3453   auto &TLI = DAG.getTargetLoweringInfo();
3454   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3455                                                         I.getType());
3456   EVT PtrMemVT =
3457       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3458   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3459   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3460   setValue(&I, N);
3461 }
3462 
3463 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3464   // What to do depends on the size of the integer and the size of the pointer.
3465   // We can either truncate, zero extend, or no-op, accordingly.
3466   SDValue N = getValue(I.getOperand(0));
3467   auto &TLI = DAG.getTargetLoweringInfo();
3468   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3469   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3470   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3471   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3472   setValue(&I, N);
3473 }
3474 
3475 void SelectionDAGBuilder::visitBitCast(const User &I) {
3476   SDValue N = getValue(I.getOperand(0));
3477   SDLoc dl = getCurSDLoc();
3478   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3479                                                         I.getType());
3480 
3481   // BitCast assures us that source and destination are the same size so this is
3482   // either a BITCAST or a no-op.
3483   if (DestVT != N.getValueType())
3484     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3485                              DestVT, N)); // convert types.
3486   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3487   // might fold any kind of constant expression to an integer constant and that
3488   // is not what we are looking for. Only recognize a bitcast of a genuine
3489   // constant integer as an opaque constant.
3490   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3491     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3492                                  /*isOpaque*/true));
3493   else
3494     setValue(&I, N);            // noop cast.
3495 }
3496 
3497 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3498   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3499   const Value *SV = I.getOperand(0);
3500   SDValue N = getValue(SV);
3501   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3502 
3503   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3504   unsigned DestAS = I.getType()->getPointerAddressSpace();
3505 
3506   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3507     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3508 
3509   setValue(&I, N);
3510 }
3511 
3512 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3513   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3514   SDValue InVec = getValue(I.getOperand(0));
3515   SDValue InVal = getValue(I.getOperand(1));
3516   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3517                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3518   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3519                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3520                            InVec, InVal, InIdx));
3521 }
3522 
3523 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3524   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3525   SDValue InVec = getValue(I.getOperand(0));
3526   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3527                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3528   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3529                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3530                            InVec, InIdx));
3531 }
3532 
3533 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3534   SDValue Src1 = getValue(I.getOperand(0));
3535   SDValue Src2 = getValue(I.getOperand(1));
3536   ArrayRef<int> Mask;
3537   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3538     Mask = SVI->getShuffleMask();
3539   else
3540     Mask = cast<ConstantExpr>(I).getShuffleMask();
3541   SDLoc DL = getCurSDLoc();
3542   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3543   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3544   EVT SrcVT = Src1.getValueType();
3545 
3546   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3547       VT.isScalableVector()) {
3548     // Canonical splat form of first element of first input vector.
3549     SDValue FirstElt =
3550         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3551                     DAG.getVectorIdxConstant(0, DL));
3552     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3553     return;
3554   }
3555 
3556   // For now, we only handle splats for scalable vectors.
3557   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3558   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3559   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3560 
3561   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3562   unsigned MaskNumElts = Mask.size();
3563 
3564   if (SrcNumElts == MaskNumElts) {
3565     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3566     return;
3567   }
3568 
3569   // Normalize the shuffle vector since mask and vector length don't match.
3570   if (SrcNumElts < MaskNumElts) {
3571     // Mask is longer than the source vectors. We can use concatenate vector to
3572     // make the mask and vectors lengths match.
3573 
3574     if (MaskNumElts % SrcNumElts == 0) {
3575       // Mask length is a multiple of the source vector length.
3576       // Check if the shuffle is some kind of concatenation of the input
3577       // vectors.
3578       unsigned NumConcat = MaskNumElts / SrcNumElts;
3579       bool IsConcat = true;
3580       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3581       for (unsigned i = 0; i != MaskNumElts; ++i) {
3582         int Idx = Mask[i];
3583         if (Idx < 0)
3584           continue;
3585         // Ensure the indices in each SrcVT sized piece are sequential and that
3586         // the same source is used for the whole piece.
3587         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3588             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3589              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3590           IsConcat = false;
3591           break;
3592         }
3593         // Remember which source this index came from.
3594         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3595       }
3596 
3597       // The shuffle is concatenating multiple vectors together. Just emit
3598       // a CONCAT_VECTORS operation.
3599       if (IsConcat) {
3600         SmallVector<SDValue, 8> ConcatOps;
3601         for (auto Src : ConcatSrcs) {
3602           if (Src < 0)
3603             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3604           else if (Src == 0)
3605             ConcatOps.push_back(Src1);
3606           else
3607             ConcatOps.push_back(Src2);
3608         }
3609         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3610         return;
3611       }
3612     }
3613 
3614     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3615     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3616     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3617                                     PaddedMaskNumElts);
3618 
3619     // Pad both vectors with undefs to make them the same length as the mask.
3620     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3621 
3622     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3623     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3624     MOps1[0] = Src1;
3625     MOps2[0] = Src2;
3626 
3627     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3628     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3629 
3630     // Readjust mask for new input vector length.
3631     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3632     for (unsigned i = 0; i != MaskNumElts; ++i) {
3633       int Idx = Mask[i];
3634       if (Idx >= (int)SrcNumElts)
3635         Idx -= SrcNumElts - PaddedMaskNumElts;
3636       MappedOps[i] = Idx;
3637     }
3638 
3639     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3640 
3641     // If the concatenated vector was padded, extract a subvector with the
3642     // correct number of elements.
3643     if (MaskNumElts != PaddedMaskNumElts)
3644       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3645                            DAG.getVectorIdxConstant(0, DL));
3646 
3647     setValue(&I, Result);
3648     return;
3649   }
3650 
3651   if (SrcNumElts > MaskNumElts) {
3652     // Analyze the access pattern of the vector to see if we can extract
3653     // two subvectors and do the shuffle.
3654     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3655     bool CanExtract = true;
3656     for (int Idx : Mask) {
3657       unsigned Input = 0;
3658       if (Idx < 0)
3659         continue;
3660 
3661       if (Idx >= (int)SrcNumElts) {
3662         Input = 1;
3663         Idx -= SrcNumElts;
3664       }
3665 
3666       // If all the indices come from the same MaskNumElts sized portion of
3667       // the sources we can use extract. Also make sure the extract wouldn't
3668       // extract past the end of the source.
3669       int NewStartIdx = alignDown(Idx, MaskNumElts);
3670       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3671           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3672         CanExtract = false;
3673       // Make sure we always update StartIdx as we use it to track if all
3674       // elements are undef.
3675       StartIdx[Input] = NewStartIdx;
3676     }
3677 
3678     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3679       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3680       return;
3681     }
3682     if (CanExtract) {
3683       // Extract appropriate subvector and generate a vector shuffle
3684       for (unsigned Input = 0; Input < 2; ++Input) {
3685         SDValue &Src = Input == 0 ? Src1 : Src2;
3686         if (StartIdx[Input] < 0)
3687           Src = DAG.getUNDEF(VT);
3688         else {
3689           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3690                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3691         }
3692       }
3693 
3694       // Calculate new mask.
3695       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3696       for (int &Idx : MappedOps) {
3697         if (Idx >= (int)SrcNumElts)
3698           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3699         else if (Idx >= 0)
3700           Idx -= StartIdx[0];
3701       }
3702 
3703       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3704       return;
3705     }
3706   }
3707 
3708   // We can't use either concat vectors or extract subvectors so fall back to
3709   // replacing the shuffle with extract and build vector.
3710   // to insert and build vector.
3711   EVT EltVT = VT.getVectorElementType();
3712   SmallVector<SDValue,8> Ops;
3713   for (int Idx : Mask) {
3714     SDValue Res;
3715 
3716     if (Idx < 0) {
3717       Res = DAG.getUNDEF(EltVT);
3718     } else {
3719       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3720       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3721 
3722       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3723                         DAG.getVectorIdxConstant(Idx, DL));
3724     }
3725 
3726     Ops.push_back(Res);
3727   }
3728 
3729   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3730 }
3731 
3732 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3733   ArrayRef<unsigned> Indices;
3734   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3735     Indices = IV->getIndices();
3736   else
3737     Indices = cast<ConstantExpr>(&I)->getIndices();
3738 
3739   const Value *Op0 = I.getOperand(0);
3740   const Value *Op1 = I.getOperand(1);
3741   Type *AggTy = I.getType();
3742   Type *ValTy = Op1->getType();
3743   bool IntoUndef = isa<UndefValue>(Op0);
3744   bool FromUndef = isa<UndefValue>(Op1);
3745 
3746   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3747 
3748   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3749   SmallVector<EVT, 4> AggValueVTs;
3750   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3751   SmallVector<EVT, 4> ValValueVTs;
3752   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3753 
3754   unsigned NumAggValues = AggValueVTs.size();
3755   unsigned NumValValues = ValValueVTs.size();
3756   SmallVector<SDValue, 4> Values(NumAggValues);
3757 
3758   // Ignore an insertvalue that produces an empty object
3759   if (!NumAggValues) {
3760     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3761     return;
3762   }
3763 
3764   SDValue Agg = getValue(Op0);
3765   unsigned i = 0;
3766   // Copy the beginning value(s) from the original aggregate.
3767   for (; i != LinearIndex; ++i)
3768     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3769                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3770   // Copy values from the inserted value(s).
3771   if (NumValValues) {
3772     SDValue Val = getValue(Op1);
3773     for (; i != LinearIndex + NumValValues; ++i)
3774       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3775                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3776   }
3777   // Copy remaining value(s) from the original aggregate.
3778   for (; i != NumAggValues; ++i)
3779     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3780                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3781 
3782   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3783                            DAG.getVTList(AggValueVTs), Values));
3784 }
3785 
3786 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3787   ArrayRef<unsigned> Indices;
3788   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3789     Indices = EV->getIndices();
3790   else
3791     Indices = cast<ConstantExpr>(&I)->getIndices();
3792 
3793   const Value *Op0 = I.getOperand(0);
3794   Type *AggTy = Op0->getType();
3795   Type *ValTy = I.getType();
3796   bool OutOfUndef = isa<UndefValue>(Op0);
3797 
3798   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3799 
3800   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3801   SmallVector<EVT, 4> ValValueVTs;
3802   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3803 
3804   unsigned NumValValues = ValValueVTs.size();
3805 
3806   // Ignore a extractvalue that produces an empty object
3807   if (!NumValValues) {
3808     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3809     return;
3810   }
3811 
3812   SmallVector<SDValue, 4> Values(NumValValues);
3813 
3814   SDValue Agg = getValue(Op0);
3815   // Copy out the selected value(s).
3816   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3817     Values[i - LinearIndex] =
3818       OutOfUndef ?
3819         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3820         SDValue(Agg.getNode(), Agg.getResNo() + i);
3821 
3822   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3823                            DAG.getVTList(ValValueVTs), Values));
3824 }
3825 
3826 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3827   Value *Op0 = I.getOperand(0);
3828   // Note that the pointer operand may be a vector of pointers. Take the scalar
3829   // element which holds a pointer.
3830   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3831   SDValue N = getValue(Op0);
3832   SDLoc dl = getCurSDLoc();
3833   auto &TLI = DAG.getTargetLoweringInfo();
3834 
3835   // Normalize Vector GEP - all scalar operands should be converted to the
3836   // splat vector.
3837   bool IsVectorGEP = I.getType()->isVectorTy();
3838   ElementCount VectorElementCount =
3839       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3840                   : ElementCount::getFixed(0);
3841 
3842   if (IsVectorGEP && !N.getValueType().isVector()) {
3843     LLVMContext &Context = *DAG.getContext();
3844     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3845     if (VectorElementCount.isScalable())
3846       N = DAG.getSplatVector(VT, dl, N);
3847     else
3848       N = DAG.getSplatBuildVector(VT, dl, N);
3849   }
3850 
3851   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3852        GTI != E; ++GTI) {
3853     const Value *Idx = GTI.getOperand();
3854     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3855       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3856       if (Field) {
3857         // N = N + Offset
3858         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3859 
3860         // In an inbounds GEP with an offset that is nonnegative even when
3861         // interpreted as signed, assume there is no unsigned overflow.
3862         SDNodeFlags Flags;
3863         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3864           Flags.setNoUnsignedWrap(true);
3865 
3866         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3867                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3868       }
3869     } else {
3870       // IdxSize is the width of the arithmetic according to IR semantics.
3871       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3872       // (and fix up the result later).
3873       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3874       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3875       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3876       // We intentionally mask away the high bits here; ElementSize may not
3877       // fit in IdxTy.
3878       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3879       bool ElementScalable = ElementSize.isScalable();
3880 
3881       // If this is a scalar constant or a splat vector of constants,
3882       // handle it quickly.
3883       const auto *C = dyn_cast<Constant>(Idx);
3884       if (C && isa<VectorType>(C->getType()))
3885         C = C->getSplatValue();
3886 
3887       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3888       if (CI && CI->isZero())
3889         continue;
3890       if (CI && !ElementScalable) {
3891         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3892         LLVMContext &Context = *DAG.getContext();
3893         SDValue OffsVal;
3894         if (IsVectorGEP)
3895           OffsVal = DAG.getConstant(
3896               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3897         else
3898           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3899 
3900         // In an inbounds GEP with an offset that is nonnegative even when
3901         // interpreted as signed, assume there is no unsigned overflow.
3902         SDNodeFlags Flags;
3903         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3904           Flags.setNoUnsignedWrap(true);
3905 
3906         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3907 
3908         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3909         continue;
3910       }
3911 
3912       // N = N + Idx * ElementMul;
3913       SDValue IdxN = getValue(Idx);
3914 
3915       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3916         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3917                                   VectorElementCount);
3918         if (VectorElementCount.isScalable())
3919           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3920         else
3921           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3922       }
3923 
3924       // If the index is smaller or larger than intptr_t, truncate or extend
3925       // it.
3926       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3927 
3928       if (ElementScalable) {
3929         EVT VScaleTy = N.getValueType().getScalarType();
3930         SDValue VScale = DAG.getNode(
3931             ISD::VSCALE, dl, VScaleTy,
3932             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3933         if (IsVectorGEP)
3934           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3935         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3936       } else {
3937         // If this is a multiply by a power of two, turn it into a shl
3938         // immediately.  This is a very common case.
3939         if (ElementMul != 1) {
3940           if (ElementMul.isPowerOf2()) {
3941             unsigned Amt = ElementMul.logBase2();
3942             IdxN = DAG.getNode(ISD::SHL, dl,
3943                                N.getValueType(), IdxN,
3944                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3945           } else {
3946             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3947                                             IdxN.getValueType());
3948             IdxN = DAG.getNode(ISD::MUL, dl,
3949                                N.getValueType(), IdxN, Scale);
3950           }
3951         }
3952       }
3953 
3954       N = DAG.getNode(ISD::ADD, dl,
3955                       N.getValueType(), N, IdxN);
3956     }
3957   }
3958 
3959   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3960   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3961   if (IsVectorGEP) {
3962     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3963     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3964   }
3965 
3966   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3967     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3968 
3969   setValue(&I, N);
3970 }
3971 
3972 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3973   // If this is a fixed sized alloca in the entry block of the function,
3974   // allocate it statically on the stack.
3975   if (FuncInfo.StaticAllocaMap.count(&I))
3976     return;   // getValue will auto-populate this.
3977 
3978   SDLoc dl = getCurSDLoc();
3979   Type *Ty = I.getAllocatedType();
3980   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3981   auto &DL = DAG.getDataLayout();
3982   uint64_t TySize = DL.getTypeAllocSize(Ty);
3983   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3984 
3985   SDValue AllocSize = getValue(I.getArraySize());
3986 
3987   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3988   if (AllocSize.getValueType() != IntPtr)
3989     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3990 
3991   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3992                           AllocSize,
3993                           DAG.getConstant(TySize, dl, IntPtr));
3994 
3995   // Handle alignment.  If the requested alignment is less than or equal to
3996   // the stack alignment, ignore it.  If the size is greater than or equal to
3997   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3998   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3999   if (*Alignment <= StackAlign)
4000     Alignment = None;
4001 
4002   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4003   // Round the size of the allocation up to the stack alignment size
4004   // by add SA-1 to the size. This doesn't overflow because we're computing
4005   // an address inside an alloca.
4006   SDNodeFlags Flags;
4007   Flags.setNoUnsignedWrap(true);
4008   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4009                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4010 
4011   // Mask out the low bits for alignment purposes.
4012   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4013                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4014 
4015   SDValue Ops[] = {
4016       getRoot(), AllocSize,
4017       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4018   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4019   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4020   setValue(&I, DSA);
4021   DAG.setRoot(DSA.getValue(1));
4022 
4023   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4024 }
4025 
4026 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4027   if (I.isAtomic())
4028     return visitAtomicLoad(I);
4029 
4030   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4031   const Value *SV = I.getOperand(0);
4032   if (TLI.supportSwiftError()) {
4033     // Swifterror values can come from either a function parameter with
4034     // swifterror attribute or an alloca with swifterror attribute.
4035     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4036       if (Arg->hasSwiftErrorAttr())
4037         return visitLoadFromSwiftError(I);
4038     }
4039 
4040     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4041       if (Alloca->isSwiftError())
4042         return visitLoadFromSwiftError(I);
4043     }
4044   }
4045 
4046   SDValue Ptr = getValue(SV);
4047 
4048   Type *Ty = I.getType();
4049   Align Alignment = I.getAlign();
4050 
4051   AAMDNodes AAInfo;
4052   I.getAAMetadata(AAInfo);
4053   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4054 
4055   SmallVector<EVT, 4> ValueVTs, MemVTs;
4056   SmallVector<uint64_t, 4> Offsets;
4057   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4058   unsigned NumValues = ValueVTs.size();
4059   if (NumValues == 0)
4060     return;
4061 
4062   bool isVolatile = I.isVolatile();
4063 
4064   SDValue Root;
4065   bool ConstantMemory = false;
4066   if (isVolatile)
4067     // Serialize volatile loads with other side effects.
4068     Root = getRoot();
4069   else if (NumValues > MaxParallelChains)
4070     Root = getMemoryRoot();
4071   else if (AA &&
4072            AA->pointsToConstantMemory(MemoryLocation(
4073                SV,
4074                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4075                AAInfo))) {
4076     // Do not serialize (non-volatile) loads of constant memory with anything.
4077     Root = DAG.getEntryNode();
4078     ConstantMemory = true;
4079   } else {
4080     // Do not serialize non-volatile loads against each other.
4081     Root = DAG.getRoot();
4082   }
4083 
4084   SDLoc dl = getCurSDLoc();
4085 
4086   if (isVolatile)
4087     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4088 
4089   // An aggregate load cannot wrap around the address space, so offsets to its
4090   // parts don't wrap either.
4091   SDNodeFlags Flags;
4092   Flags.setNoUnsignedWrap(true);
4093 
4094   SmallVector<SDValue, 4> Values(NumValues);
4095   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4096   EVT PtrVT = Ptr.getValueType();
4097 
4098   MachineMemOperand::Flags MMOFlags
4099     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4100 
4101   unsigned ChainI = 0;
4102   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4103     // Serializing loads here may result in excessive register pressure, and
4104     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4105     // could recover a bit by hoisting nodes upward in the chain by recognizing
4106     // they are side-effect free or do not alias. The optimizer should really
4107     // avoid this case by converting large object/array copies to llvm.memcpy
4108     // (MaxParallelChains should always remain as failsafe).
4109     if (ChainI == MaxParallelChains) {
4110       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4111       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4112                                   makeArrayRef(Chains.data(), ChainI));
4113       Root = Chain;
4114       ChainI = 0;
4115     }
4116     SDValue A = DAG.getNode(ISD::ADD, dl,
4117                             PtrVT, Ptr,
4118                             DAG.getConstant(Offsets[i], dl, PtrVT),
4119                             Flags);
4120 
4121     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4122                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4123                             MMOFlags, AAInfo, Ranges);
4124     Chains[ChainI] = L.getValue(1);
4125 
4126     if (MemVTs[i] != ValueVTs[i])
4127       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4128 
4129     Values[i] = L;
4130   }
4131 
4132   if (!ConstantMemory) {
4133     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4134                                 makeArrayRef(Chains.data(), ChainI));
4135     if (isVolatile)
4136       DAG.setRoot(Chain);
4137     else
4138       PendingLoads.push_back(Chain);
4139   }
4140 
4141   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4142                            DAG.getVTList(ValueVTs), Values));
4143 }
4144 
4145 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4146   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4147          "call visitStoreToSwiftError when backend supports swifterror");
4148 
4149   SmallVector<EVT, 4> ValueVTs;
4150   SmallVector<uint64_t, 4> Offsets;
4151   const Value *SrcV = I.getOperand(0);
4152   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4153                   SrcV->getType(), ValueVTs, &Offsets);
4154   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4155          "expect a single EVT for swifterror");
4156 
4157   SDValue Src = getValue(SrcV);
4158   // Create a virtual register, then update the virtual register.
4159   Register VReg =
4160       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4161   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4162   // Chain can be getRoot or getControlRoot.
4163   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4164                                       SDValue(Src.getNode(), Src.getResNo()));
4165   DAG.setRoot(CopyNode);
4166 }
4167 
4168 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4169   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4170          "call visitLoadFromSwiftError when backend supports swifterror");
4171 
4172   assert(!I.isVolatile() &&
4173          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4174          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4175          "Support volatile, non temporal, invariant for load_from_swift_error");
4176 
4177   const Value *SV = I.getOperand(0);
4178   Type *Ty = I.getType();
4179   AAMDNodes AAInfo;
4180   I.getAAMetadata(AAInfo);
4181   assert(
4182       (!AA ||
4183        !AA->pointsToConstantMemory(MemoryLocation(
4184            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4185            AAInfo))) &&
4186       "load_from_swift_error should not be constant memory");
4187 
4188   SmallVector<EVT, 4> ValueVTs;
4189   SmallVector<uint64_t, 4> Offsets;
4190   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4191                   ValueVTs, &Offsets);
4192   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4193          "expect a single EVT for swifterror");
4194 
4195   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4196   SDValue L = DAG.getCopyFromReg(
4197       getRoot(), getCurSDLoc(),
4198       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4199 
4200   setValue(&I, L);
4201 }
4202 
4203 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4204   if (I.isAtomic())
4205     return visitAtomicStore(I);
4206 
4207   const Value *SrcV = I.getOperand(0);
4208   const Value *PtrV = I.getOperand(1);
4209 
4210   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4211   if (TLI.supportSwiftError()) {
4212     // Swifterror values can come from either a function parameter with
4213     // swifterror attribute or an alloca with swifterror attribute.
4214     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4215       if (Arg->hasSwiftErrorAttr())
4216         return visitStoreToSwiftError(I);
4217     }
4218 
4219     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4220       if (Alloca->isSwiftError())
4221         return visitStoreToSwiftError(I);
4222     }
4223   }
4224 
4225   SmallVector<EVT, 4> ValueVTs, MemVTs;
4226   SmallVector<uint64_t, 4> Offsets;
4227   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4228                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4229   unsigned NumValues = ValueVTs.size();
4230   if (NumValues == 0)
4231     return;
4232 
4233   // Get the lowered operands. Note that we do this after
4234   // checking if NumResults is zero, because with zero results
4235   // the operands won't have values in the map.
4236   SDValue Src = getValue(SrcV);
4237   SDValue Ptr = getValue(PtrV);
4238 
4239   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4240   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4241   SDLoc dl = getCurSDLoc();
4242   Align Alignment = I.getAlign();
4243   AAMDNodes AAInfo;
4244   I.getAAMetadata(AAInfo);
4245 
4246   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4247 
4248   // An aggregate load cannot wrap around the address space, so offsets to its
4249   // parts don't wrap either.
4250   SDNodeFlags Flags;
4251   Flags.setNoUnsignedWrap(true);
4252 
4253   unsigned ChainI = 0;
4254   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4255     // See visitLoad comments.
4256     if (ChainI == MaxParallelChains) {
4257       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4258                                   makeArrayRef(Chains.data(), ChainI));
4259       Root = Chain;
4260       ChainI = 0;
4261     }
4262     SDValue Add =
4263         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4264     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4265     if (MemVTs[i] != ValueVTs[i])
4266       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4267     SDValue St =
4268         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4269                      Alignment, MMOFlags, AAInfo);
4270     Chains[ChainI] = St;
4271   }
4272 
4273   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4274                                   makeArrayRef(Chains.data(), ChainI));
4275   DAG.setRoot(StoreNode);
4276 }
4277 
4278 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4279                                            bool IsCompressing) {
4280   SDLoc sdl = getCurSDLoc();
4281 
4282   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4283                                MaybeAlign &Alignment) {
4284     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4285     Src0 = I.getArgOperand(0);
4286     Ptr = I.getArgOperand(1);
4287     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4288     Mask = I.getArgOperand(3);
4289   };
4290   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4291                                     MaybeAlign &Alignment) {
4292     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4293     Src0 = I.getArgOperand(0);
4294     Ptr = I.getArgOperand(1);
4295     Mask = I.getArgOperand(2);
4296     Alignment = None;
4297   };
4298 
4299   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4300   MaybeAlign Alignment;
4301   if (IsCompressing)
4302     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4303   else
4304     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4305 
4306   SDValue Ptr = getValue(PtrOperand);
4307   SDValue Src0 = getValue(Src0Operand);
4308   SDValue Mask = getValue(MaskOperand);
4309   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4310 
4311   EVT VT = Src0.getValueType();
4312   if (!Alignment)
4313     Alignment = DAG.getEVTAlign(VT);
4314 
4315   AAMDNodes AAInfo;
4316   I.getAAMetadata(AAInfo);
4317 
4318   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4319       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4320       // TODO: Make MachineMemOperands aware of scalable
4321       // vectors.
4322       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4323   SDValue StoreNode =
4324       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4325                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4326   DAG.setRoot(StoreNode);
4327   setValue(&I, StoreNode);
4328 }
4329 
4330 // Get a uniform base for the Gather/Scatter intrinsic.
4331 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4332 // We try to represent it as a base pointer + vector of indices.
4333 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4334 // The first operand of the GEP may be a single pointer or a vector of pointers
4335 // Example:
4336 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4337 //  or
4338 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4339 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4340 //
4341 // When the first GEP operand is a single pointer - it is the uniform base we
4342 // are looking for. If first operand of the GEP is a splat vector - we
4343 // extract the splat value and use it as a uniform base.
4344 // In all other cases the function returns 'false'.
4345 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4346                            ISD::MemIndexType &IndexType, SDValue &Scale,
4347                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4348   SelectionDAG& DAG = SDB->DAG;
4349   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4350   const DataLayout &DL = DAG.getDataLayout();
4351 
4352   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4353 
4354   // Handle splat constant pointer.
4355   if (auto *C = dyn_cast<Constant>(Ptr)) {
4356     C = C->getSplatValue();
4357     if (!C)
4358       return false;
4359 
4360     Base = SDB->getValue(C);
4361 
4362     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4363     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4364     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4365     IndexType = ISD::SIGNED_SCALED;
4366     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4367     return true;
4368   }
4369 
4370   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4371   if (!GEP || GEP->getParent() != CurBB)
4372     return false;
4373 
4374   if (GEP->getNumOperands() != 2)
4375     return false;
4376 
4377   const Value *BasePtr = GEP->getPointerOperand();
4378   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4379 
4380   // Make sure the base is scalar and the index is a vector.
4381   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4382     return false;
4383 
4384   Base = SDB->getValue(BasePtr);
4385   Index = SDB->getValue(IndexVal);
4386   IndexType = ISD::SIGNED_SCALED;
4387   Scale = DAG.getTargetConstant(
4388               DL.getTypeAllocSize(GEP->getResultElementType()),
4389               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4390   return true;
4391 }
4392 
4393 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4394   SDLoc sdl = getCurSDLoc();
4395 
4396   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4397   const Value *Ptr = I.getArgOperand(1);
4398   SDValue Src0 = getValue(I.getArgOperand(0));
4399   SDValue Mask = getValue(I.getArgOperand(3));
4400   EVT VT = Src0.getValueType();
4401   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4402                         ->getMaybeAlignValue()
4403                         .getValueOr(DAG.getEVTAlign(VT));
4404   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4405 
4406   AAMDNodes AAInfo;
4407   I.getAAMetadata(AAInfo);
4408 
4409   SDValue Base;
4410   SDValue Index;
4411   ISD::MemIndexType IndexType;
4412   SDValue Scale;
4413   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4414                                     I.getParent());
4415 
4416   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4417   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4418       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4419       // TODO: Make MachineMemOperands aware of scalable
4420       // vectors.
4421       MemoryLocation::UnknownSize, Alignment, AAInfo);
4422   if (!UniformBase) {
4423     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4424     Index = getValue(Ptr);
4425     IndexType = ISD::SIGNED_UNSCALED;
4426     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4427   }
4428 
4429   EVT IdxVT = Index.getValueType();
4430   EVT EltTy = IdxVT.getVectorElementType();
4431   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4432     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4433     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4434   }
4435 
4436   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4437   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4438                                          Ops, MMO, IndexType, false);
4439   DAG.setRoot(Scatter);
4440   setValue(&I, Scatter);
4441 }
4442 
4443 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4444   SDLoc sdl = getCurSDLoc();
4445 
4446   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4447                               MaybeAlign &Alignment) {
4448     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4449     Ptr = I.getArgOperand(0);
4450     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4451     Mask = I.getArgOperand(2);
4452     Src0 = I.getArgOperand(3);
4453   };
4454   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4455                                  MaybeAlign &Alignment) {
4456     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4457     Ptr = I.getArgOperand(0);
4458     Alignment = None;
4459     Mask = I.getArgOperand(1);
4460     Src0 = I.getArgOperand(2);
4461   };
4462 
4463   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4464   MaybeAlign Alignment;
4465   if (IsExpanding)
4466     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4467   else
4468     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4469 
4470   SDValue Ptr = getValue(PtrOperand);
4471   SDValue Src0 = getValue(Src0Operand);
4472   SDValue Mask = getValue(MaskOperand);
4473   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4474 
4475   EVT VT = Src0.getValueType();
4476   if (!Alignment)
4477     Alignment = DAG.getEVTAlign(VT);
4478 
4479   AAMDNodes AAInfo;
4480   I.getAAMetadata(AAInfo);
4481   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4482 
4483   // Do not serialize masked loads of constant memory with anything.
4484   MemoryLocation ML;
4485   if (VT.isScalableVector())
4486     ML = MemoryLocation::getAfter(PtrOperand);
4487   else
4488     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4489                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4490                            AAInfo);
4491   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4492 
4493   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4494 
4495   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4496       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4497       // TODO: Make MachineMemOperands aware of scalable
4498       // vectors.
