1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/DiagnosticInfo.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GetElementPtrTypeIterator.h" 71 #include "llvm/IR/InlineAsm.h" 72 #include "llvm/IR/InstrTypes.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Intrinsics.h" 76 #include "llvm/IR/IntrinsicsAArch64.h" 77 #include "llvm/IR/IntrinsicsWebAssembly.h" 78 #include "llvm/IR/LLVMContext.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Statepoint.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/MC/MCContext.h" 88 #include "llvm/Support/AtomicOrdering.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Compiler.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/MathExtras.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Target/TargetIntrinsicInfo.h" 96 #include "llvm/Target/TargetMachine.h" 97 #include "llvm/Target/TargetOptions.h" 98 #include "llvm/Transforms/Utils/Local.h" 99 #include <cstddef> 100 #include <iterator> 101 #include <limits> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace PatternMatch; 106 using namespace SwitchCG; 107 108 #define DEBUG_TYPE "isel" 109 110 /// LimitFloatPrecision - Generate low-precision inline sequences for 111 /// some float libcalls (6, 8 or 12 bits). 112 static unsigned LimitFloatPrecision; 113 114 static cl::opt<bool> 115 InsertAssertAlign("insert-assert-align", cl::init(true), 116 cl::desc("Insert the experimental `assertalign` node."), 117 cl::ReallyHidden); 118 119 static cl::opt<unsigned, true> 120 LimitFPPrecision("limit-float-precision", 121 cl::desc("Generate low-precision inline sequences " 122 "for some float libcalls"), 123 cl::location(LimitFloatPrecision), cl::Hidden, 124 cl::init(0)); 125 126 static cl::opt<unsigned> SwitchPeelThreshold( 127 "switch-peel-threshold", cl::Hidden, cl::init(66), 128 cl::desc("Set the case probability threshold for peeling the case from a " 129 "switch statement. A value greater than 100 will void this " 130 "optimization")); 131 132 // Limit the width of DAG chains. This is important in general to prevent 133 // DAG-based analysis from blowing up. For example, alias analysis and 134 // load clustering may not complete in reasonable time. It is difficult to 135 // recognize and avoid this situation within each individual analysis, and 136 // future analyses are likely to have the same behavior. Limiting DAG width is 137 // the safe approach and will be especially important with global DAGs. 138 // 139 // MaxParallelChains default is arbitrarily high to avoid affecting 140 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 141 // sequence over this should have been converted to llvm.memcpy by the 142 // frontend. It is easy to induce this behavior with .ll code such as: 143 // %buffer = alloca [4096 x i8] 144 // %data = load [4096 x i8]* %argPtr 145 // store [4096 x i8] %data, [4096 x i8]* %buffer 146 static const unsigned MaxParallelChains = 64; 147 148 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 149 const SDValue *Parts, unsigned NumParts, 150 MVT PartVT, EVT ValueVT, const Value *V, 151 Optional<CallingConv::ID> CC); 152 153 /// getCopyFromParts - Create a value that contains the specified legal parts 154 /// combined into the value they represent. If the parts combine to a type 155 /// larger than ValueVT then AssertOp can be used to specify whether the extra 156 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 157 /// (ISD::AssertSext). 158 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 159 const SDValue *Parts, unsigned NumParts, 160 MVT PartVT, EVT ValueVT, const Value *V, 161 Optional<CallingConv::ID> CC = None, 162 Optional<ISD::NodeType> AssertOp = None) { 163 // Let the target assemble the parts if it wants to 164 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 165 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 166 PartVT, ValueVT, CC)) 167 return Val; 168 169 if (ValueVT.isVector()) 170 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 171 CC); 172 173 assert(NumParts > 0 && "No parts to assemble!"); 174 SDValue Val = Parts[0]; 175 176 if (NumParts > 1) { 177 // Assemble the value from multiple parts. 178 if (ValueVT.isInteger()) { 179 unsigned PartBits = PartVT.getSizeInBits(); 180 unsigned ValueBits = ValueVT.getSizeInBits(); 181 182 // Assemble the power of 2 part. 183 unsigned RoundParts = 184 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 185 unsigned RoundBits = PartBits * RoundParts; 186 EVT RoundVT = RoundBits == ValueBits ? 187 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 188 SDValue Lo, Hi; 189 190 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 191 192 if (RoundParts > 2) { 193 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 194 PartVT, HalfVT, V); 195 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 196 RoundParts / 2, PartVT, HalfVT, V); 197 } else { 198 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 199 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 200 } 201 202 if (DAG.getDataLayout().isBigEndian()) 203 std::swap(Lo, Hi); 204 205 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 206 207 if (RoundParts < NumParts) { 208 // Assemble the trailing non-power-of-2 part. 209 unsigned OddParts = NumParts - RoundParts; 210 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 211 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 212 OddVT, V, CC); 213 214 // Combine the round and odd parts. 215 Lo = Val; 216 if (DAG.getDataLayout().isBigEndian()) 217 std::swap(Lo, Hi); 218 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 219 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 220 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 221 DAG.getConstant(Lo.getValueSizeInBits(), DL, 222 TLI.getShiftAmountTy( 223 TotalVT, DAG.getDataLayout()))); 224 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 225 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 226 } 227 } else if (PartVT.isFloatingPoint()) { 228 // FP split into multiple FP parts (for ppcf128) 229 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 230 "Unexpected split"); 231 SDValue Lo, Hi; 232 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 233 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 234 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 235 std::swap(Lo, Hi); 236 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 237 } else { 238 // FP split into integer parts (soft fp) 239 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 240 !PartVT.isVector() && "Unexpected split"); 241 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 242 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 243 } 244 } 245 246 // There is now one part, held in Val. Correct it to match ValueVT. 247 // PartEVT is the type of the register class that holds the value. 248 // ValueVT is the type of the inline asm operation. 249 EVT PartEVT = Val.getValueType(); 250 251 if (PartEVT == ValueVT) 252 return Val; 253 254 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 255 ValueVT.bitsLT(PartEVT)) { 256 // For an FP value in an integer part, we need to truncate to the right 257 // width first. 258 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 259 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 260 } 261 262 // Handle types that have the same size. 263 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 264 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 265 266 // Handle types with different sizes. 267 if (PartEVT.isInteger() && ValueVT.isInteger()) { 268 if (ValueVT.bitsLT(PartEVT)) { 269 // For a truncate, see if we have any information to 270 // indicate whether the truncated bits will always be 271 // zero or sign-extension. 272 if (AssertOp.hasValue()) 273 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 274 DAG.getValueType(ValueVT)); 275 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 276 } 277 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 278 } 279 280 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 281 // FP_ROUND's are always exact here. 282 if (ValueVT.bitsLT(Val.getValueType())) 283 return DAG.getNode( 284 ISD::FP_ROUND, DL, ValueVT, Val, 285 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 286 287 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 288 } 289 290 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 291 // then truncating. 292 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 293 ValueVT.bitsLT(PartEVT)) { 294 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 295 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 296 } 297 298 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 299 } 300 301 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 302 const Twine &ErrMsg) { 303 const Instruction *I = dyn_cast_or_null<Instruction>(V); 304 if (!V) 305 return Ctx.emitError(ErrMsg); 306 307 const char *AsmError = ", possible invalid constraint for vector type"; 308 if (const CallInst *CI = dyn_cast<CallInst>(I)) 309 if (CI->isInlineAsm()) 310 return Ctx.emitError(I, ErrMsg + AsmError); 311 312 return Ctx.emitError(I, ErrMsg); 313 } 314 315 /// getCopyFromPartsVector - Create a value that contains the specified legal 316 /// parts combined into the value they represent. If the parts combine to a 317 /// type larger than ValueVT then AssertOp can be used to specify whether the 318 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 319 /// ValueVT (ISD::AssertSext). 320 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 321 const SDValue *Parts, unsigned NumParts, 322 MVT PartVT, EVT ValueVT, const Value *V, 323 Optional<CallingConv::ID> CallConv) { 324 assert(ValueVT.isVector() && "Not a vector value"); 325 assert(NumParts > 0 && "No parts to assemble!"); 326 const bool IsABIRegCopy = CallConv.hasValue(); 327 328 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 329 SDValue Val = Parts[0]; 330 331 // Handle a multi-element vector. 332 if (NumParts > 1) { 333 EVT IntermediateVT; 334 MVT RegisterVT; 335 unsigned NumIntermediates; 336 unsigned NumRegs; 337 338 if (IsABIRegCopy) { 339 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 340 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 341 NumIntermediates, RegisterVT); 342 } else { 343 NumRegs = 344 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 345 NumIntermediates, RegisterVT); 346 } 347 348 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 349 NumParts = NumRegs; // Silence a compiler warning. 350 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 351 assert(RegisterVT.getSizeInBits() == 352 Parts[0].getSimpleValueType().getSizeInBits() && 353 "Part type sizes don't match!"); 354 355 // Assemble the parts into intermediate operands. 356 SmallVector<SDValue, 8> Ops(NumIntermediates); 357 if (NumIntermediates == NumParts) { 358 // If the register was not expanded, truncate or copy the value, 359 // as appropriate. 360 for (unsigned i = 0; i != NumParts; ++i) 361 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 362 PartVT, IntermediateVT, V, CallConv); 363 } else if (NumParts > 0) { 364 // If the intermediate type was expanded, build the intermediate 365 // operands from the parts. 366 assert(NumParts % NumIntermediates == 0 && 367 "Must expand into a divisible number of parts!"); 368 unsigned Factor = NumParts / NumIntermediates; 369 for (unsigned i = 0; i != NumIntermediates; ++i) 370 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 371 PartVT, IntermediateVT, V, CallConv); 372 } 373 374 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 375 // intermediate operands. 376 EVT BuiltVectorTy = 377 IntermediateVT.isVector() 378 ? EVT::getVectorVT( 379 *DAG.getContext(), IntermediateVT.getScalarType(), 380 IntermediateVT.getVectorElementCount() * NumParts) 381 : EVT::getVectorVT(*DAG.getContext(), 382 IntermediateVT.getScalarType(), 383 NumIntermediates); 384 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 385 : ISD::BUILD_VECTOR, 386 DL, BuiltVectorTy, Ops); 387 } 388 389 // There is now one part, held in Val. Correct it to match ValueVT. 390 EVT PartEVT = Val.getValueType(); 391 392 if (PartEVT == ValueVT) 393 return Val; 394 395 if (PartEVT.isVector()) { 396 // Vector/Vector bitcast. 397 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 398 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 399 400 // If the element type of the source/dest vectors are the same, but the 401 // parts vector has more elements than the value vector, then we have a 402 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 403 // elements we want. 404 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 405 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 406 ValueVT.getVectorElementCount().getKnownMinValue()) && 407 (PartEVT.getVectorElementCount().isScalable() == 408 ValueVT.getVectorElementCount().isScalable()) && 409 "Cannot narrow, it would be a lossy transformation"); 410 PartEVT = 411 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 412 ValueVT.getVectorElementCount()); 413 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 414 DAG.getVectorIdxConstant(0, DL)); 415 if (PartEVT == ValueVT) 416 return Val; 417 } 418 419 // Promoted vector extract 420 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 421 } 422 423 // Trivial bitcast if the types are the same size and the destination 424 // vector type is legal. 425 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 426 TLI.isTypeLegal(ValueVT)) 427 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 428 429 if (ValueVT.getVectorNumElements() != 1) { 430 // Certain ABIs require that vectors are passed as integers. For vectors 431 // are the same size, this is an obvious bitcast. 432 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 433 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 434 } else if (ValueVT.bitsLT(PartEVT)) { 435 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 436 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 437 // Drop the extra bits. 438 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 439 return DAG.getBitcast(ValueVT, Val); 440 } 441 442 diagnosePossiblyInvalidConstraint( 443 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 444 return DAG.getUNDEF(ValueVT); 445 } 446 447 // Handle cases such as i8 -> <1 x i1> 448 EVT ValueSVT = ValueVT.getVectorElementType(); 449 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 450 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 451 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 452 else 453 Val = ValueVT.isFloatingPoint() 454 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 455 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 456 } 457 458 return DAG.getBuildVector(ValueVT, DL, Val); 459 } 460 461 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 462 SDValue Val, SDValue *Parts, unsigned NumParts, 463 MVT PartVT, const Value *V, 464 Optional<CallingConv::ID> CallConv); 465 466 /// getCopyToParts - Create a series of nodes that contain the specified value 467 /// split into legal parts. If the parts contain more bits than Val, then, for 468 /// integers, ExtendKind can be used to specify how to generate the extra bits. 469 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 470 SDValue *Parts, unsigned NumParts, MVT PartVT, 471 const Value *V, 472 Optional<CallingConv::ID> CallConv = None, 473 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 474 // Let the target split the parts if it wants to 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 477 CallConv)) 478 return; 479 EVT ValueVT = Val.getValueType(); 480 481 // Handle the vector case separately. 482 if (ValueVT.isVector()) 483 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 484 CallConv); 485 486 unsigned PartBits = PartVT.getSizeInBits(); 487 unsigned OrigNumParts = NumParts; 488 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 489 "Copying to an illegal type!"); 490 491 if (NumParts == 0) 492 return; 493 494 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 495 EVT PartEVT = PartVT; 496 if (PartEVT == ValueVT) { 497 assert(NumParts == 1 && "No-op copy with multiple parts!"); 498 Parts[0] = Val; 499 return; 500 } 501 502 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 503 // If the parts cover more bits than the value has, promote the value. 504 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 505 assert(NumParts == 1 && "Do not know what to promote to!"); 506 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 507 } else { 508 if (ValueVT.isFloatingPoint()) { 509 // FP values need to be bitcast, then extended if they are being put 510 // into a larger container. 511 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 512 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 513 } 514 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 515 ValueVT.isInteger() && 516 "Unknown mismatch!"); 517 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 518 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 519 if (PartVT == MVT::x86mmx) 520 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 521 } 522 } else if (PartBits == ValueVT.getSizeInBits()) { 523 // Different types of the same size. 524 assert(NumParts == 1 && PartEVT != ValueVT); 525 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 526 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 527 // If the parts cover less bits than value has, truncate the value. 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 537 // The value may have changed - recompute ValueVT. 538 ValueVT = Val.getValueType(); 539 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 540 "Failed to tile the value with PartVT!"); 541 542 if (NumParts == 1) { 543 if (PartEVT != ValueVT) { 544 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 545 "scalar-to-vector conversion failed"); 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 Parts[0] = Val; 550 return; 551 } 552 553 // Expand the value into multiple parts. 554 if (NumParts & (NumParts - 1)) { 555 // The number of parts is not a power of 2. Split off and copy the tail. 556 assert(PartVT.isInteger() && ValueVT.isInteger() && 557 "Do not know what to expand to!"); 558 unsigned RoundParts = 1 << Log2_32(NumParts); 559 unsigned RoundBits = RoundParts * PartBits; 560 unsigned OddParts = NumParts - RoundParts; 561 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 562 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 563 564 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 565 CallConv); 566 567 if (DAG.getDataLayout().isBigEndian()) 568 // The odd parts were reversed by getCopyToParts - unreverse them. 569 std::reverse(Parts + RoundParts, Parts + NumParts); 570 571 NumParts = RoundParts; 572 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 573 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 574 } 575 576 // The number of parts is a power of 2. Repeatedly bisect the value using 577 // EXTRACT_ELEMENT. 578 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 579 EVT::getIntegerVT(*DAG.getContext(), 580 ValueVT.getSizeInBits()), 581 Val); 582 583 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 584 for (unsigned i = 0; i < NumParts; i += StepSize) { 585 unsigned ThisBits = StepSize * PartBits / 2; 586 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 587 SDValue &Part0 = Parts[i]; 588 SDValue &Part1 = Parts[i+StepSize/2]; 589 590 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 591 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 592 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 593 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 594 595 if (ThisBits == PartBits && ThisVT != PartVT) { 596 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 597 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 598 } 599 } 600 } 601 602 if (DAG.getDataLayout().isBigEndian()) 603 std::reverse(Parts, Parts + OrigNumParts); 604 } 605 606 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 607 const SDLoc &DL, EVT PartVT) { 608 if (!PartVT.isVector()) 609 return SDValue(); 610 611 EVT ValueVT = Val.getValueType(); 612 ElementCount PartNumElts = PartVT.getVectorElementCount(); 613 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 614 615 // We only support widening vectors with equivalent element types and 616 // fixed/scalable properties. If a target needs to widen a fixed-length type 617 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 618 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 619 PartNumElts.isScalable() != ValueNumElts.isScalable() || 620 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 621 return SDValue(); 622 623 // Widening a scalable vector to another scalable vector is done by inserting 624 // the vector into a larger undef one. 625 if (PartNumElts.isScalable()) 626 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 627 Val, DAG.getVectorIdxConstant(0, DL)); 628 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 DAG.ExtractVectorElements(Val, Ops); 634 SDValue EltUndef = DAG.getUNDEF(ElementVT); 635 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 636 637 // FIXME: Use CONCAT for 2x -> 4x. 638 return DAG.getBuildVector(PartVT, DL, Ops); 639 } 640 641 /// getCopyToPartsVector - Create a series of nodes that contain the specified 642 /// value split into legal parts. 643 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 644 SDValue Val, SDValue *Parts, unsigned NumParts, 645 MVT PartVT, const Value *V, 646 Optional<CallingConv::ID> CallConv) { 647 EVT ValueVT = Val.getValueType(); 648 assert(ValueVT.isVector() && "Not a vector"); 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 const bool IsABIRegCopy = CallConv.hasValue(); 651 652 if (NumParts == 1) { 653 EVT PartEVT = PartVT; 654 if (PartEVT == ValueVT) { 655 // Nothing to do. 656 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 657 // Bitconvert vector->vector case. 658 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 659 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 660 Val = Widened; 661 } else if (PartVT.isVector() && 662 PartEVT.getVectorElementType().bitsGE( 663 ValueVT.getVectorElementType()) && 664 PartEVT.getVectorElementCount() == 665 ValueVT.getVectorElementCount()) { 666 667 // Promoted vector extract 668 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 669 } else if (PartEVT.isVector() && 670 PartEVT.getVectorElementType() != 671 ValueVT.getVectorElementType() && 672 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 673 TargetLowering::TypeWidenVector) { 674 // Combination of widening and promotion. 675 EVT WidenVT = 676 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 677 PartVT.getVectorElementCount()); 678 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 679 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 680 } else { 681 if (ValueVT.getVectorElementCount().isScalar()) { 682 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 683 DAG.getVectorIdxConstant(0, DL)); 684 } else { 685 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 686 assert(PartVT.getFixedSizeInBits() > ValueSize && 687 "lossy conversion of vector to scalar type"); 688 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 689 Val = DAG.getBitcast(IntermediateType, Val); 690 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 691 } 692 } 693 694 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 695 Parts[0] = Val; 696 return; 697 } 698 699 // Handle a multi-element vector. 700 EVT IntermediateVT; 701 MVT RegisterVT; 702 unsigned NumIntermediates; 703 unsigned NumRegs; 704 if (IsABIRegCopy) { 705 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 706 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 707 NumIntermediates, RegisterVT); 708 } else { 709 NumRegs = 710 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 711 NumIntermediates, RegisterVT); 712 } 713 714 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 715 NumParts = NumRegs; // Silence a compiler warning. 716 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 717 718 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 719 "Mixing scalable and fixed vectors when copying in parts"); 720 721 Optional<ElementCount> DestEltCnt; 722 723 if (IntermediateVT.isVector()) 724 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 725 else 726 DestEltCnt = ElementCount::getFixed(NumIntermediates); 727 728 EVT BuiltVectorTy = EVT::getVectorVT( 729 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 730 731 if (ValueVT == BuiltVectorTy) { 732 // Nothing to do. 733 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 734 // Bitconvert vector->vector case. 735 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 736 } else { 737 if (BuiltVectorTy.getVectorElementType().bitsGT( 738 ValueVT.getVectorElementType())) { 739 // Integer promotion. 740 ValueVT = EVT::getVectorVT(*DAG.getContext(), 741 BuiltVectorTy.getVectorElementType(), 742 ValueVT.getVectorElementCount()); 743 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 744 } 745 746 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 747 Val = Widened; 748 } 749 } 750 751 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 752 753 // Split the vector into intermediate operands. 754 SmallVector<SDValue, 8> Ops(NumIntermediates); 755 for (unsigned i = 0; i != NumIntermediates; ++i) { 756 if (IntermediateVT.isVector()) { 757 // This does something sensible for scalable vectors - see the 758 // definition of EXTRACT_SUBVECTOR for further details. 759 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 760 Ops[i] = 761 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 762 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 763 } else { 764 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 765 DAG.getVectorIdxConstant(i, DL)); 766 } 767 } 768 769 // Split the intermediate operands into legal parts. 770 if (NumParts == NumIntermediates) { 771 // If the register was not expanded, promote or copy the value, 772 // as appropriate. 773 for (unsigned i = 0; i != NumParts; ++i) 774 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 775 } else if (NumParts > 0) { 776 // If the intermediate type was expanded, split each the value into 777 // legal parts. 