xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 38637ee477541370a90b37f149069d8e5c0c2efd)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GetElementPtrTypeIterator.h"
71 #include "llvm/IR/InlineAsm.h"
72 #include "llvm/IR/InstrTypes.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/IntrinsicsAArch64.h"
77 #include "llvm/IR/IntrinsicsWebAssembly.h"
78 #include "llvm/IR/LLVMContext.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Statepoint.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/MC/MCContext.h"
88 #include "llvm/Support/AtomicOrdering.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Compiler.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/MathExtras.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include "llvm/Target/TargetIntrinsicInfo.h"
96 #include "llvm/Target/TargetMachine.h"
97 #include "llvm/Target/TargetOptions.h"
98 #include "llvm/Transforms/Utils/Local.h"
99 #include <cstddef>
100 #include <iterator>
101 #include <limits>
102 #include <tuple>
103 
104 using namespace llvm;
105 using namespace PatternMatch;
106 using namespace SwitchCG;
107 
108 #define DEBUG_TYPE "isel"
109 
110 /// LimitFloatPrecision - Generate low-precision inline sequences for
111 /// some float libcalls (6, 8 or 12 bits).
112 static unsigned LimitFloatPrecision;
113 
114 static cl::opt<bool>
115     InsertAssertAlign("insert-assert-align", cl::init(true),
116                       cl::desc("Insert the experimental `assertalign` node."),
117                       cl::ReallyHidden);
118 
119 static cl::opt<unsigned, true>
120     LimitFPPrecision("limit-float-precision",
121                      cl::desc("Generate low-precision inline sequences "
122                               "for some float libcalls"),
123                      cl::location(LimitFloatPrecision), cl::Hidden,
124                      cl::init(0));
125 
126 static cl::opt<unsigned> SwitchPeelThreshold(
127     "switch-peel-threshold", cl::Hidden, cl::init(66),
128     cl::desc("Set the case probability threshold for peeling the case from a "
129              "switch statement. A value greater than 100 will void this "
130              "optimization"));
131 
132 // Limit the width of DAG chains. This is important in general to prevent
133 // DAG-based analysis from blowing up. For example, alias analysis and
134 // load clustering may not complete in reasonable time. It is difficult to
135 // recognize and avoid this situation within each individual analysis, and
136 // future analyses are likely to have the same behavior. Limiting DAG width is
137 // the safe approach and will be especially important with global DAGs.
138 //
139 // MaxParallelChains default is arbitrarily high to avoid affecting
140 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
141 // sequence over this should have been converted to llvm.memcpy by the
142 // frontend. It is easy to induce this behavior with .ll code such as:
143 // %buffer = alloca [4096 x i8]
144 // %data = load [4096 x i8]* %argPtr
145 // store [4096 x i8] %data, [4096 x i8]* %buffer
146 static const unsigned MaxParallelChains = 64;
147 
148 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
149                                       const SDValue *Parts, unsigned NumParts,
150                                       MVT PartVT, EVT ValueVT, const Value *V,
151                                       Optional<CallingConv::ID> CC);
152 
153 /// getCopyFromParts - Create a value that contains the specified legal parts
154 /// combined into the value they represent.  If the parts combine to a type
155 /// larger than ValueVT then AssertOp can be used to specify whether the extra
156 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
157 /// (ISD::AssertSext).
158 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
159                                 const SDValue *Parts, unsigned NumParts,
160                                 MVT PartVT, EVT ValueVT, const Value *V,
161                                 Optional<CallingConv::ID> CC = None,
162                                 Optional<ISD::NodeType> AssertOp = None) {
163   // Let the target assemble the parts if it wants to
164   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
165   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
166                                                    PartVT, ValueVT, CC))
167     return Val;
168 
169   if (ValueVT.isVector())
170     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
171                                   CC);
172 
173   assert(NumParts > 0 && "No parts to assemble!");
174   SDValue Val = Parts[0];
175 
176   if (NumParts > 1) {
177     // Assemble the value from multiple parts.
178     if (ValueVT.isInteger()) {
179       unsigned PartBits = PartVT.getSizeInBits();
180       unsigned ValueBits = ValueVT.getSizeInBits();
181 
182       // Assemble the power of 2 part.
183       unsigned RoundParts =
184           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
185       unsigned RoundBits = PartBits * RoundParts;
186       EVT RoundVT = RoundBits == ValueBits ?
187         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
188       SDValue Lo, Hi;
189 
190       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
191 
192       if (RoundParts > 2) {
193         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
194                               PartVT, HalfVT, V);
195         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
196                               RoundParts / 2, PartVT, HalfVT, V);
197       } else {
198         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
199         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
200       }
201 
202       if (DAG.getDataLayout().isBigEndian())
203         std::swap(Lo, Hi);
204 
205       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
206 
207       if (RoundParts < NumParts) {
208         // Assemble the trailing non-power-of-2 part.
209         unsigned OddParts = NumParts - RoundParts;
210         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
211         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
212                               OddVT, V, CC);
213 
214         // Combine the round and odd parts.
215         Lo = Val;
216         if (DAG.getDataLayout().isBigEndian())
217           std::swap(Lo, Hi);
218         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
219         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
220         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
221                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
222                                          TLI.getShiftAmountTy(
223                                              TotalVT, DAG.getDataLayout())));
224         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
225         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
226       }
227     } else if (PartVT.isFloatingPoint()) {
228       // FP split into multiple FP parts (for ppcf128)
229       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
230              "Unexpected split");
231       SDValue Lo, Hi;
232       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
233       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
234       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
235         std::swap(Lo, Hi);
236       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
237     } else {
238       // FP split into integer parts (soft fp)
239       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
240              !PartVT.isVector() && "Unexpected split");
241       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
242       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
243     }
244   }
245 
246   // There is now one part, held in Val.  Correct it to match ValueVT.
247   // PartEVT is the type of the register class that holds the value.
248   // ValueVT is the type of the inline asm operation.
249   EVT PartEVT = Val.getValueType();
250 
251   if (PartEVT == ValueVT)
252     return Val;
253 
254   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
255       ValueVT.bitsLT(PartEVT)) {
256     // For an FP value in an integer part, we need to truncate to the right
257     // width first.
258     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
259     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
260   }
261 
262   // Handle types that have the same size.
263   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
264     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
265 
266   // Handle types with different sizes.
267   if (PartEVT.isInteger() && ValueVT.isInteger()) {
268     if (ValueVT.bitsLT(PartEVT)) {
269       // For a truncate, see if we have any information to
270       // indicate whether the truncated bits will always be
271       // zero or sign-extension.
272       if (AssertOp.hasValue())
273         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
274                           DAG.getValueType(ValueVT));
275       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
276     }
277     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
278   }
279 
280   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
281     // FP_ROUND's are always exact here.
282     if (ValueVT.bitsLT(Val.getValueType()))
283       return DAG.getNode(
284           ISD::FP_ROUND, DL, ValueVT, Val,
285           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
286 
287     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
288   }
289 
290   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
291   // then truncating.
292   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
293       ValueVT.bitsLT(PartEVT)) {
294     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
295     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
296   }
297 
298   report_fatal_error("Unknown mismatch in getCopyFromParts!");
299 }
300 
301 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
302                                               const Twine &ErrMsg) {
303   const Instruction *I = dyn_cast_or_null<Instruction>(V);
304   if (!V)
305     return Ctx.emitError(ErrMsg);
306 
307   const char *AsmError = ", possible invalid constraint for vector type";
308   if (const CallInst *CI = dyn_cast<CallInst>(I))
309     if (CI->isInlineAsm())
310       return Ctx.emitError(I, ErrMsg + AsmError);
311 
312   return Ctx.emitError(I, ErrMsg);
313 }
314 
315 /// getCopyFromPartsVector - Create a value that contains the specified legal
316 /// parts combined into the value they represent.  If the parts combine to a
317 /// type larger than ValueVT then AssertOp can be used to specify whether the
318 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
319 /// ValueVT (ISD::AssertSext).
320 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
321                                       const SDValue *Parts, unsigned NumParts,
322                                       MVT PartVT, EVT ValueVT, const Value *V,
323                                       Optional<CallingConv::ID> CallConv) {
324   assert(ValueVT.isVector() && "Not a vector value");
325   assert(NumParts > 0 && "No parts to assemble!");
326   const bool IsABIRegCopy = CallConv.hasValue();
327 
328   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
329   SDValue Val = Parts[0];
330 
331   // Handle a multi-element vector.
332   if (NumParts > 1) {
333     EVT IntermediateVT;
334     MVT RegisterVT;
335     unsigned NumIntermediates;
336     unsigned NumRegs;
337 
338     if (IsABIRegCopy) {
339       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
340           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
341           NumIntermediates, RegisterVT);
342     } else {
343       NumRegs =
344           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
345                                      NumIntermediates, RegisterVT);
346     }
347 
348     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
349     NumParts = NumRegs; // Silence a compiler warning.
350     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
351     assert(RegisterVT.getSizeInBits() ==
352            Parts[0].getSimpleValueType().getSizeInBits() &&
353            "Part type sizes don't match!");
354 
355     // Assemble the parts into intermediate operands.
356     SmallVector<SDValue, 8> Ops(NumIntermediates);
357     if (NumIntermediates == NumParts) {
358       // If the register was not expanded, truncate or copy the value,
359       // as appropriate.
360       for (unsigned i = 0; i != NumParts; ++i)
361         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
362                                   PartVT, IntermediateVT, V, CallConv);
363     } else if (NumParts > 0) {
364       // If the intermediate type was expanded, build the intermediate
365       // operands from the parts.
366       assert(NumParts % NumIntermediates == 0 &&
367              "Must expand into a divisible number of parts!");
368       unsigned Factor = NumParts / NumIntermediates;
369       for (unsigned i = 0; i != NumIntermediates; ++i)
370         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
371                                   PartVT, IntermediateVT, V, CallConv);
372     }
373 
374     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
375     // intermediate operands.
376     EVT BuiltVectorTy =
377         IntermediateVT.isVector()
378             ? EVT::getVectorVT(
379                   *DAG.getContext(), IntermediateVT.getScalarType(),
380                   IntermediateVT.getVectorElementCount() * NumParts)
381             : EVT::getVectorVT(*DAG.getContext(),
382                                IntermediateVT.getScalarType(),
383                                NumIntermediates);
384     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
385                                                 : ISD::BUILD_VECTOR,
386                       DL, BuiltVectorTy, Ops);
387   }
388 
389   // There is now one part, held in Val.  Correct it to match ValueVT.
390   EVT PartEVT = Val.getValueType();
391 
392   if (PartEVT == ValueVT)
393     return Val;
394 
395   if (PartEVT.isVector()) {
396     // Vector/Vector bitcast.
397     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
398       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
399 
400     // If the element type of the source/dest vectors are the same, but the
401     // parts vector has more elements than the value vector, then we have a
402     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
403     // elements we want.
404     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
405       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
406               ValueVT.getVectorElementCount().getKnownMinValue()) &&
407              (PartEVT.getVectorElementCount().isScalable() ==
408               ValueVT.getVectorElementCount().isScalable()) &&
409              "Cannot narrow, it would be a lossy transformation");
410       PartEVT =
411           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
412                            ValueVT.getVectorElementCount());
413       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
414                         DAG.getVectorIdxConstant(0, DL));
415       if (PartEVT == ValueVT)
416         return Val;
417     }
418 
419     // Promoted vector extract
420     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
421   }
422 
423   // Trivial bitcast if the types are the same size and the destination
424   // vector type is legal.
425   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
426       TLI.isTypeLegal(ValueVT))
427     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
428 
429   if (ValueVT.getVectorNumElements() != 1) {
430      // Certain ABIs require that vectors are passed as integers. For vectors
431      // are the same size, this is an obvious bitcast.
432      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
433        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
434      } else if (ValueVT.bitsLT(PartEVT)) {
435        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
436        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
437        // Drop the extra bits.
438        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
439        return DAG.getBitcast(ValueVT, Val);
440      }
441 
442      diagnosePossiblyInvalidConstraint(
443          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
444      return DAG.getUNDEF(ValueVT);
445   }
446 
447   // Handle cases such as i8 -> <1 x i1>
448   EVT ValueSVT = ValueVT.getVectorElementType();
449   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
450     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
451       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
452     else
453       Val = ValueVT.isFloatingPoint()
454                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
455                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
456   }
457 
458   return DAG.getBuildVector(ValueVT, DL, Val);
459 }
460 
461 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
462                                  SDValue Val, SDValue *Parts, unsigned NumParts,
463                                  MVT PartVT, const Value *V,
464                                  Optional<CallingConv::ID> CallConv);
465 
466 /// getCopyToParts - Create a series of nodes that contain the specified value
467 /// split into legal parts.  If the parts contain more bits than Val, then, for
468 /// integers, ExtendKind can be used to specify how to generate the extra bits.
469 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
470                            SDValue *Parts, unsigned NumParts, MVT PartVT,
471                            const Value *V,
472                            Optional<CallingConv::ID> CallConv = None,
473                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
474   // Let the target split the parts if it wants to
475   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
476   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
477                                       CallConv))
478     return;
479   EVT ValueVT = Val.getValueType();
480 
481   // Handle the vector case separately.
482   if (ValueVT.isVector())
483     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
484                                 CallConv);
485 
486   unsigned PartBits = PartVT.getSizeInBits();
487   unsigned OrigNumParts = NumParts;
488   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
489          "Copying to an illegal type!");
490 
491   if (NumParts == 0)
492     return;
493 
494   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
495   EVT PartEVT = PartVT;
496   if (PartEVT == ValueVT) {
497     assert(NumParts == 1 && "No-op copy with multiple parts!");
498     Parts[0] = Val;
499     return;
500   }
501 
502   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
503     // If the parts cover more bits than the value has, promote the value.
504     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
505       assert(NumParts == 1 && "Do not know what to promote to!");
506       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
507     } else {
508       if (ValueVT.isFloatingPoint()) {
509         // FP values need to be bitcast, then extended if they are being put
510         // into a larger container.
511         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
512         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
513       }
514       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
515              ValueVT.isInteger() &&
516              "Unknown mismatch!");
517       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
518       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
519       if (PartVT == MVT::x86mmx)
520         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
521     }
522   } else if (PartBits == ValueVT.getSizeInBits()) {
523     // Different types of the same size.
524     assert(NumParts == 1 && PartEVT != ValueVT);
525     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
526   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
527     // If the parts cover less bits than value has, truncate the value.
528     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529            ValueVT.isInteger() &&
530            "Unknown mismatch!");
531     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
533     if (PartVT == MVT::x86mmx)
534       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535   }
536 
537   // The value may have changed - recompute ValueVT.
538   ValueVT = Val.getValueType();
539   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
540          "Failed to tile the value with PartVT!");
541 
542   if (NumParts == 1) {
543     if (PartEVT != ValueVT) {
544       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
545                                         "scalar-to-vector conversion failed");
546       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547     }
548 
549     Parts[0] = Val;
550     return;
551   }
552 
553   // Expand the value into multiple parts.
554   if (NumParts & (NumParts - 1)) {
555     // The number of parts is not a power of 2.  Split off and copy the tail.
556     assert(PartVT.isInteger() && ValueVT.isInteger() &&
557            "Do not know what to expand to!");
558     unsigned RoundParts = 1 << Log2_32(NumParts);
559     unsigned RoundBits = RoundParts * PartBits;
560     unsigned OddParts = NumParts - RoundParts;
561     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
562       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
563 
564     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
565                    CallConv);
566 
567     if (DAG.getDataLayout().isBigEndian())
568       // The odd parts were reversed by getCopyToParts - unreverse them.
569       std::reverse(Parts + RoundParts, Parts + NumParts);
570 
571     NumParts = RoundParts;
572     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
573     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
574   }
575 
576   // The number of parts is a power of 2.  Repeatedly bisect the value using
577   // EXTRACT_ELEMENT.
578   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
579                          EVT::getIntegerVT(*DAG.getContext(),
580                                            ValueVT.getSizeInBits()),
581                          Val);
582 
583   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
584     for (unsigned i = 0; i < NumParts; i += StepSize) {
585       unsigned ThisBits = StepSize * PartBits / 2;
586       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
587       SDValue &Part0 = Parts[i];
588       SDValue &Part1 = Parts[i+StepSize/2];
589 
590       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
591                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
592       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
593                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
594 
595       if (ThisBits == PartBits && ThisVT != PartVT) {
596         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
597         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
598       }
599     }
600   }
601 
602   if (DAG.getDataLayout().isBigEndian())
603     std::reverse(Parts, Parts + OrigNumParts);
604 }
605 
606 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
607                                      const SDLoc &DL, EVT PartVT) {
608   if (!PartVT.isVector())
609     return SDValue();
610 
611   EVT ValueVT = Val.getValueType();
612   ElementCount PartNumElts = PartVT.getVectorElementCount();
613   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
614 
615   // We only support widening vectors with equivalent element types and
616   // fixed/scalable properties. If a target needs to widen a fixed-length type
617   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
618   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
619       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
620       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
621     return SDValue();
622 
623   // Widening a scalable vector to another scalable vector is done by inserting
624   // the vector into a larger undef one.
625   if (PartNumElts.isScalable())
626     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
627                        Val, DAG.getVectorIdxConstant(0, DL));
628 
629   EVT ElementVT = PartVT.getVectorElementType();
630   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631   // undef elements.
632   SmallVector<SDValue, 16> Ops;
633   DAG.ExtractVectorElements(Val, Ops);
634   SDValue EltUndef = DAG.getUNDEF(ElementVT);
635   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
636 
637   // FIXME: Use CONCAT for 2x -> 4x.
638   return DAG.getBuildVector(PartVT, DL, Ops);
639 }
640 
641 /// getCopyToPartsVector - Create a series of nodes that contain the specified
642 /// value split into legal parts.
643 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
644                                  SDValue Val, SDValue *Parts, unsigned NumParts,
645                                  MVT PartVT, const Value *V,
646                                  Optional<CallingConv::ID> CallConv) {
647   EVT ValueVT = Val.getValueType();
648   assert(ValueVT.isVector() && "Not a vector");
649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650   const bool IsABIRegCopy = CallConv.hasValue();
651 
652   if (NumParts == 1) {
653     EVT PartEVT = PartVT;
654     if (PartEVT == ValueVT) {
655       // Nothing to do.
656     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
657       // Bitconvert vector->vector case.
658       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
659     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
660       Val = Widened;
661     } else if (PartVT.isVector() &&
662                PartEVT.getVectorElementType().bitsGE(
663                    ValueVT.getVectorElementType()) &&
664                PartEVT.getVectorElementCount() ==
665                    ValueVT.getVectorElementCount()) {
666 
667       // Promoted vector extract
668       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
669     } else if (PartEVT.isVector() &&
670                PartEVT.getVectorElementType() !=
671                    ValueVT.getVectorElementType() &&
672                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
673                    TargetLowering::TypeWidenVector) {
674       // Combination of widening and promotion.
675       EVT WidenVT =
676           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
677                            PartVT.getVectorElementCount());
678       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
679       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
680     } else {
681       if (ValueVT.getVectorElementCount().isScalar()) {
682         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
683                           DAG.getVectorIdxConstant(0, DL));
684       } else {
685         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
686         assert(PartVT.getFixedSizeInBits() > ValueSize &&
687                "lossy conversion of vector to scalar type");
688         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
689         Val = DAG.getBitcast(IntermediateType, Val);
690         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
691       }
692     }
693 
694     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
695     Parts[0] = Val;
696     return;
697   }
698 
699   // Handle a multi-element vector.
700   EVT IntermediateVT;
701   MVT RegisterVT;
702   unsigned NumIntermediates;
703   unsigned NumRegs;
704   if (IsABIRegCopy) {
705     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
706         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
707         NumIntermediates, RegisterVT);
708   } else {
709     NumRegs =
710         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
711                                    NumIntermediates, RegisterVT);
712   }
713 
714   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
715   NumParts = NumRegs; // Silence a compiler warning.
716   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
717 
718   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
719          "Mixing scalable and fixed vectors when copying in parts");
720 
721   Optional<ElementCount> DestEltCnt;
722 
723   if (IntermediateVT.isVector())
724     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
725   else
726     DestEltCnt = ElementCount::getFixed(NumIntermediates);
727 
728   EVT BuiltVectorTy = EVT::getVectorVT(
729       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
730 
731   if (ValueVT == BuiltVectorTy) {
732     // Nothing to do.
733   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
734     // Bitconvert vector->vector case.
735     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
736   } else {
737     if (BuiltVectorTy.getVectorElementType().bitsGT(
738             ValueVT.getVectorElementType())) {
739       // Integer promotion.
740       ValueVT = EVT::getVectorVT(*DAG.getContext(),
741                                  BuiltVectorTy.getVectorElementType(),
742                                  ValueVT.getVectorElementCount());
743       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
744     }
745 
746     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
747       Val = Widened;
748     }
749   }
750 
751   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
752 
753   // Split the vector into intermediate operands.
754   SmallVector<SDValue, 8> Ops(NumIntermediates);
755   for (unsigned i = 0; i != NumIntermediates; ++i) {
756     if (IntermediateVT.isVector()) {
757       // This does something sensible for scalable vectors - see the
758       // definition of EXTRACT_SUBVECTOR for further details.
759       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
760       Ops[i] =
761           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
762                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
763     } else {
764       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
765                            DAG.getVectorIdxConstant(i, DL));
766     }
767   }
768 
769   // Split the intermediate operands into legal parts.
770   if (NumParts == NumIntermediates) {
771     // If the register was not expanded, promote or copy the value,
772     // as appropriate.
773     for (unsigned i = 0; i != NumParts; ++i)
774       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
775   } else if (NumParts > 0) {
776     // If the intermediate type was expanded, split each the value into
777     // legal parts.
778     assert(NumIntermediates != 0 && "division by zero");
779     assert(NumParts % NumIntermediates == 0 &&
780            "Must expand into a divisible number of parts!");
781     unsigned Factor = NumParts / NumIntermediates;
782     for (unsigned i = 0; i != NumIntermediates; ++i)
783       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
784                      CallConv);
785   }
786 }
787 
788 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
789                            EVT valuevt, Optional<CallingConv::ID> CC)
790     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
791       RegCount(1, regs.size()), CallConv(CC) {}
792 
793 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
794                            const DataLayout &DL, unsigned Reg, Type *Ty,
795                            Optional<CallingConv::ID> CC) {
796   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
797 
798   CallConv = CC;
799 
800   for (EVT ValueVT : ValueVTs) {
801     unsigned NumRegs =
802         isABIMangled()
803             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
804             : TLI.getNumRegisters(Context, ValueVT);
805     MVT RegisterVT =
806         isABIMangled()
807             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
808             : TLI.getRegisterType(Context, ValueVT);
809     for (unsigned i = 0; i != NumRegs; ++i)
810       Regs.push_back(Reg + i);
811     RegVTs.push_back(RegisterVT);
812     RegCount.push_back(NumRegs);
813     Reg += NumRegs;
814   }
815 }
816 
817 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
818                                       FunctionLoweringInfo &FuncInfo,
819                                       const SDLoc &dl, SDValue &Chain,
820                                       SDValue *Flag, const Value *V) const {
821   // A Value with type {} or [0 x %t] needs no registers.
822   if (ValueVTs.empty())
823     return SDValue();
824 
825   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
826 
827   // Assemble the legal parts into the final values.
828   SmallVector<SDValue, 4> Values(ValueVTs.size());
829   SmallVector<SDValue, 8> Parts;
830   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
831     // Copy the legal parts from the registers.
832     EVT ValueVT = ValueVTs[Value];
833     unsigned NumRegs = RegCount[Value];
834     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
835                                           *DAG.getContext(),
836                                           CallConv.getValue(), RegVTs[Value])
837                                     : RegVTs[Value];
838 
839     Parts.resize(NumRegs);
840     for (unsigned i = 0; i != NumRegs; ++i) {
841       SDValue P;
842       if (!Flag) {
843         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
844       } else {
845         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
846         *Flag = P.getValue(2);
847       }
848 
849       Chain = P.getValue(1);
850       Parts[i] = P;
851 
852       // If the source register was virtual and if we know something about it,
853       // add an assert node.
854       if (!Register::isVirtualRegister(Regs[Part + i]) ||
855           !RegisterVT.isInteger())
856         continue;
857 
858       const FunctionLoweringInfo::LiveOutInfo *LOI =
859         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
860       if (!LOI)
861         continue;
862 
863       unsigned RegSize = RegisterVT.getScalarSizeInBits();
864       unsigned NumSignBits = LOI->NumSignBits;
865       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
866 
867       if (NumZeroBits == RegSize) {
868         // The current value is a zero.
869         // Explicitly express that as it would be easier for
870         // optimizations to kick in.
871         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
872         continue;
873       }
874 
875       // FIXME: We capture more information than the dag can represent.  For
876       // now, just use the tightest assertzext/assertsext possible.
877       bool isSExt;
878       EVT FromVT(MVT::Other);
879       if (NumZeroBits) {
880         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
881         isSExt = false;
882       } else if (NumSignBits > 1) {
883         FromVT =
884             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
885         isSExt = true;
886       } else {
887         continue;
888       }
889       // Add an assertion node.
890       assert(FromVT != MVT::Other);
891       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
892                              RegisterVT, P, DAG.getValueType(FromVT));
893     }
894 
895     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
896                                      RegisterVT, ValueVT, V, CallConv);
897     Part += NumRegs;
898     Parts.clear();
899   }
900 
901   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
902 }
903 
904 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
905                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
906                                  const Value *V,
907                                  ISD::NodeType PreferredExtendType) const {
908   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
909   ISD::NodeType ExtendKind = PreferredExtendType;
910 
911   // Get the list of the values's legal parts.
912   unsigned NumRegs = Regs.size();
913   SmallVector<SDValue, 8> Parts(NumRegs);
914   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
915     unsigned NumParts = RegCount[Value];
916 
917     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
918                                           *DAG.getContext(),
919                                           CallConv.getValue(), RegVTs[Value])
920                                     : RegVTs[Value];
921 
922     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
923       ExtendKind = ISD::ZERO_EXTEND;
924 
925     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
926                    NumParts, RegisterVT, V, CallConv, ExtendKind);
927     Part += NumParts;
928   }
929 
930   // Copy the parts into the registers.
931   SmallVector<SDValue, 8> Chains(NumRegs);
932   for (unsigned i = 0; i != NumRegs; ++i) {
933     SDValue Part;
934     if (!Flag) {
935       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
936     } else {
937       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
938       *Flag = Part.getValue(1);
939     }
940 
941     Chains[i] = Part.getValue(0);
942   }
943 
944   if (NumRegs == 1 || Flag)
945     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
946     // flagged to it. That is the CopyToReg nodes and the user are considered
947     // a single scheduling unit. If we create a TokenFactor and return it as
948     // chain, then the TokenFactor is both a predecessor (operand) of the
949     // user as well as a successor (the TF operands are flagged to the user).
950     // c1, f1 = CopyToReg
951     // c2, f2 = CopyToReg
952     // c3     = TokenFactor c1, c2
953     // ...
954     //        = op c3, ..., f2
955     Chain = Chains[NumRegs-1];
956   else
957     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
958 }
959 
960 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
961                                         unsigned MatchingIdx, const SDLoc &dl,
962                                         SelectionDAG &DAG,
963                                         std::vector<SDValue> &Ops) const {
964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
965 
966   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
967   if (HasMatching)
968     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
969   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
970     // Put the register class of the virtual registers in the flag word.  That
971     // way, later passes can recompute register class constraints for inline
972     // assembly as well as normal instructions.
973     // Don't do this for tied operands that can use the regclass information
974     // from the def.
975     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
976     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
977     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
978   }
979 
980   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
981   Ops.push_back(Res);
982 
983   if (Code == InlineAsm::Kind_Clobber) {
984     // Clobbers should always have a 1:1 mapping with registers, and may
985     // reference registers that have illegal (e.g. vector) types. Hence, we
986     // shouldn't try to apply any sort of splitting logic to them.
987     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
988            "No 1:1 mapping from clobbers to regs?");
989     Register SP = TLI.getStackPointerRegisterToSaveRestore();
990     (void)SP;
991     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
992       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
993       assert(
994           (Regs[I] != SP ||
995            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
996           "If we clobbered the stack pointer, MFI should know about it.");
997     }
998     return;
999   }
1000 
1001   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1002     MVT RegisterVT = RegVTs[Value];
1003     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1004                                            RegisterVT);
1005     for (unsigned i = 0; i != NumRegs; ++i) {
1006       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1007       unsigned TheReg = Regs[Reg++];
1008       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1009     }
1010   }
1011 }
1012 
1013 SmallVector<std::pair<unsigned, TypeSize>, 4>
1014 RegsForValue::getRegsAndSizes() const {
1015   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1016   unsigned I = 0;
1017   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1018     unsigned RegCount = std::get<0>(CountAndVT);
1019     MVT RegisterVT = std::get<1>(CountAndVT);
1020     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1021     for (unsigned E = I + RegCount; I != E; ++I)
1022       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1023   }
1024   return OutVec;
1025 }
1026 
1027 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1028                                const TargetLibraryInfo *li) {
1029   AA = aa;
1030   GFI = gfi;
1031   LibInfo = li;
1032   Context = DAG.getContext();
1033   LPadToCallSiteMap.clear();
1034   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1035 }
1036 
1037 void SelectionDAGBuilder::clear() {
1038   NodeMap.clear();
1039   UnusedArgNodeMap.clear();
1040   PendingLoads.clear();
1041   PendingExports.clear();
1042   PendingConstrainedFP.clear();
1043   PendingConstrainedFPStrict.clear();
1044   CurInst = nullptr;
1045   HasTailCall = false;
1046   SDNodeOrder = LowestSDNodeOrder;
1047   StatepointLowering.clear();
1048 }
1049 
1050 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1051   DanglingDebugInfoMap.clear();
1052 }
1053 
1054 // Update DAG root to include dependencies on Pending chains.
1055 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1056   SDValue Root = DAG.getRoot();
1057 
1058   if (Pending.empty())
1059     return Root;
1060 
1061   // Add current root to PendingChains, unless we already indirectly
1062   // depend on it.
1063   if (Root.getOpcode() != ISD::EntryToken) {
1064     unsigned i = 0, e = Pending.size();
1065     for (; i != e; ++i) {
1066       assert(Pending[i].getNode()->getNumOperands() > 1);
1067       if (Pending[i].getNode()->getOperand(0) == Root)
1068         break;  // Don't add the root if we already indirectly depend on it.
1069     }
1070 
1071     if (i == e)
1072       Pending.push_back(Root);
1073   }
1074 
1075   if (Pending.size() == 1)
1076     Root = Pending[0];
1077   else
1078     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1079 
1080   DAG.setRoot(Root);
1081   Pending.clear();
1082   return Root;
1083 }
1084 
1085 SDValue SelectionDAGBuilder::getMemoryRoot() {
1086   return updateRoot(PendingLoads);
1087 }
1088 
1089 SDValue SelectionDAGBuilder::getRoot() {
1090   // Chain up all pending constrained intrinsics together with all
1091   // pending loads, by simply appending them to PendingLoads and
1092   // then calling getMemoryRoot().
1093   PendingLoads.reserve(PendingLoads.size() +
1094                        PendingConstrainedFP.size() +
1095                        PendingConstrainedFPStrict.size());
1096   PendingLoads.append(PendingConstrainedFP.begin(),
1097                       PendingConstrainedFP.end());
1098   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1099                       PendingConstrainedFPStrict.end());
1100   PendingConstrainedFP.clear();
1101   PendingConstrainedFPStrict.clear();
1102   return getMemoryRoot();
1103 }
1104 
1105 SDValue SelectionDAGBuilder::getControlRoot() {
1106   // We need to emit pending fpexcept.strict constrained intrinsics,
1107   // so append them to the PendingExports list.
1108   PendingExports.append(PendingConstrainedFPStrict.begin(),
1109                         PendingConstrainedFPStrict.end());
1110   PendingConstrainedFPStrict.clear();
1111   return updateRoot(PendingExports);
1112 }
1113 
1114 void SelectionDAGBuilder::visit(const Instruction &I) {
1115   // Set up outgoing PHI node register values before emitting the terminator.
1116   if (I.isTerminator()) {
1117     HandlePHINodesInSuccessorBlocks(I.getParent());
1118   }
1119 
1120   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1121   if (!isa<DbgInfoIntrinsic>(I))
1122     ++SDNodeOrder;
1123 
1124   CurInst = &I;
1125 
1126   visit(I.getOpcode(), I);
1127 
1128   if (!I.isTerminator() && !HasTailCall &&
1129       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1130     CopyToExportRegsIfNeeded(&I);
1131 
1132   CurInst = nullptr;
1133 }
1134 
1135 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1136   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1137 }
1138 
1139 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1140   // Note: this doesn't use InstVisitor, because it has to work with
1141   // ConstantExpr's in addition to instructions.
1142   switch (Opcode) {
1143   default: llvm_unreachable("Unknown instruction type encountered!");
1144     // Build the switch statement using the Instruction.def file.
1145 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1146     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1147 #include "llvm/IR/Instruction.def"
1148   }
1149 }
1150 
1151 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1152                                                DebugLoc DL, unsigned Order) {
1153   // We treat variadic dbg_values differently at this stage.
1154   if (DI->hasArgList()) {
1155     // For variadic dbg_values we will now insert an undef.
1156     // FIXME: We can potentially recover these!
1157     SmallVector<SDDbgOperand, 2> Locs;
1158     for (const Value *V : DI->getValues()) {
1159       auto Undef = UndefValue::get(V->getType());
1160       Locs.push_back(SDDbgOperand::fromConst(Undef));
1161     }
1162     SDDbgValue *SDV = DAG.getDbgValueList(
1163         DI->getVariable(), DI->getExpression(), Locs, {},
1164         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1165     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1166   } else {
1167     // TODO: Dangling debug info will eventually either be resolved or produce
1168     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1169     // between the original dbg.value location and its resolved DBG_VALUE,
1170     // which we should ideally fill with an extra Undef DBG_VALUE.
1171     assert(DI->getNumVariableLocationOps() == 1 &&
1172            "DbgValueInst without an ArgList should have a single location "
1173            "operand.");
1174     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1175   }
1176 }
1177 
1178 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1179                                                 const DIExpression *Expr) {
1180   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1181     const DbgValueInst *DI = DDI.getDI();
1182     DIVariable *DanglingVariable = DI->getVariable();
1183     DIExpression *DanglingExpr = DI->getExpression();
1184     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1185       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1186       return true;
1187     }
1188     return false;
1189   };
1190 
1191   for (auto &DDIMI : DanglingDebugInfoMap) {
1192     DanglingDebugInfoVector &DDIV = DDIMI.second;
1193 
1194     // If debug info is to be dropped, run it through final checks to see
1195     // whether it can be salvaged.
1196     for (auto &DDI : DDIV)
1197       if (isMatchingDbgValue(DDI))
1198         salvageUnresolvedDbgValue(DDI);
1199 
1200     erase_if(DDIV, isMatchingDbgValue);
1201   }
1202 }
1203 
1204 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1205 // generate the debug data structures now that we've seen its definition.
1206 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1207                                                    SDValue Val) {
1208   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1209   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1210     return;
1211 
1212   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1213   for (auto &DDI : DDIV) {
1214     const DbgValueInst *DI = DDI.getDI();
1215     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1216     assert(DI && "Ill-formed DanglingDebugInfo");
1217     DebugLoc dl = DDI.getdl();
1218     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1219     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1220     DILocalVariable *Variable = DI->getVariable();
1221     DIExpression *Expr = DI->getExpression();
1222     assert(Variable->isValidLocationForIntrinsic(dl) &&
1223            "Expected inlined-at fields to agree");
1224     SDDbgValue *SDV;
1225     if (Val.getNode()) {
1226       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1227       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1228       // we couldn't resolve it directly when examining the DbgValue intrinsic
1229       // in the first place we should not be more successful here). Unless we
1230       // have some test case that prove this to be correct we should avoid
1231       // calling EmitFuncArgumentDbgValue here.
1232       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl,
1233                                     FuncArgumentDbgValueKind::Value, Val)) {
1234         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1235                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1236         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1237         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1238         // inserted after the definition of Val when emitting the instructions
1239         // after ISel. An alternative could be to teach
1240         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1241         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1242                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1243                    << ValSDNodeOrder << "\n");
1244         SDV = getDbgValue(Val, Variable, Expr, dl,
1245                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1246         DAG.AddDbgValue(SDV, false);
1247       } else
1248         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1249                           << "in EmitFuncArgumentDbgValue\n");
1250     } else {
1251       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1252       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1253       auto SDV =
1254           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1255       DAG.AddDbgValue(SDV, false);
1256     }
1257   }
1258   DDIV.clear();
1259 }
1260 
1261 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1262   // TODO: For the variadic implementation, instead of only checking the fail
1263   // state of `handleDebugValue`, we need know specifically which values were
1264   // invalid, so that we attempt to salvage only those values when processing
1265   // a DIArgList.
1266   assert(!DDI.getDI()->hasArgList() &&
1267          "Not implemented for variadic dbg_values");
1268   Value *V = DDI.getDI()->getValue(0);
1269   DILocalVariable *Var = DDI.getDI()->getVariable();
1270   DIExpression *Expr = DDI.getDI()->getExpression();
1271   DebugLoc DL = DDI.getdl();
1272   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1273   unsigned SDOrder = DDI.getSDNodeOrder();
1274   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1275   // that DW_OP_stack_value is desired.
1276   assert(isa<DbgValueInst>(DDI.getDI()));
1277   bool StackValue = true;
1278 
1279   // Can this Value can be encoded without any further work?
1280   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1281     return;
1282 
1283   // Attempt to salvage back through as many instructions as possible. Bail if
1284   // a non-instruction is seen, such as a constant expression or global
1285   // variable. FIXME: Further work could recover those too.
1286   while (isa<Instruction>(V)) {
1287     Instruction &VAsInst = *cast<Instruction>(V);
1288     // Temporary "0", awaiting real implementation.
1289     SmallVector<uint64_t, 16> Ops;
1290     SmallVector<Value *, 4> AdditionalValues;
1291     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1292                              AdditionalValues);
1293     // If we cannot salvage any further, and haven't yet found a suitable debug
1294     // expression, bail out.
1295     if (!V)
1296       break;
1297 
1298     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1299     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1300     // here for variadic dbg_values, remove that condition.
1301     if (!AdditionalValues.empty())
1302       break;
1303 
1304     // New value and expr now represent this debuginfo.
1305     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1306 
1307     // Some kind of simplification occurred: check whether the operand of the
1308     // salvaged debug expression can be encoded in this DAG.
1309     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1310                          /*IsVariadic=*/false)) {
1311       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1312                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1313       return;
1314     }
1315   }
1316 
1317   // This was the final opportunity to salvage this debug information, and it
1318   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1319   // any earlier variable location.
1320   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1321   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1322   DAG.AddDbgValue(SDV, false);
1323 
1324   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1325                     << "\n");
1326   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1327                     << "\n");
1328 }
1329 
1330 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1331                                            DILocalVariable *Var,
1332                                            DIExpression *Expr, DebugLoc dl,
1333                                            DebugLoc InstDL, unsigned Order,
1334                                            bool IsVariadic) {
1335   if (Values.empty())
1336     return true;
1337   SmallVector<SDDbgOperand> LocationOps;
1338   SmallVector<SDNode *> Dependencies;
1339   for (const Value *V : Values) {
1340     // Constant value.
1341     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1342         isa<ConstantPointerNull>(V)) {
1343       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1344       continue;
1345     }
1346 
1347     // If the Value is a frame index, we can create a FrameIndex debug value
1348     // without relying on the DAG at all.
1349     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1350       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1351       if (SI != FuncInfo.StaticAllocaMap.end()) {
1352         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1353         continue;
1354       }
1355     }
1356 
1357     // Do not use getValue() in here; we don't want to generate code at
1358     // this point if it hasn't been done yet.
1359     SDValue N = NodeMap[V];
1360     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1361       N = UnusedArgNodeMap[V];
1362     if (N.getNode()) {
1363       // Only emit func arg dbg value for non-variadic dbg.values for now.
1364       if (!IsVariadic &&
1365           EmitFuncArgumentDbgValue(V, Var, Expr, dl,
1366                                    FuncArgumentDbgValueKind::Value, N))
1367         return true;
1368       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1369         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1370         // describe stack slot locations.
1371         //
1372         // Consider "int x = 0; int *px = &x;". There are two kinds of
1373         // interesting debug values here after optimization:
1374         //
1375         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1376         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1377         //
1378         // Both describe the direct values of their associated variables.
1379         Dependencies.push_back(N.getNode());
1380         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1381         continue;
1382       }
1383       LocationOps.emplace_back(
1384           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1385       continue;
1386     }
1387 
1388     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1389     // Special rules apply for the first dbg.values of parameter variables in a
1390     // function. Identify them by the fact they reference Argument Values, that
1391     // they're parameters, and they are parameters of the current function. We
1392     // need to let them dangle until they get an SDNode.
1393     bool IsParamOfFunc =
1394         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1395     if (IsParamOfFunc)
1396       return false;
1397 
1398     // The value is not used in this block yet (or it would have an SDNode).
1399     // We still want the value to appear for the user if possible -- if it has
1400     // an associated VReg, we can refer to that instead.
1401     auto VMI = FuncInfo.ValueMap.find(V);
1402     if (VMI != FuncInfo.ValueMap.end()) {
1403       unsigned Reg = VMI->second;
1404       // If this is a PHI node, it may be split up into several MI PHI nodes
1405       // (in FunctionLoweringInfo::set).
1406       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1407                        V->getType(), None);
1408       if (RFV.occupiesMultipleRegs()) {
1409         // FIXME: We could potentially support variadic dbg_values here.
1410         if (IsVariadic)
1411           return false;
1412         unsigned Offset = 0;
1413         unsigned BitsToDescribe = 0;
1414         if (auto VarSize = Var->getSizeInBits())
1415           BitsToDescribe = *VarSize;
1416         if (auto Fragment = Expr->getFragmentInfo())
1417           BitsToDescribe = Fragment->SizeInBits;
1418         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1419           // Bail out if all bits are described already.
1420           if (Offset >= BitsToDescribe)
1421             break;
1422           // TODO: handle scalable vectors.
1423           unsigned RegisterSize = RegAndSize.second;
1424           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1425                                       ? BitsToDescribe - Offset
1426                                       : RegisterSize;
1427           auto FragmentExpr = DIExpression::createFragmentExpression(
1428               Expr, Offset, FragmentSize);
1429           if (!FragmentExpr)
1430             continue;
1431           SDDbgValue *SDV = DAG.getVRegDbgValue(
1432               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1433           DAG.AddDbgValue(SDV, false);
1434           Offset += RegisterSize;
1435         }
1436         return true;
1437       }
1438       // We can use simple vreg locations for variadic dbg_values as well.
1439       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1440       continue;
1441     }
1442     // We failed to create a SDDbgOperand for V.
1443     return false;
1444   }
1445 
1446   // We have created a SDDbgOperand for each Value in Values.
1447   // Should use Order instead of SDNodeOrder?
1448   assert(!LocationOps.empty());
1449   SDDbgValue *SDV =
1450       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1451                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1452   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1453   return true;
1454 }
1455 
1456 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1457   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1458   for (auto &Pair : DanglingDebugInfoMap)
1459     for (auto &DDI : Pair.second)
1460       salvageUnresolvedDbgValue(DDI);
1461   clearDanglingDebugInfo();
1462 }
1463 
1464 /// getCopyFromRegs - If there was virtual register allocated for the value V
1465 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1466 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1467   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1468   SDValue Result;
1469 
1470   if (It != FuncInfo.ValueMap.end()) {
1471     Register InReg = It->second;
1472 
1473     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1474                      DAG.getDataLayout(), InReg, Ty,
1475                      None); // This is not an ABI copy.
1476     SDValue Chain = DAG.getEntryNode();
1477     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1478                                  V);
1479     resolveDanglingDebugInfo(V, Result);
1480   }
1481 
1482   return Result;
1483 }
1484 
1485 /// getValue - Return an SDValue for the given Value.
1486 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1487   // If we already have an SDValue for this value, use it. It's important
1488   // to do this first, so that we don't create a CopyFromReg if we already
1489   // have a regular SDValue.
1490   SDValue &N = NodeMap[V];
1491   if (N.getNode()) return N;
1492 
1493   // If there's a virtual register allocated and initialized for this
1494   // value, use it.
1495   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1496     return copyFromReg;
1497 
1498   // Otherwise create a new SDValue and remember it.