4499       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4500 
4501   SDValue Load =
4502       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4503                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4504   if (AddToChain)
4505     PendingLoads.push_back(Load.getValue(1));
4506   setValue(&I, Load);
4507 }
4508 
4509 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4510   SDLoc sdl = getCurSDLoc();
4511 
4512   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4513   const Value *Ptr = I.getArgOperand(0);
4514   SDValue Src0 = getValue(I.getArgOperand(3));
4515   SDValue Mask = getValue(I.getArgOperand(2));
4516 
4517   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4518   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4519   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4520                         ->getMaybeAlignValue()
4521                         .getValueOr(DAG.getEVTAlign(VT));
4522 
4523   AAMDNodes AAInfo;
4524   I.getAAMetadata(AAInfo);
4525   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4526 
4527   SDValue Root = DAG.getRoot();
4528   SDValue Base;
4529   SDValue Index;
4530   ISD::MemIndexType IndexType;
4531   SDValue Scale;
4532   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4533                                     I.getParent());
4534   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4535   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4536       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4537       // TODO: Make MachineMemOperands aware of scalable
4538       // vectors.
4539       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4540 
4541   if (!UniformBase) {
4542     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4543     Index = getValue(Ptr);
4544     IndexType = ISD::SIGNED_UNSCALED;
4545     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4546   }
4547 
4548   EVT IdxVT = Index.getValueType();
4549   EVT EltTy = IdxVT.getVectorElementType();
4550   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4551     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4552     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4553   }
4554 
4555   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4556   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4557                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4558 
4559   PendingLoads.push_back(Gather.getValue(1));
4560   setValue(&I, Gather);
4561 }
4562 
4563 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4564   SDLoc dl = getCurSDLoc();
4565   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4566   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4567   SyncScope::ID SSID = I.getSyncScopeID();
4568 
4569   SDValue InChain = getRoot();
4570 
4571   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4572   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4573 
4574   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4575   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4576 
4577   MachineFunction &MF = DAG.getMachineFunction();
4578   MachineMemOperand *MMO = MF.getMachineMemOperand(
4579       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4580       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4581       FailureOrdering);
4582 
4583   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4584                                    dl, MemVT, VTs, InChain,
4585                                    getValue(I.getPointerOperand()),
4586                                    getValue(I.getCompareOperand()),
4587                                    getValue(I.getNewValOperand()), MMO);
4588 
4589   SDValue OutChain = L.getValue(2);
4590 
4591   setValue(&I, L);
4592   DAG.setRoot(OutChain);
4593 }
4594 
4595 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4596   SDLoc dl = getCurSDLoc();
4597   ISD::NodeType NT;
4598   switch (I.getOperation()) {
4599   default: llvm_unreachable("Unknown atomicrmw operation");
4600   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4601   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4602   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4603   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4604   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4605   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4606   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4607   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4608   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4609   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4610   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4611   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4612   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4613   }
4614   AtomicOrdering Ordering = I.getOrdering();
4615   SyncScope::ID SSID = I.getSyncScopeID();
4616 
4617   SDValue InChain = getRoot();
4618 
4619   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4620   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4621   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4622 
4623   MachineFunction &MF = DAG.getMachineFunction();
4624   MachineMemOperand *MMO = MF.getMachineMemOperand(
4625       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4626       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4627 
4628   SDValue L =
4629     DAG.getAtomic(NT, dl, MemVT, InChain,
4630                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4631                   MMO);
4632 
4633   SDValue OutChain = L.getValue(1);
4634 
4635   setValue(&I, L);
4636   DAG.setRoot(OutChain);
4637 }
4638 
4639 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4640   SDLoc dl = getCurSDLoc();
4641   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4642   SDValue Ops[3];
4643   Ops[0] = getRoot();
4644   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4645                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4646   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4647                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4648   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4649 }
4650 
4651 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4652   SDLoc dl = getCurSDLoc();
4653   AtomicOrdering Order = I.getOrdering();
4654   SyncScope::ID SSID = I.getSyncScopeID();
4655 
4656   SDValue InChain = getRoot();
4657 
4658   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4659   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4660   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4661 
4662   if (!TLI.supportsUnalignedAtomics() &&
4663       I.getAlignment() < MemVT.getSizeInBits() / 8)
4664     report_fatal_error("Cannot generate unaligned atomic load");
4665 
4666   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4667 
4668   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4669       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4670       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4671 
4672   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4673 
4674   SDValue Ptr = getValue(I.getPointerOperand());
4675 
4676   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4677     // TODO: Once this is better exercised by tests, it should be merged with
4678     // the normal path for loads to prevent future divergence.
4679     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4680     if (MemVT != VT)
4681       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4682 
4683     setValue(&I, L);
4684     SDValue OutChain = L.getValue(1);
4685     if (!I.isUnordered())
4686       DAG.setRoot(OutChain);
4687     else
4688       PendingLoads.push_back(OutChain);
4689     return;
4690   }
4691 
4692   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4693                             Ptr, MMO);
4694 
4695   SDValue OutChain = L.getValue(1);
4696   if (MemVT != VT)
4697     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4698 
4699   setValue(&I, L);
4700   DAG.setRoot(OutChain);
4701 }
4702 
4703 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4704   SDLoc dl = getCurSDLoc();
4705 
4706   AtomicOrdering Ordering = I.getOrdering();
4707   SyncScope::ID SSID = I.getSyncScopeID();
4708 
4709   SDValue InChain = getRoot();
4710 
4711   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4712   EVT MemVT =
4713       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4714 
4715   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4716     report_fatal_error("Cannot generate unaligned atomic store");
4717 
4718   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4719 
4720   MachineFunction &MF = DAG.getMachineFunction();
4721   MachineMemOperand *MMO = MF.getMachineMemOperand(
4722       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4723       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4724 
4725   SDValue Val = getValue(I.getValueOperand());
4726   if (Val.getValueType() != MemVT)
4727     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4728   SDValue Ptr = getValue(I.getPointerOperand());
4729 
4730   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4731     // TODO: Once this is better exercised by tests, it should be merged with
4732     // the normal path for stores to prevent future divergence.
4733     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4734     DAG.setRoot(S);
4735     return;
4736   }
4737   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4738                                    Ptr, Val, MMO);
4739 
4740 
4741   DAG.setRoot(OutChain);
4742 }
4743 
4744 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4745 /// node.
4746 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4747                                                unsigned Intrinsic) {
4748   // Ignore the callsite's attributes. A specific call site may be marked with
4749   // readnone, but the lowering code will expect the chain based on the
4750   // definition.
4751   const Function *F = I.getCalledFunction();
4752   bool HasChain = !F->doesNotAccessMemory();
4753   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4754 
4755   // Build the operand list.
4756   SmallVector<SDValue, 8> Ops;
4757   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4758     if (OnlyLoad) {
4759       // We don't need to serialize loads against other loads.
4760       Ops.push_back(DAG.getRoot());
4761     } else {
4762       Ops.push_back(getRoot());
4763     }
4764   }
4765 
4766   // Info is set by getTgtMemInstrinsic
4767   TargetLowering::IntrinsicInfo Info;
4768   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4769   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4770                                                DAG.getMachineFunction(),
4771                                                Intrinsic);
4772 
4773   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4774   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4775       Info.opc == ISD::INTRINSIC_W_CHAIN)
4776     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4777                                         TLI.getPointerTy(DAG.getDataLayout())));
4778 
4779   // Add all operands of the call to the operand list.
4780   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4781     const Value *Arg = I.getArgOperand(i);
4782     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4783       Ops.push_back(getValue(Arg));
4784       continue;
4785     }
4786 
4787     // Use TargetConstant instead of a regular constant for immarg.
4788     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4789     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4790       assert(CI->getBitWidth() <= 64 &&
4791              "large intrinsic immediates not handled");
4792       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4793     } else {
4794       Ops.push_back(
4795           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4796     }
4797   }
4798 
4799   SmallVector<EVT, 4> ValueVTs;
4800   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4801 
4802   if (HasChain)
4803     ValueVTs.push_back(MVT::Other);
4804 
4805   SDVTList VTs = DAG.getVTList(ValueVTs);
4806 
4807   // Propagate fast-math-flags from IR to node(s).
4808   SDNodeFlags Flags;
4809   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4810     Flags.copyFMF(*FPMO);
4811   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4812 
4813   // Create the node.
4814   SDValue Result;
4815   if (IsTgtIntrinsic) {
4816     // This is target intrinsic that touches memory
4817     AAMDNodes AAInfo;
4818     I.getAAMetadata(AAInfo);
4819     Result =
4820         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4821                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4822                                 Info.align, Info.flags, Info.size, AAInfo);
4823   } else if (!HasChain) {
4824     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4825   } else if (!I.getType()->isVoidTy()) {
4826     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4827   } else {
4828     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4829   }
4830 
4831   if (HasChain) {
4832     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4833     if (OnlyLoad)
4834       PendingLoads.push_back(Chain);
4835     else
4836       DAG.setRoot(Chain);
4837   }
4838 
4839   if (!I.getType()->isVoidTy()) {
4840     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4841       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4842       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4843     } else
4844       Result = lowerRangeToAssertZExt(DAG, I, Result);
4845 
4846     MaybeAlign Alignment = I.getRetAlign();
4847     if (!Alignment)
4848       Alignment = F->getAttributes().getRetAlignment();
4849     // Insert `assertalign` node if there's an alignment.
4850     if (InsertAssertAlign && Alignment) {
4851       Result =
4852           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4853     }
4854 
4855     setValue(&I, Result);
4856   }
4857 }
4858 
4859 /// GetSignificand - Get the significand and build it into a floating-point
4860 /// number with exponent of 1:
4861 ///
4862 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4863 ///
4864 /// where Op is the hexadecimal representation of floating point value.
4865 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4866   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4867                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4868   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4869                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4870   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4871 }
4872 
4873 /// GetExponent - Get the exponent:
4874 ///
4875 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4876 ///
4877 /// where Op is the hexadecimal representation of floating point value.
4878 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4879                            const TargetLowering &TLI, const SDLoc &dl) {
4880   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4881                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4882   SDValue t1 = DAG.getNode(
4883       ISD::SRL, dl, MVT::i32, t0,
4884       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4885   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4886                            DAG.getConstant(127, dl, MVT::i32));
4887   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4888 }
4889 
4890 /// getF32Constant - Get 32-bit floating point constant.
4891 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4892                               const SDLoc &dl) {
4893   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4894                            MVT::f32);
4895 }
4896 
4897 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4898                                        SelectionDAG &DAG) {
4899   // TODO: What fast-math-flags should be set on the floating-point nodes?
4900 
4901   //   IntegerPartOfX = ((int32_t)(t0);
4902   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4903 
4904   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4905   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4906   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4907 
4908   //   IntegerPartOfX <<= 23;
4909   IntegerPartOfX = DAG.getNode(
4910       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4911       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4912                                   DAG.getDataLayout())));
4913 
4914   SDValue TwoToFractionalPartOfX;
4915   if (LimitFloatPrecision <= 6) {
4916     // For floating-point precision of 6:
4917     //
4918     //   TwoToFractionalPartOfX =
4919     //     0.997535578f +
4920     //       (0.735607626f + 0.252464424f * x) * x;
4921     //
4922     // error 0.0144103317, which is 6 bits
4923     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4924                              getF32Constant(DAG, 0x3e814304, dl));
4925     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4926                              getF32Constant(DAG, 0x3f3c50c8, dl));
4927     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4928     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4929                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4930   } else if (LimitFloatPrecision <= 12) {
4931     // For floating-point precision of 12:
4932     //
4933     //   TwoToFractionalPartOfX =
4934     //     0.999892986f +
4935     //       (0.696457318f +
4936     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4937     //
4938     // error 0.000107046256, which is 13 to 14 bits
4939     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4940                              getF32Constant(DAG, 0x3da235e3, dl));
4941     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4942                              getF32Constant(DAG, 0x3e65b8f3, dl));
4943     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4944     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4945                              getF32Constant(DAG, 0x3f324b07, dl));
4946     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4947     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4948                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4949   } else { // LimitFloatPrecision <= 18
4950     // For floating-point precision of 18:
4951     //
4952     //   TwoToFractionalPartOfX =
4953     //     0.999999982f +
4954     //       (0.693148872f +
4955     //         (0.240227044f +
4956     //           (0.554906021e-1f +
4957     //             (0.961591928e-2f +
4958     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4959     // error 2.47208000*10^(-7), which is better than 18 bits
4960     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4961                              getF32Constant(DAG, 0x3924b03e, dl));
4962     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4963                              getF32Constant(DAG, 0x3ab24b87, dl));
4964     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4965     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4966                              getF32Constant(DAG, 0x3c1d8c17, dl));
4967     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4968     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4969                              getF32Constant(DAG, 0x3d634a1d, dl));
4970     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4971     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4972                              getF32Constant(DAG, 0x3e75fe14, dl));
4973     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4974     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4975                               getF32Constant(DAG, 0x3f317234, dl));
4976     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4977     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4978                                          getF32Constant(DAG, 0x3f800000, dl));
4979   }
4980 
4981   // Add the exponent into the result in integer domain.
4982   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4983   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4984                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4985 }
4986 
4987 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4988 /// limited-precision mode.
4989 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4990                          const TargetLowering &TLI, SDNodeFlags Flags) {
4991   if (Op.getValueType() == MVT::f32 &&
4992       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4993 
4994     // Put the exponent in the right bit position for later addition to the
4995     // final result:
4996     //
4997     // t0 = Op * log2(e)
4998 
4999     // TODO: What fast-math-flags should be set here?
5000     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5001                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5002     return getLimitedPrecisionExp2(t0, dl, DAG);
5003   }
5004 
5005   // No special expansion.
5006   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5007 }
5008 
5009 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5010 /// limited-precision mode.
5011 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5012                          const TargetLowering &TLI, SDNodeFlags Flags) {
5013   // TODO: What fast-math-flags should be set on the floating-point nodes?
5014 
5015   if (Op.getValueType() == MVT::f32 &&
5016       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5017     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5018 
5019     // Scale the exponent by log(2).
5020     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5021     SDValue LogOfExponent =
5022         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5023                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5024 
5025     // Get the significand and build it into a floating-point number with
5026     // exponent of 1.
5027     SDValue X = GetSignificand(DAG, Op1, dl);
5028 
5029     SDValue LogOfMantissa;
5030     if (LimitFloatPrecision <= 6) {
5031       // For floating-point precision of 6:
5032       //
5033       //   LogofMantissa =
5034       //     -1.1609546f +
5035       //       (1.4034025f - 0.23903021f * x) * x;
5036       //
5037       // error 0.0034276066, which is better than 8 bits
5038       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5039                                getF32Constant(DAG, 0xbe74c456, dl));
5040       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5041                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5042       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5043       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5044                                   getF32Constant(DAG, 0x3f949a29, dl));
5045     } else if (LimitFloatPrecision <= 12) {
5046       // For floating-point precision of 12:
5047       //
5048       //   LogOfMantissa =
5049       //     -1.7417939f +
5050       //       (2.8212026f +
5051       //         (-1.4699568f +
5052       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5053       //
5054       // error 0.000061011436, which is 14 bits
5055       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5056                                getF32Constant(DAG, 0xbd67b6d6, dl));
5057       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5058                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5059       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5060       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5061                                getF32Constant(DAG, 0x3fbc278b, dl));
5062       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5063       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5064                                getF32Constant(DAG, 0x40348e95, dl));
5065       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5066       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5067                                   getF32Constant(DAG, 0x3fdef31a, dl));
5068     } else { // LimitFloatPrecision <= 18
5069       // For floating-point precision of 18:
5070       //
5071       //   LogOfMantissa =
5072       //     -2.1072184f +
5073       //       (4.2372794f +
5074       //         (-3.7029485f +
5075       //           (2.2781945f +
5076       //             (-0.87823314f +
5077       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5078       //
5079       // error 0.0000023660568, which is better than 18 bits
5080       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5081                                getF32Constant(DAG, 0xbc91e5ac, dl));
5082       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5083                                getF32Constant(DAG, 0x3e4350aa, dl));
5084       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5085       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5086                                getF32Constant(DAG, 0x3f60d3e3, dl));
5087       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5088       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5089                                getF32Constant(DAG, 0x4011cdf0, dl));
5090       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5091       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5092                                getF32Constant(DAG, 0x406cfd1c, dl));
5093       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5094       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5095                                getF32Constant(DAG, 0x408797cb, dl));
5096       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5097       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5098                                   getF32Constant(DAG, 0x4006dcab, dl));
5099     }
5100 
5101     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5102   }
5103 
5104   // No special expansion.
5105   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5106 }
5107 
5108 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5109 /// limited-precision mode.
5110 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5111                           const TargetLowering &TLI, SDNodeFlags Flags) {
5112   // TODO: What fast-math-flags should be set on the floating-point nodes?
5113 
5114   if (Op.getValueType() == MVT::f32 &&
5115       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5116     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5117 
5118     // Get the exponent.
5119     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5120 
5121     // Get the significand and build it into a floating-point number with
5122     // exponent of 1.
5123     SDValue X = GetSignificand(DAG, Op1, dl);
5124 
5125     // Different possible minimax approximations of significand in
5126     // floating-point for various degrees of accuracy over [1,2].
5127     SDValue Log2ofMantissa;
5128     if (LimitFloatPrecision <= 6) {
5129       // For floating-point precision of 6:
5130       //
5131       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5132       //
5133       // error 0.0049451742, which is more than 7 bits
5134       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5135                                getF32Constant(DAG, 0xbeb08fe0, dl));
5136       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5137                                getF32Constant(DAG, 0x40019463, dl));
5138       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5139       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5140                                    getF32Constant(DAG, 0x3fd6633d, dl));
5141     } else if (LimitFloatPrecision <= 12) {
5142       // For floating-point precision of 12:
5143       //
5144       //   Log2ofMantissa =
5145       //     -2.51285454f +
5146       //       (4.07009056f +
5147       //         (-2.12067489f +
5148       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5149       //
5150       // error 0.0000876136000, which is better than 13 bits
5151       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5152                                getF32Constant(DAG, 0xbda7262e, dl));
5153       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5154                                getF32Constant(DAG, 0x3f25280b, dl));
5155       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5156       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5157                                getF32Constant(DAG, 0x4007b923, dl));
5158       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5159       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5160                                getF32Constant(DAG, 0x40823e2f, dl));
5161       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5162       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5163                                    getF32Constant(DAG, 0x4020d29c, dl));
5164     } else { // LimitFloatPrecision <= 18
5165       // For floating-point precision of 18:
5166       //
5167       //   Log2ofMantissa =
5168       //     -3.0400495f +
5169       //       (6.1129976f +
5170       //         (-5.3420409f +
5171       //           (3.2865683f +
5172       //             (-1.2669343f +
5173       //               (0.27515199f -
5174       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5175       //
5176       // error 0.0000018516, which is better than 18 bits
5177       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5178                                getF32Constant(DAG, 0xbcd2769e, dl));
5179       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5180                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5181       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5182       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5183                                getF32Constant(DAG, 0x3fa22ae7, dl));
5184       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5185       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5186                                getF32Constant(DAG, 0x40525723, dl));
5187       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5188       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5189                                getF32Constant(DAG, 0x40aaf200, dl));
5190       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5191       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5192                                getF32Constant(DAG, 0x40c39dad, dl));
5193       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5194       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5195                                    getF32Constant(DAG, 0x4042902c, dl));
5196     }
5197 
5198     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5199   }
5200 
5201   // No special expansion.
5202   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5203 }
5204 
5205 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5206 /// limited-precision mode.
5207 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5208                            const TargetLowering &TLI, SDNodeFlags Flags) {
5209   // TODO: What fast-math-flags should be set on the floating-point nodes?
5210 
5211   if (Op.getValueType() == MVT::f32 &&
5212       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5213     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5214 
5215     // Scale the exponent by log10(2) [0.30102999f].
5216     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5217     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5218                                         getF32Constant(DAG, 0x3e9a209a, dl));
5219 
5220     // Get the significand and build it into a floating-point number with
5221     // exponent of 1.
5222     SDValue X = GetSignificand(DAG, Op1, dl);
5223 
5224     SDValue Log10ofMantissa;
5225     if (LimitFloatPrecision <= 6) {
5226       // For floating-point precision of 6:
5227       //
5228       //   Log10ofMantissa =
5229       //     -0.50419619f +
5230       //       (0.60948995f - 0.10380950f * x) * x;
5231       //
5232       // error 0.0014886165, which is 6 bits
5233       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5234                                getF32Constant(DAG, 0xbdd49a13, dl));
5235       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5236                                getF32Constant(DAG, 0x3f1c0789, dl));
5237       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5238       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5239                                     getF32Constant(DAG, 0x3f011300, dl));
5240     } else if (LimitFloatPrecision <= 12) {
5241       // For floating-point precision of 12:
5242       //
5243       //   Log10ofMantissa =
5244       //     -0.64831180f +
5245       //       (0.91751397f +
5246       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5247       //
5248       // error 0.00019228036, which is better than 12 bits
5249       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5250                                getF32Constant(DAG, 0x3d431f31, dl));
5251       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5252                                getF32Constant(DAG, 0x3ea21fb2, dl));
5253       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5254       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5255                                getF32Constant(DAG, 0x3f6ae232, dl));
5256       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5257       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5258                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5259     } else { // LimitFloatPrecision <= 18
5260       // For floating-point precision of 18:
5261       //
5262       //   Log10ofMantissa =
5263       //     -0.84299375f +
5264       //       (1.5327582f +
5265       //         (-1.0688956f +
5266       //           (0.49102474f +
5267       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5268       //
5269       // error 0.0000037995730, which is better than 18 bits
5270       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5271                                getF32Constant(DAG, 0x3c5d51ce, dl));
5272       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5273                                getF32Constant(DAG, 0x3e00685a, dl));
5274       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5275       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5276                                getF32Constant(DAG, 0x3efb6798, dl));
5277       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5278       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5279                                getF32Constant(DAG, 0x3f88d192, dl));
5280       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5281       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5282                                getF32Constant(DAG, 0x3fc4316c, dl));
5283       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5284       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5285                                     getF32Constant(DAG, 0x3f57ce70, dl));
5286     }
5287 
5288     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5289   }
5290 
5291   // No special expansion.
5292   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5293 }
5294 
5295 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5296 /// limited-precision mode.
5297 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5298                           const TargetLowering &TLI, SDNodeFlags Flags) {
5299   if (Op.getValueType() == MVT::f32 &&
5300       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5301     return getLimitedPrecisionExp2(Op, dl, DAG);
5302 
5303   // No special expansion.
5304   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5305 }
5306 
5307 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5308 /// limited-precision mode with x == 10.0f.
5309 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5310                          SelectionDAG &DAG, const TargetLowering &TLI,
5311                          SDNodeFlags Flags) {
5312   bool IsExp10 = false;
5313   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5314       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5315     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5316       APFloat Ten(10.0f);
5317       IsExp10 = LHSC->isExactlyValue(Ten);
5318     }
5319   }
5320 
5321   // TODO: What fast-math-flags should be set on the FMUL node?
5322   if (IsExp10) {
5323     // Put the exponent in the right bit position for later addition to the
5324     // final result:
5325     //
5326     //   #define LOG2OF10 3.3219281f
5327     //   t0 = Op * LOG2OF10;
5328     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5329                              getF32Constant(DAG, 0x40549a78, dl));
5330     return getLimitedPrecisionExp2(t0, dl, DAG);
5331   }
5332 
5333   // No special expansion.
5334   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5335 }
5336 
5337 /// ExpandPowI - Expand a llvm.powi intrinsic.
5338 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5339                           SelectionDAG &DAG) {
5340   // If RHS is a constant, we can expand this out to a multiplication tree,
5341   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5342   // optimizing for size, we only want to do this if the expansion would produce
5343   // a small number of multiplies, otherwise we do the full expansion.
5344   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5345     // Get the exponent as a positive value.
5346     unsigned Val = RHSC->getSExtValue();
5347     if ((int)Val < 0) Val = -Val;
5348 
5349     // powi(x, 0) -> 1.0
5350     if (Val == 0)
5351       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5352 
5353     bool OptForSize = DAG.shouldOptForSize();
5354     if (!OptForSize ||
5355         // If optimizing for size, don't insert too many multiplies.
5356         // This inserts up to 5 multiplies.
5357         countPopulation(Val) + Log2_32(Val) < 7) {
5358       // We use the simple binary decomposition method to generate the multiply
5359       // sequence.  There are more optimal ways to do this (for example,
5360       // powi(x,15) generates one more multiply than it should), but this has
5361       // the benefit of being both really simple and much better than a libcall.
5362       SDValue Res;  // Logically starts equal to 1.0
5363       SDValue CurSquare = LHS;
5364       // TODO: Intrinsics should have fast-math-flags that propagate to these
5365       // nodes.
5366       while (Val) {
5367         if (Val & 1) {
5368           if (Res.getNode())
5369             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5370           else
5371             Res = CurSquare;  // 1.0*CurSquare.
5372         }
5373 
5374         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5375                                 CurSquare, CurSquare);
5376         Val >>= 1;
5377       }
5378 
5379       // If the original was negative, invert the result, producing 1/(x*x*x).
5380       if (RHSC->getSExtValue() < 0)
5381         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5382                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5383       return Res;
5384     }
5385   }
5386 
5387   // Otherwise, expand to a libcall.
5388   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5389 }
5390 
5391 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5392                             SDValue LHS, SDValue RHS, SDValue Scale,
5393                             SelectionDAG &DAG, const TargetLowering &TLI) {
5394   EVT VT = LHS.getValueType();
5395   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5396   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5397   LLVMContext &Ctx = *DAG.getContext();
5398 
5399   // If the type is legal but the operation isn't, this node might survive all
5400   // the way to operation legalization. If we end up there and we do not have
5401   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5402   // node.
5403 
5404   // Coax the legalizer into expanding the node during type legalization instead
5405   // by bumping the size by one bit. This will force it to Promote, enabling the
5406   // early expansion and avoiding the need to expand later.
5407 
5408   // We don't have to do this if Scale is 0; that can always be expanded, unless
5409   // it's a saturating signed operation. Those can experience true integer
5410   // division overflow, a case which we must avoid.
5411 
5412   // FIXME: We wouldn't have to do this (or any of the early
5413   // expansion/promotion) if it was possible to expand a libcall of an
5414   // illegal type during operation legalization. But it's not, so things
5415   // get a bit hacky.
5416   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5417   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5418       (TLI.isTypeLegal(VT) ||
5419        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5420     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5421         Opcode, VT, ScaleInt);
5422     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5423       EVT PromVT;
5424       if (VT.isScalarInteger())
5425         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5426       else if (VT.isVector()) {
5427         PromVT = VT.getVectorElementType();
5428         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5429         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5430       } else
5431         llvm_unreachable("Wrong VT for DIVFIX?");
5432       if (Signed) {
5433         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5434         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5435       } else {
5436         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5437         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5438       }
5439       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5440       // For saturating operations, we need to shift up the LHS to get the
5441       // proper saturation width, and then shift down again afterwards.
5442       if (Saturating)
5443         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5444                           DAG.getConstant(1, DL, ShiftTy));
5445       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5446       if (Saturating)
5447         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5448                           DAG.getConstant(1, DL, ShiftTy));
5449       return DAG.getZExtOrTrunc(Res, DL, VT);
5450     }
5451   }
5452 
5453   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5454 }
5455 
5456 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5457 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5458 static void
5459 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5460                      const SDValue &N) {
5461   switch (N.getOpcode()) {
5462   case ISD::CopyFromReg: {
5463     SDValue Op = N.getOperand(1);
5464     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5465                       Op.getValueType().getSizeInBits());
5466     return;
5467   }
5468   case ISD::BITCAST:
5469   case ISD::AssertZext:
5470   case ISD::AssertSext:
5471   case ISD::TRUNCATE:
5472     getUnderlyingArgRegs(Regs, N.getOperand(0));
5473     return;
5474   case ISD::BUILD_PAIR:
5475   case ISD::BUILD_VECTOR:
5476   case ISD::CONCAT_VECTORS:
5477     for (SDValue Op : N->op_values())
5478       getUnderlyingArgRegs(Regs, Op);
5479     return;
5480   default:
5481     return;
5482   }
5483 }
5484 
5485 /// If the DbgValueInst is a dbg_value of a function argument, create the
5486 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5487 /// instruction selection, they will be inserted to the entry BB.
5488 /// We don't currently support this for variadic dbg_values, as they shouldn't
5489 /// appear for function arguments or in the prologue.
5490 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5491     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5492     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5493   const Argument *Arg = dyn_cast<Argument>(V);
5494   if (!Arg)
5495     return false;
5496 
5497   if (!IsDbgDeclare) {
5498     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5499     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5500     // the entry block.
5501     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5502     if (!IsInEntryBlock)
5503       return false;
5504 
5505     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5506     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5507     // variable that also is a param.
5508     //
5509     // Although, if we are at the top of the entry block already, we can still
5510     // emit using ArgDbgValue. This might catch some situations when the
5511     // dbg.value refers to an argument that isn't used in the entry block, so
5512     // any CopyToReg node would be optimized out and the only way to express
5513     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5514     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5515     // we should only emit as ArgDbgValue if the Variable is an argument to the
5516     // current function, and the dbg.value intrinsic is found in the entry
5517     // block.
5518     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5519         !DL->getInlinedAt();
5520     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5521     if (!IsInPrologue && !VariableIsFunctionInputArg)
5522       return false;
5523 
5524     // Here we assume that a function argument on IR level only can be used to
5525     // describe one input parameter on source level. If we for example have
5526     // source code like this
5527     //
5528     //    struct A { long x, y; };
5529     //    void foo(struct A a, long b) {
5530     //      ...
5531     //      b = a.x;
5532     //      ...
5533     //    }
5534     //
5535     // and IR like this
5536     //
5537     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5538     //  entry:
5539     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5540     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5541     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5542     //    ...
5543     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5544     //    ...
5545     //
5546     // then the last dbg.value is describing a parameter "b" using a value that
5547     // is an argument. But since we already has used %a1 to describe a parameter
5548     // we should not handle that last dbg.value here (that would result in an
5549     // incorrect hoisting of the DBG_VALUE to the function entry).
5550     // Notice that we allow one dbg.value per IR level argument, to accommodate
5551     // for the situation with fragments above.