778 assert(NumIntermediates != 0 && "division by zero"); 779 assert(NumParts % NumIntermediates == 0 && 780 "Must expand into a divisible number of parts!"); 781 unsigned Factor = NumParts / NumIntermediates; 782 for (unsigned i = 0; i != NumIntermediates; ++i) 783 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 784 CallConv); 785 } 786 } 787 788 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 789 EVT valuevt, Optional<CallingConv::ID> CC) 790 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 791 RegCount(1, regs.size()), CallConv(CC) {} 792 793 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 794 const DataLayout &DL, unsigned Reg, Type *Ty, 795 Optional<CallingConv::ID> CC) { 796 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 797 798 CallConv = CC; 799 800 for (EVT ValueVT : ValueVTs) { 801 unsigned NumRegs = 802 isABIMangled() 803 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 804 : TLI.getNumRegisters(Context, ValueVT); 805 MVT RegisterVT = 806 isABIMangled() 807 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 808 : TLI.getRegisterType(Context, ValueVT); 809 for (unsigned i = 0; i != NumRegs; ++i) 810 Regs.push_back(Reg + i); 811 RegVTs.push_back(RegisterVT); 812 RegCount.push_back(NumRegs); 813 Reg += NumRegs; 814 } 815 } 816 817 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 818 FunctionLoweringInfo &FuncInfo, 819 const SDLoc &dl, SDValue &Chain, 820 SDValue *Flag, const Value *V) const { 821 // A Value with type {} or [0 x %t] needs no registers. 822 if (ValueVTs.empty()) 823 return SDValue(); 824 825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 826 827 // Assemble the legal parts into the final values. 828 SmallVector<SDValue, 4> Values(ValueVTs.size()); 829 SmallVector<SDValue, 8> Parts; 830 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 831 // Copy the legal parts from the registers. 832 EVT ValueVT = ValueVTs[Value]; 833 unsigned NumRegs = RegCount[Value]; 834 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 835 *DAG.getContext(), 836 CallConv.getValue(), RegVTs[Value]) 837 : RegVTs[Value]; 838 839 Parts.resize(NumRegs); 840 for (unsigned i = 0; i != NumRegs; ++i) { 841 SDValue P; 842 if (!Flag) { 843 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 844 } else { 845 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 846 *Flag = P.getValue(2); 847 } 848 849 Chain = P.getValue(1); 850 Parts[i] = P; 851 852 // If the source register was virtual and if we know something about it, 853 // add an assert node. 854 if (!Register::isVirtualRegister(Regs[Part + i]) || 855 !RegisterVT.isInteger()) 856 continue; 857 858 const FunctionLoweringInfo::LiveOutInfo *LOI = 859 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 860 if (!LOI) 861 continue; 862 863 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 864 unsigned NumSignBits = LOI->NumSignBits; 865 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 866 867 if (NumZeroBits == RegSize) { 868 // The current value is a zero. 869 // Explicitly express that as it would be easier for 870 // optimizations to kick in. 871 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 872 continue; 873 } 874 875 // FIXME: We capture more information than the dag can represent. For 876 // now, just use the tightest assertzext/assertsext possible. 877 bool isSExt; 878 EVT FromVT(MVT::Other); 879 if (NumZeroBits) { 880 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 881 isSExt = false; 882 } else if (NumSignBits > 1) { 883 FromVT = 884 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 885 isSExt = true; 886 } else { 887 continue; 888 } 889 // Add an assertion node. 890 assert(FromVT != MVT::Other); 891 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 892 RegisterVT, P, DAG.getValueType(FromVT)); 893 } 894 895 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 896 RegisterVT, ValueVT, V, CallConv); 897 Part += NumRegs; 898 Parts.clear(); 899 } 900 901 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 902 } 903 904 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 905 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 906 const Value *V, 907 ISD::NodeType PreferredExtendType) const { 908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 909 ISD::NodeType ExtendKind = PreferredExtendType; 910 911 // Get the list of the values's legal parts. 912 unsigned NumRegs = Regs.size(); 913 SmallVector<SDValue, 8> Parts(NumRegs); 914 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 915 unsigned NumParts = RegCount[Value]; 916 917 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 918 *DAG.getContext(), 919 CallConv.getValue(), RegVTs[Value]) 920 : RegVTs[Value]; 921 922 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 923 ExtendKind = ISD::ZERO_EXTEND; 924 925 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 926 NumParts, RegisterVT, V, CallConv, ExtendKind); 927 Part += NumParts; 928 } 929 930 // Copy the parts into the registers. 931 SmallVector<SDValue, 8> Chains(NumRegs); 932 for (unsigned i = 0; i != NumRegs; ++i) { 933 SDValue Part; 934 if (!Flag) { 935 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 936 } else { 937 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 938 *Flag = Part.getValue(1); 939 } 940 941 Chains[i] = Part.getValue(0); 942 } 943 944 if (NumRegs == 1 || Flag) 945 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 946 // flagged to it. That is the CopyToReg nodes and the user are considered 947 // a single scheduling unit. If we create a TokenFactor and return it as 948 // chain, then the TokenFactor is both a predecessor (operand) of the 949 // user as well as a successor (the TF operands are flagged to the user). 950 // c1, f1 = CopyToReg 951 // c2, f2 = CopyToReg 952 // c3 = TokenFactor c1, c2 953 // ... 954 // = op c3, ..., f2 955 Chain = Chains[NumRegs-1]; 956 else 957 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 958 } 959 960 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 961 unsigned MatchingIdx, const SDLoc &dl, 962 SelectionDAG &DAG, 963 std::vector<SDValue> &Ops) const { 964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 965 966 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 967 if (HasMatching) 968 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 969 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 970 // Put the register class of the virtual registers in the flag word. That 971 // way, later passes can recompute register class constraints for inline 972 // assembly as well as normal instructions. 973 // Don't do this for tied operands that can use the regclass information 974 // from the def. 975 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 976 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 977 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 978 } 979 980 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 981 Ops.push_back(Res); 982 983 if (Code == InlineAsm::Kind_Clobber) { 984 // Clobbers should always have a 1:1 mapping with registers, and may 985 // reference registers that have illegal (e.g. vector) types. Hence, we 986 // shouldn't try to apply any sort of splitting logic to them. 987 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 988 "No 1:1 mapping from clobbers to regs?"); 989 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 990 (void)SP; 991 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 992 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 993 assert( 994 (Regs[I] != SP || 995 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 996 "If we clobbered the stack pointer, MFI should know about it."); 997 } 998 return; 999 } 1000 1001 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1002 MVT RegisterVT = RegVTs[Value]; 1003 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1004 RegisterVT); 1005 for (unsigned i = 0; i != NumRegs; ++i) { 1006 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1007 unsigned TheReg = Regs[Reg++]; 1008 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1009 } 1010 } 1011 } 1012 1013 SmallVector<std::pair<unsigned, TypeSize>, 4> 1014 RegsForValue::getRegsAndSizes() const { 1015 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1016 unsigned I = 0; 1017 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1018 unsigned RegCount = std::get<0>(CountAndVT); 1019 MVT RegisterVT = std::get<1>(CountAndVT); 1020 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1021 for (unsigned E = I + RegCount; I != E; ++I) 1022 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1023 } 1024 return OutVec; 1025 } 1026 1027 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1028 const TargetLibraryInfo *li) { 1029 AA = aa; 1030 GFI = gfi; 1031 LibInfo = li; 1032 Context = DAG.getContext(); 1033 LPadToCallSiteMap.clear(); 1034 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1035 } 1036 1037 void SelectionDAGBuilder::clear() { 1038 NodeMap.clear(); 1039 UnusedArgNodeMap.clear(); 1040 PendingLoads.clear(); 1041 PendingExports.clear(); 1042 PendingConstrainedFP.clear(); 1043 PendingConstrainedFPStrict.clear(); 1044 CurInst = nullptr; 1045 HasTailCall = false; 1046 SDNodeOrder = LowestSDNodeOrder; 1047 StatepointLowering.clear(); 1048 } 1049 1050 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1051 DanglingDebugInfoMap.clear(); 1052 } 1053 1054 // Update DAG root to include dependencies on Pending chains. 1055 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1056 SDValue Root = DAG.getRoot(); 1057 1058 if (Pending.empty()) 1059 return Root; 1060 1061 // Add current root to PendingChains, unless we already indirectly 1062 // depend on it. 1063 if (Root.getOpcode() != ISD::EntryToken) { 1064 unsigned i = 0, e = Pending.size(); 1065 for (; i != e; ++i) { 1066 assert(Pending[i].getNode()->getNumOperands() > 1); 1067 if (Pending[i].getNode()->getOperand(0) == Root) 1068 break; // Don't add the root if we already indirectly depend on it. 1069 } 1070 1071 if (i == e) 1072 Pending.push_back(Root); 1073 } 1074 1075 if (Pending.size() == 1) 1076 Root = Pending[0]; 1077 else 1078 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1079 1080 DAG.setRoot(Root); 1081 Pending.clear(); 1082 return Root; 1083 } 1084 1085 SDValue SelectionDAGBuilder::getMemoryRoot() { 1086 return updateRoot(PendingLoads); 1087 } 1088 1089 SDValue SelectionDAGBuilder::getRoot() { 1090 // Chain up all pending constrained intrinsics together with all 1091 // pending loads, by simply appending them to PendingLoads and 1092 // then calling getMemoryRoot(). 1093 PendingLoads.reserve(PendingLoads.size() + 1094 PendingConstrainedFP.size() + 1095 PendingConstrainedFPStrict.size()); 1096 PendingLoads.append(PendingConstrainedFP.begin(), 1097 PendingConstrainedFP.end()); 1098 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1099 PendingConstrainedFPStrict.end()); 1100 PendingConstrainedFP.clear(); 1101 PendingConstrainedFPStrict.clear(); 1102 return getMemoryRoot(); 1103 } 1104 1105 SDValue SelectionDAGBuilder::getControlRoot() { 1106 // We need to emit pending fpexcept.strict constrained intrinsics, 1107 // so append them to the PendingExports list. 1108 PendingExports.append(PendingConstrainedFPStrict.begin(), 1109 PendingConstrainedFPStrict.end()); 1110 PendingConstrainedFPStrict.clear(); 1111 return updateRoot(PendingExports); 1112 } 1113 1114 void SelectionDAGBuilder::visit(const Instruction &I) { 1115 // Set up outgoing PHI node register values before emitting the terminator. 1116 if (I.isTerminator()) { 1117 HandlePHINodesInSuccessorBlocks(I.getParent()); 1118 } 1119 1120 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1121 if (!isa<DbgInfoIntrinsic>(I)) 1122 ++SDNodeOrder; 1123 1124 CurInst = &I; 1125 1126 visit(I.getOpcode(), I); 1127 1128 if (!I.isTerminator() && !HasTailCall && 1129 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1130 CopyToExportRegsIfNeeded(&I); 1131 1132 CurInst = nullptr; 1133 } 1134 1135 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1136 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1137 } 1138 1139 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1140 // Note: this doesn't use InstVisitor, because it has to work with 1141 // ConstantExpr's in addition to instructions. 1142 switch (Opcode) { 1143 default: llvm_unreachable("Unknown instruction type encountered!"); 1144 // Build the switch statement using the Instruction.def file. 1145 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1146 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1147 #include "llvm/IR/Instruction.def" 1148 } 1149 } 1150 1151 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1152 DebugLoc DL, unsigned Order) { 1153 // We treat variadic dbg_values differently at this stage. 1154 if (DI->hasArgList()) { 1155 // For variadic dbg_values we will now insert an undef. 1156 // FIXME: We can potentially recover these! 1157 SmallVector<SDDbgOperand, 2> Locs; 1158 for (const Value *V : DI->getValues()) { 1159 auto Undef = UndefValue::get(V->getType()); 1160 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1161 } 1162 SDDbgValue *SDV = DAG.getDbgValueList( 1163 DI->getVariable(), DI->getExpression(), Locs, {}, 1164 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1165 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1166 } else { 1167 // TODO: Dangling debug info will eventually either be resolved or produce 1168 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1169 // between the original dbg.value location and its resolved DBG_VALUE, 1170 // which we should ideally fill with an extra Undef DBG_VALUE. 1171 assert(DI->getNumVariableLocationOps() == 1 && 1172 "DbgValueInst without an ArgList should have a single location " 1173 "operand."); 1174 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1175 } 1176 } 1177 1178 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1179 const DIExpression *Expr) { 1180 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1181 const DbgValueInst *DI = DDI.getDI(); 1182 DIVariable *DanglingVariable = DI->getVariable(); 1183 DIExpression *DanglingExpr = DI->getExpression(); 1184 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1185 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1186 return true; 1187 } 1188 return false; 1189 }; 1190 1191 for (auto &DDIMI : DanglingDebugInfoMap) { 1192 DanglingDebugInfoVector &DDIV = DDIMI.second; 1193 1194 // If debug info is to be dropped, run it through final checks to see 1195 // whether it can be salvaged. 1196 for (auto &DDI : DDIV) 1197 if (isMatchingDbgValue(DDI)) 1198 salvageUnresolvedDbgValue(DDI); 1199 1200 erase_if(DDIV, isMatchingDbgValue); 1201 } 1202 } 1203 1204 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1205 // generate the debug data structures now that we've seen its definition. 1206 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1207 SDValue Val) { 1208 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1209 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1210 return; 1211 1212 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1213 for (auto &DDI : DDIV) { 1214 const DbgValueInst *DI = DDI.getDI(); 1215 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1216 assert(DI && "Ill-formed DanglingDebugInfo"); 1217 DebugLoc dl = DDI.getdl(); 1218 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1219 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1220 DILocalVariable *Variable = DI->getVariable(); 1221 DIExpression *Expr = DI->getExpression(); 1222 assert(Variable->isValidLocationForIntrinsic(dl) && 1223 "Expected inlined-at fields to agree"); 1224 SDDbgValue *SDV; 1225 if (Val.getNode()) { 1226 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1227 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1228 // we couldn't resolve it directly when examining the DbgValue intrinsic 1229 // in the first place we should not be more successful here). Unless we 1230 // have some test case that prove this to be correct we should avoid 1231 // calling EmitFuncArgumentDbgValue here. 1232 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, 1233 FuncArgumentDbgValueKind::Value, Val)) { 1234 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1235 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1236 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1237 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1238 // inserted after the definition of Val when emitting the instructions 1239 // after ISel. An alternative could be to teach 1240 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1241 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1242 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1243 << ValSDNodeOrder << "\n"); 1244 SDV = getDbgValue(Val, Variable, Expr, dl, 1245 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1246 DAG.AddDbgValue(SDV, false); 1247 } else 1248 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1249 << "in EmitFuncArgumentDbgValue\n"); 1250 } else { 1251 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1252 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1253 auto SDV = 1254 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1255 DAG.AddDbgValue(SDV, false); 1256 } 1257 } 1258 DDIV.clear(); 1259 } 1260 1261 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1262 // TODO: For the variadic implementation, instead of only checking the fail 1263 // state of `handleDebugValue`, we need know specifically which values were 1264 // invalid, so that we attempt to salvage only those values when processing 1265 // a DIArgList. 1266 assert(!DDI.getDI()->hasArgList() && 1267 "Not implemented for variadic dbg_values"); 1268 Value *V = DDI.getDI()->getValue(0); 1269 DILocalVariable *Var = DDI.getDI()->getVariable(); 1270 DIExpression *Expr = DDI.getDI()->getExpression(); 1271 DebugLoc DL = DDI.getdl(); 1272 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1273 unsigned SDOrder = DDI.getSDNodeOrder(); 1274 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1275 // that DW_OP_stack_value is desired. 1276 assert(isa<DbgValueInst>(DDI.getDI())); 1277 bool StackValue = true; 1278 1279 // Can this Value can be encoded without any further work? 1280 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1281 return; 1282 1283 // Attempt to salvage back through as many instructions as possible. Bail if 1284 // a non-instruction is seen, such as a constant expression or global 1285 // variable. FIXME: Further work could recover those too. 1286 while (isa<Instruction>(V)) { 1287 Instruction &VAsInst = *cast<Instruction>(V); 1288 // Temporary "0", awaiting real implementation. 1289 SmallVector<uint64_t, 16> Ops; 1290 SmallVector<Value *, 4> AdditionalValues; 1291 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1292 AdditionalValues); 1293 // If we cannot salvage any further, and haven't yet found a suitable debug 1294 // expression, bail out. 1295 if (!V) 1296 break; 1297 1298 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1299 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1300 // here for variadic dbg_values, remove that condition. 1301 if (!AdditionalValues.empty()) 1302 break; 1303 1304 // New value and expr now represent this debuginfo. 1305 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1306 1307 // Some kind of simplification occurred: check whether the operand of the 1308 // salvaged debug expression can be encoded in this DAG. 1309 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1310 /*IsVariadic=*/false)) { 1311 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1312 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1313 return; 1314 } 1315 } 1316 1317 // This was the final opportunity to salvage this debug information, and it 1318 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1319 // any earlier variable location. 1320 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1321 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1322 DAG.AddDbgValue(SDV, false); 1323 1324 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1325 << "\n"); 1326 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1327 << "\n"); 1328 } 1329 1330 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1331 DILocalVariable *Var, 1332 DIExpression *Expr, DebugLoc dl, 1333 DebugLoc InstDL, unsigned Order, 1334 bool IsVariadic) { 1335 if (Values.empty()) 1336 return true; 1337 SmallVector<SDDbgOperand> LocationOps; 1338 SmallVector<SDNode *> Dependencies; 1339 for (const Value *V : Values) { 1340 // Constant value. 1341 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1342 isa<ConstantPointerNull>(V)) { 1343 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1344 continue; 1345 } 1346 1347 // If the Value is a frame index, we can create a FrameIndex debug value 1348 // without relying on the DAG at all. 1349 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1350 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1351 if (SI != FuncInfo.StaticAllocaMap.end()) { 1352 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1353 continue; 1354 } 1355 } 1356 1357 // Do not use getValue() in here; we don't want to generate code at 1358 // this point if it hasn't been done yet. 1359 SDValue N = NodeMap[V]; 1360 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1361 N = UnusedArgNodeMap[V]; 1362 if (N.getNode()) { 1363 // Only emit func arg dbg value for non-variadic dbg.values for now. 1364 if (!IsVariadic && 1365 EmitFuncArgumentDbgValue(V, Var, Expr, dl, 1366 FuncArgumentDbgValueKind::Value, N)) 1367 return true; 1368 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1369 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1370 // describe stack slot locations. 1371 // 1372 // Consider "int x = 0; int *px = &x;". There are two kinds of 1373 // interesting debug values here after optimization: 1374 // 1375 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1376 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1377 // 1378 // Both describe the direct values of their associated variables. 1379 Dependencies.push_back(N.getNode()); 1380 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1381 continue; 1382 } 1383 LocationOps.emplace_back( 1384 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1385 continue; 1386 } 1387 1388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1389 // Special rules apply for the first dbg.values of parameter variables in a 1390 // function. Identify them by the fact they reference Argument Values, that 1391 // they're parameters, and they are parameters of the current function. We 1392 // need to let them dangle until they get an SDNode. 1393 bool IsParamOfFunc = 1394 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1395 if (IsParamOfFunc) 1396 return false; 1397 1398 // The value is not used in this block yet (or it would have an SDNode). 1399 // We still want the value to appear for the user if possible -- if it has 1400 // an associated VReg, we can refer to that instead. 1401 auto VMI = FuncInfo.ValueMap.find(V); 1402 if (VMI != FuncInfo.ValueMap.end()) { 1403 unsigned Reg = VMI->second; 1404 // If this is a PHI node, it may be split up into several MI PHI nodes 1405 // (in FunctionLoweringInfo::set). 1406 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1407 V->getType(), None); 1408 if (RFV.occupiesMultipleRegs()) { 1409 // FIXME: We could potentially support variadic dbg_values here. 1410 if (IsVariadic) 1411 return false; 1412 unsigned Offset = 0; 1413 unsigned BitsToDescribe = 0; 1414 if (auto VarSize = Var->getSizeInBits()) 1415 BitsToDescribe = *VarSize; 1416 if (auto Fragment = Expr->getFragmentInfo()) 1417 BitsToDescribe = Fragment->SizeInBits; 1418 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1419 // Bail out if all bits are described already. 1420 if (Offset >= BitsToDescribe) 1421 break; 1422 // TODO: handle scalable vectors. 1423 unsigned RegisterSize = RegAndSize.second; 1424 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1425 ? BitsToDescribe - Offset 1426 : RegisterSize; 1427 auto FragmentExpr = DIExpression::createFragmentExpression( 1428 Expr, Offset, FragmentSize); 1429 if (!FragmentExpr) 1430 continue; 1431 SDDbgValue *SDV = DAG.getVRegDbgValue( 1432 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1433 DAG.AddDbgValue(SDV, false); 1434 Offset += RegisterSize; 1435 } 1436 return true; 1437 } 1438 // We can use simple vreg locations for variadic dbg_values as well. 1439 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1440 continue; 1441 } 1442 // We failed to create a SDDbgOperand for V. 1443 return false; 1444 } 1445 1446 // We have created a SDDbgOperand for each Value in Values. 1447 // Should use Order instead of SDNodeOrder? 1448 assert(!LocationOps.empty()); 1449 SDDbgValue *SDV = 1450 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1451 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1452 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1453 return true; 1454 } 1455 1456 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1457 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1458 for (auto &Pair : DanglingDebugInfoMap) 1459 for (auto &DDI : Pair.second) 1460 salvageUnresolvedDbgValue(DDI); 1461 clearDanglingDebugInfo(); 1462 } 1463 1464 /// getCopyFromRegs - If there was virtual register allocated for the value V 1465 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1466 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1467 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1468 SDValue Result; 1469 1470 if (It != FuncInfo.ValueMap.end()) { 1471 Register InReg = It->second; 1472 1473 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1474 DAG.getDataLayout(), InReg, Ty, 1475 None); // This is not an ABI copy. 1476 SDValue Chain = DAG.getEntryNode(); 1477 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1478 V); 1479 resolveDanglingDebugInfo(V, Result); 1480 } 1481 1482 return Result; 1483 } 1484 1485 /// getValue - Return an SDValue for the given Value. 1486 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1487 // If we already have an SDValue for this value, use it. It's important 1488 // to do this first, so that we don't create a CopyFromReg if we already 1489 // have a regular SDValue. 1490 SDValue &N = NodeMap[V]; 1491 if (N.getNode()) return N; 1492 1493 // If there's a virtual register allocated and initialized for this 1494 // value, use it. 1495 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1496 return copyFromReg; 1497 1498 // Otherwise create a new SDValue and remember it. 1499 SDValue Val = getValueImpl(V); 1500 NodeMap[V] = Val; 1501 resolveDanglingDebugInfo(V, Val); 1502 return Val; 1503 } 1504 1505 /// getNonRegisterValue - Return an SDValue for the given Value, but 1506 /// don't look in FuncInfo.ValueMap for a virtual register. 1507 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1508 // If we already have an SDValue for this value, use it. 1509 SDValue &N = NodeMap[V]; 1510 if (N.getNode()) { 1511 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1512 // Remove the debug location from the node as the node is about to be used 1513 // in a location which may differ from the original debug location. This 1514 // is relevant to Constant and ConstantFP nodes because they can appear 1515 // as constant expressions inside PHI nodes. 