1499   SDValue Val = getValueImpl(V);
1500   NodeMap[V] = Val;
1501   resolveDanglingDebugInfo(V, Val);
1502   return Val;
1503 }
1504 
1505 /// getNonRegisterValue - Return an SDValue for the given Value, but
1506 /// don't look in FuncInfo.ValueMap for a virtual register.
1507 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1508   // If we already have an SDValue for this value, use it.
1509   SDValue &N = NodeMap[V];
1510   if (N.getNode()) {
1511     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1512       // Remove the debug location from the node as the node is about to be used
1513       // in a location which may differ from the original debug location.  This
1514       // is relevant to Constant and ConstantFP nodes because they can appear
1515       // as constant expressions inside PHI nodes.
1516       N->setDebugLoc(DebugLoc());
1517     }
1518     return N;
1519   }
1520 
1521   // Otherwise create a new SDValue and remember it.
1522   SDValue Val = getValueImpl(V);
1523   NodeMap[V] = Val;
1524   resolveDanglingDebugInfo(V, Val);
1525   return Val;
1526 }
1527 
1528 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1529 /// Create an SDValue for the given value.
1530 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1531   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1532 
1533   if (const Constant *C = dyn_cast<Constant>(V)) {
1534     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1535 
1536     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1537       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1538 
1539     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1540       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1541 
1542     if (isa<ConstantPointerNull>(C)) {
1543       unsigned AS = V->getType()->getPointerAddressSpace();
1544       return DAG.getConstant(0, getCurSDLoc(),
1545                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1546     }
1547 
1548     if (match(C, m_VScale(DAG.getDataLayout())))
1549       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1550 
1551     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1552       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1553 
1554     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1555       return DAG.getUNDEF(VT);
1556 
1557     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1558       visit(CE->getOpcode(), *CE);
1559       SDValue N1 = NodeMap[V];
1560       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1561       return N1;
1562     }
1563 
1564     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1565       SmallVector<SDValue, 4> Constants;
1566       for (const Use &U : C->operands()) {
1567         SDNode *Val = getValue(U).getNode();
1568         // If the operand is an empty aggregate, there are no values.
1569         if (!Val) continue;
1570         // Add each leaf value from the operand to the Constants list
1571         // to form a flattened list of all the values.
1572         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1573           Constants.push_back(SDValue(Val, i));
1574       }
1575 
1576       return DAG.getMergeValues(Constants, getCurSDLoc());
1577     }
1578 
1579     if (const ConstantDataSequential *CDS =
1580           dyn_cast<ConstantDataSequential>(C)) {
1581       SmallVector<SDValue, 4> Ops;
1582       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1583         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1584         // Add each leaf value from the operand to the Constants list
1585         // to form a flattened list of all the values.
1586         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1587           Ops.push_back(SDValue(Val, i));
1588       }
1589 
1590       if (isa<ArrayType>(CDS->getType()))
1591         return DAG.getMergeValues(Ops, getCurSDLoc());
1592       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1593     }
1594 
1595     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1596       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1597              "Unknown struct or array constant!");
1598 
1599       SmallVector<EVT, 4> ValueVTs;
1600       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1601       unsigned NumElts = ValueVTs.size();
1602       if (NumElts == 0)
1603         return SDValue(); // empty struct
1604       SmallVector<SDValue, 4> Constants(NumElts);
1605       for (unsigned i = 0; i != NumElts; ++i) {
1606         EVT EltVT = ValueVTs[i];
1607         if (isa<UndefValue>(C))
1608           Constants[i] = DAG.getUNDEF(EltVT);
1609         else if (EltVT.isFloatingPoint())
1610           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1611         else
1612           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1613       }
1614 
1615       return DAG.getMergeValues(Constants, getCurSDLoc());
1616     }
1617 
1618     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1619       return DAG.getBlockAddress(BA, VT);
1620 
1621     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1622       return getValue(Equiv->getGlobalValue());
1623 
1624     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1625       return getValue(NC->getGlobalValue());
1626 
1627     VectorType *VecTy = cast<VectorType>(V->getType());
1628 
1629     // Now that we know the number and type of the elements, get that number of
1630     // elements into the Ops array based on what kind of constant it is.
1631     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1632       SmallVector<SDValue, 16> Ops;
1633       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1634       for (unsigned i = 0; i != NumElements; ++i)
1635         Ops.push_back(getValue(CV->getOperand(i)));
1636 
1637       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1638     }
1639 
1640     if (isa<ConstantAggregateZero>(C)) {
1641       EVT EltVT =
1642           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1643 
1644       SDValue Op;
1645       if (EltVT.isFloatingPoint())
1646         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1647       else
1648         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1649 
1650       if (isa<ScalableVectorType>(VecTy))
1651         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1652 
1653       SmallVector<SDValue, 16> Ops;
1654       Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1655       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1656     }
1657 
1658     llvm_unreachable("Unknown vector constant");
1659   }
1660 
1661   // If this is a static alloca, generate it as the frameindex instead of
1662   // computation.
1663   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1664     DenseMap<const AllocaInst*, int>::iterator SI =
1665       FuncInfo.StaticAllocaMap.find(AI);
1666     if (SI != FuncInfo.StaticAllocaMap.end())
1667       return DAG.getFrameIndex(SI->second,
1668                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1669   }
1670 
1671   // If this is an instruction which fast-isel has deferred, select it now.
1672   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1673     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1674 
1675     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1676                      Inst->getType(), None);
1677     SDValue Chain = DAG.getEntryNode();
1678     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1679   }
1680 
1681   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1682     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1683 
1684   if (const auto *BB = dyn_cast<BasicBlock>(V))
1685     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1686 
1687   llvm_unreachable("Can't get register for value!");
1688 }
1689 
1690 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1691   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1692   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1693   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1694   bool IsSEH = isAsynchronousEHPersonality(Pers);
1695   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1696   if (!IsSEH)
1697     CatchPadMBB->setIsEHScopeEntry();
1698   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1699   if (IsMSVCCXX || IsCoreCLR)
1700     CatchPadMBB->setIsEHFuncletEntry();
1701 }
1702 
1703 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1704   // Update machine-CFG edge.
1705   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1706   FuncInfo.MBB->addSuccessor(TargetMBB);
1707   TargetMBB->setIsEHCatchretTarget(true);
1708   DAG.getMachineFunction().setHasEHCatchret(true);
1709 
1710   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1711   bool IsSEH = isAsynchronousEHPersonality(Pers);
1712   if (IsSEH) {
1713     // If this is not a fall-through branch or optimizations are switched off,
1714     // emit the branch.
1715     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1716         TM.getOptLevel() == CodeGenOpt::None)
1717       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1718                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1719     return;
1720   }
1721 
1722   // Figure out the funclet membership for the catchret's successor.
1723   // This will be used by the FuncletLayout pass to determine how to order the
1724   // BB's.
1725   // A 'catchret' returns to the outer scope's color.
1726   Value *ParentPad = I.getCatchSwitchParentPad();
1727   const BasicBlock *SuccessorColor;
1728   if (isa<ConstantTokenNone>(ParentPad))
1729     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1730   else
1731     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1732   assert(SuccessorColor && "No parent funclet for catchret!");
1733   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1734   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1735 
1736   // Create the terminator node.
1737   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1738                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1739                             DAG.getBasicBlock(SuccessorColorMBB));
1740   DAG.setRoot(Ret);
1741 }
1742 
1743 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1744   // Don't emit any special code for the cleanuppad instruction. It just marks
1745   // the start of an EH scope/funclet.
1746   FuncInfo.MBB->setIsEHScopeEntry();
1747   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1748   if (Pers != EHPersonality::Wasm_CXX) {
1749     FuncInfo.MBB->setIsEHFuncletEntry();
1750     FuncInfo.MBB->setIsCleanupFuncletEntry();
1751   }
1752 }
1753 
1754 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1755 // not match, it is OK to add only the first unwind destination catchpad to the
1756 // successors, because there will be at least one invoke instruction within the
1757 // catch scope that points to the next unwind destination, if one exists, so
1758 // CFGSort cannot mess up with BB sorting order.
1759 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1760 // call within them, and catchpads only consisting of 'catch (...)' have a
1761 // '__cxa_end_catch' call within them, both of which generate invokes in case
1762 // the next unwind destination exists, i.e., the next unwind destination is not
1763 // the caller.)
1764 //
1765 // Having at most one EH pad successor is also simpler and helps later
1766 // transformations.
1767 //
1768 // For example,
1769 // current:
1770 //   invoke void @foo to ... unwind label %catch.dispatch
1771 // catch.dispatch:
1772 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1773 // catch.start:
1774 //   ...
1775 //   ... in this BB or some other child BB dominated by this BB there will be an
1776 //   invoke that points to 'next' BB as an unwind destination
1777 //
1778 // next: ; We don't need to add this to 'current' BB's successor
1779 //   ...
1780 static void findWasmUnwindDestinations(
1781     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1782     BranchProbability Prob,
1783     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1784         &UnwindDests) {
1785   while (EHPadBB) {
1786     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1787     if (isa<CleanupPadInst>(Pad)) {
1788       // Stop on cleanup pads.
1789       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1790       UnwindDests.back().first->setIsEHScopeEntry();
1791       break;
1792     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1793       // Add the catchpad handlers to the possible destinations. We don't
1794       // continue to the unwind destination of the catchswitch for wasm.
1795       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1796         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1797         UnwindDests.back().first->setIsEHScopeEntry();
1798       }
1799       break;
1800     } else {
1801       continue;
1802     }
1803   }
1804 }
1805 
1806 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1807 /// many places it could ultimately go. In the IR, we have a single unwind
1808 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1809 /// This function skips over imaginary basic blocks that hold catchswitch
1810 /// instructions, and finds all the "real" machine
1811 /// basic block destinations. As those destinations may not be successors of
1812 /// EHPadBB, here we also calculate the edge probability to those destinations.
1813 /// The passed-in Prob is the edge probability to EHPadBB.
1814 static void findUnwindDestinations(
1815     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1816     BranchProbability Prob,
1817     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1818         &UnwindDests) {
1819   EHPersonality Personality =
1820     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1821   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1822   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1823   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1824   bool IsSEH = isAsynchronousEHPersonality(Personality);
1825 
1826   if (IsWasmCXX) {
1827     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1828     assert(UnwindDests.size() <= 1 &&
1829            "There should be at most one unwind destination for wasm");
1830     return;
1831   }
1832 
1833   while (EHPadBB) {
1834     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1835     BasicBlock *NewEHPadBB = nullptr;
1836     if (isa<LandingPadInst>(Pad)) {
1837       // Stop on landingpads. They are not funclets.
1838       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1839       break;
1840     } else if (isa<CleanupPadInst>(Pad)) {
1841       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1842       // personalities.
1843       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1844       UnwindDests.back().first->setIsEHScopeEntry();
1845       UnwindDests.back().first->setIsEHFuncletEntry();
1846       break;
1847     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1848       // Add the catchpad handlers to the possible destinations.
1849       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1850         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1851         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1852         if (IsMSVCCXX || IsCoreCLR)
1853           UnwindDests.back().first->setIsEHFuncletEntry();
1854         if (!IsSEH)
1855           UnwindDests.back().first->setIsEHScopeEntry();
1856       }
1857       NewEHPadBB = CatchSwitch->getUnwindDest();
1858     } else {
1859       continue;
1860     }
1861 
1862     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1863     if (BPI && NewEHPadBB)
1864       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1865     EHPadBB = NewEHPadBB;
1866   }
1867 }
1868 
1869 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1870   // Update successor info.
1871   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1872   auto UnwindDest = I.getUnwindDest();
1873   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1874   BranchProbability UnwindDestProb =
1875       (BPI && UnwindDest)
1876           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1877           : BranchProbability::getZero();
1878   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1879   for (auto &UnwindDest : UnwindDests) {
1880     UnwindDest.first->setIsEHPad();
1881     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1882   }
1883   FuncInfo.MBB->normalizeSuccProbs();
1884 
1885   // Create the terminator node.
1886   SDValue Ret =
1887       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1888   DAG.setRoot(Ret);
1889 }
1890 
1891 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1892   report_fatal_error("visitCatchSwitch not yet implemented!");
1893 }
1894 
1895 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1896   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1897   auto &DL = DAG.getDataLayout();
1898   SDValue Chain = getControlRoot();
1899   SmallVector<ISD::OutputArg, 8> Outs;
1900   SmallVector<SDValue, 8> OutVals;
1901 
1902   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1903   // lower
1904   //
1905   //   %val = call <ty> @llvm.experimental.deoptimize()
1906   //   ret <ty> %val
1907   //
1908   // differently.
1909   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1910     LowerDeoptimizingReturn();
1911     return;
1912   }
1913 
1914   if (!FuncInfo.CanLowerReturn) {
1915     unsigned DemoteReg = FuncInfo.DemoteRegister;
1916     const Function *F = I.getParent()->getParent();
1917 
1918     // Emit a store of the return value through the virtual register.
1919     // Leave Outs empty so that LowerReturn won't try to load return
1920     // registers the usual way.
1921     SmallVector<EVT, 1> PtrValueVTs;
1922     ComputeValueVTs(TLI, DL,
1923                     F->getReturnType()->getPointerTo(
1924                         DAG.getDataLayout().getAllocaAddrSpace()),
1925                     PtrValueVTs);
1926 
1927     SDValue RetPtr =
1928         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1929     SDValue RetOp = getValue(I.getOperand(0));
1930 
1931     SmallVector<EVT, 4> ValueVTs, MemVTs;
1932     SmallVector<uint64_t, 4> Offsets;
1933     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1934                     &Offsets);
1935     unsigned NumValues = ValueVTs.size();
1936 
1937     SmallVector<SDValue, 4> Chains(NumValues);
1938     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1939     for (unsigned i = 0; i != NumValues; ++i) {
1940       // An aggregate return value cannot wrap around the address space, so
1941       // offsets to its parts don't wrap either.
1942       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1943                                            TypeSize::Fixed(Offsets[i]));
1944 
1945       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1946       if (MemVTs[i] != ValueVTs[i])
1947         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1948       Chains[i] = DAG.getStore(
1949           Chain, getCurSDLoc(), Val,
1950           // FIXME: better loc info would be nice.
1951           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1952           commonAlignment(BaseAlign, Offsets[i]));
1953     }
1954 
1955     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1956                         MVT::Other, Chains);
1957   } else if (I.getNumOperands() != 0) {
1958     SmallVector<EVT, 4> ValueVTs;
1959     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1960     unsigned NumValues = ValueVTs.size();
1961     if (NumValues) {
1962       SDValue RetOp = getValue(I.getOperand(0));
1963 
1964       const Function *F = I.getParent()->getParent();
1965 
1966       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1967           I.getOperand(0)->getType(), F->getCallingConv(),
1968           /*IsVarArg*/ false, DL);
1969 
1970       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1971       if (F->getAttributes().hasRetAttr(Attribute::SExt))
1972         ExtendKind = ISD::SIGN_EXTEND;
1973       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
1974         ExtendKind = ISD::ZERO_EXTEND;
1975 
1976       LLVMContext &Context = F->getContext();
1977       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
1978 
1979       for (unsigned j = 0; j != NumValues; ++j) {
1980         EVT VT = ValueVTs[j];
1981 
1982         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1983           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1984 
1985         CallingConv::ID CC = F->getCallingConv();
1986 
1987         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1988         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1989         SmallVector<SDValue, 4> Parts(NumParts);
1990         getCopyToParts(DAG, getCurSDLoc(),
1991                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1992                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1993 
1994         // 'inreg' on function refers to return value
1995         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1996         if (RetInReg)
1997           Flags.setInReg();
1998 
1999         if (I.getOperand(0)->getType()->isPointerTy()) {
2000           Flags.setPointer();
2001           Flags.setPointerAddrSpace(
2002               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2003         }
2004 
2005         if (NeedsRegBlock) {
2006           Flags.setInConsecutiveRegs();
2007           if (j == NumValues - 1)
2008             Flags.setInConsecutiveRegsLast();
2009         }
2010 
2011         // Propagate extension type if any
2012         if (ExtendKind == ISD::SIGN_EXTEND)
2013           Flags.setSExt();
2014         else if (ExtendKind == ISD::ZERO_EXTEND)
2015           Flags.setZExt();
2016 
2017         for (unsigned i = 0; i < NumParts; ++i) {
2018           Outs.push_back(ISD::OutputArg(Flags,
2019                                         Parts[i].getValueType().getSimpleVT(),
2020                                         VT, /*isfixed=*/true, 0, 0));
2021           OutVals.push_back(Parts[i]);
2022         }
2023       }
2024     }
2025   }
2026 
2027   // Push in swifterror virtual register as the last element of Outs. This makes
2028   // sure swifterror virtual register will be returned in the swifterror
2029   // physical register.
2030   const Function *F = I.getParent()->getParent();
2031   if (TLI.supportSwiftError() &&
2032       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2033     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2034     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2035     Flags.setSwiftError();
2036     Outs.push_back(ISD::OutputArg(
2037         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2038         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2039     // Create SDNode for the swifterror virtual register.
2040     OutVals.push_back(
2041         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2042                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2043                         EVT(TLI.getPointerTy(DL))));
2044   }
2045 
2046   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2047   CallingConv::ID CallConv =
2048     DAG.getMachineFunction().getFunction().getCallingConv();
2049   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2050       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2051 
2052   // Verify that the target's LowerReturn behaved as expected.
2053   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2054          "LowerReturn didn't return a valid chain!");
2055 
2056   // Update the DAG with the new chain value resulting from return lowering.
2057   DAG.setRoot(Chain);
2058 }
2059 
2060 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2061 /// created for it, emit nodes to copy the value into the virtual
2062 /// registers.
2063 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2064   // Skip empty types
2065   if (V->getType()->isEmptyTy())
2066     return;
2067 
2068   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2069   if (VMI != FuncInfo.ValueMap.end()) {
2070     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2071     CopyValueToVirtualRegister(V, VMI->second);
2072   }
2073 }
2074 
2075 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2076 /// the current basic block, add it to ValueMap now so that we'll get a
2077 /// CopyTo/FromReg.
2078 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2079   // No need to export constants.
2080   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2081 
2082   // Already exported?
2083   if (FuncInfo.isExportedInst(V)) return;
2084 
2085   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2086   CopyValueToVirtualRegister(V, Reg);
2087 }
2088 
2089 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2090                                                      const BasicBlock *FromBB) {
2091   // The operands of the setcc have to be in this block.  We don't know
2092   // how to export them from some other block.
2093   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2094     // Can export from current BB.
2095     if (VI->getParent() == FromBB)
2096       return true;
2097 
2098     // Is already exported, noop.
2099     return FuncInfo.isExportedInst(V);
2100   }
2101 
2102   // If this is an argument, we can export it if the BB is the entry block or
2103   // if it is already exported.
2104   if (isa<Argument>(V)) {
2105     if (FromBB->isEntryBlock())
2106       return true;
2107 
2108     // Otherwise, can only export this if it is already exported.
2109     return FuncInfo.isExportedInst(V);
2110   }
2111 
2112   // Otherwise, constants can always be exported.
2113   return true;
2114 }
2115 
2116 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2117 BranchProbability
2118 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2119                                         const MachineBasicBlock *Dst) const {
2120   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2121   const BasicBlock *SrcBB = Src->getBasicBlock();
2122   const BasicBlock *DstBB = Dst->getBasicBlock();
2123   if (!BPI) {
2124     // If BPI is not available, set the default probability as 1 / N, where N is
2125     // the number of successors.
2126     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2127     return BranchProbability(1, SuccSize);
2128   }
2129   return BPI->getEdgeProbability(SrcBB, DstBB);
2130 }
2131 
2132 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2133                                                MachineBasicBlock *Dst,
2134                                                BranchProbability Prob) {
2135   if (!FuncInfo.BPI)
2136     Src->addSuccessorWithoutProb(Dst);
2137   else {
2138     if (Prob.isUnknown())
2139       Prob = getEdgeProbability(Src, Dst);
2140     Src->addSuccessor(Dst, Prob);
2141   }
2142 }
2143 
2144 static bool InBlock(const Value *V, const BasicBlock *BB) {
2145   if (const Instruction *I = dyn_cast<Instruction>(V))
2146     return I->getParent() == BB;
2147   return true;
2148 }
2149 
2150 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2151 /// This function emits a branch and is used at the leaves of an OR or an
2152 /// AND operator tree.
2153 void
2154 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2155                                                   MachineBasicBlock *TBB,
2156                                                   MachineBasicBlock *FBB,
2157                                                   MachineBasicBlock *CurBB,
2158                                                   MachineBasicBlock *SwitchBB,
2159                                                   BranchProbability TProb,
2160                                                   BranchProbability FProb,
2161                                                   bool InvertCond) {
2162   const BasicBlock *BB = CurBB->getBasicBlock();
2163 
2164   // If the leaf of the tree is a comparison, merge the condition into
2165   // the caseblock.
2166   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2167     // The operands of the cmp have to be in this block.  We don't know
2168     // how to export them from some other block.  If this is the first block
2169     // of the sequence, no exporting is needed.
2170     if (CurBB == SwitchBB ||
2171         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2172          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2173       ISD::CondCode Condition;
2174       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2175         ICmpInst::Predicate Pred =
2176             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2177         Condition = getICmpCondCode(Pred);
2178       } else {
2179         const FCmpInst *FC = cast<FCmpInst>(Cond);
2180         FCmpInst::Predicate Pred =
2181             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2182         Condition = getFCmpCondCode(Pred);
2183         if (TM.Options.NoNaNsFPMath)
2184           Condition = getFCmpCodeWithoutNaN(Condition);
2185       }
2186 
2187       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2188                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2189       SL->SwitchCases.push_back(CB);
2190       return;
2191     }
2192   }
2193 
2194   // Create a CaseBlock record representing this branch.
2195   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2196   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2197                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2198   SL->SwitchCases.push_back(CB);
2199 }
2200 
2201 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2202                                                MachineBasicBlock *TBB,
2203                                                MachineBasicBlock *FBB,
2204                                                MachineBasicBlock *CurBB,
2205                                                MachineBasicBlock *SwitchBB,
2206                                                Instruction::BinaryOps Opc,
2207                                                BranchProbability TProb,
2208                                                BranchProbability FProb,
2209                                                bool InvertCond) {
2210   // Skip over not part of the tree and remember to invert op and operands at
2211   // next level.
2212   Value *NotCond;
2213   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2214       InBlock(NotCond, CurBB->getBasicBlock())) {
2215     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2216                          !InvertCond);
2217     return;
2218   }
2219 
2220   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2221   const Value *BOpOp0, *BOpOp1;
2222   // Compute the effective opcode for Cond, taking into account whether it needs
2223   // to be inverted, e.g.
2224   //   and (not (or A, B)), C
2225   // gets lowered as
2226   //   and (and (not A, not B), C)
2227   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2228   if (BOp) {
2229     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2230                ? Instruction::And
2231                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2232                       ? Instruction::Or
2233                       : (Instruction::BinaryOps)0);
2234     if (InvertCond) {
2235       if (BOpc == Instruction::And)
2236         BOpc = Instruction::Or;
2237       else if (BOpc == Instruction::Or)
2238         BOpc = Instruction::And;
2239     }
2240   }
2241 
2242   // If this node is not part of the or/and tree, emit it as a branch.
2243   // Note that all nodes in the tree should have same opcode.
2244   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2245   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2246       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2247       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2248     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2249                                  TProb, FProb, InvertCond);
2250     return;
2251   }
2252 
2253   //  Create TmpBB after CurBB.
2254   MachineFunction::iterator BBI(CurBB);
2255   MachineFunction &MF = DAG.getMachineFunction();
2256   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2257   CurBB->getParent()->insert(++BBI, TmpBB);
2258 
2259   if (Opc == Instruction::Or) {
2260     // Codegen X | Y as:
2261     // BB1:
2262     //   jmp_if_X TBB
2263     //   jmp TmpBB
2264     // TmpBB:
2265     //   jmp_if_Y TBB
2266     //   jmp FBB
2267     //
2268 
2269     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2270     // The requirement is that
2271     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2272     //     = TrueProb for original BB.
2273     // Assuming the original probabilities are A and B, one choice is to set
2274     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2275     // A/(1+B) and 2B/(1+B). This choice assumes that
2276     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2277     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2278     // TmpBB, but the math is more complicated.
2279 
2280     auto NewTrueProb = TProb / 2;
2281     auto NewFalseProb = TProb / 2 + FProb;
2282     // Emit the LHS condition.
2283     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2284                          NewFalseProb, InvertCond);
2285 
2286     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2287     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2288     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2289     // Emit the RHS condition into TmpBB.
2290     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2291                          Probs[1], InvertCond);
2292   } else {
2293     assert(Opc == Instruction::And && "Unknown merge op!");
2294     // Codegen X & Y as:
2295     // BB1:
2296     //   jmp_if_X TmpBB
2297     //   jmp FBB
2298     // TmpBB:
2299     //   jmp_if_Y TBB
2300     //   jmp FBB
2301     //
2302     //  This requires creation of TmpBB after CurBB.
2303 
2304     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2305     // The requirement is that
2306     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2307     //     = FalseProb for original BB.
2308     // Assuming the original probabilities are A and B, one choice is to set
2309     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2310     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2311     // TrueProb for BB1 * FalseProb for TmpBB.
2312 
2313     auto NewTrueProb = TProb + FProb / 2;
2314     auto NewFalseProb = FProb / 2;
2315     // Emit the LHS condition.
2316     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2317                          NewFalseProb, InvertCond);
2318 
2319     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2320     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2321     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2322     // Emit the RHS condition into TmpBB.
2323     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2324                          Probs[1], InvertCond);
2325   }
2326 }
2327 
2328 /// If the set of cases should be emitted as a series of branches, return true.
2329 /// If we should emit this as a bunch of and/or'd together conditions, return
2330 /// false.
2331 bool
2332 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2333   if (Cases.size() != 2) return true;
2334 
2335   // If this is two comparisons of the same values or'd or and'd together, they
2336   // will get folded into a single comparison, so don't emit two blocks.
2337   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2338        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2339       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2340        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2341     return false;
2342   }
2343 
2344   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2345   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2346   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2347       Cases[0].CC == Cases[1].CC &&
2348       isa<Constant>(Cases[0].CmpRHS) &&
2349       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2350     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2351       return false;
2352     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2353       return false;
2354   }
2355 
2356   return true;
2357 }
2358 
2359 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2360   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2361 
2362   // Update machine-CFG edges.
2363   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2364 
2365   if (I.isUnconditional()) {
2366     // Update machine-CFG edges.
2367     BrMBB->addSuccessor(Succ0MBB);
2368 
2369     // If this is not a fall-through branch or optimizations are switched off,
2370     // emit the branch.
2371     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2372       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2373                               MVT::Other, getControlRoot(),
2374                               DAG.getBasicBlock(Succ0MBB)));
2375 
2376     return;
2377   }
2378 
2379   // If this condition is one of the special cases we handle, do special stuff
2380   // now.
2381   const Value *CondVal = I.getCondition();
2382   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2383 
2384   // If this is a series of conditions that are or'd or and'd together, emit
2385   // this as a sequence of branches instead of setcc's with and/or operations.
2386   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2387   // unpredictable branches, and vector extracts because those jumps are likely
2388   // expensive for any target), this should improve performance.
2389   // For example, instead of something like:
2390   //     cmp A, B
2391   //     C = seteq
2392   //     cmp D, E
2393   //     F = setle
2394   //     or C, F
2395   //     jnz foo
2396   // Emit:
2397   //     cmp A, B
2398   //     je foo
2399   //     cmp D, E
2400   //     jle foo
2401   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2402   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2403       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2404     Value *Vec;
2405     const Value *BOp0, *BOp1;
2406     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2407     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2408       Opcode = Instruction::And;
2409     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2410       Opcode = Instruction::Or;
2411 
2412     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2413                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2414       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2415                            getEdgeProbability(BrMBB, Succ0MBB),
2416                            getEdgeProbability(BrMBB, Succ1MBB),
2417                            /*InvertCond=*/false);
2418       // If the compares in later blocks need to use values not currently
2419       // exported from this block, export them now.  This block should always
2420       // be the first entry.
2421       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2422 
2423       // Allow some cases to be rejected.
2424       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2425         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2426           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2427           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2428         }
2429 
2430         // Emit the branch for this block.
2431         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2432         SL->SwitchCases.erase(SL->SwitchCases.begin());
2433         return;
2434       }
2435 
2436       // Okay, we decided not to do this, remove any inserted MBB's and clear
2437       // SwitchCases.
2438       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2439         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2440 
2441       SL->SwitchCases.clear();
2442     }
2443   }
2444 
2445   // Create a CaseBlock record representing this branch.
2446   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2447                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2448 
2449   // Use visitSwitchCase to actually insert the fast branch sequence for this
2450   // cond branch.
2451   visitSwitchCase(CB, BrMBB);
2452 }
2453 
2454 /// visitSwitchCase - Emits the necessary code to represent a single node in
2455 /// the binary search tree resulting from lowering a switch instruction.
2456 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2457                                           MachineBasicBlock *SwitchBB) {
2458   SDValue Cond;
2459   SDValue CondLHS = getValue(CB.CmpLHS);
2460   SDLoc dl = CB.DL;
2461 
2462   if (CB.CC == ISD::SETTRUE) {
2463     // Branch or fall through to TrueBB.
2464     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2465     SwitchBB->normalizeSuccProbs();
2466     if (CB.TrueBB != NextBlock(SwitchBB)) {
2467       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2468                               DAG.getBasicBlock(CB.TrueBB)));
2469     }
2470     return;
2471   }
2472 
2473   auto &TLI = DAG.getTargetLoweringInfo();
2474   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2475 
2476   // Build the setcc now.
2477   if (!CB.CmpMHS) {
2478     // Fold "(X == true)" to X and "(X == false)" to !X to
2479     // handle common cases produced by branch lowering.
2480     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2481         CB.CC == ISD::SETEQ)
2482       Cond = CondLHS;
2483     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2484              CB.CC == ISD::SETEQ) {
2485       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2486       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2487     } else {
2488       SDValue CondRHS = getValue(CB.CmpRHS);
2489 
2490       // If a pointer's DAG type is larger than its memory type then the DAG
2491       // values are zero-extended. This breaks signed comparisons so truncate
2492       // back to the underlying type before doing the compare.
2493       if (CondLHS.getValueType() != MemVT) {
2494         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2495         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2496       }
2497       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2498     }
2499   } else {
2500     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2501 
2502     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2503     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2504 
2505     SDValue CmpOp = getValue(CB.CmpMHS);
2506     EVT VT = CmpOp.getValueType();
2507 
2508     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2509       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2510                           ISD::SETLE);
2511     } else {
2512       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2513                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2514       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2515                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2516     }
2517   }
2518 
2519   // Update successor info
2520   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2521   // TrueBB and FalseBB are always different unless the incoming IR is
2522   // degenerate. This only happens when running llc on weird IR.
2523   if (CB.TrueBB != CB.FalseBB)
2524     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2525   SwitchBB->normalizeSuccProbs();
2526 
2527   // If the lhs block is the next block, invert the condition so that we can
2528   // fall through to the lhs instead of the rhs block.
2529   if (CB.TrueBB == NextBlock(SwitchBB)) {
2530     std::swap(CB.TrueBB, CB.FalseBB);
2531     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2532     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2533   }
2534 
2535   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2536                                MVT::Other, getControlRoot(), Cond,
2537                                DAG.getBasicBlock(CB.TrueBB));
2538 
2539   // Insert the false branch. Do this even if it's a fall through branch,
2540   // this makes it easier to do DAG optimizations which require inverting
2541   // the branch condition.
2542   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2543                        DAG.getBasicBlock(CB.FalseBB));
2544 
2545   DAG.setRoot(BrCond);
2546 }
2547 
2548 /// visitJumpTable - Emit JumpTable node in the current MBB
2549 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2550   // Emit the code for the jump table
2551   assert(JT.Reg != -1U && "Should lower JT Header first!");
2552   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2553   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2554                                      JT.Reg, PTy);
2555   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2556   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2557                                     MVT::Other, Index.getValue(1),
2558                                     Table, Index);
2559   DAG.setRoot(BrJumpTable);
2560 }
2561 
2562 /// visitJumpTableHeader - This function emits necessary code to produce index
2563 /// in the JumpTable from switch case.
2564 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2565                                                JumpTableHeader &JTH,
2566                                                MachineBasicBlock *SwitchBB) {
2567   SDLoc dl = getCurSDLoc();
2568 
2569   // Subtract the lowest switch case value from the value being switched on.
2570   SDValue SwitchOp = getValue(JTH.SValue);
2571   EVT VT = SwitchOp.getValueType();
2572   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2573                             DAG.getConstant(JTH.First, dl, VT));
2574 
2575   // The SDNode we just created, which holds the value being switched on minus
2576   // the smallest case value, needs to be copied to a virtual register so it
2577   // can be used as an index into the jump table in a subsequent basic block.
2578   // This value may be smaller or larger than the target's pointer type, and
2579   // therefore require extension or truncating.
2580   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2581   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2582 
2583   unsigned JumpTableReg =
2584       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2585   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2586                                     JumpTableReg, SwitchOp);
2587   JT.Reg = JumpTableReg;
2588 
2589   if (!JTH.FallthroughUnreachable) {
2590     // Emit the range check for the jump table, and branch to the default block
2591     // for the switch statement if the value being switched on exceeds the
2592     // largest case in the switch.
2593     SDValue CMP = DAG.getSetCC(
2594         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2595                                    Sub.getValueType()),
2596         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2597 
2598     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2599                                  MVT::Other, CopyTo, CMP,
2600                                  DAG.getBasicBlock(JT.Default));
2601 
2602     // Avoid emitting unnecessary branches to the next block.
2603     if (JT.MBB != NextBlock(SwitchBB))
2604       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2605                            DAG.getBasicBlock(JT.MBB));
2606 
2607     DAG.setRoot(BrCond);
2608   } else {
2609     // Avoid emitting unnecessary branches to the next block.
2610     if (JT.MBB != NextBlock(SwitchBB))
2611       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2612                               DAG.getBasicBlock(JT.MBB)));
2613     else
2614       DAG.setRoot(CopyTo);
2615   }
2616 }
2617 
2618 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2619 /// variable if there exists one.
2620 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2621                                  SDValue &Chain) {
2622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2623   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2624   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2625   MachineFunction &MF = DAG.getMachineFunction();
2626   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2627   MachineSDNode *Node =
2628       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2629   if (Global) {
2630     MachinePointerInfo MPInfo(Global);
2631     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2632                  MachineMemOperand::MODereferenceable;
2633     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2634         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2635     DAG.setNodeMemRefs(Node, {MemRef});
2636   }
2637   if (PtrTy != PtrMemTy)
2638     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2639   return SDValue(Node, 0);
2640 }
2641 
2642 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2643 /// tail spliced into a stack protector check success bb.
2644 ///
2645 /// For a high level explanation of how this fits into the stack protector
2646 /// generation see the comment on the declaration of class
2647 /// StackProtectorDescriptor.
2648 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2649                                                   MachineBasicBlock *ParentBB) {
2650 
2651   // First create the loads to the guard/stack slot for the comparison.
2652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2653   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2654   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2655 
2656   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2657   int FI = MFI.getStackProtectorIndex();
2658 
2659   SDValue Guard;
2660   SDLoc dl = getCurSDLoc();
2661   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2662   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2663   Align Align =
2664       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2665 
2666   // Generate code to load the content of the guard slot.
2667   SDValue GuardVal = DAG.getLoad(
2668       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2669       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2670       MachineMemOperand::MOVolatile);
2671 
2672   if (TLI.useStackGuardXorFP())
2673     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2674 
2675   // Retrieve guard check function, nullptr if instrumentation is inlined.
2676   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2677     // The target provides a guard check function to validate the guard value.
2678     // Generate a call to that function with the content of the guard slot as
2679     // argument.
2680     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2681     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2682 
2683     TargetLowering::ArgListTy Args;
2684     TargetLowering::ArgListEntry Entry;
2685     Entry.Node = GuardVal;
2686     Entry.Ty = FnTy->getParamType(0);
2687     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2688       Entry.IsInReg = true;
2689     Args.push_back(Entry);
2690 
2691     TargetLowering::CallLoweringInfo CLI(DAG);
2692     CLI.setDebugLoc(getCurSDLoc())
2693         .setChain(DAG.getEntryNode())
2694         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2695                    getValue(GuardCheckFn), std::move(Args));
2696 
2697     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2698     DAG.setRoot(Result.second);
2699     return;
2700   }
2701 
2702   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2703   // Otherwise, emit a volatile load to retrieve the stack guard value.
2704   SDValue Chain = DAG.getEntryNode();
2705   if (TLI.useLoadStackGuardNode()) {
2706     Guard = getLoadStackGuard(DAG, dl, Chain);
2707   } else {
2708     const Value *IRGuard = TLI.getSDagStackGuard(M);
2709     SDValue GuardPtr = getValue(IRGuard);
2710 
2711     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2712                         MachinePointerInfo(IRGuard, 0), Align,
2713                         MachineMemOperand::MOVolatile);
2714   }
2715 
2716   // Perform the comparison via a getsetcc.
2717   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2718                                                         *DAG.getContext(),
2719                                                         Guard.getValueType()),
2720                              Guard, GuardVal, ISD::SETNE);
2721 
2722   // If the guard/stackslot do not equal, branch to failure MBB.
2723   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2724                                MVT::Other, GuardVal.getOperand(0),
2725                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2726   // Otherwise branch to success MBB.
2727   SDValue Br = DAG.getNode(ISD::BR, dl,
2728                            MVT::Other, BrCond,
2729                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2730 
2731   DAG.setRoot(Br);
2732 }
2733 
2734 /// Codegen the failure basic block for a stack protector check.
2735 ///
2736 /// A failure stack protector machine basic block consists simply of a call to
2737 /// __stack_chk_fail().
2738 ///
2739 /// For a high level explanation of how this fits into the stack protector
2740 /// generation see the comment on the declaration of class
2741 /// StackProtectorDescriptor.
2742 void
2743 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2744   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2745   TargetLowering::MakeLibCallOptions CallOptions;
2746   CallOptions.setDiscardResult(true);
2747   SDValue Chain =
2748       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2749                       None, CallOptions, getCurSDLoc()).second;
2750   // On PS4, the "return address" must still be within the calling function,
2751   // even if it's at the very end, so emit an explicit TRAP here.
2752   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2753   if (TM.getTargetTriple().isPS4())
2754     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2755   // WebAssembly needs an unreachable instruction after a non-returning call,
2756   // because the function return type can be different from __stack_chk_fail's
2757   // return type (void).
2758   if (TM.getTargetTriple().isWasm())
2759     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2760 
2761   DAG.setRoot(Chain);
2762 }
2763 
2764 /// visitBitTestHeader - This function emits necessary code to produce value
2765 /// suitable for "bit tests"
2766 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2767                                              MachineBasicBlock *SwitchBB) {
2768   SDLoc dl = getCurSDLoc();
2769 
2770   // Subtract the minimum value.
2771   SDValue SwitchOp = getValue(B.SValue);
2772   EVT VT = SwitchOp.getValueType();
2773   SDValue RangeSub =
2774       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2775 
2776   // Determine the type of the test operands.
2777   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2778   bool UsePtrType = false;
2779   if (!TLI.isTypeLegal(VT)) {
2780     UsePtrType = true;
2781   } else {
2782     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2783       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2784         // Switch table case range are encoded into series of masks.
2785         // Just use pointer type, it's guaranteed to fit.
2786         UsePtrType = true;
2787         break;
2788       }
2789   }
2790   SDValue Sub = RangeSub;
2791   if (UsePtrType) {
2792     VT = TLI.getPointerTy(DAG.getDataLayout());
2793     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2794   }
2795 
2796   B.RegVT = VT.getSimpleVT();
2797   B.Reg = FuncInfo.CreateReg(B.RegVT);
2798   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2799 
2800   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2801 
2802   if (!B.FallthroughUnreachable)
2803     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2804   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2805   SwitchBB->normalizeSuccProbs();
2806 
2807   SDValue Root = CopyTo;
2808   if (!B.FallthroughUnreachable) {
2809     // Conditional branch to the default block.
2810     SDValue RangeCmp = DAG.getSetCC(dl,
2811         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2812                                RangeSub.getValueType()),
2813         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2814         ISD::SETUGT);
2815 
2816     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2817                        DAG.getBasicBlock(B.Default));
2818   }
2819 
2820   // Avoid emitting unnecessary branches to the next block.
2821   if (MBB != NextBlock(SwitchBB))
2822     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2823 
2824   DAG.setRoot(Root);
2825 }
2826 
2827 /// visitBitTestCase - this function produces one "bit test"
2828 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2829                                            MachineBasicBlock* NextMBB,
2830                                            BranchProbability BranchProbToNext,
2831                                            unsigned Reg,
2832                                            BitTestCase &B,
2833                                            MachineBasicBlock *SwitchBB) {
2834   SDLoc dl = getCurSDLoc();
2835   MVT VT = BB.RegVT;
2836   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2837   SDValue Cmp;
2838   unsigned PopCount = countPopulation(B.Mask);
2839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2840   if (PopCount == 1) {
2841     // Testing for a single bit; just compare the shift count with what it
2842     // would need to be to shift a 1 bit in that position.
2843     Cmp = DAG.getSetCC(
2844         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2845         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2846         ISD::SETEQ);
2847   } else if (PopCount == BB.Range) {
2848     // There is only one zero bit in the range, test for it directly.
2849     Cmp = DAG.getSetCC(
2850         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2851         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2852         ISD::SETNE);
2853   } else {
2854     // Make desired shift
2855     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2856                                     DAG.getConstant(1, dl, VT), ShiftOp);
2857 
2858     // Emit bit tests and jumps
2859     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2860                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2861     Cmp = DAG.getSetCC(
2862         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2863         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2864   }
2865 
2866   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2867   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2868   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2869   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2870   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2871   // one as they are relative probabilities (and thus work more like weights),
2872   // and hence we need to normalize them to let the sum of them become one.
2873   SwitchBB->normalizeSuccProbs();
2874 
2875   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2876                               MVT::Other, getControlRoot(),
2877                               Cmp, DAG.getBasicBlock(B.TargetBB));
2878 
2879   // Avoid emitting unnecessary branches to the next block.
2880   if (NextMBB != NextBlock(SwitchBB))
2881     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2882                         DAG.getBasicBlock(NextMBB));
2883 
2884   DAG.setRoot(BrAnd);
2885 }
2886 
2887 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2888   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2889 
2890   // Retrieve successors. Look through artificial IR level blocks like
2891   // catchswitch for successors.
2892   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2893   const BasicBlock *EHPadBB = I.getSuccessor(1);
2894 
2895   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2896   // have to do anything here to lower funclet bundles.
2897   assert(!I.hasOperandBundlesOtherThan(
2898              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2899               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2900               LLVMContext::OB_cfguardtarget,
2901               LLVMContext::OB_clang_arc_attachedcall}) &&
2902          "Cannot lower invokes with arbitrary operand bundles yet!");
2903 
2904   const Value *Callee(I.getCalledOperand());
2905   const Function *Fn = dyn_cast<Function>(Callee);
2906   if (isa<InlineAsm>(Callee))
2907     visitInlineAsm(I, EHPadBB);
2908   else if (Fn && Fn->isIntrinsic()) {
2909     switch (Fn->getIntrinsicID()) {
2910     default:
2911       llvm_unreachable("Cannot invoke this intrinsic");
2912     case Intrinsic::donothing:
2913       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2914     case Intrinsic::seh_try_begin:
2915     case Intrinsic::seh_scope_begin:
2916     case Intrinsic::seh_try_end:
2917     case Intrinsic::seh_scope_end:
2918       break;
2919     case Intrinsic::experimental_patchpoint_void:
2920     case Intrinsic::experimental_patchpoint_i64:
2921       visitPatchpoint(I, EHPadBB);
2922       break;
2923     case Intrinsic::experimental_gc_statepoint:
2924       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2925       break;
2926     case Intrinsic::wasm_rethrow: {
2927       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2928       // special because it can be invoked, so we manually lower it to a DAG
2929       // node here.
2930       SmallVector<SDValue, 8> Ops;
2931       Ops.push_back(getRoot()); // inchain
2932       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2933       Ops.push_back(
2934           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2935                                 TLI.getPointerTy(DAG.getDataLayout())));
2936       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2937       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2938       break;
2939     }
2940     }
2941   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2942     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2943     // Eventually we will support lowering the @llvm.experimental.deoptimize
2944     // intrinsic, and right now there are no plans to support other intrinsics
2945     // with deopt state.