5552     if (VariableIsFunctionInputArg) {
5553       unsigned ArgNo = Arg->getArgNo();
5554       if (ArgNo >= FuncInfo.DescribedArgs.size())
5555         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5556       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5557         return false;
5558       FuncInfo.DescribedArgs.set(ArgNo);
5559     }
5560   }
5561 
5562   MachineFunction &MF = DAG.getMachineFunction();
5563   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5564 
5565   bool IsIndirect = false;
5566   Optional<MachineOperand> Op;
5567   // Some arguments' frame index is recorded during argument lowering.
5568   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5569   if (FI != std::numeric_limits<int>::max())
5570     Op = MachineOperand::CreateFI(FI);
5571 
5572   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5573   if (!Op && N.getNode()) {
5574     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5575     Register Reg;
5576     if (ArgRegsAndSizes.size() == 1)
5577       Reg = ArgRegsAndSizes.front().first;
5578 
5579     if (Reg && Reg.isVirtual()) {
5580       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5581       Register PR = RegInfo.getLiveInPhysReg(Reg);
5582       if (PR)
5583         Reg = PR;
5584     }
5585     if (Reg) {
5586       Op = MachineOperand::CreateReg(Reg, false);
5587       IsIndirect = IsDbgDeclare;
5588     }
5589   }
5590 
5591   if (!Op && N.getNode()) {
5592     // Check if frame index is available.
5593     SDValue LCandidate = peekThroughBitcasts(N);
5594     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5595       if (FrameIndexSDNode *FINode =
5596           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5597         Op = MachineOperand::CreateFI(FINode->getIndex());
5598   }
5599 
5600   if (!Op) {
5601     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5602     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5603                                          SplitRegs) {
5604       unsigned Offset = 0;
5605       for (auto RegAndSize : SplitRegs) {
5606         // If the expression is already a fragment, the current register
5607         // offset+size might extend beyond the fragment. In this case, only
5608         // the register bits that are inside the fragment are relevant.
5609         int RegFragmentSizeInBits = RegAndSize.second;
5610         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5611           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5612           // The register is entirely outside the expression fragment,
5613           // so is irrelevant for debug info.
5614           if (Offset >= ExprFragmentSizeInBits)
5615             break;
5616           // The register is partially outside the expression fragment, only
5617           // the low bits within the fragment are relevant for debug info.
5618           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5619             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5620           }
5621         }
5622 
5623         auto FragmentExpr = DIExpression::createFragmentExpression(
5624             Expr, Offset, RegFragmentSizeInBits);
5625         Offset += RegAndSize.second;
5626         // If a valid fragment expression cannot be created, the variable's
5627         // correct value cannot be determined and so it is set as Undef.
5628         if (!FragmentExpr) {
5629           SDDbgValue *SDV = DAG.getConstantDbgValue(
5630               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5631           DAG.AddDbgValue(SDV, false);
5632           continue;
5633         }
5634         FuncInfo.ArgDbgValues.push_back(
5635           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5636                   RegAndSize.first, Variable, *FragmentExpr));
5637       }
5638     };
5639 
5640     // Check if ValueMap has reg number.
5641     DenseMap<const Value *, Register>::const_iterator
5642       VMI = FuncInfo.ValueMap.find(V);
5643     if (VMI != FuncInfo.ValueMap.end()) {
5644       const auto &TLI = DAG.getTargetLoweringInfo();
5645       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5646                        V->getType(), None);
5647       if (RFV.occupiesMultipleRegs()) {
5648         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5649         return true;
5650       }
5651 
5652       Op = MachineOperand::CreateReg(VMI->second, false);
5653       IsIndirect = IsDbgDeclare;
5654     } else if (ArgRegsAndSizes.size() > 1) {
5655       // This was split due to the calling convention, and no virtual register
5656       // mapping exists for the value.
5657       splitMultiRegDbgValue(ArgRegsAndSizes);
5658       return true;
5659     }
5660   }
5661 
5662   if (!Op)
5663     return false;
5664 
5665   assert(Variable->isValidLocationForIntrinsic(DL) &&
5666          "Expected inlined-at fields to agree");
5667   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5668   FuncInfo.ArgDbgValues.push_back(
5669       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5670               *Op, Variable, Expr));
5671 
5672   return true;
5673 }
5674 
5675 /// Return the appropriate SDDbgValue based on N.
5676 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5677                                              DILocalVariable *Variable,
5678                                              DIExpression *Expr,
5679                                              const DebugLoc &dl,
5680                                              unsigned DbgSDNodeOrder) {
5681   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5682     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5683     // stack slot locations.
5684     //
5685     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5686     // debug values here after optimization:
5687     //
5688     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5689     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5690     //
5691     // Both describe the direct values of their associated variables.
5692     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5693                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5694   }
5695   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5696                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5697 }
5698 
5699 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5700   switch (Intrinsic) {
5701   case Intrinsic::smul_fix:
5702     return ISD::SMULFIX;
5703   case Intrinsic::umul_fix:
5704     return ISD::UMULFIX;
5705   case Intrinsic::smul_fix_sat:
5706     return ISD::SMULFIXSAT;
5707   case Intrinsic::umul_fix_sat:
5708     return ISD::UMULFIXSAT;
5709   case Intrinsic::sdiv_fix:
5710     return ISD::SDIVFIX;
5711   case Intrinsic::udiv_fix:
5712     return ISD::UDIVFIX;
5713   case Intrinsic::sdiv_fix_sat:
5714     return ISD::SDIVFIXSAT;
5715   case Intrinsic::udiv_fix_sat:
5716     return ISD::UDIVFIXSAT;
5717   default:
5718     llvm_unreachable("Unhandled fixed point intrinsic");
5719   }
5720 }
5721 
5722 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5723                                            const char *FunctionName) {
5724   assert(FunctionName && "FunctionName must not be nullptr");
5725   SDValue Callee = DAG.getExternalSymbol(
5726       FunctionName,
5727       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5728   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5729 }
5730 
5731 /// Given a @llvm.call.preallocated.setup, return the corresponding
5732 /// preallocated call.
5733 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5734   assert(cast<CallBase>(PreallocatedSetup)
5735                  ->getCalledFunction()
5736                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5737          "expected call_preallocated_setup Value");
5738   for (auto *U : PreallocatedSetup->users()) {
5739     auto *UseCall = cast<CallBase>(U);
5740     const Function *Fn = UseCall->getCalledFunction();
5741     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5742       return UseCall;
5743     }
5744   }
5745   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5746 }
5747 
5748 /// Lower the call to the specified intrinsic function.
5749 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5750                                              unsigned Intrinsic) {
5751   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5752   SDLoc sdl = getCurSDLoc();
5753   DebugLoc dl = getCurDebugLoc();
5754   SDValue Res;
5755 
5756   SDNodeFlags Flags;
5757   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5758     Flags.copyFMF(*FPOp);
5759 
5760   switch (Intrinsic) {
5761   default:
5762     // By default, turn this into a target intrinsic node.
5763     visitTargetIntrinsic(I, Intrinsic);
5764     return;
5765   case Intrinsic::vscale: {
5766     match(&I, m_VScale(DAG.getDataLayout()));
5767     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5768     setValue(&I,
5769              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5770     return;
5771   }
5772   case Intrinsic::vastart:  visitVAStart(I); return;
5773   case Intrinsic::vaend:    visitVAEnd(I); return;
5774   case Intrinsic::vacopy:   visitVACopy(I); return;
5775   case Intrinsic::returnaddress:
5776     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5777                              TLI.getPointerTy(DAG.getDataLayout()),
5778                              getValue(I.getArgOperand(0))));
5779     return;
5780   case Intrinsic::addressofreturnaddress:
5781     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5782                              TLI.getPointerTy(DAG.getDataLayout())));
5783     return;
5784   case Intrinsic::sponentry:
5785     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5786                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5787     return;
5788   case Intrinsic::frameaddress:
5789     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5790                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5791                              getValue(I.getArgOperand(0))));
5792     return;
5793   case Intrinsic::read_volatile_register:
5794   case Intrinsic::read_register: {
5795     Value *Reg = I.getArgOperand(0);
5796     SDValue Chain = getRoot();
5797     SDValue RegName =
5798         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5799     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5800     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5801       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5802     setValue(&I, Res);
5803     DAG.setRoot(Res.getValue(1));
5804     return;
5805   }
5806   case Intrinsic::write_register: {
5807     Value *Reg = I.getArgOperand(0);
5808     Value *RegValue = I.getArgOperand(1);
5809     SDValue Chain = getRoot();
5810     SDValue RegName =
5811         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5812     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5813                             RegName, getValue(RegValue)));
5814     return;
5815   }
5816   case Intrinsic::memcpy: {
5817     const auto &MCI = cast<MemCpyInst>(I);
5818     SDValue Op1 = getValue(I.getArgOperand(0));
5819     SDValue Op2 = getValue(I.getArgOperand(1));
5820     SDValue Op3 = getValue(I.getArgOperand(2));
5821     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5822     Align DstAlign = MCI.getDestAlign().valueOrOne();
5823     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5824     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5825     bool isVol = MCI.isVolatile();
5826     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5827     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5828     // node.
5829     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5830     AAMDNodes AAInfo;
5831     I.getAAMetadata(AAInfo);
5832     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5833                                /* AlwaysInline */ false, isTC,
5834                                MachinePointerInfo(I.getArgOperand(0)),
5835                                MachinePointerInfo(I.getArgOperand(1)), AAInfo);
5836     updateDAGForMaybeTailCall(MC);
5837     return;
5838   }
5839   case Intrinsic::memcpy_inline: {
5840     const auto &MCI = cast<MemCpyInlineInst>(I);
5841     SDValue Dst = getValue(I.getArgOperand(0));
5842     SDValue Src = getValue(I.getArgOperand(1));
5843     SDValue Size = getValue(I.getArgOperand(2));
5844     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5845     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5846     Align DstAlign = MCI.getDestAlign().valueOrOne();
5847     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5848     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5849     bool isVol = MCI.isVolatile();
5850     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5851     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5852     // node.
5853     AAMDNodes AAInfo;
5854     I.getAAMetadata(AAInfo);
5855     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5856                                /* AlwaysInline */ true, isTC,
5857                                MachinePointerInfo(I.getArgOperand(0)),
5858                                MachinePointerInfo(I.getArgOperand(1)), AAInfo);
5859     updateDAGForMaybeTailCall(MC);
5860     return;
5861   }
5862   case Intrinsic::memset: {
5863     const auto &MSI = cast<MemSetInst>(I);
5864     SDValue Op1 = getValue(I.getArgOperand(0));
5865     SDValue Op2 = getValue(I.getArgOperand(1));
5866     SDValue Op3 = getValue(I.getArgOperand(2));
5867     // @llvm.memset defines 0 and 1 to both mean no alignment.
5868     Align Alignment = MSI.getDestAlign().valueOrOne();
5869     bool isVol = MSI.isVolatile();
5870     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5871     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5872     AAMDNodes AAInfo;
5873     I.getAAMetadata(AAInfo);
5874     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5875                                MachinePointerInfo(I.getArgOperand(0)), AAInfo);
5876     updateDAGForMaybeTailCall(MS);
5877     return;
5878   }
5879   case Intrinsic::memmove: {
5880     const auto &MMI = cast<MemMoveInst>(I);
5881     SDValue Op1 = getValue(I.getArgOperand(0));
5882     SDValue Op2 = getValue(I.getArgOperand(1));
5883     SDValue Op3 = getValue(I.getArgOperand(2));
5884     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5885     Align DstAlign = MMI.getDestAlign().valueOrOne();
5886     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5887     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5888     bool isVol = MMI.isVolatile();
5889     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5890     // FIXME: Support passing different dest/src alignments to the memmove DAG
5891     // node.
5892     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5893     AAMDNodes AAInfo;
5894     I.getAAMetadata(AAInfo);
5895     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5896                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5897                                 MachinePointerInfo(I.getArgOperand(1)), AAInfo);
5898     updateDAGForMaybeTailCall(MM);
5899     return;
5900   }
5901   case Intrinsic::memcpy_element_unordered_atomic: {
5902     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5903     SDValue Dst = getValue(MI.getRawDest());
5904     SDValue Src = getValue(MI.getRawSource());
5905     SDValue Length = getValue(MI.getLength());
5906 
5907     unsigned DstAlign = MI.getDestAlignment();
5908     unsigned SrcAlign = MI.getSourceAlignment();
5909     Type *LengthTy = MI.getLength()->getType();
5910     unsigned ElemSz = MI.getElementSizeInBytes();
5911     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5912     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5913                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5914                                      MachinePointerInfo(MI.getRawDest()),
5915                                      MachinePointerInfo(MI.getRawSource()));
5916     updateDAGForMaybeTailCall(MC);
5917     return;
5918   }
5919   case Intrinsic::memmove_element_unordered_atomic: {
5920     auto &MI = cast<AtomicMemMoveInst>(I);
5921     SDValue Dst = getValue(MI.getRawDest());
5922     SDValue Src = getValue(MI.getRawSource());
5923     SDValue Length = getValue(MI.getLength());
5924 
5925     unsigned DstAlign = MI.getDestAlignment();
5926     unsigned SrcAlign = MI.getSourceAlignment();
5927     Type *LengthTy = MI.getLength()->getType();
5928     unsigned ElemSz = MI.getElementSizeInBytes();
5929     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5930     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5931                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5932                                       MachinePointerInfo(MI.getRawDest()),
5933                                       MachinePointerInfo(MI.getRawSource()));
5934     updateDAGForMaybeTailCall(MC);
5935     return;
5936   }
5937   case Intrinsic::memset_element_unordered_atomic: {
5938     auto &MI = cast<AtomicMemSetInst>(I);
5939     SDValue Dst = getValue(MI.getRawDest());
5940     SDValue Val = getValue(MI.getValue());
5941     SDValue Length = getValue(MI.getLength());
5942 
5943     unsigned DstAlign = MI.getDestAlignment();
5944     Type *LengthTy = MI.getLength()->getType();
5945     unsigned ElemSz = MI.getElementSizeInBytes();
5946     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5947     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5948                                      LengthTy, ElemSz, isTC,
5949                                      MachinePointerInfo(MI.getRawDest()));
5950     updateDAGForMaybeTailCall(MC);
5951     return;
5952   }
5953   case Intrinsic::call_preallocated_setup: {
5954     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5955     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5956     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5957                               getRoot(), SrcValue);
5958     setValue(&I, Res);
5959     DAG.setRoot(Res);
5960     return;
5961   }
5962   case Intrinsic::call_preallocated_arg: {
5963     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5964     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5965     SDValue Ops[3];
5966     Ops[0] = getRoot();
5967     Ops[1] = SrcValue;
5968     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5969                                    MVT::i32); // arg index
5970     SDValue Res = DAG.getNode(
5971         ISD::PREALLOCATED_ARG, sdl,
5972         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5973     setValue(&I, Res);
5974     DAG.setRoot(Res.getValue(1));
5975     return;
5976   }
5977   case Intrinsic::dbg_addr:
5978   case Intrinsic::dbg_declare: {
5979     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
5980     // they are non-variadic.
5981     const auto &DI = cast<DbgVariableIntrinsic>(I);
5982     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
5983     DILocalVariable *Variable = DI.getVariable();
5984     DIExpression *Expression = DI.getExpression();
5985     dropDanglingDebugInfo(Variable, Expression);
5986     assert(Variable && "Missing variable");
5987     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5988                       << "\n");
5989     // Check if address has undef value.
5990     const Value *Address = DI.getVariableLocationOp(0);
5991     if (!Address || isa<UndefValue>(Address) ||
5992         (Address->use_empty() && !isa<Argument>(Address))) {
5993       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5994                         << " (bad/undef/unused-arg address)\n");
5995       return;
5996     }
5997 
5998     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5999 
6000     // Check if this variable can be described by a frame index, typically
6001     // either as a static alloca or a byval parameter.
6002     int FI = std::numeric_limits<int>::max();
6003     if (const auto *AI =
6004             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6005       if (AI->isStaticAlloca()) {
6006         auto I = FuncInfo.StaticAllocaMap.find(AI);
6007         if (I != FuncInfo.StaticAllocaMap.end())
6008           FI = I->second;
6009       }
6010     } else if (const auto *Arg = dyn_cast<Argument>(
6011                    Address->stripInBoundsConstantOffsets())) {
6012       FI = FuncInfo.getArgumentFrameIndex(Arg);
6013     }
6014 
6015     // llvm.dbg.addr is control dependent and always generates indirect
6016     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6017     // the MachineFunction variable table.
6018     if (FI != std::numeric_limits<int>::max()) {
6019       if (Intrinsic == Intrinsic::dbg_addr) {
6020         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6021             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6022             dl, SDNodeOrder);
6023         DAG.AddDbgValue(SDV, isParameter);
6024       } else {
6025         LLVM_DEBUG(dbgs() << "Skipping " << DI
6026                           << " (variable info stashed in MF side table)\n");
6027       }
6028       return;
6029     }
6030 
6031     SDValue &N = NodeMap[Address];
6032     if (!N.getNode() && isa<Argument>(Address))
6033       // Check unused arguments map.
6034       N = UnusedArgNodeMap[Address];
6035     SDDbgValue *SDV;
6036     if (N.getNode()) {
6037       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6038         Address = BCI->getOperand(0);
6039       // Parameters are handled specially.
6040       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6041       if (isParameter && FINode) {
6042         // Byval parameter. We have a frame index at this point.
6043         SDV =
6044             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6045                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6046       } else if (isa<Argument>(Address)) {
6047         // Address is an argument, so try to emit its dbg value using
6048         // virtual register info from the FuncInfo.ValueMap.
6049         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6050         return;
6051       } else {
6052         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6053                               true, dl, SDNodeOrder);
6054       }
6055       DAG.AddDbgValue(SDV, isParameter);
6056     } else {
6057       // If Address is an argument then try to emit its dbg value using
6058       // virtual register info from the FuncInfo.ValueMap.
6059       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6060                                     N)) {
6061         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6062                           << " (could not emit func-arg dbg_value)\n");
6063       }
6064     }
6065     return;
6066   }
6067   case Intrinsic::dbg_label: {
6068     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6069     DILabel *Label = DI.getLabel();
6070     assert(Label && "Missing label");
6071 
6072     SDDbgLabel *SDV;
6073     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6074     DAG.AddDbgLabel(SDV);
6075     return;
6076   }
6077   case Intrinsic::dbg_value: {
6078     const DbgValueInst &DI = cast<DbgValueInst>(I);
6079     assert(DI.getVariable() && "Missing variable");
6080 
6081     DILocalVariable *Variable = DI.getVariable();
6082     DIExpression *Expression = DI.getExpression();
6083     dropDanglingDebugInfo(Variable, Expression);
6084     SmallVector<Value *, 4> Values(DI.getValues());
6085     if (Values.empty())
6086       return;
6087 
6088     if (std::count(Values.begin(), Values.end(), nullptr))
6089       return;
6090 
6091     bool IsVariadic = DI.hasArgList();
6092     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6093                           SDNodeOrder, IsVariadic))
6094       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6095     return;
6096   }
6097 
6098   case Intrinsic::eh_typeid_for: {
6099     // Find the type id for the given typeinfo.
6100     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6101     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6102     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6103     setValue(&I, Res);
6104     return;
6105   }
6106 
6107   case Intrinsic::eh_return_i32:
6108   case Intrinsic::eh_return_i64:
6109     DAG.getMachineFunction().setCallsEHReturn(true);
6110     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6111                             MVT::Other,
6112                             getControlRoot(),
6113                             getValue(I.getArgOperand(0)),
6114                             getValue(I.getArgOperand(1))));
6115     return;
6116   case Intrinsic::eh_unwind_init:
6117     DAG.getMachineFunction().setCallsUnwindInit(true);
6118     return;
6119   case Intrinsic::eh_dwarf_cfa:
6120     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6121                              TLI.getPointerTy(DAG.getDataLayout()),
6122                              getValue(I.getArgOperand(0))));
6123     return;
6124   case Intrinsic::eh_sjlj_callsite: {
6125     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6126     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6127     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6128     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6129 
6130     MMI.setCurrentCallSite(CI->getZExtValue());
6131     return;
6132   }
6133   case Intrinsic::eh_sjlj_functioncontext: {
6134     // Get and store the index of the function context.
6135     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6136     AllocaInst *FnCtx =
6137       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6138     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6139     MFI.setFunctionContextIndex(FI);
6140     return;
6141   }
6142   case Intrinsic::eh_sjlj_setjmp: {
6143     SDValue Ops[2];
6144     Ops[0] = getRoot();
6145     Ops[1] = getValue(I.getArgOperand(0));
6146     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6147                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6148     setValue(&I, Op.getValue(0));
6149     DAG.setRoot(Op.getValue(1));
6150     return;
6151   }
6152   case Intrinsic::eh_sjlj_longjmp:
6153     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6154                             getRoot(), getValue(I.getArgOperand(0))));
6155     return;
6156   case Intrinsic::eh_sjlj_setup_dispatch:
6157     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6158                             getRoot()));
6159     return;
6160   case Intrinsic::masked_gather:
6161     visitMaskedGather(I);
6162     return;
6163   case Intrinsic::masked_load:
6164     visitMaskedLoad(I);
6165     return;
6166   case Intrinsic::masked_scatter:
6167     visitMaskedScatter(I);
6168     return;
6169   case Intrinsic::masked_store:
6170     visitMaskedStore(I);
6171     return;
6172   case Intrinsic::masked_expandload:
6173     visitMaskedLoad(I, true /* IsExpanding */);
6174     return;
6175   case Intrinsic::masked_compressstore:
6176     visitMaskedStore(I, true /* IsCompressing */);
6177     return;
6178   case Intrinsic::powi:
6179     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6180                             getValue(I.getArgOperand(1)), DAG));
6181     return;
6182   case Intrinsic::log:
6183     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6184     return;
6185   case Intrinsic::log2:
6186     setValue(&I,
6187              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6188     return;
6189   case Intrinsic::log10:
6190     setValue(&I,
6191              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6192     return;
6193   case Intrinsic::exp:
6194     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6195     return;
6196   case Intrinsic::exp2:
6197     setValue(&I,
6198              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6199     return;
6200   case Intrinsic::pow:
6201     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6202                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6203     return;
6204   case Intrinsic::sqrt:
6205   case Intrinsic::fabs:
6206   case Intrinsic::sin:
6207   case Intrinsic::cos:
6208   case Intrinsic::floor:
6209   case Intrinsic::ceil:
6210   case Intrinsic::trunc:
6211   case Intrinsic::rint:
6212   case Intrinsic::nearbyint:
6213   case Intrinsic::round:
6214   case Intrinsic::roundeven:
6215   case Intrinsic::canonicalize: {
6216     unsigned Opcode;
6217     switch (Intrinsic) {
6218     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6219     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6220     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6221     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6222     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6223     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6224     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6225     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6226     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6227     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6228     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6229     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6230     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6231     }
6232 
6233     setValue(&I, DAG.getNode(Opcode, sdl,
6234                              getValue(I.getArgOperand(0)).getValueType(),
6235                              getValue(I.getArgOperand(0)), Flags));
6236     return;
6237   }
6238   case Intrinsic::lround:
6239   case Intrinsic::llround:
6240   case Intrinsic::lrint:
6241   case Intrinsic::llrint: {
6242     unsigned Opcode;
6243     switch (Intrinsic) {
6244     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6245     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6246     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6247     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6248     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6249     }
6250 
6251     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6252     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6253                              getValue(I.getArgOperand(0))));
6254     return;
6255   }
6256   case Intrinsic::minnum:
6257     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6258                              getValue(I.getArgOperand(0)).getValueType(),
6259                              getValue(I.getArgOperand(0)),
6260                              getValue(I.getArgOperand(1)), Flags));
6261     return;
6262   case Intrinsic::maxnum:
6263     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6264                              getValue(I.getArgOperand(0)).getValueType(),
6265                              getValue(I.getArgOperand(0)),
6266                              getValue(I.getArgOperand(1)), Flags));
6267     return;
6268   case Intrinsic::minimum:
6269     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6270                              getValue(I.getArgOperand(0)).getValueType(),
6271                              getValue(I.getArgOperand(0)),
6272                              getValue(I.getArgOperand(1)), Flags));
6273     return;
6274   case Intrinsic::maximum:
6275     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6276                              getValue(I.getArgOperand(0)).getValueType(),
6277                              getValue(I.getArgOperand(0)),
6278                              getValue(I.getArgOperand(1)), Flags));
6279     return;
6280   case Intrinsic::copysign:
6281     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6282                              getValue(I.getArgOperand(0)).getValueType(),
6283                              getValue(I.getArgOperand(0)),
6284                              getValue(I.getArgOperand(1)), Flags));
6285     return;
6286   case Intrinsic::fma:
6287     setValue(&I, DAG.getNode(
6288                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6289                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6290                      getValue(I.getArgOperand(2)), Flags));
6291     return;
6292 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6293   case Intrinsic::INTRINSIC:
6294 #include "llvm/IR/ConstrainedOps.def"
6295     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6296     return;
6297 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6298 #include "llvm/IR/VPIntrinsics.def"
6299     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6300     return;
6301   case Intrinsic::fmuladd: {
6302     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6303     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6304         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6305       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6306                                getValue(I.getArgOperand(0)).getValueType(),
6307                                getValue(I.getArgOperand(0)),
6308                                getValue(I.getArgOperand(1)),
6309                                getValue(I.getArgOperand(2)), Flags));
6310     } else {
6311       // TODO: Intrinsic calls should have fast-math-flags.
6312       SDValue Mul = DAG.getNode(
6313           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6314           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6315       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6316                                 getValue(I.getArgOperand(0)).getValueType(),
6317                                 Mul, getValue(I.getArgOperand(2)), Flags);
6318       setValue(&I, Add);
6319     }
6320     return;
6321   }
6322   case Intrinsic::convert_to_fp16:
6323     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6324                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6325                                          getValue(I.getArgOperand(0)),
6326                                          DAG.getTargetConstant(0, sdl,
6327                                                                MVT::i32))));
6328     return;
6329   case Intrinsic::convert_from_fp16:
6330     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6331                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6332                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6333                                          getValue(I.getArgOperand(0)))));
6334     return;
6335   case Intrinsic::fptosi_sat: {
6336     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6337     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6338                              getValue(I.getArgOperand(0)),
6339                              DAG.getValueType(VT.getScalarType())));
6340     return;
6341   }
6342   case Intrinsic::fptoui_sat: {
6343     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6344     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6345                              getValue(I.getArgOperand(0)),
6346                              DAG.getValueType(VT.getScalarType())));
6347     return;
6348   }
6349   case Intrinsic::set_rounding:
6350     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6351                       {getRoot(), getValue(I.getArgOperand(0))});
6352     setValue(&I, Res);
6353     DAG.setRoot(Res.getValue(0));
6354     return;
6355   case Intrinsic::pcmarker: {
6356     SDValue Tmp = getValue(I.getArgOperand(0));
6357     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6358     return;
6359   }
6360   case Intrinsic::readcyclecounter: {
6361     SDValue Op = getRoot();
6362     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6363                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6364     setValue(&I, Res);
6365     DAG.setRoot(Res.getValue(1));
6366     return;
6367   }
6368   case Intrinsic::bitreverse:
6369     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6370                              getValue(I.getArgOperand(0)).getValueType(),
6371                              getValue(I.getArgOperand(0))));
6372     return;
6373   case Intrinsic::bswap:
6374     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6375                              getValue(I.getArgOperand(0)).getValueType(),
6376                              getValue(I.getArgOperand(0))));
6377     return;
6378   case Intrinsic::cttz: {
6379     SDValue Arg = getValue(I.getArgOperand(0));
6380     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6381     EVT Ty = Arg.getValueType();
6382     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6383                              sdl, Ty, Arg));
6384     return;
6385   }
6386   case Intrinsic::ctlz: {
6387     SDValue Arg = getValue(I.getArgOperand(0));
6388     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6389     EVT Ty = Arg.getValueType();
6390     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6391                              sdl, Ty, Arg));
6392     return;
6393   }
6394   case Intrinsic::ctpop: {
6395     SDValue Arg = getValue(I.getArgOperand(0));
6396     EVT Ty = Arg.getValueType();
6397     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6398     return;
6399   }
6400   case Intrinsic::fshl:
6401   case Intrinsic::fshr: {
6402     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6403     SDValue X = getValue(I.getArgOperand(0));
6404     SDValue Y = getValue(I.getArgOperand(1));
6405     SDValue Z = getValue(I.getArgOperand(2));
6406     EVT VT = X.getValueType();
6407 
6408     if (X == Y) {
6409       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6410       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6411     } else {
6412       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6413       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6414     }
6415     return;
6416   }
6417   case Intrinsic::sadd_sat: {
6418     SDValue Op1 = getValue(I.getArgOperand(0));
6419     SDValue Op2 = getValue(I.getArgOperand(1));
6420     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6421     return;
6422   }
6423   case Intrinsic::uadd_sat: {
6424     SDValue Op1 = getValue(I.getArgOperand(0));
6425     SDValue Op2 = getValue(I.getArgOperand(1));
6426     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6427     return;
6428   }
6429   case Intrinsic::ssub_sat: {
6430     SDValue Op1 = getValue(I.getArgOperand(0));
6431     SDValue Op2 = getValue(I.getArgOperand(1));
6432     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6433     return;
6434   }
6435   case Intrinsic::usub_sat: {
6436     SDValue Op1 = getValue(I.getArgOperand(0));
6437     SDValue Op2 = getValue(I.getArgOperand(1));
6438     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6439     return;
6440   }
6441   case Intrinsic::sshl_sat: {
6442     SDValue Op1 = getValue(I.getArgOperand(0));
6443     SDValue Op2 = getValue(I.getArgOperand(1));
6444     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6445     return;
6446   }
6447   case Intrinsic::ushl_sat: {
6448     SDValue Op1 = getValue(I.getArgOperand(0));
6449     SDValue Op2 = getValue(I.getArgOperand(1));
6450     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6451     return;
6452   }
6453   case Intrinsic::smul_fix:
6454   case Intrinsic::umul_fix:
6455   case Intrinsic::smul_fix_sat:
6456   case Intrinsic::umul_fix_sat: {
6457     SDValue Op1 = getValue(I.getArgOperand(0));
6458     SDValue Op2 = getValue(I.getArgOperand(1));
6459     SDValue Op3 = getValue(I.getArgOperand(2));
6460     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6461                              Op1.getValueType(), Op1, Op2, Op3));
6462     return;
6463   }
6464   case Intrinsic::sdiv_fix:
6465   case Intrinsic::udiv_fix:
6466   case Intrinsic::sdiv_fix_sat:
6467   case Intrinsic::udiv_fix_sat: {
6468     SDValue Op1 = getValue(I.getArgOperand(0));
6469     SDValue Op2 = getValue(I.getArgOperand(1));
6470     SDValue Op3 = getValue(I.getArgOperand(2));
6471     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6472                               Op1, Op2, Op3, DAG, TLI));
6473     return;
6474   }
6475   case Intrinsic::smax: {
6476     SDValue Op1 = getValue(I.getArgOperand(0));
6477     SDValue Op2 = getValue(I.getArgOperand(1));
6478     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6479     return;
6480   }
6481   case Intrinsic::smin: {
6482     SDValue Op1 = getValue(I.getArgOperand(0));
6483     SDValue Op2 = getValue(I.getArgOperand(1));
6484     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6485     return;
6486   }
6487   case Intrinsic::umax: {
6488     SDValue Op1 = getValue(I.getArgOperand(0));
6489     SDValue Op2 = getValue(I.getArgOperand(1));
6490     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6491     return;
6492   }
6493   case Intrinsic::umin: {
6494     SDValue Op1 = getValue(I.getArgOperand(0));
6495     SDValue Op2 = getValue(I.getArgOperand(1));
6496     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6497     return;
6498   }
6499   case Intrinsic::abs: {
6500     // TODO: Preserve "int min is poison" arg in SDAG?