1516 N->setDebugLoc(DebugLoc()); 1517 } 1518 return N; 1519 } 1520 1521 // Otherwise create a new SDValue and remember it. 1522 SDValue Val = getValueImpl(V); 1523 NodeMap[V] = Val; 1524 resolveDanglingDebugInfo(V, Val); 1525 return Val; 1526 } 1527 1528 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1529 /// Create an SDValue for the given value. 1530 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1532 1533 if (const Constant *C = dyn_cast<Constant>(V)) { 1534 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1535 1536 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1537 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1538 1539 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1540 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1541 1542 if (isa<ConstantPointerNull>(C)) { 1543 unsigned AS = V->getType()->getPointerAddressSpace(); 1544 return DAG.getConstant(0, getCurSDLoc(), 1545 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1546 } 1547 1548 if (match(C, m_VScale(DAG.getDataLayout()))) 1549 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1550 1551 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1552 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1553 1554 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1555 return DAG.getUNDEF(VT); 1556 1557 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1558 visit(CE->getOpcode(), *CE); 1559 SDValue N1 = NodeMap[V]; 1560 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1561 return N1; 1562 } 1563 1564 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1565 SmallVector<SDValue, 4> Constants; 1566 for (const Use &U : C->operands()) { 1567 SDNode *Val = getValue(U).getNode(); 1568 // If the operand is an empty aggregate, there are no values. 1569 if (!Val) continue; 1570 // Add each leaf value from the operand to the Constants list 1571 // to form a flattened list of all the values. 1572 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1573 Constants.push_back(SDValue(Val, i)); 1574 } 1575 1576 return DAG.getMergeValues(Constants, getCurSDLoc()); 1577 } 1578 1579 if (const ConstantDataSequential *CDS = 1580 dyn_cast<ConstantDataSequential>(C)) { 1581 SmallVector<SDValue, 4> Ops; 1582 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1583 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1584 // Add each leaf value from the operand to the Constants list 1585 // to form a flattened list of all the values. 1586 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1587 Ops.push_back(SDValue(Val, i)); 1588 } 1589 1590 if (isa<ArrayType>(CDS->getType())) 1591 return DAG.getMergeValues(Ops, getCurSDLoc()); 1592 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1593 } 1594 1595 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1596 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1597 "Unknown struct or array constant!"); 1598 1599 SmallVector<EVT, 4> ValueVTs; 1600 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1601 unsigned NumElts = ValueVTs.size(); 1602 if (NumElts == 0) 1603 return SDValue(); // empty struct 1604 SmallVector<SDValue, 4> Constants(NumElts); 1605 for (unsigned i = 0; i != NumElts; ++i) { 1606 EVT EltVT = ValueVTs[i]; 1607 if (isa<UndefValue>(C)) 1608 Constants[i] = DAG.getUNDEF(EltVT); 1609 else if (EltVT.isFloatingPoint()) 1610 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1611 else 1612 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1613 } 1614 1615 return DAG.getMergeValues(Constants, getCurSDLoc()); 1616 } 1617 1618 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1619 return DAG.getBlockAddress(BA, VT); 1620 1621 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1622 return getValue(Equiv->getGlobalValue()); 1623 1624 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1625 return getValue(NC->getGlobalValue()); 1626 1627 VectorType *VecTy = cast<VectorType>(V->getType()); 1628 1629 // Now that we know the number and type of the elements, get that number of 1630 // elements into the Ops array based on what kind of constant it is. 1631 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1632 SmallVector<SDValue, 16> Ops; 1633 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1634 for (unsigned i = 0; i != NumElements; ++i) 1635 Ops.push_back(getValue(CV->getOperand(i))); 1636 1637 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1638 } 1639 1640 if (isa<ConstantAggregateZero>(C)) { 1641 EVT EltVT = 1642 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1643 1644 SDValue Op; 1645 if (EltVT.isFloatingPoint()) 1646 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1647 else 1648 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1649 1650 if (isa<ScalableVectorType>(VecTy)) 1651 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1652 1653 SmallVector<SDValue, 16> Ops; 1654 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1655 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1656 } 1657 1658 llvm_unreachable("Unknown vector constant"); 1659 } 1660 1661 // If this is a static alloca, generate it as the frameindex instead of 1662 // computation. 1663 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1664 DenseMap<const AllocaInst*, int>::iterator SI = 1665 FuncInfo.StaticAllocaMap.find(AI); 1666 if (SI != FuncInfo.StaticAllocaMap.end()) 1667 return DAG.getFrameIndex(SI->second, 1668 TLI.getFrameIndexTy(DAG.getDataLayout())); 1669 } 1670 1671 // If this is an instruction which fast-isel has deferred, select it now. 1672 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1673 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1674 1675 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1676 Inst->getType(), None); 1677 SDValue Chain = DAG.getEntryNode(); 1678 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1679 } 1680 1681 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1682 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1683 1684 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1685 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1686 1687 llvm_unreachable("Can't get register for value!"); 1688 } 1689 1690 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1691 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1692 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1693 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1694 bool IsSEH = isAsynchronousEHPersonality(Pers); 1695 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1696 if (!IsSEH) 1697 CatchPadMBB->setIsEHScopeEntry(); 1698 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1699 if (IsMSVCCXX || IsCoreCLR) 1700 CatchPadMBB->setIsEHFuncletEntry(); 1701 } 1702 1703 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1704 // Update machine-CFG edge. 1705 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1706 FuncInfo.MBB->addSuccessor(TargetMBB); 1707 TargetMBB->setIsEHCatchretTarget(true); 1708 DAG.getMachineFunction().setHasEHCatchret(true); 1709 1710 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1711 bool IsSEH = isAsynchronousEHPersonality(Pers); 1712 if (IsSEH) { 1713 // If this is not a fall-through branch or optimizations are switched off, 1714 // emit the branch. 1715 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1716 TM.getOptLevel() == CodeGenOpt::None) 1717 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1718 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1719 return; 1720 } 1721 1722 // Figure out the funclet membership for the catchret's successor. 1723 // This will be used by the FuncletLayout pass to determine how to order the 1724 // BB's. 1725 // A 'catchret' returns to the outer scope's color. 1726 Value *ParentPad = I.getCatchSwitchParentPad(); 1727 const BasicBlock *SuccessorColor; 1728 if (isa<ConstantTokenNone>(ParentPad)) 1729 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1730 else 1731 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1732 assert(SuccessorColor && "No parent funclet for catchret!"); 1733 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1734 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1735 1736 // Create the terminator node. 1737 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1738 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1739 DAG.getBasicBlock(SuccessorColorMBB)); 1740 DAG.setRoot(Ret); 1741 } 1742 1743 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1744 // Don't emit any special code for the cleanuppad instruction. It just marks 1745 // the start of an EH scope/funclet. 1746 FuncInfo.MBB->setIsEHScopeEntry(); 1747 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1748 if (Pers != EHPersonality::Wasm_CXX) { 1749 FuncInfo.MBB->setIsEHFuncletEntry(); 1750 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1751 } 1752 } 1753 1754 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1755 // not match, it is OK to add only the first unwind destination catchpad to the 1756 // successors, because there will be at least one invoke instruction within the 1757 // catch scope that points to the next unwind destination, if one exists, so 1758 // CFGSort cannot mess up with BB sorting order. 1759 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1760 // call within them, and catchpads only consisting of 'catch (...)' have a 1761 // '__cxa_end_catch' call within them, both of which generate invokes in case 1762 // the next unwind destination exists, i.e., the next unwind destination is not 1763 // the caller.) 1764 // 1765 // Having at most one EH pad successor is also simpler and helps later 1766 // transformations. 1767 // 1768 // For example, 1769 // current: 1770 // invoke void @foo to ... unwind label %catch.dispatch 1771 // catch.dispatch: 1772 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1773 // catch.start: 1774 // ... 1775 // ... in this BB or some other child BB dominated by this BB there will be an 1776 // invoke that points to 'next' BB as an unwind destination 1777 // 1778 // next: ; We don't need to add this to 'current' BB's successor 1779 // ... 1780 static void findWasmUnwindDestinations( 1781 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1782 BranchProbability Prob, 1783 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1784 &UnwindDests) { 1785 while (EHPadBB) { 1786 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1787 if (isa<CleanupPadInst>(Pad)) { 1788 // Stop on cleanup pads. 1789 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1790 UnwindDests.back().first->setIsEHScopeEntry(); 1791 break; 1792 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1793 // Add the catchpad handlers to the possible destinations. We don't 1794 // continue to the unwind destination of the catchswitch for wasm. 1795 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1796 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1797 UnwindDests.back().first->setIsEHScopeEntry(); 1798 } 1799 break; 1800 } else { 1801 continue; 1802 } 1803 } 1804 } 1805 1806 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1807 /// many places it could ultimately go. In the IR, we have a single unwind 1808 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1809 /// This function skips over imaginary basic blocks that hold catchswitch 1810 /// instructions, and finds all the "real" machine 1811 /// basic block destinations. As those destinations may not be successors of 1812 /// EHPadBB, here we also calculate the edge probability to those destinations. 1813 /// The passed-in Prob is the edge probability to EHPadBB. 1814 static void findUnwindDestinations( 1815 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1816 BranchProbability Prob, 1817 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1818 &UnwindDests) { 1819 EHPersonality Personality = 1820 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1821 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1822 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1823 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1824 bool IsSEH = isAsynchronousEHPersonality(Personality); 1825 1826 if (IsWasmCXX) { 1827 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1828 assert(UnwindDests.size() <= 1 && 1829 "There should be at most one unwind destination for wasm"); 1830 return; 1831 } 1832 1833 while (EHPadBB) { 1834 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1835 BasicBlock *NewEHPadBB = nullptr; 1836 if (isa<LandingPadInst>(Pad)) { 1837 // Stop on landingpads. They are not funclets. 1838 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1839 break; 1840 } else if (isa<CleanupPadInst>(Pad)) { 1841 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1842 // personalities. 1843 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1844 UnwindDests.back().first->setIsEHScopeEntry(); 1845 UnwindDests.back().first->setIsEHFuncletEntry(); 1846 break; 1847 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1848 // Add the catchpad handlers to the possible destinations. 1849 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1850 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1851 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1852 if (IsMSVCCXX || IsCoreCLR) 1853 UnwindDests.back().first->setIsEHFuncletEntry(); 1854 if (!IsSEH) 1855 UnwindDests.back().first->setIsEHScopeEntry(); 1856 } 1857 NewEHPadBB = CatchSwitch->getUnwindDest(); 1858 } else { 1859 continue; 1860 } 1861 1862 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1863 if (BPI && NewEHPadBB) 1864 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1865 EHPadBB = NewEHPadBB; 1866 } 1867 } 1868 1869 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1870 // Update successor info. 1871 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1872 auto UnwindDest = I.getUnwindDest(); 1873 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1874 BranchProbability UnwindDestProb = 1875 (BPI && UnwindDest) 1876 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1877 : BranchProbability::getZero(); 1878 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1879 for (auto &UnwindDest : UnwindDests) { 1880 UnwindDest.first->setIsEHPad(); 1881 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1882 } 1883 FuncInfo.MBB->normalizeSuccProbs(); 1884 1885 // Create the terminator node. 1886 SDValue Ret = 1887 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1888 DAG.setRoot(Ret); 1889 } 1890 1891 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1892 report_fatal_error("visitCatchSwitch not yet implemented!"); 1893 } 1894 1895 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1897 auto &DL = DAG.getDataLayout(); 1898 SDValue Chain = getControlRoot(); 1899 SmallVector<ISD::OutputArg, 8> Outs; 1900 SmallVector<SDValue, 8> OutVals; 1901 1902 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1903 // lower 1904 // 1905 // %val = call <ty> @llvm.experimental.deoptimize() 1906 // ret <ty> %val 1907 // 1908 // differently. 1909 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1910 LowerDeoptimizingReturn(); 1911 return; 1912 } 1913 1914 if (!FuncInfo.CanLowerReturn) { 1915 unsigned DemoteReg = FuncInfo.DemoteRegister; 1916 const Function *F = I.getParent()->getParent(); 1917 1918 // Emit a store of the return value through the virtual register. 1919 // Leave Outs empty so that LowerReturn won't try to load return 1920 // registers the usual way. 1921 SmallVector<EVT, 1> PtrValueVTs; 1922 ComputeValueVTs(TLI, DL, 1923 F->getReturnType()->getPointerTo( 1924 DAG.getDataLayout().getAllocaAddrSpace()), 1925 PtrValueVTs); 1926 1927 SDValue RetPtr = 1928 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1929 SDValue RetOp = getValue(I.getOperand(0)); 1930 1931 SmallVector<EVT, 4> ValueVTs, MemVTs; 1932 SmallVector<uint64_t, 4> Offsets; 1933 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1934 &Offsets); 1935 unsigned NumValues = ValueVTs.size(); 1936 1937 SmallVector<SDValue, 4> Chains(NumValues); 1938 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1939 for (unsigned i = 0; i != NumValues; ++i) { 1940 // An aggregate return value cannot wrap around the address space, so 1941 // offsets to its parts don't wrap either. 1942 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1943 TypeSize::Fixed(Offsets[i])); 1944 1945 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1946 if (MemVTs[i] != ValueVTs[i]) 1947 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1948 Chains[i] = DAG.getStore( 1949 Chain, getCurSDLoc(), Val, 1950 // FIXME: better loc info would be nice. 1951 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1952 commonAlignment(BaseAlign, Offsets[i])); 1953 } 1954 1955 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1956 MVT::Other, Chains); 1957 } else if (I.getNumOperands() != 0) { 1958 SmallVector<EVT, 4> ValueVTs; 1959 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1960 unsigned NumValues = ValueVTs.size(); 1961 if (NumValues) { 1962 SDValue RetOp = getValue(I.getOperand(0)); 1963 1964 const Function *F = I.getParent()->getParent(); 1965 1966 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1967 I.getOperand(0)->getType(), F->getCallingConv(), 1968 /*IsVarArg*/ false, DL); 1969 1970 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1971 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 1972 ExtendKind = ISD::SIGN_EXTEND; 1973 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 1974 ExtendKind = ISD::ZERO_EXTEND; 1975 1976 LLVMContext &Context = F->getContext(); 1977 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 1978 1979 for (unsigned j = 0; j != NumValues; ++j) { 1980 EVT VT = ValueVTs[j]; 1981 1982 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1983 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1984 1985 CallingConv::ID CC = F->getCallingConv(); 1986 1987 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1988 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1989 SmallVector<SDValue, 4> Parts(NumParts); 1990 getCopyToParts(DAG, getCurSDLoc(), 1991 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1992 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1993 1994 // 'inreg' on function refers to return value 1995 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1996 if (RetInReg) 1997 Flags.setInReg(); 1998 1999 if (I.getOperand(0)->getType()->isPointerTy()) { 2000 Flags.setPointer(); 2001 Flags.setPointerAddrSpace( 2002 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2003 } 2004 2005 if (NeedsRegBlock) { 2006 Flags.setInConsecutiveRegs(); 2007 if (j == NumValues - 1) 2008 Flags.setInConsecutiveRegsLast(); 2009 } 2010 2011 // Propagate extension type if any 2012 if (ExtendKind == ISD::SIGN_EXTEND) 2013 Flags.setSExt(); 2014 else if (ExtendKind == ISD::ZERO_EXTEND) 2015 Flags.setZExt(); 2016 2017 for (unsigned i = 0; i < NumParts; ++i) { 2018 Outs.push_back(ISD::OutputArg(Flags, 2019 Parts[i].getValueType().getSimpleVT(), 2020 VT, /*isfixed=*/true, 0, 0)); 2021 OutVals.push_back(Parts[i]); 2022 } 2023 } 2024 } 2025 } 2026 2027 // Push in swifterror virtual register as the last element of Outs. This makes 2028 // sure swifterror virtual register will be returned in the swifterror 2029 // physical register. 2030 const Function *F = I.getParent()->getParent(); 2031 if (TLI.supportSwiftError() && 2032 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2033 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2034 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2035 Flags.setSwiftError(); 2036 Outs.push_back(ISD::OutputArg( 2037 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2038 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2039 // Create SDNode for the swifterror virtual register. 2040 OutVals.push_back( 2041 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2042 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2043 EVT(TLI.getPointerTy(DL)))); 2044 } 2045 2046 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2047 CallingConv::ID CallConv = 2048 DAG.getMachineFunction().getFunction().getCallingConv(); 2049 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2050 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2051 2052 // Verify that the target's LowerReturn behaved as expected. 2053 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2054 "LowerReturn didn't return a valid chain!"); 2055 2056 // Update the DAG with the new chain value resulting from return lowering. 2057 DAG.setRoot(Chain); 2058 } 2059 2060 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2061 /// created for it, emit nodes to copy the value into the virtual 2062 /// registers. 2063 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2064 // Skip empty types 2065 if (V->getType()->isEmptyTy()) 2066 return; 2067 2068 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2069 if (VMI != FuncInfo.ValueMap.end()) { 2070 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2071 CopyValueToVirtualRegister(V, VMI->second); 2072 } 2073 } 2074 2075 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2076 /// the current basic block, add it to ValueMap now so that we'll get a 2077 /// CopyTo/FromReg. 2078 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2079 // No need to export constants. 2080 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2081 2082 // Already exported? 2083 if (FuncInfo.isExportedInst(V)) return; 2084 2085 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2086 CopyValueToVirtualRegister(V, Reg); 2087 } 2088 2089 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2090 const BasicBlock *FromBB) { 2091 // The operands of the setcc have to be in this block. We don't know 2092 // how to export them from some other block. 2093 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2094 // Can export from current BB. 2095 if (VI->getParent() == FromBB) 2096 return true; 2097 2098 // Is already exported, noop. 2099 return FuncInfo.isExportedInst(V); 2100 } 2101 2102 // If this is an argument, we can export it if the BB is the entry block or 2103 // if it is already exported. 2104 if (isa<Argument>(V)) { 2105 if (FromBB->isEntryBlock()) 2106 return true; 2107 2108 // Otherwise, can only export this if it is already exported. 2109 return FuncInfo.isExportedInst(V); 2110 } 2111 2112 // Otherwise, constants can always be exported. 2113 return true; 2114 } 2115 2116 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2117 BranchProbability 2118 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2119 const MachineBasicBlock *Dst) const { 2120 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2121 const BasicBlock *SrcBB = Src->getBasicBlock(); 2122 const BasicBlock *DstBB = Dst->getBasicBlock(); 2123 if (!BPI) { 2124 // If BPI is not available, set the default probability as 1 / N, where N is 2125 // the number of successors. 2126 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2127 return BranchProbability(1, SuccSize); 2128 } 2129 return BPI->getEdgeProbability(SrcBB, DstBB); 2130 } 2131 2132 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2133 MachineBasicBlock *Dst, 2134 BranchProbability Prob) { 2135 if (!FuncInfo.BPI) 2136 Src->addSuccessorWithoutProb(Dst); 2137 else { 2138 if (Prob.isUnknown()) 2139 Prob = getEdgeProbability(Src, Dst); 2140 Src->addSuccessor(Dst, Prob); 2141 } 2142 } 2143 2144 static bool InBlock(const Value *V, const BasicBlock *BB) { 2145 if (const Instruction *I = dyn_cast<Instruction>(V)) 2146 return I->getParent() == BB; 2147 return true; 2148 } 2149 2150 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2151 /// This function emits a branch and is used at the leaves of an OR or an 2152 /// AND operator tree. 2153 void 2154 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2155 MachineBasicBlock *TBB, 2156 MachineBasicBlock *FBB, 2157 MachineBasicBlock *CurBB, 2158 MachineBasicBlock *SwitchBB, 2159 BranchProbability TProb, 2160 BranchProbability FProb, 2161 bool InvertCond) { 2162 const BasicBlock *BB = CurBB->getBasicBlock(); 2163 2164 // If the leaf of the tree is a comparison, merge the condition into 2165 // the caseblock. 2166 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2167 // The operands of the cmp have to be in this block. We don't know 2168 // how to export them from some other block. If this is the first block 2169 // of the sequence, no exporting is needed. 2170 if (CurBB == SwitchBB || 2171 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2172 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2173 ISD::CondCode Condition; 2174 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2175 ICmpInst::Predicate Pred = 2176 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2177 Condition = getICmpCondCode(Pred); 2178 } else { 2179 const FCmpInst *FC = cast<FCmpInst>(Cond); 2180 FCmpInst::Predicate Pred = 2181 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2182 Condition = getFCmpCondCode(Pred); 2183 if (TM.Options.NoNaNsFPMath) 2184 Condition = getFCmpCodeWithoutNaN(Condition); 2185 } 2186 2187 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2188 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2189 SL->SwitchCases.push_back(CB); 2190 return; 2191 } 2192 } 2193 2194 // Create a CaseBlock record representing this branch. 2195 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2196 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2197 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2198 SL->SwitchCases.push_back(CB); 2199 } 2200 2201 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2202 MachineBasicBlock *TBB, 2203 MachineBasicBlock *FBB, 2204 MachineBasicBlock *CurBB, 2205 MachineBasicBlock *SwitchBB, 2206 Instruction::BinaryOps Opc, 2207 BranchProbability TProb, 2208 BranchProbability FProb, 2209 bool InvertCond) { 2210 // Skip over not part of the tree and remember to invert op and operands at 2211 // next level. 2212 Value *NotCond; 2213 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2214 InBlock(NotCond, CurBB->getBasicBlock())) { 2215 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2216 !InvertCond); 2217 return; 2218 } 2219 2220 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2221 const Value *BOpOp0, *BOpOp1; 2222 // Compute the effective opcode for Cond, taking into account whether it needs 2223 // to be inverted, e.g. 2224 // and (not (or A, B)), C 2225 // gets lowered as 2226 // and (and (not A, not B), C) 2227 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2228 if (BOp) { 2229 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2230 ? Instruction::And 2231 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2232 ? Instruction::Or 2233 : (Instruction::BinaryOps)0); 2234 if (InvertCond) { 2235 if (BOpc == Instruction::And) 2236 BOpc = Instruction::Or; 2237 else if (BOpc == Instruction::Or) 2238 BOpc = Instruction::And; 2239 } 2240 } 2241 2242 // If this node is not part of the or/and tree, emit it as a branch. 