2946     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2947   } else {
2948     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2949   }
2950 
2951   // If the value of the invoke is used outside of its defining block, make it
2952   // available as a virtual register.
2953   // We already took care of the exported value for the statepoint instruction
2954   // during call to the LowerStatepoint.
2955   if (!isa<GCStatepointInst>(I)) {
2956     CopyToExportRegsIfNeeded(&I);
2957   }
2958 
2959   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2960   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2961   BranchProbability EHPadBBProb =
2962       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2963           : BranchProbability::getZero();
2964   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2965 
2966   // Update successor info.
2967   addSuccessorWithProb(InvokeMBB, Return);
2968   for (auto &UnwindDest : UnwindDests) {
2969     UnwindDest.first->setIsEHPad();
2970     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2971   }
2972   InvokeMBB->normalizeSuccProbs();
2973 
2974   // Drop into normal successor.
2975   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2976                           DAG.getBasicBlock(Return)));
2977 }
2978 
2979 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2980   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2981 
2982   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2983   // have to do anything here to lower funclet bundles.
2984   assert(!I.hasOperandBundlesOtherThan(
2985              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2986          "Cannot lower callbrs with arbitrary operand bundles yet!");
2987 
2988   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2989   visitInlineAsm(I);
2990   CopyToExportRegsIfNeeded(&I);
2991 
2992   // Retrieve successors.
2993   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2994 
2995   // Update successor info.
2996   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2997   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2998     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2999     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3000     Target->setIsInlineAsmBrIndirectTarget();
3001   }
3002   CallBrMBB->normalizeSuccProbs();
3003 
3004   // Drop into default successor.
3005   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3006                           MVT::Other, getControlRoot(),
3007                           DAG.getBasicBlock(Return)));
3008 }
3009 
3010 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3011   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3012 }
3013 
3014 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3015   assert(FuncInfo.MBB->isEHPad() &&
3016          "Call to landingpad not in landing pad!");
3017 
3018   // If there aren't registers to copy the values into (e.g., during SjLj
3019   // exceptions), then don't bother to create these DAG nodes.
3020   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3021   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3022   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3023       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3024     return;
3025 
3026   // If landingpad's return type is token type, we don't create DAG nodes
3027   // for its exception pointer and selector value. The extraction of exception
3028   // pointer or selector value from token type landingpads is not currently
3029   // supported.
3030   if (LP.getType()->isTokenTy())
3031     return;
3032 
3033   SmallVector<EVT, 2> ValueVTs;
3034   SDLoc dl = getCurSDLoc();
3035   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3036   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3037 
3038   // Get the two live-in registers as SDValues. The physregs have already been
3039   // copied into virtual registers.
3040   SDValue Ops[2];
3041   if (FuncInfo.ExceptionPointerVirtReg) {
3042     Ops[0] = DAG.getZExtOrTrunc(
3043         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3044                            FuncInfo.ExceptionPointerVirtReg,
3045                            TLI.getPointerTy(DAG.getDataLayout())),
3046         dl, ValueVTs[0]);
3047   } else {
3048     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3049   }
3050   Ops[1] = DAG.getZExtOrTrunc(
3051       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3052                          FuncInfo.ExceptionSelectorVirtReg,
3053                          TLI.getPointerTy(DAG.getDataLayout())),
3054       dl, ValueVTs[1]);
3055 
3056   // Merge into one.
3057   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3058                             DAG.getVTList(ValueVTs), Ops);
3059   setValue(&LP, Res);
3060 }
3061 
3062 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3063                                            MachineBasicBlock *Last) {
3064   // Update JTCases.
3065   for (JumpTableBlock &JTB : SL->JTCases)
3066     if (JTB.first.HeaderBB == First)
3067       JTB.first.HeaderBB = Last;
3068 
3069   // Update BitTestCases.
3070   for (BitTestBlock &BTB : SL->BitTestCases)
3071     if (BTB.Parent == First)
3072       BTB.Parent = Last;
3073 }
3074 
3075 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3076   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3077 
3078   // Update machine-CFG edges with unique successors.
3079   SmallSet<BasicBlock*, 32> Done;
3080   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3081     BasicBlock *BB = I.getSuccessor(i);
3082     bool Inserted = Done.insert(BB).second;
3083     if (!Inserted)
3084         continue;
3085 
3086     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3087     addSuccessorWithProb(IndirectBrMBB, Succ);
3088   }
3089   IndirectBrMBB->normalizeSuccProbs();
3090 
3091   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3092                           MVT::Other, getControlRoot(),
3093                           getValue(I.getAddress())));
3094 }
3095 
3096 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3097   if (!DAG.getTarget().Options.TrapUnreachable)
3098     return;
3099 
3100   // We may be able to ignore unreachable behind a noreturn call.
3101   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3102     const BasicBlock &BB = *I.getParent();
3103     if (&I != &BB.front()) {
3104       BasicBlock::const_iterator PredI =
3105         std::prev(BasicBlock::const_iterator(&I));
3106       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3107         if (Call->doesNotReturn())
3108           return;
3109       }
3110     }
3111   }
3112 
3113   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3114 }
3115 
3116 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3117   SDNodeFlags Flags;
3118   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3119     Flags.copyFMF(*FPOp);
3120 
3121   SDValue Op = getValue(I.getOperand(0));
3122   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3123                                     Op, Flags);
3124   setValue(&I, UnNodeValue);
3125 }
3126 
3127 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3128   SDNodeFlags Flags;
3129   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3130     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3131     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3132   }
3133   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3134     Flags.setExact(ExactOp->isExact());
3135   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3136     Flags.copyFMF(*FPOp);
3137 
3138   SDValue Op1 = getValue(I.getOperand(0));
3139   SDValue Op2 = getValue(I.getOperand(1));
3140   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3141                                      Op1, Op2, Flags);
3142   setValue(&I, BinNodeValue);
3143 }
3144 
3145 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3146   SDValue Op1 = getValue(I.getOperand(0));
3147   SDValue Op2 = getValue(I.getOperand(1));
3148 
3149   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3150       Op1.getValueType(), DAG.getDataLayout());
3151 
3152   // Coerce the shift amount to the right type if we can. This exposes the
3153   // truncate or zext to optimization early.
3154   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3155     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3156            "Unexpected shift type");
3157     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3158   }
3159 
3160   bool nuw = false;
3161   bool nsw = false;
3162   bool exact = false;
3163 
3164   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3165 
3166     if (const OverflowingBinaryOperator *OFBinOp =
3167             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3168       nuw = OFBinOp->hasNoUnsignedWrap();
3169       nsw = OFBinOp->hasNoSignedWrap();
3170     }
3171     if (const PossiblyExactOperator *ExactOp =
3172             dyn_cast<const PossiblyExactOperator>(&I))
3173       exact = ExactOp->isExact();
3174   }
3175   SDNodeFlags Flags;
3176   Flags.setExact(exact);
3177   Flags.setNoSignedWrap(nsw);
3178   Flags.setNoUnsignedWrap(nuw);
3179   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3180                             Flags);
3181   setValue(&I, Res);
3182 }
3183 
3184 void SelectionDAGBuilder::visitSDiv(const User &I) {
3185   SDValue Op1 = getValue(I.getOperand(0));
3186   SDValue Op2 = getValue(I.getOperand(1));
3187 
3188   SDNodeFlags Flags;
3189   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3190                  cast<PossiblyExactOperator>(&I)->isExact());
3191   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3192                            Op2, Flags));
3193 }
3194 
3195 void SelectionDAGBuilder::visitICmp(const User &I) {
3196   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3197   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3198     predicate = IC->getPredicate();
3199   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3200     predicate = ICmpInst::Predicate(IC->getPredicate());
3201   SDValue Op1 = getValue(I.getOperand(0));
3202   SDValue Op2 = getValue(I.getOperand(1));
3203   ISD::CondCode Opcode = getICmpCondCode(predicate);
3204 
3205   auto &TLI = DAG.getTargetLoweringInfo();
3206   EVT MemVT =
3207       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3208 
3209   // If a pointer's DAG type is larger than its memory type then the DAG values
3210   // are zero-extended. This breaks signed comparisons so truncate back to the
3211   // underlying type before doing the compare.
3212   if (Op1.getValueType() != MemVT) {
3213     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3214     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3215   }
3216 
3217   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3218                                                         I.getType());
3219   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3220 }
3221 
3222 void SelectionDAGBuilder::visitFCmp(const User &I) {
3223   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3224   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3225     predicate = FC->getPredicate();
3226   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3227     predicate = FCmpInst::Predicate(FC->getPredicate());
3228   SDValue Op1 = getValue(I.getOperand(0));
3229   SDValue Op2 = getValue(I.getOperand(1));
3230 
3231   ISD::CondCode Condition = getFCmpCondCode(predicate);
3232   auto *FPMO = cast<FPMathOperator>(&I);
3233   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3234     Condition = getFCmpCodeWithoutNaN(Condition);
3235 
3236   SDNodeFlags Flags;
3237   Flags.copyFMF(*FPMO);
3238   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3239 
3240   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3241                                                         I.getType());
3242   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3243 }
3244 
3245 // Check if the condition of the select has one use or two users that are both
3246 // selects with the same condition.
3247 static bool hasOnlySelectUsers(const Value *Cond) {
3248   return llvm::all_of(Cond->users(), [](const Value *V) {
3249     return isa<SelectInst>(V);
3250   });
3251 }
3252 
3253 void SelectionDAGBuilder::visitSelect(const User &I) {
3254   SmallVector<EVT, 4> ValueVTs;
3255   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3256                   ValueVTs);
3257   unsigned NumValues = ValueVTs.size();
3258   if (NumValues == 0) return;
3259 
3260   SmallVector<SDValue, 4> Values(NumValues);
3261   SDValue Cond     = getValue(I.getOperand(0));
3262   SDValue LHSVal   = getValue(I.getOperand(1));
3263   SDValue RHSVal   = getValue(I.getOperand(2));
3264   SmallVector<SDValue, 1> BaseOps(1, Cond);
3265   ISD::NodeType OpCode =
3266       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3267 
3268   bool IsUnaryAbs = false;
3269   bool Negate = false;
3270 
3271   SDNodeFlags Flags;
3272   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3273     Flags.copyFMF(*FPOp);
3274 
3275   // Min/max matching is only viable if all output VTs are the same.
3276   if (is_splat(ValueVTs)) {
3277     EVT VT = ValueVTs[0];
3278     LLVMContext &Ctx = *DAG.getContext();
3279     auto &TLI = DAG.getTargetLoweringInfo();
3280 
3281     // We care about the legality of the operation after it has been type
3282     // legalized.
3283     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3284       VT = TLI.getTypeToTransformTo(Ctx, VT);
3285 
3286     // If the vselect is legal, assume we want to leave this as a vector setcc +
3287     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3288     // min/max is legal on the scalar type.
3289     bool UseScalarMinMax = VT.isVector() &&
3290       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3291 
3292     Value *LHS, *RHS;
3293     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3294     ISD::NodeType Opc = ISD::DELETED_NODE;
3295     switch (SPR.Flavor) {
3296     case SPF_UMAX:    Opc = ISD::UMAX; break;
3297     case SPF_UMIN:    Opc = ISD::UMIN; break;
3298     case SPF_SMAX:    Opc = ISD::SMAX; break;
3299     case SPF_SMIN:    Opc = ISD::SMIN; break;
3300     case SPF_FMINNUM:
3301       switch (SPR.NaNBehavior) {
3302       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3303       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3304       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3305       case SPNB_RETURNS_ANY: {
3306         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3307           Opc = ISD::FMINNUM;
3308         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3309           Opc = ISD::FMINIMUM;
3310         else if (UseScalarMinMax)
3311           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3312             ISD::FMINNUM : ISD::FMINIMUM;
3313         break;
3314       }
3315       }
3316       break;
3317     case SPF_FMAXNUM:
3318       switch (SPR.NaNBehavior) {
3319       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3320       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3321       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3322       case SPNB_RETURNS_ANY:
3323 
3324         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3325           Opc = ISD::FMAXNUM;
3326         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3327           Opc = ISD::FMAXIMUM;
3328         else if (UseScalarMinMax)
3329           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3330             ISD::FMAXNUM : ISD::FMAXIMUM;
3331         break;
3332       }
3333       break;
3334     case SPF_NABS:
3335       Negate = true;
3336       LLVM_FALLTHROUGH;
3337     case SPF_ABS:
3338       IsUnaryAbs = true;
3339       Opc = ISD::ABS;
3340       break;
3341     default: break;
3342     }
3343 
3344     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3345         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3346          (UseScalarMinMax &&
3347           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3348         // If the underlying comparison instruction is used by any other
3349         // instruction, the consumed instructions won't be destroyed, so it is
3350         // not profitable to convert to a min/max.
3351         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3352       OpCode = Opc;
3353       LHSVal = getValue(LHS);
3354       RHSVal = getValue(RHS);
3355       BaseOps.clear();
3356     }
3357 
3358     if (IsUnaryAbs) {
3359       OpCode = Opc;
3360       LHSVal = getValue(LHS);
3361       BaseOps.clear();
3362     }
3363   }
3364 
3365   if (IsUnaryAbs) {
3366     for (unsigned i = 0; i != NumValues; ++i) {
3367       SDLoc dl = getCurSDLoc();
3368       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3369       Values[i] =
3370           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3371       if (Negate)
3372         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3373                                 Values[i]);
3374     }
3375   } else {
3376     for (unsigned i = 0; i != NumValues; ++i) {
3377       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3378       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3379       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3380       Values[i] = DAG.getNode(
3381           OpCode, getCurSDLoc(),
3382           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3383     }
3384   }
3385 
3386   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3387                            DAG.getVTList(ValueVTs), Values));
3388 }
3389 
3390 void SelectionDAGBuilder::visitTrunc(const User &I) {
3391   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3392   SDValue N = getValue(I.getOperand(0));
3393   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3394                                                         I.getType());
3395   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3396 }
3397 
3398 void SelectionDAGBuilder::visitZExt(const User &I) {
3399   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3400   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3401   SDValue N = getValue(I.getOperand(0));
3402   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3403                                                         I.getType());
3404   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3405 }
3406 
3407 void SelectionDAGBuilder::visitSExt(const User &I) {
3408   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3409   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3410   SDValue N = getValue(I.getOperand(0));
3411   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3412                                                         I.getType());
3413   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3414 }
3415 
3416 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3417   // FPTrunc is never a no-op cast, no need to check
3418   SDValue N = getValue(I.getOperand(0));
3419   SDLoc dl = getCurSDLoc();
3420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3421   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3422   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3423                            DAG.getTargetConstant(
3424                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3425 }
3426 
3427 void SelectionDAGBuilder::visitFPExt(const User &I) {
3428   // FPExt is never a no-op cast, no need to check
3429   SDValue N = getValue(I.getOperand(0));
3430   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3431                                                         I.getType());
3432   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3433 }
3434 
3435 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3436   // FPToUI is never a no-op cast, no need to check
3437   SDValue N = getValue(I.getOperand(0));
3438   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3439                                                         I.getType());
3440   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3441 }
3442 
3443 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3444   // FPToSI is never a no-op cast, no need to check
3445   SDValue N = getValue(I.getOperand(0));
3446   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3447                                                         I.getType());
3448   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3449 }
3450 
3451 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3452   // UIToFP is never a no-op cast, no need to check
3453   SDValue N = getValue(I.getOperand(0));
3454   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3455                                                         I.getType());
3456   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3457 }
3458 
3459 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3460   // SIToFP is never a no-op cast, no need to check
3461   SDValue N = getValue(I.getOperand(0));
3462   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3463                                                         I.getType());
3464   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3465 }
3466 
3467 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3468   // What to do depends on the size of the integer and the size of the pointer.
3469   // We can either truncate, zero extend, or no-op, accordingly.
3470   SDValue N = getValue(I.getOperand(0));
3471   auto &TLI = DAG.getTargetLoweringInfo();
3472   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3473                                                         I.getType());
3474   EVT PtrMemVT =
3475       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3476   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3477   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3478   setValue(&I, N);
3479 }
3480 
3481 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3482   // What to do depends on the size of the integer and the size of the pointer.
3483   // We can either truncate, zero extend, or no-op, accordingly.
3484   SDValue N = getValue(I.getOperand(0));
3485   auto &TLI = DAG.getTargetLoweringInfo();
3486   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3487   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3488   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3489   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3490   setValue(&I, N);
3491 }
3492 
3493 void SelectionDAGBuilder::visitBitCast(const User &I) {
3494   SDValue N = getValue(I.getOperand(0));
3495   SDLoc dl = getCurSDLoc();
3496   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3497                                                         I.getType());
3498 
3499   // BitCast assures us that source and destination are the same size so this is
3500   // either a BITCAST or a no-op.
3501   if (DestVT != N.getValueType())
3502     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3503                              DestVT, N)); // convert types.
3504   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3505   // might fold any kind of constant expression to an integer constant and that
3506   // is not what we are looking for. Only recognize a bitcast of a genuine
3507   // constant integer as an opaque constant.
3508   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3509     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3510                                  /*isOpaque*/true));
3511   else
3512     setValue(&I, N);            // noop cast.
3513 }
3514 
3515 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3517   const Value *SV = I.getOperand(0);
3518   SDValue N = getValue(SV);
3519   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3520 
3521   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3522   unsigned DestAS = I.getType()->getPointerAddressSpace();
3523 
3524   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3525     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3526 
3527   setValue(&I, N);
3528 }
3529 
3530 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3531   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3532   SDValue InVec = getValue(I.getOperand(0));
3533   SDValue InVal = getValue(I.getOperand(1));
3534   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3535                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3536   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3537                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3538                            InVec, InVal, InIdx));
3539 }
3540 
3541 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3542   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3543   SDValue InVec = getValue(I.getOperand(0));
3544   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3545                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3546   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3547                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3548                            InVec, InIdx));
3549 }
3550 
3551 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3552   SDValue Src1 = getValue(I.getOperand(0));
3553   SDValue Src2 = getValue(I.getOperand(1));
3554   ArrayRef<int> Mask;
3555   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3556     Mask = SVI->getShuffleMask();
3557   else
3558     Mask = cast<ConstantExpr>(I).getShuffleMask();
3559   SDLoc DL = getCurSDLoc();
3560   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3561   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3562   EVT SrcVT = Src1.getValueType();
3563 
3564   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3565       VT.isScalableVector()) {
3566     // Canonical splat form of first element of first input vector.
3567     SDValue FirstElt =
3568         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3569                     DAG.getVectorIdxConstant(0, DL));
3570     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3571     return;
3572   }
3573 
3574   // For now, we only handle splats for scalable vectors.
3575   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3576   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3577   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3578 
3579   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3580   unsigned MaskNumElts = Mask.size();
3581 
3582   if (SrcNumElts == MaskNumElts) {
3583     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3584     return;
3585   }
3586 
3587   // Normalize the shuffle vector since mask and vector length don't match.
3588   if (SrcNumElts < MaskNumElts) {
3589     // Mask is longer than the source vectors. We can use concatenate vector to
3590     // make the mask and vectors lengths match.
3591 
3592     if (MaskNumElts % SrcNumElts == 0) {
3593       // Mask length is a multiple of the source vector length.
3594       // Check if the shuffle is some kind of concatenation of the input
3595       // vectors.
3596       unsigned NumConcat = MaskNumElts / SrcNumElts;
3597       bool IsConcat = true;
3598       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3599       for (unsigned i = 0; i != MaskNumElts; ++i) {
3600         int Idx = Mask[i];
3601         if (Idx < 0)
3602           continue;
3603         // Ensure the indices in each SrcVT sized piece are sequential and that
3604         // the same source is used for the whole piece.
3605         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3606             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3607              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3608           IsConcat = false;
3609           break;
3610         }
3611         // Remember which source this index came from.
3612         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3613       }
3614 
3615       // The shuffle is concatenating multiple vectors together. Just emit
3616       // a CONCAT_VECTORS operation.
3617       if (IsConcat) {
3618         SmallVector<SDValue, 8> ConcatOps;
3619         for (auto Src : ConcatSrcs) {
3620           if (Src < 0)
3621             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3622           else if (Src == 0)
3623             ConcatOps.push_back(Src1);
3624           else
3625             ConcatOps.push_back(Src2);
3626         }
3627         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3628         return;
3629       }
3630     }
3631 
3632     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3633     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3634     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3635                                     PaddedMaskNumElts);
3636 
3637     // Pad both vectors with undefs to make them the same length as the mask.
3638     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3639 
3640     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3641     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3642     MOps1[0] = Src1;
3643     MOps2[0] = Src2;
3644 
3645     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3646     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3647 
3648     // Readjust mask for new input vector length.
3649     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3650     for (unsigned i = 0; i != MaskNumElts; ++i) {
3651       int Idx = Mask[i];
3652       if (Idx >= (int)SrcNumElts)
3653         Idx -= SrcNumElts - PaddedMaskNumElts;
3654       MappedOps[i] = Idx;
3655     }
3656 
3657     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3658 
3659     // If the concatenated vector was padded, extract a subvector with the
3660     // correct number of elements.
3661     if (MaskNumElts != PaddedMaskNumElts)
3662       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3663                            DAG.getVectorIdxConstant(0, DL));
3664 
3665     setValue(&I, Result);
3666     return;
3667   }
3668 
3669   if (SrcNumElts > MaskNumElts) {
3670     // Analyze the access pattern of the vector to see if we can extract
3671     // two subvectors and do the shuffle.
3672     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3673     bool CanExtract = true;
3674     for (int Idx : Mask) {
3675       unsigned Input = 0;
3676       if (Idx < 0)
3677         continue;
3678 
3679       if (Idx >= (int)SrcNumElts) {
3680         Input = 1;
3681         Idx -= SrcNumElts;
3682       }
3683 
3684       // If all the indices come from the same MaskNumElts sized portion of
3685       // the sources we can use extract. Also make sure the extract wouldn't
3686       // extract past the end of the source.
3687       int NewStartIdx = alignDown(Idx, MaskNumElts);
3688       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3689           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3690         CanExtract = false;
3691       // Make sure we always update StartIdx as we use it to track if all
3692       // elements are undef.
3693       StartIdx[Input] = NewStartIdx;
3694     }
3695 
3696     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3697       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3698       return;
3699     }
3700     if (CanExtract) {
3701       // Extract appropriate subvector and generate a vector shuffle
3702       for (unsigned Input = 0; Input < 2; ++Input) {
3703         SDValue &Src = Input == 0 ? Src1 : Src2;
3704         if (StartIdx[Input] < 0)
3705           Src = DAG.getUNDEF(VT);
3706         else {
3707           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3708                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3709         }
3710       }
3711 
3712       // Calculate new mask.
3713       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3714       for (int &Idx : MappedOps) {
3715         if (Idx >= (int)SrcNumElts)
3716           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3717         else if (Idx >= 0)
3718           Idx -= StartIdx[0];
3719       }
3720 
3721       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3722       return;
3723     }
3724   }
3725 
3726   // We can't use either concat vectors or extract subvectors so fall back to
3727   // replacing the shuffle with extract and build vector.
3728   // to insert and build vector.
3729   EVT EltVT = VT.getVectorElementType();
3730   SmallVector<SDValue,8> Ops;
3731   for (int Idx : Mask) {
3732     SDValue Res;
3733 
3734     if (Idx < 0) {
3735       Res = DAG.getUNDEF(EltVT);
3736     } else {
3737       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3738       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3739 
3740       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3741                         DAG.getVectorIdxConstant(Idx, DL));
3742     }
3743 
3744     Ops.push_back(Res);
3745   }
3746 
3747   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3748 }
3749 
3750 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3751   ArrayRef<unsigned> Indices;
3752   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3753     Indices = IV->getIndices();
3754   else
3755     Indices = cast<ConstantExpr>(&I)->getIndices();
3756 
3757   const Value *Op0 = I.getOperand(0);
3758   const Value *Op1 = I.getOperand(1);
3759   Type *AggTy = I.getType();
3760   Type *ValTy = Op1->getType();
3761   bool IntoUndef = isa<UndefValue>(Op0);
3762   bool FromUndef = isa<UndefValue>(Op1);
3763 
3764   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3765 
3766   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3767   SmallVector<EVT, 4> AggValueVTs;
3768   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3769   SmallVector<EVT, 4> ValValueVTs;
3770   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3771 
3772   unsigned NumAggValues = AggValueVTs.size();
3773   unsigned NumValValues = ValValueVTs.size();
3774   SmallVector<SDValue, 4> Values(NumAggValues);
3775 
3776   // Ignore an insertvalue that produces an empty object
3777   if (!NumAggValues) {
3778     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3779     return;
3780   }
3781 
3782   SDValue Agg = getValue(Op0);
3783   unsigned i = 0;
3784   // Copy the beginning value(s) from the original aggregate.
3785   for (; i != LinearIndex; ++i)
3786     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3787                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3788   // Copy values from the inserted value(s).
3789   if (NumValValues) {
3790     SDValue Val = getValue(Op1);
3791     for (; i != LinearIndex + NumValValues; ++i)
3792       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3793                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3794   }
3795   // Copy remaining value(s) from the original aggregate.
3796   for (; i != NumAggValues; ++i)
3797     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3798                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3799 
3800   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3801                            DAG.getVTList(AggValueVTs), Values));
3802 }
3803 
3804 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3805   ArrayRef<unsigned> Indices;
3806   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3807     Indices = EV->getIndices();
3808   else
3809     Indices = cast<ConstantExpr>(&I)->getIndices();
3810 
3811   const Value *Op0 = I.getOperand(0);
3812   Type *AggTy = Op0->getType();
3813   Type *ValTy = I.getType();
3814   bool OutOfUndef = isa<UndefValue>(Op0);
3815 
3816   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3817 
3818   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3819   SmallVector<EVT, 4> ValValueVTs;
3820   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3821 
3822   unsigned NumValValues = ValValueVTs.size();
3823 
3824   // Ignore a extractvalue that produces an empty object
3825   if (!NumValValues) {
3826     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3827     return;
3828   }
3829 
3830   SmallVector<SDValue, 4> Values(NumValValues);
3831 
3832   SDValue Agg = getValue(Op0);
3833   // Copy out the selected value(s).
3834   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3835     Values[i - LinearIndex] =
3836       OutOfUndef ?
3837         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3838         SDValue(Agg.getNode(), Agg.getResNo() + i);
3839 
3840   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3841                            DAG.getVTList(ValValueVTs), Values));
3842 }
3843 
3844 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3845   Value *Op0 = I.getOperand(0);
3846   // Note that the pointer operand may be a vector of pointers. Take the scalar
3847   // element which holds a pointer.
3848   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3849   SDValue N = getValue(Op0);
3850   SDLoc dl = getCurSDLoc();
3851   auto &TLI = DAG.getTargetLoweringInfo();
3852 
3853   // Normalize Vector GEP - all scalar operands should be converted to the
3854   // splat vector.
3855   bool IsVectorGEP = I.getType()->isVectorTy();
3856   ElementCount VectorElementCount =
3857       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3858                   : ElementCount::getFixed(0);
3859 
3860   if (IsVectorGEP && !N.getValueType().isVector()) {
3861     LLVMContext &Context = *DAG.getContext();
3862     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3863     if (VectorElementCount.isScalable())
3864       N = DAG.getSplatVector(VT, dl, N);
3865     else
3866       N = DAG.getSplatBuildVector(VT, dl, N);
3867   }
3868 
3869   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3870        GTI != E; ++GTI) {
3871     const Value *Idx = GTI.getOperand();
3872     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3873       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3874       if (Field) {
3875         // N = N + Offset
3876         uint64_t Offset =
3877             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3878 
3879         // In an inbounds GEP with an offset that is nonnegative even when
3880         // interpreted as signed, assume there is no unsigned overflow.
3881         SDNodeFlags Flags;
3882         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3883           Flags.setNoUnsignedWrap(true);
3884 
3885         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3886                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3887       }
3888     } else {
3889       // IdxSize is the width of the arithmetic according to IR semantics.
3890       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3891       // (and fix up the result later).
3892       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3893       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3894       TypeSize ElementSize =
3895           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3896       // We intentionally mask away the high bits here; ElementSize may not
3897       // fit in IdxTy.
3898       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3899       bool ElementScalable = ElementSize.isScalable();
3900 
3901       // If this is a scalar constant or a splat vector of constants,
3902       // handle it quickly.
3903       const auto *C = dyn_cast<Constant>(Idx);
3904       if (C && isa<VectorType>(C->getType()))
3905         C = C->getSplatValue();
3906 
3907       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3908       if (CI && CI->isZero())
3909         continue;
3910       if (CI && !ElementScalable) {
3911         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3912         LLVMContext &Context = *DAG.getContext();
3913         SDValue OffsVal;
3914         if (IsVectorGEP)
3915           OffsVal = DAG.getConstant(
3916               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3917         else
3918           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3919 
3920         // In an inbounds GEP with an offset that is nonnegative even when
3921         // interpreted as signed, assume there is no unsigned overflow.
3922         SDNodeFlags Flags;
3923         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3924           Flags.setNoUnsignedWrap(true);
3925 
3926         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3927 
3928         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3929         continue;
3930       }
3931 
3932       // N = N + Idx * ElementMul;
3933       SDValue IdxN = getValue(Idx);
3934 
3935       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3936         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3937                                   VectorElementCount);
3938         if (VectorElementCount.isScalable())
3939           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3940         else
3941           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3942       }
3943 
3944       // If the index is smaller or larger than intptr_t, truncate or extend
3945       // it.
3946       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3947 
3948       if (ElementScalable) {
3949         EVT VScaleTy = N.getValueType().getScalarType();
3950         SDValue VScale = DAG.getNode(
3951             ISD::VSCALE, dl, VScaleTy,
3952             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3953         if (IsVectorGEP)
3954           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3955         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3956       } else {
3957         // If this is a multiply by a power of two, turn it into a shl
3958         // immediately.  This is a very common case.
3959         if (ElementMul != 1) {
3960           if (ElementMul.isPowerOf2()) {
3961             unsigned Amt = ElementMul.logBase2();
3962             IdxN = DAG.getNode(ISD::SHL, dl,
3963                                N.getValueType(), IdxN,
3964                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3965           } else {
3966             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3967                                             IdxN.getValueType());
3968             IdxN = DAG.getNode(ISD::MUL, dl,
3969                                N.getValueType(), IdxN, Scale);
3970           }
3971         }
3972       }
3973 
3974       N = DAG.getNode(ISD::ADD, dl,
3975                       N.getValueType(), N, IdxN);
3976     }
3977   }
3978 
3979   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3980   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3981   if (IsVectorGEP) {
3982     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3983     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3984   }
3985 
3986   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3987     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3988 
3989   setValue(&I, N);
3990 }
3991 
3992 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3993   // If this is a fixed sized alloca in the entry block of the function,
3994   // allocate it statically on the stack.
3995   if (FuncInfo.StaticAllocaMap.count(&I))
3996     return;   // getValue will auto-populate this.
3997 
3998   SDLoc dl = getCurSDLoc();
3999   Type *Ty = I.getAllocatedType();
4000   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4001   auto &DL = DAG.getDataLayout();
4002   TypeSize TySize = DL.getTypeAllocSize(Ty);
4003   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4004 
4005   SDValue AllocSize = getValue(I.getArraySize());
4006 
4007   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4008   if (AllocSize.getValueType() != IntPtr)
4009     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4010 
4011   if (TySize.isScalable())
4012     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4013                             DAG.getVScale(dl, IntPtr,
4014                                           APInt(IntPtr.getScalarSizeInBits(),
4015                                                 TySize.getKnownMinValue())));
4016   else
4017     AllocSize =
4018         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4019                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4020 
4021   // Handle alignment.  If the requested alignment is less than or equal to
4022   // the stack alignment, ignore it.  If the size is greater than or equal to
4023   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4024   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4025   if (*Alignment <= StackAlign)
4026     Alignment = None;
4027 
4028   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4029   // Round the size of the allocation up to the stack alignment size
4030   // by add SA-1 to the size. This doesn't overflow because we're computing
4031   // an address inside an alloca.
4032   SDNodeFlags Flags;
4033   Flags.setNoUnsignedWrap(true);
4034   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4035                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4036 
4037   // Mask out the low bits for alignment purposes.
4038   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4039                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4040 
4041   SDValue Ops[] = {
4042       getRoot(), AllocSize,
4043       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4044   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4045   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4046   setValue(&I, DSA);
4047   DAG.setRoot(DSA.getValue(1));
4048 
4049   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4050 }
4051 
4052 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4053   if (I.isAtomic())
4054     return visitAtomicLoad(I);
4055 
4056   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4057   const Value *SV = I.getOperand(0);
4058   if (TLI.supportSwiftError()) {
4059     // Swifterror values can come from either a function parameter with
4060     // swifterror attribute or an alloca with swifterror attribute.
4061     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4062       if (Arg->hasSwiftErrorAttr())
4063         return visitLoadFromSwiftError(I);
4064     }
4065 
4066     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4067       if (Alloca->isSwiftError())
4068         return visitLoadFromSwiftError(I);
4069     }
4070   }
4071 
4072   SDValue Ptr = getValue(SV);
4073 
4074   Type *Ty = I.getType();
4075   Align Alignment = I.getAlign();
4076 
4077   AAMDNodes AAInfo = I.getAAMetadata();
4078   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4079 
4080   SmallVector<EVT, 4> ValueVTs, MemVTs;
4081   SmallVector<uint64_t, 4> Offsets;
4082   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4083   unsigned NumValues = ValueVTs.size();
4084   if (NumValues == 0)
4085     return;
4086 
4087   bool isVolatile = I.isVolatile();
4088 
4089   SDValue Root;
4090   bool ConstantMemory = false;
4091   if (isVolatile)
4092     // Serialize volatile loads with other side effects.
4093     Root = getRoot();
4094   else if (NumValues > MaxParallelChains)
4095     Root = getMemoryRoot();
4096   else if (AA &&
4097            AA->pointsToConstantMemory(MemoryLocation(
4098                SV,
4099                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4100                AAInfo))) {
4101     // Do not serialize (non-volatile) loads of constant memory with anything.
4102     Root = DAG.getEntryNode();
4103     ConstantMemory = true;
4104   } else {
4105     // Do not serialize non-volatile loads against each other.
4106     Root = DAG.getRoot();
4107   }
4108 
4109   SDLoc dl = getCurSDLoc();
4110 
4111   if (isVolatile)
4112     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4113 
4114   // An aggregate load cannot wrap around the address space, so offsets to its
4115   // parts don't wrap either.
4116   SDNodeFlags Flags;
4117   Flags.setNoUnsignedWrap(true);
4118 
4119   SmallVector<SDValue, 4> Values(NumValues);
4120   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4121   EVT PtrVT = Ptr.getValueType();
4122 
4123   MachineMemOperand::Flags MMOFlags
4124     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4125 
4126   unsigned ChainI = 0;
4127   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4128     // Serializing loads here may result in excessive register pressure, and
4129     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4130     // could recover a bit by hoisting nodes upward in the chain by recognizing
4131     // they are side-effect free or do not alias. The optimizer should really
4132     // avoid this case by converting large object/array copies to llvm.memcpy
4133     // (MaxParallelChains should always remain as failsafe).
4134     if (ChainI == MaxParallelChains) {
4135       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4136       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4137                                   makeArrayRef(Chains.data(), ChainI));
4138       Root = Chain;
4139       ChainI = 0;
4140     }
4141     SDValue A = DAG.getNode(ISD::ADD, dl,
4142                             PtrVT, Ptr,
4143                             DAG.getConstant(Offsets[i], dl, PtrVT),
4144                             Flags);
4145 
4146     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4147                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4148                             MMOFlags, AAInfo, Ranges);
4149     Chains[ChainI] = L.getValue(1);
4150 
4151     if (MemVTs[i] != ValueVTs[i])
4152       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4153 
4154     Values[i] = L;
4155   }
4156 
4157   if (!ConstantMemory) {
4158     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4159                                 makeArrayRef(Chains.data(), ChainI));
4160     if (isVolatile)
4161       DAG.setRoot(Chain);
4162     else
4163       PendingLoads.push_back(Chain);
4164   }
4165 
4166   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4167                            DAG.getVTList(ValueVTs), Values));
4168 }
4169 
4170 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4171   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4172          "call visitStoreToSwiftError when backend supports swifterror");
4173 
4174   SmallVector<EVT, 4> ValueVTs;
4175   SmallVector<uint64_t, 4> Offsets;
4176   const Value *SrcV = I.getOperand(0);
4177   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4178                   SrcV->getType(), ValueVTs, &Offsets);
4179   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4180          "expect a single EVT for swifterror");
4181 
4182   SDValue Src = getValue(SrcV);
4183   // Create a virtual register, then update the virtual register.
4184   Register VReg =
4185       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4186   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4187   // Chain can be getRoot or getControlRoot.
4188   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4189                                       SDValue(Src.getNode(), Src.getResNo()));
4190   DAG.setRoot(CopyNode);
4191 }
4192 
4193 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4194   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4195          "call visitLoadFromSwiftError when backend supports swifterror");
4196 
4197   assert(!I.isVolatile() &&
4198          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4199          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4200          "Support volatile, non temporal, invariant for load_from_swift_error");
4201 
4202   const Value *SV = I.getOperand(0);
4203   Type *Ty = I.getType();
4204   assert(
4205       (!AA ||
4206        !AA->pointsToConstantMemory(MemoryLocation(
4207            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4208            I.getAAMetadata()))) &&
4209       "load_from_swift_error should not be constant memory");
4210 
4211   SmallVector<EVT, 4> ValueVTs;
4212   SmallVector<uint64_t, 4> Offsets;
4213   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4214                   ValueVTs, &Offsets);
4215   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4216          "expect a single EVT for swifterror");
4217 
4218   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4219   SDValue L = DAG.getCopyFromReg(
4220       getRoot(), getCurSDLoc(),
4221       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4222 
4223   setValue(&I, L);
4224 }
4225 
4226 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4227   if (I.isAtomic())
4228     return visitAtomicStore(I);
4229 
4230   const Value *SrcV = I.getOperand(0);
4231   const Value *PtrV = I.getOperand(1);
4232 
4233   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4234   if (TLI.supportSwiftError()) {
4235     // Swifterror values can come from either a function parameter with
4236     // swifterror attribute or an alloca with swifterror attribute.
4237     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4238       if (Arg->hasSwiftErrorAttr())
4239         return visitStoreToSwiftError(I);
4240     }
4241 
4242     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4243       if (Alloca->isSwiftError())
4244         return visitStoreToSwiftError(I);
4245     }
4246   }
4247 
4248   SmallVector<EVT, 4> ValueVTs, MemVTs;
4249   SmallVector<uint64_t, 4> Offsets;
4250   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4251                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4252   unsigned NumValues = ValueVTs.size();
4253   if (NumValues == 0)
4254     return;
4255 
4256   // Get the lowered operands. Note that we do this after
4257   // checking if NumResults is zero, because with zero results
4258   // the operands won't have values in the map.
4259   SDValue Src = getValue(SrcV);
4260   SDValue Ptr = getValue(PtrV);
4261 
4262   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4263   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4264   SDLoc dl = getCurSDLoc();
4265   Align Alignment = I.getAlign();
4266   AAMDNodes AAInfo = I.getAAMetadata();
4267 
4268   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4269 
4270   // An aggregate load cannot wrap around the address space, so offsets to its
4271   // parts don't wrap either.
4272   SDNodeFlags Flags;
4273   Flags.setNoUnsignedWrap(true);
4274 
4275   unsigned ChainI = 0;
4276   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4277     // See visitLoad comments.
4278     if (ChainI == MaxParallelChains) {
4279       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4280                                   makeArrayRef(Chains.data(), ChainI));
4281       Root = Chain;
4282       ChainI = 0;
4283     }
4284     SDValue Add =
4285         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4286     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4287     if (MemVTs[i] != ValueVTs[i])
4288       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4289     SDValue St =
4290         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4291                      Alignment, MMOFlags, AAInfo);
4292     Chains[ChainI] = St;
4293   }
4294 
4295   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4296                                   makeArrayRef(Chains.data(), ChainI));
4297   DAG.setRoot(StoreNode);
4298 }
4299 
4300 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4301                                            bool IsCompressing) {
4302   SDLoc sdl = getCurSDLoc();
4303 
4304   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4305                                MaybeAlign &Alignment) {
4306     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4307     Src0 = I.getArgOperand(0);
4308     Ptr = I.getArgOperand(1);
4309     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4310     Mask = I.getArgOperand(3);
4311   };
4312   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4313                                     MaybeAlign &Alignment) {
4314     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4315     Src0 = I.getArgOperand(0);
4316     Ptr = I.getArgOperand(1);
4317     Mask = I.getArgOperand(2);
4318     Alignment = None;
4319   };
4320 
4321   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4322   MaybeAlign Alignment;
4323   if (IsCompressing)
4324     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4325   else
4326     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4327 
4328   SDValue Ptr = getValue(PtrOperand);
4329   SDValue Src0 = getValue(Src0Operand);
4330   SDValue Mask = getValue(MaskOperand);
4331   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4332 
4333   EVT VT = Src0.getValueType();
4334   if (!Alignment)
4335     Alignment = DAG.getEVTAlign(VT);
4336 
4337   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4338       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4339       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4340   SDValue StoreNode =
4341       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4342                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4343   DAG.setRoot(StoreNode);
4344   setValue(&I, StoreNode);
4345 }
4346 
4347 // Get a uniform base for the Gather/Scatter intrinsic.
4348 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4349 // We try to represent it as a base pointer + vector of indices.
4350 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4351 // The first operand of the GEP may be a single pointer or a vector of pointers
4352 // Example:
4353 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4354 //  or
4355 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4356 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4357 //
4358 // When the first GEP operand is a single pointer - it is the uniform base we
4359 // are looking for. If first operand of the GEP is a splat vector - we
4360 // extract the splat value and use it as a uniform base.
4361 // In all other cases the function returns 'false'.
4362 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4363                            ISD::MemIndexType &IndexType, SDValue &Scale,
4364                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4365                            uint64_t ElemSize) {
4366   SelectionDAG& DAG = SDB->DAG;
4367   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4368   const DataLayout &DL = DAG.getDataLayout();
4369 
4370   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4371 
4372   // Handle splat constant pointer.
4373   if (auto *C = dyn_cast<Constant>(Ptr)) {
4374     C = C->getSplatValue();
4375     if (!C)
4376       return false;
4377 
4378     Base = SDB->getValue(C);
4379 
4380     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4381     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4382     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4383     IndexType = ISD::SIGNED_SCALED;
4384     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4385     return true;
4386   }
4387 
4388   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4389   if (!GEP || GEP->getParent() != CurBB)
4390     return false;
4391 
4392   if (GEP->getNumOperands() != 2)
4393     return false;
4394 
4395   const Value *BasePtr = GEP->getPointerOperand();
4396   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4397 
4398   // Make sure the base is scalar and the index is a vector.
4399   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4400     return false;
4401 
4402   Base = SDB->getValue(BasePtr);
4403   Index = SDB->getValue(IndexVal);
4404   IndexType = ISD::SIGNED_SCALED;
4405 
4406   // MGATHER/MSCATTER are only required to support scaling by one or by the
4407   // element size. Other scales may be produced using target-specific DAG
4408   // combines.
4409   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4410   if (ScaleVal != ElemSize && ScaleVal != 1)
4411     return false;
4412 
4413   Scale =
4414       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4415   return true;
4416 }
4417 
4418 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4419   SDLoc sdl = getCurSDLoc();
4420 
4421   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4422   const Value *Ptr = I.getArgOperand(1);
4423   SDValue Src0 = getValue(I.getArgOperand(0));
4424   SDValue Mask = getValue(I.getArgOperand(3));
4425   EVT VT = Src0.getValueType();
4426   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4427                         ->getMaybeAlignValue()
4428                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4429   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4430 
4431   SDValue Base;
4432   SDValue Index;
4433   ISD::MemIndexType IndexType;
4434   SDValue Scale;
4435   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4436                                     I.getParent(), VT.getScalarStoreSize());
4437 
4438   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4439   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4440       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4441       // TODO: Make MachineMemOperands aware of scalable
4442       // vectors.