6501     SDValue Op1 = getValue(I.getArgOperand(0));
6502     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6503     return;
6504   }
6505   case Intrinsic::stacksave: {
6506     SDValue Op = getRoot();
6507     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6508     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6509     setValue(&I, Res);
6510     DAG.setRoot(Res.getValue(1));
6511     return;
6512   }
6513   case Intrinsic::stackrestore:
6514     Res = getValue(I.getArgOperand(0));
6515     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6516     return;
6517   case Intrinsic::get_dynamic_area_offset: {
6518     SDValue Op = getRoot();
6519     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6520     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6521     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6522     // target.
6523     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6524       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6525                          " intrinsic!");
6526     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6527                       Op);
6528     DAG.setRoot(Op);
6529     setValue(&I, Res);
6530     return;
6531   }
6532   case Intrinsic::stackguard: {
6533     MachineFunction &MF = DAG.getMachineFunction();
6534     const Module &M = *MF.getFunction().getParent();
6535     SDValue Chain = getRoot();
6536     if (TLI.useLoadStackGuardNode()) {
6537       Res = getLoadStackGuard(DAG, sdl, Chain);
6538     } else {
6539       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6540       const Value *Global = TLI.getSDagStackGuard(M);
6541       Align Align = DL->getPrefTypeAlign(Global->getType());
6542       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6543                         MachinePointerInfo(Global, 0), Align,
6544                         MachineMemOperand::MOVolatile);
6545     }
6546     if (TLI.useStackGuardXorFP())
6547       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6548     DAG.setRoot(Chain);
6549     setValue(&I, Res);
6550     return;
6551   }
6552   case Intrinsic::stackprotector: {
6553     // Emit code into the DAG to store the stack guard onto the stack.
6554     MachineFunction &MF = DAG.getMachineFunction();
6555     MachineFrameInfo &MFI = MF.getFrameInfo();
6556     SDValue Src, Chain = getRoot();
6557 
6558     if (TLI.useLoadStackGuardNode())
6559       Src = getLoadStackGuard(DAG, sdl, Chain);
6560     else
6561       Src = getValue(I.getArgOperand(0));   // The guard's value.
6562 
6563     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6564 
6565     int FI = FuncInfo.StaticAllocaMap[Slot];
6566     MFI.setStackProtectorIndex(FI);
6567     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6568 
6569     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6570 
6571     // Store the stack protector onto the stack.
6572     Res = DAG.getStore(
6573         Chain, sdl, Src, FIN,
6574         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6575         MaybeAlign(), MachineMemOperand::MOVolatile);
6576     setValue(&I, Res);
6577     DAG.setRoot(Res);
6578     return;
6579   }
6580   case Intrinsic::objectsize:
6581     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6582 
6583   case Intrinsic::is_constant:
6584     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6585 
6586   case Intrinsic::annotation:
6587   case Intrinsic::ptr_annotation:
6588   case Intrinsic::launder_invariant_group:
6589   case Intrinsic::strip_invariant_group:
6590     // Drop the intrinsic, but forward the value
6591     setValue(&I, getValue(I.getOperand(0)));
6592     return;
6593 
6594   case Intrinsic::assume:
6595   case Intrinsic::experimental_noalias_scope_decl:
6596   case Intrinsic::var_annotation:
6597   case Intrinsic::sideeffect:
6598     // Discard annotate attributes, noalias scope declarations, assumptions, and
6599     // artificial side-effects.
6600     return;
6601 
6602   case Intrinsic::codeview_annotation: {
6603     // Emit a label associated with this metadata.
6604     MachineFunction &MF = DAG.getMachineFunction();
6605     MCSymbol *Label =
6606         MF.getMMI().getContext().createTempSymbol("annotation", true);
6607     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6608     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6609     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6610     DAG.setRoot(Res);
6611     return;
6612   }
6613 
6614   case Intrinsic::init_trampoline: {
6615     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6616 
6617     SDValue Ops[6];
6618     Ops[0] = getRoot();
6619     Ops[1] = getValue(I.getArgOperand(0));
6620     Ops[2] = getValue(I.getArgOperand(1));
6621     Ops[3] = getValue(I.getArgOperand(2));
6622     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6623     Ops[5] = DAG.getSrcValue(F);
6624 
6625     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6626 
6627     DAG.setRoot(Res);
6628     return;
6629   }
6630   case Intrinsic::adjust_trampoline:
6631     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6632                              TLI.getPointerTy(DAG.getDataLayout()),
6633                              getValue(I.getArgOperand(0))));
6634     return;
6635   case Intrinsic::gcroot: {
6636     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6637            "only valid in functions with gc specified, enforced by Verifier");
6638     assert(GFI && "implied by previous");
6639     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6640     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6641 
6642     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6643     GFI->addStackRoot(FI->getIndex(), TypeMap);
6644     return;
6645   }
6646   case Intrinsic::gcread:
6647   case Intrinsic::gcwrite:
6648     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6649   case Intrinsic::flt_rounds:
6650     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6651     setValue(&I, Res);
6652     DAG.setRoot(Res.getValue(1));
6653     return;
6654 
6655   case Intrinsic::expect:
6656     // Just replace __builtin_expect(exp, c) with EXP.
6657     setValue(&I, getValue(I.getArgOperand(0)));
6658     return;
6659 
6660   case Intrinsic::ubsantrap:
6661   case Intrinsic::debugtrap:
6662   case Intrinsic::trap: {
6663     StringRef TrapFuncName =
6664         I.getAttributes()
6665             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6666             .getValueAsString();
6667     if (TrapFuncName.empty()) {
6668       switch (Intrinsic) {
6669       case Intrinsic::trap:
6670         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6671         break;
6672       case Intrinsic::debugtrap:
6673         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6674         break;
6675       case Intrinsic::ubsantrap:
6676         DAG.setRoot(DAG.getNode(
6677             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6678             DAG.getTargetConstant(
6679                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6680                 MVT::i32)));
6681         break;
6682       default: llvm_unreachable("unknown trap intrinsic");
6683       }
6684       return;
6685     }
6686     TargetLowering::ArgListTy Args;
6687     if (Intrinsic == Intrinsic::ubsantrap) {
6688       Args.push_back(TargetLoweringBase::ArgListEntry());
6689       Args[0].Val = I.getArgOperand(0);
6690       Args[0].Node = getValue(Args[0].Val);
6691       Args[0].Ty = Args[0].Val->getType();
6692     }
6693 
6694     TargetLowering::CallLoweringInfo CLI(DAG);
6695     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6696         CallingConv::C, I.getType(),
6697         DAG.getExternalSymbol(TrapFuncName.data(),
6698                               TLI.getPointerTy(DAG.getDataLayout())),
6699         std::move(Args));
6700 
6701     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6702     DAG.setRoot(Result.second);
6703     return;
6704   }
6705 
6706   case Intrinsic::uadd_with_overflow:
6707   case Intrinsic::sadd_with_overflow:
6708   case Intrinsic::usub_with_overflow:
6709   case Intrinsic::ssub_with_overflow:
6710   case Intrinsic::umul_with_overflow:
6711   case Intrinsic::smul_with_overflow: {
6712     ISD::NodeType Op;
6713     switch (Intrinsic) {
6714     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6715     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6716     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6717     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6718     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6719     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6720     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6721     }
6722     SDValue Op1 = getValue(I.getArgOperand(0));
6723     SDValue Op2 = getValue(I.getArgOperand(1));
6724 
6725     EVT ResultVT = Op1.getValueType();
6726     EVT OverflowVT = MVT::i1;
6727     if (ResultVT.isVector())
6728       OverflowVT = EVT::getVectorVT(
6729           *Context, OverflowVT, ResultVT.getVectorElementCount());
6730 
6731     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6732     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6733     return;
6734   }
6735   case Intrinsic::prefetch: {
6736     SDValue Ops[5];
6737     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6738     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6739     Ops[0] = DAG.getRoot();
6740     Ops[1] = getValue(I.getArgOperand(0));
6741     Ops[2] = getValue(I.getArgOperand(1));
6742     Ops[3] = getValue(I.getArgOperand(2));
6743     Ops[4] = getValue(I.getArgOperand(3));
6744     SDValue Result = DAG.getMemIntrinsicNode(
6745         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6746         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6747         /* align */ None, Flags);
6748 
6749     // Chain the prefetch in parallell with any pending loads, to stay out of
6750     // the way of later optimizations.
6751     PendingLoads.push_back(Result);
6752     Result = getRoot();
6753     DAG.setRoot(Result);
6754     return;
6755   }
6756   case Intrinsic::lifetime_start:
6757   case Intrinsic::lifetime_end: {
6758     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6759     // Stack coloring is not enabled in O0, discard region information.
6760     if (TM.getOptLevel() == CodeGenOpt::None)
6761       return;
6762 
6763     const int64_t ObjectSize =
6764         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6765     Value *const ObjectPtr = I.getArgOperand(1);
6766     SmallVector<const Value *, 4> Allocas;
6767     getUnderlyingObjects(ObjectPtr, Allocas);
6768 
6769     for (const Value *Alloca : Allocas) {
6770       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6771 
6772       // Could not find an Alloca.
6773       if (!LifetimeObject)
6774         continue;
6775 
6776       // First check that the Alloca is static, otherwise it won't have a
6777       // valid frame index.
6778       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6779       if (SI == FuncInfo.StaticAllocaMap.end())
6780         return;
6781 
6782       const int FrameIndex = SI->second;
6783       int64_t Offset;
6784       if (GetPointerBaseWithConstantOffset(
6785               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6786         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6787       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6788                                 Offset);
6789       DAG.setRoot(Res);
6790     }
6791     return;
6792   }
6793   case Intrinsic::pseudoprobe: {
6794     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6795     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6796     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6797     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6798     DAG.setRoot(Res);
6799     return;
6800   }
6801   case Intrinsic::invariant_start:
6802     // Discard region information.
6803     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6804     return;
6805   case Intrinsic::invariant_end:
6806     // Discard region information.
6807     return;
6808   case Intrinsic::clear_cache:
6809     /// FunctionName may be null.
6810     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6811       lowerCallToExternalSymbol(I, FunctionName);
6812     return;
6813   case Intrinsic::donothing:
6814   case Intrinsic::seh_try_begin:
6815   case Intrinsic::seh_scope_begin:
6816   case Intrinsic::seh_try_end:
6817   case Intrinsic::seh_scope_end:
6818     // ignore
6819     return;
6820   case Intrinsic::experimental_stackmap:
6821     visitStackmap(I);
6822     return;
6823   case Intrinsic::experimental_patchpoint_void:
6824   case Intrinsic::experimental_patchpoint_i64:
6825     visitPatchpoint(I);
6826     return;
6827   case Intrinsic::experimental_gc_statepoint:
6828     LowerStatepoint(cast<GCStatepointInst>(I));
6829     return;
6830   case Intrinsic::experimental_gc_result:
6831     visitGCResult(cast<GCResultInst>(I));
6832     return;
6833   case Intrinsic::experimental_gc_relocate:
6834     visitGCRelocate(cast<GCRelocateInst>(I));
6835     return;
6836   case Intrinsic::instrprof_increment:
6837     llvm_unreachable("instrprof failed to lower an increment");
6838   case Intrinsic::instrprof_value_profile:
6839     llvm_unreachable("instrprof failed to lower a value profiling call");
6840   case Intrinsic::localescape: {
6841     MachineFunction &MF = DAG.getMachineFunction();
6842     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6843 
6844     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6845     // is the same on all targets.
6846     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6847       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6848       if (isa<ConstantPointerNull>(Arg))
6849         continue; // Skip null pointers. They represent a hole in index space.
6850       AllocaInst *Slot = cast<AllocaInst>(Arg);
6851       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6852              "can only escape static allocas");
6853       int FI = FuncInfo.StaticAllocaMap[Slot];
6854       MCSymbol *FrameAllocSym =
6855           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6856               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6857       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6858               TII->get(TargetOpcode::LOCAL_ESCAPE))
6859           .addSym(FrameAllocSym)
6860           .addFrameIndex(FI);
6861     }
6862 
6863     return;
6864   }
6865 
6866   case Intrinsic::localrecover: {
6867     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6868     MachineFunction &MF = DAG.getMachineFunction();
6869 
6870     // Get the symbol that defines the frame offset.
6871     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6872     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6873     unsigned IdxVal =
6874         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6875     MCSymbol *FrameAllocSym =
6876         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6877             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6878 
6879     Value *FP = I.getArgOperand(1);
6880     SDValue FPVal = getValue(FP);
6881     EVT PtrVT = FPVal.getValueType();
6882 
6883     // Create a MCSymbol for the label to avoid any target lowering
6884     // that would make this PC relative.
6885     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6886     SDValue OffsetVal =
6887         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6888 
6889     // Add the offset to the FP.
6890     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6891     setValue(&I, Add);
6892 
6893     return;
6894   }
6895 
6896   case Intrinsic::eh_exceptionpointer:
6897   case Intrinsic::eh_exceptioncode: {
6898     // Get the exception pointer vreg, copy from it, and resize it to fit.
6899     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6900     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6901     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6902     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6903     SDValue N =
6904         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6905     if (Intrinsic == Intrinsic::eh_exceptioncode)
6906       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6907     setValue(&I, N);
6908     return;
6909   }
6910   case Intrinsic::xray_customevent: {
6911     // Here we want to make sure that the intrinsic behaves as if it has a
6912     // specific calling convention, and only for x86_64.
6913     // FIXME: Support other platforms later.
6914     const auto &Triple = DAG.getTarget().getTargetTriple();
6915     if (Triple.getArch() != Triple::x86_64)
6916       return;
6917 
6918     SDLoc DL = getCurSDLoc();
6919     SmallVector<SDValue, 8> Ops;
6920 
6921     // We want to say that we always want the arguments in registers.
6922     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6923     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6924     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6925     SDValue Chain = getRoot();
6926     Ops.push_back(LogEntryVal);
6927     Ops.push_back(StrSizeVal);
6928     Ops.push_back(Chain);
6929 
6930     // We need to enforce the calling convention for the callsite, so that
6931     // argument ordering is enforced correctly, and that register allocation can
6932     // see that some registers may be assumed clobbered and have to preserve
6933     // them across calls to the intrinsic.
6934     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6935                                            DL, NodeTys, Ops);
6936     SDValue patchableNode = SDValue(MN, 0);
6937     DAG.setRoot(patchableNode);
6938     setValue(&I, patchableNode);
6939     return;
6940   }
6941   case Intrinsic::xray_typedevent: {
6942     // Here we want to make sure that the intrinsic behaves as if it has a
6943     // specific calling convention, and only for x86_64.
6944     // FIXME: Support other platforms later.
6945     const auto &Triple = DAG.getTarget().getTargetTriple();
6946     if (Triple.getArch() != Triple::x86_64)
6947       return;
6948 
6949     SDLoc DL = getCurSDLoc();
6950     SmallVector<SDValue, 8> Ops;
6951 
6952     // We want to say that we always want the arguments in registers.
6953     // It's unclear to me how manipulating the selection DAG here forces callers
6954     // to provide arguments in registers instead of on the stack.
6955     SDValue LogTypeId = getValue(I.getArgOperand(0));
6956     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6957     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6958     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6959     SDValue Chain = getRoot();
6960     Ops.push_back(LogTypeId);
6961     Ops.push_back(LogEntryVal);
6962     Ops.push_back(StrSizeVal);
6963     Ops.push_back(Chain);
6964 
6965     // We need to enforce the calling convention for the callsite, so that
6966     // argument ordering is enforced correctly, and that register allocation can
6967     // see that some registers may be assumed clobbered and have to preserve
6968     // them across calls to the intrinsic.
6969     MachineSDNode *MN = DAG.getMachineNode(
6970         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6971     SDValue patchableNode = SDValue(MN, 0);
6972     DAG.setRoot(patchableNode);
6973     setValue(&I, patchableNode);
6974     return;
6975   }
6976   case Intrinsic::experimental_deoptimize:
6977     LowerDeoptimizeCall(&I);
6978     return;
6979   case Intrinsic::experimental_stepvector:
6980     visitStepVector(I);
6981     return;
6982   case Intrinsic::vector_reduce_fadd:
6983   case Intrinsic::vector_reduce_fmul:
6984   case Intrinsic::vector_reduce_add:
6985   case Intrinsic::vector_reduce_mul:
6986   case Intrinsic::vector_reduce_and:
6987   case Intrinsic::vector_reduce_or:
6988   case Intrinsic::vector_reduce_xor:
6989   case Intrinsic::vector_reduce_smax:
6990   case Intrinsic::vector_reduce_smin:
6991   case Intrinsic::vector_reduce_umax:
6992   case Intrinsic::vector_reduce_umin:
6993   case Intrinsic::vector_reduce_fmax:
6994   case Intrinsic::vector_reduce_fmin:
6995     visitVectorReduce(I, Intrinsic);
6996     return;
6997 
6998   case Intrinsic::icall_branch_funnel: {
6999     SmallVector<SDValue, 16> Ops;
7000     Ops.push_back(getValue(I.getArgOperand(0)));
7001 
7002     int64_t Offset;
7003     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7004         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7005     if (!Base)
7006       report_fatal_error(
7007           "llvm.icall.branch.funnel operand must be a GlobalValue");
7008     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
7009 
7010     struct BranchFunnelTarget {
7011       int64_t Offset;
7012       SDValue Target;
7013     };
7014     SmallVector<BranchFunnelTarget, 8> Targets;
7015 
7016     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
7017       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7018           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7019       if (ElemBase != Base)
7020         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7021                            "to the same GlobalValue");
7022 
7023       SDValue Val = getValue(I.getArgOperand(Op + 1));
7024       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7025       if (!GA)
7026         report_fatal_error(
7027             "llvm.icall.branch.funnel operand must be a GlobalValue");
7028       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7029                                      GA->getGlobal(), getCurSDLoc(),
7030                                      Val.getValueType(), GA->getOffset())});
7031     }
7032     llvm::sort(Targets,
7033                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7034                  return T1.Offset < T2.Offset;
7035                });
7036 
7037     for (auto &T : Targets) {
7038       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
7039       Ops.push_back(T.Target);
7040     }
7041 
7042     Ops.push_back(DAG.getRoot()); // Chain
7043     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
7044                                  getCurSDLoc(), MVT::Other, Ops),
7045               0);
7046     DAG.setRoot(N);
7047     setValue(&I, N);
7048     HasTailCall = true;
7049     return;
7050   }
7051 
7052   case Intrinsic::wasm_landingpad_index:
7053     // Information this intrinsic contained has been transferred to
7054     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7055     // delete it now.
7056     return;
7057 
7058   case Intrinsic::aarch64_settag:
7059   case Intrinsic::aarch64_settag_zero: {
7060     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7061     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7062     SDValue Val = TSI.EmitTargetCodeForSetTag(
7063         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
7064         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7065         ZeroMemory);
7066     DAG.setRoot(Val);
7067     setValue(&I, Val);
7068     return;
7069   }
7070   case Intrinsic::ptrmask: {
7071     SDValue Ptr = getValue(I.getOperand(0));
7072     SDValue Const = getValue(I.getOperand(1));
7073 
7074     EVT PtrVT = Ptr.getValueType();
7075     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
7076                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
7077     return;
7078   }
7079   case Intrinsic::get_active_lane_mask: {
7080     auto DL = getCurSDLoc();
7081     SDValue Index = getValue(I.getOperand(0));
7082     SDValue TripCount = getValue(I.getOperand(1));
7083     Type *ElementTy = I.getOperand(0)->getType();
7084     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7085     unsigned VecWidth = VT.getVectorNumElements();
7086 
7087     SmallVector<SDValue, 16> OpsTripCount;
7088     SmallVector<SDValue, 16> OpsIndex;
7089     SmallVector<SDValue, 16> OpsStepConstants;
7090     for (unsigned i = 0; i < VecWidth; i++) {
7091       OpsTripCount.push_back(TripCount);
7092       OpsIndex.push_back(Index);
7093       OpsStepConstants.push_back(
7094           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
7095     }
7096 
7097     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
7098 
7099     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
7100     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
7101     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
7102     SDValue VectorInduction = DAG.getNode(
7103        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
7104     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
7105     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
7106                                  VectorTripCount, ISD::CondCode::SETULT);
7107     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
7108                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
7109                              SetCC));
7110     return;
7111   }
7112   case Intrinsic::experimental_vector_insert: {
7113     auto DL = getCurSDLoc();
7114 
7115     SDValue Vec = getValue(I.getOperand(0));
7116     SDValue SubVec = getValue(I.getOperand(1));
7117     SDValue Index = getValue(I.getOperand(2));
7118 
7119     // The intrinsic's index type is i64, but the SDNode requires an index type
7120     // suitable for the target. Convert the index as required.
7121     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7122     if (Index.getValueType() != VectorIdxTy)
7123       Index = DAG.getVectorIdxConstant(
7124           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7125 
7126     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7127     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec,
7128                              Index));
7129     return;
7130   }
7131   case Intrinsic::experimental_vector_extract: {
7132     auto DL = getCurSDLoc();
7133 
7134     SDValue Vec = getValue(I.getOperand(0));
7135     SDValue Index = getValue(I.getOperand(1));
7136     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7137 
7138     // The intrinsic's index type is i64, but the SDNode requires an index type
7139     // suitable for the target. Convert the index as required.
7140     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7141     if (Index.getValueType() != VectorIdxTy)
7142       Index = DAG.getVectorIdxConstant(
7143           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7144 
7145     setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index));
7146     return;
7147   }
7148   case Intrinsic::experimental_vector_reverse:
7149     visitVectorReverse(I);
7150     return;
7151   case Intrinsic::experimental_vector_splice:
7152     visitVectorSplice(I);
7153     return;
7154   }
7155 }
7156 
7157 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7158     const ConstrainedFPIntrinsic &FPI) {
7159   SDLoc sdl = getCurSDLoc();
7160 
7161   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7162   SmallVector<EVT, 4> ValueVTs;
7163   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7164   ValueVTs.push_back(MVT::Other); // Out chain
7165 
7166   // We do not need to serialize constrained FP intrinsics against
7167   // each other or against (nonvolatile) loads, so they can be
7168   // chained like loads.
7169   SDValue Chain = DAG.getRoot();
7170   SmallVector<SDValue, 4> Opers;
7171   Opers.push_back(Chain);
7172   if (FPI.isUnaryOp()) {
7173     Opers.push_back(getValue(FPI.getArgOperand(0)));
7174   } else if (FPI.isTernaryOp()) {
7175     Opers.push_back(getValue(FPI.getArgOperand(0)));
7176     Opers.push_back(getValue(FPI.getArgOperand(1)));
7177     Opers.push_back(getValue(FPI.getArgOperand(2)));
7178   } else {
7179     Opers.push_back(getValue(FPI.getArgOperand(0)));
7180     Opers.push_back(getValue(FPI.getArgOperand(1)));
7181   }
7182 
7183   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7184     assert(Result.getNode()->getNumValues() == 2);
7185 
7186     // Push node to the appropriate list so that future instructions can be
7187     // chained up correctly.
7188     SDValue OutChain = Result.getValue(1);
7189     switch (EB) {
7190     case fp::ExceptionBehavior::ebIgnore:
7191       // The only reason why ebIgnore nodes still need to be chained is that
7192       // they might depend on the current rounding mode, and therefore must
7193       // not be moved across instruction that may change that mode.
7194       LLVM_FALLTHROUGH;
7195     case fp::ExceptionBehavior::ebMayTrap:
7196       // These must not be moved across calls or instructions that may change
7197       // floating-point exception masks.
7198       PendingConstrainedFP.push_back(OutChain);
7199       break;
7200     case fp::ExceptionBehavior::ebStrict:
7201       // These must not be moved across calls or instructions that may change
7202       // floating-point exception masks or read floating-point exception flags.
7203       // In addition, they cannot be optimized out even if unused.
7204       PendingConstrainedFPStrict.push_back(OutChain);
7205       break;
7206     }
7207   };
7208 
7209   SDVTList VTs = DAG.getVTList(ValueVTs);
7210   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7211 
7212   SDNodeFlags Flags;
7213   if (EB == fp::ExceptionBehavior::ebIgnore)
7214     Flags.setNoFPExcept(true);
7215 
7216   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7217     Flags.copyFMF(*FPOp);
7218 
7219   unsigned Opcode;
7220   switch (FPI.getIntrinsicID()) {
7221   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7222 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7223   case Intrinsic::INTRINSIC:                                                   \
7224     Opcode = ISD::STRICT_##DAGN;                                               \
7225     break;
7226 #include "llvm/IR/ConstrainedOps.def"
7227   case Intrinsic::experimental_constrained_fmuladd: {
7228     Opcode = ISD::STRICT_FMA;
7229     // Break fmuladd into fmul and fadd.
7230     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7231         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7232                                         ValueVTs[0])) {
7233       Opers.pop_back();
7234       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7235       pushOutChain(Mul, EB);
7236       Opcode = ISD::STRICT_FADD;
7237       Opers.clear();
7238       Opers.push_back(Mul.getValue(1));
7239       Opers.push_back(Mul.getValue(0));
7240       Opers.push_back(getValue(FPI.getArgOperand(2)));
7241     }
7242     break;
7243   }
7244   }
7245 
7246   // A few strict DAG nodes carry additional operands that are not
7247   // set up by the default code above.
7248   switch (Opcode) {
7249   default: break;
7250   case ISD::STRICT_FP_ROUND:
7251     Opers.push_back(
7252         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7253     break;
7254   case ISD::STRICT_FSETCC:
7255   case ISD::STRICT_FSETCCS: {
7256     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7257     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7258     if (TM.Options.NoNaNsFPMath)
7259       Condition = getFCmpCodeWithoutNaN(Condition);
7260     Opers.push_back(DAG.getCondCode(Condition));
7261     break;
7262   }
7263   }
7264 
7265   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7266   pushOutChain(Result, EB);
7267 
7268   SDValue FPResult = Result.getValue(0);
7269   setValue(&FPI, FPResult);
7270 }
7271 
7272 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7273   Optional<unsigned> ResOPC;
7274   switch (VPIntrin.getIntrinsicID()) {
7275 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN:
7276 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID;
7277 #define END_REGISTER_VP_INTRINSIC(...) break;
7278 #include "llvm/IR/VPIntrinsics.def"
7279   }
7280 
7281   if (!ResOPC.hasValue())
7282     llvm_unreachable(
7283         "Inconsistency: no SDNode available for this VPIntrinsic!");
7284 
7285   return ResOPC.getValue();
7286 }
7287 
7288 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7289     const VPIntrinsic &VPIntrin) {
7290   SDLoc DL = getCurSDLoc();
7291   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7292 
7293   SmallVector<EVT, 4> ValueVTs;
7294   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7295   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7296   SDVTList VTs = DAG.getVTList(ValueVTs);
7297 
7298   auto EVLParamPos =
7299       VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID());
7300 
7301   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7302   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7303          "Unexpected target EVL type");
7304 
7305   // Request operands.
7306   SmallVector<SDValue, 7> OpValues;
7307   for (unsigned I = 0; I < VPIntrin.getNumArgOperands(); ++I) {
7308     auto Op = getValue(VPIntrin.getArgOperand(I));
7309     if (I == EVLParamPos)
7310       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7311     OpValues.push_back(Op);
7312   }
7313 
7314   SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7315   setValue(&VPIntrin, Result);
7316 }
7317 
7318 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7319                                           const BasicBlock *EHPadBB,
7320                                           MCSymbol *&BeginLabel) {
7321   MachineFunction &MF = DAG.getMachineFunction();
7322   MachineModuleInfo &MMI = MF.getMMI();
7323 
7324   // Insert a label before the invoke call to mark the try range.  This can be
7325   // used to detect deletion of the invoke via the MachineModuleInfo.
7326   BeginLabel = MMI.getContext().createTempSymbol();
7327 
7328   // For SjLj, keep track of which landing pads go with which invokes
7329   // so as to maintain the ordering of pads in the LSDA.
7330   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7331   if (CallSiteIndex) {
7332     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7333     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7334 
7335     // Now that the call site is handled, stop tracking it.
7336     MMI.setCurrentCallSite(0);
7337   }
7338 
7339   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7340 }
7341 
7342 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7343                                         const BasicBlock *EHPadBB,
7344                                         MCSymbol *BeginLabel) {
7345   assert(BeginLabel && "BeginLabel should've been set");
7346 
7347   MachineFunction &MF = DAG.getMachineFunction();
7348   MachineModuleInfo &MMI = MF.getMMI();
7349 
7350   // Insert a label at the end of the invoke call to mark the try range.  This
7351   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7352   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7353   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7354 
7355   // Inform MachineModuleInfo of range.
7356   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7357   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7358   // actually use outlined funclets and their LSDA info style.
7359   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7360     assert(II && "II should've been set");
7361     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7362     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7363   } else if (!isScopedEHPersonality(Pers)) {
7364     assert(EHPadBB);
7365     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7366   }
7367 
7368   return Chain;
7369 }
7370 
7371 std::pair<SDValue, SDValue>
7372 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7373                                     const BasicBlock *EHPadBB) {
7374   MCSymbol *BeginLabel = nullptr;
7375 
7376   if (EHPadBB) {
7377     // Both PendingLoads and PendingExports must be flushed here;
7378     // this call might not return.