2243 // Note that all nodes in the tree should have same opcode. 2244 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2245 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2246 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2247 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2248 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2249 TProb, FProb, InvertCond); 2250 return; 2251 } 2252 2253 // Create TmpBB after CurBB. 2254 MachineFunction::iterator BBI(CurBB); 2255 MachineFunction &MF = DAG.getMachineFunction(); 2256 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2257 CurBB->getParent()->insert(++BBI, TmpBB); 2258 2259 if (Opc == Instruction::Or) { 2260 // Codegen X | Y as: 2261 // BB1: 2262 // jmp_if_X TBB 2263 // jmp TmpBB 2264 // TmpBB: 2265 // jmp_if_Y TBB 2266 // jmp FBB 2267 // 2268 2269 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2270 // The requirement is that 2271 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2272 // = TrueProb for original BB. 2273 // Assuming the original probabilities are A and B, one choice is to set 2274 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2275 // A/(1+B) and 2B/(1+B). This choice assumes that 2276 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2277 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2278 // TmpBB, but the math is more complicated. 2279 2280 auto NewTrueProb = TProb / 2; 2281 auto NewFalseProb = TProb / 2 + FProb; 2282 // Emit the LHS condition. 2283 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2284 NewFalseProb, InvertCond); 2285 2286 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2287 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2288 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2289 // Emit the RHS condition into TmpBB. 2290 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2291 Probs[1], InvertCond); 2292 } else { 2293 assert(Opc == Instruction::And && "Unknown merge op!"); 2294 // Codegen X & Y as: 2295 // BB1: 2296 // jmp_if_X TmpBB 2297 // jmp FBB 2298 // TmpBB: 2299 // jmp_if_Y TBB 2300 // jmp FBB 2301 // 2302 // This requires creation of TmpBB after CurBB. 2303 2304 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2305 // The requirement is that 2306 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2307 // = FalseProb for original BB. 2308 // Assuming the original probabilities are A and B, one choice is to set 2309 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2310 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2311 // TrueProb for BB1 * FalseProb for TmpBB. 2312 2313 auto NewTrueProb = TProb + FProb / 2; 2314 auto NewFalseProb = FProb / 2; 2315 // Emit the LHS condition. 2316 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2317 NewFalseProb, InvertCond); 2318 2319 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2320 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2321 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2322 // Emit the RHS condition into TmpBB. 2323 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2324 Probs[1], InvertCond); 2325 } 2326 } 2327 2328 /// If the set of cases should be emitted as a series of branches, return true. 2329 /// If we should emit this as a bunch of and/or'd together conditions, return 2330 /// false. 2331 bool 2332 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2333 if (Cases.size() != 2) return true; 2334 2335 // If this is two comparisons of the same values or'd or and'd together, they 2336 // will get folded into a single comparison, so don't emit two blocks. 2337 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2338 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2339 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2340 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2341 return false; 2342 } 2343 2344 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2345 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2346 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2347 Cases[0].CC == Cases[1].CC && 2348 isa<Constant>(Cases[0].CmpRHS) && 2349 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2350 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2351 return false; 2352 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2353 return false; 2354 } 2355 2356 return true; 2357 } 2358 2359 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2360 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2361 2362 // Update machine-CFG edges. 2363 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2364 2365 if (I.isUnconditional()) { 2366 // Update machine-CFG edges. 2367 BrMBB->addSuccessor(Succ0MBB); 2368 2369 // If this is not a fall-through branch or optimizations are switched off, 2370 // emit the branch. 2371 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2372 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2373 MVT::Other, getControlRoot(), 2374 DAG.getBasicBlock(Succ0MBB))); 2375 2376 return; 2377 } 2378 2379 // If this condition is one of the special cases we handle, do special stuff 2380 // now. 2381 const Value *CondVal = I.getCondition(); 2382 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2383 2384 // If this is a series of conditions that are or'd or and'd together, emit 2385 // this as a sequence of branches instead of setcc's with and/or operations. 2386 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2387 // unpredictable branches, and vector extracts because those jumps are likely 2388 // expensive for any target), this should improve performance. 2389 // For example, instead of something like: 2390 // cmp A, B 2391 // C = seteq 2392 // cmp D, E 2393 // F = setle 2394 // or C, F 2395 // jnz foo 2396 // Emit: 2397 // cmp A, B 2398 // je foo 2399 // cmp D, E 2400 // jle foo 2401 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2402 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2403 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2404 Value *Vec; 2405 const Value *BOp0, *BOp1; 2406 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2407 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2408 Opcode = Instruction::And; 2409 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2410 Opcode = Instruction::Or; 2411 2412 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2413 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2414 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2415 getEdgeProbability(BrMBB, Succ0MBB), 2416 getEdgeProbability(BrMBB, Succ1MBB), 2417 /*InvertCond=*/false); 2418 // If the compares in later blocks need to use values not currently 2419 // exported from this block, export them now. This block should always 2420 // be the first entry. 2421 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2422 2423 // Allow some cases to be rejected. 2424 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2425 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2426 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2427 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2428 } 2429 2430 // Emit the branch for this block. 2431 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2432 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2433 return; 2434 } 2435 2436 // Okay, we decided not to do this, remove any inserted MBB's and clear 2437 // SwitchCases. 2438 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2439 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2440 2441 SL->SwitchCases.clear(); 2442 } 2443 } 2444 2445 // Create a CaseBlock record representing this branch. 2446 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2447 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2448 2449 // Use visitSwitchCase to actually insert the fast branch sequence for this 2450 // cond branch. 2451 visitSwitchCase(CB, BrMBB); 2452 } 2453 2454 /// visitSwitchCase - Emits the necessary code to represent a single node in 2455 /// the binary search tree resulting from lowering a switch instruction. 2456 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2457 MachineBasicBlock *SwitchBB) { 2458 SDValue Cond; 2459 SDValue CondLHS = getValue(CB.CmpLHS); 2460 SDLoc dl = CB.DL; 2461 2462 if (CB.CC == ISD::SETTRUE) { 2463 // Branch or fall through to TrueBB. 2464 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2465 SwitchBB->normalizeSuccProbs(); 2466 if (CB.TrueBB != NextBlock(SwitchBB)) { 2467 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2468 DAG.getBasicBlock(CB.TrueBB))); 2469 } 2470 return; 2471 } 2472 2473 auto &TLI = DAG.getTargetLoweringInfo(); 2474 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2475 2476 // Build the setcc now. 2477 if (!CB.CmpMHS) { 2478 // Fold "(X == true)" to X and "(X == false)" to !X to 2479 // handle common cases produced by branch lowering. 2480 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2481 CB.CC == ISD::SETEQ) 2482 Cond = CondLHS; 2483 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2484 CB.CC == ISD::SETEQ) { 2485 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2486 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2487 } else { 2488 SDValue CondRHS = getValue(CB.CmpRHS); 2489 2490 // If a pointer's DAG type is larger than its memory type then the DAG 2491 // values are zero-extended. This breaks signed comparisons so truncate 2492 // back to the underlying type before doing the compare. 2493 if (CondLHS.getValueType() != MemVT) { 2494 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2495 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2496 } 2497 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2498 } 2499 } else { 2500 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2501 2502 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2503 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2504 2505 SDValue CmpOp = getValue(CB.CmpMHS); 2506 EVT VT = CmpOp.getValueType(); 2507 2508 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2509 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2510 ISD::SETLE); 2511 } else { 2512 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2513 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2514 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2515 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2516 } 2517 } 2518 2519 // Update successor info 2520 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2521 // TrueBB and FalseBB are always different unless the incoming IR is 2522 // degenerate. This only happens when running llc on weird IR. 2523 if (CB.TrueBB != CB.FalseBB) 2524 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2525 SwitchBB->normalizeSuccProbs(); 2526 2527 // If the lhs block is the next block, invert the condition so that we can 2528 // fall through to the lhs instead of the rhs block. 2529 if (CB.TrueBB == NextBlock(SwitchBB)) { 2530 std::swap(CB.TrueBB, CB.FalseBB); 2531 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2532 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2533 } 2534 2535 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2536 MVT::Other, getControlRoot(), Cond, 2537 DAG.getBasicBlock(CB.TrueBB)); 2538 2539 // Insert the false branch. Do this even if it's a fall through branch, 2540 // this makes it easier to do DAG optimizations which require inverting 2541 // the branch condition. 2542 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2543 DAG.getBasicBlock(CB.FalseBB)); 2544 2545 DAG.setRoot(BrCond); 2546 } 2547 2548 /// visitJumpTable - Emit JumpTable node in the current MBB 2549 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2550 // Emit the code for the jump table 2551 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2552 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2553 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2554 JT.Reg, PTy); 2555 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2556 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2557 MVT::Other, Index.getValue(1), 2558 Table, Index); 2559 DAG.setRoot(BrJumpTable); 2560 } 2561 2562 /// visitJumpTableHeader - This function emits necessary code to produce index 2563 /// in the JumpTable from switch case. 2564 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2565 JumpTableHeader &JTH, 2566 MachineBasicBlock *SwitchBB) { 2567 SDLoc dl = getCurSDLoc(); 2568 2569 // Subtract the lowest switch case value from the value being switched on. 2570 SDValue SwitchOp = getValue(JTH.SValue); 2571 EVT VT = SwitchOp.getValueType(); 2572 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2573 DAG.getConstant(JTH.First, dl, VT)); 2574 2575 // The SDNode we just created, which holds the value being switched on minus 2576 // the smallest case value, needs to be copied to a virtual register so it 2577 // can be used as an index into the jump table in a subsequent basic block. 2578 // This value may be smaller or larger than the target's pointer type, and 2579 // therefore require extension or truncating. 2580 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2581 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2582 2583 unsigned JumpTableReg = 2584 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2585 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2586 JumpTableReg, SwitchOp); 2587 JT.Reg = JumpTableReg; 2588 2589 if (!JTH.FallthroughUnreachable) { 2590 // Emit the range check for the jump table, and branch to the default block 2591 // for the switch statement if the value being switched on exceeds the 2592 // largest case in the switch. 2593 SDValue CMP = DAG.getSetCC( 2594 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2595 Sub.getValueType()), 2596 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2597 2598 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2599 MVT::Other, CopyTo, CMP, 2600 DAG.getBasicBlock(JT.Default)); 2601 2602 // Avoid emitting unnecessary branches to the next block. 2603 if (JT.MBB != NextBlock(SwitchBB)) 2604 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2605 DAG.getBasicBlock(JT.MBB)); 2606 2607 DAG.setRoot(BrCond); 2608 } else { 2609 // Avoid emitting unnecessary branches to the next block. 2610 if (JT.MBB != NextBlock(SwitchBB)) 2611 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2612 DAG.getBasicBlock(JT.MBB))); 2613 else 2614 DAG.setRoot(CopyTo); 2615 } 2616 } 2617 2618 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2619 /// variable if there exists one. 2620 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2621 SDValue &Chain) { 2622 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2623 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2624 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2625 MachineFunction &MF = DAG.getMachineFunction(); 2626 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2627 MachineSDNode *Node = 2628 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2629 if (Global) { 2630 MachinePointerInfo MPInfo(Global); 2631 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2632 MachineMemOperand::MODereferenceable; 2633 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2634 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2635 DAG.setNodeMemRefs(Node, {MemRef}); 2636 } 2637 if (PtrTy != PtrMemTy) 2638 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2639 return SDValue(Node, 0); 2640 } 2641 2642 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2643 /// tail spliced into a stack protector check success bb. 2644 /// 2645 /// For a high level explanation of how this fits into the stack protector 2646 /// generation see the comment on the declaration of class 2647 /// StackProtectorDescriptor. 2648 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2649 MachineBasicBlock *ParentBB) { 2650 2651 // First create the loads to the guard/stack slot for the comparison. 2652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2653 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2654 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2655 2656 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2657 int FI = MFI.getStackProtectorIndex(); 2658 2659 SDValue Guard; 2660 SDLoc dl = getCurSDLoc(); 2661 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2662 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2663 Align Align = 2664 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2665 2666 // Generate code to load the content of the guard slot. 2667 SDValue GuardVal = DAG.getLoad( 2668 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2669 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2670 MachineMemOperand::MOVolatile); 2671 2672 if (TLI.useStackGuardXorFP()) 2673 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2674 2675 // Retrieve guard check function, nullptr if instrumentation is inlined. 2676 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2677 // The target provides a guard check function to validate the guard value. 2678 // Generate a call to that function with the content of the guard slot as 2679 // argument. 2680 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2681 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2682 2683 TargetLowering::ArgListTy Args; 2684 TargetLowering::ArgListEntry Entry; 2685 Entry.Node = GuardVal; 2686 Entry.Ty = FnTy->getParamType(0); 2687 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2688 Entry.IsInReg = true; 2689 Args.push_back(Entry); 2690 2691 TargetLowering::CallLoweringInfo CLI(DAG); 2692 CLI.setDebugLoc(getCurSDLoc()) 2693 .setChain(DAG.getEntryNode()) 2694 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2695 getValue(GuardCheckFn), std::move(Args)); 2696 2697 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2698 DAG.setRoot(Result.second); 2699 return; 2700 } 2701 2702 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2703 // Otherwise, emit a volatile load to retrieve the stack guard value. 2704 SDValue Chain = DAG.getEntryNode(); 2705 if (TLI.useLoadStackGuardNode()) { 2706 Guard = getLoadStackGuard(DAG, dl, Chain); 2707 } else { 2708 const Value *IRGuard = TLI.getSDagStackGuard(M); 2709 SDValue GuardPtr = getValue(IRGuard); 2710 2711 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2712 MachinePointerInfo(IRGuard, 0), Align, 2713 MachineMemOperand::MOVolatile); 2714 } 2715 2716 // Perform the comparison via a getsetcc. 2717 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2718 *DAG.getContext(), 2719 Guard.getValueType()), 2720 Guard, GuardVal, ISD::SETNE); 2721 2722 // If the guard/stackslot do not equal, branch to failure MBB. 2723 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2724 MVT::Other, GuardVal.getOperand(0), 2725 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2726 // Otherwise branch to success MBB. 2727 SDValue Br = DAG.getNode(ISD::BR, dl, 2728 MVT::Other, BrCond, 2729 DAG.getBasicBlock(SPD.getSuccessMBB())); 2730 2731 DAG.setRoot(Br); 2732 } 2733 2734 /// Codegen the failure basic block for a stack protector check. 2735 /// 2736 /// A failure stack protector machine basic block consists simply of a call to 2737 /// __stack_chk_fail(). 2738 /// 2739 /// For a high level explanation of how this fits into the stack protector 2740 /// generation see the comment on the declaration of class 2741 /// StackProtectorDescriptor. 2742 void 2743 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2744 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2745 TargetLowering::MakeLibCallOptions CallOptions; 2746 CallOptions.setDiscardResult(true); 2747 SDValue Chain = 2748 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2749 None, CallOptions, getCurSDLoc()).second; 2750 // On PS4, the "return address" must still be within the calling function, 2751 // even if it's at the very end, so emit an explicit TRAP here. 2752 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2753 if (TM.getTargetTriple().isPS4()) 2754 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2755 // WebAssembly needs an unreachable instruction after a non-returning call, 2756 // because the function return type can be different from __stack_chk_fail's 2757 // return type (void). 2758 if (TM.getTargetTriple().isWasm()) 2759 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2760 2761 DAG.setRoot(Chain); 2762 } 2763 2764 /// visitBitTestHeader - This function emits necessary code to produce value 2765 /// suitable for "bit tests" 2766 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2767 MachineBasicBlock *SwitchBB) { 2768 SDLoc dl = getCurSDLoc(); 2769 2770 // Subtract the minimum value. 2771 SDValue SwitchOp = getValue(B.SValue); 2772 EVT VT = SwitchOp.getValueType(); 2773 SDValue RangeSub = 2774 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2775 2776 // Determine the type of the test operands. 2777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2778 bool UsePtrType = false; 2779 if (!TLI.isTypeLegal(VT)) { 2780 UsePtrType = true; 2781 } else { 2782 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2783 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2784 // Switch table case range are encoded into series of masks. 2785 // Just use pointer type, it's guaranteed to fit. 2786 UsePtrType = true; 2787 break; 2788 } 2789 } 2790 SDValue Sub = RangeSub; 2791 if (UsePtrType) { 2792 VT = TLI.getPointerTy(DAG.getDataLayout()); 2793 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2794 } 2795 2796 B.RegVT = VT.getSimpleVT(); 2797 B.Reg = FuncInfo.CreateReg(B.RegVT); 2798 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2799 2800 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2801 2802 if (!B.FallthroughUnreachable) 2803 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2804 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2805 SwitchBB->normalizeSuccProbs(); 2806 2807 SDValue Root = CopyTo; 2808 if (!B.FallthroughUnreachable) { 2809 // Conditional branch to the default block. 2810 SDValue RangeCmp = DAG.getSetCC(dl, 2811 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2812 RangeSub.getValueType()), 2813 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2814 ISD::SETUGT); 2815 2816 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2817 DAG.getBasicBlock(B.Default)); 2818 } 2819 2820 // Avoid emitting unnecessary branches to the next block. 2821 if (MBB != NextBlock(SwitchBB)) 2822 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2823 2824 DAG.setRoot(Root); 2825 } 2826 2827 /// visitBitTestCase - this function produces one "bit test" 2828 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2829 MachineBasicBlock* NextMBB, 2830 BranchProbability BranchProbToNext, 2831 unsigned Reg, 2832 BitTestCase &B, 2833 MachineBasicBlock *SwitchBB) { 2834 SDLoc dl = getCurSDLoc(); 2835 MVT VT = BB.RegVT; 2836 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2837 SDValue Cmp; 2838 unsigned PopCount = countPopulation(B.Mask); 2839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2840 if (PopCount == 1) { 2841 // Testing for a single bit; just compare the shift count with what it 2842 // would need to be to shift a 1 bit in that position. 2843 Cmp = DAG.getSetCC( 2844 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2845 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2846 ISD::SETEQ); 2847 } else if (PopCount == BB.Range) { 2848 // There is only one zero bit in the range, test for it directly. 2849 Cmp = DAG.getSetCC( 2850 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2851 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2852 ISD::SETNE); 2853 } else { 2854 // Make desired shift 2855 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2856 DAG.getConstant(1, dl, VT), ShiftOp); 2857 2858 // Emit bit tests and jumps 2859 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2860 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2861 Cmp = DAG.getSetCC( 2862 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2863 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2864 } 2865 2866 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2867 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2868 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2869 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2870 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2871 // one as they are relative probabilities (and thus work more like weights), 2872 // and hence we need to normalize them to let the sum of them become one. 2873 SwitchBB->normalizeSuccProbs(); 2874 2875 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2876 MVT::Other, getControlRoot(), 2877 Cmp, DAG.getBasicBlock(B.TargetBB)); 2878 2879 // Avoid emitting unnecessary branches to the next block. 2880 if (NextMBB != NextBlock(SwitchBB)) 2881 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2882 DAG.getBasicBlock(NextMBB)); 2883 2884 DAG.setRoot(BrAnd); 2885 } 2886 2887 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2888 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2889 2890 // Retrieve successors. Look through artificial IR level blocks like 2891 // catchswitch for successors. 2892 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2893 const BasicBlock *EHPadBB = I.getSuccessor(1); 2894 2895 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2896 // have to do anything here to lower funclet bundles. 2897 assert(!I.hasOperandBundlesOtherThan( 2898 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2899 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2900 LLVMContext::OB_cfguardtarget, 2901 LLVMContext::OB_clang_arc_attachedcall}) && 2902 "Cannot lower invokes with arbitrary operand bundles yet!"); 2903 2904 const Value *Callee(I.getCalledOperand()); 2905 const Function *Fn = dyn_cast<Function>(Callee); 2906 if (isa<InlineAsm>(Callee)) 2907 visitInlineAsm(I, EHPadBB); 2908 else if (Fn && Fn->isIntrinsic()) { 2909 switch (Fn->getIntrinsicID()) { 2910 default: 2911 llvm_unreachable("Cannot invoke this intrinsic"); 2912 case Intrinsic::donothing: 2913 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2914 case Intrinsic::seh_try_begin: 2915 case Intrinsic::seh_scope_begin: 2916 case Intrinsic::seh_try_end: 2917 case Intrinsic::seh_scope_end: 2918 break; 2919 case Intrinsic::experimental_patchpoint_void: 2920 case Intrinsic::experimental_patchpoint_i64: 2921 visitPatchpoint(I, EHPadBB); 2922 break; 2923 case Intrinsic::experimental_gc_statepoint: 2924 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2925 break; 2926 case Intrinsic::wasm_rethrow: { 2927 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2928 // special because it can be invoked, so we manually lower it to a DAG 2929 // node here. 2930 SmallVector<SDValue, 8> Ops; 2931 Ops.push_back(getRoot()); // inchain 2932 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2933 Ops.push_back( 2934 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2935 TLI.getPointerTy(DAG.getDataLayout()))); 2936 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2937 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2938 break; 2939 } 2940 } 2941 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2942 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2943 // Eventually we will support lowering the @llvm.experimental.deoptimize 2944 // intrinsic, and right now there are no plans to support other intrinsics 2945 // with deopt state. 