4443       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4444   if (!UniformBase) {
4445     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4446     Index = getValue(Ptr);
4447     IndexType = ISD::SIGNED_SCALED;
4448     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4449   }
4450 
4451   EVT IdxVT = Index.getValueType();
4452   EVT EltTy = IdxVT.getVectorElementType();
4453   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4454     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4455     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4456   }
4457 
4458   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4459   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4460                                          Ops, MMO, IndexType, false);
4461   DAG.setRoot(Scatter);
4462   setValue(&I, Scatter);
4463 }
4464 
4465 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4466   SDLoc sdl = getCurSDLoc();
4467 
4468   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4469                               MaybeAlign &Alignment) {
4470     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4471     Ptr = I.getArgOperand(0);
4472     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4473     Mask = I.getArgOperand(2);
4474     Src0 = I.getArgOperand(3);
4475   };
4476   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4477                                  MaybeAlign &Alignment) {
4478     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4479     Ptr = I.getArgOperand(0);
4480     Alignment = None;
4481     Mask = I.getArgOperand(1);
4482     Src0 = I.getArgOperand(2);
4483   };
4484 
4485   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4486   MaybeAlign Alignment;
4487   if (IsExpanding)
4488     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4489   else
4490     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4491 
4492   SDValue Ptr = getValue(PtrOperand);
4493   SDValue Src0 = getValue(Src0Operand);
4494   SDValue Mask = getValue(MaskOperand);
4495   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4496 
4497   EVT VT = Src0.getValueType();
4498   if (!Alignment)
4499     Alignment = DAG.getEVTAlign(VT);
4500 
4501   AAMDNodes AAInfo = I.getAAMetadata();
4502   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4503 
4504   // Do not serialize masked loads of constant memory with anything.
4505   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4506   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4507 
4508   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4509 
4510   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4511       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4512       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4513 
4514   SDValue Load =
4515       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4516                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4517   if (AddToChain)
4518     PendingLoads.push_back(Load.getValue(1));
4519   setValue(&I, Load);
4520 }
4521 
4522 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4523   SDLoc sdl = getCurSDLoc();
4524 
4525   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4526   const Value *Ptr = I.getArgOperand(0);
4527   SDValue Src0 = getValue(I.getArgOperand(3));
4528   SDValue Mask = getValue(I.getArgOperand(2));
4529 
4530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4531   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4532   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4533                         ->getMaybeAlignValue()
4534                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4535 
4536   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4537 
4538   SDValue Root = DAG.getRoot();
4539   SDValue Base;
4540   SDValue Index;
4541   ISD::MemIndexType IndexType;
4542   SDValue Scale;
4543   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4544                                     I.getParent(), VT.getScalarStoreSize());
4545   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4546   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4547       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4548       // TODO: Make MachineMemOperands aware of scalable
4549       // vectors.
4550       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4551 
4552   if (!UniformBase) {
4553     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4554     Index = getValue(Ptr);
4555     IndexType = ISD::SIGNED_SCALED;
4556     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4557   }
4558 
4559   EVT IdxVT = Index.getValueType();
4560   EVT EltTy = IdxVT.getVectorElementType();
4561   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4562     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4563     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4564   }
4565 
4566   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4567   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4568                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4569 
4570   PendingLoads.push_back(Gather.getValue(1));
4571   setValue(&I, Gather);
4572 }
4573 
4574 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4575   SDLoc dl = getCurSDLoc();
4576   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4577   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4578   SyncScope::ID SSID = I.getSyncScopeID();
4579 
4580   SDValue InChain = getRoot();
4581 
4582   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4583   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4584 
4585   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4586   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4587 
4588   MachineFunction &MF = DAG.getMachineFunction();
4589   MachineMemOperand *MMO = MF.getMachineMemOperand(
4590       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4591       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4592       FailureOrdering);
4593 
4594   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4595                                    dl, MemVT, VTs, InChain,
4596                                    getValue(I.getPointerOperand()),
4597                                    getValue(I.getCompareOperand()),
4598                                    getValue(I.getNewValOperand()), MMO);
4599 
4600   SDValue OutChain = L.getValue(2);
4601 
4602   setValue(&I, L);
4603   DAG.setRoot(OutChain);
4604 }
4605 
4606 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4607   SDLoc dl = getCurSDLoc();
4608   ISD::NodeType NT;
4609   switch (I.getOperation()) {
4610   default: llvm_unreachable("Unknown atomicrmw operation");
4611   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4612   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4613   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4614   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4615   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4616   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4617   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4618   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4619   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4620   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4621   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4622   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4623   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4624   }
4625   AtomicOrdering Ordering = I.getOrdering();
4626   SyncScope::ID SSID = I.getSyncScopeID();
4627 
4628   SDValue InChain = getRoot();
4629 
4630   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4631   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4632   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4633 
4634   MachineFunction &MF = DAG.getMachineFunction();
4635   MachineMemOperand *MMO = MF.getMachineMemOperand(
4636       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4637       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4638 
4639   SDValue L =
4640     DAG.getAtomic(NT, dl, MemVT, InChain,
4641                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4642                   MMO);
4643 
4644   SDValue OutChain = L.getValue(1);
4645 
4646   setValue(&I, L);
4647   DAG.setRoot(OutChain);
4648 }
4649 
4650 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4651   SDLoc dl = getCurSDLoc();
4652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4653   SDValue Ops[3];
4654   Ops[0] = getRoot();
4655   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4656                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4657   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4658                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4659   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4660 }
4661 
4662 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4663   SDLoc dl = getCurSDLoc();
4664   AtomicOrdering Order = I.getOrdering();
4665   SyncScope::ID SSID = I.getSyncScopeID();
4666 
4667   SDValue InChain = getRoot();
4668 
4669   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4670   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4671   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4672 
4673   if (!TLI.supportsUnalignedAtomics() &&
4674       I.getAlignment() < MemVT.getSizeInBits() / 8)
4675     report_fatal_error("Cannot generate unaligned atomic load");
4676 
4677   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4678 
4679   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4680       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4681       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4682 
4683   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4684 
4685   SDValue Ptr = getValue(I.getPointerOperand());
4686 
4687   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4688     // TODO: Once this is better exercised by tests, it should be merged with
4689     // the normal path for loads to prevent future divergence.
4690     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4691     if (MemVT != VT)
4692       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4693 
4694     setValue(&I, L);
4695     SDValue OutChain = L.getValue(1);
4696     if (!I.isUnordered())
4697       DAG.setRoot(OutChain);
4698     else
4699       PendingLoads.push_back(OutChain);
4700     return;
4701   }
4702 
4703   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4704                             Ptr, MMO);
4705 
4706   SDValue OutChain = L.getValue(1);
4707   if (MemVT != VT)
4708     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4709 
4710   setValue(&I, L);
4711   DAG.setRoot(OutChain);
4712 }
4713 
4714 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4715   SDLoc dl = getCurSDLoc();
4716 
4717   AtomicOrdering Ordering = I.getOrdering();
4718   SyncScope::ID SSID = I.getSyncScopeID();
4719 
4720   SDValue InChain = getRoot();
4721 
4722   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4723   EVT MemVT =
4724       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4725 
4726   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4727     report_fatal_error("Cannot generate unaligned atomic store");
4728 
4729   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4730 
4731   MachineFunction &MF = DAG.getMachineFunction();
4732   MachineMemOperand *MMO = MF.getMachineMemOperand(
4733       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4734       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4735 
4736   SDValue Val = getValue(I.getValueOperand());
4737   if (Val.getValueType() != MemVT)
4738     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4739   SDValue Ptr = getValue(I.getPointerOperand());
4740 
4741   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4742     // TODO: Once this is better exercised by tests, it should be merged with
4743     // the normal path for stores to prevent future divergence.
4744     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4745     DAG.setRoot(S);
4746     return;
4747   }
4748   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4749                                    Ptr, Val, MMO);
4750 
4751 
4752   DAG.setRoot(OutChain);
4753 }
4754 
4755 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4756 /// node.
4757 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4758                                                unsigned Intrinsic) {
4759   // Ignore the callsite's attributes. A specific call site may be marked with
4760   // readnone, but the lowering code will expect the chain based on the
4761   // definition.
4762   const Function *F = I.getCalledFunction();
4763   bool HasChain = !F->doesNotAccessMemory();
4764   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4765 
4766   // Build the operand list.
4767   SmallVector<SDValue, 8> Ops;
4768   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4769     if (OnlyLoad) {
4770       // We don't need to serialize loads against other loads.
4771       Ops.push_back(DAG.getRoot());
4772     } else {
4773       Ops.push_back(getRoot());
4774     }
4775   }
4776 
4777   // Info is set by getTgtMemIntrinsic
4778   TargetLowering::IntrinsicInfo Info;
4779   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4780   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4781                                                DAG.getMachineFunction(),
4782                                                Intrinsic);
4783 
4784   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4785   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4786       Info.opc == ISD::INTRINSIC_W_CHAIN)
4787     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4788                                         TLI.getPointerTy(DAG.getDataLayout())));
4789 
4790   // Add all operands of the call to the operand list.
4791   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4792     const Value *Arg = I.getArgOperand(i);
4793     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4794       Ops.push_back(getValue(Arg));
4795       continue;
4796     }
4797 
4798     // Use TargetConstant instead of a regular constant for immarg.
4799     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4800     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4801       assert(CI->getBitWidth() <= 64 &&
4802              "large intrinsic immediates not handled");
4803       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4804     } else {
4805       Ops.push_back(
4806           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4807     }
4808   }
4809 
4810   SmallVector<EVT, 4> ValueVTs;
4811   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4812 
4813   if (HasChain)
4814     ValueVTs.push_back(MVT::Other);
4815 
4816   SDVTList VTs = DAG.getVTList(ValueVTs);
4817 
4818   // Propagate fast-math-flags from IR to node(s).
4819   SDNodeFlags Flags;
4820   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4821     Flags.copyFMF(*FPMO);
4822   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4823 
4824   // Create the node.
4825   SDValue Result;
4826   if (IsTgtIntrinsic) {
4827     // This is target intrinsic that touches memory
4828     Result =
4829         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4830                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4831                                 Info.align, Info.flags, Info.size,
4832                                 I.getAAMetadata());
4833   } else if (!HasChain) {
4834     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4835   } else if (!I.getType()->isVoidTy()) {
4836     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4837   } else {
4838     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4839   }
4840 
4841   if (HasChain) {
4842     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4843     if (OnlyLoad)
4844       PendingLoads.push_back(Chain);
4845     else
4846       DAG.setRoot(Chain);
4847   }
4848 
4849   if (!I.getType()->isVoidTy()) {
4850     if (!isa<VectorType>(I.getType()))
4851       Result = lowerRangeToAssertZExt(DAG, I, Result);
4852 
4853     MaybeAlign Alignment = I.getRetAlign();
4854     if (!Alignment)
4855       Alignment = F->getAttributes().getRetAlignment();
4856     // Insert `assertalign` node if there's an alignment.
4857     if (InsertAssertAlign && Alignment) {
4858       Result =
4859           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4860     }
4861 
4862     setValue(&I, Result);
4863   }
4864 }
4865 
4866 /// GetSignificand - Get the significand and build it into a floating-point
4867 /// number with exponent of 1:
4868 ///
4869 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4870 ///
4871 /// where Op is the hexadecimal representation of floating point value.
4872 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4873   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4874                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4875   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4876                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4877   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4878 }
4879 
4880 /// GetExponent - Get the exponent:
4881 ///
4882 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4883 ///
4884 /// where Op is the hexadecimal representation of floating point value.
4885 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4886                            const TargetLowering &TLI, const SDLoc &dl) {
4887   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4888                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4889   SDValue t1 = DAG.getNode(
4890       ISD::SRL, dl, MVT::i32, t0,
4891       DAG.getConstant(23, dl,
4892                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4893   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4894                            DAG.getConstant(127, dl, MVT::i32));
4895   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4896 }
4897 
4898 /// getF32Constant - Get 32-bit floating point constant.
4899 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4900                               const SDLoc &dl) {
4901   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4902                            MVT::f32);
4903 }
4904 
4905 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4906                                        SelectionDAG &DAG) {
4907   // TODO: What fast-math-flags should be set on the floating-point nodes?
4908 
4909   //   IntegerPartOfX = ((int32_t)(t0);
4910   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4911 
4912   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4913   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4914   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4915 
4916   //   IntegerPartOfX <<= 23;
4917   IntegerPartOfX =
4918       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4919                   DAG.getConstant(23, dl,
4920                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4921                                       MVT::i32, DAG.getDataLayout())));
4922 
4923   SDValue TwoToFractionalPartOfX;
4924   if (LimitFloatPrecision <= 6) {
4925     // For floating-point precision of 6:
4926     //
4927     //   TwoToFractionalPartOfX =
4928     //     0.997535578f +
4929     //       (0.735607626f + 0.252464424f * x) * x;
4930     //
4931     // error 0.0144103317, which is 6 bits
4932     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4933                              getF32Constant(DAG, 0x3e814304, dl));
4934     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4935                              getF32Constant(DAG, 0x3f3c50c8, dl));
4936     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4937     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4938                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4939   } else if (LimitFloatPrecision <= 12) {
4940     // For floating-point precision of 12:
4941     //
4942     //   TwoToFractionalPartOfX =
4943     //     0.999892986f +
4944     //       (0.696457318f +
4945     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4946     //
4947     // error 0.000107046256, which is 13 to 14 bits
4948     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4949                              getF32Constant(DAG, 0x3da235e3, dl));
4950     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4951                              getF32Constant(DAG, 0x3e65b8f3, dl));
4952     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4953     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4954                              getF32Constant(DAG, 0x3f324b07, dl));
4955     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4956     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4957                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4958   } else { // LimitFloatPrecision <= 18
4959     // For floating-point precision of 18:
4960     //
4961     //   TwoToFractionalPartOfX =
4962     //     0.999999982f +
4963     //       (0.693148872f +
4964     //         (0.240227044f +
4965     //           (0.554906021e-1f +
4966     //             (0.961591928e-2f +
4967     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4968     // error 2.47208000*10^(-7), which is better than 18 bits
4969     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4970                              getF32Constant(DAG, 0x3924b03e, dl));
4971     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4972                              getF32Constant(DAG, 0x3ab24b87, dl));
4973     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4974     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4975                              getF32Constant(DAG, 0x3c1d8c17, dl));
4976     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4977     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4978                              getF32Constant(DAG, 0x3d634a1d, dl));
4979     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4980     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4981                              getF32Constant(DAG, 0x3e75fe14, dl));
4982     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4983     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4984                               getF32Constant(DAG, 0x3f317234, dl));
4985     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4986     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4987                                          getF32Constant(DAG, 0x3f800000, dl));
4988   }
4989 
4990   // Add the exponent into the result in integer domain.
4991   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4992   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4993                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4994 }
4995 
4996 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4997 /// limited-precision mode.
4998 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4999                          const TargetLowering &TLI, SDNodeFlags Flags) {
5000   if (Op.getValueType() == MVT::f32 &&
5001       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5002 
5003     // Put the exponent in the right bit position for later addition to the
5004     // final result:
5005     //
5006     // t0 = Op * log2(e)
5007 
5008     // TODO: What fast-math-flags should be set here?
5009     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5010                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5011     return getLimitedPrecisionExp2(t0, dl, DAG);
5012   }
5013 
5014   // No special expansion.
5015   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5016 }
5017 
5018 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5019 /// limited-precision mode.
5020 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5021                          const TargetLowering &TLI, SDNodeFlags Flags) {
5022   // TODO: What fast-math-flags should be set on the floating-point nodes?
5023 
5024   if (Op.getValueType() == MVT::f32 &&
5025       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5026     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5027 
5028     // Scale the exponent by log(2).
5029     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5030     SDValue LogOfExponent =
5031         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5032                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5033 
5034     // Get the significand and build it into a floating-point number with
5035     // exponent of 1.
5036     SDValue X = GetSignificand(DAG, Op1, dl);
5037 
5038     SDValue LogOfMantissa;
5039     if (LimitFloatPrecision <= 6) {
5040       // For floating-point precision of 6:
5041       //
5042       //   LogofMantissa =
5043       //     -1.1609546f +
5044       //       (1.4034025f - 0.23903021f * x) * x;
5045       //
5046       // error 0.0034276066, which is better than 8 bits
5047       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5048                                getF32Constant(DAG, 0xbe74c456, dl));
5049       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5050                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5051       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5052       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5053                                   getF32Constant(DAG, 0x3f949a29, dl));
5054     } else if (LimitFloatPrecision <= 12) {
5055       // For floating-point precision of 12:
5056       //
5057       //   LogOfMantissa =
5058       //     -1.7417939f +
5059       //       (2.8212026f +
5060       //         (-1.4699568f +
5061       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5062       //
5063       // error 0.000061011436, which is 14 bits
5064       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5065                                getF32Constant(DAG, 0xbd67b6d6, dl));
5066       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5067                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5068       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5069       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5070                                getF32Constant(DAG, 0x3fbc278b, dl));
5071       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5072       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5073                                getF32Constant(DAG, 0x40348e95, dl));
5074       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5075       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5076                                   getF32Constant(DAG, 0x3fdef31a, dl));
5077     } else { // LimitFloatPrecision <= 18
5078       // For floating-point precision of 18:
5079       //
5080       //   LogOfMantissa =
5081       //     -2.1072184f +
5082       //       (4.2372794f +
5083       //         (-3.7029485f +
5084       //           (2.2781945f +
5085       //             (-0.87823314f +
5086       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5087       //
5088       // error 0.0000023660568, which is better than 18 bits
5089       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5090                                getF32Constant(DAG, 0xbc91e5ac, dl));
5091       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5092                                getF32Constant(DAG, 0x3e4350aa, dl));
5093       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5094       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5095                                getF32Constant(DAG, 0x3f60d3e3, dl));
5096       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5097       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5098                                getF32Constant(DAG, 0x4011cdf0, dl));
5099       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5100       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5101                                getF32Constant(DAG, 0x406cfd1c, dl));
5102       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5103       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5104                                getF32Constant(DAG, 0x408797cb, dl));
5105       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5106       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5107                                   getF32Constant(DAG, 0x4006dcab, dl));
5108     }
5109 
5110     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5111   }
5112 
5113   // No special expansion.
5114   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5115 }
5116 
5117 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5118 /// limited-precision mode.
5119 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5120                           const TargetLowering &TLI, SDNodeFlags Flags) {
5121   // TODO: What fast-math-flags should be set on the floating-point nodes?
5122 
5123   if (Op.getValueType() == MVT::f32 &&
5124       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5125     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5126 
5127     // Get the exponent.
5128     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5129 
5130     // Get the significand and build it into a floating-point number with
5131     // exponent of 1.
5132     SDValue X = GetSignificand(DAG, Op1, dl);
5133 
5134     // Different possible minimax approximations of significand in
5135     // floating-point for various degrees of accuracy over [1,2].
5136     SDValue Log2ofMantissa;
5137     if (LimitFloatPrecision <= 6) {
5138       // For floating-point precision of 6:
5139       //
5140       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5141       //
5142       // error 0.0049451742, which is more than 7 bits
5143       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5144                                getF32Constant(DAG, 0xbeb08fe0, dl));
5145       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5146                                getF32Constant(DAG, 0x40019463, dl));
5147       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5148       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5149                                    getF32Constant(DAG, 0x3fd6633d, dl));
5150     } else if (LimitFloatPrecision <= 12) {
5151       // For floating-point precision of 12:
5152       //
5153       //   Log2ofMantissa =
5154       //     -2.51285454f +
5155       //       (4.07009056f +
5156       //         (-2.12067489f +
5157       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5158       //
5159       // error 0.0000876136000, which is better than 13 bits
5160       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5161                                getF32Constant(DAG, 0xbda7262e, dl));
5162       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5163                                getF32Constant(DAG, 0x3f25280b, dl));
5164       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5165       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5166                                getF32Constant(DAG, 0x4007b923, dl));
5167       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5168       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5169                                getF32Constant(DAG, 0x40823e2f, dl));
5170       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5171       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5172                                    getF32Constant(DAG, 0x4020d29c, dl));
5173     } else { // LimitFloatPrecision <= 18
5174       // For floating-point precision of 18:
5175       //
5176       //   Log2ofMantissa =
5177       //     -3.0400495f +
5178       //       (6.1129976f +
5179       //         (-5.3420409f +
5180       //           (3.2865683f +
5181       //             (-1.2669343f +
5182       //               (0.27515199f -
5183       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5184       //
5185       // error 0.0000018516, which is better than 18 bits
5186       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5187                                getF32Constant(DAG, 0xbcd2769e, dl));
5188       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5189                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5190       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5191       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5192                                getF32Constant(DAG, 0x3fa22ae7, dl));
5193       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5194       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5195                                getF32Constant(DAG, 0x40525723, dl));
5196       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5197       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5198                                getF32Constant(DAG, 0x40aaf200, dl));
5199       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5200       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5201                                getF32Constant(DAG, 0x40c39dad, dl));
5202       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5203       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5204                                    getF32Constant(DAG, 0x4042902c, dl));
5205     }
5206 
5207     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5208   }
5209 
5210   // No special expansion.
5211   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5212 }
5213 
5214 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5215 /// limited-precision mode.
5216 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5217                            const TargetLowering &TLI, SDNodeFlags Flags) {
5218   // TODO: What fast-math-flags should be set on the floating-point nodes?
5219 
5220   if (Op.getValueType() == MVT::f32 &&
5221       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5222     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5223 
5224     // Scale the exponent by log10(2) [0.30102999f].
5225     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5226     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5227                                         getF32Constant(DAG, 0x3e9a209a, dl));
5228 
5229     // Get the significand and build it into a floating-point number with
5230     // exponent of 1.
5231     SDValue X = GetSignificand(DAG, Op1, dl);
5232 
5233     SDValue Log10ofMantissa;
5234     if (LimitFloatPrecision <= 6) {
5235       // For floating-point precision of 6:
5236       //
5237       //   Log10ofMantissa =
5238       //     -0.50419619f +
5239       //       (0.60948995f - 0.10380950f * x) * x;
5240       //
5241       // error 0.0014886165, which is 6 bits
5242       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5243                                getF32Constant(DAG, 0xbdd49a13, dl));
5244       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5245                                getF32Constant(DAG, 0x3f1c0789, dl));
5246       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5247       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5248                                     getF32Constant(DAG, 0x3f011300, dl));
5249     } else if (LimitFloatPrecision <= 12) {
5250       // For floating-point precision of 12:
5251       //
5252       //   Log10ofMantissa =
5253       //     -0.64831180f +
5254       //       (0.91751397f +
5255       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5256       //
5257       // error 0.00019228036, which is better than 12 bits
5258       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5259                                getF32Constant(DAG, 0x3d431f31, dl));
5260       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5261                                getF32Constant(DAG, 0x3ea21fb2, dl));
5262       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5263       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5264                                getF32Constant(DAG, 0x3f6ae232, dl));
5265       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5266       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5267                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5268     } else { // LimitFloatPrecision <= 18
5269       // For floating-point precision of 18:
5270       //
5271       //   Log10ofMantissa =
5272       //     -0.84299375f +
5273       //       (1.5327582f +
5274       //         (-1.0688956f +
5275       //           (0.49102474f +
5276       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5277       //
5278       // error 0.0000037995730, which is better than 18 bits
5279       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5280                                getF32Constant(DAG, 0x3c5d51ce, dl));
5281       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5282                                getF32Constant(DAG, 0x3e00685a, dl));
5283       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5284       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5285                                getF32Constant(DAG, 0x3efb6798, dl));
5286       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5287       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5288                                getF32Constant(DAG, 0x3f88d192, dl));
5289       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5290       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5291                                getF32Constant(DAG, 0x3fc4316c, dl));
5292       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5293       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5294                                     getF32Constant(DAG, 0x3f57ce70, dl));
5295     }
5296 
5297     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5298   }
5299 
5300   // No special expansion.
5301   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5302 }
5303 
5304 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5305 /// limited-precision mode.
5306 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5307                           const TargetLowering &TLI, SDNodeFlags Flags) {
5308   if (Op.getValueType() == MVT::f32 &&
5309       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5310     return getLimitedPrecisionExp2(Op, dl, DAG);
5311 
5312   // No special expansion.
5313   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5314 }
5315 
5316 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5317 /// limited-precision mode with x == 10.0f.
5318 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5319                          SelectionDAG &DAG, const TargetLowering &TLI,
5320                          SDNodeFlags Flags) {
5321   bool IsExp10 = false;
5322   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5323       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5324     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5325       APFloat Ten(10.0f);
5326       IsExp10 = LHSC->isExactlyValue(Ten);
5327     }
5328   }
5329 
5330   // TODO: What fast-math-flags should be set on the FMUL node?
5331   if (IsExp10) {
5332     // Put the exponent in the right bit position for later addition to the
5333     // final result:
5334     //
5335     //   #define LOG2OF10 3.3219281f
5336     //   t0 = Op * LOG2OF10;
5337     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5338                              getF32Constant(DAG, 0x40549a78, dl));
5339     return getLimitedPrecisionExp2(t0, dl, DAG);
5340   }
5341 
5342   // No special expansion.
5343   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5344 }
5345 
5346 /// ExpandPowI - Expand a llvm.powi intrinsic.
5347 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5348                           SelectionDAG &DAG) {
5349   // If RHS is a constant, we can expand this out to a multiplication tree,
5350   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5351   // optimizing for size, we only want to do this if the expansion would produce
5352   // a small number of multiplies, otherwise we do the full expansion.
5353   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5354     // Get the exponent as a positive value.
5355     unsigned Val = RHSC->getSExtValue();
5356     if ((int)Val < 0) Val = -Val;
5357 
5358     // powi(x, 0) -> 1.0
5359     if (Val == 0)
5360       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5361 
5362     bool OptForSize = DAG.shouldOptForSize();
5363     if (!OptForSize ||
5364         // If optimizing for size, don't insert too many multiplies.
5365         // This inserts up to 5 multiplies.
5366         countPopulation(Val) + Log2_32(Val) < 7) {
5367       // We use the simple binary decomposition method to generate the multiply
5368       // sequence.  There are more optimal ways to do this (for example,
5369       // powi(x,15) generates one more multiply than it should), but this has
5370       // the benefit of being both really simple and much better than a libcall.
5371       SDValue Res;  // Logically starts equal to 1.0
5372       SDValue CurSquare = LHS;
5373       // TODO: Intrinsics should have fast-math-flags that propagate to these
5374       // nodes.
5375       while (Val) {
5376         if (Val & 1) {
5377           if (Res.getNode())
5378             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5379           else
5380             Res = CurSquare;  // 1.0*CurSquare.
5381         }
5382 
5383         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5384                                 CurSquare, CurSquare);
5385         Val >>= 1;
5386       }
5387 
5388       // If the original was negative, invert the result, producing 1/(x*x*x).
5389       if (RHSC->getSExtValue() < 0)
5390         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5391                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5392       return Res;
5393     }
5394   }
5395 
5396   // Otherwise, expand to a libcall.
5397   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5398 }
5399 
5400 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5401                             SDValue LHS, SDValue RHS, SDValue Scale,
5402                             SelectionDAG &DAG, const TargetLowering &TLI) {
5403   EVT VT = LHS.getValueType();
5404   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5405   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5406   LLVMContext &Ctx = *DAG.getContext();
5407 
5408   // If the type is legal but the operation isn't, this node might survive all
5409   // the way to operation legalization. If we end up there and we do not have
5410   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5411   // node.
5412 
5413   // Coax the legalizer into expanding the node during type legalization instead
5414   // by bumping the size by one bit. This will force it to Promote, enabling the
5415   // early expansion and avoiding the need to expand later.
5416 
5417   // We don't have to do this if Scale is 0; that can always be expanded, unless
5418   // it's a saturating signed operation. Those can experience true integer
5419   // division overflow, a case which we must avoid.
5420 
5421   // FIXME: We wouldn't have to do this (or any of the early
5422   // expansion/promotion) if it was possible to expand a libcall of an
5423   // illegal type during operation legalization. But it's not, so things
5424   // get a bit hacky.
5425   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5426   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5427       (TLI.isTypeLegal(VT) ||
5428        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5429     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5430         Opcode, VT, ScaleInt);
5431     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5432       EVT PromVT;
5433       if (VT.isScalarInteger())
5434         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5435       else if (VT.isVector()) {
5436         PromVT = VT.getVectorElementType();
5437         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5438         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5439       } else
5440         llvm_unreachable("Wrong VT for DIVFIX?");
5441       if (Signed) {
5442         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5443         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5444       } else {
5445         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5446         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5447       }
5448       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5449       // For saturating operations, we need to shift up the LHS to get the
5450       // proper saturation width, and then shift down again afterwards.
5451       if (Saturating)
5452         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5453                           DAG.getConstant(1, DL, ShiftTy));
5454       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5455       if (Saturating)
5456         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5457                           DAG.getConstant(1, DL, ShiftTy));
5458       return DAG.getZExtOrTrunc(Res, DL, VT);
5459     }
5460   }
5461 
5462   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5463 }
5464 
5465 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5466 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5467 static void
5468 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5469                      const SDValue &N) {
5470   switch (N.getOpcode()) {
5471   case ISD::CopyFromReg: {
5472     SDValue Op = N.getOperand(1);
5473     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5474                       Op.getValueType().getSizeInBits());
5475     return;
5476   }
5477   case ISD::BITCAST:
5478   case ISD::AssertZext:
5479   case ISD::AssertSext:
5480   case ISD::TRUNCATE:
5481     getUnderlyingArgRegs(Regs, N.getOperand(0));
5482     return;
5483   case ISD::BUILD_PAIR:
5484   case ISD::BUILD_VECTOR:
5485   case ISD::CONCAT_VECTORS:
5486     for (SDValue Op : N->op_values())
5487       getUnderlyingArgRegs(Regs, Op);
5488     return;
5489   default:
5490     return;
5491   }
5492 }
5493 
5494 /// If the DbgValueInst is a dbg_value of a function argument, create the
5495 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5496 /// instruction selection, they will be inserted to the entry BB.
5497 /// We don't currently support this for variadic dbg_values, as they shouldn't
5498 /// appear for function arguments or in the prologue.
5499 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5500     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5501     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5502   const Argument *Arg = dyn_cast<Argument>(V);
5503   if (!Arg)
5504     return false;
5505 
5506   MachineFunction &MF = DAG.getMachineFunction();
5507   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5508 
5509   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5510   // we've been asked to pursue.
5511   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5512                               bool Indirect) {
5513     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5514       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5515       // pointing at the VReg, which will be patched up later.
5516       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5517       auto MIB = BuildMI(MF, DL, Inst);
5518       MIB.addReg(Reg);
5519       MIB.addImm(0);
5520       MIB.addMetadata(Variable);
5521       auto *NewDIExpr = FragExpr;
5522       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5523       // the DIExpression.
5524       if (Indirect)
5525         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5526       MIB.addMetadata(NewDIExpr);
5527       return MIB;
5528     } else {
5529       // Create a completely standard DBG_VALUE.
5530       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5531       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5532     }
5533   };
5534 
5535   if (Kind == FuncArgumentDbgValueKind::Value) {
5536     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5537     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5538     // the entry block.
5539     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5540     if (!IsInEntryBlock)
5541       return false;
5542 
5543     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5544     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5545     // variable that also is a param.
5546     //
5547     // Although, if we are at the top of the entry block already, we can still
5548     // emit using ArgDbgValue. This might catch some situations when the
5549     // dbg.value refers to an argument that isn't used in the entry block, so
5550     // any CopyToReg node would be optimized out and the only way to express
5551     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5552     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5553     // we should only emit as ArgDbgValue if the Variable is an argument to the
5554     // current function, and the dbg.value intrinsic is found in the entry
5555     // block.
5556     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5557         !DL->getInlinedAt();
5558     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5559     if (!IsInPrologue && !VariableIsFunctionInputArg)
5560       return false;
5561 
5562     // Here we assume that a function argument on IR level only can be used to
5563     // describe one input parameter on source level. If we for example have
5564     // source code like this
5565     //
5566     //    struct A { long x, y; };
5567     //    void foo(struct A a, long b) {
5568     //      ...
5569     //      b = a.x;
5570     //      ...
5571     //    }
5572     //
5573     // and IR like this
5574     //
5575     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5576     //  entry:
5577     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5578     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5579     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5580     //    ...
5581     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5582     //    ...
5583     //
5584     // then the last dbg.value is describing a parameter "b" using a value that
5585     // is an argument. But since we already has used %a1 to describe a parameter
5586     // we should not handle that last dbg.value here (that would result in an
5587     // incorrect hoisting of the DBG_VALUE to the function entry).
5588     // Notice that we allow one dbg.value per IR level argument, to accommodate
5589     // for the situation with fragments above.
5590     if (VariableIsFunctionInputArg) {
5591       unsigned ArgNo = Arg->getArgNo();
5592       if (ArgNo >= FuncInfo.DescribedArgs.size())
5593         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5594       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5595         return false;
5596       FuncInfo.DescribedArgs.set(ArgNo);
5597     }
5598   }
5599 
5600   bool IsIndirect = false;
5601   Optional<MachineOperand> Op;
5602   // Some arguments' frame index is recorded during argument lowering.
5603   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5604   if (FI != std::numeric_limits<int>::max())
5605     Op = MachineOperand::CreateFI(FI);
5606 
5607   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5608   if (!Op && N.getNode()) {
5609     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5610     Register Reg;
5611     if (ArgRegsAndSizes.size() == 1)
5612       Reg = ArgRegsAndSizes.front().first;
5613 
5614     if (Reg && Reg.isVirtual()) {
5615       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5616       Register PR = RegInfo.getLiveInPhysReg(Reg);
5617       if (PR)
5618         Reg = PR;
5619     }
5620     if (Reg) {
5621       Op = MachineOperand::CreateReg(Reg, false);
5622       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5623     }
5624   }
5625 
5626   if (!Op && N.getNode()) {
5627     // Check if frame index is available.
5628     SDValue LCandidate = peekThroughBitcasts(N);
5629     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5630       if (FrameIndexSDNode *FINode =
5631           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5632         Op = MachineOperand::CreateFI(FINode->getIndex());
5633   }
5634 
5635   if (!Op) {
5636     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5637     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5638                                          SplitRegs) {
5639       unsigned Offset = 0;
5640       for (const auto &RegAndSize : SplitRegs) {
5641         // If the expression is already a fragment, the current register
5642         // offset+size might extend beyond the fragment. In this case, only
5643         // the register bits that are inside the fragment are relevant.
5644         int RegFragmentSizeInBits = RegAndSize.second;
5645         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5646           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5647           // The register is entirely outside the expression fragment,
5648           // so is irrelevant for debug info.
5649           if (Offset >= ExprFragmentSizeInBits)
5650             break;
5651           // The register is partially outside the expression fragment, only
5652           // the low bits within the fragment are relevant for debug info.
5653           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5654             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5655           }
5656         }
5657 
5658         auto FragmentExpr = DIExpression::createFragmentExpression(
5659             Expr, Offset, RegFragmentSizeInBits);
5660         Offset += RegAndSize.second;
5661         // If a valid fragment expression cannot be created, the variable's
5662         // correct value cannot be determined and so it is set as Undef.
5663         if (!FragmentExpr) {
5664           SDDbgValue *SDV = DAG.getConstantDbgValue(
5665               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5666           DAG.AddDbgValue(SDV, false);
5667           continue;
5668         }
5669         MachineInstr *NewMI =
5670             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5671                              Kind != FuncArgumentDbgValueKind::Value);
5672         FuncInfo.ArgDbgValues.push_back(NewMI);
5673       }
5674     };
5675 
5676     // Check if ValueMap has reg number.
5677     DenseMap<const Value *, Register>::const_iterator
5678       VMI = FuncInfo.ValueMap.find(V);
5679     if (VMI != FuncInfo.ValueMap.end()) {
5680       const auto &TLI = DAG.getTargetLoweringInfo();
5681       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5682                        V->getType(), None);
5683       if (RFV.occupiesMultipleRegs()) {
5684         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5685         return true;
5686       }
5687 
5688       Op = MachineOperand::CreateReg(VMI->second, false);
5689       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5690     } else if (ArgRegsAndSizes.size() > 1) {
5691       // This was split due to the calling convention, and no virtual register
5692       // mapping exists for the value.
5693       splitMultiRegDbgValue(ArgRegsAndSizes);
5694       return true;
5695     }
5696   }
5697 
5698   if (!Op)
5699     return false;
5700 
5701   assert(Variable->isValidLocationForIntrinsic(DL) &&
5702          "Expected inlined-at fields to agree");
5703   MachineInstr *NewMI = nullptr;
5704 
5705   if (Op->isReg())
5706     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5707   else
5708     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5709                     Variable, Expr);
5710 
5711   // Otherwise, use ArgDbgValues.
5712   FuncInfo.ArgDbgValues.push_back(NewMI);
5713   return true;
5714 }
5715 
5716 /// Return the appropriate SDDbgValue based on N.
5717 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5718                                              DILocalVariable *Variable,
5719                                              DIExpression *Expr,
5720                                              const DebugLoc &dl,
5721                                              unsigned DbgSDNodeOrder) {
5722   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5723     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5724     // stack slot locations.
5725     //
5726     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5727     // debug values here after optimization:
5728     //
5729     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5730     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5731     //
5732     // Both describe the direct values of their associated variables.
5733     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5734                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5735   }
5736   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5737                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5738 }
5739 
5740 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5741   switch (Intrinsic) {
5742   case Intrinsic::smul_fix:
5743     return ISD::SMULFIX;
5744   case Intrinsic::umul_fix:
5745     return ISD::UMULFIX;
5746   case Intrinsic::smul_fix_sat:
5747     return ISD::SMULFIXSAT;
5748   case Intrinsic::umul_fix_sat:
5749     return ISD::UMULFIXSAT;
5750   case Intrinsic::sdiv_fix:
5751     return ISD::SDIVFIX;
5752   case Intrinsic::udiv_fix:
5753     return ISD::UDIVFIX;
5754   case Intrinsic::sdiv_fix_sat:
5755     return ISD::SDIVFIXSAT;
5756   case Intrinsic::udiv_fix_sat:
5757     return ISD::UDIVFIXSAT;
5758   default:
5759     llvm_unreachable("Unhandled fixed point intrinsic");
5760   }
5761 }
5762 
5763 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5764                                            const char *FunctionName) {
5765   assert(FunctionName && "FunctionName must not be nullptr");
5766   SDValue Callee = DAG.getExternalSymbol(
5767       FunctionName,
5768       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5769   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5770 }
5771 
5772 /// Given a @llvm.call.preallocated.setup, return the corresponding
5773 /// preallocated call.
5774 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5775   assert(cast<CallBase>(PreallocatedSetup)
5776                  ->getCalledFunction()
5777                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5778          "expected call_preallocated_setup Value");
5779   for (auto *U : PreallocatedSetup->users()) {
5780     auto *UseCall = cast<CallBase>(U);
5781     const Function *Fn = UseCall->getCalledFunction();
5782     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5783       return UseCall;
5784     }
5785   }
5786   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5787 }
5788 
5789 /// Lower the call to the specified intrinsic function.
5790 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5791                                              unsigned Intrinsic) {
5792   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5793   SDLoc sdl = getCurSDLoc();
5794   DebugLoc dl = getCurDebugLoc();
5795   SDValue Res;
5796 
5797   SDNodeFlags Flags;
5798   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5799     Flags.copyFMF(*FPOp);
5800 
5801   switch (Intrinsic) {
5802   default:
5803     // By default, turn this into a target intrinsic node.
5804     visitTargetIntrinsic(I, Intrinsic);
5805     return;
5806   case Intrinsic::vscale: {
5807     match(&I, m_VScale(DAG.getDataLayout()));
5808     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5809     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5810     return;
5811   }
5812   case Intrinsic::vastart:  visitVAStart(I); return;
5813   case Intrinsic::vaend:    visitVAEnd(I); return;
5814   case Intrinsic::vacopy:   visitVACopy(I); return;
5815   case Intrinsic::returnaddress:
5816     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5817                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5818                              getValue(I.getArgOperand(0))));
5819     return;
5820   case Intrinsic::addressofreturnaddress:
5821     setValue(&I,
5822              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5823                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5824     return;
5825   case Intrinsic::sponentry:
5826     setValue(&I,
5827              DAG.getNode(ISD::SPONENTRY, sdl,
5828                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5829     return;
5830   case Intrinsic::frameaddress:
5831     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5832                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5833                              getValue(I.getArgOperand(0))));
5834     return;
5835   case Intrinsic::read_volatile_register:
5836   case Intrinsic::read_register: {
5837     Value *Reg = I.getArgOperand(0);
5838     SDValue Chain = getRoot();
5839     SDValue RegName =
5840         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5841     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5842     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5843       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5844     setValue(&I, Res);
5845     DAG.setRoot(Res.getValue(1));
5846     return;
5847   }
5848   case Intrinsic::write_register: {
5849     Value *Reg = I.getArgOperand(0);
5850     Value *RegValue = I.getArgOperand(1);
5851     SDValue Chain = getRoot();
5852     SDValue RegName =
5853         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5854     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5855                             RegName, getValue(RegValue)));
5856     return;
5857   }
5858   case Intrinsic::memcpy: {
5859     const auto &MCI = cast<MemCpyInst>(I);
5860     SDValue Op1 = getValue(I.getArgOperand(0));
5861     SDValue Op2 = getValue(I.getArgOperand(1));
5862     SDValue Op3 = getValue(I.getArgOperand(2));
5863     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5864     Align DstAlign = MCI.getDestAlign().valueOrOne();
5865     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5866     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5867     bool isVol = MCI.isVolatile();
5868     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5869     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5870     // node.
5871     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5872     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5873                                /* AlwaysInline */ false, isTC,
5874                                MachinePointerInfo(I.getArgOperand(0)),
5875                                MachinePointerInfo(I.getArgOperand(1)),
5876                                I.getAAMetadata());
5877     updateDAGForMaybeTailCall(MC);
5878     return;
5879   }
5880   case Intrinsic::memcpy_inline: {
5881     const auto &MCI = cast<MemCpyInlineInst>(I);
5882     SDValue Dst = getValue(I.getArgOperand(0));
5883     SDValue Src = getValue(I.getArgOperand(1));
5884     SDValue Size = getValue(I.getArgOperand(2));
5885     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5886     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5887     Align DstAlign = MCI.getDestAlign().valueOrOne();
5888     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5889     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5890     bool isVol = MCI.isVolatile();
5891     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5892     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5893     // node.
5894     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5895                                /* AlwaysInline */ true, isTC,
5896                                MachinePointerInfo(I.getArgOperand(0)),
5897                                MachinePointerInfo(I.getArgOperand(1)),
5898                                I.getAAMetadata());
5899     updateDAGForMaybeTailCall(MC);
5900     return;
5901   }
5902   case Intrinsic::memset: {
5903     const auto &MSI = cast<MemSetInst>(I);
5904     SDValue Op1 = getValue(I.getArgOperand(0));
5905     SDValue Op2 = getValue(I.getArgOperand(1));
5906     SDValue Op3 = getValue(I.getArgOperand(2));
5907     // @llvm.memset defines 0 and 1 to both mean no alignment.
5908     Align Alignment = MSI.getDestAlign().valueOrOne();
5909     bool isVol = MSI.isVolatile();
5910     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5911     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5912     SDValue MS = DAG.getMemset(
5913         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5914         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5915     updateDAGForMaybeTailCall(MS);
5916     return;
5917   }
5918   case Intrinsic::memset_inline: {
5919     const auto &MSII = cast<MemSetInlineInst>(I);
5920     SDValue Dst = getValue(I.getArgOperand(0));
5921     SDValue Value = getValue(I.getArgOperand(1));
5922     SDValue Size = getValue(I.getArgOperand(2));
5923     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5924     // @llvm.memset defines 0 and 1 to both mean no alignment.
5925     Align DstAlign = MSII.getDestAlign().valueOrOne();
5926     bool isVol = MSII.isVolatile();
5927     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5928     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5929     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5930                                /* AlwaysInline */ true, isTC,
5931                                MachinePointerInfo(I.getArgOperand(0)),
5932                                I.getAAMetadata());
5933     updateDAGForMaybeTailCall(MC);
5934     return;
5935   }
5936   case Intrinsic::memmove: {
5937     const auto &MMI = cast<MemMoveInst>(I);
5938     SDValue Op1 = getValue(I.getArgOperand(0));
5939     SDValue Op2 = getValue(I.getArgOperand(1));
5940     SDValue Op3 = getValue(I.getArgOperand(2));
5941     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5942     Align DstAlign = MMI.getDestAlign().valueOrOne();
5943     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5944     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5945     bool isVol = MMI.isVolatile();
5946     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5947     // FIXME: Support passing different dest/src alignments to the memmove DAG
5948     // node.