7379     (void)getRoot();
7380     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7381     CLI.setChain(getRoot());
7382   }
7383 
7384   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7385   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7386 
7387   assert((CLI.IsTailCall || Result.second.getNode()) &&
7388          "Non-null chain expected with non-tail call!");
7389   assert((Result.second.getNode() || !Result.first.getNode()) &&
7390          "Null value expected with tail call!");
7391 
7392   if (!Result.second.getNode()) {
7393     // As a special case, a null chain means that a tail call has been emitted
7394     // and the DAG root is already updated.
7395     HasTailCall = true;
7396 
7397     // Since there's no actual continuation from this block, nothing can be
7398     // relying on us setting vregs for them.
7399     PendingExports.clear();
7400   } else {
7401     DAG.setRoot(Result.second);
7402   }
7403 
7404   if (EHPadBB) {
7405     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7406                            BeginLabel));
7407   }
7408 
7409   return Result;
7410 }
7411 
7412 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7413                                       bool isTailCall,
7414                                       bool isMustTailCall,
7415                                       const BasicBlock *EHPadBB) {
7416   auto &DL = DAG.getDataLayout();
7417   FunctionType *FTy = CB.getFunctionType();
7418   Type *RetTy = CB.getType();
7419 
7420   TargetLowering::ArgListTy Args;
7421   Args.reserve(CB.arg_size());
7422 
7423   const Value *SwiftErrorVal = nullptr;
7424   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7425 
7426   if (isTailCall) {
7427     // Avoid emitting tail calls in functions with the disable-tail-calls
7428     // attribute.
7429     auto *Caller = CB.getParent()->getParent();
7430     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7431         "true" && !isMustTailCall)
7432       isTailCall = false;
7433 
7434     // We can't tail call inside a function with a swifterror argument. Lowering
7435     // does not support this yet. It would have to move into the swifterror
7436     // register before the call.
7437     if (TLI.supportSwiftError() &&
7438         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7439       isTailCall = false;
7440   }
7441 
7442   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7443     TargetLowering::ArgListEntry Entry;
7444     const Value *V = *I;
7445 
7446     // Skip empty types
7447     if (V->getType()->isEmptyTy())
7448       continue;
7449 
7450     SDValue ArgNode = getValue(V);
7451     Entry.Node = ArgNode; Entry.Ty = V->getType();
7452 
7453     Entry.setAttributes(&CB, I - CB.arg_begin());
7454 
7455     // Use swifterror virtual register as input to the call.
7456     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7457       SwiftErrorVal = V;
7458       // We find the virtual register for the actual swifterror argument.
7459       // Instead of using the Value, we use the virtual register instead.
7460       Entry.Node =
7461           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7462                           EVT(TLI.getPointerTy(DL)));
7463     }
7464 
7465     Args.push_back(Entry);
7466 
7467     // If we have an explicit sret argument that is an Instruction, (i.e., it
7468     // might point to function-local memory), we can't meaningfully tail-call.
7469     if (Entry.IsSRet && isa<Instruction>(V))
7470       isTailCall = false;
7471   }
7472 
7473   // If call site has a cfguardtarget operand bundle, create and add an
7474   // additional ArgListEntry.
7475   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7476     TargetLowering::ArgListEntry Entry;
7477     Value *V = Bundle->Inputs[0];
7478     SDValue ArgNode = getValue(V);
7479     Entry.Node = ArgNode;
7480     Entry.Ty = V->getType();
7481     Entry.IsCFGuardTarget = true;
7482     Args.push_back(Entry);
7483   }
7484 
7485   // Check if target-independent constraints permit a tail call here.
7486   // Target-dependent constraints are checked within TLI->LowerCallTo.
7487   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7488     isTailCall = false;
7489 
7490   // Disable tail calls if there is an swifterror argument. Targets have not
7491   // been updated to support tail calls.
7492   if (TLI.supportSwiftError() && SwiftErrorVal)
7493     isTailCall = false;
7494 
7495   TargetLowering::CallLoweringInfo CLI(DAG);
7496   CLI.setDebugLoc(getCurSDLoc())
7497       .setChain(getRoot())
7498       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7499       .setTailCall(isTailCall)
7500       .setConvergent(CB.isConvergent())
7501       .setIsPreallocated(
7502           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7503   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7504 
7505   if (Result.first.getNode()) {
7506     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7507     setValue(&CB, Result.first);
7508   }
7509 
7510   // The last element of CLI.InVals has the SDValue for swifterror return.
7511   // Here we copy it to a virtual register and update SwiftErrorMap for
7512   // book-keeping.
7513   if (SwiftErrorVal && TLI.supportSwiftError()) {
7514     // Get the last element of InVals.
7515     SDValue Src = CLI.InVals.back();
7516     Register VReg =
7517         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7518     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7519     DAG.setRoot(CopyNode);
7520   }
7521 }
7522 
7523 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7524                              SelectionDAGBuilder &Builder) {
7525   // Check to see if this load can be trivially constant folded, e.g. if the
7526   // input is from a string literal.
7527   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7528     // Cast pointer to the type we really want to load.
7529     Type *LoadTy =
7530         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7531     if (LoadVT.isVector())
7532       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7533 
7534     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7535                                          PointerType::getUnqual(LoadTy));
7536 
7537     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7538             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7539       return Builder.getValue(LoadCst);
7540   }
7541 
7542   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7543   // still constant memory, the input chain can be the entry node.
7544   SDValue Root;
7545   bool ConstantMemory = false;
7546 
7547   // Do not serialize (non-volatile) loads of constant memory with anything.
7548   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7549     Root = Builder.DAG.getEntryNode();
7550     ConstantMemory = true;
7551   } else {
7552     // Do not serialize non-volatile loads against each other.
7553     Root = Builder.DAG.getRoot();
7554   }
7555 
7556   SDValue Ptr = Builder.getValue(PtrVal);
7557   SDValue LoadVal =
7558       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7559                           MachinePointerInfo(PtrVal), Align(1));
7560 
7561   if (!ConstantMemory)
7562     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7563   return LoadVal;
7564 }
7565 
7566 /// Record the value for an instruction that produces an integer result,
7567 /// converting the type where necessary.
7568 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7569                                                   SDValue Value,
7570                                                   bool IsSigned) {
7571   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7572                                                     I.getType(), true);
7573   if (IsSigned)
7574     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7575   else
7576     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7577   setValue(&I, Value);
7578 }
7579 
7580 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7581 /// true and lower it. Otherwise return false, and it will be lowered like a
7582 /// normal call.
7583 /// The caller already checked that \p I calls the appropriate LibFunc with a
7584 /// correct prototype.
7585 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7586   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7587   const Value *Size = I.getArgOperand(2);
7588   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7589   if (CSize && CSize->getZExtValue() == 0) {
7590     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7591                                                           I.getType(), true);
7592     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7593     return true;
7594   }
7595 
7596   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7597   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7598       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7599       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7600   if (Res.first.getNode()) {
7601     processIntegerCallValue(I, Res.first, true);
7602     PendingLoads.push_back(Res.second);
7603     return true;
7604   }
7605 
7606   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7607   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7608   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7609     return false;
7610 
7611   // If the target has a fast compare for the given size, it will return a
7612   // preferred load type for that size. Require that the load VT is legal and
7613   // that the target supports unaligned loads of that type. Otherwise, return
7614   // INVALID.
7615   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7616     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7617     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7618     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7619       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7620       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7621       // TODO: Check alignment of src and dest ptrs.
7622       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7623       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7624       if (!TLI.isTypeLegal(LVT) ||
7625           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7626           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7627         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7628     }
7629 
7630     return LVT;
7631   };
7632 
7633   // This turns into unaligned loads. We only do this if the target natively
7634   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7635   // we'll only produce a small number of byte loads.
7636   MVT LoadVT;
7637   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7638   switch (NumBitsToCompare) {
7639   default:
7640     return false;
7641   case 16:
7642     LoadVT = MVT::i16;
7643     break;
7644   case 32:
7645     LoadVT = MVT::i32;
7646     break;
7647   case 64:
7648   case 128:
7649   case 256:
7650     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7651     break;
7652   }
7653 
7654   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7655     return false;
7656 
7657   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7658   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7659 
7660   // Bitcast to a wide integer type if the loads are vectors.
7661   if (LoadVT.isVector()) {
7662     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7663     LoadL = DAG.getBitcast(CmpVT, LoadL);
7664     LoadR = DAG.getBitcast(CmpVT, LoadR);
7665   }
7666 
7667   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7668   processIntegerCallValue(I, Cmp, false);
7669   return true;
7670 }
7671 
7672 /// See if we can lower a memchr call into an optimized form. If so, return
7673 /// true and lower it. Otherwise return false, and it will be lowered like a
7674 /// normal call.
7675 /// The caller already checked that \p I calls the appropriate LibFunc with a
7676 /// correct prototype.
7677 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7678   const Value *Src = I.getArgOperand(0);
7679   const Value *Char = I.getArgOperand(1);
7680   const Value *Length = I.getArgOperand(2);
7681 
7682   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7683   std::pair<SDValue, SDValue> Res =
7684     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7685                                 getValue(Src), getValue(Char), getValue(Length),
7686                                 MachinePointerInfo(Src));
7687   if (Res.first.getNode()) {
7688     setValue(&I, Res.first);
7689     PendingLoads.push_back(Res.second);
7690     return true;
7691   }
7692 
7693   return false;
7694 }
7695 
7696 /// See if we can lower a mempcpy call into an optimized form. If so, return
7697 /// true and lower it. Otherwise return false, and it will be lowered like a
7698 /// normal call.
7699 /// The caller already checked that \p I calls the appropriate LibFunc with a
7700 /// correct prototype.
7701 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7702   SDValue Dst = getValue(I.getArgOperand(0));
7703   SDValue Src = getValue(I.getArgOperand(1));
7704   SDValue Size = getValue(I.getArgOperand(2));
7705 
7706   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7707   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7708   // DAG::getMemcpy needs Alignment to be defined.
7709   Align Alignment = std::min(DstAlign, SrcAlign);
7710 
7711   bool isVol = false;
7712   SDLoc sdl = getCurSDLoc();
7713 
7714   // In the mempcpy context we need to pass in a false value for isTailCall
7715   // because the return pointer needs to be adjusted by the size of
7716   // the copied memory.
7717   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7718   AAMDNodes AAInfo;
7719   I.getAAMetadata(AAInfo);
7720   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7721                              /*isTailCall=*/false,
7722                              MachinePointerInfo(I.getArgOperand(0)),
7723                              MachinePointerInfo(I.getArgOperand(1)), AAInfo);
7724   assert(MC.getNode() != nullptr &&
7725          "** memcpy should not be lowered as TailCall in mempcpy context **");
7726   DAG.setRoot(MC);
7727 
7728   // Check if Size needs to be truncated or extended.
7729   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7730 
7731   // Adjust return pointer to point just past the last dst byte.
7732   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7733                                     Dst, Size);
7734   setValue(&I, DstPlusSize);
7735   return true;
7736 }
7737 
7738 /// See if we can lower a strcpy call into an optimized form.  If so, return
7739 /// true and lower it, otherwise return false and it will be lowered like a
7740 /// normal call.
7741 /// The caller already checked that \p I calls the appropriate LibFunc with a
7742 /// correct prototype.
7743 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7744   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7745 
7746   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7747   std::pair<SDValue, SDValue> Res =
7748     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7749                                 getValue(Arg0), getValue(Arg1),
7750                                 MachinePointerInfo(Arg0),
7751                                 MachinePointerInfo(Arg1), isStpcpy);
7752   if (Res.first.getNode()) {
7753     setValue(&I, Res.first);
7754     DAG.setRoot(Res.second);
7755     return true;
7756   }
7757 
7758   return false;
7759 }
7760 
7761 /// See if we can lower a strcmp call into an optimized form.  If so, return
7762 /// true and lower it, otherwise return false and it will be lowered like a
7763 /// normal call.
7764 /// The caller already checked that \p I calls the appropriate LibFunc with a
7765 /// correct prototype.
7766 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7767   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7768 
7769   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7770   std::pair<SDValue, SDValue> Res =
7771     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7772                                 getValue(Arg0), getValue(Arg1),
7773                                 MachinePointerInfo(Arg0),
7774                                 MachinePointerInfo(Arg1));
7775   if (Res.first.getNode()) {
7776     processIntegerCallValue(I, Res.first, true);
7777     PendingLoads.push_back(Res.second);
7778     return true;
7779   }
7780 
7781   return false;
7782 }
7783 
7784 /// See if we can lower a strlen call into an optimized form.  If so, return
7785 /// true and lower it, otherwise return false and it will be lowered like a
7786 /// normal call.
7787 /// The caller already checked that \p I calls the appropriate LibFunc with a
7788 /// correct prototype.
7789 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7790   const Value *Arg0 = I.getArgOperand(0);
7791 
7792   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7793   std::pair<SDValue, SDValue> Res =
7794     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7795                                 getValue(Arg0), MachinePointerInfo(Arg0));
7796   if (Res.first.getNode()) {
7797     processIntegerCallValue(I, Res.first, false);
7798     PendingLoads.push_back(Res.second);
7799     return true;
7800   }
7801 
7802   return false;
7803 }
7804 
7805 /// See if we can lower a strnlen call into an optimized form.  If so, return
7806 /// true and lower it, otherwise return false and it will be lowered like a
7807 /// normal call.
7808 /// The caller already checked that \p I calls the appropriate LibFunc with a
7809 /// correct prototype.
7810 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7811   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7812 
7813   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7814   std::pair<SDValue, SDValue> Res =
7815     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7816                                  getValue(Arg0), getValue(Arg1),
7817                                  MachinePointerInfo(Arg0));
7818   if (Res.first.getNode()) {
7819     processIntegerCallValue(I, Res.first, false);
7820     PendingLoads.push_back(Res.second);
7821     return true;
7822   }
7823 
7824   return false;
7825 }
7826 
7827 /// See if we can lower a unary floating-point operation into an SDNode with
7828 /// the specified Opcode.  If so, return true and lower it, otherwise return
7829 /// false and it will be lowered like a normal call.
7830 /// The caller already checked that \p I calls the appropriate LibFunc with a
7831 /// correct prototype.
7832 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7833                                               unsigned Opcode) {
7834   // We already checked this call's prototype; verify it doesn't modify errno.
7835   if (!I.onlyReadsMemory())
7836     return false;
7837 
7838   SDNodeFlags Flags;
7839   Flags.copyFMF(cast<FPMathOperator>(I));
7840 
7841   SDValue Tmp = getValue(I.getArgOperand(0));
7842   setValue(&I,
7843            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7844   return true;
7845 }
7846 
7847 /// See if we can lower a binary floating-point operation into an SDNode with
7848 /// the specified Opcode. If so, return true and lower it. Otherwise return
7849 /// false, and it will be lowered like a normal call.
7850 /// The caller already checked that \p I calls the appropriate LibFunc with a
7851 /// correct prototype.
7852 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7853                                                unsigned Opcode) {
7854   // We already checked this call's prototype; verify it doesn't modify errno.
7855   if (!I.onlyReadsMemory())
7856     return false;
7857 
7858   SDNodeFlags Flags;
7859   Flags.copyFMF(cast<FPMathOperator>(I));
7860 
7861   SDValue Tmp0 = getValue(I.getArgOperand(0));
7862   SDValue Tmp1 = getValue(I.getArgOperand(1));
7863   EVT VT = Tmp0.getValueType();
7864   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7865   return true;
7866 }
7867 
7868 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7869   // Handle inline assembly differently.
7870   if (I.isInlineAsm()) {
7871     visitInlineAsm(I);
7872     return;
7873   }
7874 
7875   if (Function *F = I.getCalledFunction()) {
7876     if (F->isDeclaration()) {
7877       // Is this an LLVM intrinsic or a target-specific intrinsic?
7878       unsigned IID = F->getIntrinsicID();
7879       if (!IID)
7880         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7881           IID = II->getIntrinsicID(F);
7882 
7883       if (IID) {
7884         visitIntrinsicCall(I, IID);
7885         return;
7886       }
7887     }
7888 
7889     // Check for well-known libc/libm calls.  If the function is internal, it
7890     // can't be a library call.  Don't do the check if marked as nobuiltin for
7891     // some reason or the call site requires strict floating point semantics.
7892     LibFunc Func;
7893     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7894         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7895         LibInfo->hasOptimizedCodeGen(Func)) {
7896       switch (Func) {
7897       default: break;
7898       case LibFunc_bcmp:
7899         if (visitMemCmpBCmpCall(I))
7900           return;
7901         break;
7902       case LibFunc_copysign:
7903       case LibFunc_copysignf:
7904       case LibFunc_copysignl:
7905         // We already checked this call's prototype; verify it doesn't modify
7906         // errno.
7907         if (I.onlyReadsMemory()) {
7908           SDValue LHS = getValue(I.getArgOperand(0));
7909           SDValue RHS = getValue(I.getArgOperand(1));
7910           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7911                                    LHS.getValueType(), LHS, RHS));
7912           return;
7913         }
7914         break;
7915       case LibFunc_fabs:
7916       case LibFunc_fabsf:
7917       case LibFunc_fabsl:
7918         if (visitUnaryFloatCall(I, ISD::FABS))
7919           return;
7920         break;
7921       case LibFunc_fmin:
7922       case LibFunc_fminf:
7923       case LibFunc_fminl:
7924         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7925           return;
7926         break;
7927       case LibFunc_fmax:
7928       case LibFunc_fmaxf:
7929       case LibFunc_fmaxl:
7930         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7931           return;
7932         break;
7933       case LibFunc_sin:
7934       case LibFunc_sinf:
7935       case LibFunc_sinl:
7936         if (visitUnaryFloatCall(I, ISD::FSIN))
7937           return;
7938         break;
7939       case LibFunc_cos:
7940       case LibFunc_cosf:
7941       case LibFunc_cosl:
7942         if (visitUnaryFloatCall(I, ISD::FCOS))
7943           return;
7944         break;
7945       case LibFunc_sqrt:
7946       case LibFunc_sqrtf:
7947       case LibFunc_sqrtl:
7948       case LibFunc_sqrt_finite:
7949       case LibFunc_sqrtf_finite:
7950       case LibFunc_sqrtl_finite:
7951         if (visitUnaryFloatCall(I, ISD::FSQRT))
7952           return;
7953         break;
7954       case LibFunc_floor:
7955       case LibFunc_floorf:
7956       case LibFunc_floorl:
7957         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7958           return;
7959         break;
7960       case LibFunc_nearbyint:
7961       case LibFunc_nearbyintf:
7962       case LibFunc_nearbyintl:
7963         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7964           return;
7965         break;
7966       case LibFunc_ceil:
7967       case LibFunc_ceilf:
7968       case LibFunc_ceill:
7969         if (visitUnaryFloatCall(I, ISD::FCEIL))
7970           return;
7971         break;
7972       case LibFunc_rint:
7973       case LibFunc_rintf:
7974       case LibFunc_rintl:
7975         if (visitUnaryFloatCall(I, ISD::FRINT))
7976           return;
7977         break;
7978       case LibFunc_round:
7979       case LibFunc_roundf:
7980       case LibFunc_roundl:
7981         if (visitUnaryFloatCall(I, ISD::FROUND))
7982           return;
7983         break;
7984       case LibFunc_trunc:
7985       case LibFunc_truncf:
7986       case LibFunc_truncl:
7987         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7988           return;
7989         break;
7990       case LibFunc_log2:
7991       case LibFunc_log2f:
7992       case LibFunc_log2l:
7993         if (visitUnaryFloatCall(I, ISD::FLOG2))
7994           return;
7995         break;
7996       case LibFunc_exp2:
7997       case LibFunc_exp2f:
7998       case LibFunc_exp2l:
7999         if (visitUnaryFloatCall(I, ISD::FEXP2))
8000           return;
8001         break;
8002       case LibFunc_memcmp:
8003         if (visitMemCmpBCmpCall(I))
8004           return;
8005         break;
8006       case LibFunc_mempcpy:
8007         if (visitMemPCpyCall(I))
8008           return;
8009         break;
8010       case LibFunc_memchr:
8011         if (visitMemChrCall(I))
8012           return;
8013         break;
8014       case LibFunc_strcpy:
8015         if (visitStrCpyCall(I, false))
8016           return;
8017         break;
8018       case LibFunc_stpcpy:
8019         if (visitStrCpyCall(I, true))
8020           return;
8021         break;
8022       case LibFunc_strcmp:
8023         if (visitStrCmpCall(I))
8024           return;
8025         break;
8026       case LibFunc_strlen:
8027         if (visitStrLenCall(I))
8028           return;
8029         break;
8030       case LibFunc_strnlen:
8031         if (visitStrNLenCall(I))
8032           return;
8033         break;
8034       }
8035     }
8036   }
8037 
8038   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8039   // have to do anything here to lower funclet bundles.
8040   // CFGuardTarget bundles are lowered in LowerCallTo.
8041   assert(!I.hasOperandBundlesOtherThan(
8042              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8043               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8044               LLVMContext::OB_clang_arc_attachedcall}) &&
8045          "Cannot lower calls with arbitrary operand bundles!");
8046 
8047   SDValue Callee = getValue(I.getCalledOperand());
8048 
8049   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8050     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8051   else
8052     // Check if we can potentially perform a tail call. More detailed checking
8053     // is be done within LowerCallTo, after more information about the call is
8054     // known.
8055     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8056 }
8057 
8058 namespace {
8059 
8060 /// AsmOperandInfo - This contains information for each constraint that we are
8061 /// lowering.
8062 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8063 public:
8064   /// CallOperand - If this is the result output operand or a clobber
8065   /// this is null, otherwise it is the incoming operand to the CallInst.
8066   /// This gets modified as the asm is processed.
8067   SDValue CallOperand;
8068 
8069   /// AssignedRegs - If this is a register or register class operand, this
8070   /// contains the set of register corresponding to the operand.
8071   RegsForValue AssignedRegs;
8072 
8073   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8074     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8075   }
8076 
8077   /// Whether or not this operand accesses memory
8078   bool hasMemory(const TargetLowering &TLI) const {
8079     // Indirect operand accesses access memory.
8080     if (isIndirect)
8081       return true;
8082 
8083     for (const auto &Code : Codes)
8084       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8085         return true;
8086 
8087     return false;
8088   }
8089 
8090   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8091   /// corresponds to.  If there is no Value* for this operand, it returns
8092   /// MVT::Other.
8093   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8094                            const DataLayout &DL) const {
8095     if (!CallOperandVal) return MVT::Other;
8096 
8097     if (isa<BasicBlock>(CallOperandVal))
8098       return TLI.getProgramPointerTy(DL);
8099 
8100     llvm::Type *OpTy = CallOperandVal->getType();
8101 
8102     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8103     // If this is an indirect operand, the operand is a pointer to the
8104     // accessed type.
8105     if (isIndirect) {
8106       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
8107       if (!PtrTy)
8108         report_fatal_error("Indirect operand for inline asm not a pointer!");
8109       OpTy = PtrTy->getElementType();
8110     }
8111 
8112     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8113     if (StructType *STy = dyn_cast<StructType>(OpTy))
8114       if (STy->getNumElements() == 1)
8115         OpTy = STy->getElementType(0);
8116 
8117     // If OpTy is not a single value, it may be a struct/union that we
8118     // can tile with integers.
8119     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8120       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8121       switch (BitSize) {
8122       default: break;
8123       case 1:
8124       case 8:
8125       case 16:
8126       case 32:
8127       case 64:
8128       case 128:
8129         OpTy = IntegerType::get(Context, BitSize);
8130         break;
8131       }
8132     }
8133 
8134     return TLI.getValueType(DL, OpTy, true);
8135   }
8136 };
8137 
8138 
8139 } // end anonymous namespace
8140 
8141 /// Make sure that the output operand \p OpInfo and its corresponding input
8142 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8143 /// out).
8144 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8145                                SDISelAsmOperandInfo &MatchingOpInfo,
8146                                SelectionDAG &DAG) {
8147   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8148     return;
8149 
8150   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8151   const auto &TLI = DAG.getTargetLoweringInfo();
8152 
8153   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8154       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8155                                        OpInfo.ConstraintVT);
8156   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8157       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8158                                        MatchingOpInfo.ConstraintVT);
8159   if ((OpInfo.ConstraintVT.isInteger() !=
8160        MatchingOpInfo.ConstraintVT.isInteger()) ||
8161       (MatchRC.second != InputRC.second)) {
8162     // FIXME: error out in a more elegant fashion
8163     report_fatal_error("Unsupported asm: input constraint"
8164                        " with a matching output constraint of"
8165                        " incompatible type!");
8166   }
8167   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8168 }
8169 
8170 /// Get a direct memory input to behave well as an indirect operand.
8171 /// This may introduce stores, hence the need for a \p Chain.
8172 /// \return The (possibly updated) chain.
8173 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8174                                         SDISelAsmOperandInfo &OpInfo,
8175                                         SelectionDAG &DAG) {
8176   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8177 
8178   // If we don't have an indirect input, put it in the constpool if we can,
8179   // otherwise spill it to a stack slot.
8180   // TODO: This isn't quite right. We need to handle these according to
8181   // the addressing mode that the constraint wants. Also, this may take
8182   // an additional register for the computation and we don't want that
8183   // either.
8184 
8185   // If the operand is a float, integer, or vector constant, spill to a
8186   // constant pool entry to get its address.
8187   const Value *OpVal = OpInfo.CallOperandVal;
8188   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8189       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8190     OpInfo.CallOperand = DAG.getConstantPool(
8191         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8192     return Chain;
8193   }
8194 
8195   // Otherwise, create a stack slot and emit a store to it before the asm.
8196   Type *Ty = OpVal->getType();
8197   auto &DL = DAG.getDataLayout();
8198   uint64_t TySize = DL.getTypeAllocSize(Ty);
8199   MachineFunction &MF = DAG.getMachineFunction();
8200   int SSFI = MF.getFrameInfo().CreateStackObject(
8201       TySize, DL.getPrefTypeAlign(Ty), false);
8202   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8203   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8204                             MachinePointerInfo::getFixedStack(MF, SSFI),
8205                             TLI.getMemValueType(DL, Ty));
8206   OpInfo.CallOperand = StackSlot;
8207 
8208   return Chain;
8209 }
8210 
8211 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8212 /// specified operand.  We prefer to assign virtual registers, to allow the
8213 /// register allocator to handle the assignment process.  However, if the asm
8214 /// uses features that we can't model on machineinstrs, we have SDISel do the
8215 /// allocation.  This produces generally horrible, but correct, code.
8216 ///
8217 ///   OpInfo describes the operand
8218 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8219 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8220                                  SDISelAsmOperandInfo &OpInfo,
8221                                  SDISelAsmOperandInfo &RefOpInfo) {
8222   LLVMContext &Context = *DAG.getContext();
8223   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8224 
8225   MachineFunction &MF = DAG.getMachineFunction();
8226   SmallVector<unsigned, 4> Regs;
8227   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8228 
8229   // No work to do for memory operations.
8230   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8231     return;
8232 
8233   // If this is a constraint for a single physreg, or a constraint for a
8234   // register class, find it.
8235   unsigned AssignedReg;
8236   const TargetRegisterClass *RC;
8237   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8238       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8239   // RC is unset only on failure. Return immediately.
8240   if (!RC)
8241     return;
8242 
8243   // Get the actual register value type.  This is important, because the user
8244   // may have asked for (e.g.) the AX register in i32 type.  We need to
8245   // remember that AX is actually i16 to get the right extension.
8246   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8247 
8248   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8249     // If this is an FP operand in an integer register (or visa versa), or more
8250     // generally if the operand value disagrees with the register class we plan
8251     // to stick it in, fix the operand type.
8252     //
8253     // If this is an input value, the bitcast to the new type is done now.
8254     // Bitcast for output value is done at the end of visitInlineAsm().
8255     if ((OpInfo.Type == InlineAsm::isOutput ||
8256          OpInfo.Type == InlineAsm::isInput) &&
8257         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8258       // Try to convert to the first EVT that the reg class contains.  If the
8259       // types are identical size, use a bitcast to convert (e.g. two differing
8260       // vector types).  Note: output bitcast is done at the end of
8261       // visitInlineAsm().
8262       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8263         // Exclude indirect inputs while they are unsupported because the code
8264         // to perform the load is missing and thus OpInfo.CallOperand still
8265         // refers to the input address rather than the pointed-to value.
8266         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8267           OpInfo.CallOperand =
8268               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8269         OpInfo.ConstraintVT = RegVT;
8270         // If the operand is an FP value and we want it in integer registers,
8271         // use the corresponding integer type. This turns an f64 value into
8272         // i64, which can be passed with two i32 values on a 32-bit machine.
8273       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8274         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8275         if (OpInfo.Type == InlineAsm::isInput)
8276           OpInfo.CallOperand =
8277               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8278         OpInfo.ConstraintVT = VT;
8279       }
8280     }
8281   }
8282 
8283   // No need to allocate a matching input constraint since the constraint it's
8284   // matching to has already been allocated.
8285   if (OpInfo.isMatchingInputConstraint())
8286     return;
8287 
8288   EVT ValueVT = OpInfo.ConstraintVT;
8289   if (OpInfo.ConstraintVT == MVT::Other)
8290     ValueVT = RegVT;
8291 
8292   // Initialize NumRegs.
8293   unsigned NumRegs = 1;
8294   if (OpInfo.ConstraintVT != MVT::Other)
8295     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8296 
8297   // If this is a constraint for a specific physical register, like {r17},
8298   // assign it now.
8299 
8300   // If this associated to a specific register, initialize iterator to correct
8301   // place. If virtual, make sure we have enough registers
8302 
8303   // Initialize iterator if necessary
8304   TargetRegisterClass::iterator I = RC->begin();
8305   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8306 
8307   // Do not check for single registers.
8308   if (AssignedReg) {
8309       for (; *I != AssignedReg; ++I)
8310         assert(I != RC->end() && "AssignedReg should be member of RC");
8311   }
8312 
8313   for (; NumRegs; --NumRegs, ++I) {
8314     assert(I != RC->end() && "Ran out of registers to allocate!");
8315     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8316     Regs.push_back(R);
8317   }
8318 
8319   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8320 }
8321 
8322 static unsigned
8323 findMatchingInlineAsmOperand(unsigned OperandNo,
8324                              const std::vector<SDValue> &AsmNodeOperands) {
8325   // Scan until we find the definition we already emitted of this operand.
8326   unsigned CurOp = InlineAsm::Op_FirstOperand;
8327   for (; OperandNo; --OperandNo) {
8328     // Advance to the next operand.