2946 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2947 } else { 2948 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2949 } 2950 2951 // If the value of the invoke is used outside of its defining block, make it 2952 // available as a virtual register. 2953 // We already took care of the exported value for the statepoint instruction 2954 // during call to the LowerStatepoint. 2955 if (!isa<GCStatepointInst>(I)) { 2956 CopyToExportRegsIfNeeded(&I); 2957 } 2958 2959 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2960 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2961 BranchProbability EHPadBBProb = 2962 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2963 : BranchProbability::getZero(); 2964 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2965 2966 // Update successor info. 2967 addSuccessorWithProb(InvokeMBB, Return); 2968 for (auto &UnwindDest : UnwindDests) { 2969 UnwindDest.first->setIsEHPad(); 2970 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2971 } 2972 InvokeMBB->normalizeSuccProbs(); 2973 2974 // Drop into normal successor. 2975 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2976 DAG.getBasicBlock(Return))); 2977 } 2978 2979 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2980 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2981 2982 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2983 // have to do anything here to lower funclet bundles. 2984 assert(!I.hasOperandBundlesOtherThan( 2985 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2986 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2987 2988 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2989 visitInlineAsm(I); 2990 CopyToExportRegsIfNeeded(&I); 2991 2992 // Retrieve successors. 2993 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2994 2995 // Update successor info. 2996 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2997 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2998 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2999 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3000 Target->setIsInlineAsmBrIndirectTarget(); 3001 } 3002 CallBrMBB->normalizeSuccProbs(); 3003 3004 // Drop into default successor. 3005 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3006 MVT::Other, getControlRoot(), 3007 DAG.getBasicBlock(Return))); 3008 } 3009 3010 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3011 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3012 } 3013 3014 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3015 assert(FuncInfo.MBB->isEHPad() && 3016 "Call to landingpad not in landing pad!"); 3017 3018 // If there aren't registers to copy the values into (e.g., during SjLj 3019 // exceptions), then don't bother to create these DAG nodes. 3020 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3021 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3022 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3023 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3024 return; 3025 3026 // If landingpad's return type is token type, we don't create DAG nodes 3027 // for its exception pointer and selector value. The extraction of exception 3028 // pointer or selector value from token type landingpads is not currently 3029 // supported. 3030 if (LP.getType()->isTokenTy()) 3031 return; 3032 3033 SmallVector<EVT, 2> ValueVTs; 3034 SDLoc dl = getCurSDLoc(); 3035 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3036 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3037 3038 // Get the two live-in registers as SDValues. The physregs have already been 3039 // copied into virtual registers. 3040 SDValue Ops[2]; 3041 if (FuncInfo.ExceptionPointerVirtReg) { 3042 Ops[0] = DAG.getZExtOrTrunc( 3043 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3044 FuncInfo.ExceptionPointerVirtReg, 3045 TLI.getPointerTy(DAG.getDataLayout())), 3046 dl, ValueVTs[0]); 3047 } else { 3048 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3049 } 3050 Ops[1] = DAG.getZExtOrTrunc( 3051 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3052 FuncInfo.ExceptionSelectorVirtReg, 3053 TLI.getPointerTy(DAG.getDataLayout())), 3054 dl, ValueVTs[1]); 3055 3056 // Merge into one. 3057 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3058 DAG.getVTList(ValueVTs), Ops); 3059 setValue(&LP, Res); 3060 } 3061 3062 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3063 MachineBasicBlock *Last) { 3064 // Update JTCases. 3065 for (JumpTableBlock &JTB : SL->JTCases) 3066 if (JTB.first.HeaderBB == First) 3067 JTB.first.HeaderBB = Last; 3068 3069 // Update BitTestCases. 3070 for (BitTestBlock &BTB : SL->BitTestCases) 3071 if (BTB.Parent == First) 3072 BTB.Parent = Last; 3073 } 3074 3075 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3076 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3077 3078 // Update machine-CFG edges with unique successors. 3079 SmallSet<BasicBlock*, 32> Done; 3080 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3081 BasicBlock *BB = I.getSuccessor(i); 3082 bool Inserted = Done.insert(BB).second; 3083 if (!Inserted) 3084 continue; 3085 3086 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3087 addSuccessorWithProb(IndirectBrMBB, Succ); 3088 } 3089 IndirectBrMBB->normalizeSuccProbs(); 3090 3091 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3092 MVT::Other, getControlRoot(), 3093 getValue(I.getAddress()))); 3094 } 3095 3096 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3097 if (!DAG.getTarget().Options.TrapUnreachable) 3098 return; 3099 3100 // We may be able to ignore unreachable behind a noreturn call. 3101 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3102 const BasicBlock &BB = *I.getParent(); 3103 if (&I != &BB.front()) { 3104 BasicBlock::const_iterator PredI = 3105 std::prev(BasicBlock::const_iterator(&I)); 3106 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3107 if (Call->doesNotReturn()) 3108 return; 3109 } 3110 } 3111 } 3112 3113 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3114 } 3115 3116 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3117 SDNodeFlags Flags; 3118 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3119 Flags.copyFMF(*FPOp); 3120 3121 SDValue Op = getValue(I.getOperand(0)); 3122 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3123 Op, Flags); 3124 setValue(&I, UnNodeValue); 3125 } 3126 3127 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3128 SDNodeFlags Flags; 3129 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3130 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3131 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3132 } 3133 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3134 Flags.setExact(ExactOp->isExact()); 3135 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3136 Flags.copyFMF(*FPOp); 3137 3138 SDValue Op1 = getValue(I.getOperand(0)); 3139 SDValue Op2 = getValue(I.getOperand(1)); 3140 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3141 Op1, Op2, Flags); 3142 setValue(&I, BinNodeValue); 3143 } 3144 3145 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3146 SDValue Op1 = getValue(I.getOperand(0)); 3147 SDValue Op2 = getValue(I.getOperand(1)); 3148 3149 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3150 Op1.getValueType(), DAG.getDataLayout()); 3151 3152 // Coerce the shift amount to the right type if we can. This exposes the 3153 // truncate or zext to optimization early. 3154 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3155 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3156 "Unexpected shift type"); 3157 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3158 } 3159 3160 bool nuw = false; 3161 bool nsw = false; 3162 bool exact = false; 3163 3164 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3165 3166 if (const OverflowingBinaryOperator *OFBinOp = 3167 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3168 nuw = OFBinOp->hasNoUnsignedWrap(); 3169 nsw = OFBinOp->hasNoSignedWrap(); 3170 } 3171 if (const PossiblyExactOperator *ExactOp = 3172 dyn_cast<const PossiblyExactOperator>(&I)) 3173 exact = ExactOp->isExact(); 3174 } 3175 SDNodeFlags Flags; 3176 Flags.setExact(exact); 3177 Flags.setNoSignedWrap(nsw); 3178 Flags.setNoUnsignedWrap(nuw); 3179 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3180 Flags); 3181 setValue(&I, Res); 3182 } 3183 3184 void SelectionDAGBuilder::visitSDiv(const User &I) { 3185 SDValue Op1 = getValue(I.getOperand(0)); 3186 SDValue Op2 = getValue(I.getOperand(1)); 3187 3188 SDNodeFlags Flags; 3189 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3190 cast<PossiblyExactOperator>(&I)->isExact()); 3191 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3192 Op2, Flags)); 3193 } 3194 3195 void SelectionDAGBuilder::visitICmp(const User &I) { 3196 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3197 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3198 predicate = IC->getPredicate(); 3199 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3200 predicate = ICmpInst::Predicate(IC->getPredicate()); 3201 SDValue Op1 = getValue(I.getOperand(0)); 3202 SDValue Op2 = getValue(I.getOperand(1)); 3203 ISD::CondCode Opcode = getICmpCondCode(predicate); 3204 3205 auto &TLI = DAG.getTargetLoweringInfo(); 3206 EVT MemVT = 3207 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3208 3209 // If a pointer's DAG type is larger than its memory type then the DAG values 3210 // are zero-extended. This breaks signed comparisons so truncate back to the 3211 // underlying type before doing the compare. 3212 if (Op1.getValueType() != MemVT) { 3213 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3214 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3215 } 3216 3217 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3218 I.getType()); 3219 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3220 } 3221 3222 void SelectionDAGBuilder::visitFCmp(const User &I) { 3223 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3224 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3225 predicate = FC->getPredicate(); 3226 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3227 predicate = FCmpInst::Predicate(FC->getPredicate()); 3228 SDValue Op1 = getValue(I.getOperand(0)); 3229 SDValue Op2 = getValue(I.getOperand(1)); 3230 3231 ISD::CondCode Condition = getFCmpCondCode(predicate); 3232 auto *FPMO = cast<FPMathOperator>(&I); 3233 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3234 Condition = getFCmpCodeWithoutNaN(Condition); 3235 3236 SDNodeFlags Flags; 3237 Flags.copyFMF(*FPMO); 3238 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3239 3240 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3241 I.getType()); 3242 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3243 } 3244 3245 // Check if the condition of the select has one use or two users that are both 3246 // selects with the same condition. 3247 static bool hasOnlySelectUsers(const Value *Cond) { 3248 return llvm::all_of(Cond->users(), [](const Value *V) { 3249 return isa<SelectInst>(V); 3250 }); 3251 } 3252 3253 void SelectionDAGBuilder::visitSelect(const User &I) { 3254 SmallVector<EVT, 4> ValueVTs; 3255 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3256 ValueVTs); 3257 unsigned NumValues = ValueVTs.size(); 3258 if (NumValues == 0) return; 3259 3260 SmallVector<SDValue, 4> Values(NumValues); 3261 SDValue Cond = getValue(I.getOperand(0)); 3262 SDValue LHSVal = getValue(I.getOperand(1)); 3263 SDValue RHSVal = getValue(I.getOperand(2)); 3264 SmallVector<SDValue, 1> BaseOps(1, Cond); 3265 ISD::NodeType OpCode = 3266 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3267 3268 bool IsUnaryAbs = false; 3269 bool Negate = false; 3270 3271 SDNodeFlags Flags; 3272 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3273 Flags.copyFMF(*FPOp); 3274 3275 // Min/max matching is only viable if all output VTs are the same. 3276 if (is_splat(ValueVTs)) { 3277 EVT VT = ValueVTs[0]; 3278 LLVMContext &Ctx = *DAG.getContext(); 3279 auto &TLI = DAG.getTargetLoweringInfo(); 3280 3281 // We care about the legality of the operation after it has been type 3282 // legalized. 3283 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3284 VT = TLI.getTypeToTransformTo(Ctx, VT); 3285 3286 // If the vselect is legal, assume we want to leave this as a vector setcc + 3287 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3288 // min/max is legal on the scalar type. 3289 bool UseScalarMinMax = VT.isVector() && 3290 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3291 3292 Value *LHS, *RHS; 3293 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3294 ISD::NodeType Opc = ISD::DELETED_NODE; 3295 switch (SPR.Flavor) { 3296 case SPF_UMAX: Opc = ISD::UMAX; break; 3297 case SPF_UMIN: Opc = ISD::UMIN; break; 3298 case SPF_SMAX: Opc = ISD::SMAX; break; 3299 case SPF_SMIN: Opc = ISD::SMIN; break; 3300 case SPF_FMINNUM: 3301 switch (SPR.NaNBehavior) { 3302 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3303 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3304 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3305 case SPNB_RETURNS_ANY: { 3306 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3307 Opc = ISD::FMINNUM; 3308 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3309 Opc = ISD::FMINIMUM; 3310 else if (UseScalarMinMax) 3311 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3312 ISD::FMINNUM : ISD::FMINIMUM; 3313 break; 3314 } 3315 } 3316 break; 3317 case SPF_FMAXNUM: 3318 switch (SPR.NaNBehavior) { 3319 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3320 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3321 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3322 case SPNB_RETURNS_ANY: 3323 3324 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3325 Opc = ISD::FMAXNUM; 3326 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3327 Opc = ISD::FMAXIMUM; 3328 else if (UseScalarMinMax) 3329 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3330 ISD::FMAXNUM : ISD::FMAXIMUM; 3331 break; 3332 } 3333 break; 3334 case SPF_NABS: 3335 Negate = true; 3336 LLVM_FALLTHROUGH; 3337 case SPF_ABS: 3338 IsUnaryAbs = true; 3339 Opc = ISD::ABS; 3340 break; 3341 default: break; 3342 } 3343 3344 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3345 (TLI.isOperationLegalOrCustom(Opc, VT) || 3346 (UseScalarMinMax && 3347 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3348 // If the underlying comparison instruction is used by any other 3349 // instruction, the consumed instructions won't be destroyed, so it is 3350 // not profitable to convert to a min/max. 3351 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3352 OpCode = Opc; 3353 LHSVal = getValue(LHS); 3354 RHSVal = getValue(RHS); 3355 BaseOps.clear(); 3356 } 3357 3358 if (IsUnaryAbs) { 3359 OpCode = Opc; 3360 LHSVal = getValue(LHS); 3361 BaseOps.clear(); 3362 } 3363 } 3364 3365 if (IsUnaryAbs) { 3366 for (unsigned i = 0; i != NumValues; ++i) { 3367 SDLoc dl = getCurSDLoc(); 3368 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3369 Values[i] = 3370 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3371 if (Negate) 3372 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3373 Values[i]); 3374 } 3375 } else { 3376 for (unsigned i = 0; i != NumValues; ++i) { 3377 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3378 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3379 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3380 Values[i] = DAG.getNode( 3381 OpCode, getCurSDLoc(), 3382 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3383 } 3384 } 3385 3386 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3387 DAG.getVTList(ValueVTs), Values)); 3388 } 3389 3390 void SelectionDAGBuilder::visitTrunc(const User &I) { 3391 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3392 SDValue N = getValue(I.getOperand(0)); 3393 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3394 I.getType()); 3395 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3396 } 3397 3398 void SelectionDAGBuilder::visitZExt(const User &I) { 3399 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3400 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3401 SDValue N = getValue(I.getOperand(0)); 3402 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3403 I.getType()); 3404 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3405 } 3406 3407 void SelectionDAGBuilder::visitSExt(const User &I) { 3408 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3409 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3410 SDValue N = getValue(I.getOperand(0)); 3411 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3412 I.getType()); 3413 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3414 } 3415 3416 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3417 // FPTrunc is never a no-op cast, no need to check 3418 SDValue N = getValue(I.getOperand(0)); 3419 SDLoc dl = getCurSDLoc(); 3420 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3421 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3422 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3423 DAG.getTargetConstant( 3424 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3425 } 3426 3427 void SelectionDAGBuilder::visitFPExt(const User &I) { 3428 // FPExt is never a no-op cast, no need to check 3429 SDValue N = getValue(I.getOperand(0)); 3430 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3431 I.getType()); 3432 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3433 } 3434 3435 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3436 // FPToUI is never a no-op cast, no need to check 3437 SDValue N = getValue(I.getOperand(0)); 3438 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3439 I.getType()); 3440 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3441 } 3442 3443 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3444 // FPToSI is never a no-op cast, no need to check 3445 SDValue N = getValue(I.getOperand(0)); 3446 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3447 I.getType()); 3448 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3449 } 3450 3451 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3452 // UIToFP is never a no-op cast, no need to check 3453 SDValue N = getValue(I.getOperand(0)); 3454 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3455 I.getType()); 3456 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3457 } 3458 3459 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3460 // SIToFP is never a no-op cast, no need to check 3461 SDValue N = getValue(I.getOperand(0)); 3462 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3463 I.getType()); 3464 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3465 } 3466 3467 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3468 // What to do depends on the size of the integer and the size of the pointer. 3469 // We can either truncate, zero extend, or no-op, accordingly. 3470 SDValue N = getValue(I.getOperand(0)); 3471 auto &TLI = DAG.getTargetLoweringInfo(); 3472 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3473 I.getType()); 3474 EVT PtrMemVT = 3475 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3476 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3477 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3478 setValue(&I, N); 3479 } 3480 3481 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3482 // What to do depends on the size of the integer and the size of the pointer. 3483 // We can either truncate, zero extend, or no-op, accordingly. 3484 SDValue N = getValue(I.getOperand(0)); 3485 auto &TLI = DAG.getTargetLoweringInfo(); 3486 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3487 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3488 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3489 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3490 setValue(&I, N); 3491 } 3492 3493 void SelectionDAGBuilder::visitBitCast(const User &I) { 3494 SDValue N = getValue(I.getOperand(0)); 3495 SDLoc dl = getCurSDLoc(); 3496 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3497 I.getType()); 3498 3499 // BitCast assures us that source and destination are the same size so this is 3500 // either a BITCAST or a no-op. 3501 if (DestVT != N.getValueType()) 3502 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3503 DestVT, N)); // convert types. 3504 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3505 // might fold any kind of constant expression to an integer constant and that 3506 // is not what we are looking for. Only recognize a bitcast of a genuine 3507 // constant integer as an opaque constant. 3508 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3509 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3510 /*isOpaque*/true)); 3511 else 3512 setValue(&I, N); // noop cast. 3513 } 3514 3515 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3517 const Value *SV = I.getOperand(0); 3518 SDValue N = getValue(SV); 3519 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3520 3521 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3522 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3523 3524 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3525 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3526 3527 setValue(&I, N); 3528 } 3529 3530 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3532 SDValue InVec = getValue(I.getOperand(0)); 3533 SDValue InVal = getValue(I.getOperand(1)); 3534 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3535 TLI.getVectorIdxTy(DAG.getDataLayout())); 3536 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3537 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3538 InVec, InVal, InIdx)); 3539 } 3540 3541 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3542 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3543 SDValue InVec = getValue(I.getOperand(0)); 3544 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3545 TLI.getVectorIdxTy(DAG.getDataLayout())); 3546 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3547 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3548 InVec, InIdx)); 3549 } 3550 3551 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3552 SDValue Src1 = getValue(I.getOperand(0)); 3553 SDValue Src2 = getValue(I.getOperand(1)); 3554 ArrayRef<int> Mask; 3555 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3556 Mask = SVI->getShuffleMask(); 3557 else 3558 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3559 SDLoc DL = getCurSDLoc(); 3560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3561 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3562 EVT SrcVT = Src1.getValueType(); 3563 3564 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3565 VT.isScalableVector()) { 3566 // Canonical splat form of first element of first input vector. 3567 SDValue FirstElt = 3568 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3569 DAG.getVectorIdxConstant(0, DL)); 3570 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3571 return; 3572 } 3573 3574 // For now, we only handle splats for scalable vectors. 3575 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3576 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3577 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3578 3579 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3580 unsigned MaskNumElts = Mask.size(); 3581 3582 if (SrcNumElts == MaskNumElts) { 3583 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3584 return; 3585 } 3586 3587 // Normalize the shuffle vector since mask and vector length don't match. 3588 if (SrcNumElts < MaskNumElts) { 3589 // Mask is longer than the source vectors. We can use concatenate vector to 3590 // make the mask and vectors lengths match. 3591 3592 if (MaskNumElts % SrcNumElts == 0) { 3593 // Mask length is a multiple of the source vector length. 3594 // Check if the shuffle is some kind of concatenation of the input 3595 // vectors. 3596 unsigned NumConcat = MaskNumElts / SrcNumElts; 3597 bool IsConcat = true; 3598 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3599 for (unsigned i = 0; i != MaskNumElts; ++i) { 3600 int Idx = Mask[i]; 3601 if (Idx < 0) 3602 continue; 3603 // Ensure the indices in each SrcVT sized piece are sequential and that 3604 // the same source is used for the whole piece. 3605 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3606 (ConcatSrcs[i / SrcNumElts] >= 0 && 3607 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3608 IsConcat = false; 3609 break; 3610 } 3611 // Remember which source this index came from. 3612 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3613 } 3614 3615 // The shuffle is concatenating multiple vectors together. Just emit 3616 // a CONCAT_VECTORS operation. 3617 if (IsConcat) { 3618 SmallVector<SDValue, 8> ConcatOps; 3619 for (auto Src : ConcatSrcs) { 3620 if (Src < 0) 3621 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3622 else if (Src == 0) 3623 ConcatOps.push_back(Src1); 3624 else 3625 ConcatOps.push_back(Src2); 3626 } 3627 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3628 return; 3629 } 3630 } 3631 3632 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3633 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3634 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3635 PaddedMaskNumElts); 3636 3637 // Pad both vectors with undefs to make them the same length as the mask. 3638 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3639 3640 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3641 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3642 MOps1[0] = Src1; 3643 MOps2[0] = Src2; 3644 3645 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3646 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3647 3648 // Readjust mask for new input vector length. 3649 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3650 for (unsigned i = 0; i != MaskNumElts; ++i) { 3651 int Idx = Mask[i]; 3652 if (Idx >= (int)SrcNumElts) 3653 Idx -= SrcNumElts - PaddedMaskNumElts; 3654 MappedOps[i] = Idx; 3655 } 3656 3657 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3658 3659 // If the concatenated vector was padded, extract a subvector with the 3660 // correct number of elements. 