5949     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5950     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5951                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5952                                 MachinePointerInfo(I.getArgOperand(1)),
5953                                 I.getAAMetadata());
5954     updateDAGForMaybeTailCall(MM);
5955     return;
5956   }
5957   case Intrinsic::memcpy_element_unordered_atomic: {
5958     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5959     SDValue Dst = getValue(MI.getRawDest());
5960     SDValue Src = getValue(MI.getRawSource());
5961     SDValue Length = getValue(MI.getLength());
5962 
5963     unsigned DstAlign = MI.getDestAlignment();
5964     unsigned SrcAlign = MI.getSourceAlignment();
5965     Type *LengthTy = MI.getLength()->getType();
5966     unsigned ElemSz = MI.getElementSizeInBytes();
5967     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5968     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5969                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5970                                      MachinePointerInfo(MI.getRawDest()),
5971                                      MachinePointerInfo(MI.getRawSource()));
5972     updateDAGForMaybeTailCall(MC);
5973     return;
5974   }
5975   case Intrinsic::memmove_element_unordered_atomic: {
5976     auto &MI = cast<AtomicMemMoveInst>(I);
5977     SDValue Dst = getValue(MI.getRawDest());
5978     SDValue Src = getValue(MI.getRawSource());
5979     SDValue Length = getValue(MI.getLength());
5980 
5981     unsigned DstAlign = MI.getDestAlignment();
5982     unsigned SrcAlign = MI.getSourceAlignment();
5983     Type *LengthTy = MI.getLength()->getType();
5984     unsigned ElemSz = MI.getElementSizeInBytes();
5985     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5986     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5987                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5988                                       MachinePointerInfo(MI.getRawDest()),
5989                                       MachinePointerInfo(MI.getRawSource()));
5990     updateDAGForMaybeTailCall(MC);
5991     return;
5992   }
5993   case Intrinsic::memset_element_unordered_atomic: {
5994     auto &MI = cast<AtomicMemSetInst>(I);
5995     SDValue Dst = getValue(MI.getRawDest());
5996     SDValue Val = getValue(MI.getValue());
5997     SDValue Length = getValue(MI.getLength());
5998 
5999     unsigned DstAlign = MI.getDestAlignment();
6000     Type *LengthTy = MI.getLength()->getType();
6001     unsigned ElemSz = MI.getElementSizeInBytes();
6002     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6003     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
6004                                      LengthTy, ElemSz, isTC,
6005                                      MachinePointerInfo(MI.getRawDest()));
6006     updateDAGForMaybeTailCall(MC);
6007     return;
6008   }
6009   case Intrinsic::call_preallocated_setup: {
6010     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6011     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6012     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6013                               getRoot(), SrcValue);
6014     setValue(&I, Res);
6015     DAG.setRoot(Res);
6016     return;
6017   }
6018   case Intrinsic::call_preallocated_arg: {
6019     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6020     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6021     SDValue Ops[3];
6022     Ops[0] = getRoot();
6023     Ops[1] = SrcValue;
6024     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6025                                    MVT::i32); // arg index
6026     SDValue Res = DAG.getNode(
6027         ISD::PREALLOCATED_ARG, sdl,
6028         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6029     setValue(&I, Res);
6030     DAG.setRoot(Res.getValue(1));
6031     return;
6032   }
6033   case Intrinsic::dbg_addr:
6034   case Intrinsic::dbg_declare: {
6035     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6036     // they are non-variadic.
6037     const auto &DI = cast<DbgVariableIntrinsic>(I);
6038     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6039     DILocalVariable *Variable = DI.getVariable();
6040     DIExpression *Expression = DI.getExpression();
6041     dropDanglingDebugInfo(Variable, Expression);
6042     assert(Variable && "Missing variable");
6043     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6044                       << "\n");
6045     // Check if address has undef value.
6046     const Value *Address = DI.getVariableLocationOp(0);
6047     if (!Address || isa<UndefValue>(Address) ||
6048         (Address->use_empty() && !isa<Argument>(Address))) {
6049       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6050                         << " (bad/undef/unused-arg address)\n");
6051       return;
6052     }
6053 
6054     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6055 
6056     // Check if this variable can be described by a frame index, typically
6057     // either as a static alloca or a byval parameter.
6058     int FI = std::numeric_limits<int>::max();
6059     if (const auto *AI =
6060             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6061       if (AI->isStaticAlloca()) {
6062         auto I = FuncInfo.StaticAllocaMap.find(AI);
6063         if (I != FuncInfo.StaticAllocaMap.end())
6064           FI = I->second;
6065       }
6066     } else if (const auto *Arg = dyn_cast<Argument>(
6067                    Address->stripInBoundsConstantOffsets())) {
6068       FI = FuncInfo.getArgumentFrameIndex(Arg);
6069     }
6070 
6071     // llvm.dbg.addr is control dependent and always generates indirect
6072     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6073     // the MachineFunction variable table.
6074     if (FI != std::numeric_limits<int>::max()) {
6075       if (Intrinsic == Intrinsic::dbg_addr) {
6076         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6077             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6078             dl, SDNodeOrder);
6079         DAG.AddDbgValue(SDV, isParameter);
6080       } else {
6081         LLVM_DEBUG(dbgs() << "Skipping " << DI
6082                           << " (variable info stashed in MF side table)\n");
6083       }
6084       return;
6085     }
6086 
6087     SDValue &N = NodeMap[Address];
6088     if (!N.getNode() && isa<Argument>(Address))
6089       // Check unused arguments map.
6090       N = UnusedArgNodeMap[Address];
6091     SDDbgValue *SDV;
6092     if (N.getNode()) {
6093       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6094         Address = BCI->getOperand(0);
6095       // Parameters are handled specially.
6096       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6097       if (isParameter && FINode) {
6098         // Byval parameter. We have a frame index at this point.
6099         SDV =
6100             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6101                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6102       } else if (isa<Argument>(Address)) {
6103         // Address is an argument, so try to emit its dbg value using
6104         // virtual register info from the FuncInfo.ValueMap.
6105         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6106                                  FuncArgumentDbgValueKind::Declare, N);
6107         return;
6108       } else {
6109         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6110                               true, dl, SDNodeOrder);
6111       }
6112       DAG.AddDbgValue(SDV, isParameter);
6113     } else {
6114       // If Address is an argument then try to emit its dbg value using
6115       // virtual register info from the FuncInfo.ValueMap.
6116       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6117                                     FuncArgumentDbgValueKind::Declare, N)) {
6118         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6119                           << " (could not emit func-arg dbg_value)\n");
6120       }
6121     }
6122     return;
6123   }
6124   case Intrinsic::dbg_label: {
6125     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6126     DILabel *Label = DI.getLabel();
6127     assert(Label && "Missing label");
6128 
6129     SDDbgLabel *SDV;
6130     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6131     DAG.AddDbgLabel(SDV);
6132     return;
6133   }
6134   case Intrinsic::dbg_value: {
6135     const DbgValueInst &DI = cast<DbgValueInst>(I);
6136     assert(DI.getVariable() && "Missing variable");
6137 
6138     DILocalVariable *Variable = DI.getVariable();
6139     DIExpression *Expression = DI.getExpression();
6140     dropDanglingDebugInfo(Variable, Expression);
6141     SmallVector<Value *, 4> Values(DI.getValues());
6142     if (Values.empty())
6143       return;
6144 
6145     if (llvm::is_contained(Values, nullptr))
6146       return;
6147 
6148     bool IsVariadic = DI.hasArgList();
6149     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6150                           SDNodeOrder, IsVariadic))
6151       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6152     return;
6153   }
6154 
6155   case Intrinsic::eh_typeid_for: {
6156     // Find the type id for the given typeinfo.
6157     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6158     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6159     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6160     setValue(&I, Res);
6161     return;
6162   }
6163 
6164   case Intrinsic::eh_return_i32:
6165   case Intrinsic::eh_return_i64:
6166     DAG.getMachineFunction().setCallsEHReturn(true);
6167     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6168                             MVT::Other,
6169                             getControlRoot(),
6170                             getValue(I.getArgOperand(0)),
6171                             getValue(I.getArgOperand(1))));
6172     return;
6173   case Intrinsic::eh_unwind_init:
6174     DAG.getMachineFunction().setCallsUnwindInit(true);
6175     return;
6176   case Intrinsic::eh_dwarf_cfa:
6177     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6178                              TLI.getPointerTy(DAG.getDataLayout()),
6179                              getValue(I.getArgOperand(0))));
6180     return;
6181   case Intrinsic::eh_sjlj_callsite: {
6182     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6183     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6184     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6185 
6186     MMI.setCurrentCallSite(CI->getZExtValue());
6187     return;
6188   }
6189   case Intrinsic::eh_sjlj_functioncontext: {
6190     // Get and store the index of the function context.
6191     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6192     AllocaInst *FnCtx =
6193       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6194     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6195     MFI.setFunctionContextIndex(FI);
6196     return;
6197   }
6198   case Intrinsic::eh_sjlj_setjmp: {
6199     SDValue Ops[2];
6200     Ops[0] = getRoot();
6201     Ops[1] = getValue(I.getArgOperand(0));
6202     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6203                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6204     setValue(&I, Op.getValue(0));
6205     DAG.setRoot(Op.getValue(1));
6206     return;
6207   }
6208   case Intrinsic::eh_sjlj_longjmp:
6209     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6210                             getRoot(), getValue(I.getArgOperand(0))));
6211     return;
6212   case Intrinsic::eh_sjlj_setup_dispatch:
6213     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6214                             getRoot()));
6215     return;
6216   case Intrinsic::masked_gather:
6217     visitMaskedGather(I);
6218     return;
6219   case Intrinsic::masked_load:
6220     visitMaskedLoad(I);
6221     return;
6222   case Intrinsic::masked_scatter:
6223     visitMaskedScatter(I);
6224     return;
6225   case Intrinsic::masked_store:
6226     visitMaskedStore(I);
6227     return;
6228   case Intrinsic::masked_expandload:
6229     visitMaskedLoad(I, true /* IsExpanding */);
6230     return;
6231   case Intrinsic::masked_compressstore:
6232     visitMaskedStore(I, true /* IsCompressing */);
6233     return;
6234   case Intrinsic::powi:
6235     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6236                             getValue(I.getArgOperand(1)), DAG));
6237     return;
6238   case Intrinsic::log:
6239     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6240     return;
6241   case Intrinsic::log2:
6242     setValue(&I,
6243              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6244     return;
6245   case Intrinsic::log10:
6246     setValue(&I,
6247              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6248     return;
6249   case Intrinsic::exp:
6250     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6251     return;
6252   case Intrinsic::exp2:
6253     setValue(&I,
6254              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6255     return;
6256   case Intrinsic::pow:
6257     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6258                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6259     return;
6260   case Intrinsic::sqrt:
6261   case Intrinsic::fabs:
6262   case Intrinsic::sin:
6263   case Intrinsic::cos:
6264   case Intrinsic::floor:
6265   case Intrinsic::ceil:
6266   case Intrinsic::trunc:
6267   case Intrinsic::rint:
6268   case Intrinsic::nearbyint:
6269   case Intrinsic::round:
6270   case Intrinsic::roundeven:
6271   case Intrinsic::canonicalize: {
6272     unsigned Opcode;
6273     switch (Intrinsic) {
6274     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6275     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6276     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6277     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6278     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6279     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6280     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6281     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6282     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6283     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6284     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6285     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6286     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6287     }
6288 
6289     setValue(&I, DAG.getNode(Opcode, sdl,
6290                              getValue(I.getArgOperand(0)).getValueType(),
6291                              getValue(I.getArgOperand(0)), Flags));
6292     return;
6293   }
6294   case Intrinsic::lround:
6295   case Intrinsic::llround:
6296   case Intrinsic::lrint:
6297   case Intrinsic::llrint: {
6298     unsigned Opcode;
6299     switch (Intrinsic) {
6300     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6301     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6302     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6303     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6304     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6305     }
6306 
6307     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6308     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6309                              getValue(I.getArgOperand(0))));
6310     return;
6311   }
6312   case Intrinsic::minnum:
6313     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6314                              getValue(I.getArgOperand(0)).getValueType(),
6315                              getValue(I.getArgOperand(0)),
6316                              getValue(I.getArgOperand(1)), Flags));
6317     return;
6318   case Intrinsic::maxnum:
6319     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6320                              getValue(I.getArgOperand(0)).getValueType(),
6321                              getValue(I.getArgOperand(0)),
6322                              getValue(I.getArgOperand(1)), Flags));
6323     return;
6324   case Intrinsic::minimum:
6325     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6326                              getValue(I.getArgOperand(0)).getValueType(),
6327                              getValue(I.getArgOperand(0)),
6328                              getValue(I.getArgOperand(1)), Flags));
6329     return;
6330   case Intrinsic::maximum:
6331     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6332                              getValue(I.getArgOperand(0)).getValueType(),
6333                              getValue(I.getArgOperand(0)),
6334                              getValue(I.getArgOperand(1)), Flags));
6335     return;
6336   case Intrinsic::copysign:
6337     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6338                              getValue(I.getArgOperand(0)).getValueType(),
6339                              getValue(I.getArgOperand(0)),
6340                              getValue(I.getArgOperand(1)), Flags));
6341     return;
6342   case Intrinsic::arithmetic_fence: {
6343     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6344                              getValue(I.getArgOperand(0)).getValueType(),
6345                              getValue(I.getArgOperand(0)), Flags));
6346     return;
6347   }
6348   case Intrinsic::fma:
6349     setValue(&I, DAG.getNode(
6350                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6351                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6352                      getValue(I.getArgOperand(2)), Flags));
6353     return;
6354 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6355   case Intrinsic::INTRINSIC:
6356 #include "llvm/IR/ConstrainedOps.def"
6357     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6358     return;
6359 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6360 #include "llvm/IR/VPIntrinsics.def"
6361     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6362     return;
6363   case Intrinsic::fptrunc_round: {
6364     // Get the last argument, the metadata and convert it to an integer in the
6365     // call
6366     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6367     Optional<RoundingMode> RoundMode =
6368         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6369 
6370     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6371 
6372     // Propagate fast-math-flags from IR to node(s).
6373     SDNodeFlags Flags;
6374     Flags.copyFMF(*cast<FPMathOperator>(&I));
6375     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6376 
6377     SDValue Result;
6378     Result = DAG.getNode(
6379         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6380         DAG.getTargetConstant((int)RoundMode.getValue(), sdl,
6381                               TLI.getPointerTy(DAG.getDataLayout())));
6382     setValue(&I, Result);
6383 
6384     return;
6385   }
6386   case Intrinsic::fmuladd: {
6387     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6388     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6389         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6390       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6391                                getValue(I.getArgOperand(0)).getValueType(),
6392                                getValue(I.getArgOperand(0)),
6393                                getValue(I.getArgOperand(1)),
6394                                getValue(I.getArgOperand(2)), Flags));
6395     } else {
6396       // TODO: Intrinsic calls should have fast-math-flags.
6397       SDValue Mul = DAG.getNode(
6398           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6399           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6400       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6401                                 getValue(I.getArgOperand(0)).getValueType(),
6402                                 Mul, getValue(I.getArgOperand(2)), Flags);
6403       setValue(&I, Add);
6404     }
6405     return;
6406   }
6407   case Intrinsic::convert_to_fp16:
6408     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6409                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6410                                          getValue(I.getArgOperand(0)),
6411                                          DAG.getTargetConstant(0, sdl,
6412                                                                MVT::i32))));
6413     return;
6414   case Intrinsic::convert_from_fp16:
6415     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6416                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6417                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6418                                          getValue(I.getArgOperand(0)))));
6419     return;
6420   case Intrinsic::fptosi_sat: {
6421     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6422     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6423                              getValue(I.getArgOperand(0)),
6424                              DAG.getValueType(VT.getScalarType())));
6425     return;
6426   }
6427   case Intrinsic::fptoui_sat: {
6428     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6429     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6430                              getValue(I.getArgOperand(0)),
6431                              DAG.getValueType(VT.getScalarType())));
6432     return;
6433   }
6434   case Intrinsic::set_rounding:
6435     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6436                       {getRoot(), getValue(I.getArgOperand(0))});
6437     setValue(&I, Res);
6438     DAG.setRoot(Res.getValue(0));
6439     return;
6440   case Intrinsic::is_fpclass: {
6441     const DataLayout DLayout = DAG.getDataLayout();
6442     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6443     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6444     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6445     MachineFunction &MF = DAG.getMachineFunction();
6446     const Function &F = MF.getFunction();
6447     SDValue Op = getValue(I.getArgOperand(0));
6448     SDNodeFlags Flags;
6449     Flags.setNoFPExcept(
6450         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6451     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6452     // expansion can use illegal types. Making expansion early allows
6453     // legalizing these types prior to selection.
6454     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6455       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6456       setValue(&I, Result);
6457       return;
6458     }
6459 
6460     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6461     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6462     setValue(&I, V);
6463     return;
6464   }
6465   case Intrinsic::pcmarker: {
6466     SDValue Tmp = getValue(I.getArgOperand(0));
6467     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6468     return;
6469   }
6470   case Intrinsic::readcyclecounter: {
6471     SDValue Op = getRoot();
6472     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6473                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6474     setValue(&I, Res);
6475     DAG.setRoot(Res.getValue(1));
6476     return;
6477   }
6478   case Intrinsic::bitreverse:
6479     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6480                              getValue(I.getArgOperand(0)).getValueType(),
6481                              getValue(I.getArgOperand(0))));
6482     return;
6483   case Intrinsic::bswap:
6484     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6485                              getValue(I.getArgOperand(0)).getValueType(),
6486                              getValue(I.getArgOperand(0))));
6487     return;
6488   case Intrinsic::cttz: {
6489     SDValue Arg = getValue(I.getArgOperand(0));
6490     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6491     EVT Ty = Arg.getValueType();
6492     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6493                              sdl, Ty, Arg));
6494     return;
6495   }
6496   case Intrinsic::ctlz: {
6497     SDValue Arg = getValue(I.getArgOperand(0));
6498     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6499     EVT Ty = Arg.getValueType();
6500     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6501                              sdl, Ty, Arg));
6502     return;
6503   }
6504   case Intrinsic::ctpop: {
6505     SDValue Arg = getValue(I.getArgOperand(0));
6506     EVT Ty = Arg.getValueType();
6507     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6508     return;
6509   }
6510   case Intrinsic::fshl:
6511   case Intrinsic::fshr: {
6512     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6513     SDValue X = getValue(I.getArgOperand(0));
6514     SDValue Y = getValue(I.getArgOperand(1));
6515     SDValue Z = getValue(I.getArgOperand(2));
6516     EVT VT = X.getValueType();
6517 
6518     if (X == Y) {
6519       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6520       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6521     } else {
6522       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6523       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6524     }
6525     return;
6526   }
6527   case Intrinsic::sadd_sat: {
6528     SDValue Op1 = getValue(I.getArgOperand(0));
6529     SDValue Op2 = getValue(I.getArgOperand(1));
6530     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6531     return;
6532   }
6533   case Intrinsic::uadd_sat: {
6534     SDValue Op1 = getValue(I.getArgOperand(0));
6535     SDValue Op2 = getValue(I.getArgOperand(1));
6536     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6537     return;
6538   }
6539   case Intrinsic::ssub_sat: {
6540     SDValue Op1 = getValue(I.getArgOperand(0));
6541     SDValue Op2 = getValue(I.getArgOperand(1));
6542     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6543     return;
6544   }
6545   case Intrinsic::usub_sat: {
6546     SDValue Op1 = getValue(I.getArgOperand(0));
6547     SDValue Op2 = getValue(I.getArgOperand(1));
6548     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6549     return;
6550   }
6551   case Intrinsic::sshl_sat: {
6552     SDValue Op1 = getValue(I.getArgOperand(0));
6553     SDValue Op2 = getValue(I.getArgOperand(1));
6554     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6555     return;
6556   }
6557   case Intrinsic::ushl_sat: {
6558     SDValue Op1 = getValue(I.getArgOperand(0));
6559     SDValue Op2 = getValue(I.getArgOperand(1));
6560     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6561     return;
6562   }
6563   case Intrinsic::smul_fix:
6564   case Intrinsic::umul_fix:
6565   case Intrinsic::smul_fix_sat:
6566   case Intrinsic::umul_fix_sat: {
6567     SDValue Op1 = getValue(I.getArgOperand(0));
6568     SDValue Op2 = getValue(I.getArgOperand(1));
6569     SDValue Op3 = getValue(I.getArgOperand(2));
6570     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6571                              Op1.getValueType(), Op1, Op2, Op3));
6572     return;
6573   }
6574   case Intrinsic::sdiv_fix:
6575   case Intrinsic::udiv_fix:
6576   case Intrinsic::sdiv_fix_sat:
6577   case Intrinsic::udiv_fix_sat: {
6578     SDValue Op1 = getValue(I.getArgOperand(0));
6579     SDValue Op2 = getValue(I.getArgOperand(1));
6580     SDValue Op3 = getValue(I.getArgOperand(2));
6581     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6582                               Op1, Op2, Op3, DAG, TLI));
6583     return;
6584   }
6585   case Intrinsic::smax: {
6586     SDValue Op1 = getValue(I.getArgOperand(0));
6587     SDValue Op2 = getValue(I.getArgOperand(1));
6588     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6589     return;
6590   }
6591   case Intrinsic::smin: {
6592     SDValue Op1 = getValue(I.getArgOperand(0));
6593     SDValue Op2 = getValue(I.getArgOperand(1));
6594     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6595     return;
6596   }
6597   case Intrinsic::umax: {
6598     SDValue Op1 = getValue(I.getArgOperand(0));
6599     SDValue Op2 = getValue(I.getArgOperand(1));
6600     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6601     return;
6602   }
6603   case Intrinsic::umin: {
6604     SDValue Op1 = getValue(I.getArgOperand(0));
6605     SDValue Op2 = getValue(I.getArgOperand(1));
6606     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6607     return;
6608   }
6609   case Intrinsic::abs: {
6610     // TODO: Preserve "int min is poison" arg in SDAG?
6611     SDValue Op1 = getValue(I.getArgOperand(0));
6612     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6613     return;
6614   }
6615   case Intrinsic::stacksave: {
6616     SDValue Op = getRoot();
6617     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6618     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6619     setValue(&I, Res);
6620     DAG.setRoot(Res.getValue(1));
6621     return;
6622   }
6623   case Intrinsic::stackrestore:
6624     Res = getValue(I.getArgOperand(0));
6625     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6626     return;
6627   case Intrinsic::get_dynamic_area_offset: {
6628     SDValue Op = getRoot();
6629     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6630     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6631     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6632     // target.
6633     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6634       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6635                          " intrinsic!");
6636     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6637                       Op);
6638     DAG.setRoot(Op);
6639     setValue(&I, Res);
6640     return;
6641   }
6642   case Intrinsic::stackguard: {
6643     MachineFunction &MF = DAG.getMachineFunction();
6644     const Module &M = *MF.getFunction().getParent();
6645     SDValue Chain = getRoot();
6646     if (TLI.useLoadStackGuardNode()) {
6647       Res = getLoadStackGuard(DAG, sdl, Chain);
6648     } else {
6649       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6650       const Value *Global = TLI.getSDagStackGuard(M);
6651       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6652       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6653                         MachinePointerInfo(Global, 0), Align,
6654                         MachineMemOperand::MOVolatile);
6655     }
6656     if (TLI.useStackGuardXorFP())
6657       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6658     DAG.setRoot(Chain);
6659     setValue(&I, Res);
6660     return;
6661   }
6662   case Intrinsic::stackprotector: {
6663     // Emit code into the DAG to store the stack guard onto the stack.
6664     MachineFunction &MF = DAG.getMachineFunction();
6665     MachineFrameInfo &MFI = MF.getFrameInfo();
6666     SDValue Src, Chain = getRoot();
6667 
6668     if (TLI.useLoadStackGuardNode())
6669       Src = getLoadStackGuard(DAG, sdl, Chain);
6670     else
6671       Src = getValue(I.getArgOperand(0));   // The guard's value.
6672 
6673     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6674 
6675     int FI = FuncInfo.StaticAllocaMap[Slot];
6676     MFI.setStackProtectorIndex(FI);
6677     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6678 
6679     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6680 
6681     // Store the stack protector onto the stack.
6682     Res = DAG.getStore(
6683         Chain, sdl, Src, FIN,
6684         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6685         MaybeAlign(), MachineMemOperand::MOVolatile);
6686     setValue(&I, Res);
6687     DAG.setRoot(Res);
6688     return;
6689   }
6690   case Intrinsic::objectsize:
6691     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6692 
6693   case Intrinsic::is_constant:
6694     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6695 
6696   case Intrinsic::annotation:
6697   case Intrinsic::ptr_annotation:
6698   case Intrinsic::launder_invariant_group:
6699   case Intrinsic::strip_invariant_group:
6700     // Drop the intrinsic, but forward the value
6701     setValue(&I, getValue(I.getOperand(0)));
6702     return;
6703 
6704   case Intrinsic::assume:
6705   case Intrinsic::experimental_noalias_scope_decl:
6706   case Intrinsic::var_annotation:
6707   case Intrinsic::sideeffect:
6708     // Discard annotate attributes, noalias scope declarations, assumptions, and
6709     // artificial side-effects.
6710     return;
6711 
6712   case Intrinsic::codeview_annotation: {
6713     // Emit a label associated with this metadata.
6714     MachineFunction &MF = DAG.getMachineFunction();
6715     MCSymbol *Label =
6716         MF.getMMI().getContext().createTempSymbol("annotation", true);
6717     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6718     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6719     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6720     DAG.setRoot(Res);
6721     return;
6722   }
6723 
6724   case Intrinsic::init_trampoline: {
6725     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6726 
6727     SDValue Ops[6];
6728     Ops[0] = getRoot();
6729     Ops[1] = getValue(I.getArgOperand(0));
6730     Ops[2] = getValue(I.getArgOperand(1));
6731     Ops[3] = getValue(I.getArgOperand(2));
6732     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6733     Ops[5] = DAG.getSrcValue(F);
6734 
6735     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6736 
6737     DAG.setRoot(Res);
6738     return;
6739   }
6740   case Intrinsic::adjust_trampoline:
6741     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6742                              TLI.getPointerTy(DAG.getDataLayout()),
6743                              getValue(I.getArgOperand(0))));
6744     return;
6745   case Intrinsic::gcroot: {
6746     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6747            "only valid in functions with gc specified, enforced by Verifier");
6748     assert(GFI && "implied by previous");
6749     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6750     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6751 
6752     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6753     GFI->addStackRoot(FI->getIndex(), TypeMap);
6754     return;
6755   }
6756   case Intrinsic::gcread:
6757   case Intrinsic::gcwrite:
6758     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6759   case Intrinsic::flt_rounds:
6760     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6761     setValue(&I, Res);
6762     DAG.setRoot(Res.getValue(1));
6763     return;
6764 
6765   case Intrinsic::expect:
6766     // Just replace __builtin_expect(exp, c) with EXP.
6767     setValue(&I, getValue(I.getArgOperand(0)));
6768     return;
6769 
6770   case Intrinsic::ubsantrap:
6771   case Intrinsic::debugtrap:
6772   case Intrinsic::trap: {
6773     StringRef TrapFuncName =
6774         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6775     if (TrapFuncName.empty()) {
6776       switch (Intrinsic) {
6777       case Intrinsic::trap:
6778         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6779         break;
6780       case Intrinsic::debugtrap:
6781         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6782         break;
6783       case Intrinsic::ubsantrap:
6784         DAG.setRoot(DAG.getNode(
6785             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6786             DAG.getTargetConstant(
6787                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6788                 MVT::i32)));
6789         break;
6790       default: llvm_unreachable("unknown trap intrinsic");
6791       }
6792       return;
6793     }
6794     TargetLowering::ArgListTy Args;
6795     if (Intrinsic == Intrinsic::ubsantrap) {
6796       Args.push_back(TargetLoweringBase::ArgListEntry());
6797       Args[0].Val = I.getArgOperand(0);
6798       Args[0].Node = getValue(Args[0].Val);
6799       Args[0].Ty = Args[0].Val->getType();
6800     }
6801 
6802     TargetLowering::CallLoweringInfo CLI(DAG);
6803     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6804         CallingConv::C, I.getType(),
6805         DAG.getExternalSymbol(TrapFuncName.data(),
6806                               TLI.getPointerTy(DAG.getDataLayout())),
6807         std::move(Args));
6808 
6809     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6810     DAG.setRoot(Result.second);
6811     return;
6812   }
6813 
6814   case Intrinsic::uadd_with_overflow:
6815   case Intrinsic::sadd_with_overflow:
6816   case Intrinsic::usub_with_overflow:
6817   case Intrinsic::ssub_with_overflow:
6818   case Intrinsic::umul_with_overflow:
6819   case Intrinsic::smul_with_overflow: {
6820     ISD::NodeType Op;
6821     switch (Intrinsic) {
6822     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6823     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6824     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6825     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6826     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6827     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6828     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6829     }
6830     SDValue Op1 = getValue(I.getArgOperand(0));
6831     SDValue Op2 = getValue(I.getArgOperand(1));
6832 
6833     EVT ResultVT = Op1.getValueType();
6834     EVT OverflowVT = MVT::i1;
6835     if (ResultVT.isVector())
6836       OverflowVT = EVT::getVectorVT(
6837           *Context, OverflowVT, ResultVT.getVectorElementCount());
6838 
6839     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6840     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6841     return;
6842   }
6843   case Intrinsic::prefetch: {
6844     SDValue Ops[5];
6845     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6846     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6847     Ops[0] = DAG.getRoot();
6848     Ops[1] = getValue(I.getArgOperand(0));
6849     Ops[2] = getValue(I.getArgOperand(1));
6850     Ops[3] = getValue(I.getArgOperand(2));
6851     Ops[4] = getValue(I.getArgOperand(3));
6852     SDValue Result = DAG.getMemIntrinsicNode(
6853         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6854         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6855         /* align */ None, Flags);
6856 
6857     // Chain the prefetch in parallell with any pending loads, to stay out of
6858     // the way of later optimizations.
6859     PendingLoads.push_back(Result);
6860     Result = getRoot();
6861     DAG.setRoot(Result);
6862     return;
6863   }
6864   case Intrinsic::lifetime_start:
6865   case Intrinsic::lifetime_end: {
6866     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6867     // Stack coloring is not enabled in O0, discard region information.
6868     if (TM.getOptLevel() == CodeGenOpt::None)
6869       return;
6870 
6871     const int64_t ObjectSize =
6872         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6873     Value *const ObjectPtr = I.getArgOperand(1);
6874     SmallVector<const Value *, 4> Allocas;
6875     getUnderlyingObjects(ObjectPtr, Allocas);
6876 
6877     for (const Value *Alloca : Allocas) {
6878       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6879 
6880       // Could not find an Alloca.
6881       if (!LifetimeObject)
6882         continue;
6883 
6884       // First check that the Alloca is static, otherwise it won't have a
6885       // valid frame index.
6886       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6887       if (SI == FuncInfo.StaticAllocaMap.end())
6888         return;
6889 
6890       const int FrameIndex = SI->second;
6891       int64_t Offset;
6892       if (GetPointerBaseWithConstantOffset(
6893               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6894         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6895       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6896                                 Offset);
6897       DAG.setRoot(Res);
6898     }
6899     return;
6900   }
6901   case Intrinsic::pseudoprobe: {
6902     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6903     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6904     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6905     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6906     DAG.setRoot(Res);
6907     return;
6908   }
6909   case Intrinsic::invariant_start:
6910     // Discard region information.
6911     setValue(&I,
6912              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6913     return;
6914   case Intrinsic::invariant_end:
6915     // Discard region information.
6916     return;
6917   case Intrinsic::clear_cache:
6918     /// FunctionName may be null.
6919     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6920       lowerCallToExternalSymbol(I, FunctionName);
6921     return;
6922   case Intrinsic::donothing:
6923   case Intrinsic::seh_try_begin:
6924   case Intrinsic::seh_scope_begin:
6925   case Intrinsic::seh_try_end:
6926   case Intrinsic::seh_scope_end:
6927     // ignore
6928     return;
6929   case Intrinsic::experimental_stackmap:
6930     visitStackmap(I);
6931     return;
6932   case Intrinsic::experimental_patchpoint_void:
6933   case Intrinsic::experimental_patchpoint_i64:
6934     visitPatchpoint(I);
6935     return;
6936   case Intrinsic::experimental_gc_statepoint:
6937     LowerStatepoint(cast<GCStatepointInst>(I));
6938     return;
6939   case Intrinsic::experimental_gc_result:
6940     visitGCResult(cast<GCResultInst>(I));
6941     return;
6942   case Intrinsic::experimental_gc_relocate:
6943     visitGCRelocate(cast<GCRelocateInst>(I));
6944     return;
6945   case Intrinsic::instrprof_cover:
6946     llvm_unreachable("instrprof failed to lower a cover");
6947   case Intrinsic::instrprof_increment:
6948     llvm_unreachable("instrprof failed to lower an increment");
6949   case Intrinsic::instrprof_value_profile:
6950     llvm_unreachable("instrprof failed to lower a value profiling call");
6951   case Intrinsic::localescape: {
6952     MachineFunction &MF = DAG.getMachineFunction();
6953     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6954 
6955     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6956     // is the same on all targets.
6957     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
6958       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6959       if (isa<ConstantPointerNull>(Arg))
6960         continue; // Skip null pointers. They represent a hole in index space.
6961       AllocaInst *Slot = cast<AllocaInst>(Arg);
6962       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6963              "can only escape static allocas");
6964       int FI = FuncInfo.StaticAllocaMap[Slot];
6965       MCSymbol *FrameAllocSym =
6966           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6967               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6968       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6969               TII->get(TargetOpcode::LOCAL_ESCAPE))
6970           .addSym(FrameAllocSym)
6971           .addFrameIndex(FI);
6972     }
6973 
6974     return;
6975   }
6976 
6977   case Intrinsic::localrecover: {
6978     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6979     MachineFunction &MF = DAG.getMachineFunction();
6980 
6981     // Get the symbol that defines the frame offset.
6982     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6983     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6984     unsigned IdxVal =
6985         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6986     MCSymbol *FrameAllocSym =
6987         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6988             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6989 
6990     Value *FP = I.getArgOperand(1);
6991     SDValue FPVal = getValue(FP);
6992     EVT PtrVT = FPVal.getValueType();
6993 
6994     // Create a MCSymbol for the label to avoid any target lowering
6995     // that would make this PC relative.
6996     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6997     SDValue OffsetVal =
6998         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6999 
7000     // Add the offset to the FP.
7001     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7002     setValue(&I, Add);
7003 
7004     return;
7005   }
7006 
7007   case Intrinsic::eh_exceptionpointer:
7008   case Intrinsic::eh_exceptioncode: {
7009     // Get the exception pointer vreg, copy from it, and resize it to fit.
7010     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7011     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7012     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7013     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7014     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7015     if (Intrinsic == Intrinsic::eh_exceptioncode)
7016       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7017     setValue(&I, N);
7018     return;
7019   }
7020   case Intrinsic::xray_customevent: {
7021     // Here we want to make sure that the intrinsic behaves as if it has a
7022     // specific calling convention, and only for x86_64.
7023     // FIXME: Support other platforms later.
7024     const auto &Triple = DAG.getTarget().getTargetTriple();
7025     if (Triple.getArch() != Triple::x86_64)
7026       return;
7027 
7028     SmallVector<SDValue, 8> Ops;
7029 
7030     // We want to say that we always want the arguments in registers.
7031     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7032     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7033     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7034     SDValue Chain = getRoot();
7035     Ops.push_back(LogEntryVal);
7036     Ops.push_back(StrSizeVal);
7037     Ops.push_back(Chain);
7038 
7039     // We need to enforce the calling convention for the callsite, so that
7040     // argument ordering is enforced correctly, and that register allocation can
7041     // see that some registers may be assumed clobbered and have to preserve
7042     // them across calls to the intrinsic.
7043     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7044                                            sdl, NodeTys, Ops);
7045     SDValue patchableNode = SDValue(MN, 0);
7046     DAG.setRoot(patchableNode);
7047     setValue(&I, patchableNode);
7048     return;
7049   }
7050   case Intrinsic::xray_typedevent: {
7051     // Here we want to make sure that the intrinsic behaves as if it has a
7052     // specific calling convention, and only for x86_64.
7053     // FIXME: Support other platforms later.
7054     const auto &Triple = DAG.getTarget().getTargetTriple();
7055     if (Triple.getArch() != Triple::x86_64)
7056       return;
7057 
7058     SmallVector<SDValue, 8> Ops;
7059 
7060     // We want to say that we always want the arguments in registers.
7061     // It's unclear to me how manipulating the selection DAG here forces callers
7062     // to provide arguments in registers instead of on the stack.
7063     SDValue LogTypeId = getValue(I.getArgOperand(0));
7064     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7065     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7066     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7067     SDValue Chain = getRoot();
7068     Ops.push_back(LogTypeId);
7069     Ops.push_back(LogEntryVal);
7070     Ops.push_back(StrSizeVal);
7071     Ops.push_back(Chain);
7072 
7073     // We need to enforce the calling convention for the callsite, so that
7074     // argument ordering is enforced correctly, and that register allocation can
7075     // see that some registers may be assumed clobbered and have to preserve
7076     // them across calls to the intrinsic.
7077     MachineSDNode *MN = DAG.getMachineNode(
7078         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7079     SDValue patchableNode = SDValue(MN, 0);
7080     DAG.setRoot(patchableNode);
7081     setValue(&I, patchableNode);
7082     return;
7083   }
7084   case Intrinsic::experimental_deoptimize:
7085     LowerDeoptimizeCall(&I);
7086     return;
7087   case Intrinsic::experimental_stepvector:
7088     visitStepVector(I);
7089     return;
7090   case Intrinsic::vector_reduce_fadd:
7091   case Intrinsic::vector_reduce_fmul:
7092   case Intrinsic::vector_reduce_add:
7093   case Intrinsic::vector_reduce_mul:
7094   case Intrinsic::vector_reduce_and:
7095   case Intrinsic::vector_reduce_or:
7096   case Intrinsic::vector_reduce_xor:
7097   case Intrinsic::vector_reduce_smax:
7098   case Intrinsic::vector_reduce_smin:
7099   case Intrinsic::vector_reduce_umax:
7100   case Intrinsic::vector_reduce_umin:
7101   case Intrinsic::vector_reduce_fmax:
7102   case Intrinsic::vector_reduce_fmin:
7103     visitVectorReduce(I, Intrinsic);
7104     return;
7105 
7106   case Intrinsic::icall_branch_funnel: {
7107     SmallVector<SDValue, 16> Ops;
7108     Ops.push_back(getValue(I.getArgOperand(0)));
7109 
7110     int64_t Offset;
7111     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7112         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7113     if (!Base)
7114       report_fatal_error(
7115           "llvm.icall.branch.funnel operand must be a GlobalValue");
7116     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7117 
7118     struct BranchFunnelTarget {
7119       int64_t Offset;
7120       SDValue Target;
7121     };
7122     SmallVector<BranchFunnelTarget, 8> Targets;
7123 
7124     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7125       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7126           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7127       if (ElemBase != Base)
7128         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7129                            "to the same GlobalValue");
7130 
7131       SDValue Val = getValue(I.getArgOperand(Op + 1));
7132       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7133       if (!GA)
7134         report_fatal_error(
7135             "llvm.icall.branch.funnel operand must be a GlobalValue");
7136       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7137                                      GA->getGlobal(), sdl, Val.getValueType(),
7138                                      GA->getOffset())});
7139     }
7140     llvm::sort(Targets,
7141                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7142                  return T1.Offset < T2.Offset;
7143                });
7144 
7145     for (auto &T : Targets) {
7146       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7147       Ops.push_back(T.Target);
7148     }
7149 
7150     Ops.push_back(DAG.getRoot()); // Chain
7151     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7152                                  MVT::Other, Ops),
7153               0);
7154     DAG.setRoot(N);
7155     setValue(&I, N);
7156     HasTailCall = true;
7157     return;
7158   }
7159 
7160   case Intrinsic::wasm_landingpad_index:
7161     // Information this intrinsic contained has been transferred to
7162     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7163     // delete it now.
7164     return;
7165 
7166   case Intrinsic::aarch64_settag:
7167   case Intrinsic::aarch64_settag_zero: {
7168     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7169     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7170     SDValue Val = TSI.EmitTargetCodeForSetTag(
7171         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7172         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7173         ZeroMemory);
7174     DAG.setRoot(Val);
7175     setValue(&I, Val);
7176     return;
7177   }
7178   case Intrinsic::ptrmask: {
7179     SDValue Ptr = getValue(I.getOperand(0));
7180     SDValue Const = getValue(I.getOperand(1));
7181 
7182     EVT PtrVT = Ptr.getValueType();
7183     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7184                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7185     return;
7186   }
7187   case Intrinsic::get_active_lane_mask: {
7188     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7189     SDValue Index = getValue(I.getOperand(0));
7190     EVT ElementVT = Index.getValueType();
7191 
7192     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7193       visitTargetIntrinsic(I, Intrinsic);
7194       return;
7195     }
7196 
7197     SDValue TripCount = getValue(I.getOperand(1));
7198     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7199 
7200     SDValue VectorIndex, VectorTripCount;
7201     if (VecTy.isScalableVector()) {
7202       VectorIndex = DAG.getSplatVector(VecTy, sdl, Index);
7203       VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount);
7204     } else {
7205       VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index);
7206       VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount);
7207     }
7208     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7209     SDValue VectorInduction = DAG.getNode(
7210         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7211     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7212                                  VectorTripCount, ISD::CondCode::SETULT);
7213     setValue(&I, SetCC);
7214     return;
7215   }
7216   case Intrinsic::experimental_vector_insert: {
7217     SDValue Vec = getValue(I.getOperand(0));
7218     SDValue SubVec = getValue(I.getOperand(1));
7219     SDValue Index = getValue(I.getOperand(2));
7220 
7221     // The intrinsic's index type is i64, but the SDNode requires an index type
7222     // suitable for the target. Convert the index as required.
7223     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7224     if (Index.getValueType() != VectorIdxTy)
7225       Index = DAG.getVectorIdxConstant(
7226           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7227 
7228     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7229     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7230                              Index));
7231     return;
7232   }
7233   case Intrinsic::experimental_vector_extract: {
7234     SDValue Vec = getValue(I.getOperand(0));
7235     SDValue Index = getValue(I.getOperand(1));
7236     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7237 
7238     // The intrinsic's index type is i64, but the SDNode requires an index type
7239     // suitable for the target. Convert the index as required.
7240     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7241     if (Index.getValueType() != VectorIdxTy)
7242       Index = DAG.getVectorIdxConstant(
7243           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7244 
7245     setValue(&I,
7246              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7247     return;
7248   }
7249   case Intrinsic::experimental_vector_reverse:
7250     visitVectorReverse(I);
7251     return;
7252   case Intrinsic::experimental_vector_splice:
7253     visitVectorSplice(I);
7254     return;
7255   }
7256 }
7257 
7258 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7259     const ConstrainedFPIntrinsic &FPI) {
7260   SDLoc sdl = getCurSDLoc();
7261 
7262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7263   SmallVector<EVT, 4> ValueVTs;
7264   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7265   ValueVTs.push_back(MVT::Other); // Out chain
7266 
7267   // We do not need to serialize constrained FP intrinsics against
7268   // each other or against (nonvolatile) loads, so they can be
7269   // chained like loads.
7270   SDValue Chain = DAG.getRoot();
7271   SmallVector<SDValue, 4> Opers;
7272   Opers.push_back(Chain);
7273   if (FPI.isUnaryOp()) {
7274     Opers.push_back(getValue(FPI.getArgOperand(0)));
7275   } else if (FPI.isTernaryOp()) {
7276     Opers.push_back(getValue(FPI.getArgOperand(0)));
7277     Opers.push_back(getValue(FPI.getArgOperand(1)));
7278     Opers.push_back(getValue(FPI.getArgOperand(2)));
7279   } else {
7280     Opers.push_back(getValue(FPI.getArgOperand(0)));
7281     Opers.push_back(getValue(FPI.getArgOperand(1)));
7282   }
7283 
7284   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7285     assert(Result.getNode()->getNumValues() == 2);
7286 
7287     // Push node to the appropriate list so that future instructions can be
7288     // chained up correctly.
7289     SDValue OutChain = Result.getValue(1);
7290     switch (EB) {
7291     case fp::ExceptionBehavior::ebIgnore:
7292       // The only reason why ebIgnore nodes still need to be chained is that
7293       // they might depend on the current rounding mode, and therefore must
7294       // not be moved across instruction that may change that mode.
7295       LLVM_FALLTHROUGH;
7296     case fp::ExceptionBehavior::ebMayTrap:
7297       // These must not be moved across calls or instructions that may change
7298       // floating-point exception masks.