8329     unsigned OpFlag =
8330         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8331     assert((InlineAsm::isRegDefKind(OpFlag) ||
8332             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8333             InlineAsm::isMemKind(OpFlag)) &&
8334            "Skipped past definitions?");
8335     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8336   }
8337   return CurOp;
8338 }
8339 
8340 namespace {
8341 
8342 class ExtraFlags {
8343   unsigned Flags = 0;
8344 
8345 public:
8346   explicit ExtraFlags(const CallBase &Call) {
8347     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8348     if (IA->hasSideEffects())
8349       Flags |= InlineAsm::Extra_HasSideEffects;
8350     if (IA->isAlignStack())
8351       Flags |= InlineAsm::Extra_IsAlignStack;
8352     if (Call.isConvergent())
8353       Flags |= InlineAsm::Extra_IsConvergent;
8354     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8355   }
8356 
8357   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8358     // Ideally, we would only check against memory constraints.  However, the
8359     // meaning of an Other constraint can be target-specific and we can't easily
8360     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8361     // for Other constraints as well.
8362     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8363         OpInfo.ConstraintType == TargetLowering::C_Other) {
8364       if (OpInfo.Type == InlineAsm::isInput)
8365         Flags |= InlineAsm::Extra_MayLoad;
8366       else if (OpInfo.Type == InlineAsm::isOutput)
8367         Flags |= InlineAsm::Extra_MayStore;
8368       else if (OpInfo.Type == InlineAsm::isClobber)
8369         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8370     }
8371   }
8372 
8373   unsigned get() const { return Flags; }
8374 };
8375 
8376 } // end anonymous namespace
8377 
8378 /// visitInlineAsm - Handle a call to an InlineAsm object.
8379 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8380                                          const BasicBlock *EHPadBB) {
8381   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8382 
8383   /// ConstraintOperands - Information about all of the constraints.
8384   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8385 
8386   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8387   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8388       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8389 
8390   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8391   // AsmDialect, MayLoad, MayStore).
8392   bool HasSideEffect = IA->hasSideEffects();
8393   ExtraFlags ExtraInfo(Call);
8394 
8395   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8396   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8397   unsigned NumMatchingOps = 0;
8398   for (auto &T : TargetConstraints) {
8399     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8400     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8401 
8402     // Compute the value type for each operand.
8403     if (OpInfo.Type == InlineAsm::isInput ||
8404         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8405       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8406 
8407       // Process the call argument. BasicBlocks are labels, currently appearing
8408       // only in asm's.
8409       if (isa<CallBrInst>(Call) &&
8410           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8411                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8412                         NumMatchingOps) &&
8413           (NumMatchingOps == 0 ||
8414            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8415                         NumMatchingOps))) {
8416         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8417         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8418         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8419       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8420         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8421       } else {
8422         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8423       }
8424 
8425       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8426                                            DAG.getDataLayout());
8427       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8428     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8429       // The return value of the call is this value.  As such, there is no
8430       // corresponding argument.
8431       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8432       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8433         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8434             DAG.getDataLayout(), STy->getElementType(ResNo));
8435       } else {
8436         assert(ResNo == 0 && "Asm only has one result!");
8437         OpInfo.ConstraintVT =
8438             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8439       }
8440       ++ResNo;
8441     } else {
8442       OpInfo.ConstraintVT = MVT::Other;
8443     }
8444 
8445     if (OpInfo.hasMatchingInput())
8446       ++NumMatchingOps;
8447 
8448     if (!HasSideEffect)
8449       HasSideEffect = OpInfo.hasMemory(TLI);
8450 
8451     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8452     // FIXME: Could we compute this on OpInfo rather than T?
8453 
8454     // Compute the constraint code and ConstraintType to use.
8455     TLI.ComputeConstraintToUse(T, SDValue());
8456 
8457     if (T.ConstraintType == TargetLowering::C_Immediate &&
8458         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8459       // We've delayed emitting a diagnostic like the "n" constraint because
8460       // inlining could cause an integer showing up.
8461       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8462                                           "' expects an integer constant "
8463                                           "expression");
8464 
8465     ExtraInfo.update(T);
8466   }
8467 
8468   // We won't need to flush pending loads if this asm doesn't touch
8469   // memory and is nonvolatile.
8470   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8471 
8472   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8473   if (EmitEHLabels) {
8474     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8475   }
8476   bool IsCallBr = isa<CallBrInst>(Call);
8477 
8478   if (IsCallBr || EmitEHLabels) {
8479     // If this is a callbr or invoke we need to flush pending exports since
8480     // inlineasm_br and invoke are terminators.
8481     // We need to do this before nodes are glued to the inlineasm_br node.
8482     Chain = getControlRoot();
8483   }
8484 
8485   MCSymbol *BeginLabel = nullptr;
8486   if (EmitEHLabels) {
8487     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8488   }
8489 
8490   // Second pass over the constraints: compute which constraint option to use.
8491   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8492     // If this is an output operand with a matching input operand, look up the
8493     // matching input. If their types mismatch, e.g. one is an integer, the
8494     // other is floating point, or their sizes are different, flag it as an
8495     // error.
8496     if (OpInfo.hasMatchingInput()) {
8497       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8498       patchMatchingInput(OpInfo, Input, DAG);
8499     }
8500 
8501     // Compute the constraint code and ConstraintType to use.
8502     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8503 
8504     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8505         OpInfo.Type == InlineAsm::isClobber)
8506       continue;
8507 
8508     // If this is a memory input, and if the operand is not indirect, do what we
8509     // need to provide an address for the memory input.
8510     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8511         !OpInfo.isIndirect) {
8512       assert((OpInfo.isMultipleAlternative ||
8513               (OpInfo.Type == InlineAsm::isInput)) &&
8514              "Can only indirectify direct input operands!");
8515 
8516       // Memory operands really want the address of the value.
8517       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8518 
8519       // There is no longer a Value* corresponding to this operand.
8520       OpInfo.CallOperandVal = nullptr;
8521 
8522       // It is now an indirect operand.
8523       OpInfo.isIndirect = true;
8524     }
8525 
8526   }
8527 
8528   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8529   std::vector<SDValue> AsmNodeOperands;
8530   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8531   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8532       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8533 
8534   // If we have a !srcloc metadata node associated with it, we want to attach
8535   // this to the ultimately generated inline asm machineinstr.  To do this, we
8536   // pass in the third operand as this (potentially null) inline asm MDNode.
8537   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8538   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8539 
8540   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8541   // bits as operand 3.
8542   AsmNodeOperands.push_back(DAG.getTargetConstant(
8543       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8544 
8545   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8546   // this, assign virtual and physical registers for inputs and otput.
8547   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8548     // Assign Registers.
8549     SDISelAsmOperandInfo &RefOpInfo =
8550         OpInfo.isMatchingInputConstraint()
8551             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8552             : OpInfo;
8553     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8554 
8555     auto DetectWriteToReservedRegister = [&]() {
8556       const MachineFunction &MF = DAG.getMachineFunction();
8557       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8558       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8559         if (Register::isPhysicalRegister(Reg) &&
8560             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8561           const char *RegName = TRI.getName(Reg);
8562           emitInlineAsmError(Call, "write to reserved register '" +
8563                                        Twine(RegName) + "'");
8564           return true;
8565         }
8566       }
8567       return false;
8568     };
8569 
8570     switch (OpInfo.Type) {
8571     case InlineAsm::isOutput:
8572       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8573         unsigned ConstraintID =
8574             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8575         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8576                "Failed to convert memory constraint code to constraint id.");
8577 
8578         // Add information to the INLINEASM node to know about this output.
8579         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8580         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8581         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8582                                                         MVT::i32));
8583         AsmNodeOperands.push_back(OpInfo.CallOperand);
8584       } else {
8585         // Otherwise, this outputs to a register (directly for C_Register /
8586         // C_RegisterClass, and a target-defined fashion for
8587         // C_Immediate/C_Other). Find a register that we can use.
8588         if (OpInfo.AssignedRegs.Regs.empty()) {
8589           emitInlineAsmError(
8590               Call, "couldn't allocate output register for constraint '" +
8591                         Twine(OpInfo.ConstraintCode) + "'");
8592           return;
8593         }
8594 
8595         if (DetectWriteToReservedRegister())
8596           return;
8597 
8598         // Add information to the INLINEASM node to know that this register is
8599         // set.
8600         OpInfo.AssignedRegs.AddInlineAsmOperands(
8601             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8602                                   : InlineAsm::Kind_RegDef,
8603             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8604       }
8605       break;
8606 
8607     case InlineAsm::isInput: {
8608       SDValue InOperandVal = OpInfo.CallOperand;
8609 
8610       if (OpInfo.isMatchingInputConstraint()) {
8611         // If this is required to match an output register we have already set,
8612         // just use its register.
8613         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8614                                                   AsmNodeOperands);
8615         unsigned OpFlag =
8616           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8617         if (InlineAsm::isRegDefKind(OpFlag) ||
8618             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8619           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8620           if (OpInfo.isIndirect) {
8621             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8622             emitInlineAsmError(Call, "inline asm not supported yet: "
8623                                      "don't know how to handle tied "
8624                                      "indirect register inputs");
8625             return;
8626           }
8627 
8628           SmallVector<unsigned, 4> Regs;
8629           MachineFunction &MF = DAG.getMachineFunction();
8630           MachineRegisterInfo &MRI = MF.getRegInfo();
8631           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8632           RegisterSDNode *R = dyn_cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8633           Register TiedReg = R->getReg();
8634           MVT RegVT = R->getSimpleValueType(0);
8635           const TargetRegisterClass *RC = TiedReg.isVirtual() ?
8636             MRI.getRegClass(TiedReg) : TRI.getMinimalPhysRegClass(TiedReg);
8637           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8638           for (unsigned i = 0; i != NumRegs; ++i)
8639             Regs.push_back(MRI.createVirtualRegister(RC));
8640 
8641           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8642 
8643           SDLoc dl = getCurSDLoc();
8644           // Use the produced MatchedRegs object to
8645           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8646           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8647                                            true, OpInfo.getMatchedOperand(), dl,
8648                                            DAG, AsmNodeOperands);
8649           break;
8650         }
8651 
8652         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8653         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8654                "Unexpected number of operands");
8655         // Add information to the INLINEASM node to know about this input.
8656         // See InlineAsm.h isUseOperandTiedToDef.
8657         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8658         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8659                                                     OpInfo.getMatchedOperand());
8660         AsmNodeOperands.push_back(DAG.getTargetConstant(
8661             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8662         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8663         break;
8664       }
8665 
8666       // Treat indirect 'X' constraint as memory.
8667       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8668           OpInfo.isIndirect)
8669         OpInfo.ConstraintType = TargetLowering::C_Memory;
8670 
8671       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8672           OpInfo.ConstraintType == TargetLowering::C_Other) {
8673         std::vector<SDValue> Ops;
8674         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8675                                           Ops, DAG);
8676         if (Ops.empty()) {
8677           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8678             if (isa<ConstantSDNode>(InOperandVal)) {
8679               emitInlineAsmError(Call, "value out of range for constraint '" +
8680                                            Twine(OpInfo.ConstraintCode) + "'");
8681               return;
8682             }
8683 
8684           emitInlineAsmError(Call,
8685                              "invalid operand for inline asm constraint '" +
8686                                  Twine(OpInfo.ConstraintCode) + "'");
8687           return;
8688         }
8689 
8690         // Add information to the INLINEASM node to know about this input.
8691         unsigned ResOpType =
8692           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8693         AsmNodeOperands.push_back(DAG.getTargetConstant(
8694             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8695         llvm::append_range(AsmNodeOperands, Ops);
8696         break;
8697       }
8698 
8699       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8700         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8701         assert(InOperandVal.getValueType() ==
8702                    TLI.getPointerTy(DAG.getDataLayout()) &&
8703                "Memory operands expect pointer values");
8704 
8705         unsigned ConstraintID =
8706             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8707         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8708                "Failed to convert memory constraint code to constraint id.");
8709 
8710         // Add information to the INLINEASM node to know about this input.
8711         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8712         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8713         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8714                                                         getCurSDLoc(),
8715                                                         MVT::i32));
8716         AsmNodeOperands.push_back(InOperandVal);
8717         break;
8718       }
8719 
8720       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8721               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8722              "Unknown constraint type!");
8723 
8724       // TODO: Support this.
8725       if (OpInfo.isIndirect) {
8726         emitInlineAsmError(
8727             Call, "Don't know how to handle indirect register inputs yet "
8728                   "for constraint '" +
8729                       Twine(OpInfo.ConstraintCode) + "'");
8730         return;
8731       }
8732 
8733       // Copy the input into the appropriate registers.
8734       if (OpInfo.AssignedRegs.Regs.empty()) {
8735         emitInlineAsmError(Call,
8736                            "couldn't allocate input reg for constraint '" +
8737                                Twine(OpInfo.ConstraintCode) + "'");
8738         return;
8739       }
8740 
8741       if (DetectWriteToReservedRegister())
8742         return;
8743 
8744       SDLoc dl = getCurSDLoc();
8745 
8746       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8747                                         &Call);
8748 
8749       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8750                                                dl, DAG, AsmNodeOperands);
8751       break;
8752     }
8753     case InlineAsm::isClobber:
8754       // Add the clobbered value to the operand list, so that the register
8755       // allocator is aware that the physreg got clobbered.
8756       if (!OpInfo.AssignedRegs.Regs.empty())
8757         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8758                                                  false, 0, getCurSDLoc(), DAG,
8759                                                  AsmNodeOperands);
8760       break;
8761     }
8762   }
8763 
8764   // Finish up input operands.  Set the input chain and add the flag last.
8765   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8766   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8767 
8768   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8769   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8770                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8771   Flag = Chain.getValue(1);
8772 
8773   // Do additional work to generate outputs.
8774 
8775   SmallVector<EVT, 1> ResultVTs;
8776   SmallVector<SDValue, 1> ResultValues;
8777   SmallVector<SDValue, 8> OutChains;
8778 
8779   llvm::Type *CallResultType = Call.getType();
8780   ArrayRef<Type *> ResultTypes;
8781   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8782     ResultTypes = StructResult->elements();
8783   else if (!CallResultType->isVoidTy())
8784     ResultTypes = makeArrayRef(CallResultType);
8785 
8786   auto CurResultType = ResultTypes.begin();
8787   auto handleRegAssign = [&](SDValue V) {
8788     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8789     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8790     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8791     ++CurResultType;
8792     // If the type of the inline asm call site return value is different but has
8793     // same size as the type of the asm output bitcast it.  One example of this
8794     // is for vectors with different width / number of elements.  This can
8795     // happen for register classes that can contain multiple different value
8796     // types.  The preg or vreg allocated may not have the same VT as was
8797     // expected.
8798     //
8799     // This can also happen for a return value that disagrees with the register
8800     // class it is put in, eg. a double in a general-purpose register on a
8801     // 32-bit machine.
8802     if (ResultVT != V.getValueType() &&
8803         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8804       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8805     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8806              V.getValueType().isInteger()) {
8807       // If a result value was tied to an input value, the computed result
8808       // may have a wider width than the expected result.  Extract the
8809       // relevant portion.
8810       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8811     }
8812     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8813     ResultVTs.push_back(ResultVT);
8814     ResultValues.push_back(V);
8815   };
8816 
8817   // Deal with output operands.
8818   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8819     if (OpInfo.Type == InlineAsm::isOutput) {
8820       SDValue Val;
8821       // Skip trivial output operands.
8822       if (OpInfo.AssignedRegs.Regs.empty())
8823         continue;
8824 
8825       switch (OpInfo.ConstraintType) {
8826       case TargetLowering::C_Register:
8827       case TargetLowering::C_RegisterClass:
8828         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8829                                                   Chain, &Flag, &Call);
8830         break;
8831       case TargetLowering::C_Immediate:
8832       case TargetLowering::C_Other:
8833         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8834                                               OpInfo, DAG);
8835         break;
8836       case TargetLowering::C_Memory:
8837         break; // Already handled.
8838       case TargetLowering::C_Unknown:
8839         assert(false && "Unexpected unknown constraint");
8840       }
8841 
8842       // Indirect output manifest as stores. Record output chains.
8843       if (OpInfo.isIndirect) {
8844         const Value *Ptr = OpInfo.CallOperandVal;
8845         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8846         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8847                                      MachinePointerInfo(Ptr));
8848         OutChains.push_back(Store);
8849       } else {
8850         // generate CopyFromRegs to associated registers.
8851         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8852         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8853           for (const SDValue &V : Val->op_values())
8854             handleRegAssign(V);
8855         } else
8856           handleRegAssign(Val);
8857       }
8858     }
8859   }
8860 
8861   // Set results.
8862   if (!ResultValues.empty()) {
8863     assert(CurResultType == ResultTypes.end() &&
8864            "Mismatch in number of ResultTypes");
8865     assert(ResultValues.size() == ResultTypes.size() &&
8866            "Mismatch in number of output operands in asm result");
8867 
8868     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8869                             DAG.getVTList(ResultVTs), ResultValues);
8870     setValue(&Call, V);
8871   }
8872 
8873   // Collect store chains.
8874   if (!OutChains.empty())
8875     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8876 
8877   if (EmitEHLabels) {
8878     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
8879   }
8880 
8881   // Only Update Root if inline assembly has a memory effect.
8882   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
8883       EmitEHLabels)
8884     DAG.setRoot(Chain);
8885 }
8886 
8887 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8888                                              const Twine &Message) {
8889   LLVMContext &Ctx = *DAG.getContext();
8890   Ctx.emitError(&Call, Message);
8891 
8892   // Make sure we leave the DAG in a valid state
8893   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8894   SmallVector<EVT, 1> ValueVTs;
8895   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8896 
8897   if (ValueVTs.empty())
8898     return;
8899 
8900   SmallVector<SDValue, 1> Ops;
8901   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8902     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8903 
8904   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8905 }
8906 
8907 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8908   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8909                           MVT::Other, getRoot(),
8910                           getValue(I.getArgOperand(0)),
8911                           DAG.getSrcValue(I.getArgOperand(0))));
8912 }
8913 
8914 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8915   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8916   const DataLayout &DL = DAG.getDataLayout();
8917   SDValue V = DAG.getVAArg(
8918       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8919       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8920       DL.getABITypeAlign(I.getType()).value());
8921   DAG.setRoot(V.getValue(1));
8922 
8923   if (I.getType()->isPointerTy())
8924     V = DAG.getPtrExtOrTrunc(
8925         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8926   setValue(&I, V);
8927 }
8928 
8929 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8930   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8931                           MVT::Other, getRoot(),
8932                           getValue(I.getArgOperand(0)),
8933                           DAG.getSrcValue(I.getArgOperand(0))));
8934 }
8935 
8936 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8937   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8938                           MVT::Other, getRoot(),
8939                           getValue(I.getArgOperand(0)),
8940                           getValue(I.getArgOperand(1)),
8941                           DAG.getSrcValue(I.getArgOperand(0)),
8942                           DAG.getSrcValue(I.getArgOperand(1))));
8943 }
8944 
8945 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8946                                                     const Instruction &I,
8947                                                     SDValue Op) {
8948   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8949   if (!Range)
8950     return Op;
8951 
8952   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8953   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8954     return Op;
8955 
8956   APInt Lo = CR.getUnsignedMin();
8957   if (!Lo.isMinValue())
8958     return Op;
8959 
8960   APInt Hi = CR.getUnsignedMax();
8961   unsigned Bits = std::max(Hi.getActiveBits(),
8962                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8963 
8964   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8965 
8966   SDLoc SL = getCurSDLoc();
8967 
8968   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8969                              DAG.getValueType(SmallVT));
8970   unsigned NumVals = Op.getNode()->getNumValues();
8971   if (NumVals == 1)
8972     return ZExt;
8973 
8974   SmallVector<SDValue, 4> Ops;
8975 
8976   Ops.push_back(ZExt);
8977   for (unsigned I = 1; I != NumVals; ++I)
8978     Ops.push_back(Op.getValue(I));
8979 
8980   return DAG.getMergeValues(Ops, SL);
8981 }
8982 
8983 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8984 /// the call being lowered.
8985 ///
8986 /// This is a helper for lowering intrinsics that follow a target calling
8987 /// convention or require stack pointer adjustment. Only a subset of the
8988 /// intrinsic's operands need to participate in the calling convention.
8989 void SelectionDAGBuilder::populateCallLoweringInfo(
8990     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8991     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8992     bool IsPatchPoint) {
8993   TargetLowering::ArgListTy Args;
8994   Args.reserve(NumArgs);
8995 
8996   // Populate the argument list.
8997   // Attributes for args start at offset 1, after the return attribute.
8998   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8999        ArgI != ArgE; ++ArgI) {
9000     const Value *V = Call->getOperand(ArgI);
9001 
9002     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9003 
9004     TargetLowering::ArgListEntry Entry;
9005     Entry.Node = getValue(V);
9006     Entry.Ty = V->getType();
9007     Entry.setAttributes(Call, ArgI);
9008     Args.push_back(Entry);
9009   }
9010 
9011   CLI.setDebugLoc(getCurSDLoc())
9012       .setChain(getRoot())
9013       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9014       .setDiscardResult(Call->use_empty())
9015       .setIsPatchPoint(IsPatchPoint)
9016       .setIsPreallocated(
9017           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9018 }
9019 
9020 /// Add a stack map intrinsic call's live variable operands to a stackmap
9021 /// or patchpoint target node's operand list.
9022 ///
9023 /// Constants are converted to TargetConstants purely as an optimization to
9024 /// avoid constant materialization and register allocation.
9025 ///
9026 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9027 /// generate addess computation nodes, and so FinalizeISel can convert the
9028 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9029 /// address materialization and register allocation, but may also be required
9030 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9031 /// alloca in the entry block, then the runtime may assume that the alloca's
9032 /// StackMap location can be read immediately after compilation and that the
9033 /// location is valid at any point during execution (this is similar to the
9034 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9035 /// only available in a register, then the runtime would need to trap when
9036 /// execution reaches the StackMap in order to read the alloca's location.
9037 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9038                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9039                                 SelectionDAGBuilder &Builder) {
9040   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9041     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9042     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9043       Ops.push_back(
9044         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9045       Ops.push_back(
9046         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9047     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9048       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9049       Ops.push_back(Builder.DAG.getTargetFrameIndex(
9050           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9051     } else
9052       Ops.push_back(OpVal);
9053   }
9054 }
9055 
9056 /// Lower llvm.experimental.stackmap directly to its target opcode.
9057 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9058   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9059   //                                  [live variables...])
9060 
9061   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9062 
9063   SDValue Chain, InFlag, Callee, NullPtr;
9064   SmallVector<SDValue, 32> Ops;
9065 
9066   SDLoc DL = getCurSDLoc();
9067   Callee = getValue(CI.getCalledOperand());
9068   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9069 
9070   // The stackmap intrinsic only records the live variables (the arguments
9071   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9072   // intrinsic, this won't be lowered to a function call. This means we don't
9073   // have to worry about calling conventions and target specific lowering code.
9074   // Instead we perform the call lowering right here.
9075   //
9076   // chain, flag = CALLSEQ_START(chain, 0, 0)
9077   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9078   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9079   //
9080   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9081   InFlag = Chain.getValue(1);
9082 
9083   // Add the <id> and <numBytes> constants.
9084   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9085   Ops.push_back(DAG.getTargetConstant(
9086                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9087   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9088   Ops.push_back(DAG.getTargetConstant(
9089                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9090                   MVT::i32));
9091 
9092   // Push live variables for the stack map.
9093   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9094 
9095   // We are not pushing any register mask info here on the operands list,
9096   // because the stackmap doesn't clobber anything.
9097 
9098   // Push the chain and the glue flag.
9099   Ops.push_back(Chain);
9100   Ops.push_back(InFlag);
9101 
9102   // Create the STACKMAP node.
9103   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9104   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9105   Chain = SDValue(SM, 0);
9106   InFlag = Chain.getValue(1);
9107 
9108   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9109 
9110   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9111 
9112   // Set the root to the target-lowered call chain.
9113   DAG.setRoot(Chain);
9114 
9115   // Inform the Frame Information that we have a stackmap in this function.
9116   FuncInfo.MF->getFrameInfo().setHasStackMap();
9117 }
9118 
9119 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9120 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9121                                           const BasicBlock *EHPadBB) {
9122   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9123   //                                                 i32 <numBytes>,
9124   //                                                 i8* <target>,
9125   //                                                 i32 <numArgs>,
9126   //                                                 [Args...],
9127   //                                                 [live variables...])
9128 
9129   CallingConv::ID CC = CB.getCallingConv();
9130   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9131   bool HasDef = !CB.getType()->isVoidTy();
9132   SDLoc dl = getCurSDLoc();
9133   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9134 
9135   // Handle immediate and symbolic callees.
9136   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9137     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9138                                    /*isTarget=*/true);
9139   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9140     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9141                                          SDLoc(SymbolicCallee),
9142                                          SymbolicCallee->getValueType(0));
9143 
9144   // Get the real number of arguments participating in the call <numArgs>
9145   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9146   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9147 
9148   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9149   // Intrinsics include all meta-operands up to but not including CC.
9150   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9151   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9152          "Not enough arguments provided to the patchpoint intrinsic");
9153 
9154   // For AnyRegCC the arguments are lowered later on manually.
9155   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9156   Type *ReturnTy =
9157       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9158 
9159   TargetLowering::CallLoweringInfo CLI(DAG);
9160   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9161                            ReturnTy, true);
9162   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9163 
9164   SDNode *CallEnd = Result.second.getNode();
9165   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9166     CallEnd = CallEnd->getOperand(0).getNode();
9167 
9168   /// Get a call instruction from the call sequence chain.
9169   /// Tail calls are not allowed.
9170   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9171          "Expected a callseq node.");
9172   SDNode *Call = CallEnd->getOperand(0).getNode();
9173   bool HasGlue = Call->getGluedNode();
9174 
9175   // Replace the target specific call node with the patchable intrinsic.
9176   SmallVector<SDValue, 8> Ops;
9177 
9178   // Add the <id> and <numBytes> constants.
9179   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9180   Ops.push_back(DAG.getTargetConstant(
9181                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9182   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9183   Ops.push_back(DAG.getTargetConstant(
9184                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9185                   MVT::i32));
9186 
9187   // Add the callee.
9188   Ops.push_back(Callee);
9189 
9190   // Adjust <numArgs> to account for any arguments that have been passed on the
9191   // stack instead.
9192   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9193   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9194   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9195   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9196 
9197   // Add the calling convention
9198   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9199 
9200   // Add the arguments we omitted previously. The register allocator should
9201   // place these in any free register.
9202   if (IsAnyRegCC)
9203     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9204       Ops.push_back(getValue(CB.getArgOperand(i)));
9205 
9206   // Push the arguments from the call instruction up to the register mask.
9207   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9208   Ops.append(Call->op_begin() + 2, e);
9209 
9210   // Push live variables for the stack map.
9211   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9212 
9213   // Push the register mask info.
9214   if (HasGlue)
9215     Ops.push_back(*(Call->op_end()-2));
9216   else
9217     Ops.push_back(*(Call->op_end()-1));
9218 
9219   // Push the chain (this is originally the first operand of the call, but
9220   // becomes now the last or second to last operand).
9221   Ops.push_back(*(Call->op_begin()));
9222 
9223   // Push the glue flag (last operand).
9224   if (HasGlue)
9225     Ops.push_back(*(Call->op_end()-1));
9226 
9227   SDVTList NodeTys;
9228   if (IsAnyRegCC && HasDef) {
9229     // Create the return types based on the intrinsic definition
9230     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9231     SmallVector<EVT, 3> ValueVTs;
9232     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9233     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9234 
9235     // There is always a chain and a glue type at the end
9236     ValueVTs.push_back(MVT::Other);
9237     ValueVTs.push_back(MVT::Glue);
9238     NodeTys = DAG.getVTList(ValueVTs);
9239   } else
9240     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9241 
9242   // Replace the target specific call node with a PATCHPOINT node.
9243   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9244                                          dl, NodeTys, Ops);
9245 
9246   // Update the NodeMap.
9247   if (HasDef) {
9248     if (IsAnyRegCC)
9249       setValue(&CB, SDValue(MN, 0));
9250     else
9251       setValue(&CB, Result.first);
9252   }
9253 
9254   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9255   // call sequence. Furthermore the location of the chain and glue can change
9256   // when the AnyReg calling convention is used and the intrinsic returns a
9257   // value.
9258   if (IsAnyRegCC && HasDef) {
9259     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9260     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9261     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9262   } else
9263     DAG.ReplaceAllUsesWith(Call, MN);
9264   DAG.DeleteNode(Call);
9265 
9266   // Inform the Frame Information that we have a patchpoint in this function.
9267   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9268 }
9269 
9270 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9271                                             unsigned Intrinsic) {
9272   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9273   SDValue Op1 = getValue(I.getArgOperand(0));
9274   SDValue Op2;
9275   if (I.getNumArgOperands() > 1)
9276     Op2 = getValue(I.getArgOperand(1));
9277   SDLoc dl = getCurSDLoc();
9278   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9279   SDValue Res;
9280   SDNodeFlags SDFlags;
9281   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9282     SDFlags.copyFMF(*FPMO);
9283 
9284   switch (Intrinsic) {
9285   case Intrinsic::vector_reduce_fadd:
9286     if (SDFlags.hasAllowReassociation())
9287       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9288                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9289                         SDFlags);
9290     else
9291       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9292     break;
9293   case Intrinsic::vector_reduce_fmul:
9294     if (SDFlags.hasAllowReassociation())
9295       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9296                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9297                         SDFlags);
9298     else
9299       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9300     break;
9301   case Intrinsic::vector_reduce_add:
9302     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9303     break;
9304   case Intrinsic::vector_reduce_mul:
9305     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9306     break;
9307   case Intrinsic::vector_reduce_and:
9308     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9309     break;
9310   case Intrinsic::vector_reduce_or:
9311     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9312     break;
9313   case Intrinsic::vector_reduce_xor:
9314     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9315     break;
9316   case Intrinsic::vector_reduce_smax:
9317     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9318     break;
9319   case Intrinsic::vector_reduce_smin:
9320     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9321     break;
9322   case Intrinsic::vector_reduce_umax:
9323     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9324     break;
9325   case Intrinsic::vector_reduce_umin:
9326     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9327     break;
9328   case Intrinsic::vector_reduce_fmax:
9329     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9330     break;
9331   case Intrinsic::vector_reduce_fmin:
9332     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9333     break;
9334   default:
9335     llvm_unreachable("Unhandled vector reduce intrinsic");
9336   }
9337   setValue(&I, Res);
9338 }
9339 
9340 /// Returns an AttributeList representing the attributes applied to the return
9341 /// value of the given call.