3661 if (MaskNumElts != PaddedMaskNumElts) 3662 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3663 DAG.getVectorIdxConstant(0, DL)); 3664 3665 setValue(&I, Result); 3666 return; 3667 } 3668 3669 if (SrcNumElts > MaskNumElts) { 3670 // Analyze the access pattern of the vector to see if we can extract 3671 // two subvectors and do the shuffle. 3672 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3673 bool CanExtract = true; 3674 for (int Idx : Mask) { 3675 unsigned Input = 0; 3676 if (Idx < 0) 3677 continue; 3678 3679 if (Idx >= (int)SrcNumElts) { 3680 Input = 1; 3681 Idx -= SrcNumElts; 3682 } 3683 3684 // If all the indices come from the same MaskNumElts sized portion of 3685 // the sources we can use extract. Also make sure the extract wouldn't 3686 // extract past the end of the source. 3687 int NewStartIdx = alignDown(Idx, MaskNumElts); 3688 if (NewStartIdx + MaskNumElts > SrcNumElts || 3689 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3690 CanExtract = false; 3691 // Make sure we always update StartIdx as we use it to track if all 3692 // elements are undef. 3693 StartIdx[Input] = NewStartIdx; 3694 } 3695 3696 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3697 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3698 return; 3699 } 3700 if (CanExtract) { 3701 // Extract appropriate subvector and generate a vector shuffle 3702 for (unsigned Input = 0; Input < 2; ++Input) { 3703 SDValue &Src = Input == 0 ? Src1 : Src2; 3704 if (StartIdx[Input] < 0) 3705 Src = DAG.getUNDEF(VT); 3706 else { 3707 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3708 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3709 } 3710 } 3711 3712 // Calculate new mask. 3713 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3714 for (int &Idx : MappedOps) { 3715 if (Idx >= (int)SrcNumElts) 3716 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3717 else if (Idx >= 0) 3718 Idx -= StartIdx[0]; 3719 } 3720 3721 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3722 return; 3723 } 3724 } 3725 3726 // We can't use either concat vectors or extract subvectors so fall back to 3727 // replacing the shuffle with extract and build vector. 3728 // to insert and build vector. 3729 EVT EltVT = VT.getVectorElementType(); 3730 SmallVector<SDValue,8> Ops; 3731 for (int Idx : Mask) { 3732 SDValue Res; 3733 3734 if (Idx < 0) { 3735 Res = DAG.getUNDEF(EltVT); 3736 } else { 3737 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3738 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3739 3740 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3741 DAG.getVectorIdxConstant(Idx, DL)); 3742 } 3743 3744 Ops.push_back(Res); 3745 } 3746 3747 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3748 } 3749 3750 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3751 ArrayRef<unsigned> Indices; 3752 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3753 Indices = IV->getIndices(); 3754 else 3755 Indices = cast<ConstantExpr>(&I)->getIndices(); 3756 3757 const Value *Op0 = I.getOperand(0); 3758 const Value *Op1 = I.getOperand(1); 3759 Type *AggTy = I.getType(); 3760 Type *ValTy = Op1->getType(); 3761 bool IntoUndef = isa<UndefValue>(Op0); 3762 bool FromUndef = isa<UndefValue>(Op1); 3763 3764 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3765 3766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3767 SmallVector<EVT, 4> AggValueVTs; 3768 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3769 SmallVector<EVT, 4> ValValueVTs; 3770 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3771 3772 unsigned NumAggValues = AggValueVTs.size(); 3773 unsigned NumValValues = ValValueVTs.size(); 3774 SmallVector<SDValue, 4> Values(NumAggValues); 3775 3776 // Ignore an insertvalue that produces an empty object 3777 if (!NumAggValues) { 3778 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3779 return; 3780 } 3781 3782 SDValue Agg = getValue(Op0); 3783 unsigned i = 0; 3784 // Copy the beginning value(s) from the original aggregate. 3785 for (; i != LinearIndex; ++i) 3786 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3787 SDValue(Agg.getNode(), Agg.getResNo() + i); 3788 // Copy values from the inserted value(s). 3789 if (NumValValues) { 3790 SDValue Val = getValue(Op1); 3791 for (; i != LinearIndex + NumValValues; ++i) 3792 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3793 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3794 } 3795 // Copy remaining value(s) from the original aggregate. 3796 for (; i != NumAggValues; ++i) 3797 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3798 SDValue(Agg.getNode(), Agg.getResNo() + i); 3799 3800 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3801 DAG.getVTList(AggValueVTs), Values)); 3802 } 3803 3804 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3805 ArrayRef<unsigned> Indices; 3806 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3807 Indices = EV->getIndices(); 3808 else 3809 Indices = cast<ConstantExpr>(&I)->getIndices(); 3810 3811 const Value *Op0 = I.getOperand(0); 3812 Type *AggTy = Op0->getType(); 3813 Type *ValTy = I.getType(); 3814 bool OutOfUndef = isa<UndefValue>(Op0); 3815 3816 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3817 3818 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3819 SmallVector<EVT, 4> ValValueVTs; 3820 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3821 3822 unsigned NumValValues = ValValueVTs.size(); 3823 3824 // Ignore a extractvalue that produces an empty object 3825 if (!NumValValues) { 3826 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3827 return; 3828 } 3829 3830 SmallVector<SDValue, 4> Values(NumValValues); 3831 3832 SDValue Agg = getValue(Op0); 3833 // Copy out the selected value(s). 3834 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3835 Values[i - LinearIndex] = 3836 OutOfUndef ? 3837 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3838 SDValue(Agg.getNode(), Agg.getResNo() + i); 3839 3840 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3841 DAG.getVTList(ValValueVTs), Values)); 3842 } 3843 3844 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3845 Value *Op0 = I.getOperand(0); 3846 // Note that the pointer operand may be a vector of pointers. Take the scalar 3847 // element which holds a pointer. 3848 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3849 SDValue N = getValue(Op0); 3850 SDLoc dl = getCurSDLoc(); 3851 auto &TLI = DAG.getTargetLoweringInfo(); 3852 3853 // Normalize Vector GEP - all scalar operands should be converted to the 3854 // splat vector. 3855 bool IsVectorGEP = I.getType()->isVectorTy(); 3856 ElementCount VectorElementCount = 3857 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3858 : ElementCount::getFixed(0); 3859 3860 if (IsVectorGEP && !N.getValueType().isVector()) { 3861 LLVMContext &Context = *DAG.getContext(); 3862 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3863 if (VectorElementCount.isScalable()) 3864 N = DAG.getSplatVector(VT, dl, N); 3865 else 3866 N = DAG.getSplatBuildVector(VT, dl, N); 3867 } 3868 3869 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3870 GTI != E; ++GTI) { 3871 const Value *Idx = GTI.getOperand(); 3872 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3873 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3874 if (Field) { 3875 // N = N + Offset 3876 uint64_t Offset = 3877 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3878 3879 // In an inbounds GEP with an offset that is nonnegative even when 3880 // interpreted as signed, assume there is no unsigned overflow. 3881 SDNodeFlags Flags; 3882 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3883 Flags.setNoUnsignedWrap(true); 3884 3885 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3886 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3887 } 3888 } else { 3889 // IdxSize is the width of the arithmetic according to IR semantics. 3890 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3891 // (and fix up the result later). 3892 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3893 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3894 TypeSize ElementSize = 3895 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3896 // We intentionally mask away the high bits here; ElementSize may not 3897 // fit in IdxTy. 3898 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3899 bool ElementScalable = ElementSize.isScalable(); 3900 3901 // If this is a scalar constant or a splat vector of constants, 3902 // handle it quickly. 3903 const auto *C = dyn_cast<Constant>(Idx); 3904 if (C && isa<VectorType>(C->getType())) 3905 C = C->getSplatValue(); 3906 3907 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3908 if (CI && CI->isZero()) 3909 continue; 3910 if (CI && !ElementScalable) { 3911 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3912 LLVMContext &Context = *DAG.getContext(); 3913 SDValue OffsVal; 3914 if (IsVectorGEP) 3915 OffsVal = DAG.getConstant( 3916 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3917 else 3918 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3919 3920 // In an inbounds GEP with an offset that is nonnegative even when 3921 // interpreted as signed, assume there is no unsigned overflow. 3922 SDNodeFlags Flags; 3923 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3924 Flags.setNoUnsignedWrap(true); 3925 3926 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3927 3928 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3929 continue; 3930 } 3931 3932 // N = N + Idx * ElementMul; 3933 SDValue IdxN = getValue(Idx); 3934 3935 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3936 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3937 VectorElementCount); 3938 if (VectorElementCount.isScalable()) 3939 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3940 else 3941 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3942 } 3943 3944 // If the index is smaller or larger than intptr_t, truncate or extend 3945 // it. 3946 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3947 3948 if (ElementScalable) { 3949 EVT VScaleTy = N.getValueType().getScalarType(); 3950 SDValue VScale = DAG.getNode( 3951 ISD::VSCALE, dl, VScaleTy, 3952 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3953 if (IsVectorGEP) 3954 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3955 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3956 } else { 3957 // If this is a multiply by a power of two, turn it into a shl 3958 // immediately. This is a very common case. 3959 if (ElementMul != 1) { 3960 if (ElementMul.isPowerOf2()) { 3961 unsigned Amt = ElementMul.logBase2(); 3962 IdxN = DAG.getNode(ISD::SHL, dl, 3963 N.getValueType(), IdxN, 3964 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3965 } else { 3966 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3967 IdxN.getValueType()); 3968 IdxN = DAG.getNode(ISD::MUL, dl, 3969 N.getValueType(), IdxN, Scale); 3970 } 3971 } 3972 } 3973 3974 N = DAG.getNode(ISD::ADD, dl, 3975 N.getValueType(), N, IdxN); 3976 } 3977 } 3978 3979 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3980 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3981 if (IsVectorGEP) { 3982 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3983 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3984 } 3985 3986 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3987 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3988 3989 setValue(&I, N); 3990 } 3991 3992 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3993 // If this is a fixed sized alloca in the entry block of the function, 3994 // allocate it statically on the stack. 3995 if (FuncInfo.StaticAllocaMap.count(&I)) 3996 return; // getValue will auto-populate this. 3997 3998 SDLoc dl = getCurSDLoc(); 3999 Type *Ty = I.getAllocatedType(); 4000 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4001 auto &DL = DAG.getDataLayout(); 4002 TypeSize TySize = DL.getTypeAllocSize(Ty); 4003 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4004 4005 SDValue AllocSize = getValue(I.getArraySize()); 4006 4007 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4008 if (AllocSize.getValueType() != IntPtr) 4009 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4010 4011 if (TySize.isScalable()) 4012 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4013 DAG.getVScale(dl, IntPtr, 4014 APInt(IntPtr.getScalarSizeInBits(), 4015 TySize.getKnownMinValue()))); 4016 else 4017 AllocSize = 4018 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4019 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4020 4021 // Handle alignment. If the requested alignment is less than or equal to 4022 // the stack alignment, ignore it. If the size is greater than or equal to 4023 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4024 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4025 if (*Alignment <= StackAlign) 4026 Alignment = None; 4027 4028 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4029 // Round the size of the allocation up to the stack alignment size 4030 // by add SA-1 to the size. This doesn't overflow because we're computing 4031 // an address inside an alloca. 4032 SDNodeFlags Flags; 4033 Flags.setNoUnsignedWrap(true); 4034 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4035 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4036 4037 // Mask out the low bits for alignment purposes. 4038 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4039 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4040 4041 SDValue Ops[] = { 4042 getRoot(), AllocSize, 4043 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4044 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4045 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4046 setValue(&I, DSA); 4047 DAG.setRoot(DSA.getValue(1)); 4048 4049 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4050 } 4051 4052 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4053 if (I.isAtomic()) 4054 return visitAtomicLoad(I); 4055 4056 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4057 const Value *SV = I.getOperand(0); 4058 if (TLI.supportSwiftError()) { 4059 // Swifterror values can come from either a function parameter with 4060 // swifterror attribute or an alloca with swifterror attribute. 4061 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4062 if (Arg->hasSwiftErrorAttr()) 4063 return visitLoadFromSwiftError(I); 4064 } 4065 4066 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4067 if (Alloca->isSwiftError()) 4068 return visitLoadFromSwiftError(I); 4069 } 4070 } 4071 4072 SDValue Ptr = getValue(SV); 4073 4074 Type *Ty = I.getType(); 4075 Align Alignment = I.getAlign(); 4076 4077 AAMDNodes AAInfo = I.getAAMetadata(); 4078 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4079 4080 SmallVector<EVT, 4> ValueVTs, MemVTs; 4081 SmallVector<uint64_t, 4> Offsets; 4082 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4083 unsigned NumValues = ValueVTs.size(); 4084 if (NumValues == 0) 4085 return; 4086 4087 bool isVolatile = I.isVolatile(); 4088 4089 SDValue Root; 4090 bool ConstantMemory = false; 4091 if (isVolatile) 4092 // Serialize volatile loads with other side effects. 4093 Root = getRoot(); 4094 else if (NumValues > MaxParallelChains) 4095 Root = getMemoryRoot(); 4096 else if (AA && 4097 AA->pointsToConstantMemory(MemoryLocation( 4098 SV, 4099 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4100 AAInfo))) { 4101 // Do not serialize (non-volatile) loads of constant memory with anything. 4102 Root = DAG.getEntryNode(); 4103 ConstantMemory = true; 4104 } else { 4105 // Do not serialize non-volatile loads against each other. 4106 Root = DAG.getRoot(); 4107 } 4108 4109 SDLoc dl = getCurSDLoc(); 4110 4111 if (isVolatile) 4112 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4113 4114 // An aggregate load cannot wrap around the address space, so offsets to its 4115 // parts don't wrap either. 4116 SDNodeFlags Flags; 4117 Flags.setNoUnsignedWrap(true); 4118 4119 SmallVector<SDValue, 4> Values(NumValues); 4120 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4121 EVT PtrVT = Ptr.getValueType(); 4122 4123 MachineMemOperand::Flags MMOFlags 4124 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4125 4126 unsigned ChainI = 0; 4127 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4128 // Serializing loads here may result in excessive register pressure, and 4129 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4130 // could recover a bit by hoisting nodes upward in the chain by recognizing 4131 // they are side-effect free or do not alias. The optimizer should really 4132 // avoid this case by converting large object/array copies to llvm.memcpy 4133 // (MaxParallelChains should always remain as failsafe). 4134 if (ChainI == MaxParallelChains) { 4135 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4136 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4137 makeArrayRef(Chains.data(), ChainI)); 4138 Root = Chain; 4139 ChainI = 0; 4140 } 4141 SDValue A = DAG.getNode(ISD::ADD, dl, 4142 PtrVT, Ptr, 4143 DAG.getConstant(Offsets[i], dl, PtrVT), 4144 Flags); 4145 4146 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4147 MachinePointerInfo(SV, Offsets[i]), Alignment, 4148 MMOFlags, AAInfo, Ranges); 4149 Chains[ChainI] = L.getValue(1); 4150 4151 if (MemVTs[i] != ValueVTs[i]) 4152 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4153 4154 Values[i] = L; 4155 } 4156 4157 if (!ConstantMemory) { 4158 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4159 makeArrayRef(Chains.data(), ChainI)); 4160 if (isVolatile) 4161 DAG.setRoot(Chain); 4162 else 4163 PendingLoads.push_back(Chain); 4164 } 4165 4166 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4167 DAG.getVTList(ValueVTs), Values)); 4168 } 4169 4170 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4171 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4172 "call visitStoreToSwiftError when backend supports swifterror"); 4173 4174 SmallVector<EVT, 4> ValueVTs; 4175 SmallVector<uint64_t, 4> Offsets; 4176 const Value *SrcV = I.getOperand(0); 4177 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4178 SrcV->getType(), ValueVTs, &Offsets); 4179 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4180 "expect a single EVT for swifterror"); 4181 4182 SDValue Src = getValue(SrcV); 4183 // Create a virtual register, then update the virtual register. 4184 Register VReg = 4185 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4186 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4187 // Chain can be getRoot or getControlRoot. 4188 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4189 SDValue(Src.getNode(), Src.getResNo())); 4190 DAG.setRoot(CopyNode); 4191 } 4192 4193 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4194 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4195 "call visitLoadFromSwiftError when backend supports swifterror"); 4196 4197 assert(!I.isVolatile() && 4198 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4199 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4200 "Support volatile, non temporal, invariant for load_from_swift_error"); 4201 4202 const Value *SV = I.getOperand(0); 4203 Type *Ty = I.getType(); 4204 assert( 4205 (!AA || 4206 !AA->pointsToConstantMemory(MemoryLocation( 4207 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4208 I.getAAMetadata()))) && 4209 "load_from_swift_error should not be constant memory"); 4210 4211 SmallVector<EVT, 4> ValueVTs; 4212 SmallVector<uint64_t, 4> Offsets; 4213 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4214 ValueVTs, &Offsets); 4215 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4216 "expect a single EVT for swifterror"); 4217 4218 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4219 SDValue L = DAG.getCopyFromReg( 4220 getRoot(), getCurSDLoc(), 4221 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4222 4223 setValue(&I, L); 4224 } 4225 4226 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4227 if (I.isAtomic()) 4228 return visitAtomicStore(I); 4229 4230 const Value *SrcV = I.getOperand(0); 4231 const Value *PtrV = I.getOperand(1); 4232 4233 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4234 if (TLI.supportSwiftError()) { 4235 // Swifterror values can come from either a function parameter with 4236 // swifterror attribute or an alloca with swifterror attribute. 4237 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4238 if (Arg->hasSwiftErrorAttr()) 4239 return visitStoreToSwiftError(I); 4240 } 4241 4242 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4243 if (Alloca->isSwiftError()) 4244 return visitStoreToSwiftError(I); 4245 } 4246 } 4247 4248 SmallVector<EVT, 4> ValueVTs, MemVTs; 4249 SmallVector<uint64_t, 4> Offsets; 4250 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4251 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4252 unsigned NumValues = ValueVTs.size(); 4253 if (NumValues == 0) 4254 return; 4255 4256 // Get the lowered operands. Note that we do this after 4257 // checking if NumResults is zero, because with zero results 4258 // the operands won't have values in the map. 4259 SDValue Src = getValue(SrcV); 4260 SDValue Ptr = getValue(PtrV); 4261 4262 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4263 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4264 SDLoc dl = getCurSDLoc(); 4265 Align Alignment = I.getAlign(); 4266 AAMDNodes AAInfo = I.getAAMetadata(); 4267 4268 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4269 4270 // An aggregate load cannot wrap around the address space, so offsets to its 4271 // parts don't wrap either. 4272 SDNodeFlags Flags; 4273 Flags.setNoUnsignedWrap(true); 4274 4275 unsigned ChainI = 0; 4276 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4277 // See visitLoad comments. 4278 if (ChainI == MaxParallelChains) { 4279 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4280 makeArrayRef(Chains.data(), ChainI)); 4281 Root = Chain; 4282 ChainI = 0; 4283 } 4284 SDValue Add = 4285 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4286 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4287 if (MemVTs[i] != ValueVTs[i]) 4288 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4289 SDValue St = 4290 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4291 Alignment, MMOFlags, AAInfo); 4292 Chains[ChainI] = St; 4293 } 4294 4295 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4296 makeArrayRef(Chains.data(), ChainI)); 4297 DAG.setRoot(StoreNode); 4298 } 4299 4300 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4301 bool IsCompressing) { 4302 SDLoc sdl = getCurSDLoc(); 4303 4304 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4305 MaybeAlign &Alignment) { 4306 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4307 Src0 = I.getArgOperand(0); 4308 Ptr = I.getArgOperand(1); 4309 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4310 Mask = I.getArgOperand(3); 4311 }; 4312 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4313 MaybeAlign &Alignment) { 4314 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4315 Src0 = I.getArgOperand(0); 4316 Ptr = I.getArgOperand(1); 4317 Mask = I.getArgOperand(2); 4318 Alignment = None; 4319 }; 4320 4321 Value *PtrOperand, *MaskOperand, *Src0Operand; 4322 MaybeAlign Alignment; 4323 if (IsCompressing) 4324 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4325 else 4326 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4327 4328 SDValue Ptr = getValue(PtrOperand); 4329 SDValue Src0 = getValue(Src0Operand); 4330 SDValue Mask = getValue(MaskOperand); 4331 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4332 4333 EVT VT = Src0.getValueType(); 4334 if (!Alignment) 4335 Alignment = DAG.getEVTAlign(VT); 4336 4337 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4338 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4339 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4340 SDValue StoreNode = 4341 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4342 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4343 DAG.setRoot(StoreNode); 4344 setValue(&I, StoreNode); 4345 } 4346 4347 // Get a uniform base for the Gather/Scatter intrinsic. 4348 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4349 // We try to represent it as a base pointer + vector of indices. 4350 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4351 // The first operand of the GEP may be a single pointer or a vector of pointers 4352 // Example: 4353 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4354 // or 4355 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4356 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4357 // 4358 // When the first GEP operand is a single pointer - it is the uniform base we 4359 // are looking for. If first operand of the GEP is a splat vector - we 4360 // extract the splat value and use it as a uniform base. 4361 // In all other cases the function returns 'false'. 4362 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4363 ISD::MemIndexType &IndexType, SDValue &Scale, 4364 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4365 uint64_t ElemSize) { 4366 SelectionDAG& DAG = SDB->DAG; 4367 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4368 const DataLayout &DL = DAG.getDataLayout(); 4369 4370 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4371 4372 // Handle splat constant pointer. 4373 if (auto *C = dyn_cast<Constant>(Ptr)) { 4374 C = C->getSplatValue(); 4375 if (!C) 4376 return false; 4377 4378 Base = SDB->getValue(C); 4379 4380 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4381 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4382 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4383 IndexType = ISD::SIGNED_SCALED; 4384 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4385 return true; 4386 } 4387 4388 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4389 if (!GEP || GEP->getParent() != CurBB) 4390 return false; 4391 4392 if (GEP->getNumOperands() != 2) 4393 return false; 4394 4395 const Value *BasePtr = GEP->getPointerOperand(); 4396 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4397 4398 // Make sure the base is scalar and the index is a vector. 4399 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4400 return false; 4401 4402 Base = SDB->getValue(BasePtr); 4403 Index = SDB->getValue(IndexVal); 4404 IndexType = ISD::SIGNED_SCALED; 4405 4406 // MGATHER/MSCATTER are only required to support scaling by one or by the 4407 // element size. Other scales may be produced using target-specific DAG 4408 // combines. 