7299       PendingConstrainedFP.push_back(OutChain);
7300       break;
7301     case fp::ExceptionBehavior::ebStrict:
7302       // These must not be moved across calls or instructions that may change
7303       // floating-point exception masks or read floating-point exception flags.
7304       // In addition, they cannot be optimized out even if unused.
7305       PendingConstrainedFPStrict.push_back(OutChain);
7306       break;
7307     }
7308   };
7309 
7310   SDVTList VTs = DAG.getVTList(ValueVTs);
7311   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7312 
7313   SDNodeFlags Flags;
7314   if (EB == fp::ExceptionBehavior::ebIgnore)
7315     Flags.setNoFPExcept(true);
7316 
7317   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7318     Flags.copyFMF(*FPOp);
7319 
7320   unsigned Opcode;
7321   switch (FPI.getIntrinsicID()) {
7322   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7323 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7324   case Intrinsic::INTRINSIC:                                                   \
7325     Opcode = ISD::STRICT_##DAGN;                                               \
7326     break;
7327 #include "llvm/IR/ConstrainedOps.def"
7328   case Intrinsic::experimental_constrained_fmuladd: {
7329     Opcode = ISD::STRICT_FMA;
7330     // Break fmuladd into fmul and fadd.
7331     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7332         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7333                                         ValueVTs[0])) {
7334       Opers.pop_back();
7335       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7336       pushOutChain(Mul, EB);
7337       Opcode = ISD::STRICT_FADD;
7338       Opers.clear();
7339       Opers.push_back(Mul.getValue(1));
7340       Opers.push_back(Mul.getValue(0));
7341       Opers.push_back(getValue(FPI.getArgOperand(2)));
7342     }
7343     break;
7344   }
7345   }
7346 
7347   // A few strict DAG nodes carry additional operands that are not
7348   // set up by the default code above.
7349   switch (Opcode) {
7350   default: break;
7351   case ISD::STRICT_FP_ROUND:
7352     Opers.push_back(
7353         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7354     break;
7355   case ISD::STRICT_FSETCC:
7356   case ISD::STRICT_FSETCCS: {
7357     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7358     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7359     if (TM.Options.NoNaNsFPMath)
7360       Condition = getFCmpCodeWithoutNaN(Condition);
7361     Opers.push_back(DAG.getCondCode(Condition));
7362     break;
7363   }
7364   }
7365 
7366   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7367   pushOutChain(Result, EB);
7368 
7369   SDValue FPResult = Result.getValue(0);
7370   setValue(&FPI, FPResult);
7371 }
7372 
7373 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7374   Optional<unsigned> ResOPC;
7375   switch (VPIntrin.getIntrinsicID()) {
7376 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7377   case Intrinsic::VPID:                                                        \
7378     ResOPC = ISD::VPSD;                                                        \
7379     break;
7380 #include "llvm/IR/VPIntrinsics.def"
7381   }
7382 
7383   if (!ResOPC.hasValue())
7384     llvm_unreachable(
7385         "Inconsistency: no SDNode available for this VPIntrinsic!");
7386 
7387   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7388       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7389     if (VPIntrin.getFastMathFlags().allowReassoc())
7390       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7391                                                 : ISD::VP_REDUCE_FMUL;
7392   }
7393 
7394   return ResOPC.getValue();
7395 }
7396 
7397 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT,
7398                                             SmallVector<SDValue, 7> &OpValues,
7399                                             bool IsGather) {
7400   SDLoc DL = getCurSDLoc();
7401   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7402   Value *PtrOperand = VPIntrin.getArgOperand(0);
7403   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7404   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7405   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7406   SDValue LD;
7407   bool AddToChain = true;
7408   if (!IsGather) {
7409     // Do not serialize variable-length loads of constant memory with
7410     // anything.
7411     if (!Alignment)
7412       Alignment = DAG.getEVTAlign(VT);
7413     MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7414     AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7415     SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7416     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7417         MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7418         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7419     LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7420                        MMO, false /*IsExpanding */);
7421   } else {
7422     if (!Alignment)
7423       Alignment = DAG.getEVTAlign(VT.getScalarType());
7424     unsigned AS =
7425         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7426     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7427         MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7428         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7429     SDValue Base, Index, Scale;
7430     ISD::MemIndexType IndexType;
7431     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7432                                       this, VPIntrin.getParent(),
7433                                       VT.getScalarStoreSize());
7434     if (!UniformBase) {
7435       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7436       Index = getValue(PtrOperand);
7437       IndexType = ISD::SIGNED_SCALED;
7438       Scale =
7439           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7440     }
7441     EVT IdxVT = Index.getValueType();
7442     EVT EltTy = IdxVT.getVectorElementType();
7443     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7444       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7445       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7446     }
7447     LD = DAG.getGatherVP(
7448         DAG.getVTList(VT, MVT::Other), VT, DL,
7449         {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7450         IndexType);
7451   }
7452   if (AddToChain)
7453     PendingLoads.push_back(LD.getValue(1));
7454   setValue(&VPIntrin, LD);
7455 }
7456 
7457 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin,
7458                                               SmallVector<SDValue, 7> &OpValues,
7459                                               bool IsScatter) {
7460   SDLoc DL = getCurSDLoc();
7461   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7462   Value *PtrOperand = VPIntrin.getArgOperand(1);
7463   EVT VT = OpValues[0].getValueType();
7464   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7465   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7466   SDValue ST;
7467   if (!IsScatter) {
7468     if (!Alignment)
7469       Alignment = DAG.getEVTAlign(VT);
7470     SDValue Ptr = OpValues[1];
7471     SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7472     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7473         MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7474         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7475     ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7476                         OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7477                         /* IsTruncating */ false, /*IsCompressing*/ false);
7478   } else {
7479     if (!Alignment)
7480       Alignment = DAG.getEVTAlign(VT.getScalarType());
7481     unsigned AS =
7482         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7483     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7484         MachinePointerInfo(AS), MachineMemOperand::MOStore,
7485         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7486     SDValue Base, Index, Scale;
7487     ISD::MemIndexType IndexType;
7488     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7489                                       this, VPIntrin.getParent(),
7490                                       VT.getScalarStoreSize());
7491     if (!UniformBase) {
7492       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7493       Index = getValue(PtrOperand);
7494       IndexType = ISD::SIGNED_SCALED;
7495       Scale =
7496           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7497     }
7498     EVT IdxVT = Index.getValueType();
7499     EVT EltTy = IdxVT.getVectorElementType();
7500     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7501       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7502       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7503     }
7504     ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7505                           {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7506                            OpValues[2], OpValues[3]},
7507                           MMO, IndexType);
7508   }
7509   DAG.setRoot(ST);
7510   setValue(&VPIntrin, ST);
7511 }
7512 
7513 void SelectionDAGBuilder::visitVPStridedLoad(
7514     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7515   SDLoc DL = getCurSDLoc();
7516   Value *PtrOperand = VPIntrin.getArgOperand(0);
7517   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7518   if (!Alignment)
7519     Alignment = DAG.getEVTAlign(VT.getScalarType());
7520   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7521   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7522   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7523   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7524   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7525   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7526       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7527       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7528 
7529   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7530                                     OpValues[2], OpValues[3], MMO,
7531                                     false /*IsExpanding*/);
7532 
7533   if (AddToChain)
7534     PendingLoads.push_back(LD.getValue(1));
7535   setValue(&VPIntrin, LD);
7536 }
7537 
7538 void SelectionDAGBuilder::visitVPStridedStore(
7539     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7540   SDLoc DL = getCurSDLoc();
7541   Value *PtrOperand = VPIntrin.getArgOperand(1);
7542   EVT VT = OpValues[0].getValueType();
7543   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7544   if (!Alignment)
7545     Alignment = DAG.getEVTAlign(VT.getScalarType());
7546   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7547   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7548       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7549       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7550 
7551   SDValue ST = DAG.getStridedStoreVP(
7552       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7553       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7554       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7555       /*IsCompressing*/ false);
7556 
7557   DAG.setRoot(ST);
7558   setValue(&VPIntrin, ST);
7559 }
7560 
7561 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7562   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7563   SDLoc DL = getCurSDLoc();
7564 
7565   ISD::CondCode Condition;
7566   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7567   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7568   if (IsFP) {
7569     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7570     // flags, but calls that don't return floating-point types can't be
7571     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7572     Condition = getFCmpCondCode(CondCode);
7573     if (TM.Options.NoNaNsFPMath)
7574       Condition = getFCmpCodeWithoutNaN(Condition);
7575   } else {
7576     Condition = getICmpCondCode(CondCode);
7577   }
7578 
7579   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7580   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7581   // #2 is the condition code
7582   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7583   SDValue EVL = getValue(VPIntrin.getOperand(4));
7584   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7585   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7586          "Unexpected target EVL type");
7587   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7588 
7589   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7590                                                         VPIntrin.getType());
7591   setValue(&VPIntrin,
7592            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7593 }
7594 
7595 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7596     const VPIntrinsic &VPIntrin) {
7597   SDLoc DL = getCurSDLoc();
7598   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7599 
7600   auto IID = VPIntrin.getIntrinsicID();
7601 
7602   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7603     return visitVPCmp(*CmpI);
7604 
7605   SmallVector<EVT, 4> ValueVTs;
7606   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7607   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7608   SDVTList VTs = DAG.getVTList(ValueVTs);
7609 
7610   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7611 
7612   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7613   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7614          "Unexpected target EVL type");
7615 
7616   // Request operands.
7617   SmallVector<SDValue, 7> OpValues;
7618   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7619     auto Op = getValue(VPIntrin.getArgOperand(I));
7620     if (I == EVLParamPos)
7621       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7622     OpValues.push_back(Op);
7623   }
7624 
7625   switch (Opcode) {
7626   default: {
7627     SDNodeFlags SDFlags;
7628     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7629       SDFlags.copyFMF(*FPMO);
7630     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7631     setValue(&VPIntrin, Result);
7632     break;
7633   }
7634   case ISD::VP_LOAD:
7635   case ISD::VP_GATHER:
7636     visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues,
7637                       Opcode == ISD::VP_GATHER);
7638     break;
7639   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7640     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7641     break;
7642   case ISD::VP_STORE:
7643   case ISD::VP_SCATTER:
7644     visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER);
7645     break;
7646   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7647     visitVPStridedStore(VPIntrin, OpValues);
7648     break;
7649   }
7650 }
7651 
7652 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7653                                           const BasicBlock *EHPadBB,
7654                                           MCSymbol *&BeginLabel) {
7655   MachineFunction &MF = DAG.getMachineFunction();
7656   MachineModuleInfo &MMI = MF.getMMI();
7657 
7658   // Insert a label before the invoke call to mark the try range.  This can be
7659   // used to detect deletion of the invoke via the MachineModuleInfo.
7660   BeginLabel = MMI.getContext().createTempSymbol();
7661 
7662   // For SjLj, keep track of which landing pads go with which invokes
7663   // so as to maintain the ordering of pads in the LSDA.
7664   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7665   if (CallSiteIndex) {
7666     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7667     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7668 
7669     // Now that the call site is handled, stop tracking it.
7670     MMI.setCurrentCallSite(0);
7671   }
7672 
7673   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7674 }
7675 
7676 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7677                                         const BasicBlock *EHPadBB,
7678                                         MCSymbol *BeginLabel) {
7679   assert(BeginLabel && "BeginLabel should've been set");
7680 
7681   MachineFunction &MF = DAG.getMachineFunction();
7682   MachineModuleInfo &MMI = MF.getMMI();
7683 
7684   // Insert a label at the end of the invoke call to mark the try range.  This
7685   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7686   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7687   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7688 
7689   // Inform MachineModuleInfo of range.
7690   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7691   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7692   // actually use outlined funclets and their LSDA info style.
7693   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7694     assert(II && "II should've been set");
7695     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7696     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7697   } else if (!isScopedEHPersonality(Pers)) {
7698     assert(EHPadBB);
7699     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7700   }
7701 
7702   return Chain;
7703 }
7704 
7705 std::pair<SDValue, SDValue>
7706 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7707                                     const BasicBlock *EHPadBB) {
7708   MCSymbol *BeginLabel = nullptr;
7709 
7710   if (EHPadBB) {
7711     // Both PendingLoads and PendingExports must be flushed here;
7712     // this call might not return.
7713     (void)getRoot();
7714     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7715     CLI.setChain(getRoot());
7716   }
7717 
7718   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7719   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7720 
7721   assert((CLI.IsTailCall || Result.second.getNode()) &&
7722          "Non-null chain expected with non-tail call!");
7723   assert((Result.second.getNode() || !Result.first.getNode()) &&
7724          "Null value expected with tail call!");
7725 
7726   if (!Result.second.getNode()) {
7727     // As a special case, a null chain means that a tail call has been emitted
7728     // and the DAG root is already updated.
7729     HasTailCall = true;
7730 
7731     // Since there's no actual continuation from this block, nothing can be
7732     // relying on us setting vregs for them.
7733     PendingExports.clear();
7734   } else {
7735     DAG.setRoot(Result.second);
7736   }
7737 
7738   if (EHPadBB) {
7739     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7740                            BeginLabel));
7741   }
7742 
7743   return Result;
7744 }
7745 
7746 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7747                                       bool isTailCall,
7748                                       bool isMustTailCall,
7749                                       const BasicBlock *EHPadBB) {
7750   auto &DL = DAG.getDataLayout();
7751   FunctionType *FTy = CB.getFunctionType();
7752   Type *RetTy = CB.getType();
7753 
7754   TargetLowering::ArgListTy Args;
7755   Args.reserve(CB.arg_size());
7756 
7757   const Value *SwiftErrorVal = nullptr;
7758   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7759 
7760   if (isTailCall) {
7761     // Avoid emitting tail calls in functions with the disable-tail-calls
7762     // attribute.
7763     auto *Caller = CB.getParent()->getParent();
7764     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7765         "true" && !isMustTailCall)
7766       isTailCall = false;
7767 
7768     // We can't tail call inside a function with a swifterror argument. Lowering
7769     // does not support this yet. It would have to move into the swifterror
7770     // register before the call.
7771     if (TLI.supportSwiftError() &&
7772         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7773       isTailCall = false;
7774   }
7775 
7776   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7777     TargetLowering::ArgListEntry Entry;
7778     const Value *V = *I;
7779 
7780     // Skip empty types
7781     if (V->getType()->isEmptyTy())
7782       continue;
7783 
7784     SDValue ArgNode = getValue(V);
7785     Entry.Node = ArgNode; Entry.Ty = V->getType();
7786 
7787     Entry.setAttributes(&CB, I - CB.arg_begin());
7788 
7789     // Use swifterror virtual register as input to the call.
7790     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7791       SwiftErrorVal = V;
7792       // We find the virtual register for the actual swifterror argument.
7793       // Instead of using the Value, we use the virtual register instead.
7794       Entry.Node =
7795           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7796                           EVT(TLI.getPointerTy(DL)));
7797     }
7798 
7799     Args.push_back(Entry);
7800 
7801     // If we have an explicit sret argument that is an Instruction, (i.e., it
7802     // might point to function-local memory), we can't meaningfully tail-call.
7803     if (Entry.IsSRet && isa<Instruction>(V))
7804       isTailCall = false;
7805   }
7806 
7807   // If call site has a cfguardtarget operand bundle, create and add an
7808   // additional ArgListEntry.
7809   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7810     TargetLowering::ArgListEntry Entry;
7811     Value *V = Bundle->Inputs[0];
7812     SDValue ArgNode = getValue(V);
7813     Entry.Node = ArgNode;
7814     Entry.Ty = V->getType();
7815     Entry.IsCFGuardTarget = true;
7816     Args.push_back(Entry);
7817   }
7818 
7819   // Check if target-independent constraints permit a tail call here.
7820   // Target-dependent constraints are checked within TLI->LowerCallTo.
7821   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7822     isTailCall = false;
7823 
7824   // Disable tail calls if there is an swifterror argument. Targets have not
7825   // been updated to support tail calls.
7826   if (TLI.supportSwiftError() && SwiftErrorVal)
7827     isTailCall = false;
7828 
7829   TargetLowering::CallLoweringInfo CLI(DAG);
7830   CLI.setDebugLoc(getCurSDLoc())
7831       .setChain(getRoot())
7832       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7833       .setTailCall(isTailCall)
7834       .setConvergent(CB.isConvergent())
7835       .setIsPreallocated(
7836           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7837   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7838 
7839   if (Result.first.getNode()) {
7840     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7841     setValue(&CB, Result.first);
7842   }
7843 
7844   // The last element of CLI.InVals has the SDValue for swifterror return.
7845   // Here we copy it to a virtual register and update SwiftErrorMap for
7846   // book-keeping.
7847   if (SwiftErrorVal && TLI.supportSwiftError()) {
7848     // Get the last element of InVals.
7849     SDValue Src = CLI.InVals.back();
7850     Register VReg =
7851         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7852     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7853     DAG.setRoot(CopyNode);
7854   }
7855 }
7856 
7857 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7858                              SelectionDAGBuilder &Builder) {
7859   // Check to see if this load can be trivially constant folded, e.g. if the
7860   // input is from a string literal.
7861   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7862     // Cast pointer to the type we really want to load.
7863     Type *LoadTy =
7864         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7865     if (LoadVT.isVector())
7866       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7867 
7868     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7869                                          PointerType::getUnqual(LoadTy));
7870 
7871     if (const Constant *LoadCst =
7872             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
7873                                          LoadTy, Builder.DAG.getDataLayout()))
7874       return Builder.getValue(LoadCst);
7875   }
7876 
7877   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7878   // still constant memory, the input chain can be the entry node.
7879   SDValue Root;
7880   bool ConstantMemory = false;
7881 
7882   // Do not serialize (non-volatile) loads of constant memory with anything.
7883   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7884     Root = Builder.DAG.getEntryNode();
7885     ConstantMemory = true;
7886   } else {
7887     // Do not serialize non-volatile loads against each other.
7888     Root = Builder.DAG.getRoot();
7889   }
7890 
7891   SDValue Ptr = Builder.getValue(PtrVal);
7892   SDValue LoadVal =
7893       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7894                           MachinePointerInfo(PtrVal), Align(1));
7895 
7896   if (!ConstantMemory)
7897     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7898   return LoadVal;
7899 }
7900 
7901 /// Record the value for an instruction that produces an integer result,
7902 /// converting the type where necessary.
7903 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7904                                                   SDValue Value,
7905                                                   bool IsSigned) {
7906   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7907                                                     I.getType(), true);
7908   if (IsSigned)
7909     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7910   else
7911     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7912   setValue(&I, Value);
7913 }
7914 
7915 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7916 /// true and lower it. Otherwise return false, and it will be lowered like a
7917 /// normal call.
7918 /// The caller already checked that \p I calls the appropriate LibFunc with a
7919 /// correct prototype.
7920 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7921   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7922   const Value *Size = I.getArgOperand(2);
7923   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
7924   if (CSize && CSize->getZExtValue() == 0) {
7925     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7926                                                           I.getType(), true);
7927     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7928     return true;
7929   }
7930 
7931   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7932   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7933       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7934       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7935   if (Res.first.getNode()) {
7936     processIntegerCallValue(I, Res.first, true);
7937     PendingLoads.push_back(Res.second);
7938     return true;
7939   }
7940 
7941   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7942   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7943   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7944     return false;
7945 
7946   // If the target has a fast compare for the given size, it will return a
7947   // preferred load type for that size. Require that the load VT is legal and
7948   // that the target supports unaligned loads of that type. Otherwise, return
7949   // INVALID.
7950   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7951     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7952     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7953     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7954       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7955       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7956       // TODO: Check alignment of src and dest ptrs.
7957       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7958       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7959       if (!TLI.isTypeLegal(LVT) ||
7960           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7961           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7962         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7963     }
7964 
7965     return LVT;
7966   };
7967 
7968   // This turns into unaligned loads. We only do this if the target natively
7969   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7970   // we'll only produce a small number of byte loads.
7971   MVT LoadVT;
7972   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7973   switch (NumBitsToCompare) {
7974   default:
7975     return false;
7976   case 16:
7977     LoadVT = MVT::i16;
7978     break;
7979   case 32:
7980     LoadVT = MVT::i32;
7981     break;
7982   case 64:
7983   case 128:
7984   case 256:
7985     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7986     break;
7987   }
7988 
7989   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7990     return false;
7991 
7992   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7993   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7994 
7995   // Bitcast to a wide integer type if the loads are vectors.
7996   if (LoadVT.isVector()) {
7997     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7998     LoadL = DAG.getBitcast(CmpVT, LoadL);
7999     LoadR = DAG.getBitcast(CmpVT, LoadR);
8000   }
8001 
8002   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8003   processIntegerCallValue(I, Cmp, false);
8004   return true;
8005 }
8006 
8007 /// See if we can lower a memchr call into an optimized form. If so, return
8008 /// true and lower it. Otherwise return false, and it will be lowered like a
8009 /// normal call.
8010 /// The caller already checked that \p I calls the appropriate LibFunc with a
8011 /// correct prototype.
8012 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8013   const Value *Src = I.getArgOperand(0);
8014   const Value *Char = I.getArgOperand(1);
8015   const Value *Length = I.getArgOperand(2);
8016 
8017   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8018   std::pair<SDValue, SDValue> Res =
8019     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8020                                 getValue(Src), getValue(Char), getValue(Length),
8021                                 MachinePointerInfo(Src));
8022   if (Res.first.getNode()) {
8023     setValue(&I, Res.first);
8024     PendingLoads.push_back(Res.second);
8025     return true;
8026   }
8027 
8028   return false;
8029 }
8030 
8031 /// See if we can lower a mempcpy call into an optimized form. If so, return
8032 /// true and lower it. Otherwise return false, and it will be lowered like a
8033 /// normal call.
8034 /// The caller already checked that \p I calls the appropriate LibFunc with a
8035 /// correct prototype.
8036 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8037   SDValue Dst = getValue(I.getArgOperand(0));
8038   SDValue Src = getValue(I.getArgOperand(1));
8039   SDValue Size = getValue(I.getArgOperand(2));
8040 
8041   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8042   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8043   // DAG::getMemcpy needs Alignment to be defined.
8044   Align Alignment = std::min(DstAlign, SrcAlign);
8045 
8046   bool isVol = false;
8047   SDLoc sdl = getCurSDLoc();
8048 
8049   // In the mempcpy context we need to pass in a false value for isTailCall
8050   // because the return pointer needs to be adjusted by the size of
8051   // the copied memory.
8052   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8053   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8054                              /*isTailCall=*/false,
8055                              MachinePointerInfo(I.getArgOperand(0)),
8056                              MachinePointerInfo(I.getArgOperand(1)),
8057                              I.getAAMetadata());
8058   assert(MC.getNode() != nullptr &&
8059          "** memcpy should not be lowered as TailCall in mempcpy context **");
8060   DAG.setRoot(MC);
8061 
8062   // Check if Size needs to be truncated or extended.
8063   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8064 
8065   // Adjust return pointer to point just past the last dst byte.
8066   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8067                                     Dst, Size);
8068   setValue(&I, DstPlusSize);
8069   return true;
8070 }
8071 
8072 /// See if we can lower a strcpy call into an optimized form.  If so, return
8073 /// true and lower it, otherwise return false and it will be lowered like a
8074 /// normal call.
8075 /// The caller already checked that \p I calls the appropriate LibFunc with a
8076 /// correct prototype.
8077 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8078   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8079 
8080   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8081   std::pair<SDValue, SDValue> Res =
8082     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8083                                 getValue(Arg0), getValue(Arg1),
8084                                 MachinePointerInfo(Arg0),
8085                                 MachinePointerInfo(Arg1), isStpcpy);
8086   if (Res.first.getNode()) {
8087     setValue(&I, Res.first);
8088     DAG.setRoot(Res.second);
8089     return true;
8090   }
8091 
8092   return false;
8093 }
8094 
8095 /// See if we can lower a strcmp call into an optimized form.  If so, return
8096 /// true and lower it, otherwise return false and it will be lowered like a
8097 /// normal call.
8098 /// The caller already checked that \p I calls the appropriate LibFunc with a
8099 /// correct prototype.
8100 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8101   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8102 
8103   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8104   std::pair<SDValue, SDValue> Res =
8105     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8106                                 getValue(Arg0), getValue(Arg1),
8107                                 MachinePointerInfo(Arg0),
8108                                 MachinePointerInfo(Arg1));
8109   if (Res.first.getNode()) {
8110     processIntegerCallValue(I, Res.first, true);
8111     PendingLoads.push_back(Res.second);
8112     return true;
8113   }
8114 
8115   return false;
8116 }
8117 
8118 /// See if we can lower a strlen call into an optimized form.  If so, return
8119 /// true and lower it, otherwise return false and it will be lowered like a
8120 /// normal call.
8121 /// The caller already checked that \p I calls the appropriate LibFunc with a
8122 /// correct prototype.
8123 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8124   const Value *Arg0 = I.getArgOperand(0);
8125 
8126   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8127   std::pair<SDValue, SDValue> Res =
8128     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8129                                 getValue(Arg0), MachinePointerInfo(Arg0));
8130   if (Res.first.getNode()) {
8131     processIntegerCallValue(I, Res.first, false);
8132     PendingLoads.push_back(Res.second);
8133     return true;
8134   }
8135 
8136   return false;
8137 }
8138 
8139 /// See if we can lower a strnlen call into an optimized form.  If so, return
8140 /// true and lower it, otherwise return false and it will be lowered like a
8141 /// normal call.
8142 /// The caller already checked that \p I calls the appropriate LibFunc with a
8143 /// correct prototype.
8144 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8145   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8146 
8147   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8148   std::pair<SDValue, SDValue> Res =
8149     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8150                                  getValue(Arg0), getValue(Arg1),
8151                                  MachinePointerInfo(Arg0));
8152   if (Res.first.getNode()) {
8153     processIntegerCallValue(I, Res.first, false);
8154     PendingLoads.push_back(Res.second);
8155     return true;
8156   }
8157 
8158   return false;
8159 }
8160 
8161 /// See if we can lower a unary floating-point operation into an SDNode with
8162 /// the specified Opcode.  If so, return true and lower it, otherwise return
8163 /// false and it will be lowered like a normal call.
8164 /// The caller already checked that \p I calls the appropriate LibFunc with a
8165 /// correct prototype.
8166 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8167                                               unsigned Opcode) {
8168   // We already checked this call's prototype; verify it doesn't modify errno.
8169   if (!I.onlyReadsMemory())
8170     return false;
8171 
8172   SDNodeFlags Flags;
8173   Flags.copyFMF(cast<FPMathOperator>(I));
8174 
8175   SDValue Tmp = getValue(I.getArgOperand(0));
8176   setValue(&I,
8177            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8178   return true;
8179 }
8180 
8181 /// See if we can lower a binary floating-point operation into an SDNode with
8182 /// the specified Opcode. If so, return true and lower it. Otherwise return
8183 /// false, and it will be lowered like a normal call.
8184 /// The caller already checked that \p I calls the appropriate LibFunc with a
8185 /// correct prototype.
8186 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8187                                                unsigned Opcode) {
8188   // We already checked this call's prototype; verify it doesn't modify errno.
8189   if (!I.onlyReadsMemory())
8190     return false;
8191 
8192   SDNodeFlags Flags;
8193   Flags.copyFMF(cast<FPMathOperator>(I));
8194 
8195   SDValue Tmp0 = getValue(I.getArgOperand(0));
8196   SDValue Tmp1 = getValue(I.getArgOperand(1));
8197   EVT VT = Tmp0.getValueType();
8198   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8199   return true;
8200 }
8201 
8202 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8203   // Handle inline assembly differently.
8204   if (I.isInlineAsm()) {
8205     visitInlineAsm(I);
8206     return;
8207   }
8208 
8209   if (Function *F = I.getCalledFunction()) {
8210     diagnoseDontCall(I);
8211 
8212     if (F->isDeclaration()) {
8213       // Is this an LLVM intrinsic or a target-specific intrinsic?
8214       unsigned IID = F->getIntrinsicID();
8215       if (!IID)
8216         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8217           IID = II->getIntrinsicID(F);
8218 
8219       if (IID) {
8220         visitIntrinsicCall(I, IID);
8221         return;
8222       }
8223     }
8224 
8225     // Check for well-known libc/libm calls.  If the function is internal, it
8226     // can't be a library call.  Don't do the check if marked as nobuiltin for
8227     // some reason or the call site requires strict floating point semantics.
8228     LibFunc Func;
8229     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8230         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8231         LibInfo->hasOptimizedCodeGen(Func)) {
8232       switch (Func) {
8233       default: break;
8234       case LibFunc_bcmp:
8235         if (visitMemCmpBCmpCall(I))
8236           return;
8237         break;
8238       case LibFunc_copysign:
8239       case LibFunc_copysignf:
8240       case LibFunc_copysignl:
8241         // We already checked this call's prototype; verify it doesn't modify
8242         // errno.
8243         if (I.onlyReadsMemory()) {
8244           SDValue LHS = getValue(I.getArgOperand(0));
8245           SDValue RHS = getValue(I.getArgOperand(1));
8246           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8247                                    LHS.getValueType(), LHS, RHS));
8248           return;
8249         }
8250         break;
8251       case LibFunc_fabs:
8252       case LibFunc_fabsf:
8253       case LibFunc_fabsl:
8254         if (visitUnaryFloatCall(I, ISD::FABS))
8255           return;
8256         break;
8257       case LibFunc_fmin:
8258       case LibFunc_fminf:
8259       case LibFunc_fminl:
8260         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8261           return;
8262         break;
8263       case LibFunc_fmax:
8264       case LibFunc_fmaxf:
8265       case LibFunc_fmaxl:
8266         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8267           return;
8268         break;
8269       case LibFunc_sin:
8270       case LibFunc_sinf:
8271       case LibFunc_sinl:
8272         if (visitUnaryFloatCall(I, ISD::FSIN))
8273           return;
8274         break;
8275       case LibFunc_cos:
8276       case LibFunc_cosf:
8277       case LibFunc_cosl:
8278         if (visitUnaryFloatCall(I, ISD::FCOS))
8279           return;
8280         break;
8281       case LibFunc_sqrt:
8282       case LibFunc_sqrtf:
8283       case LibFunc_sqrtl:
8284       case LibFunc_sqrt_finite:
8285       case LibFunc_sqrtf_finite:
8286       case LibFunc_sqrtl_finite:
8287         if (visitUnaryFloatCall(I, ISD::FSQRT))
8288           return;
8289         break;
8290       case LibFunc_floor:
8291       case LibFunc_floorf:
8292       case LibFunc_floorl:
8293         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8294           return;
8295         break;
8296       case LibFunc_nearbyint:
8297       case LibFunc_nearbyintf:
8298       case LibFunc_nearbyintl:
8299         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8300           return;
8301         break;
8302       case LibFunc_ceil:
8303       case LibFunc_ceilf:
8304       case LibFunc_ceill:
8305         if (visitUnaryFloatCall(I, ISD::FCEIL))
8306           return;
8307         break;
8308       case LibFunc_rint:
8309       case LibFunc_rintf:
8310       case LibFunc_rintl:
8311         if (visitUnaryFloatCall(I, ISD::FRINT))
8312           return;
8313         break;
8314       case LibFunc_round:
8315       case LibFunc_roundf:
8316       case LibFunc_roundl:
8317         if (visitUnaryFloatCall(I, ISD::FROUND))
8318           return;
8319         break;
8320       case LibFunc_trunc:
8321       case LibFunc_truncf:
8322       case LibFunc_truncl:
8323         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8324           return;
8325         break;
8326       case LibFunc_log2:
8327       case LibFunc_log2f:
8328       case LibFunc_log2l:
8329         if (visitUnaryFloatCall(I, ISD::FLOG2))
8330           return;
8331         break;
8332       case LibFunc_exp2:
8333       case LibFunc_exp2f:
8334       case LibFunc_exp2l:
8335         if (visitUnaryFloatCall(I, ISD::FEXP2))
8336           return;
8337         break;
8338       case LibFunc_memcmp:
8339         if (visitMemCmpBCmpCall(I))
8340           return;
8341         break;
8342       case LibFunc_mempcpy:
8343         if (visitMemPCpyCall(I))
8344           return;
8345         break;
8346       case LibFunc_memchr:
8347         if (visitMemChrCall(I))
8348           return;
8349         break;
8350       case LibFunc_strcpy:
8351         if (visitStrCpyCall(I, false))
8352           return;
8353         break;
8354       case LibFunc_stpcpy:
8355         if (visitStrCpyCall(I, true))
8356           return;
8357         break;
8358       case LibFunc_strcmp:
8359         if (visitStrCmpCall(I))
8360           return;
8361         break;
8362       case LibFunc_strlen:
8363         if (visitStrLenCall(I))
8364           return;
8365         break;
8366       case LibFunc_strnlen:
8367         if (visitStrNLenCall(I))
8368           return;
8369         break;
8370       }
8371     }
8372   }
8373 
8374   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8375   // have to do anything here to lower funclet bundles.
8376   // CFGuardTarget bundles are lowered in LowerCallTo.
8377   assert(!I.hasOperandBundlesOtherThan(
8378              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8379               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8380               LLVMContext::OB_clang_arc_attachedcall}) &&
8381          "Cannot lower calls with arbitrary operand bundles!");
8382 
8383   SDValue Callee = getValue(I.getCalledOperand());
8384 
8385   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8386     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8387   else
8388     // Check if we can potentially perform a tail call. More detailed checking
8389     // is be done within LowerCallTo, after more information about the call is
8390     // known.
8391     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8392 }
8393 
8394 namespace {
8395 
8396 /// AsmOperandInfo - This contains information for each constraint that we are
8397 /// lowering.
8398 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8399 public:
8400   /// CallOperand - If this is the result output operand or a clobber
8401   /// this is null, otherwise it is the incoming operand to the CallInst.
8402   /// This gets modified as the asm is processed.
8403   SDValue CallOperand;
8404 
8405   /// AssignedRegs - If this is a register or register class operand, this
8406   /// contains the set of register corresponding to the operand.
8407   RegsForValue AssignedRegs;
8408 
8409   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8410     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8411   }
8412 
8413   /// Whether or not this operand accesses memory
8414   bool hasMemory(const TargetLowering &TLI) const {
8415     // Indirect operand accesses access memory.
8416     if (isIndirect)
8417       return true;
8418 
8419     for (const auto &Code : Codes)
8420       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8421         return true;
8422 
8423     return false;
8424   }
8425 
8426   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8427   /// corresponds to.  If there is no Value* for this operand, it returns
8428   /// MVT::Other.
8429   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8430                            const DataLayout &DL,
8431                            llvm::Type *ParamElemType) const {
8432     if (!CallOperandVal) return MVT::Other;
8433 
8434     if (isa<BasicBlock>(CallOperandVal))
8435       return TLI.getProgramPointerTy(DL);
8436 
8437     llvm::Type *OpTy = CallOperandVal->getType();
8438 
8439     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8440     // If this is an indirect operand, the operand is a pointer to the
8441     // accessed type.
8442     if (isIndirect) {
8443       OpTy = ParamElemType;
8444       assert(OpTy && "Indirect operand must have elementtype attribute");
8445     }
8446 
8447     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8448     if (StructType *STy = dyn_cast<StructType>(OpTy))
8449       if (STy->getNumElements() == 1)
8450         OpTy = STy->getElementType(0);
8451 
8452     // If OpTy is not a single value, it may be a struct/union that we
8453     // can tile with integers.
8454     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8455       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8456       switch (BitSize) {
8457       default: break;
8458       case 1:
8459       case 8:
8460       case 16:
8461       case 32:
8462       case 64:
8463       case 128:
8464         OpTy = IntegerType::get(Context, BitSize);
8465         break;
8466       }
8467     }
8468 
8469     return TLI.getAsmOperandValueType(DL, OpTy, true);
8470   }
8471 };
8472 
8473 
8474 } // end anonymous namespace
8475 
8476 /// Make sure that the output operand \p OpInfo and its corresponding input
8477 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8478 /// out).
8479 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8480                                SDISelAsmOperandInfo &MatchingOpInfo,
8481                                SelectionDAG &DAG) {
8482   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8483     return;
8484 
8485   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8486   const auto &TLI = DAG.getTargetLoweringInfo();
8487 
8488   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8489       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8490                                        OpInfo.ConstraintVT);
8491   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8492       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8493                                        MatchingOpInfo.ConstraintVT);
8494   if ((OpInfo.ConstraintVT.isInteger() !=
8495        MatchingOpInfo.ConstraintVT.isInteger()) ||
8496       (MatchRC.second != InputRC.second)) {
8497     // FIXME: error out in a more elegant fashion
8498     report_fatal_error("Unsupported asm: input constraint"
8499                        " with a matching output constraint of"
8500                        " incompatible type!");
8501   }
8502   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8503 }
8504 
8505 /// Get a direct memory input to behave well as an indirect operand.
8506 /// This may introduce stores, hence the need for a \p Chain.
8507 /// \return The (possibly updated) chain.
8508 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8509                                         SDISelAsmOperandInfo &OpInfo,
8510                                         SelectionDAG &DAG) {
8511   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8512 
8513   // If we don't have an indirect input, put it in the constpool if we can,
8514   // otherwise spill it to a stack slot.
8515   // TODO: This isn't quite right. We need to handle these according to
8516   // the addressing mode that the constraint wants. Also, this may take
8517   // an additional register for the computation and we don't want that
8518   // either.
8519 
8520   // If the operand is a float, integer, or vector constant, spill to a
8521   // constant pool entry to get its address.
8522   const Value *OpVal = OpInfo.CallOperandVal;
8523   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8524       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8525     OpInfo.CallOperand = DAG.getConstantPool(
8526         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8527     return Chain;
8528   }
8529 
8530   // Otherwise, create a stack slot and emit a store to it before the asm.
8531   Type *Ty = OpVal->getType();
8532   auto &DL = DAG.getDataLayout();
8533   uint64_t TySize = DL.getTypeAllocSize(Ty);
8534   MachineFunction &MF = DAG.getMachineFunction();
8535   int SSFI = MF.getFrameInfo().CreateStackObject(
8536       TySize, DL.getPrefTypeAlign(Ty), false);
8537   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8538   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8539                             MachinePointerInfo::getFixedStack(MF, SSFI),
8540                             TLI.getMemValueType(DL, Ty));
8541   OpInfo.CallOperand = StackSlot;
8542 
8543   return Chain;
8544 }
8545 
8546 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8547 /// specified operand.  We prefer to assign virtual registers, to allow the
8548 /// register allocator to handle the assignment process.  However, if the asm
8549 /// uses features that we can't model on machineinstrs, we have SDISel do the
8550 /// allocation.  This produces generally horrible, but correct, code.
8551 ///
8552 ///   OpInfo describes the operand
8553 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8554 static llvm::Optional<unsigned>
8555 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8556                      SDISelAsmOperandInfo &OpInfo,
8557                      SDISelAsmOperandInfo &RefOpInfo) {
8558   LLVMContext &Context = *DAG.getContext();
8559   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8560 
8561   MachineFunction &MF = DAG.getMachineFunction();
8562   SmallVector<unsigned, 4> Regs;
8563   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8564 
8565   // No work to do for memory/address operands.
8566   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8567       OpInfo.ConstraintType == TargetLowering::C_Address)
8568     return None;
8569 
8570   // If this is a constraint for a single physreg, or a constraint for a
8571   // register class, find it.
8572   unsigned AssignedReg;
8573   const TargetRegisterClass *RC;
8574   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8575       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8576   // RC is unset only on failure. Return immediately.
8577   if (!RC)
8578     return None;
8579 
8580   // Get the actual register value type.  This is important, because the user
8581   // may have asked for (e.g.) the AX register in i32 type.  We need to
8582   // remember that AX is actually i16 to get the right extension.
8583   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8584 
8585   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8586     // If this is an FP operand in an integer register (or visa versa), or more
8587     // generally if the operand value disagrees with the register class we plan
8588     // to stick it in, fix the operand type.
8589     //
8590     // If this is an input value, the bitcast to the new type is done now.
8591     // Bitcast for output value is done at the end of visitInlineAsm().
8592     if ((OpInfo.Type == InlineAsm::isOutput ||
8593          OpInfo.Type == InlineAsm::isInput) &&
8594         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8595       // Try to convert to the first EVT that the reg class contains.  If the
8596       // types are identical size, use a bitcast to convert (e.g. two differing
8597       // vector types).  Note: output bitcast is done at the end of
8598       // visitInlineAsm().
8599       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8600         // Exclude indirect inputs while they are unsupported because the code
8601         // to perform the load is missing and thus OpInfo.CallOperand still
8602         // refers to the input address rather than the pointed-to value.
8603         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8604           OpInfo.CallOperand =
8605               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8606         OpInfo.ConstraintVT = RegVT;
8607         // If the operand is an FP value and we want it in integer registers,
8608         // use the corresponding integer type. This turns an f64 value into
8609         // i64, which can be passed with two i32 values on a 32-bit machine.
8610       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8611         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8612         if (OpInfo.Type == InlineAsm::isInput)
8613           OpInfo.CallOperand =
8614               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8615         OpInfo.ConstraintVT = VT;
8616       }
8617     }
8618   }
8619 
8620   // No need to allocate a matching input constraint since the constraint it's
8621   // matching to has already been allocated.
8622   if (OpInfo.isMatchingInputConstraint())
8623     return None;
8624 
8625   EVT ValueVT = OpInfo.ConstraintVT;
8626   if (OpInfo.ConstraintVT == MVT::Other)
8627     ValueVT = RegVT;
8628 
8629   // Initialize NumRegs.
8630   unsigned NumRegs = 1;
8631   if (OpInfo.ConstraintVT != MVT::Other)
8632     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8633 
8634   // If this is a constraint for a specific physical register, like {r17},
8635   // assign it now.
8636 
8637   // If this associated to a specific register, initialize iterator to correct
8638   // place. If virtual, make sure we have enough registers
8639 
8640   // Initialize iterator if necessary
8641   TargetRegisterClass::iterator I = RC->begin();
8642   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8643 
8644   // Do not check for single registers.
8645   if (AssignedReg) {
8646     I = std::find(I, RC->end(), AssignedReg);
8647     if (I == RC->end()) {
8648       // RC does not contain the selected register, which indicates a
8649       // mismatch between the register and the required type/bitwidth.
8650       return {AssignedReg};
8651     }
8652   }
8653 
8654   for (; NumRegs; --NumRegs, ++I) {
8655     assert(I != RC->end() && "Ran out of registers to allocate!");
8656     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8657     Regs.push_back(R);
8658   }
8659 
8660   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8661   return None;
8662 }
8663 
8664 static unsigned
8665 findMatchingInlineAsmOperand(unsigned OperandNo,
8666                              const std::vector<SDValue> &AsmNodeOperands) {
8667   // Scan until we find the definition we already emitted of this operand.
8668   unsigned CurOp = InlineAsm::Op_FirstOperand;
8669   for (; OperandNo; --OperandNo) {
8670     // Advance to the next operand.
8671     unsigned OpFlag =
8672         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8673     assert((InlineAsm::isRegDefKind(OpFlag) ||
8674             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8675             InlineAsm::isMemKind(OpFlag)) &&
8676            "Skipped past definitions?");
8677     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8678   }
8679   return CurOp;
8680 }
8681 
8682 namespace {
8683 
8684 class ExtraFlags {
8685   unsigned Flags = 0;
8686 
8687 public:
8688   explicit ExtraFlags(const CallBase &Call) {
8689     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8690     if (IA->hasSideEffects())
8691       Flags |= InlineAsm::Extra_HasSideEffects;
8692     if (IA->isAlignStack())
8693       Flags |= InlineAsm::Extra_IsAlignStack;
8694     if (Call.isConvergent())
8695       Flags |= InlineAsm::Extra_IsConvergent;
8696     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8697   }
8698 
8699   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8700     // Ideally, we would only check against memory constraints.  However, the
8701     // meaning of an Other constraint can be target-specific and we can't easily
8702     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8703     // for Other constraints as well.
8704     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8705         OpInfo.ConstraintType == TargetLowering::C_Other) {
8706       if (OpInfo.Type == InlineAsm::isInput)
8707         Flags |= InlineAsm::Extra_MayLoad;
8708       else if (OpInfo.Type == InlineAsm::isOutput)
8709         Flags |= InlineAsm::Extra_MayStore;
8710       else if (OpInfo.Type == InlineAsm::isClobber)
8711         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8712     }
8713   }
8714 
8715   unsigned get() const { return Flags; }
8716 };
8717 
8718 } // end anonymous namespace
8719 
8720 /// visitInlineAsm - Handle a call to an InlineAsm object.