9342 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9343   SmallVector<Attribute::AttrKind, 2> Attrs;
9344   if (CLI.RetSExt)
9345     Attrs.push_back(Attribute::SExt);
9346   if (CLI.RetZExt)
9347     Attrs.push_back(Attribute::ZExt);
9348   if (CLI.IsInReg)
9349     Attrs.push_back(Attribute::InReg);
9350 
9351   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9352                             Attrs);
9353 }
9354 
9355 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9356 /// implementation, which just calls LowerCall.
9357 /// FIXME: When all targets are
9358 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9359 std::pair<SDValue, SDValue>
9360 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9361   // Handle the incoming return values from the call.
9362   CLI.Ins.clear();
9363   Type *OrigRetTy = CLI.RetTy;
9364   SmallVector<EVT, 4> RetTys;
9365   SmallVector<uint64_t, 4> Offsets;
9366   auto &DL = CLI.DAG.getDataLayout();
9367   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9368 
9369   if (CLI.IsPostTypeLegalization) {
9370     // If we are lowering a libcall after legalization, split the return type.
9371     SmallVector<EVT, 4> OldRetTys;
9372     SmallVector<uint64_t, 4> OldOffsets;
9373     RetTys.swap(OldRetTys);
9374     Offsets.swap(OldOffsets);
9375 
9376     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9377       EVT RetVT = OldRetTys[i];
9378       uint64_t Offset = OldOffsets[i];
9379       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9380       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9381       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9382       RetTys.append(NumRegs, RegisterVT);
9383       for (unsigned j = 0; j != NumRegs; ++j)
9384         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9385     }
9386   }
9387 
9388   SmallVector<ISD::OutputArg, 4> Outs;
9389   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9390 
9391   bool CanLowerReturn =
9392       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9393                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9394 
9395   SDValue DemoteStackSlot;
9396   int DemoteStackIdx = -100;
9397   if (!CanLowerReturn) {
9398     // FIXME: equivalent assert?
9399     // assert(!CS.hasInAllocaArgument() &&
9400     //        "sret demotion is incompatible with inalloca");
9401     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9402     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9403     MachineFunction &MF = CLI.DAG.getMachineFunction();
9404     DemoteStackIdx =
9405         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9406     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9407                                               DL.getAllocaAddrSpace());
9408 
9409     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9410     ArgListEntry Entry;
9411     Entry.Node = DemoteStackSlot;
9412     Entry.Ty = StackSlotPtrType;
9413     Entry.IsSExt = false;
9414     Entry.IsZExt = false;
9415     Entry.IsInReg = false;
9416     Entry.IsSRet = true;
9417     Entry.IsNest = false;
9418     Entry.IsByVal = false;
9419     Entry.IsByRef = false;
9420     Entry.IsReturned = false;
9421     Entry.IsSwiftSelf = false;
9422     Entry.IsSwiftAsync = false;
9423     Entry.IsSwiftError = false;
9424     Entry.IsCFGuardTarget = false;
9425     Entry.Alignment = Alignment;
9426     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9427     CLI.NumFixedArgs += 1;
9428     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9429 
9430     // sret demotion isn't compatible with tail-calls, since the sret argument
9431     // points into the callers stack frame.
9432     CLI.IsTailCall = false;
9433   } else {
9434     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9435         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9436     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9437       ISD::ArgFlagsTy Flags;
9438       if (NeedsRegBlock) {
9439         Flags.setInConsecutiveRegs();
9440         if (I == RetTys.size() - 1)
9441           Flags.setInConsecutiveRegsLast();
9442       }
9443       EVT VT = RetTys[I];
9444       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9445                                                      CLI.CallConv, VT);
9446       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9447                                                        CLI.CallConv, VT);
9448       for (unsigned i = 0; i != NumRegs; ++i) {
9449         ISD::InputArg MyFlags;
9450         MyFlags.Flags = Flags;
9451         MyFlags.VT = RegisterVT;
9452         MyFlags.ArgVT = VT;
9453         MyFlags.Used = CLI.IsReturnValueUsed;
9454         if (CLI.RetTy->isPointerTy()) {
9455           MyFlags.Flags.setPointer();
9456           MyFlags.Flags.setPointerAddrSpace(
9457               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9458         }
9459         if (CLI.RetSExt)
9460           MyFlags.Flags.setSExt();
9461         if (CLI.RetZExt)
9462           MyFlags.Flags.setZExt();
9463         if (CLI.IsInReg)
9464           MyFlags.Flags.setInReg();
9465         CLI.Ins.push_back(MyFlags);
9466       }
9467     }
9468   }
9469 
9470   // We push in swifterror return as the last element of CLI.Ins.
9471   ArgListTy &Args = CLI.getArgs();
9472   if (supportSwiftError()) {
9473     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9474       if (Args[i].IsSwiftError) {
9475         ISD::InputArg MyFlags;
9476         MyFlags.VT = getPointerTy(DL);
9477         MyFlags.ArgVT = EVT(getPointerTy(DL));
9478         MyFlags.Flags.setSwiftError();
9479         CLI.Ins.push_back(MyFlags);
9480       }
9481     }
9482   }
9483 
9484   // Handle all of the outgoing arguments.
9485   CLI.Outs.clear();
9486   CLI.OutVals.clear();
9487   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9488     SmallVector<EVT, 4> ValueVTs;
9489     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9490     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9491     Type *FinalType = Args[i].Ty;
9492     if (Args[i].IsByVal)
9493       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9494     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9495         FinalType, CLI.CallConv, CLI.IsVarArg);
9496     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9497          ++Value) {
9498       EVT VT = ValueVTs[Value];
9499       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9500       SDValue Op = SDValue(Args[i].Node.getNode(),
9501                            Args[i].Node.getResNo() + Value);
9502       ISD::ArgFlagsTy Flags;
9503 
9504       // Certain targets (such as MIPS), may have a different ABI alignment
9505       // for a type depending on the context. Give the target a chance to
9506       // specify the alignment it wants.
9507       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9508       Flags.setOrigAlign(OriginalAlignment);
9509 
9510       if (Args[i].Ty->isPointerTy()) {
9511         Flags.setPointer();
9512         Flags.setPointerAddrSpace(
9513             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9514       }
9515       if (Args[i].IsZExt)
9516         Flags.setZExt();
9517       if (Args[i].IsSExt)
9518         Flags.setSExt();
9519       if (Args[i].IsInReg) {
9520         // If we are using vectorcall calling convention, a structure that is
9521         // passed InReg - is surely an HVA
9522         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9523             isa<StructType>(FinalType)) {
9524           // The first value of a structure is marked
9525           if (0 == Value)
9526             Flags.setHvaStart();
9527           Flags.setHva();
9528         }
9529         // Set InReg Flag
9530         Flags.setInReg();
9531       }
9532       if (Args[i].IsSRet)
9533         Flags.setSRet();
9534       if (Args[i].IsSwiftSelf)
9535         Flags.setSwiftSelf();
9536       if (Args[i].IsSwiftAsync)
9537         Flags.setSwiftAsync();
9538       if (Args[i].IsSwiftError)
9539         Flags.setSwiftError();
9540       if (Args[i].IsCFGuardTarget)
9541         Flags.setCFGuardTarget();
9542       if (Args[i].IsByVal)
9543         Flags.setByVal();
9544       if (Args[i].IsByRef)
9545         Flags.setByRef();
9546       if (Args[i].IsPreallocated) {
9547         Flags.setPreallocated();
9548         // Set the byval flag for CCAssignFn callbacks that don't know about
9549         // preallocated.  This way we can know how many bytes we should've
9550         // allocated and how many bytes a callee cleanup function will pop.  If
9551         // we port preallocated to more targets, we'll have to add custom
9552         // preallocated handling in the various CC lowering callbacks.
9553         Flags.setByVal();
9554       }
9555       if (Args[i].IsInAlloca) {
9556         Flags.setInAlloca();
9557         // Set the byval flag for CCAssignFn callbacks that don't know about
9558         // inalloca.  This way we can know how many bytes we should've allocated
9559         // and how many bytes a callee cleanup function will pop.  If we port
9560         // inalloca to more targets, we'll have to add custom inalloca handling
9561         // in the various CC lowering callbacks.
9562         Flags.setByVal();
9563       }
9564       Align MemAlign;
9565       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9566         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9567         Type *ElementTy = Ty->getElementType();
9568 
9569         unsigned FrameSize = DL.getTypeAllocSize(
9570             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9571         Flags.setByValSize(FrameSize);
9572 
9573         // info is not there but there are cases it cannot get right.
9574         if (auto MA = Args[i].Alignment)
9575           MemAlign = *MA;
9576         else
9577           MemAlign = Align(getByValTypeAlignment(ElementTy, DL));
9578       } else if (auto MA = Args[i].Alignment) {
9579         MemAlign = *MA;
9580       } else {
9581         MemAlign = OriginalAlignment;
9582       }
9583       Flags.setMemAlign(MemAlign);
9584       if (Args[i].IsNest)
9585         Flags.setNest();
9586       if (NeedsRegBlock)
9587         Flags.setInConsecutiveRegs();
9588 
9589       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9590                                                  CLI.CallConv, VT);
9591       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9592                                                         CLI.CallConv, VT);
9593       SmallVector<SDValue, 4> Parts(NumParts);
9594       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9595 
9596       if (Args[i].IsSExt)
9597         ExtendKind = ISD::SIGN_EXTEND;
9598       else if (Args[i].IsZExt)
9599         ExtendKind = ISD::ZERO_EXTEND;
9600 
9601       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9602       // for now.
9603       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9604           CanLowerReturn) {
9605         assert((CLI.RetTy == Args[i].Ty ||
9606                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9607                  CLI.RetTy->getPointerAddressSpace() ==
9608                      Args[i].Ty->getPointerAddressSpace())) &&
9609                RetTys.size() == NumValues && "unexpected use of 'returned'");
9610         // Before passing 'returned' to the target lowering code, ensure that
9611         // either the register MVT and the actual EVT are the same size or that
9612         // the return value and argument are extended in the same way; in these
9613         // cases it's safe to pass the argument register value unchanged as the
9614         // return register value (although it's at the target's option whether
9615         // to do so)
9616         // TODO: allow code generation to take advantage of partially preserved
9617         // registers rather than clobbering the entire register when the
9618         // parameter extension method is not compatible with the return
9619         // extension method
9620         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9621             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9622              CLI.RetZExt == Args[i].IsZExt))
9623           Flags.setReturned();
9624       }
9625 
9626       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9627                      CLI.CallConv, ExtendKind);
9628 
9629       for (unsigned j = 0; j != NumParts; ++j) {
9630         // if it isn't first piece, alignment must be 1
9631         // For scalable vectors the scalable part is currently handled
9632         // by individual targets, so we just use the known minimum size here.
9633         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9634                     i < CLI.NumFixedArgs, i,
9635                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9636         if (NumParts > 1 && j == 0)
9637           MyFlags.Flags.setSplit();
9638         else if (j != 0) {
9639           MyFlags.Flags.setOrigAlign(Align(1));
9640           if (j == NumParts - 1)
9641             MyFlags.Flags.setSplitEnd();
9642         }
9643 
9644         CLI.Outs.push_back(MyFlags);
9645         CLI.OutVals.push_back(Parts[j]);
9646       }
9647 
9648       if (NeedsRegBlock && Value == NumValues - 1)
9649         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9650     }
9651   }
9652 
9653   SmallVector<SDValue, 4> InVals;
9654   CLI.Chain = LowerCall(CLI, InVals);
9655 
9656   // Update CLI.InVals to use outside of this function.
9657   CLI.InVals = InVals;
9658 
9659   // Verify that the target's LowerCall behaved as expected.
9660   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9661          "LowerCall didn't return a valid chain!");
9662   assert((!CLI.IsTailCall || InVals.empty()) &&
9663          "LowerCall emitted a return value for a tail call!");
9664   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9665          "LowerCall didn't emit the correct number of values!");
9666 
9667   // For a tail call, the return value is merely live-out and there aren't
9668   // any nodes in the DAG representing it. Return a special value to
9669   // indicate that a tail call has been emitted and no more Instructions
9670   // should be processed in the current block.
9671   if (CLI.IsTailCall) {
9672     CLI.DAG.setRoot(CLI.Chain);
9673     return std::make_pair(SDValue(), SDValue());
9674   }
9675 
9676 #ifndef NDEBUG
9677   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9678     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9679     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9680            "LowerCall emitted a value with the wrong type!");
9681   }
9682 #endif
9683 
9684   SmallVector<SDValue, 4> ReturnValues;
9685   if (!CanLowerReturn) {
9686     // The instruction result is the result of loading from the
9687     // hidden sret parameter.
9688     SmallVector<EVT, 1> PVTs;
9689     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9690 
9691     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9692     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9693     EVT PtrVT = PVTs[0];
9694 
9695     unsigned NumValues = RetTys.size();
9696     ReturnValues.resize(NumValues);
9697     SmallVector<SDValue, 4> Chains(NumValues);
9698 
9699     // An aggregate return value cannot wrap around the address space, so
9700     // offsets to its parts don't wrap either.
9701     SDNodeFlags Flags;
9702     Flags.setNoUnsignedWrap(true);
9703 
9704     MachineFunction &MF = CLI.DAG.getMachineFunction();
9705     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9706     for (unsigned i = 0; i < NumValues; ++i) {
9707       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9708                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9709                                                         PtrVT), Flags);
9710       SDValue L = CLI.DAG.getLoad(
9711           RetTys[i], CLI.DL, CLI.Chain, Add,
9712           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9713                                             DemoteStackIdx, Offsets[i]),
9714           HiddenSRetAlign);
9715       ReturnValues[i] = L;
9716       Chains[i] = L.getValue(1);
9717     }
9718 
9719     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9720   } else {
9721     // Collect the legal value parts into potentially illegal values
9722     // that correspond to the original function's return values.
9723     Optional<ISD::NodeType> AssertOp;
9724     if (CLI.RetSExt)
9725       AssertOp = ISD::AssertSext;
9726     else if (CLI.RetZExt)
9727       AssertOp = ISD::AssertZext;
9728     unsigned CurReg = 0;
9729     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9730       EVT VT = RetTys[I];
9731       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9732                                                      CLI.CallConv, VT);
9733       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9734                                                        CLI.CallConv, VT);
9735 
9736       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9737                                               NumRegs, RegisterVT, VT, nullptr,
9738                                               CLI.CallConv, AssertOp));
9739       CurReg += NumRegs;
9740     }
9741 
9742     // For a function returning void, there is no return value. We can't create
9743     // such a node, so we just return a null return value in that case. In
9744     // that case, nothing will actually look at the value.
9745     if (ReturnValues.empty())
9746       return std::make_pair(SDValue(), CLI.Chain);
9747   }
9748 
9749   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9750                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9751   return std::make_pair(Res, CLI.Chain);
9752 }
9753 
9754 /// Places new result values for the node in Results (their number
9755 /// and types must exactly match those of the original return values of
9756 /// the node), or leaves Results empty, which indicates that the node is not
9757 /// to be custom lowered after all.
9758 void TargetLowering::LowerOperationWrapper(SDNode *N,
9759                                            SmallVectorImpl<SDValue> &Results,
9760                                            SelectionDAG &DAG) const {
9761   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9762 
9763   if (!Res.getNode())
9764     return;
9765 
9766   // If the original node has one result, take the return value from
9767   // LowerOperation as is. It might not be result number 0.
9768   if (N->getNumValues() == 1) {
9769     Results.push_back(Res);
9770     return;
9771   }
9772 
9773   // If the original node has multiple results, then the return node should
9774   // have the same number of results.
9775   assert((N->getNumValues() == Res->getNumValues()) &&
9776       "Lowering returned the wrong number of results!");
9777 
9778   // Places new result values base on N result number.
9779   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9780     Results.push_back(Res.getValue(I));
9781 }
9782 
9783 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9784   llvm_unreachable("LowerOperation not implemented for this target!");
9785 }
9786 
9787 void
9788 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9789   SDValue Op = getNonRegisterValue(V);
9790   assert((Op.getOpcode() != ISD::CopyFromReg ||
9791           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9792          "Copy from a reg to the same reg!");
9793   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9794 
9795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9796   // If this is an InlineAsm we have to match the registers required, not the
9797   // notional registers required by the type.
9798 
9799   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9800                    None); // This is not an ABI copy.
9801   SDValue Chain = DAG.getEntryNode();
9802 
9803   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9804                               FuncInfo.PreferredExtendType.end())
9805                                  ? ISD::ANY_EXTEND
9806                                  : FuncInfo.PreferredExtendType[V];
9807   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9808   PendingExports.push_back(Chain);
9809 }
9810 
9811 #include "llvm/CodeGen/SelectionDAGISel.h"
9812 
9813 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9814 /// entry block, return true.  This includes arguments used by switches, since
9815 /// the switch may expand into multiple basic blocks.
9816 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9817   // With FastISel active, we may be splitting blocks, so force creation
9818   // of virtual registers for all non-dead arguments.
9819   if (FastISel)
9820     return A->use_empty();
9821 
9822   const BasicBlock &Entry = A->getParent()->front();
9823   for (const User *U : A->users())
9824     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9825       return false;  // Use not in entry block.
9826 
9827   return true;
9828 }
9829 
9830 using ArgCopyElisionMapTy =
9831     DenseMap<const Argument *,
9832              std::pair<const AllocaInst *, const StoreInst *>>;
9833 
9834 /// Scan the entry block of the function in FuncInfo for arguments that look
9835 /// like copies into a local alloca. Record any copied arguments in
9836 /// ArgCopyElisionCandidates.
9837 static void
9838 findArgumentCopyElisionCandidates(const DataLayout &DL,
9839                                   FunctionLoweringInfo *FuncInfo,
9840                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9841   // Record the state of every static alloca used in the entry block. Argument
9842   // allocas are all used in the entry block, so we need approximately as many
9843   // entries as we have arguments.
9844   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9845   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9846   unsigned NumArgs = FuncInfo->Fn->arg_size();
9847   StaticAllocas.reserve(NumArgs * 2);
9848 
9849   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9850     if (!V)
9851       return nullptr;
9852     V = V->stripPointerCasts();
9853     const auto *AI = dyn_cast<AllocaInst>(V);
9854     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9855       return nullptr;
9856     auto Iter = StaticAllocas.insert({AI, Unknown});
9857     return &Iter.first->second;
9858   };
9859 
9860   // Look for stores of arguments to static allocas. Look through bitcasts and
9861   // GEPs to handle type coercions, as long as the alloca is fully initialized
9862   // by the store. Any non-store use of an alloca escapes it and any subsequent
9863   // unanalyzed store might write it.
9864   // FIXME: Handle structs initialized with multiple stores.
9865   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9866     // Look for stores, and handle non-store uses conservatively.
9867     const auto *SI = dyn_cast<StoreInst>(&I);
9868     if (!SI) {
9869       // We will look through cast uses, so ignore them completely.
9870       if (I.isCast())
9871         continue;
9872       // Ignore debug info and pseudo op intrinsics, they don't escape or store
9873       // to allocas.
9874       if (I.isDebugOrPseudoInst())
9875         continue;
9876       // This is an unknown instruction. Assume it escapes or writes to all
9877       // static alloca operands.
9878       for (const Use &U : I.operands()) {
9879         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9880           *Info = StaticAllocaInfo::Clobbered;
9881       }
9882       continue;
9883     }
9884 
9885     // If the stored value is a static alloca, mark it as escaped.
9886     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9887       *Info = StaticAllocaInfo::Clobbered;
9888 
9889     // Check if the destination is a static alloca.
9890     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9891     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9892     if (!Info)
9893       continue;
9894     const AllocaInst *AI = cast<AllocaInst>(Dst);
9895 
9896     // Skip allocas that have been initialized or clobbered.
9897     if (*Info != StaticAllocaInfo::Unknown)
9898       continue;
9899 
9900     // Check if the stored value is an argument, and that this store fully
9901     // initializes the alloca.
9902     // If the argument type has padding bits we can't directly forward a pointer
9903     // as the upper bits may contain garbage.
9904     // Don't elide copies from the same argument twice.
9905     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9906     const auto *Arg = dyn_cast<Argument>(Val);
9907     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9908         Arg->getType()->isEmptyTy() ||
9909         DL.getTypeStoreSize(Arg->getType()) !=
9910             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9911         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
9912         ArgCopyElisionCandidates.count(Arg)) {
9913       *Info = StaticAllocaInfo::Clobbered;
9914       continue;
9915     }
9916 
9917     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9918                       << '\n');
9919 
9920     // Mark this alloca and store for argument copy elision.
9921     *Info = StaticAllocaInfo::Elidable;
9922     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9923 
9924     // Stop scanning if we've seen all arguments. This will happen early in -O0
9925     // builds, which is useful, because -O0 builds have large entry blocks and
9926     // many allocas.
9927     if (ArgCopyElisionCandidates.size() == NumArgs)
9928       break;
9929   }
9930 }
9931 
9932 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9933 /// ArgVal is a load from a suitable fixed stack object.
9934 static void tryToElideArgumentCopy(
9935     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9936     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9937     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9938     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9939     SDValue ArgVal, bool &ArgHasUses) {
9940   // Check if this is a load from a fixed stack object.
9941   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9942   if (!LNode)
9943     return;
9944   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9945   if (!FINode)
9946     return;
9947 
9948   // Check that the fixed stack object is the right size and alignment.
9949   // Look at the alignment that the user wrote on the alloca instead of looking
9950   // at the stack object.
9951   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9952   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9953   const AllocaInst *AI = ArgCopyIter->second.first;
9954   int FixedIndex = FINode->getIndex();
9955   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9956   int OldIndex = AllocaIndex;
9957   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9958   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9959     LLVM_DEBUG(
9960         dbgs() << "  argument copy elision failed due to bad fixed stack "
9961                   "object size\n");
9962     return;
9963   }
9964   Align RequiredAlignment = AI->getAlign();
9965   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9966     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9967                          "greater than stack argument alignment ("
9968                       << DebugStr(RequiredAlignment) << " vs "
9969                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9970     return;
9971   }
9972 
9973   // Perform the elision. Delete the old stack object and replace its only use
9974   // in the variable info map. Mark the stack object as mutable.
9975   LLVM_DEBUG({
9976     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9977            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9978            << '\n';
9979   });
9980   MFI.RemoveStackObject(OldIndex);
9981   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9982   AllocaIndex = FixedIndex;
9983   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9984   Chains.push_back(ArgVal.getValue(1));
9985 
9986   // Avoid emitting code for the store implementing the copy.
9987   const StoreInst *SI = ArgCopyIter->second.second;
9988   ElidedArgCopyInstrs.insert(SI);
9989 
9990   // Check for uses of the argument again so that we can avoid exporting ArgVal
9991   // if it is't used by anything other than the store.
9992   for (const Value *U : Arg.users()) {
9993     if (U != SI) {
9994       ArgHasUses = true;
9995       break;
9996     }
9997   }
9998 }
9999 
10000 void SelectionDAGISel::LowerArguments(const Function &F) {
10001   SelectionDAG &DAG = SDB->DAG;
10002   SDLoc dl = SDB->getCurSDLoc();
10003   const DataLayout &DL = DAG.getDataLayout();
10004   SmallVector<ISD::InputArg, 16> Ins;
10005 
10006   // In Naked functions we aren't going to save any registers.
10007   if (F.hasFnAttribute(Attribute::Naked))
10008     return;
10009 
10010   if (!FuncInfo->CanLowerReturn) {
10011     // Put in an sret pointer parameter before all the other parameters.
10012     SmallVector<EVT, 1> ValueVTs;
10013     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10014                     F.getReturnType()->getPointerTo(
10015                         DAG.getDataLayout().getAllocaAddrSpace()),
10016                     ValueVTs);
10017 
10018     // NOTE: Assuming that a pointer will never break down to more than one VT
10019     // or one register.
10020     ISD::ArgFlagsTy Flags;
10021     Flags.setSRet();
10022     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10023     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10024                          ISD::InputArg::NoArgIndex, 0);
10025     Ins.push_back(RetArg);
10026   }
10027 
10028   // Look for stores of arguments to static allocas. Mark such arguments with a
10029   // flag to ask the target to give us the memory location of that argument if
10030   // available.
10031   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10032   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10033                                     ArgCopyElisionCandidates);
10034 
10035   // Set up the incoming argument description vector.
10036   for (const Argument &Arg : F.args()) {
10037     unsigned ArgNo = Arg.getArgNo();
10038     SmallVector<EVT, 4> ValueVTs;
10039     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10040     bool isArgValueUsed = !Arg.use_empty();
10041     unsigned PartBase = 0;
10042     Type *FinalType = Arg.getType();
10043     if (Arg.hasAttribute(Attribute::ByVal))
10044       FinalType = Arg.getParamByValType();
10045     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10046         FinalType, F.getCallingConv(), F.isVarArg());
10047     for (unsigned Value = 0, NumValues = ValueVTs.size();
10048          Value != NumValues; ++Value) {
10049       EVT VT = ValueVTs[Value];
10050       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10051       ISD::ArgFlagsTy Flags;
10052 
10053 
10054       if (Arg.getType()->isPointerTy()) {
10055         Flags.setPointer();
10056         Flags.setPointerAddrSpace(
10057             cast<PointerType>(Arg.getType())->getAddressSpace());
10058       }
10059       if (Arg.hasAttribute(Attribute::ZExt))
10060         Flags.setZExt();
10061       if (Arg.hasAttribute(Attribute::SExt))
10062         Flags.setSExt();
10063       if (Arg.hasAttribute(Attribute::InReg)) {
10064         // If we are using vectorcall calling convention, a structure that is
10065         // passed InReg - is surely an HVA
10066         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10067             isa<StructType>(Arg.getType())) {
10068           // The first value of a structure is marked
10069           if (0 == Value)
10070             Flags.setHvaStart();
10071           Flags.setHva();
10072         }
10073         // Set InReg Flag
10074         Flags.setInReg();
10075       }
10076       if (Arg.hasAttribute(Attribute::StructRet))
10077         Flags.setSRet();
10078       if (Arg.hasAttribute(Attribute::SwiftSelf))
10079         Flags.setSwiftSelf();
10080       if (Arg.hasAttribute(Attribute::SwiftAsync))
10081         Flags.setSwiftAsync();
10082       if (Arg.hasAttribute(Attribute::SwiftError))
10083         Flags.setSwiftError();
10084       if (Arg.hasAttribute(Attribute::ByVal))
10085         Flags.setByVal();
10086       if (Arg.hasAttribute(Attribute::ByRef))
10087         Flags.setByRef();
10088       if (Arg.hasAttribute(Attribute::InAlloca)) {
10089         Flags.setInAlloca();
10090         // Set the byval flag for CCAssignFn callbacks that don't know about
10091         // inalloca.  This way we can know how many bytes we should've allocated
10092         // and how many bytes a callee cleanup function will pop.  If we port
10093         // inalloca to more targets, we'll have to add custom inalloca handling
10094         // in the various CC lowering callbacks.
10095         Flags.setByVal();
10096       }
10097       if (Arg.hasAttribute(Attribute::Preallocated)) {
10098         Flags.setPreallocated();
10099         // Set the byval flag for CCAssignFn callbacks that don't know about
10100         // preallocated.  This way we can know how many bytes we should've
10101         // allocated and how many bytes a callee cleanup function will pop.  If
10102         // we port preallocated to more targets, we'll have to add custom
10103         // preallocated handling in the various CC lowering callbacks.
10104         Flags.setByVal();
10105       }
10106 
10107       // Certain targets (such as MIPS), may have a different ABI alignment
10108       // for a type depending on the context. Give the target a chance to
10109       // specify the alignment it wants.
10110       const Align OriginalAlignment(
10111           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10112       Flags.setOrigAlign(OriginalAlignment);
10113 
10114       Align MemAlign;
10115       Type *ArgMemTy = nullptr;
10116       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10117           Flags.isByRef()) {
10118         if (!ArgMemTy)
10119           ArgMemTy = Arg.getPointeeInMemoryValueType();
10120 
10121         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10122 
10123         // For in-memory arguments, size and alignment should be passed from FE.
10124         // BE will guess if this info is not there but there are cases it cannot
10125         // get right.
10126         if (auto ParamAlign = Arg.getParamStackAlign())
10127           MemAlign = *ParamAlign;
10128         else if ((ParamAlign = Arg.getParamAlign()))
10129           MemAlign = *ParamAlign;
10130         else
10131           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10132         if (Flags.isByRef())
10133           Flags.setByRefSize(MemSize);
10134         else
10135           Flags.setByValSize(MemSize);
10136       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10137         MemAlign = *ParamAlign;
10138       } else {
10139         MemAlign = OriginalAlignment;
10140       }
10141       Flags.setMemAlign(MemAlign);
10142 
10143       if (Arg.hasAttribute(Attribute::Nest))
10144         Flags.setNest();
10145       if (NeedsRegBlock)
10146         Flags.setInConsecutiveRegs();
10147       if (ArgCopyElisionCandidates.count(&Arg))
10148         Flags.setCopyElisionCandidate();
10149       if (Arg.hasAttribute(Attribute::Returned))
10150         Flags.setReturned();
10151 
10152       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10153           *CurDAG->getContext(), F.getCallingConv(), VT);
10154       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10155           *CurDAG->getContext(), F.getCallingConv(), VT);
10156       for (unsigned i = 0; i != NumRegs; ++i) {
10157         // For scalable vectors, use the minimum size; individual targets
10158         // are responsible for handling scalable vector arguments and
10159         // return values.
10160         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10161                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10162         if (NumRegs > 1 && i == 0)
10163           MyFlags.Flags.setSplit();
10164         // if it isn't first piece, alignment must be 1
10165         else if (i > 0) {
10166           MyFlags.Flags.setOrigAlign(Align(1));
10167           if (i == NumRegs - 1)
10168             MyFlags.Flags.setSplitEnd();
10169         }
10170         Ins.push_back(MyFlags);
10171       }
10172       if (NeedsRegBlock && Value == NumValues - 1)
10173         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10174       PartBase += VT.getStoreSize().getKnownMinSize();
10175     }
10176   }
10177 
10178   // Call the target to set up the argument values.
10179   SmallVector<SDValue, 8> InVals;
10180   SDValue NewRoot = TLI->LowerFormalArguments(
10181       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10182 
10183   // Verify that the target's LowerFormalArguments behaved as expected.
10184   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10185          "LowerFormalArguments didn't return a valid chain!");
10186   assert(InVals.size() == Ins.size() &&
10187          "LowerFormalArguments didn't emit the correct number of values!");
10188   LLVM_DEBUG({
10189     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10190       assert(InVals[i].getNode() &&
10191              "LowerFormalArguments emitted a null value!");
10192       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10193              "LowerFormalArguments emitted a value with the wrong type!");
10194     }
10195   });
10196 
10197   // Update the DAG with the new chain value resulting from argument lowering.