4409 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4410 if (ScaleVal != ElemSize && ScaleVal != 1) 4411 return false; 4412 4413 Scale = 4414 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4415 return true; 4416 } 4417 4418 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4419 SDLoc sdl = getCurSDLoc(); 4420 4421 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4422 const Value *Ptr = I.getArgOperand(1); 4423 SDValue Src0 = getValue(I.getArgOperand(0)); 4424 SDValue Mask = getValue(I.getArgOperand(3)); 4425 EVT VT = Src0.getValueType(); 4426 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4427 ->getMaybeAlignValue() 4428 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4429 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4430 4431 SDValue Base; 4432 SDValue Index; 4433 ISD::MemIndexType IndexType; 4434 SDValue Scale; 4435 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4436 I.getParent(), VT.getScalarStoreSize()); 4437 4438 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4439 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4440 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4441 // TODO: Make MachineMemOperands aware of scalable 4442 // vectors. 4443 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4444 if (!UniformBase) { 4445 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4446 Index = getValue(Ptr); 4447 IndexType = ISD::SIGNED_SCALED; 4448 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4449 } 4450 4451 EVT IdxVT = Index.getValueType(); 4452 EVT EltTy = IdxVT.getVectorElementType(); 4453 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4454 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4455 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4456 } 4457 4458 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4459 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4460 Ops, MMO, IndexType, false); 4461 DAG.setRoot(Scatter); 4462 setValue(&I, Scatter); 4463 } 4464 4465 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4466 SDLoc sdl = getCurSDLoc(); 4467 4468 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4469 MaybeAlign &Alignment) { 4470 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4471 Ptr = I.getArgOperand(0); 4472 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4473 Mask = I.getArgOperand(2); 4474 Src0 = I.getArgOperand(3); 4475 }; 4476 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4477 MaybeAlign &Alignment) { 4478 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4479 Ptr = I.getArgOperand(0); 4480 Alignment = None; 4481 Mask = I.getArgOperand(1); 4482 Src0 = I.getArgOperand(2); 4483 }; 4484 4485 Value *PtrOperand, *MaskOperand, *Src0Operand; 4486 MaybeAlign Alignment; 4487 if (IsExpanding) 4488 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4489 else 4490 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4491 4492 SDValue Ptr = getValue(PtrOperand); 4493 SDValue Src0 = getValue(Src0Operand); 4494 SDValue Mask = getValue(MaskOperand); 4495 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4496 4497 EVT VT = Src0.getValueType(); 4498 if (!Alignment) 4499 Alignment = DAG.getEVTAlign(VT); 4500 4501 AAMDNodes AAInfo = I.getAAMetadata(); 4502 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4503 4504 // Do not serialize masked loads of constant memory with anything. 4505 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4506 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4507 4508 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4509 4510 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4511 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4512 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4513 4514 SDValue Load = 4515 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4516 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4517 if (AddToChain) 4518 PendingLoads.push_back(Load.getValue(1)); 4519 setValue(&I, Load); 4520 } 4521 4522 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4523 SDLoc sdl = getCurSDLoc(); 4524 4525 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4526 const Value *Ptr = I.getArgOperand(0); 4527 SDValue Src0 = getValue(I.getArgOperand(3)); 4528 SDValue Mask = getValue(I.getArgOperand(2)); 4529 4530 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4531 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4532 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4533 ->getMaybeAlignValue() 4534 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4535 4536 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4537 4538 SDValue Root = DAG.getRoot(); 4539 SDValue Base; 4540 SDValue Index; 4541 ISD::MemIndexType IndexType; 4542 SDValue Scale; 4543 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4544 I.getParent(), VT.getScalarStoreSize()); 4545 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4546 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4547 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4548 // TODO: Make MachineMemOperands aware of scalable 4549 // vectors. 4550 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4551 4552 if (!UniformBase) { 4553 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4554 Index = getValue(Ptr); 4555 IndexType = ISD::SIGNED_SCALED; 4556 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4557 } 4558 4559 EVT IdxVT = Index.getValueType(); 4560 EVT EltTy = IdxVT.getVectorElementType(); 4561 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4562 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4563 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4564 } 4565 4566 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4567 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4568 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4569 4570 PendingLoads.push_back(Gather.getValue(1)); 4571 setValue(&I, Gather); 4572 } 4573 4574 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4575 SDLoc dl = getCurSDLoc(); 4576 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4577 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4578 SyncScope::ID SSID = I.getSyncScopeID(); 4579 4580 SDValue InChain = getRoot(); 4581 4582 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4583 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4584 4585 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4586 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4587 4588 MachineFunction &MF = DAG.getMachineFunction(); 4589 MachineMemOperand *MMO = MF.getMachineMemOperand( 4590 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4591 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4592 FailureOrdering); 4593 4594 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4595 dl, MemVT, VTs, InChain, 4596 getValue(I.getPointerOperand()), 4597 getValue(I.getCompareOperand()), 4598 getValue(I.getNewValOperand()), MMO); 4599 4600 SDValue OutChain = L.getValue(2); 4601 4602 setValue(&I, L); 4603 DAG.setRoot(OutChain); 4604 } 4605 4606 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4607 SDLoc dl = getCurSDLoc(); 4608 ISD::NodeType NT; 4609 switch (I.getOperation()) { 4610 default: llvm_unreachable("Unknown atomicrmw operation"); 4611 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4612 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4613 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4614 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4615 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4616 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4617 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4618 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4619 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4620 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4621 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4622 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4623 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4624 } 4625 AtomicOrdering Ordering = I.getOrdering(); 4626 SyncScope::ID SSID = I.getSyncScopeID(); 4627 4628 SDValue InChain = getRoot(); 4629 4630 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4631 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4632 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4633 4634 MachineFunction &MF = DAG.getMachineFunction(); 4635 MachineMemOperand *MMO = MF.getMachineMemOperand( 4636 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4637 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4638 4639 SDValue L = 4640 DAG.getAtomic(NT, dl, MemVT, InChain, 4641 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4642 MMO); 4643 4644 SDValue OutChain = L.getValue(1); 4645 4646 setValue(&I, L); 4647 DAG.setRoot(OutChain); 4648 } 4649 4650 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4651 SDLoc dl = getCurSDLoc(); 4652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4653 SDValue Ops[3]; 4654 Ops[0] = getRoot(); 4655 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4656 TLI.getFenceOperandTy(DAG.getDataLayout())); 4657 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4658 TLI.getFenceOperandTy(DAG.getDataLayout())); 4659 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4660 } 4661 4662 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4663 SDLoc dl = getCurSDLoc(); 4664 AtomicOrdering Order = I.getOrdering(); 4665 SyncScope::ID SSID = I.getSyncScopeID(); 4666 4667 SDValue InChain = getRoot(); 4668 4669 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4670 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4671 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4672 4673 if (!TLI.supportsUnalignedAtomics() && 4674 I.getAlignment() < MemVT.getSizeInBits() / 8) 4675 report_fatal_error("Cannot generate unaligned atomic load"); 4676 4677 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4678 4679 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4680 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4681 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4682 4683 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4684 4685 SDValue Ptr = getValue(I.getPointerOperand()); 4686 4687 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4688 // TODO: Once this is better exercised by tests, it should be merged with 4689 // the normal path for loads to prevent future divergence. 4690 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4691 if (MemVT != VT) 4692 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4693 4694 setValue(&I, L); 4695 SDValue OutChain = L.getValue(1); 4696 if (!I.isUnordered()) 4697 DAG.setRoot(OutChain); 4698 else 4699 PendingLoads.push_back(OutChain); 4700 return; 4701 } 4702 4703 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4704 Ptr, MMO); 4705 4706 SDValue OutChain = L.getValue(1); 4707 if (MemVT != VT) 4708 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4709 4710 setValue(&I, L); 4711 DAG.setRoot(OutChain); 4712 } 4713 4714 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4715 SDLoc dl = getCurSDLoc(); 4716 4717 AtomicOrdering Ordering = I.getOrdering(); 4718 SyncScope::ID SSID = I.getSyncScopeID(); 4719 4720 SDValue InChain = getRoot(); 4721 4722 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4723 EVT MemVT = 4724 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4725 4726 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4727 report_fatal_error("Cannot generate unaligned atomic store"); 4728 4729 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4730 4731 MachineFunction &MF = DAG.getMachineFunction(); 4732 MachineMemOperand *MMO = MF.getMachineMemOperand( 4733 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4734 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4735 4736 SDValue Val = getValue(I.getValueOperand()); 4737 if (Val.getValueType() != MemVT) 4738 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4739 SDValue Ptr = getValue(I.getPointerOperand()); 4740 4741 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4742 // TODO: Once this is better exercised by tests, it should be merged with 4743 // the normal path for stores to prevent future divergence. 4744 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4745 DAG.setRoot(S); 4746 return; 4747 } 4748 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4749 Ptr, Val, MMO); 4750 4751 4752 DAG.setRoot(OutChain); 4753 } 4754 4755 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4756 /// node. 4757 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4758 unsigned Intrinsic) { 4759 // Ignore the callsite's attributes. A specific call site may be marked with 4760 // readnone, but the lowering code will expect the chain based on the 4761 // definition. 4762 const Function *F = I.getCalledFunction(); 4763 bool HasChain = !F->doesNotAccessMemory(); 4764 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4765 4766 // Build the operand list. 4767 SmallVector<SDValue, 8> Ops; 4768 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4769 if (OnlyLoad) { 4770 // We don't need to serialize loads against other loads. 4771 Ops.push_back(DAG.getRoot()); 4772 } else { 4773 Ops.push_back(getRoot()); 4774 } 4775 } 4776 4777 // Info is set by getTgtMemIntrinsic 4778 TargetLowering::IntrinsicInfo Info; 4779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4780 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4781 DAG.getMachineFunction(), 4782 Intrinsic); 4783 4784 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4785 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4786 Info.opc == ISD::INTRINSIC_W_CHAIN) 4787 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4788 TLI.getPointerTy(DAG.getDataLayout()))); 4789 4790 // Add all operands of the call to the operand list. 4791 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4792 const Value *Arg = I.getArgOperand(i); 4793 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4794 Ops.push_back(getValue(Arg)); 4795 continue; 4796 } 4797 4798 // Use TargetConstant instead of a regular constant for immarg. 4799 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4800 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4801 assert(CI->getBitWidth() <= 64 && 4802 "large intrinsic immediates not handled"); 4803 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4804 } else { 4805 Ops.push_back( 4806 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4807 } 4808 } 4809 4810 SmallVector<EVT, 4> ValueVTs; 4811 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4812 4813 if (HasChain) 4814 ValueVTs.push_back(MVT::Other); 4815 4816 SDVTList VTs = DAG.getVTList(ValueVTs); 4817 4818 // Propagate fast-math-flags from IR to node(s). 4819 SDNodeFlags Flags; 4820 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4821 Flags.copyFMF(*FPMO); 4822 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4823 4824 // Create the node. 4825 SDValue Result; 4826 if (IsTgtIntrinsic) { 4827 // This is target intrinsic that touches memory 4828 Result = 4829 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4830 MachinePointerInfo(Info.ptrVal, Info.offset), 4831 Info.align, Info.flags, Info.size, 4832 I.getAAMetadata()); 4833 } else if (!HasChain) { 4834 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4835 } else if (!I.getType()->isVoidTy()) { 4836 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4837 } else { 4838 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4839 } 4840 4841 if (HasChain) { 4842 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4843 if (OnlyLoad) 4844 PendingLoads.push_back(Chain); 4845 else 4846 DAG.setRoot(Chain); 4847 } 4848 4849 if (!I.getType()->isVoidTy()) { 4850 if (!isa<VectorType>(I.getType())) 4851 Result = lowerRangeToAssertZExt(DAG, I, Result); 4852 4853 MaybeAlign Alignment = I.getRetAlign(); 4854 if (!Alignment) 4855 Alignment = F->getAttributes().getRetAlignment(); 4856 // Insert `assertalign` node if there's an alignment. 4857 if (InsertAssertAlign && Alignment) { 4858 Result = 4859 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4860 } 4861 4862 setValue(&I, Result); 4863 } 4864 } 4865 4866 /// GetSignificand - Get the significand and build it into a floating-point 4867 /// number with exponent of 1: 4868 /// 4869 /// Op = (Op & 0x007fffff) | 0x3f800000; 4870 /// 4871 /// where Op is the hexadecimal representation of floating point value. 4872 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4873 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4874 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4875 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4876 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4877 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4878 } 4879 4880 /// GetExponent - Get the exponent: 4881 /// 4882 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4883 /// 4884 /// where Op is the hexadecimal representation of floating point value. 4885 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4886 const TargetLowering &TLI, const SDLoc &dl) { 4887 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4888 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4889 SDValue t1 = DAG.getNode( 4890 ISD::SRL, dl, MVT::i32, t0, 4891 DAG.getConstant(23, dl, 4892 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4893 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4894 DAG.getConstant(127, dl, MVT::i32)); 4895 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4896 } 4897 4898 /// getF32Constant - Get 32-bit floating point constant. 4899 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4900 const SDLoc &dl) { 4901 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4902 MVT::f32); 4903 } 4904 4905 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4906 SelectionDAG &DAG) { 4907 // TODO: What fast-math-flags should be set on the floating-point nodes? 4908 4909 // IntegerPartOfX = ((int32_t)(t0); 4910 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4911 4912 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4913 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4914 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4915 4916 // IntegerPartOfX <<= 23; 4917 IntegerPartOfX = 4918 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4919 DAG.getConstant(23, dl, 4920 DAG.getTargetLoweringInfo().getShiftAmountTy( 4921 MVT::i32, DAG.getDataLayout()))); 4922 4923 SDValue TwoToFractionalPartOfX; 4924 if (LimitFloatPrecision <= 6) { 4925 // For floating-point precision of 6: 4926 // 4927 // TwoToFractionalPartOfX = 4928 // 0.997535578f + 4929 // (0.735607626f + 0.252464424f * x) * x; 4930 // 4931 // error 0.0144103317, which is 6 bits 4932 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4933 getF32Constant(DAG, 0x3e814304, dl)); 4934 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4935 getF32Constant(DAG, 0x3f3c50c8, dl)); 4936 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4937 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4938 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4939 } else if (LimitFloatPrecision <= 12) { 4940 // For floating-point precision of 12: 4941 // 4942 // TwoToFractionalPartOfX = 4943 // 0.999892986f + 4944 // (0.696457318f + 4945 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4946 // 4947 // error 0.000107046256, which is 13 to 14 bits 4948 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4949 getF32Constant(DAG, 0x3da235e3, dl)); 4950 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4951 getF32Constant(DAG, 0x3e65b8f3, dl)); 4952 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4953 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4954 getF32Constant(DAG, 0x3f324b07, dl)); 4955 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4956 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4957 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4958 } else { // LimitFloatPrecision <= 18 4959 // For floating-point precision of 18: 4960 // 4961 // TwoToFractionalPartOfX = 4962 // 0.999999982f + 4963 // (0.693148872f + 4964 // (0.240227044f + 4965 // (0.554906021e-1f + 4966 // (0.961591928e-2f + 4967 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4968 // error 2.47208000*10^(-7), which is better than 18 bits 4969 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4970 getF32Constant(DAG, 0x3924b03e, dl)); 4971 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4972 getF32Constant(DAG, 0x3ab24b87, dl)); 4973 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4974 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4975 getF32Constant(DAG, 0x3c1d8c17, dl)); 4976 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4977 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4978 getF32Constant(DAG, 0x3d634a1d, dl)); 4979 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4980 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4981 getF32Constant(DAG, 0x3e75fe14, dl)); 4982 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4983 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4984 getF32Constant(DAG, 0x3f317234, dl)); 4985 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4986 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4987 getF32Constant(DAG, 0x3f800000, dl)); 4988 } 4989 4990 // Add the exponent into the result in integer domain. 4991 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4992 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4993 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4994 } 4995 4996 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4997 /// limited-precision mode. 4998 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4999 const TargetLowering &TLI, SDNodeFlags Flags) { 5000 if (Op.getValueType() == MVT::f32 && 5001 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5002 5003 // Put the exponent in the right bit position for later addition to the 5004 // final result: 5005 // 5006 // t0 = Op * log2(e) 5007 5008 // TODO: What fast-math-flags should be set here? 5009 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5010 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5011 return getLimitedPrecisionExp2(t0, dl, DAG); 5012 } 5013 5014 // No special expansion. 5015 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5016 } 5017 5018 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5019 /// limited-precision mode. 5020 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5021 const TargetLowering &TLI, SDNodeFlags Flags) { 5022 // TODO: What fast-math-flags should be set on the floating-point nodes? 5023 5024 if (Op.getValueType() == MVT::f32 && 5025 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5026 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5027 5028 // Scale the exponent by log(2). 5029 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5030 SDValue LogOfExponent = 5031 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5032 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5033 5034 // Get the significand and build it into a floating-point number with 5035 // exponent of 1. 5036 SDValue X = GetSignificand(DAG, Op1, dl); 5037 5038 SDValue LogOfMantissa; 5039 if (LimitFloatPrecision <= 6) { 5040 // For floating-point precision of 6: 5041 // 5042 // LogofMantissa = 5043 // -1.1609546f + 5044 // (1.4034025f - 0.23903021f * x) * x; 5045 // 5046 // error 0.0034276066, which is better than 8 bits 5047 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5048 getF32Constant(DAG, 0xbe74c456, dl)); 5049 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5050 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5051 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5052 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5053 getF32Constant(DAG, 0x3f949a29, dl)); 5054 } else if (LimitFloatPrecision <= 12) { 5055 // For floating-point precision of 12: 5056 // 5057 // LogOfMantissa = 5058 // -1.7417939f + 5059 // (2.8212026f + 5060 // (-1.4699568f + 5061 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5062 // 5063 // error 0.000061011436, which is 14 bits 5064 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5065 getF32Constant(DAG, 0xbd67b6d6, dl)); 5066 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5067 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5068 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5069 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5070 getF32Constant(DAG, 0x3fbc278b, dl)); 5071 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5072 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5073 getF32Constant(DAG, 0x40348e95, dl)); 5074 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5075 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5076 getF32Constant(DAG, 0x3fdef31a, dl)); 5077 } else { // LimitFloatPrecision <= 18 5078 // For floating-point precision of 18: 5079 // 5080 // LogOfMantissa = 5081 // -2.1072184f + 5082 // (4.2372794f + 5083 // (-3.7029485f + 5084 // (2.2781945f + 5085 // (-0.87823314f + 5086 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5087 // 5088 // error 0.0000023660568, which is better than 18 bits 5089 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5090 getF32Constant(DAG, 0xbc91e5ac, dl)); 5091 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5092 getF32Constant(DAG, 0x3e4350aa, dl)); 5093 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5094 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5095 getF32Constant(DAG, 0x3f60d3e3, dl)); 5096 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5097 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5098 getF32Constant(DAG, 0x4011cdf0, dl)); 5099 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5100 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5101 getF32Constant(DAG, 0x406cfd1c, dl)); 5102 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5103 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5104 getF32Constant(DAG, 0x408797cb, dl)); 5105 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5106 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5107 getF32Constant(DAG, 0x4006dcab, dl)); 5108 } 5109 5110 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5111 } 5112 5113 // No special expansion. 5114 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5115 } 5116 5117 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5118 /// limited-precision mode. 5119 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5120 const TargetLowering &TLI, SDNodeFlags Flags) { 5121 // TODO: What fast-math-flags should be set on the floating-point nodes? 5122 5123 if (Op.getValueType() == MVT::f32 && 5124 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5125 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5126 5127 // Get the exponent. 