8721 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8722                                          const BasicBlock *EHPadBB) {
8723   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8724 
8725   /// ConstraintOperands - Information about all of the constraints.
8726   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8727 
8728   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8729   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8730       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8731 
8732   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8733   // AsmDialect, MayLoad, MayStore).
8734   bool HasSideEffect = IA->hasSideEffects();
8735   ExtraFlags ExtraInfo(Call);
8736 
8737   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8738   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8739   for (auto &T : TargetConstraints) {
8740     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8741     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8742 
8743     // Compute the value type for each operand.
8744     if (OpInfo.hasArg()) {
8745       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
8746       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8747       Type *ParamElemTy = Call.getParamElementType(ArgNo);
8748       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8749                                            DAG.getDataLayout(), ParamElemTy);
8750       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8751       ArgNo++;
8752     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8753       // The return value of the call is this value.  As such, there is no
8754       // corresponding argument.
8755       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8756       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8757         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8758             DAG.getDataLayout(), STy->getElementType(ResNo));
8759       } else {
8760         assert(ResNo == 0 && "Asm only has one result!");
8761         OpInfo.ConstraintVT = TLI.getAsmOperandValueType(
8762             DAG.getDataLayout(), Call.getType()).getSimpleVT();
8763       }
8764       ++ResNo;
8765     } else {
8766       OpInfo.ConstraintVT = MVT::Other;
8767     }
8768 
8769     if (!HasSideEffect)
8770       HasSideEffect = OpInfo.hasMemory(TLI);
8771 
8772     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8773     // FIXME: Could we compute this on OpInfo rather than T?
8774 
8775     // Compute the constraint code and ConstraintType to use.
8776     TLI.ComputeConstraintToUse(T, SDValue());
8777 
8778     if (T.ConstraintType == TargetLowering::C_Immediate &&
8779         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8780       // We've delayed emitting a diagnostic like the "n" constraint because
8781       // inlining could cause an integer showing up.
8782       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8783                                           "' expects an integer constant "
8784                                           "expression");
8785 
8786     ExtraInfo.update(T);
8787   }
8788 
8789   // We won't need to flush pending loads if this asm doesn't touch
8790   // memory and is nonvolatile.
8791   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8792 
8793   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8794   if (EmitEHLabels) {
8795     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8796   }
8797   bool IsCallBr = isa<CallBrInst>(Call);
8798 
8799   if (IsCallBr || EmitEHLabels) {
8800     // If this is a callbr or invoke we need to flush pending exports since
8801     // inlineasm_br and invoke are terminators.
8802     // We need to do this before nodes are glued to the inlineasm_br node.
8803     Chain = getControlRoot();
8804   }
8805 
8806   MCSymbol *BeginLabel = nullptr;
8807   if (EmitEHLabels) {
8808     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8809   }
8810 
8811   // Second pass over the constraints: compute which constraint option to use.
8812   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8813     // If this is an output operand with a matching input operand, look up the
8814     // matching input. If their types mismatch, e.g. one is an integer, the
8815     // other is floating point, or their sizes are different, flag it as an
8816     // error.
8817     if (OpInfo.hasMatchingInput()) {
8818       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8819       patchMatchingInput(OpInfo, Input, DAG);
8820     }
8821 
8822     // Compute the constraint code and ConstraintType to use.
8823     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8824 
8825     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8826          OpInfo.Type == InlineAsm::isClobber) ||
8827         OpInfo.ConstraintType == TargetLowering::C_Address)
8828       continue;
8829 
8830     // If this is a memory input, and if the operand is not indirect, do what we
8831     // need to provide an address for the memory input.
8832     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8833         !OpInfo.isIndirect) {
8834       assert((OpInfo.isMultipleAlternative ||
8835               (OpInfo.Type == InlineAsm::isInput)) &&
8836              "Can only indirectify direct input operands!");
8837 
8838       // Memory operands really want the address of the value.
8839       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8840 
8841       // There is no longer a Value* corresponding to this operand.
8842       OpInfo.CallOperandVal = nullptr;
8843 
8844       // It is now an indirect operand.
8845       OpInfo.isIndirect = true;
8846     }
8847 
8848   }
8849 
8850   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8851   std::vector<SDValue> AsmNodeOperands;
8852   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8853   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8854       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8855 
8856   // If we have a !srcloc metadata node associated with it, we want to attach
8857   // this to the ultimately generated inline asm machineinstr.  To do this, we
8858   // pass in the third operand as this (potentially null) inline asm MDNode.
8859   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8860   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8861 
8862   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8863   // bits as operand 3.
8864   AsmNodeOperands.push_back(DAG.getTargetConstant(
8865       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8866 
8867   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8868   // this, assign virtual and physical registers for inputs and otput.
8869   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8870     // Assign Registers.
8871     SDISelAsmOperandInfo &RefOpInfo =
8872         OpInfo.isMatchingInputConstraint()
8873             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8874             : OpInfo;
8875     const auto RegError =
8876         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8877     if (RegError.hasValue()) {
8878       const MachineFunction &MF = DAG.getMachineFunction();
8879       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8880       const char *RegName = TRI.getName(RegError.getValue());
8881       emitInlineAsmError(Call, "register '" + Twine(RegName) +
8882                                    "' allocated for constraint '" +
8883                                    Twine(OpInfo.ConstraintCode) +
8884                                    "' does not match required type");
8885       return;
8886     }
8887 
8888     auto DetectWriteToReservedRegister = [&]() {
8889       const MachineFunction &MF = DAG.getMachineFunction();
8890       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8891       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8892         if (Register::isPhysicalRegister(Reg) &&
8893             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8894           const char *RegName = TRI.getName(Reg);
8895           emitInlineAsmError(Call, "write to reserved register '" +
8896                                        Twine(RegName) + "'");
8897           return true;
8898         }
8899       }
8900       return false;
8901     };
8902     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
8903             (OpInfo.Type == InlineAsm::isInput &&
8904              !OpInfo.isMatchingInputConstraint())) &&
8905            "Only address as input operand is allowed.");
8906 
8907     switch (OpInfo.Type) {
8908     case InlineAsm::isOutput:
8909       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8910         unsigned ConstraintID =
8911             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8912         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8913                "Failed to convert memory constraint code to constraint id.");
8914 
8915         // Add information to the INLINEASM node to know about this output.
8916         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8917         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8918         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8919                                                         MVT::i32));
8920         AsmNodeOperands.push_back(OpInfo.CallOperand);
8921       } else {
8922         // Otherwise, this outputs to a register (directly for C_Register /
8923         // C_RegisterClass, and a target-defined fashion for
8924         // C_Immediate/C_Other). Find a register that we can use.
8925         if (OpInfo.AssignedRegs.Regs.empty()) {
8926           emitInlineAsmError(
8927               Call, "couldn't allocate output register for constraint '" +
8928                         Twine(OpInfo.ConstraintCode) + "'");
8929           return;
8930         }
8931 
8932         if (DetectWriteToReservedRegister())
8933           return;
8934 
8935         // Add information to the INLINEASM node to know that this register is
8936         // set.
8937         OpInfo.AssignedRegs.AddInlineAsmOperands(
8938             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8939                                   : InlineAsm::Kind_RegDef,
8940             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8941       }
8942       break;
8943 
8944     case InlineAsm::isInput: {
8945       SDValue InOperandVal = OpInfo.CallOperand;
8946 
8947       if (OpInfo.isMatchingInputConstraint()) {
8948         // If this is required to match an output register we have already set,
8949         // just use its register.
8950         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8951                                                   AsmNodeOperands);
8952         unsigned OpFlag =
8953           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8954         if (InlineAsm::isRegDefKind(OpFlag) ||
8955             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8956           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8957           if (OpInfo.isIndirect) {
8958             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8959             emitInlineAsmError(Call, "inline asm not supported yet: "
8960                                      "don't know how to handle tied "
8961                                      "indirect register inputs");
8962             return;
8963           }
8964 
8965           SmallVector<unsigned, 4> Regs;
8966           MachineFunction &MF = DAG.getMachineFunction();
8967           MachineRegisterInfo &MRI = MF.getRegInfo();
8968           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8969           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8970           Register TiedReg = R->getReg();
8971           MVT RegVT = R->getSimpleValueType(0);
8972           const TargetRegisterClass *RC =
8973               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
8974               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
8975                                       : TRI.getMinimalPhysRegClass(TiedReg);
8976           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8977           for (unsigned i = 0; i != NumRegs; ++i)
8978             Regs.push_back(MRI.createVirtualRegister(RC));
8979 
8980           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8981 
8982           SDLoc dl = getCurSDLoc();
8983           // Use the produced MatchedRegs object to
8984           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8985           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8986                                            true, OpInfo.getMatchedOperand(), dl,
8987                                            DAG, AsmNodeOperands);
8988           break;
8989         }
8990 
8991         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8992         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8993                "Unexpected number of operands");
8994         // Add information to the INLINEASM node to know about this input.
8995         // See InlineAsm.h isUseOperandTiedToDef.
8996         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8997         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8998                                                     OpInfo.getMatchedOperand());
8999         AsmNodeOperands.push_back(DAG.getTargetConstant(
9000             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9001         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9002         break;
9003       }
9004 
9005       // Treat indirect 'X' constraint as memory.
9006       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9007           OpInfo.isIndirect)
9008         OpInfo.ConstraintType = TargetLowering::C_Memory;
9009 
9010       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9011           OpInfo.ConstraintType == TargetLowering::C_Other) {
9012         std::vector<SDValue> Ops;
9013         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9014                                           Ops, DAG);
9015         if (Ops.empty()) {
9016           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9017             if (isa<ConstantSDNode>(InOperandVal)) {
9018               emitInlineAsmError(Call, "value out of range for constraint '" +
9019                                            Twine(OpInfo.ConstraintCode) + "'");
9020               return;
9021             }
9022 
9023           emitInlineAsmError(Call,
9024                              "invalid operand for inline asm constraint '" +
9025                                  Twine(OpInfo.ConstraintCode) + "'");
9026           return;
9027         }
9028 
9029         // Add information to the INLINEASM node to know about this input.
9030         unsigned ResOpType =
9031           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9032         AsmNodeOperands.push_back(DAG.getTargetConstant(
9033             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9034         llvm::append_range(AsmNodeOperands, Ops);
9035         break;
9036       }
9037 
9038       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9039           OpInfo.ConstraintType == TargetLowering::C_Address) {
9040         assert((OpInfo.isIndirect ||
9041                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9042                "Operand must be indirect to be a mem!");
9043         assert(InOperandVal.getValueType() ==
9044                    TLI.getPointerTy(DAG.getDataLayout()) &&
9045                "Memory operands expect pointer values");
9046 
9047         unsigned ConstraintID =
9048             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9049         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9050                "Failed to convert memory constraint code to constraint id.");
9051 
9052         // Add information to the INLINEASM node to know about this input.
9053         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9054         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9055         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9056                                                         getCurSDLoc(),
9057                                                         MVT::i32));
9058         AsmNodeOperands.push_back(InOperandVal);
9059         break;
9060       }
9061 
9062       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9063               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9064              "Unknown constraint type!");
9065 
9066       // TODO: Support this.
9067       if (OpInfo.isIndirect) {
9068         emitInlineAsmError(
9069             Call, "Don't know how to handle indirect register inputs yet "
9070                   "for constraint '" +
9071                       Twine(OpInfo.ConstraintCode) + "'");
9072         return;
9073       }
9074 
9075       // Copy the input into the appropriate registers.
9076       if (OpInfo.AssignedRegs.Regs.empty()) {
9077         emitInlineAsmError(Call,
9078                            "couldn't allocate input reg for constraint '" +
9079                                Twine(OpInfo.ConstraintCode) + "'");
9080         return;
9081       }
9082 
9083       if (DetectWriteToReservedRegister())
9084         return;
9085 
9086       SDLoc dl = getCurSDLoc();
9087 
9088       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9089                                         &Call);
9090 
9091       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9092                                                dl, DAG, AsmNodeOperands);
9093       break;
9094     }
9095     case InlineAsm::isClobber:
9096       // Add the clobbered value to the operand list, so that the register
9097       // allocator is aware that the physreg got clobbered.
9098       if (!OpInfo.AssignedRegs.Regs.empty())
9099         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9100                                                  false, 0, getCurSDLoc(), DAG,
9101                                                  AsmNodeOperands);
9102       break;
9103     }
9104   }
9105 
9106   // Finish up input operands.  Set the input chain and add the flag last.
9107   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9108   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9109 
9110   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9111   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9112                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9113   Flag = Chain.getValue(1);
9114 
9115   // Do additional work to generate outputs.
9116 
9117   SmallVector<EVT, 1> ResultVTs;
9118   SmallVector<SDValue, 1> ResultValues;
9119   SmallVector<SDValue, 8> OutChains;
9120 
9121   llvm::Type *CallResultType = Call.getType();
9122   ArrayRef<Type *> ResultTypes;
9123   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9124     ResultTypes = StructResult->elements();
9125   else if (!CallResultType->isVoidTy())
9126     ResultTypes = makeArrayRef(CallResultType);
9127 
9128   auto CurResultType = ResultTypes.begin();
9129   auto handleRegAssign = [&](SDValue V) {
9130     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9131     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9132     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9133     ++CurResultType;
9134     // If the type of the inline asm call site return value is different but has
9135     // same size as the type of the asm output bitcast it.  One example of this
9136     // is for vectors with different width / number of elements.  This can
9137     // happen for register classes that can contain multiple different value
9138     // types.  The preg or vreg allocated may not have the same VT as was
9139     // expected.
9140     //
9141     // This can also happen for a return value that disagrees with the register
9142     // class it is put in, eg. a double in a general-purpose register on a
9143     // 32-bit machine.
9144     if (ResultVT != V.getValueType() &&
9145         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9146       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9147     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9148              V.getValueType().isInteger()) {
9149       // If a result value was tied to an input value, the computed result
9150       // may have a wider width than the expected result.  Extract the
9151       // relevant portion.
9152       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9153     }
9154     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9155     ResultVTs.push_back(ResultVT);
9156     ResultValues.push_back(V);
9157   };
9158 
9159   // Deal with output operands.
9160   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9161     if (OpInfo.Type == InlineAsm::isOutput) {
9162       SDValue Val;
9163       // Skip trivial output operands.
9164       if (OpInfo.AssignedRegs.Regs.empty())
9165         continue;
9166 
9167       switch (OpInfo.ConstraintType) {
9168       case TargetLowering::C_Register:
9169       case TargetLowering::C_RegisterClass:
9170         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9171                                                   Chain, &Flag, &Call);
9172         break;
9173       case TargetLowering::C_Immediate:
9174       case TargetLowering::C_Other:
9175         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9176                                               OpInfo, DAG);
9177         break;
9178       case TargetLowering::C_Memory:
9179         break; // Already handled.
9180       case TargetLowering::C_Address:
9181         break; // Silence warning.
9182       case TargetLowering::C_Unknown:
9183         assert(false && "Unexpected unknown constraint");
9184       }
9185 
9186       // Indirect output manifest as stores. Record output chains.
9187       if (OpInfo.isIndirect) {
9188         const Value *Ptr = OpInfo.CallOperandVal;
9189         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9190         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9191                                      MachinePointerInfo(Ptr));
9192         OutChains.push_back(Store);
9193       } else {
9194         // generate CopyFromRegs to associated registers.
9195         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9196         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9197           for (const SDValue &V : Val->op_values())
9198             handleRegAssign(V);
9199         } else
9200           handleRegAssign(Val);
9201       }
9202     }
9203   }
9204 
9205   // Set results.
9206   if (!ResultValues.empty()) {
9207     assert(CurResultType == ResultTypes.end() &&
9208            "Mismatch in number of ResultTypes");
9209     assert(ResultValues.size() == ResultTypes.size() &&
9210            "Mismatch in number of output operands in asm result");
9211 
9212     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9213                             DAG.getVTList(ResultVTs), ResultValues);
9214     setValue(&Call, V);
9215   }
9216 
9217   // Collect store chains.
9218   if (!OutChains.empty())
9219     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9220 
9221   if (EmitEHLabels) {
9222     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9223   }
9224 
9225   // Only Update Root if inline assembly has a memory effect.
9226   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9227       EmitEHLabels)
9228     DAG.setRoot(Chain);
9229 }
9230 
9231 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9232                                              const Twine &Message) {
9233   LLVMContext &Ctx = *DAG.getContext();
9234   Ctx.emitError(&Call, Message);
9235 
9236   // Make sure we leave the DAG in a valid state
9237   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9238   SmallVector<EVT, 1> ValueVTs;
9239   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9240 
9241   if (ValueVTs.empty())
9242     return;
9243 
9244   SmallVector<SDValue, 1> Ops;
9245   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9246     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9247 
9248   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9249 }
9250 
9251 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9252   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9253                           MVT::Other, getRoot(),
9254                           getValue(I.getArgOperand(0)),
9255                           DAG.getSrcValue(I.getArgOperand(0))));
9256 }
9257 
9258 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9259   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9260   const DataLayout &DL = DAG.getDataLayout();
9261   SDValue V = DAG.getVAArg(
9262       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9263       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9264       DL.getABITypeAlign(I.getType()).value());
9265   DAG.setRoot(V.getValue(1));
9266 
9267   if (I.getType()->isPointerTy())
9268     V = DAG.getPtrExtOrTrunc(
9269         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9270   setValue(&I, V);
9271 }
9272 
9273 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9274   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9275                           MVT::Other, getRoot(),
9276                           getValue(I.getArgOperand(0)),
9277                           DAG.getSrcValue(I.getArgOperand(0))));
9278 }
9279 
9280 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9281   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9282                           MVT::Other, getRoot(),
9283                           getValue(I.getArgOperand(0)),
9284                           getValue(I.getArgOperand(1)),
9285                           DAG.getSrcValue(I.getArgOperand(0)),
9286                           DAG.getSrcValue(I.getArgOperand(1))));
9287 }
9288 
9289 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9290                                                     const Instruction &I,
9291                                                     SDValue Op) {
9292   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9293   if (!Range)
9294     return Op;
9295 
9296   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9297   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9298     return Op;
9299 
9300   APInt Lo = CR.getUnsignedMin();
9301   if (!Lo.isMinValue())
9302     return Op;
9303 
9304   APInt Hi = CR.getUnsignedMax();
9305   unsigned Bits = std::max(Hi.getActiveBits(),
9306                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9307 
9308   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9309 
9310   SDLoc SL = getCurSDLoc();
9311 
9312   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9313                              DAG.getValueType(SmallVT));
9314   unsigned NumVals = Op.getNode()->getNumValues();
9315   if (NumVals == 1)
9316     return ZExt;
9317 
9318   SmallVector<SDValue, 4> Ops;
9319 
9320   Ops.push_back(ZExt);
9321   for (unsigned I = 1; I != NumVals; ++I)
9322     Ops.push_back(Op.getValue(I));
9323 
9324   return DAG.getMergeValues(Ops, SL);
9325 }
9326 
9327 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9328 /// the call being lowered.
9329 ///
9330 /// This is a helper for lowering intrinsics that follow a target calling
9331 /// convention or require stack pointer adjustment. Only a subset of the
9332 /// intrinsic's operands need to participate in the calling convention.
9333 void SelectionDAGBuilder::populateCallLoweringInfo(
9334     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9335     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9336     bool IsPatchPoint) {
9337   TargetLowering::ArgListTy Args;
9338   Args.reserve(NumArgs);
9339 
9340   // Populate the argument list.
9341   // Attributes for args start at offset 1, after the return attribute.
9342   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9343        ArgI != ArgE; ++ArgI) {
9344     const Value *V = Call->getOperand(ArgI);
9345 
9346     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9347 
9348     TargetLowering::ArgListEntry Entry;
9349     Entry.Node = getValue(V);
9350     Entry.Ty = V->getType();
9351     Entry.setAttributes(Call, ArgI);
9352     Args.push_back(Entry);
9353   }
9354 
9355   CLI.setDebugLoc(getCurSDLoc())
9356       .setChain(getRoot())
9357       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9358       .setDiscardResult(Call->use_empty())
9359       .setIsPatchPoint(IsPatchPoint)
9360       .setIsPreallocated(
9361           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9362 }
9363 
9364 /// Add a stack map intrinsic call's live variable operands to a stackmap
9365 /// or patchpoint target node's operand list.
9366 ///
9367 /// Constants are converted to TargetConstants purely as an optimization to
9368 /// avoid constant materialization and register allocation.
9369 ///
9370 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9371 /// generate addess computation nodes, and so FinalizeISel can convert the
9372 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9373 /// address materialization and register allocation, but may also be required
9374 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9375 /// alloca in the entry block, then the runtime may assume that the alloca's
9376 /// StackMap location can be read immediately after compilation and that the
9377 /// location is valid at any point during execution (this is similar to the
9378 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9379 /// only available in a register, then the runtime would need to trap when
9380 /// execution reaches the StackMap in order to read the alloca's location.
9381 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9382                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9383                                 SelectionDAGBuilder &Builder) {
9384   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9385     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9386     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9387       Ops.push_back(
9388         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9389       Ops.push_back(
9390         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9391     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9392       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9393       Ops.push_back(Builder.DAG.getTargetFrameIndex(
9394           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9395     } else
9396       Ops.push_back(OpVal);
9397   }
9398 }
9399 
9400 /// Lower llvm.experimental.stackmap directly to its target opcode.
9401 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9402   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9403   //                                  [live variables...])
9404 
9405   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9406 
9407   SDValue Chain, InFlag, Callee, NullPtr;
9408   SmallVector<SDValue, 32> Ops;
9409 
9410   SDLoc DL = getCurSDLoc();
9411   Callee = getValue(CI.getCalledOperand());
9412   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9413 
9414   // The stackmap intrinsic only records the live variables (the arguments
9415   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9416   // intrinsic, this won't be lowered to a function call. This means we don't
9417   // have to worry about calling conventions and target specific lowering code.
9418   // Instead we perform the call lowering right here.
9419   //
9420   // chain, flag = CALLSEQ_START(chain, 0, 0)
9421   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9422   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9423   //
9424   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9425   InFlag = Chain.getValue(1);
9426 
9427   // Add the <id> and <numBytes> constants.
9428   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9429   Ops.push_back(DAG.getTargetConstant(
9430                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9431   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9432   Ops.push_back(DAG.getTargetConstant(
9433                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9434                   MVT::i32));
9435 
9436   // Push live variables for the stack map.
9437   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9438 
9439   // We are not pushing any register mask info here on the operands list,
9440   // because the stackmap doesn't clobber anything.
9441 
9442   // Push the chain and the glue flag.
9443   Ops.push_back(Chain);
9444   Ops.push_back(InFlag);
9445 
9446   // Create the STACKMAP node.
9447   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9448   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9449   Chain = SDValue(SM, 0);
9450   InFlag = Chain.getValue(1);
9451 
9452   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9453 
9454   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9455 
9456   // Set the root to the target-lowered call chain.
9457   DAG.setRoot(Chain);
9458 
9459   // Inform the Frame Information that we have a stackmap in this function.
9460   FuncInfo.MF->getFrameInfo().setHasStackMap();
9461 }
9462 
9463 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9464 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9465                                           const BasicBlock *EHPadBB) {
9466   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9467   //                                                 i32 <numBytes>,
9468   //                                                 i8* <target>,
9469   //                                                 i32 <numArgs>,
9470   //                                                 [Args...],
9471   //                                                 [live variables...])
9472 
9473   CallingConv::ID CC = CB.getCallingConv();
9474   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9475   bool HasDef = !CB.getType()->isVoidTy();
9476   SDLoc dl = getCurSDLoc();
9477   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9478 
9479   // Handle immediate and symbolic callees.
9480   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9481     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9482                                    /*isTarget=*/true);
9483   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9484     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9485                                          SDLoc(SymbolicCallee),
9486                                          SymbolicCallee->getValueType(0));
9487 
9488   // Get the real number of arguments participating in the call <numArgs>
9489   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9490   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9491 
9492   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9493   // Intrinsics include all meta-operands up to but not including CC.
9494   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9495   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9496          "Not enough arguments provided to the patchpoint intrinsic");
9497 
9498   // For AnyRegCC the arguments are lowered later on manually.
9499   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9500   Type *ReturnTy =
9501       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9502 
9503   TargetLowering::CallLoweringInfo CLI(DAG);
9504   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9505                            ReturnTy, true);
9506   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9507 
9508   SDNode *CallEnd = Result.second.getNode();
9509   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9510     CallEnd = CallEnd->getOperand(0).getNode();
9511 
9512   /// Get a call instruction from the call sequence chain.
9513   /// Tail calls are not allowed.
9514   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9515          "Expected a callseq node.");
9516   SDNode *Call = CallEnd->getOperand(0).getNode();
9517   bool HasGlue = Call->getGluedNode();
9518 
9519   // Replace the target specific call node with the patchable intrinsic.
9520   SmallVector<SDValue, 8> Ops;
9521 
9522   // Add the <id> and <numBytes> constants.
9523   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9524   Ops.push_back(DAG.getTargetConstant(
9525                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9526   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9527   Ops.push_back(DAG.getTargetConstant(
9528                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9529                   MVT::i32));
9530 
9531   // Add the callee.
9532   Ops.push_back(Callee);
9533 
9534   // Adjust <numArgs> to account for any arguments that have been passed on the
9535   // stack instead.
9536   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9537   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9538   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9539   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9540 
9541   // Add the calling convention
9542   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9543 
9544   // Add the arguments we omitted previously. The register allocator should
9545   // place these in any free register.
9546   if (IsAnyRegCC)
9547     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9548       Ops.push_back(getValue(CB.getArgOperand(i)));
9549 
9550   // Push the arguments from the call instruction up to the register mask.
9551   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9552   Ops.append(Call->op_begin() + 2, e);
9553 
9554   // Push live variables for the stack map.
9555   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9556 
9557   // Push the register mask info.
9558   if (HasGlue)
9559     Ops.push_back(*(Call->op_end()-2));
9560   else
9561     Ops.push_back(*(Call->op_end()-1));
9562 
9563   // Push the chain (this is originally the first operand of the call, but
9564   // becomes now the last or second to last operand).
9565   Ops.push_back(*(Call->op_begin()));
9566 
9567   // Push the glue flag (last operand).
9568   if (HasGlue)
9569     Ops.push_back(*(Call->op_end()-1));
9570 
9571   SDVTList NodeTys;
9572   if (IsAnyRegCC && HasDef) {
9573     // Create the return types based on the intrinsic definition
9574     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9575     SmallVector<EVT, 3> ValueVTs;
9576     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9577     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9578 
9579     // There is always a chain and a glue type at the end
9580     ValueVTs.push_back(MVT::Other);
9581     ValueVTs.push_back(MVT::Glue);
9582     NodeTys = DAG.getVTList(ValueVTs);
9583   } else
9584     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9585 
9586   // Replace the target specific call node with a PATCHPOINT node.
9587   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9588                                          dl, NodeTys, Ops);
9589 
9590   // Update the NodeMap.
9591   if (HasDef) {
9592     if (IsAnyRegCC)
9593       setValue(&CB, SDValue(MN, 0));
9594     else
9595       setValue(&CB, Result.first);
9596   }
9597 
9598   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9599   // call sequence. Furthermore the location of the chain and glue can change
9600   // when the AnyReg calling convention is used and the intrinsic returns a
9601   // value.
9602   if (IsAnyRegCC && HasDef) {
9603     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9604     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9605     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9606   } else
9607     DAG.ReplaceAllUsesWith(Call, MN);
9608   DAG.DeleteNode(Call);
9609 
9610   // Inform the Frame Information that we have a patchpoint in this function.
9611   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9612 }
9613 
9614 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9615                                             unsigned Intrinsic) {
9616   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9617   SDValue Op1 = getValue(I.getArgOperand(0));
9618   SDValue Op2;
9619   if (I.arg_size() > 1)
9620     Op2 = getValue(I.getArgOperand(1));
9621   SDLoc dl = getCurSDLoc();
9622   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9623   SDValue Res;
9624   SDNodeFlags SDFlags;
9625   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9626     SDFlags.copyFMF(*FPMO);
9627 
9628   switch (Intrinsic) {
9629   case Intrinsic::vector_reduce_fadd:
9630     if (SDFlags.hasAllowReassociation())
9631       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9632                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9633                         SDFlags);
9634     else
9635       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9636     break;
9637   case Intrinsic::vector_reduce_fmul:
9638     if (SDFlags.hasAllowReassociation())
9639       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9640                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9641                         SDFlags);
9642     else
9643       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9644     break;
9645   case Intrinsic::vector_reduce_add:
9646     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9647     break;
9648   case Intrinsic::vector_reduce_mul:
9649     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9650     break;
9651   case Intrinsic::vector_reduce_and:
9652     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9653     break;
9654   case Intrinsic::vector_reduce_or:
9655     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9656     break;
9657   case Intrinsic::vector_reduce_xor:
9658     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9659     break;
9660   case Intrinsic::vector_reduce_smax:
9661     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9662     break;
9663   case Intrinsic::vector_reduce_smin:
9664     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9665     break;
9666   case Intrinsic::vector_reduce_umax:
9667     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9668     break;
9669   case Intrinsic::vector_reduce_umin:
9670     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9671     break;
9672   case Intrinsic::vector_reduce_fmax:
9673     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9674     break;
9675   case Intrinsic::vector_reduce_fmin:
9676     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9677     break;
9678   default:
9679     llvm_unreachable("Unhandled vector reduce intrinsic");
9680   }
9681   setValue(&I, Res);
9682 }
9683 
9684 /// Returns an AttributeList representing the attributes applied to the return
9685 /// value of the given call.
9686 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9687   SmallVector<Attribute::AttrKind, 2> Attrs;
9688   if (CLI.RetSExt)
9689     Attrs.push_back(Attribute::SExt);
9690   if (CLI.RetZExt)
9691     Attrs.push_back(Attribute::ZExt);
9692   if (CLI.IsInReg)
9693     Attrs.push_back(Attribute::InReg);
9694 
9695   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9696                             Attrs);
9697 }
9698 
9699 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9700 /// implementation, which just calls LowerCall.
9701 /// FIXME: When all targets are
9702 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9703 std::pair<SDValue, SDValue>
9704 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9705   // Handle the incoming return values from the call.
9706   CLI.Ins.clear();
9707   Type *OrigRetTy = CLI.RetTy;
9708   SmallVector<EVT, 4> RetTys;
9709   SmallVector<uint64_t, 4> Offsets;
9710   auto &DL = CLI.DAG.getDataLayout();
9711   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9712 
9713   if (CLI.IsPostTypeLegalization) {
9714     // If we are lowering a libcall after legalization, split the return type.
9715     SmallVector<EVT, 4> OldRetTys;
9716     SmallVector<uint64_t, 4> OldOffsets;
9717     RetTys.swap(OldRetTys);
9718     Offsets.swap(OldOffsets);
9719 
9720     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9721       EVT RetVT = OldRetTys[i];
9722       uint64_t Offset = OldOffsets[i];
9723       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9724       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9725       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9726       RetTys.append(NumRegs, RegisterVT);
9727       for (unsigned j = 0; j != NumRegs; ++j)
9728         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9729     }
9730   }
9731 
9732   SmallVector<ISD::OutputArg, 4> Outs;
9733   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9734 
9735   bool CanLowerReturn =
9736       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9737                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9738 
9739   SDValue DemoteStackSlot;
9740   int DemoteStackIdx = -100;
9741   if (!CanLowerReturn) {
9742     // FIXME: equivalent assert?
9743     // assert(!CS.hasInAllocaArgument() &&
9744     //        "sret demotion is incompatible with inalloca");
9745     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9746     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9747     MachineFunction &MF = CLI.DAG.getMachineFunction();
9748     DemoteStackIdx =
9749         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9750     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9751                                               DL.getAllocaAddrSpace());
9752 
9753     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9754     ArgListEntry Entry;
9755     Entry.Node = DemoteStackSlot;
9756     Entry.Ty = StackSlotPtrType;
9757     Entry.IsSExt = false;
9758     Entry.IsZExt = false;
9759     Entry.IsInReg = false;
9760     Entry.IsSRet = true;
9761     Entry.IsNest = false;
9762     Entry.IsByVal = false;
9763     Entry.IsByRef = false;
9764     Entry.IsReturned = false;
9765     Entry.IsSwiftSelf = false;
9766     Entry.IsSwiftAsync = false;
9767     Entry.IsSwiftError = false;
9768     Entry.IsCFGuardTarget = false;
9769     Entry.Alignment = Alignment;
9770     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9771     CLI.NumFixedArgs += 1;
9772     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9773 
9774     // sret demotion isn't compatible with tail-calls, since the sret argument
9775     // points into the callers stack frame.
9776     CLI.IsTailCall = false;
9777   } else {
9778     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9779         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9780     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9781       ISD::ArgFlagsTy Flags;
9782       if (NeedsRegBlock) {
9783         Flags.setInConsecutiveRegs();
9784         if (I == RetTys.size() - 1)
9785           Flags.setInConsecutiveRegsLast();
9786       }
9787       EVT VT = RetTys[I];
9788       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9789                                                      CLI.CallConv, VT);
9790       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9791                                                        CLI.CallConv, VT);
9792       for (unsigned i = 0; i != NumRegs; ++i) {
9793         ISD::InputArg MyFlags;
9794         MyFlags.Flags = Flags;
9795         MyFlags.VT = RegisterVT;
9796         MyFlags.ArgVT = VT;
9797         MyFlags.Used = CLI.IsReturnValueUsed;
9798         if (CLI.RetTy->isPointerTy()) {
9799           MyFlags.Flags.setPointer();
9800           MyFlags.Flags.setPointerAddrSpace(
9801               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9802         }
9803         if (CLI.RetSExt)
9804           MyFlags.Flags.setSExt();
9805         if (CLI.RetZExt)
9806           MyFlags.Flags.setZExt();
9807         if (CLI.IsInReg)
9808           MyFlags.Flags.setInReg();
9809         CLI.Ins.push_back(MyFlags);
9810       }
9811     }
9812   }
9813 
9814   // We push in swifterror return as the last element of CLI.Ins.
9815   ArgListTy &Args = CLI.getArgs();
9816   if (supportSwiftError()) {
9817     for (const ArgListEntry &Arg : Args) {
9818       if (Arg.IsSwiftError) {
9819         ISD::InputArg MyFlags;
9820         MyFlags.VT = getPointerTy(DL);
9821         MyFlags.ArgVT = EVT(getPointerTy(DL));
9822         MyFlags.Flags.setSwiftError();
9823         CLI.Ins.push_back(MyFlags);
9824       }
9825     }
9826   }
9827 
9828   // Handle all of the outgoing arguments.
9829   CLI.Outs.clear();
9830   CLI.OutVals.clear();
9831   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9832     SmallVector<EVT, 4> ValueVTs;
9833     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9834     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9835     Type *FinalType = Args[i].Ty;
9836     if (Args[i].IsByVal)
9837       FinalType = Args[i].IndirectType;
9838     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9839         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9840     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9841          ++Value) {
9842       EVT VT = ValueVTs[Value];
9843       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9844       SDValue Op = SDValue(Args[i].Node.getNode(),
9845                            Args[i].Node.getResNo() + Value);
9846       ISD::ArgFlagsTy Flags;
9847 
9848       // Certain targets (such as MIPS), may have a different ABI alignment
9849       // for a type depending on the context. Give the target a chance to
9850       // specify the alignment it wants.
9851       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9852       Flags.setOrigAlign(OriginalAlignment);
9853 
9854       if (Args[i].Ty->isPointerTy()) {
9855         Flags.setPointer();
9856         Flags.setPointerAddrSpace(
9857             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9858       }
9859       if (Args[i].IsZExt)
9860         Flags.setZExt();
9861       if (Args[i].IsSExt)
9862         Flags.setSExt();
9863       if (Args[i].IsInReg) {
9864         // If we are using vectorcall calling convention, a structure that is
9865         // passed InReg - is surely an HVA
9866         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9867             isa<StructType>(FinalType)) {
9868           // The first value of a structure is marked
9869           if (0 == Value)
9870             Flags.setHvaStart();
9871           Flags.setHva();
9872         }
9873         // Set InReg Flag
9874         Flags.setInReg();
9875       }
9876       if (Args[i].IsSRet)
9877         Flags.setSRet();
9878       if (Args[i].IsSwiftSelf)
9879         Flags.setSwiftSelf();
9880       if (Args[i].IsSwiftAsync)
9881         Flags.setSwiftAsync();
9882       if (Args[i].IsSwiftError)
9883         Flags.setSwiftError();
9884       if (Args[i].IsCFGuardTarget)
9885         Flags.setCFGuardTarget();
9886       if (Args[i].IsByVal)
9887         Flags.setByVal();
9888       if (Args[i].IsByRef)
9889         Flags.setByRef();
9890       if (Args[i].IsPreallocated) {
9891         Flags.setPreallocated();
9892         // Set the byval flag for CCAssignFn callbacks that don't know about
9893         // preallocated.  This way we can know how many bytes we should've
9894         // allocated and how many bytes a callee cleanup function will pop.  If
9895         // we port preallocated to more targets, we'll have to add custom
9896         // preallocated handling in the various CC lowering callbacks.
9897         Flags.setByVal();
9898       }
9899       if (Args[i].IsInAlloca) {
9900         Flags.setInAlloca();
9901         // Set the byval flag for CCAssignFn callbacks that don't know about
9902         // inalloca.  This way we can know how many bytes we should've allocated
9903         // and how many bytes a callee cleanup function will pop.  If we port
9904         // inalloca to more targets, we'll have to add custom inalloca handling
9905         // in the various CC lowering callbacks.
9906         Flags.setByVal();
9907       }
9908       Align MemAlign;
9909       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9910         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9911         Flags.setByValSize(FrameSize);
9912 
9913         // info is not there but there are cases it cannot get right.
9914         if (auto MA = Args[i].Alignment)
9915           MemAlign = *MA;
9916         else
9917           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9918       } else if (auto MA = Args[i].Alignment) {
9919         MemAlign = *MA;
9920       } else {
9921         MemAlign = OriginalAlignment;
9922       }
9923       Flags.setMemAlign(MemAlign);
9924       if (Args[i].IsNest)
9925         Flags.setNest();
9926       if (NeedsRegBlock)
9927         Flags.setInConsecutiveRegs();
9928 
9929       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9930                                                  CLI.CallConv, VT);
9931       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9932                                                         CLI.CallConv, VT);
9933       SmallVector<SDValue, 4> Parts(NumParts);
9934       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9935 
9936       if (Args[i].IsSExt)
9937         ExtendKind = ISD::SIGN_EXTEND;
9938       else if (Args[i].IsZExt)
9939         ExtendKind = ISD::ZERO_EXTEND;
9940 
9941       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9942       // for now.
9943       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9944           CanLowerReturn) {
9945         assert((CLI.RetTy == Args[i].Ty ||
9946                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9947                  CLI.RetTy->getPointerAddressSpace() ==
9948                      Args[i].Ty->getPointerAddressSpace())) &&
9949                RetTys.size() == NumValues && "unexpected use of 'returned'");
9950         // Before passing 'returned' to the target lowering code, ensure that
9951         // either the register MVT and the actual EVT are the same size or that
9952         // the return value and argument are extended in the same way; in these
9953         // cases it's safe to pass the argument register value unchanged as the
9954         // return register value (although it's at the target's option whether
9955         // to do so)
9956         // TODO: allow code generation to take advantage of partially preserved
9957         // registers rather than clobbering the entire register when the
9958         // parameter extension method is not compatible with the return
9959         // extension method
9960         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9961             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9962              CLI.RetZExt == Args[i].IsZExt))
9963           Flags.setReturned();
9964       }
9965 
9966       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9967                      CLI.CallConv, ExtendKind);
9968 
9969       for (unsigned j = 0; j != NumParts; ++j) {
9970         // if it isn't first piece, alignment must be 1
9971         // For scalable vectors the scalable part is currently handled
9972         // by individual targets, so we just use the known minimum size here.
9973         ISD::OutputArg MyFlags(
9974             Flags, Parts[j].getValueType().getSimpleVT(), VT,
9975             i < CLI.NumFixedArgs, i,
9976             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
9977         if (NumParts > 1 && j == 0)
9978           MyFlags.Flags.setSplit();
9979         else if (j != 0) {
9980           MyFlags.Flags.setOrigAlign(Align(1));
9981           if (j == NumParts - 1)
9982             MyFlags.Flags.setSplitEnd();
9983         }
9984 
9985         CLI.Outs.push_back(MyFlags);
9986         CLI.OutVals.push_back(Parts[j]);
9987       }
9988 
9989       if (NeedsRegBlock && Value == NumValues - 1)
9990         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9991     }
9992   }
9993 
9994   SmallVector<SDValue, 4> InVals;
9995   CLI.Chain = LowerCall(CLI, InVals);
9996 
9997   // Update CLI.InVals to use outside of this function.
9998   CLI.InVals = InVals;
9999 
10000   // Verify that the target's LowerCall behaved as expected.
10001   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10002          "LowerCall didn't return a valid chain!");
10003   assert((!CLI.IsTailCall || InVals.empty()) &&
10004          "LowerCall emitted a return value for a tail call!");
10005   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10006          "LowerCall didn't emit the correct number of values!");
10007 
10008   // For a tail call, the return value is merely live-out and there aren't
10009   // any nodes in the DAG representing it. Return a special value to
10010   // indicate that a tail call has been emitted and no more Instructions
10011   // should be processed in the current block.
10012   if (CLI.IsTailCall) {
10013     CLI.DAG.setRoot(CLI.Chain);
10014     return std::make_pair(SDValue(), SDValue());
10015   }
10016 
10017 #ifndef NDEBUG
10018   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10019     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10020     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10021            "LowerCall emitted a value with the wrong type!");
10022   }
10023 #endif
10024 
10025   SmallVector<SDValue, 4> ReturnValues;
10026   if (!CanLowerReturn) {
10027     // The instruction result is the result of loading from the
10028     // hidden sret parameter.
10029     SmallVector<EVT, 1> PVTs;
10030     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10031 
10032     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10033     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10034     EVT PtrVT = PVTs[0];
10035 
10036     unsigned NumValues = RetTys.size();
10037     ReturnValues.resize(NumValues);
10038     SmallVector<SDValue, 4> Chains(NumValues);
10039 
10040     // An aggregate return value cannot wrap around the address space, so
10041     // offsets to its parts don't wrap either.
10042     SDNodeFlags Flags;
10043     Flags.setNoUnsignedWrap(true);
10044 
10045     MachineFunction &MF = CLI.DAG.getMachineFunction();
10046     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10047     for (unsigned i = 0; i < NumValues; ++i) {
10048       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10049                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10050                                                         PtrVT), Flags);
10051       SDValue L = CLI.DAG.getLoad(
10052           RetTys[i], CLI.DL, CLI.Chain, Add,
10053           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10054                                             DemoteStackIdx, Offsets[i]),
10055           HiddenSRetAlign);
10056       ReturnValues[i] = L;
10057       Chains[i] = L.getValue(1);
10058     }
10059 
10060     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10061   } else {
10062     // Collect the legal value parts into potentially illegal values
10063     // that correspond to the original function's return values.
10064     Optional<ISD::NodeType> AssertOp;
10065     if (CLI.RetSExt)
10066       AssertOp = ISD::AssertSext;
10067     else if (CLI.RetZExt)
10068       AssertOp = ISD::AssertZext;
10069     unsigned CurReg = 0;
10070     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10071       EVT VT = RetTys[I];
10072       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10073                                                      CLI.CallConv, VT);
10074       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10075                                                        CLI.CallConv, VT);
10076 
10077       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10078                                               NumRegs, RegisterVT, VT, nullptr,
10079                                               CLI.CallConv, AssertOp));
10080       CurReg += NumRegs;
10081     }
10082 
10083     // For a function returning void, there is no return value. We can't create
10084     // such a node, so we just return a null return value in that case. In
10085     // that case, nothing will actually look at the value.
10086     if (ReturnValues.empty())
10087       return std::make_pair(SDValue(), CLI.Chain);
10088   }
10089 
10090   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10091                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10092   return std::make_pair(Res, CLI.Chain);
10093 }
10094 
10095 /// Places new result values for the node in Results (their number
10096 /// and types must exactly match those of the original return values of
10097 /// the node), or leaves Results empty, which indicates that the node is not
10098 /// to be custom lowered after all.
10099 void TargetLowering::LowerOperationWrapper(SDNode *N,
10100                                            SmallVectorImpl<SDValue> &Results,
10101                                            SelectionDAG &DAG) const {
10102   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10103 
10104   if (!Res.getNode())
10105     return;
10106 
10107   // If the original node has one result, take the return value from
10108   // LowerOperation as is. It might not be result number 0.