10198   DAG.setRoot(NewRoot);
10199 
10200   // Set up the argument values.
10201   unsigned i = 0;
10202   if (!FuncInfo->CanLowerReturn) {
10203     // Create a virtual register for the sret pointer, and put in a copy
10204     // from the sret argument into it.
10205     SmallVector<EVT, 1> ValueVTs;
10206     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10207                     F.getReturnType()->getPointerTo(
10208                         DAG.getDataLayout().getAllocaAddrSpace()),
10209                     ValueVTs);
10210     MVT VT = ValueVTs[0].getSimpleVT();
10211     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10212     Optional<ISD::NodeType> AssertOp = None;
10213     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10214                                         nullptr, F.getCallingConv(), AssertOp);
10215 
10216     MachineFunction& MF = SDB->DAG.getMachineFunction();
10217     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10218     Register SRetReg =
10219         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10220     FuncInfo->DemoteRegister = SRetReg;
10221     NewRoot =
10222         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10223     DAG.setRoot(NewRoot);
10224 
10225     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10226     ++i;
10227   }
10228 
10229   SmallVector<SDValue, 4> Chains;
10230   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10231   for (const Argument &Arg : F.args()) {
10232     SmallVector<SDValue, 4> ArgValues;
10233     SmallVector<EVT, 4> ValueVTs;
10234     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10235     unsigned NumValues = ValueVTs.size();
10236     if (NumValues == 0)
10237       continue;
10238 
10239     bool ArgHasUses = !Arg.use_empty();
10240 
10241     // Elide the copying store if the target loaded this argument from a
10242     // suitable fixed stack object.
10243     if (Ins[i].Flags.isCopyElisionCandidate()) {
10244       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10245                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10246                              InVals[i], ArgHasUses);
10247     }
10248 
10249     // If this argument is unused then remember its value. It is used to generate
10250     // debugging information.
10251     bool isSwiftErrorArg =
10252         TLI->supportSwiftError() &&
10253         Arg.hasAttribute(Attribute::SwiftError);
10254     if (!ArgHasUses && !isSwiftErrorArg) {
10255       SDB->setUnusedArgValue(&Arg, InVals[i]);
10256 
10257       // Also remember any frame index for use in FastISel.
10258       if (FrameIndexSDNode *FI =
10259           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10260         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10261     }
10262 
10263     for (unsigned Val = 0; Val != NumValues; ++Val) {
10264       EVT VT = ValueVTs[Val];
10265       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10266                                                       F.getCallingConv(), VT);
10267       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10268           *CurDAG->getContext(), F.getCallingConv(), VT);
10269 
10270       // Even an apparent 'unused' swifterror argument needs to be returned. So
10271       // we do generate a copy for it that can be used on return from the
10272       // function.
10273       if (ArgHasUses || isSwiftErrorArg) {
10274         Optional<ISD::NodeType> AssertOp;
10275         if (Arg.hasAttribute(Attribute::SExt))
10276           AssertOp = ISD::AssertSext;
10277         else if (Arg.hasAttribute(Attribute::ZExt))
10278           AssertOp = ISD::AssertZext;
10279 
10280         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10281                                              PartVT, VT, nullptr,
10282                                              F.getCallingConv(), AssertOp));
10283       }
10284 
10285       i += NumParts;
10286     }
10287 
10288     // We don't need to do anything else for unused arguments.
10289     if (ArgValues.empty())
10290       continue;
10291 
10292     // Note down frame index.
10293     if (FrameIndexSDNode *FI =
10294         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10295       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10296 
10297     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10298                                      SDB->getCurSDLoc());
10299 
10300     SDB->setValue(&Arg, Res);
10301     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10302       // We want to associate the argument with the frame index, among
10303       // involved operands, that correspond to the lowest address. The
10304       // getCopyFromParts function, called earlier, is swapping the order of
10305       // the operands to BUILD_PAIR depending on endianness. The result of
10306       // that swapping is that the least significant bits of the argument will
10307       // be in the first operand of the BUILD_PAIR node, and the most
10308       // significant bits will be in the second operand.
10309       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10310       if (LoadSDNode *LNode =
10311           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10312         if (FrameIndexSDNode *FI =
10313             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10314           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10315     }
10316 
10317     // Analyses past this point are naive and don't expect an assertion.
10318     if (Res.getOpcode() == ISD::AssertZext)
10319       Res = Res.getOperand(0);
10320 
10321     // Update the SwiftErrorVRegDefMap.
10322     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10323       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10324       if (Register::isVirtualRegister(Reg))
10325         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10326                                    Reg);
10327     }
10328 
10329     // If this argument is live outside of the entry block, insert a copy from
10330     // wherever we got it to the vreg that other BB's will reference it as.
10331     if (Res.getOpcode() == ISD::CopyFromReg) {
10332       // If we can, though, try to skip creating an unnecessary vreg.
10333       // FIXME: This isn't very clean... it would be nice to make this more
10334       // general.
10335       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10336       if (Register::isVirtualRegister(Reg)) {
10337         FuncInfo->ValueMap[&Arg] = Reg;
10338         continue;
10339       }
10340     }
10341     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10342       FuncInfo->InitializeRegForValue(&Arg);
10343       SDB->CopyToExportRegsIfNeeded(&Arg);
10344     }
10345   }
10346 
10347   if (!Chains.empty()) {
10348     Chains.push_back(NewRoot);
10349     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10350   }
10351 
10352   DAG.setRoot(NewRoot);
10353 
10354   assert(i == InVals.size() && "Argument register count mismatch!");
10355 
10356   // If any argument copy elisions occurred and we have debug info, update the
10357   // stale frame indices used in the dbg.declare variable info table.
10358   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10359   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10360     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10361       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10362       if (I != ArgCopyElisionFrameIndexMap.end())
10363         VI.Slot = I->second;
10364     }
10365   }
10366 
10367   // Finally, if the target has anything special to do, allow it to do so.
10368   emitFunctionEntryCode();
10369 }
10370 
10371 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10372 /// ensure constants are generated when needed.  Remember the virtual registers
10373 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10374 /// directly add them, because expansion might result in multiple MBB's for one
10375 /// BB.  As such, the start of the BB might correspond to a different MBB than
10376 /// the end.
10377 void
10378 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10379   const Instruction *TI = LLVMBB->getTerminator();
10380 
10381   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10382 
10383   // Check PHI nodes in successors that expect a value to be available from this
10384   // block.
10385   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10386     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10387     if (!isa<PHINode>(SuccBB->begin())) continue;
10388     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10389 
10390     // If this terminator has multiple identical successors (common for
10391     // switches), only handle each succ once.
10392     if (!SuccsHandled.insert(SuccMBB).second)
10393       continue;
10394 
10395     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10396 
10397     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10398     // nodes and Machine PHI nodes, but the incoming operands have not been
10399     // emitted yet.
10400     for (const PHINode &PN : SuccBB->phis()) {
10401       // Ignore dead phi's.
10402       if (PN.use_empty())
10403         continue;
10404 
10405       // Skip empty types
10406       if (PN.getType()->isEmptyTy())
10407         continue;
10408 
10409       unsigned Reg;
10410       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10411 
10412       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10413         unsigned &RegOut = ConstantsOut[C];
10414         if (RegOut == 0) {
10415           RegOut = FuncInfo.CreateRegs(C);
10416           CopyValueToVirtualRegister(C, RegOut);
10417         }
10418         Reg = RegOut;
10419       } else {
10420         DenseMap<const Value *, Register>::iterator I =
10421           FuncInfo.ValueMap.find(PHIOp);
10422         if (I != FuncInfo.ValueMap.end())
10423           Reg = I->second;
10424         else {
10425           assert(isa<AllocaInst>(PHIOp) &&
10426                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10427                  "Didn't codegen value into a register!??");
10428           Reg = FuncInfo.CreateRegs(PHIOp);
10429           CopyValueToVirtualRegister(PHIOp, Reg);
10430         }
10431       }
10432 
10433       // Remember that this register needs to added to the machine PHI node as
10434       // the input for this MBB.
10435       SmallVector<EVT, 4> ValueVTs;
10436       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10437       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10438       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10439         EVT VT = ValueVTs[vti];
10440         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10441         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10442           FuncInfo.PHINodesToUpdate.push_back(
10443               std::make_pair(&*MBBI++, Reg + i));
10444         Reg += NumRegisters;
10445       }
10446     }
10447   }
10448 
10449   ConstantsOut.clear();
10450 }
10451 
10452 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10453 /// is 0.
10454 MachineBasicBlock *
10455 SelectionDAGBuilder::StackProtectorDescriptor::
10456 AddSuccessorMBB(const BasicBlock *BB,
10457                 MachineBasicBlock *ParentMBB,
10458                 bool IsLikely,
10459                 MachineBasicBlock *SuccMBB) {
10460   // If SuccBB has not been created yet, create it.
10461   if (!SuccMBB) {
10462     MachineFunction *MF = ParentMBB->getParent();
10463     MachineFunction::iterator BBI(ParentMBB);
10464     SuccMBB = MF->CreateMachineBasicBlock(BB);
10465     MF->insert(++BBI, SuccMBB);
10466   }
10467   // Add it as a successor of ParentMBB.
10468   ParentMBB->addSuccessor(
10469       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10470   return SuccMBB;
10471 }
10472 
10473 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10474   MachineFunction::iterator I(MBB);
10475   if (++I == FuncInfo.MF->end())
10476     return nullptr;
10477   return &*I;
10478 }
10479 
10480 /// During lowering new call nodes can be created (such as memset, etc.).
10481 /// Those will become new roots of the current DAG, but complications arise
10482 /// when they are tail calls. In such cases, the call lowering will update
10483 /// the root, but the builder still needs to know that a tail call has been
10484 /// lowered in order to avoid generating an additional return.
10485 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10486   // If the node is null, we do have a tail call.
10487   if (MaybeTC.getNode() != nullptr)
10488     DAG.setRoot(MaybeTC);
10489   else
10490     HasTailCall = true;
10491 }
10492 
10493 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10494                                         MachineBasicBlock *SwitchMBB,
10495                                         MachineBasicBlock *DefaultMBB) {
10496   MachineFunction *CurMF = FuncInfo.MF;
10497   MachineBasicBlock *NextMBB = nullptr;
10498   MachineFunction::iterator BBI(W.MBB);
10499   if (++BBI != FuncInfo.MF->end())
10500     NextMBB = &*BBI;
10501 
10502   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10503 
10504   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10505 
10506   if (Size == 2 && W.MBB == SwitchMBB) {
10507     // If any two of the cases has the same destination, and if one value
10508     // is the same as the other, but has one bit unset that the other has set,
10509     // use bit manipulation to do two compares at once.  For example:
10510     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10511     // TODO: This could be extended to merge any 2 cases in switches with 3
10512     // cases.
10513     // TODO: Handle cases where W.CaseBB != SwitchBB.
10514     CaseCluster &Small = *W.FirstCluster;
10515     CaseCluster &Big = *W.LastCluster;
10516 
10517     if (Small.Low == Small.High && Big.Low == Big.High &&
10518         Small.MBB == Big.MBB) {
10519       const APInt &SmallValue = Small.Low->getValue();
10520       const APInt &BigValue = Big.Low->getValue();
10521 
10522       // Check that there is only one bit different.
10523       APInt CommonBit = BigValue ^ SmallValue;
10524       if (CommonBit.isPowerOf2()) {
10525         SDValue CondLHS = getValue(Cond);
10526         EVT VT = CondLHS.getValueType();
10527         SDLoc DL = getCurSDLoc();
10528 
10529         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10530                                  DAG.getConstant(CommonBit, DL, VT));
10531         SDValue Cond = DAG.getSetCC(
10532             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10533             ISD::SETEQ);
10534 
10535         // Update successor info.
10536         // Both Small and Big will jump to Small.BB, so we sum up the
10537         // probabilities.
10538         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10539         if (BPI)
10540           addSuccessorWithProb(
10541               SwitchMBB, DefaultMBB,
10542               // The default destination is the first successor in IR.
10543               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10544         else
10545           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10546 
10547         // Insert the true branch.
10548         SDValue BrCond =
10549             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10550                         DAG.getBasicBlock(Small.MBB));
10551         // Insert the false branch.
10552         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10553                              DAG.getBasicBlock(DefaultMBB));
10554 
10555         DAG.setRoot(BrCond);
10556         return;
10557       }
10558     }
10559   }
10560 
10561   if (TM.getOptLevel() != CodeGenOpt::None) {
10562     // Here, we order cases by probability so the most likely case will be
10563     // checked first. However, two clusters can have the same probability in
10564     // which case their relative ordering is non-deterministic. So we use Low
10565     // as a tie-breaker as clusters are guaranteed to never overlap.
10566     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10567                [](const CaseCluster &a, const CaseCluster &b) {
10568       return a.Prob != b.Prob ?
10569              a.Prob > b.Prob :
10570              a.Low->getValue().slt(b.Low->getValue());
10571     });
10572 
10573     // Rearrange the case blocks so that the last one falls through if possible
10574     // without changing the order of probabilities.
10575     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10576       --I;
10577       if (I->Prob > W.LastCluster->Prob)
10578         break;
10579       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10580         std::swap(*I, *W.LastCluster);
10581         break;
10582       }
10583     }
10584   }
10585 
10586   // Compute total probability.
10587   BranchProbability DefaultProb = W.DefaultProb;
10588   BranchProbability UnhandledProbs = DefaultProb;
10589   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10590     UnhandledProbs += I->Prob;
10591 
10592   MachineBasicBlock *CurMBB = W.MBB;
10593   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10594     bool FallthroughUnreachable = false;
10595     MachineBasicBlock *Fallthrough;
10596     if (I == W.LastCluster) {
10597       // For the last cluster, fall through to the default destination.
10598       Fallthrough = DefaultMBB;
10599       FallthroughUnreachable = isa<UnreachableInst>(
10600           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10601     } else {
10602       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10603       CurMF->insert(BBI, Fallthrough);
10604       // Put Cond in a virtual register to make it available from the new blocks.
10605       ExportFromCurrentBlock(Cond);
10606     }
10607     UnhandledProbs -= I->Prob;
10608 
10609     switch (I->Kind) {
10610       case CC_JumpTable: {
10611         // FIXME: Optimize away range check based on pivot comparisons.
10612         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10613         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10614 
10615         // The jump block hasn't been inserted yet; insert it here.
10616         MachineBasicBlock *JumpMBB = JT->MBB;
10617         CurMF->insert(BBI, JumpMBB);
10618 
10619         auto JumpProb = I->Prob;
10620         auto FallthroughProb = UnhandledProbs;
10621 
10622         // If the default statement is a target of the jump table, we evenly
10623         // distribute the default probability to successors of CurMBB. Also
10624         // update the probability on the edge from JumpMBB to Fallthrough.
10625         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10626                                               SE = JumpMBB->succ_end();
10627              SI != SE; ++SI) {
10628           if (*SI == DefaultMBB) {
10629             JumpProb += DefaultProb / 2;
10630             FallthroughProb -= DefaultProb / 2;
10631             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10632             JumpMBB->normalizeSuccProbs();
10633             break;
10634           }
10635         }
10636 
10637         if (FallthroughUnreachable) {
10638           // Skip the range check if the fallthrough block is unreachable.
10639           JTH->OmitRangeCheck = true;
10640         }
10641 
10642         if (!JTH->OmitRangeCheck)
10643           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10644         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10645         CurMBB->normalizeSuccProbs();
10646 
10647         // The jump table header will be inserted in our current block, do the
10648         // range check, and fall through to our fallthrough block.
10649         JTH->HeaderBB = CurMBB;
10650         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10651 
10652         // If we're in the right place, emit the jump table header right now.
10653         if (CurMBB == SwitchMBB) {
10654           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10655           JTH->Emitted = true;
10656         }
10657         break;
10658       }
10659       case CC_BitTests: {
10660         // FIXME: Optimize away range check based on pivot comparisons.
10661         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10662 
10663         // The bit test blocks haven't been inserted yet; insert them here.
10664         for (BitTestCase &BTC : BTB->Cases)
10665           CurMF->insert(BBI, BTC.ThisBB);
10666 
10667         // Fill in fields of the BitTestBlock.
10668         BTB->Parent = CurMBB;
10669         BTB->Default = Fallthrough;
10670 
10671         BTB->DefaultProb = UnhandledProbs;
10672         // If the cases in bit test don't form a contiguous range, we evenly
10673         // distribute the probability on the edge to Fallthrough to two
10674         // successors of CurMBB.
10675         if (!BTB->ContiguousRange) {
10676           BTB->Prob += DefaultProb / 2;
10677           BTB->DefaultProb -= DefaultProb / 2;
10678         }
10679 
10680         if (FallthroughUnreachable) {
10681           // Skip the range check if the fallthrough block is unreachable.
10682           BTB->OmitRangeCheck = true;
10683         }
10684 
10685         // If we're in the right place, emit the bit test header right now.
10686         if (CurMBB == SwitchMBB) {
10687           visitBitTestHeader(*BTB, SwitchMBB);
10688           BTB->Emitted = true;
10689         }
10690         break;
10691       }
10692       case CC_Range: {
10693         const Value *RHS, *LHS, *MHS;
10694         ISD::CondCode CC;
10695         if (I->Low == I->High) {
10696           // Check Cond == I->Low.
10697           CC = ISD::SETEQ;
10698           LHS = Cond;
10699           RHS=I->Low;
10700           MHS = nullptr;
10701         } else {
10702           // Check I->Low <= Cond <= I->High.
10703           CC = ISD::SETLE;
10704           LHS = I->Low;
10705           MHS = Cond;
10706           RHS = I->High;
10707         }
10708 
10709         // If Fallthrough is unreachable, fold away the comparison.
10710         if (FallthroughUnreachable)
10711           CC = ISD::SETTRUE;
10712 
10713         // The false probability is the sum of all unhandled cases.
10714         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10715                      getCurSDLoc(), I->Prob, UnhandledProbs);
10716 
10717         if (CurMBB == SwitchMBB)
10718           visitSwitchCase(CB, SwitchMBB);
10719         else
10720           SL->SwitchCases.push_back(CB);
10721 
10722         break;
10723       }
10724     }
10725     CurMBB = Fallthrough;
10726   }
10727 }
10728 
10729 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10730                                               CaseClusterIt First,
10731                                               CaseClusterIt Last) {
10732   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10733     if (X.Prob != CC.Prob)
10734       return X.Prob > CC.Prob;
10735 
10736     // Ties are broken by comparing the case value.
10737     return X.Low->getValue().slt(CC.Low->getValue());
10738   });
10739 }
10740 
10741 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10742                                         const SwitchWorkListItem &W,
10743                                         Value *Cond,
10744                                         MachineBasicBlock *SwitchMBB) {
10745   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10746          "Clusters not sorted?");
10747 
10748   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10749 
10750   // Balance the tree based on branch probabilities to create a near-optimal (in
10751   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10752   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10753   CaseClusterIt LastLeft = W.FirstCluster;
10754   CaseClusterIt FirstRight = W.LastCluster;
10755   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10756   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10757 
10758   // Move LastLeft and FirstRight towards each other from opposite directions to
10759   // find a partitioning of the clusters which balances the probability on both
10760   // sides. If LeftProb and RightProb are equal, alternate which side is
10761   // taken to ensure 0-probability nodes are distributed evenly.
10762   unsigned I = 0;
10763   while (LastLeft + 1 < FirstRight) {
10764     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10765       LeftProb += (++LastLeft)->Prob;
10766     else
10767       RightProb += (--FirstRight)->Prob;
10768     I++;
10769   }
10770 
10771   while (true) {
10772     // Our binary search tree differs from a typical BST in that ours can have up
10773     // to three values in each leaf. The pivot selection above doesn't take that
10774     // into account, which means the tree might require more nodes and be less
10775     // efficient. We compensate for this here.
10776 
10777     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10778     unsigned NumRight = W.LastCluster - FirstRight + 1;
10779 
10780     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10781       // If one side has less than 3 clusters, and the other has more than 3,
10782       // consider taking a cluster from the other side.
10783 
10784       if (NumLeft < NumRight) {
10785         // Consider moving the first cluster on the right to the left side.
10786         CaseCluster &CC = *FirstRight;
10787         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10788         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10789         if (LeftSideRank <= RightSideRank) {
10790           // Moving the cluster to the left does not demote it.
10791           ++LastLeft;
10792           ++FirstRight;
10793           continue;
10794         }
10795       } else {
10796         assert(NumRight < NumLeft);
10797         // Consider moving the last element on the left to the right side.
10798         CaseCluster &CC = *LastLeft;
10799         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10800         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10801         if (RightSideRank <= LeftSideRank) {
10802           // Moving the cluster to the right does not demot it.
10803           --LastLeft;
10804           --FirstRight;
10805           continue;
10806         }
10807       }
10808     }
10809     break;
10810   }
10811 
10812   assert(LastLeft + 1 == FirstRight);
10813   assert(LastLeft >= W.FirstCluster);
10814   assert(FirstRight <= W.LastCluster);
10815 
10816   // Use the first element on the right as pivot since we will make less-than
10817   // comparisons against it.
10818   CaseClusterIt PivotCluster = FirstRight;
10819   assert(PivotCluster > W.FirstCluster);
10820   assert(PivotCluster <= W.LastCluster);
10821 
10822   CaseClusterIt FirstLeft = W.FirstCluster;
10823   CaseClusterIt LastRight = W.LastCluster;
10824 
10825   const ConstantInt *Pivot = PivotCluster->Low;
10826 
10827   // New blocks will be inserted immediately after the current one.
10828   MachineFunction::iterator BBI(W.MBB);
10829   ++BBI;
10830 
10831   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10832   // we can branch to its destination directly if it's squeezed exactly in
10833   // between the known lower bound and Pivot - 1.
10834   MachineBasicBlock *LeftMBB;
10835   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10836       FirstLeft->Low == W.GE &&
10837       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10838     LeftMBB = FirstLeft->MBB;
10839   } else {
10840     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10841     FuncInfo.MF->insert(BBI, LeftMBB);
10842     WorkList.push_back(
10843         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10844     // Put Cond in a virtual register to make it available from the new blocks.
10845     ExportFromCurrentBlock(Cond);
10846   }
10847 
10848   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10849   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10850   // directly if RHS.High equals the current upper bound.
10851   MachineBasicBlock *RightMBB;
10852   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10853       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10854     RightMBB = FirstRight->MBB;
10855   } else {
10856     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10857     FuncInfo.MF->insert(BBI, RightMBB);
10858     WorkList.push_back(
10859         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10860     // Put Cond in a virtual register to make it available from the new blocks.
10861     ExportFromCurrentBlock(Cond);
10862   }
10863 
10864   // Create the CaseBlock record that will be used to lower the branch.
10865   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10866                getCurSDLoc(), LeftProb, RightProb);
10867 
10868   if (W.MBB == SwitchMBB)
10869     visitSwitchCase(CB, SwitchMBB);
10870   else
10871     SL->SwitchCases.push_back(CB);
10872 }
10873 
10874 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10875 // from the swith statement.
10876 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10877                                             BranchProbability PeeledCaseProb) {
10878   if (PeeledCaseProb == BranchProbability::getOne())
10879     return BranchProbability::getZero();
10880   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10881 
10882   uint32_t Numerator = CaseProb.getNumerator();
10883   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10884   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10885 }
10886 
10887 // Try to peel the top probability case if it exceeds the threshold.
10888 // Return current MachineBasicBlock for the switch statement if the peeling
10889 // does not occur.
10890 // If the peeling is performed, return the newly created MachineBasicBlock
10891 // for the peeled switch statement. Also update Clusters to remove the peeled
10892 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10893 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10894     const SwitchInst &SI, CaseClusterVector &Clusters,
10895     BranchProbability &PeeledCaseProb) {
10896   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10897   // Don't perform if there is only one cluster or optimizing for size.
10898   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10899       TM.getOptLevel() == CodeGenOpt::None ||
10900       SwitchMBB->getParent()->getFunction().hasMinSize())
10901     return SwitchMBB;
10902 
10903   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10904   unsigned PeeledCaseIndex = 0;
10905   bool SwitchPeeled = false;
10906   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10907     CaseCluster &CC = Clusters[Index];
10908     if (CC.Prob < TopCaseProb)
10909       continue;
10910     TopCaseProb = CC.Prob;
10911     PeeledCaseIndex = Index;
10912     SwitchPeeled = true;
10913   }
10914   if (!SwitchPeeled)
10915     return SwitchMBB;
10916 
10917   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10918                     << TopCaseProb << "\n");
10919 
10920   // Record the MBB for the peeled switch statement.
10921   MachineFunction::iterator BBI(SwitchMBB);
10922   ++BBI;
10923   MachineBasicBlock *PeeledSwitchMBB =
10924       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10925   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10926 
10927   ExportFromCurrentBlock(SI.getCondition());
10928   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10929   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10930                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10931   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10932 
10933   Clusters.erase(PeeledCaseIt);
10934   for (CaseCluster &CC : Clusters) {
10935     LLVM_DEBUG(
10936         dbgs() << "Scale the probablity for one cluster, before scaling: "
10937                << CC.Prob << "\n");
10938     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10939     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10940   }
10941   PeeledCaseProb = TopCaseProb;
10942   return PeeledSwitchMBB;
10943 }
10944 
10945 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10946   // Extract cases from the switch.
10947   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10948   CaseClusterVector Clusters;
10949   Clusters.reserve(SI.getNumCases());
10950   for (auto I : SI.cases()) {
10951     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10952     const ConstantInt *CaseVal = I.getCaseValue();
10953     BranchProbability Prob =
10954         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10955             : BranchProbability(1, SI.getNumCases() + 1);
10956     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10957   }
10958 
10959   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10960 
10961   // Cluster adjacent cases with the same destination. We do this at all
10962   // optimization levels because it's cheap to do and will make codegen faster
10963   // if there are many clusters.
10964   sortAndRangeify(Clusters);
10965 
10966   // The branch probablity of the peeled case.
10967   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10968   MachineBasicBlock *PeeledSwitchMBB =
10969       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10970 
10971   // If there is only the default destination, jump there directly.
10972   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10973   if (Clusters.empty()) {
10974     assert(PeeledSwitchMBB == SwitchMBB);
10975     SwitchMBB->addSuccessor(DefaultMBB);
10976     if (DefaultMBB != NextBlock(SwitchMBB)) {
10977       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10978                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10979     }
10980     return;
10981   }
10982 
10983   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10984   SL->findBitTestClusters(Clusters, &SI);
10985 
10986   LLVM_DEBUG({
10987     dbgs() << "Case clusters: ";
10988     for (const CaseCluster &C : Clusters) {
10989       if (C.Kind == CC_JumpTable)
10990         dbgs() << "JT:";
10991       if (C.Kind == CC_BitTests)
10992         dbgs() << "BT:";
10993 
10994       C.Low->getValue().print(dbgs(), true);
10995       if (C.Low != C.High) {
10996         dbgs() << '-';
10997         C.High->getValue().print(dbgs(), true);
10998       }
10999       dbgs() << ' ';
11000     }
11001     dbgs() << '\n';
11002   });
11003 
11004   assert(!Clusters.empty());
11005   SwitchWorkList WorkList;
11006   CaseClusterIt First = Clusters.begin();
11007   CaseClusterIt Last = Clusters.end() - 1;
11008   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11009   // Scale the branchprobability for DefaultMBB if the peel occurs and
11010   // DefaultMBB is not replaced.
11011   if (PeeledCaseProb != BranchProbability::getZero() &&
11012       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11013     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11014   WorkList.push_back(
11015       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11016 
11017   while (!WorkList.empty()) {
11018     SwitchWorkListItem W = WorkList.pop_back_val();
11019     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11020 
11021     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11022         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11023       // For optimized builds, lower large range as a balanced binary tree.
11024       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11025       continue;
11026     }
11027 
11028     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11029   }
11030 }
11031 
11032 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11033   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11034   auto DL = getCurSDLoc();
11035   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11036   EVT OpVT =
11037       TLI.getTypeToTransformTo(*DAG.getContext(), ResultVT.getScalarType());
11038   SDValue Step = DAG.getConstant(1, DL, OpVT);
11039   setValue(&I, DAG.getStepVector(DL, ResultVT, Step));
11040 }
11041 
11042 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11043   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11044   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11045 
11046   SDLoc DL = getCurSDLoc();
11047   SDValue V = getValue(I.getOperand(0));
11048   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11049 
11050   if (VT.isScalableVector()) {
11051     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11052     return;
11053   }
11054 
11055   // Use VECTOR_SHUFFLE for the fixed-length vector
11056   // to maintain existing behavior.
11057   SmallVector<int, 8> Mask;
11058   unsigned NumElts = VT.getVectorMinNumElements();
11059   for (unsigned i = 0; i != NumElts; ++i)
11060     Mask.push_back(NumElts - 1 - i);
11061 
11062   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11063 }
11064 
11065 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11066   SmallVector<EVT, 4> ValueVTs;
11067   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11068                   ValueVTs);
11069   unsigned NumValues = ValueVTs.size();
11070   if (NumValues == 0) return;
11071 
11072   SmallVector<SDValue, 4> Values(NumValues);
11073   SDValue Op = getValue(I.getOperand(0));
11074 
11075   for (unsigned i = 0; i != NumValues; ++i)
11076     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11077                             SDValue(Op.getNode(), Op.getResNo() + i));
11078 
11079   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11080                            DAG.getVTList(ValueVTs), Values));
11081 }
11082 
11083 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11084   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11085   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11086 
11087   SDLoc DL = getCurSDLoc();
11088   SDValue V1 = getValue(I.getOperand(0));
11089   SDValue V2 = getValue(I.getOperand(1));
11090   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11091 
11092   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11093   if (VT.isScalableVector()) {
11094     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11095     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11096                              DAG.getConstant(Imm, DL, IdxVT)));
11097     return;
11098   }
11099 
11100   unsigned NumElts = VT.getVectorNumElements();
11101 
11102   if ((-Imm > NumElts) || (Imm >= NumElts)) {
11103     // Result is undefined if immediate is out-of-bounds.
11104     setValue(&I, DAG.getUNDEF(VT));
11105     return;
11106   }
11107 
11108   uint64_t Idx = (NumElts + Imm) % NumElts;
11109 
11110   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11111   SmallVector<int, 8> Mask;
11112   for (unsigned i = 0; i < NumElts; ++i)
11113     Mask.push_back(Idx + i);
11114   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11115 }
11116