10109   if (N->getNumValues() == 1) {
10110     Results.push_back(Res);
10111     return;
10112   }
10113 
10114   // If the original node has multiple results, then the return node should
10115   // have the same number of results.
10116   assert((N->getNumValues() == Res->getNumValues()) &&
10117       "Lowering returned the wrong number of results!");
10118 
10119   // Places new result values base on N result number.
10120   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10121     Results.push_back(Res.getValue(I));
10122 }
10123 
10124 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10125   llvm_unreachable("LowerOperation not implemented for this target!");
10126 }
10127 
10128 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10129                                                      unsigned Reg,
10130                                                      ISD::NodeType ExtendType) {
10131   SDValue Op = getNonRegisterValue(V);
10132   assert((Op.getOpcode() != ISD::CopyFromReg ||
10133           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10134          "Copy from a reg to the same reg!");
10135   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10136 
10137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10138   // If this is an InlineAsm we have to match the registers required, not the
10139   // notional registers required by the type.
10140 
10141   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10142                    None); // This is not an ABI copy.
10143   SDValue Chain = DAG.getEntryNode();
10144 
10145   if (ExtendType == ISD::ANY_EXTEND) {
10146     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10147     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10148       ExtendType = PreferredExtendIt->second;
10149   }
10150   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10151   PendingExports.push_back(Chain);
10152 }
10153 
10154 #include "llvm/CodeGen/SelectionDAGISel.h"
10155 
10156 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10157 /// entry block, return true.  This includes arguments used by switches, since
10158 /// the switch may expand into multiple basic blocks.
10159 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10160   // With FastISel active, we may be splitting blocks, so force creation
10161   // of virtual registers for all non-dead arguments.
10162   if (FastISel)
10163     return A->use_empty();
10164 
10165   const BasicBlock &Entry = A->getParent()->front();
10166   for (const User *U : A->users())
10167     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10168       return false;  // Use not in entry block.
10169 
10170   return true;
10171 }
10172 
10173 using ArgCopyElisionMapTy =
10174     DenseMap<const Argument *,
10175              std::pair<const AllocaInst *, const StoreInst *>>;
10176 
10177 /// Scan the entry block of the function in FuncInfo for arguments that look
10178 /// like copies into a local alloca. Record any copied arguments in
10179 /// ArgCopyElisionCandidates.
10180 static void
10181 findArgumentCopyElisionCandidates(const DataLayout &DL,
10182                                   FunctionLoweringInfo *FuncInfo,
10183                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10184   // Record the state of every static alloca used in the entry block. Argument
10185   // allocas are all used in the entry block, so we need approximately as many
10186   // entries as we have arguments.
10187   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10188   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10189   unsigned NumArgs = FuncInfo->Fn->arg_size();
10190   StaticAllocas.reserve(NumArgs * 2);
10191 
10192   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10193     if (!V)
10194       return nullptr;
10195     V = V->stripPointerCasts();
10196     const auto *AI = dyn_cast<AllocaInst>(V);
10197     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10198       return nullptr;
10199     auto Iter = StaticAllocas.insert({AI, Unknown});
10200     return &Iter.first->second;
10201   };
10202 
10203   // Look for stores of arguments to static allocas. Look through bitcasts and
10204   // GEPs to handle type coercions, as long as the alloca is fully initialized
10205   // by the store. Any non-store use of an alloca escapes it and any subsequent
10206   // unanalyzed store might write it.
10207   // FIXME: Handle structs initialized with multiple stores.
10208   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10209     // Look for stores, and handle non-store uses conservatively.
10210     const auto *SI = dyn_cast<StoreInst>(&I);
10211     if (!SI) {
10212       // We will look through cast uses, so ignore them completely.
10213       if (I.isCast())
10214         continue;
10215       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10216       // to allocas.
10217       if (I.isDebugOrPseudoInst())
10218         continue;
10219       // This is an unknown instruction. Assume it escapes or writes to all
10220       // static alloca operands.
10221       for (const Use &U : I.operands()) {
10222         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10223           *Info = StaticAllocaInfo::Clobbered;
10224       }
10225       continue;
10226     }
10227 
10228     // If the stored value is a static alloca, mark it as escaped.
10229     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10230       *Info = StaticAllocaInfo::Clobbered;
10231 
10232     // Check if the destination is a static alloca.
10233     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10234     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10235     if (!Info)
10236       continue;
10237     const AllocaInst *AI = cast<AllocaInst>(Dst);
10238 
10239     // Skip allocas that have been initialized or clobbered.
10240     if (*Info != StaticAllocaInfo::Unknown)
10241       continue;
10242 
10243     // Check if the stored value is an argument, and that this store fully
10244     // initializes the alloca.
10245     // If the argument type has padding bits we can't directly forward a pointer
10246     // as the upper bits may contain garbage.
10247     // Don't elide copies from the same argument twice.
10248     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10249     const auto *Arg = dyn_cast<Argument>(Val);
10250     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10251         Arg->getType()->isEmptyTy() ||
10252         DL.getTypeStoreSize(Arg->getType()) !=
10253             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10254         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10255         ArgCopyElisionCandidates.count(Arg)) {
10256       *Info = StaticAllocaInfo::Clobbered;
10257       continue;
10258     }
10259 
10260     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10261                       << '\n');
10262 
10263     // Mark this alloca and store for argument copy elision.
10264     *Info = StaticAllocaInfo::Elidable;
10265     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10266 
10267     // Stop scanning if we've seen all arguments. This will happen early in -O0
10268     // builds, which is useful, because -O0 builds have large entry blocks and
10269     // many allocas.
10270     if (ArgCopyElisionCandidates.size() == NumArgs)
10271       break;
10272   }
10273 }
10274 
10275 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10276 /// ArgVal is a load from a suitable fixed stack object.
10277 static void tryToElideArgumentCopy(
10278     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10279     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10280     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10281     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10282     SDValue ArgVal, bool &ArgHasUses) {
10283   // Check if this is a load from a fixed stack object.
10284   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10285   if (!LNode)
10286     return;
10287   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10288   if (!FINode)
10289     return;
10290 
10291   // Check that the fixed stack object is the right size and alignment.
10292   // Look at the alignment that the user wrote on the alloca instead of looking
10293   // at the stack object.
10294   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10295   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10296   const AllocaInst *AI = ArgCopyIter->second.first;
10297   int FixedIndex = FINode->getIndex();
10298   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10299   int OldIndex = AllocaIndex;
10300   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10301   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10302     LLVM_DEBUG(
10303         dbgs() << "  argument copy elision failed due to bad fixed stack "
10304                   "object size\n");
10305     return;
10306   }
10307   Align RequiredAlignment = AI->getAlign();
10308   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10309     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10310                          "greater than stack argument alignment ("
10311                       << DebugStr(RequiredAlignment) << " vs "
10312                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10313     return;
10314   }
10315 
10316   // Perform the elision. Delete the old stack object and replace its only use
10317   // in the variable info map. Mark the stack object as mutable.
10318   LLVM_DEBUG({
10319     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10320            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10321            << '\n';
10322   });
10323   MFI.RemoveStackObject(OldIndex);
10324   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10325   AllocaIndex = FixedIndex;
10326   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10327   Chains.push_back(ArgVal.getValue(1));
10328 
10329   // Avoid emitting code for the store implementing the copy.
10330   const StoreInst *SI = ArgCopyIter->second.second;
10331   ElidedArgCopyInstrs.insert(SI);
10332 
10333   // Check for uses of the argument again so that we can avoid exporting ArgVal
10334   // if it is't used by anything other than the store.
10335   for (const Value *U : Arg.users()) {
10336     if (U != SI) {
10337       ArgHasUses = true;
10338       break;
10339     }
10340   }
10341 }
10342 
10343 void SelectionDAGISel::LowerArguments(const Function &F) {
10344   SelectionDAG &DAG = SDB->DAG;
10345   SDLoc dl = SDB->getCurSDLoc();
10346   const DataLayout &DL = DAG.getDataLayout();
10347   SmallVector<ISD::InputArg, 16> Ins;
10348 
10349   // In Naked functions we aren't going to save any registers.
10350   if (F.hasFnAttribute(Attribute::Naked))
10351     return;
10352 
10353   if (!FuncInfo->CanLowerReturn) {
10354     // Put in an sret pointer parameter before all the other parameters.
10355     SmallVector<EVT, 1> ValueVTs;
10356     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10357                     F.getReturnType()->getPointerTo(
10358                         DAG.getDataLayout().getAllocaAddrSpace()),
10359                     ValueVTs);
10360 
10361     // NOTE: Assuming that a pointer will never break down to more than one VT
10362     // or one register.
10363     ISD::ArgFlagsTy Flags;
10364     Flags.setSRet();
10365     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10366     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10367                          ISD::InputArg::NoArgIndex, 0);
10368     Ins.push_back(RetArg);
10369   }
10370 
10371   // Look for stores of arguments to static allocas. Mark such arguments with a
10372   // flag to ask the target to give us the memory location of that argument if
10373   // available.
10374   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10375   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10376                                     ArgCopyElisionCandidates);
10377 
10378   // Set up the incoming argument description vector.
10379   for (const Argument &Arg : F.args()) {
10380     unsigned ArgNo = Arg.getArgNo();
10381     SmallVector<EVT, 4> ValueVTs;
10382     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10383     bool isArgValueUsed = !Arg.use_empty();
10384     unsigned PartBase = 0;
10385     Type *FinalType = Arg.getType();
10386     if (Arg.hasAttribute(Attribute::ByVal))
10387       FinalType = Arg.getParamByValType();
10388     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10389         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10390     for (unsigned Value = 0, NumValues = ValueVTs.size();
10391          Value != NumValues; ++Value) {
10392       EVT VT = ValueVTs[Value];
10393       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10394       ISD::ArgFlagsTy Flags;
10395 
10396 
10397       if (Arg.getType()->isPointerTy()) {
10398         Flags.setPointer();
10399         Flags.setPointerAddrSpace(
10400             cast<PointerType>(Arg.getType())->getAddressSpace());
10401       }
10402       if (Arg.hasAttribute(Attribute::ZExt))
10403         Flags.setZExt();
10404       if (Arg.hasAttribute(Attribute::SExt))
10405         Flags.setSExt();
10406       if (Arg.hasAttribute(Attribute::InReg)) {
10407         // If we are using vectorcall calling convention, a structure that is
10408         // passed InReg - is surely an HVA
10409         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10410             isa<StructType>(Arg.getType())) {
10411           // The first value of a structure is marked
10412           if (0 == Value)
10413             Flags.setHvaStart();
10414           Flags.setHva();
10415         }
10416         // Set InReg Flag
10417         Flags.setInReg();
10418       }
10419       if (Arg.hasAttribute(Attribute::StructRet))
10420         Flags.setSRet();
10421       if (Arg.hasAttribute(Attribute::SwiftSelf))
10422         Flags.setSwiftSelf();
10423       if (Arg.hasAttribute(Attribute::SwiftAsync))
10424         Flags.setSwiftAsync();
10425       if (Arg.hasAttribute(Attribute::SwiftError))
10426         Flags.setSwiftError();
10427       if (Arg.hasAttribute(Attribute::ByVal))
10428         Flags.setByVal();
10429       if (Arg.hasAttribute(Attribute::ByRef))
10430         Flags.setByRef();
10431       if (Arg.hasAttribute(Attribute::InAlloca)) {
10432         Flags.setInAlloca();
10433         // Set the byval flag for CCAssignFn callbacks that don't know about
10434         // inalloca.  This way we can know how many bytes we should've allocated
10435         // and how many bytes a callee cleanup function will pop.  If we port
10436         // inalloca to more targets, we'll have to add custom inalloca handling
10437         // in the various CC lowering callbacks.
10438         Flags.setByVal();
10439       }
10440       if (Arg.hasAttribute(Attribute::Preallocated)) {
10441         Flags.setPreallocated();
10442         // Set the byval flag for CCAssignFn callbacks that don't know about
10443         // preallocated.  This way we can know how many bytes we should've
10444         // allocated and how many bytes a callee cleanup function will pop.  If
10445         // we port preallocated to more targets, we'll have to add custom
10446         // preallocated handling in the various CC lowering callbacks.
10447         Flags.setByVal();
10448       }
10449 
10450       // Certain targets (such as MIPS), may have a different ABI alignment
10451       // for a type depending on the context. Give the target a chance to
10452       // specify the alignment it wants.
10453       const Align OriginalAlignment(
10454           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10455       Flags.setOrigAlign(OriginalAlignment);
10456 
10457       Align MemAlign;
10458       Type *ArgMemTy = nullptr;
10459       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10460           Flags.isByRef()) {
10461         if (!ArgMemTy)
10462           ArgMemTy = Arg.getPointeeInMemoryValueType();
10463 
10464         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10465 
10466         // For in-memory arguments, size and alignment should be passed from FE.
10467         // BE will guess if this info is not there but there are cases it cannot
10468         // get right.
10469         if (auto ParamAlign = Arg.getParamStackAlign())
10470           MemAlign = *ParamAlign;
10471         else if ((ParamAlign = Arg.getParamAlign()))
10472           MemAlign = *ParamAlign;
10473         else
10474           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10475         if (Flags.isByRef())
10476           Flags.setByRefSize(MemSize);
10477         else
10478           Flags.setByValSize(MemSize);
10479       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10480         MemAlign = *ParamAlign;
10481       } else {
10482         MemAlign = OriginalAlignment;
10483       }
10484       Flags.setMemAlign(MemAlign);
10485 
10486       if (Arg.hasAttribute(Attribute::Nest))
10487         Flags.setNest();
10488       if (NeedsRegBlock)
10489         Flags.setInConsecutiveRegs();
10490       if (ArgCopyElisionCandidates.count(&Arg))
10491         Flags.setCopyElisionCandidate();
10492       if (Arg.hasAttribute(Attribute::Returned))
10493         Flags.setReturned();
10494 
10495       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10496           *CurDAG->getContext(), F.getCallingConv(), VT);
10497       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10498           *CurDAG->getContext(), F.getCallingConv(), VT);
10499       for (unsigned i = 0; i != NumRegs; ++i) {
10500         // For scalable vectors, use the minimum size; individual targets
10501         // are responsible for handling scalable vector arguments and
10502         // return values.
10503         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10504                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10505         if (NumRegs > 1 && i == 0)
10506           MyFlags.Flags.setSplit();
10507         // if it isn't first piece, alignment must be 1
10508         else if (i > 0) {
10509           MyFlags.Flags.setOrigAlign(Align(1));
10510           if (i == NumRegs - 1)
10511             MyFlags.Flags.setSplitEnd();
10512         }
10513         Ins.push_back(MyFlags);
10514       }
10515       if (NeedsRegBlock && Value == NumValues - 1)
10516         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10517       PartBase += VT.getStoreSize().getKnownMinSize();
10518     }
10519   }
10520 
10521   // Call the target to set up the argument values.
10522   SmallVector<SDValue, 8> InVals;
10523   SDValue NewRoot = TLI->LowerFormalArguments(
10524       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10525 
10526   // Verify that the target's LowerFormalArguments behaved as expected.
10527   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10528          "LowerFormalArguments didn't return a valid chain!");
10529   assert(InVals.size() == Ins.size() &&
10530          "LowerFormalArguments didn't emit the correct number of values!");
10531   LLVM_DEBUG({
10532     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10533       assert(InVals[i].getNode() &&
10534              "LowerFormalArguments emitted a null value!");
10535       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10536              "LowerFormalArguments emitted a value with the wrong type!");
10537     }
10538   });
10539 
10540   // Update the DAG with the new chain value resulting from argument lowering.
10541   DAG.setRoot(NewRoot);
10542 
10543   // Set up the argument values.
10544   unsigned i = 0;
10545   if (!FuncInfo->CanLowerReturn) {
10546     // Create a virtual register for the sret pointer, and put in a copy
10547     // from the sret argument into it.
10548     SmallVector<EVT, 1> ValueVTs;
10549     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10550                     F.getReturnType()->getPointerTo(
10551                         DAG.getDataLayout().getAllocaAddrSpace()),
10552                     ValueVTs);
10553     MVT VT = ValueVTs[0].getSimpleVT();
10554     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10555     Optional<ISD::NodeType> AssertOp = None;
10556     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10557                                         nullptr, F.getCallingConv(), AssertOp);
10558 
10559     MachineFunction& MF = SDB->DAG.getMachineFunction();
10560     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10561     Register SRetReg =
10562         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10563     FuncInfo->DemoteRegister = SRetReg;
10564     NewRoot =
10565         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10566     DAG.setRoot(NewRoot);
10567 
10568     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10569     ++i;
10570   }
10571 
10572   SmallVector<SDValue, 4> Chains;
10573   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10574   for (const Argument &Arg : F.args()) {
10575     SmallVector<SDValue, 4> ArgValues;
10576     SmallVector<EVT, 4> ValueVTs;
10577     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10578     unsigned NumValues = ValueVTs.size();
10579     if (NumValues == 0)
10580       continue;
10581 
10582     bool ArgHasUses = !Arg.use_empty();
10583 
10584     // Elide the copying store if the target loaded this argument from a
10585     // suitable fixed stack object.
10586     if (Ins[i].Flags.isCopyElisionCandidate()) {
10587       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10588                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10589                              InVals[i], ArgHasUses);
10590     }
10591 
10592     // If this argument is unused then remember its value. It is used to generate
10593     // debugging information.
10594     bool isSwiftErrorArg =
10595         TLI->supportSwiftError() &&
10596         Arg.hasAttribute(Attribute::SwiftError);
10597     if (!ArgHasUses && !isSwiftErrorArg) {
10598       SDB->setUnusedArgValue(&Arg, InVals[i]);
10599 
10600       // Also remember any frame index for use in FastISel.
10601       if (FrameIndexSDNode *FI =
10602           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10603         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10604     }
10605 
10606     for (unsigned Val = 0; Val != NumValues; ++Val) {
10607       EVT VT = ValueVTs[Val];
10608       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10609                                                       F.getCallingConv(), VT);
10610       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10611           *CurDAG->getContext(), F.getCallingConv(), VT);
10612 
10613       // Even an apparent 'unused' swifterror argument needs to be returned. So
10614       // we do generate a copy for it that can be used on return from the
10615       // function.
10616       if (ArgHasUses || isSwiftErrorArg) {
10617         Optional<ISD::NodeType> AssertOp;
10618         if (Arg.hasAttribute(Attribute::SExt))
10619           AssertOp = ISD::AssertSext;
10620         else if (Arg.hasAttribute(Attribute::ZExt))
10621           AssertOp = ISD::AssertZext;
10622 
10623         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10624                                              PartVT, VT, nullptr,
10625                                              F.getCallingConv(), AssertOp));
10626       }
10627 
10628       i += NumParts;
10629     }
10630 
10631     // We don't need to do anything else for unused arguments.
10632     if (ArgValues.empty())
10633       continue;
10634 
10635     // Note down frame index.
10636     if (FrameIndexSDNode *FI =
10637         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10638       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10639 
10640     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10641                                      SDB->getCurSDLoc());
10642 
10643     SDB->setValue(&Arg, Res);
10644     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10645       // We want to associate the argument with the frame index, among
10646       // involved operands, that correspond to the lowest address. The
10647       // getCopyFromParts function, called earlier, is swapping the order of
10648       // the operands to BUILD_PAIR depending on endianness. The result of
10649       // that swapping is that the least significant bits of the argument will
10650       // be in the first operand of the BUILD_PAIR node, and the most
10651       // significant bits will be in the second operand.
10652       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10653       if (LoadSDNode *LNode =
10654           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10655         if (FrameIndexSDNode *FI =
10656             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10657           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10658     }
10659 
10660     // Analyses past this point are naive and don't expect an assertion.
10661     if (Res.getOpcode() == ISD::AssertZext)
10662       Res = Res.getOperand(0);
10663 
10664     // Update the SwiftErrorVRegDefMap.
10665     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10666       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10667       if (Register::isVirtualRegister(Reg))
10668         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10669                                    Reg);
10670     }
10671 
10672     // If this argument is live outside of the entry block, insert a copy from
10673     // wherever we got it to the vreg that other BB's will reference it as.
10674     if (Res.getOpcode() == ISD::CopyFromReg) {
10675       // If we can, though, try to skip creating an unnecessary vreg.
10676       // FIXME: This isn't very clean... it would be nice to make this more
10677       // general.
10678       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10679       if (Register::isVirtualRegister(Reg)) {
10680         FuncInfo->ValueMap[&Arg] = Reg;
10681         continue;
10682       }
10683     }
10684     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10685       FuncInfo->InitializeRegForValue(&Arg);
10686       SDB->CopyToExportRegsIfNeeded(&Arg);
10687     }
10688   }
10689 
10690   if (!Chains.empty()) {
10691     Chains.push_back(NewRoot);
10692     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10693   }
10694 
10695   DAG.setRoot(NewRoot);
10696 
10697   assert(i == InVals.size() && "Argument register count mismatch!");
10698 
10699   // If any argument copy elisions occurred and we have debug info, update the
10700   // stale frame indices used in the dbg.declare variable info table.
10701   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10702   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10703     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10704       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10705       if (I != ArgCopyElisionFrameIndexMap.end())
10706         VI.Slot = I->second;
10707     }
10708   }
10709 
10710   // Finally, if the target has anything special to do, allow it to do so.
10711   emitFunctionEntryCode();
10712 }
10713 
10714 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10715 /// ensure constants are generated when needed.  Remember the virtual registers
10716 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10717 /// directly add them, because expansion might result in multiple MBB's for one
10718 /// BB.  As such, the start of the BB might correspond to a different MBB than
10719 /// the end.
10720 void
10721 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10722   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10723   const Instruction *TI = LLVMBB->getTerminator();
10724 
10725   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10726 
10727   // Check PHI nodes in successors that expect a value to be available from this
10728   // block.
10729   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10730     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10731     if (!isa<PHINode>(SuccBB->begin())) continue;
10732     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10733 
10734     // If this terminator has multiple identical successors (common for
10735     // switches), only handle each succ once.
10736     if (!SuccsHandled.insert(SuccMBB).second)
10737       continue;
10738 
10739     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10740 
10741     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10742     // nodes and Machine PHI nodes, but the incoming operands have not been
10743     // emitted yet.
10744     for (const PHINode &PN : SuccBB->phis()) {
10745       // Ignore dead phi's.
10746       if (PN.use_empty())
10747         continue;
10748 
10749       // Skip empty types
10750       if (PN.getType()->isEmptyTy())
10751         continue;
10752 
10753       unsigned Reg;
10754       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10755 
10756       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10757         unsigned &RegOut = ConstantsOut[C];
10758         if (RegOut == 0) {
10759           RegOut = FuncInfo.CreateRegs(C);
10760           // We need to zero/sign extend ConstantInt phi operands to match
10761           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10762           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10763           if (auto *CI = dyn_cast<ConstantInt>(C))
10764             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10765                                                     : ISD::ZERO_EXTEND;
10766           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10767         }
10768         Reg = RegOut;
10769       } else {
10770         DenseMap<const Value *, Register>::iterator I =
10771           FuncInfo.ValueMap.find(PHIOp);
10772         if (I != FuncInfo.ValueMap.end())
10773           Reg = I->second;
10774         else {
10775           assert(isa<AllocaInst>(PHIOp) &&
10776                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10777                  "Didn't codegen value into a register!??");
10778           Reg = FuncInfo.CreateRegs(PHIOp);
10779           CopyValueToVirtualRegister(PHIOp, Reg);
10780         }
10781       }
10782 
10783       // Remember that this register needs to added to the machine PHI node as
10784       // the input for this MBB.
10785       SmallVector<EVT, 4> ValueVTs;
10786       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10787       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10788         EVT VT = ValueVTs[vti];
10789         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10790         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10791           FuncInfo.PHINodesToUpdate.push_back(
10792               std::make_pair(&*MBBI++, Reg + i));
10793         Reg += NumRegisters;
10794       }
10795     }
10796   }
10797 
10798   ConstantsOut.clear();
10799 }
10800 
10801 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10802   MachineFunction::iterator I(MBB);
10803   if (++I == FuncInfo.MF->end())
10804     return nullptr;
10805   return &*I;
10806 }
10807 
10808 /// During lowering new call nodes can be created (such as memset, etc.).
10809 /// Those will become new roots of the current DAG, but complications arise
10810 /// when they are tail calls. In such cases, the call lowering will update
10811 /// the root, but the builder still needs to know that a tail call has been
10812 /// lowered in order to avoid generating an additional return.
10813 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10814   // If the node is null, we do have a tail call.
10815   if (MaybeTC.getNode() != nullptr)
10816     DAG.setRoot(MaybeTC);
10817   else
10818     HasTailCall = true;
10819 }
10820 
10821 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10822                                         MachineBasicBlock *SwitchMBB,
10823                                         MachineBasicBlock *DefaultMBB) {
10824   MachineFunction *CurMF = FuncInfo.MF;
10825   MachineBasicBlock *NextMBB = nullptr;
10826   MachineFunction::iterator BBI(W.MBB);
10827   if (++BBI != FuncInfo.MF->end())
10828     NextMBB = &*BBI;
10829 
10830   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10831 
10832   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10833 
10834   if (Size == 2 && W.MBB == SwitchMBB) {
10835     // If any two of the cases has the same destination, and if one value
10836     // is the same as the other, but has one bit unset that the other has set,
10837     // use bit manipulation to do two compares at once.  For example:
10838     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10839     // TODO: This could be extended to merge any 2 cases in switches with 3
10840     // cases.
10841     // TODO: Handle cases where W.CaseBB != SwitchBB.
10842     CaseCluster &Small = *W.FirstCluster;
10843     CaseCluster &Big = *W.LastCluster;
10844 
10845     if (Small.Low == Small.High && Big.Low == Big.High &&
10846         Small.MBB == Big.MBB) {
10847       const APInt &SmallValue = Small.Low->getValue();
10848       const APInt &BigValue = Big.Low->getValue();
10849 
10850       // Check that there is only one bit different.
10851       APInt CommonBit = BigValue ^ SmallValue;
10852       if (CommonBit.isPowerOf2()) {
10853         SDValue CondLHS = getValue(Cond);
10854         EVT VT = CondLHS.getValueType();
10855         SDLoc DL = getCurSDLoc();
10856 
10857         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10858                                  DAG.getConstant(CommonBit, DL, VT));
10859         SDValue Cond = DAG.getSetCC(
10860             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10861             ISD::SETEQ);
10862 
10863         // Update successor info.
10864         // Both Small and Big will jump to Small.BB, so we sum up the
10865         // probabilities.
10866         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10867         if (BPI)
10868           addSuccessorWithProb(
10869               SwitchMBB, DefaultMBB,
10870               // The default destination is the first successor in IR.
10871               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10872         else
10873           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10874 
10875         // Insert the true branch.
10876         SDValue BrCond =
10877             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10878                         DAG.getBasicBlock(Small.MBB));
10879         // Insert the false branch.
10880         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10881                              DAG.getBasicBlock(DefaultMBB));
10882 
10883         DAG.setRoot(BrCond);
10884         return;
10885       }
10886     }
10887   }
10888 
10889   if (TM.getOptLevel() != CodeGenOpt::None) {
10890     // Here, we order cases by probability so the most likely case will be
10891     // checked first. However, two clusters can have the same probability in
10892     // which case their relative ordering is non-deterministic. So we use Low
10893     // as a tie-breaker as clusters are guaranteed to never overlap.
10894     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10895                [](const CaseCluster &a, const CaseCluster &b) {
10896       return a.Prob != b.Prob ?
10897              a.Prob > b.Prob :
10898              a.Low->getValue().slt(b.Low->getValue());
10899     });
10900 
10901     // Rearrange the case blocks so that the last one falls through if possible
10902     // without changing the order of probabilities.
10903     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10904       --I;
10905       if (I->Prob > W.LastCluster->Prob)
10906         break;
10907       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10908         std::swap(*I, *W.LastCluster);
10909         break;
10910       }
10911     }
10912   }
10913 
10914   // Compute total probability.
10915   BranchProbability DefaultProb = W.DefaultProb;
10916   BranchProbability UnhandledProbs = DefaultProb;
10917   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10918     UnhandledProbs += I->Prob;
10919 
10920   MachineBasicBlock *CurMBB = W.MBB;
10921   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10922     bool FallthroughUnreachable = false;
10923     MachineBasicBlock *Fallthrough;
10924     if (I == W.LastCluster) {
10925       // For the last cluster, fall through to the default destination.
10926       Fallthrough = DefaultMBB;
10927       FallthroughUnreachable = isa<UnreachableInst>(
10928           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10929     } else {
10930       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10931       CurMF->insert(BBI, Fallthrough);
10932       // Put Cond in a virtual register to make it available from the new blocks.
10933       ExportFromCurrentBlock(Cond);
10934     }
10935     UnhandledProbs -= I->Prob;
10936 
10937     switch (I->Kind) {
10938       case CC_JumpTable: {
10939         // FIXME: Optimize away range check based on pivot comparisons.
10940         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10941         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10942 
10943         // The jump block hasn't been inserted yet; insert it here.
10944         MachineBasicBlock *JumpMBB = JT->MBB;
10945         CurMF->insert(BBI, JumpMBB);
10946 
10947         auto JumpProb = I->Prob;
10948         auto FallthroughProb = UnhandledProbs;
10949 
10950         // If the default statement is a target of the jump table, we evenly
10951         // distribute the default probability to successors of CurMBB. Also
10952         // update the probability on the edge from JumpMBB to Fallthrough.
10953         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10954                                               SE = JumpMBB->succ_end();
10955              SI != SE; ++SI) {
10956           if (*SI == DefaultMBB) {
10957             JumpProb += DefaultProb / 2;
10958             FallthroughProb -= DefaultProb / 2;
10959             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10960             JumpMBB->normalizeSuccProbs();
10961             break;
10962           }
10963         }
10964 
10965         if (FallthroughUnreachable)
10966           JTH->FallthroughUnreachable = true;
10967 
10968         if (!JTH->FallthroughUnreachable)
10969           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10970         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10971         CurMBB->normalizeSuccProbs();
10972 
10973         // The jump table header will be inserted in our current block, do the
10974         // range check, and fall through to our fallthrough block.
10975         JTH->HeaderBB = CurMBB;
10976         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10977 
10978         // If we're in the right place, emit the jump table header right now.
10979         if (CurMBB == SwitchMBB) {
10980           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10981           JTH->Emitted = true;
10982         }
10983         break;
10984       }
10985       case CC_BitTests: {
10986         // FIXME: Optimize away range check based on pivot comparisons.
10987         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10988 
10989         // The bit test blocks haven't been inserted yet; insert them here.
10990         for (BitTestCase &BTC : BTB->Cases)
10991           CurMF->insert(BBI, BTC.ThisBB);
10992 
10993         // Fill in fields of the BitTestBlock.
10994         BTB->Parent = CurMBB;
10995         BTB->Default = Fallthrough;
10996 
10997         BTB->DefaultProb = UnhandledProbs;
10998         // If the cases in bit test don't form a contiguous range, we evenly
10999         // distribute the probability on the edge to Fallthrough to two
11000         // successors of CurMBB.
11001         if (!BTB->ContiguousRange) {
11002           BTB->Prob += DefaultProb / 2;
11003           BTB->DefaultProb -= DefaultProb / 2;
11004         }
11005 
11006         if (FallthroughUnreachable)
11007           BTB->FallthroughUnreachable = true;
11008 
11009         // If we're in the right place, emit the bit test header right now.
11010         if (CurMBB == SwitchMBB) {
11011           visitBitTestHeader(*BTB, SwitchMBB);
11012           BTB->Emitted = true;
11013         }
11014         break;
11015       }
11016       case CC_Range: {
11017         const Value *RHS, *LHS, *MHS;
11018         ISD::CondCode CC;
11019         if (I->Low == I->High) {
11020           // Check Cond == I->Low.
11021           CC = ISD::SETEQ;
11022           LHS = Cond;
11023           RHS=I->Low;
11024           MHS = nullptr;
11025         } else {
11026           // Check I->Low <= Cond <= I->High.
11027           CC = ISD::SETLE;
11028           LHS = I->Low;
11029           MHS = Cond;
11030           RHS = I->High;
11031         }
11032 
11033         // If Fallthrough is unreachable, fold away the comparison.
11034         if (FallthroughUnreachable)
11035           CC = ISD::SETTRUE;
11036 
11037         // The false probability is the sum of all unhandled cases.
11038         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11039                      getCurSDLoc(), I->Prob, UnhandledProbs);
11040 
11041         if (CurMBB == SwitchMBB)
11042           visitSwitchCase(CB, SwitchMBB);
11043         else
11044           SL->SwitchCases.push_back(CB);
11045 
11046         break;
11047       }
11048     }
11049     CurMBB = Fallthrough;
11050   }
11051 }
11052 
11053 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11054                                               CaseClusterIt First,
11055                                               CaseClusterIt Last) {
11056   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11057     if (X.Prob != CC.Prob)
11058       return X.Prob > CC.Prob;
11059 
11060     // Ties are broken by comparing the case value.
11061     return X.Low->getValue().slt(CC.Low->getValue());
11062   });
11063 }
11064 
11065 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11066                                         const SwitchWorkListItem &W,
11067                                         Value *Cond,
11068                                         MachineBasicBlock *SwitchMBB) {
11069   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11070          "Clusters not sorted?");
11071 
11072   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11073 
11074   // Balance the tree based on branch probabilities to create a near-optimal (in
11075   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11076   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11077   CaseClusterIt LastLeft = W.FirstCluster;
11078   CaseClusterIt FirstRight = W.LastCluster;
11079   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11080   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11081 
11082   // Move LastLeft and FirstRight towards each other from opposite directions to
11083   // find a partitioning of the clusters which balances the probability on both
11084   // sides. If LeftProb and RightProb are equal, alternate which side is
11085   // taken to ensure 0-probability nodes are distributed evenly.
11086   unsigned I = 0;
11087   while (LastLeft + 1 < FirstRight) {
11088     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11089       LeftProb += (++LastLeft)->Prob;
11090     else
11091       RightProb += (--FirstRight)->Prob;
11092     I++;
11093   }
11094 
11095   while (true) {
11096     // Our binary search tree differs from a typical BST in that ours can have up
11097     // to three values in each leaf. The pivot selection above doesn't take that
11098     // into account, which means the tree might require more nodes and be less
11099     // efficient. We compensate for this here.
11100 
11101     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11102     unsigned NumRight = W.LastCluster - FirstRight + 1;
11103 
11104     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11105       // If one side has less than 3 clusters, and the other has more than 3,
11106       // consider taking a cluster from the other side.
11107 
11108       if (NumLeft < NumRight) {
11109         // Consider moving the first cluster on the right to the left side.
11110         CaseCluster &CC = *FirstRight;
11111         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11112         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11113         if (LeftSideRank <= RightSideRank) {
11114           // Moving the cluster to the left does not demote it.
11115           ++LastLeft;
11116           ++FirstRight;
11117           continue;
11118         }
11119       } else {
11120         assert(NumRight < NumLeft);
11121         // Consider moving the last element on the left to the right side.
11122         CaseCluster &CC = *LastLeft;
11123         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11124         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11125         if (RightSideRank <= LeftSideRank) {
11126           // Moving the cluster to the right does not demot it.
11127           --LastLeft;
11128           --FirstRight;
11129           continue;
11130         }
11131       }
11132     }
11133     break;
11134   }
11135 
11136   assert(LastLeft + 1 == FirstRight);
11137   assert(LastLeft >= W.FirstCluster);
11138   assert(FirstRight <= W.LastCluster);
11139 
11140   // Use the first element on the right as pivot since we will make less-than
11141   // comparisons against it.
11142   CaseClusterIt PivotCluster = FirstRight;
11143   assert(PivotCluster > W.FirstCluster);
11144   assert(PivotCluster <= W.LastCluster);
11145 
11146   CaseClusterIt FirstLeft = W.FirstCluster;
11147   CaseClusterIt LastRight = W.LastCluster;
11148 
11149   const ConstantInt *Pivot = PivotCluster->Low;
11150 
11151   // New blocks will be inserted immediately after the current one.
11152   MachineFunction::iterator BBI(W.MBB);
11153   ++BBI;
11154 
11155   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11156   // we can branch to its destination directly if it's squeezed exactly in
11157   // between the known lower bound and Pivot - 1.
11158   MachineBasicBlock *LeftMBB;
11159   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11160       FirstLeft->Low == W.GE &&
11161       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11162     LeftMBB = FirstLeft->MBB;
11163   } else {
11164     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11165     FuncInfo.MF->insert(BBI, LeftMBB);
11166     WorkList.push_back(
11167         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11168     // Put Cond in a virtual register to make it available from the new blocks.
11169     ExportFromCurrentBlock(Cond);
11170   }
11171 
11172   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11173   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11174   // directly if RHS.High equals the current upper bound.
11175   MachineBasicBlock *RightMBB;
11176   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11177       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11178     RightMBB = FirstRight->MBB;
11179   } else {
11180     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11181     FuncInfo.MF->insert(BBI, RightMBB);
11182     WorkList.push_back(
11183         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11184     // Put Cond in a virtual register to make it available from the new blocks.
11185     ExportFromCurrentBlock(Cond);
11186   }
11187 
11188   // Create the CaseBlock record that will be used to lower the branch.
11189   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11190                getCurSDLoc(), LeftProb, RightProb);
11191 
11192   if (W.MBB == SwitchMBB)
11193     visitSwitchCase(CB, SwitchMBB);
11194   else
11195     SL->SwitchCases.push_back(CB);
11196 }
11197 
11198 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11199 // from the swith statement.
11200 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11201                                             BranchProbability PeeledCaseProb) {
11202   if (PeeledCaseProb == BranchProbability::getOne())
11203     return BranchProbability::getZero();
11204   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11205 
11206   uint32_t Numerator = CaseProb.getNumerator();
11207   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11208   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11209 }
11210 
11211 // Try to peel the top probability case if it exceeds the threshold.
11212 // Return current MachineBasicBlock for the switch statement if the peeling
11213 // does not occur.
11214 // If the peeling is performed, return the newly created MachineBasicBlock
11215 // for the peeled switch statement. Also update Clusters to remove the peeled
11216 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11217 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11218     const SwitchInst &SI, CaseClusterVector &Clusters,
11219     BranchProbability &PeeledCaseProb) {
11220   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11221   // Don't perform if there is only one cluster or optimizing for size.
11222   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11223       TM.getOptLevel() == CodeGenOpt::None ||
11224       SwitchMBB->getParent()->getFunction().hasMinSize())
11225     return SwitchMBB;
11226 
11227   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11228   unsigned PeeledCaseIndex = 0;
11229   bool SwitchPeeled = false;
11230   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11231     CaseCluster &CC = Clusters[Index];
11232     if (CC.Prob < TopCaseProb)
11233       continue;
11234     TopCaseProb = CC.Prob;
11235     PeeledCaseIndex = Index;
11236     SwitchPeeled = true;
11237   }
11238   if (!SwitchPeeled)
11239     return SwitchMBB;
11240 
11241   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11242                     << TopCaseProb << "\n");
11243 
11244   // Record the MBB for the peeled switch statement.
11245   MachineFunction::iterator BBI(SwitchMBB);
11246   ++BBI;
11247   MachineBasicBlock *PeeledSwitchMBB =
11248       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11249   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11250 
11251   ExportFromCurrentBlock(SI.getCondition());
11252   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11253   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11254                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11255   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11256 
11257   Clusters.erase(PeeledCaseIt);
11258   for (CaseCluster &CC : Clusters) {
11259     LLVM_DEBUG(
11260         dbgs() << "Scale the probablity for one cluster, before scaling: "
11261                << CC.Prob << "\n");
11262     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11263     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11264   }
11265   PeeledCaseProb = TopCaseProb;
11266   return PeeledSwitchMBB;
11267 }
11268 
11269 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11270   // Extract cases from the switch.
11271   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11272   CaseClusterVector Clusters;
11273   Clusters.reserve(SI.getNumCases());
11274   for (auto I : SI.cases()) {
11275     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11276     const ConstantInt *CaseVal = I.getCaseValue();
11277     BranchProbability Prob =
11278         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11279             : BranchProbability(1, SI.getNumCases() + 1);
11280     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11281   }
11282 
11283   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11284 
11285   // Cluster adjacent cases with the same destination. We do this at all
11286   // optimization levels because it's cheap to do and will make codegen faster
11287   // if there are many clusters.
11288   sortAndRangeify(Clusters);
11289 
11290   // The branch probablity of the peeled case.
11291   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11292   MachineBasicBlock *PeeledSwitchMBB =
11293       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11294 
11295   // If there is only the default destination, jump there directly.
11296   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11297   if (Clusters.empty()) {
11298     assert(PeeledSwitchMBB == SwitchMBB);
11299     SwitchMBB->addSuccessor(DefaultMBB);
11300     if (DefaultMBB != NextBlock(SwitchMBB)) {
11301       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11302                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11303     }
11304     return;
11305   }
11306 
11307   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11308   SL->findBitTestClusters(Clusters, &SI);
11309 
11310   LLVM_DEBUG({
11311     dbgs() << "Case clusters: ";
11312     for (const CaseCluster &C : Clusters) {
11313       if (C.Kind == CC_JumpTable)
11314         dbgs() << "JT:";
11315       if (C.Kind == CC_BitTests)
11316         dbgs() << "BT:";
11317 
11318       C.Low->getValue().print(dbgs(), true);
11319       if (C.Low != C.High) {
11320         dbgs() << '-';
11321         C.High->getValue().print(dbgs(), true);
11322       }
11323       dbgs() << ' ';
11324     }
11325     dbgs() << '\n';
11326   });
11327 
11328   assert(!Clusters.empty());
11329   SwitchWorkList WorkList;
11330   CaseClusterIt First = Clusters.begin();
11331   CaseClusterIt Last = Clusters.end() - 1;
11332   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11333   // Scale the branchprobability for DefaultMBB if the peel occurs and
11334   // DefaultMBB is not replaced.
11335   if (PeeledCaseProb != BranchProbability::getZero() &&
11336       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11337     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11338   WorkList.push_back(
11339       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11340 
11341   while (!WorkList.empty()) {
11342     SwitchWorkListItem W = WorkList.pop_back_val();
11343     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11344 
11345     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11346         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11347       // For optimized builds, lower large range as a balanced binary tree.
11348       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11349       continue;
11350     }
11351 
11352     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11353   }
11354 }
11355 
11356 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11357   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11358   auto DL = getCurSDLoc();
11359   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11360   setValue(&I, DAG.getStepVector(DL, ResultVT));
11361 }
11362 
11363 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11364   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11365   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11366 
11367   SDLoc DL = getCurSDLoc();
11368   SDValue V = getValue(I.getOperand(0));
11369   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11370 
11371   if (VT.isScalableVector()) {
11372     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11373     return;
11374   }
11375 
11376   // Use VECTOR_SHUFFLE for the fixed-length vector
11377   // to maintain existing behavior.
11378   SmallVector<int, 8> Mask;
11379   unsigned NumElts = VT.getVectorMinNumElements();
11380   for (unsigned i = 0; i != NumElts; ++i)
11381     Mask.push_back(NumElts - 1 - i);
11382 
11383   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11384 }
11385 
11386 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11387   SmallVector<EVT, 4> ValueVTs;
11388   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11389                   ValueVTs);
11390   unsigned NumValues = ValueVTs.size();
11391   if (NumValues == 0) return;
11392 
11393   SmallVector<SDValue, 4> Values(NumValues);
11394   SDValue Op = getValue(I.getOperand(0));
11395 
11396   for (unsigned i = 0; i != NumValues; ++i)
11397     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11398                             SDValue(Op.getNode(), Op.getResNo() + i));
11399 
11400   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11401                            DAG.getVTList(ValueVTs), Values));
11402 }
11403 
11404 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11405   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11406   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11407 
11408   SDLoc DL = getCurSDLoc();
11409   SDValue V1 = getValue(I.getOperand(0));
11410   SDValue V2 = getValue(I.getOperand(1));
11411   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11412 
11413   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11414   if (VT.isScalableVector()) {
11415     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11416     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11417                              DAG.getConstant(Imm, DL, IdxVT)));
11418     return;
11419   }
11420 
11421   unsigned NumElts = VT.getVectorNumElements();
11422 
11423   uint64_t Idx = (NumElts + Imm) % NumElts;
11424 
11425   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11426   SmallVector<int, 8> Mask;
11427   for (unsigned i = 0; i < NumElts; ++i)
11428     Mask.push_back(Idx + i);
11429   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11430 }
11431