5128 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5129 5130 // Get the significand and build it into a floating-point number with 5131 // exponent of 1. 5132 SDValue X = GetSignificand(DAG, Op1, dl); 5133 5134 // Different possible minimax approximations of significand in 5135 // floating-point for various degrees of accuracy over [1,2]. 5136 SDValue Log2ofMantissa; 5137 if (LimitFloatPrecision <= 6) { 5138 // For floating-point precision of 6: 5139 // 5140 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5141 // 5142 // error 0.0049451742, which is more than 7 bits 5143 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5144 getF32Constant(DAG, 0xbeb08fe0, dl)); 5145 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5146 getF32Constant(DAG, 0x40019463, dl)); 5147 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5148 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5149 getF32Constant(DAG, 0x3fd6633d, dl)); 5150 } else if (LimitFloatPrecision <= 12) { 5151 // For floating-point precision of 12: 5152 // 5153 // Log2ofMantissa = 5154 // -2.51285454f + 5155 // (4.07009056f + 5156 // (-2.12067489f + 5157 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5158 // 5159 // error 0.0000876136000, which is better than 13 bits 5160 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5161 getF32Constant(DAG, 0xbda7262e, dl)); 5162 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5163 getF32Constant(DAG, 0x3f25280b, dl)); 5164 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5165 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5166 getF32Constant(DAG, 0x4007b923, dl)); 5167 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5168 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5169 getF32Constant(DAG, 0x40823e2f, dl)); 5170 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5171 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5172 getF32Constant(DAG, 0x4020d29c, dl)); 5173 } else { // LimitFloatPrecision <= 18 5174 // For floating-point precision of 18: 5175 // 5176 // Log2ofMantissa = 5177 // -3.0400495f + 5178 // (6.1129976f + 5179 // (-5.3420409f + 5180 // (3.2865683f + 5181 // (-1.2669343f + 5182 // (0.27515199f - 5183 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5184 // 5185 // error 0.0000018516, which is better than 18 bits 5186 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5187 getF32Constant(DAG, 0xbcd2769e, dl)); 5188 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5189 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5190 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5191 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5192 getF32Constant(DAG, 0x3fa22ae7, dl)); 5193 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5194 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5195 getF32Constant(DAG, 0x40525723, dl)); 5196 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5197 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5198 getF32Constant(DAG, 0x40aaf200, dl)); 5199 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5200 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5201 getF32Constant(DAG, 0x40c39dad, dl)); 5202 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5203 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5204 getF32Constant(DAG, 0x4042902c, dl)); 5205 } 5206 5207 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5208 } 5209 5210 // No special expansion. 5211 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5212 } 5213 5214 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5215 /// limited-precision mode. 5216 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5217 const TargetLowering &TLI, SDNodeFlags Flags) { 5218 // TODO: What fast-math-flags should be set on the floating-point nodes? 5219 5220 if (Op.getValueType() == MVT::f32 && 5221 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5222 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5223 5224 // Scale the exponent by log10(2) [0.30102999f]. 5225 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5226 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5227 getF32Constant(DAG, 0x3e9a209a, dl)); 5228 5229 // Get the significand and build it into a floating-point number with 5230 // exponent of 1. 5231 SDValue X = GetSignificand(DAG, Op1, dl); 5232 5233 SDValue Log10ofMantissa; 5234 if (LimitFloatPrecision <= 6) { 5235 // For floating-point precision of 6: 5236 // 5237 // Log10ofMantissa = 5238 // -0.50419619f + 5239 // (0.60948995f - 0.10380950f * x) * x; 5240 // 5241 // error 0.0014886165, which is 6 bits 5242 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5243 getF32Constant(DAG, 0xbdd49a13, dl)); 5244 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5245 getF32Constant(DAG, 0x3f1c0789, dl)); 5246 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5247 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5248 getF32Constant(DAG, 0x3f011300, dl)); 5249 } else if (LimitFloatPrecision <= 12) { 5250 // For floating-point precision of 12: 5251 // 5252 // Log10ofMantissa = 5253 // -0.64831180f + 5254 // (0.91751397f + 5255 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5256 // 5257 // error 0.00019228036, which is better than 12 bits 5258 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5259 getF32Constant(DAG, 0x3d431f31, dl)); 5260 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5261 getF32Constant(DAG, 0x3ea21fb2, dl)); 5262 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5263 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5264 getF32Constant(DAG, 0x3f6ae232, dl)); 5265 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5266 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5267 getF32Constant(DAG, 0x3f25f7c3, dl)); 5268 } else { // LimitFloatPrecision <= 18 5269 // For floating-point precision of 18: 5270 // 5271 // Log10ofMantissa = 5272 // -0.84299375f + 5273 // (1.5327582f + 5274 // (-1.0688956f + 5275 // (0.49102474f + 5276 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5277 // 5278 // error 0.0000037995730, which is better than 18 bits 5279 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5280 getF32Constant(DAG, 0x3c5d51ce, dl)); 5281 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5282 getF32Constant(DAG, 0x3e00685a, dl)); 5283 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5284 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5285 getF32Constant(DAG, 0x3efb6798, dl)); 5286 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5287 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5288 getF32Constant(DAG, 0x3f88d192, dl)); 5289 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5290 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5291 getF32Constant(DAG, 0x3fc4316c, dl)); 5292 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5293 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5294 getF32Constant(DAG, 0x3f57ce70, dl)); 5295 } 5296 5297 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5298 } 5299 5300 // No special expansion. 5301 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5302 } 5303 5304 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5305 /// limited-precision mode. 5306 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5307 const TargetLowering &TLI, SDNodeFlags Flags) { 5308 if (Op.getValueType() == MVT::f32 && 5309 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5310 return getLimitedPrecisionExp2(Op, dl, DAG); 5311 5312 // No special expansion. 5313 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5314 } 5315 5316 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5317 /// limited-precision mode with x == 10.0f. 5318 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5319 SelectionDAG &DAG, const TargetLowering &TLI, 5320 SDNodeFlags Flags) { 5321 bool IsExp10 = false; 5322 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5323 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5324 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5325 APFloat Ten(10.0f); 5326 IsExp10 = LHSC->isExactlyValue(Ten); 5327 } 5328 } 5329 5330 // TODO: What fast-math-flags should be set on the FMUL node? 5331 if (IsExp10) { 5332 // Put the exponent in the right bit position for later addition to the 5333 // final result: 5334 // 5335 // #define LOG2OF10 3.3219281f 5336 // t0 = Op * LOG2OF10; 5337 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5338 getF32Constant(DAG, 0x40549a78, dl)); 5339 return getLimitedPrecisionExp2(t0, dl, DAG); 5340 } 5341 5342 // No special expansion. 5343 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5344 } 5345 5346 /// ExpandPowI - Expand a llvm.powi intrinsic. 5347 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5348 SelectionDAG &DAG) { 5349 // If RHS is a constant, we can expand this out to a multiplication tree, 5350 // otherwise we end up lowering to a call to __powidf2 (for example). When 5351 // optimizing for size, we only want to do this if the expansion would produce 5352 // a small number of multiplies, otherwise we do the full expansion. 5353 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5354 // Get the exponent as a positive value. 5355 unsigned Val = RHSC->getSExtValue(); 5356 if ((int)Val < 0) Val = -Val; 5357 5358 // powi(x, 0) -> 1.0 5359 if (Val == 0) 5360 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5361 5362 bool OptForSize = DAG.shouldOptForSize(); 5363 if (!OptForSize || 5364 // If optimizing for size, don't insert too many multiplies. 5365 // This inserts up to 5 multiplies. 5366 countPopulation(Val) + Log2_32(Val) < 7) { 5367 // We use the simple binary decomposition method to generate the multiply 5368 // sequence. There are more optimal ways to do this (for example, 5369 // powi(x,15) generates one more multiply than it should), but this has 5370 // the benefit of being both really simple and much better than a libcall. 5371 SDValue Res; // Logically starts equal to 1.0 5372 SDValue CurSquare = LHS; 5373 // TODO: Intrinsics should have fast-math-flags that propagate to these 5374 // nodes. 5375 while (Val) { 5376 if (Val & 1) { 5377 if (Res.getNode()) 5378 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5379 else 5380 Res = CurSquare; // 1.0*CurSquare. 5381 } 5382 5383 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5384 CurSquare, CurSquare); 5385 Val >>= 1; 5386 } 5387 5388 // If the original was negative, invert the result, producing 1/(x*x*x). 5389 if (RHSC->getSExtValue() < 0) 5390 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5391 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5392 return Res; 5393 } 5394 } 5395 5396 // Otherwise, expand to a libcall. 5397 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5398 } 5399 5400 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5401 SDValue LHS, SDValue RHS, SDValue Scale, 5402 SelectionDAG &DAG, const TargetLowering &TLI) { 5403 EVT VT = LHS.getValueType(); 5404 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5405 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5406 LLVMContext &Ctx = *DAG.getContext(); 5407 5408 // If the type is legal but the operation isn't, this node might survive all 5409 // the way to operation legalization. If we end up there and we do not have 5410 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5411 // node. 5412 5413 // Coax the legalizer into expanding the node during type legalization instead 5414 // by bumping the size by one bit. This will force it to Promote, enabling the 5415 // early expansion and avoiding the need to expand later. 5416 5417 // We don't have to do this if Scale is 0; that can always be expanded, unless 5418 // it's a saturating signed operation. Those can experience true integer 5419 // division overflow, a case which we must avoid. 5420 5421 // FIXME: We wouldn't have to do this (or any of the early 5422 // expansion/promotion) if it was possible to expand a libcall of an 5423 // illegal type during operation legalization. But it's not, so things 5424 // get a bit hacky. 5425 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5426 if ((ScaleInt > 0 || (Saturating && Signed)) && 5427 (TLI.isTypeLegal(VT) || 5428 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5429 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5430 Opcode, VT, ScaleInt); 5431 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5432 EVT PromVT; 5433 if (VT.isScalarInteger()) 5434 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5435 else if (VT.isVector()) { 5436 PromVT = VT.getVectorElementType(); 5437 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5438 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5439 } else 5440 llvm_unreachable("Wrong VT for DIVFIX?"); 5441 if (Signed) { 5442 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5443 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5444 } else { 5445 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5446 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5447 } 5448 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5449 // For saturating operations, we need to shift up the LHS to get the 5450 // proper saturation width, and then shift down again afterwards. 5451 if (Saturating) 5452 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5453 DAG.getConstant(1, DL, ShiftTy)); 5454 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5455 if (Saturating) 5456 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5457 DAG.getConstant(1, DL, ShiftTy)); 5458 return DAG.getZExtOrTrunc(Res, DL, VT); 5459 } 5460 } 5461 5462 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5463 } 5464 5465 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5466 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5467 static void 5468 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5469 const SDValue &N) { 5470 switch (N.getOpcode()) { 5471 case ISD::CopyFromReg: { 5472 SDValue Op = N.getOperand(1); 5473 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5474 Op.getValueType().getSizeInBits()); 5475 return; 5476 } 5477 case ISD::BITCAST: 5478 case ISD::AssertZext: 5479 case ISD::AssertSext: 5480 case ISD::TRUNCATE: 5481 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5482 return; 5483 case ISD::BUILD_PAIR: 5484 case ISD::BUILD_VECTOR: 5485 case ISD::CONCAT_VECTORS: 5486 for (SDValue Op : N->op_values()) 5487 getUnderlyingArgRegs(Regs, Op); 5488 return; 5489 default: 5490 return; 5491 } 5492 } 5493 5494 /// If the DbgValueInst is a dbg_value of a function argument, create the 5495 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5496 /// instruction selection, they will be inserted to the entry BB. 5497 /// We don't currently support this for variadic dbg_values, as they shouldn't 5498 /// appear for function arguments or in the prologue. 5499 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5500 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5501 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5502 const Argument *Arg = dyn_cast<Argument>(V); 5503 if (!Arg) 5504 return false; 5505 5506 MachineFunction &MF = DAG.getMachineFunction(); 5507 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5508 5509 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5510 // we've been asked to pursue. 5511 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5512 bool Indirect) { 5513 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5514 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5515 // pointing at the VReg, which will be patched up later. 5516 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5517 auto MIB = BuildMI(MF, DL, Inst); 5518 MIB.addReg(Reg); 5519 MIB.addImm(0); 5520 MIB.addMetadata(Variable); 5521 auto *NewDIExpr = FragExpr; 5522 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5523 // the DIExpression. 5524 if (Indirect) 5525 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5526 MIB.addMetadata(NewDIExpr); 5527 return MIB; 5528 } else { 5529 // Create a completely standard DBG_VALUE. 5530 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5531 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5532 } 5533 }; 5534 5535 if (Kind == FuncArgumentDbgValueKind::Value) { 5536 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5537 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5538 // the entry block. 5539 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5540 if (!IsInEntryBlock) 5541 return false; 5542 5543 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5544 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5545 // variable that also is a param. 5546 // 5547 // Although, if we are at the top of the entry block already, we can still 5548 // emit using ArgDbgValue. This might catch some situations when the 5549 // dbg.value refers to an argument that isn't used in the entry block, so 5550 // any CopyToReg node would be optimized out and the only way to express 5551 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5552 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5553 // we should only emit as ArgDbgValue if the Variable is an argument to the 5554 // current function, and the dbg.value intrinsic is found in the entry 5555 // block. 5556 bool VariableIsFunctionInputArg = Variable->isParameter() && 5557 !DL->getInlinedAt(); 5558 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5559 if (!IsInPrologue && !VariableIsFunctionInputArg) 5560 return false; 5561 5562 // Here we assume that a function argument on IR level only can be used to 5563 // describe one input parameter on source level. If we for example have 5564 // source code like this 5565 // 5566 // struct A { long x, y; }; 5567 // void foo(struct A a, long b) { 5568 // ... 5569 // b = a.x; 5570 // ... 5571 // } 5572 // 5573 // and IR like this 5574 // 5575 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5576 // entry: 5577 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5578 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5579 // call void @llvm.dbg.value(metadata i32 %b, "b", 5580 // ... 5581 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5582 // ... 5583 // 5584 // then the last dbg.value is describing a parameter "b" using a value that 5585 // is an argument. But since we already has used %a1 to describe a parameter 5586 // we should not handle that last dbg.value here (that would result in an 5587 // incorrect hoisting of the DBG_VALUE to the function entry). 5588 // Notice that we allow one dbg.value per IR level argument, to accommodate 5589 // for the situation with fragments above. 5590 if (VariableIsFunctionInputArg) { 5591 unsigned ArgNo = Arg->getArgNo(); 5592 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5593 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5594 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5595 return false; 5596 FuncInfo.DescribedArgs.set(ArgNo); 5597 } 5598 } 5599 5600 bool IsIndirect = false; 5601 Optional<MachineOperand> Op; 5602 // Some arguments' frame index is recorded during argument lowering. 5603 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5604 if (FI != std::numeric_limits<int>::max()) 5605 Op = MachineOperand::CreateFI(FI); 5606 5607 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5608 if (!Op && N.getNode()) { 5609 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5610 Register Reg; 5611 if (ArgRegsAndSizes.size() == 1) 5612 Reg = ArgRegsAndSizes.front().first; 5613 5614 if (Reg && Reg.isVirtual()) { 5615 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5616 Register PR = RegInfo.getLiveInPhysReg(Reg); 5617 if (PR) 5618 Reg = PR; 5619 } 5620 if (Reg) { 5621 Op = MachineOperand::CreateReg(Reg, false); 5622 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5623 } 5624 } 5625 5626 if (!Op && N.getNode()) { 5627 // Check if frame index is available. 5628 SDValue LCandidate = peekThroughBitcasts(N); 5629 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5630 if (FrameIndexSDNode *FINode = 5631 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5632 Op = MachineOperand::CreateFI(FINode->getIndex()); 5633 } 5634 5635 if (!Op) { 5636 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5637 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5638 SplitRegs) { 5639 unsigned Offset = 0; 5640 for (const auto &RegAndSize : SplitRegs) { 5641 // If the expression is already a fragment, the current register 5642 // offset+size might extend beyond the fragment. In this case, only 5643 // the register bits that are inside the fragment are relevant. 5644 int RegFragmentSizeInBits = RegAndSize.second; 5645 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5646 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5647 // The register is entirely outside the expression fragment, 5648 // so is irrelevant for debug info. 5649 if (Offset >= ExprFragmentSizeInBits) 5650 break; 5651 // The register is partially outside the expression fragment, only 5652 // the low bits within the fragment are relevant for debug info. 5653 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5654 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5655 } 5656 } 5657 5658 auto FragmentExpr = DIExpression::createFragmentExpression( 5659 Expr, Offset, RegFragmentSizeInBits); 5660 Offset += RegAndSize.second; 5661 // If a valid fragment expression cannot be created, the variable's 5662 // correct value cannot be determined and so it is set as Undef. 5663 if (!FragmentExpr) { 5664 SDDbgValue *SDV = DAG.getConstantDbgValue( 5665 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5666 DAG.AddDbgValue(SDV, false); 5667 continue; 5668 } 5669 MachineInstr *NewMI = 5670 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5671 Kind != FuncArgumentDbgValueKind::Value); 5672 FuncInfo.ArgDbgValues.push_back(NewMI); 5673 } 5674 }; 5675 5676 // Check if ValueMap has reg number. 5677 DenseMap<const Value *, Register>::const_iterator 5678 VMI = FuncInfo.ValueMap.find(V); 5679 if (VMI != FuncInfo.ValueMap.end()) { 5680 const auto &TLI = DAG.getTargetLoweringInfo(); 5681 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5682 V->getType(), None); 5683 if (RFV.occupiesMultipleRegs()) { 5684 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5685 return true; 5686 } 5687 5688 Op = MachineOperand::CreateReg(VMI->second, false); 5689 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5690 } else if (ArgRegsAndSizes.size() > 1) { 5691 // This was split due to the calling convention, and no virtual register 5692 // mapping exists for the value. 5693 splitMultiRegDbgValue(ArgRegsAndSizes); 5694 return true; 5695 } 5696 } 5697 5698 if (!Op) 5699 return false; 5700 5701 assert(Variable->isValidLocationForIntrinsic(DL) && 5702 "Expected inlined-at fields to agree"); 5703 MachineInstr *NewMI = nullptr; 5704 5705 if (Op->isReg()) 5706 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5707 else 5708 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5709 Variable, Expr); 5710 5711 // Otherwise, use ArgDbgValues. 5712 FuncInfo.ArgDbgValues.push_back(NewMI); 5713 return true; 5714 } 5715 5716 /// Return the appropriate SDDbgValue based on N. 5717 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5718 DILocalVariable *Variable, 5719 DIExpression *Expr, 5720 const DebugLoc &dl, 5721 unsigned DbgSDNodeOrder) { 5722 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5723 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5724 // stack slot locations. 5725 // 5726 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5727 // debug values here after optimization: 5728 // 5729 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5730 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5731 // 5732 // Both describe the direct values of their associated variables. 5733 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5734 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5735 } 5736 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5737 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5738 } 5739 5740 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5741 switch (Intrinsic) { 5742 case Intrinsic::smul_fix: 5743 return ISD::SMULFIX; 5744 case Intrinsic::umul_fix: 5745 return ISD::UMULFIX; 5746 case Intrinsic::smul_fix_sat: 5747 return ISD::SMULFIXSAT; 5748 case Intrinsic::umul_fix_sat: 5749 return ISD::UMULFIXSAT; 5750 case Intrinsic::sdiv_fix: 5751 return ISD::SDIVFIX; 5752 case Intrinsic::udiv_fix: 5753 return ISD::UDIVFIX; 5754 case Intrinsic::sdiv_fix_sat: 5755 return ISD::SDIVFIXSAT; 5756 case Intrinsic::udiv_fix_sat: 5757 return ISD::UDIVFIXSAT; 5758 default: 5759 llvm_unreachable("Unhandled fixed point intrinsic"); 5760 } 5761 } 5762 5763 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5764 const char *FunctionName) { 5765 assert(FunctionName && "FunctionName must not be nullptr"); 5766 SDValue Callee = DAG.getExternalSymbol( 5767 FunctionName, 5768 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5769 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5770 } 5771 5772 /// Given a @llvm.call.preallocated.setup, return the corresponding 5773 /// preallocated call. 5774 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5775 assert(cast<CallBase>(PreallocatedSetup) 5776 ->getCalledFunction() 5777 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5778 "expected call_preallocated_setup Value"); 5779 for (auto *U : PreallocatedSetup->users()) { 5780 auto *UseCall = cast<CallBase>(U); 5781 const Function *Fn = UseCall->getCalledFunction(); 5782 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5783 return UseCall; 5784 } 5785 } 5786 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5787 } 5788 5789 /// Lower the call to the specified intrinsic function. 5790 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5791 unsigned Intrinsic) { 5792 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5793 SDLoc sdl = getCurSDLoc(); 5794 DebugLoc dl = getCurDebugLoc(); 5795 SDValue Res; 5796 5797 SDNodeFlags Flags; 5798 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5799 Flags.copyFMF(*FPOp); 5800 5801 switch (Intrinsic) { 5802 default: 5803 // By default, turn this into a target intrinsic node. 5804 visitTargetIntrinsic(I, Intrinsic); 5805 return; 5806 case Intrinsic::vscale: { 5807 match(&I, m_VScale(DAG.getDataLayout())); 5808 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5809 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5810 return; 5811 } 5812 case Intrinsic::vastart: visitVAStart(I); return; 5813 case Intrinsic::vaend: visitVAEnd(I); return; 5814 case Intrinsic::vacopy: visitVACopy(I); return; 5815 case Intrinsic::returnaddress: 5816 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5817 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5818 getValue(I.getArgOperand(0)))); 5819 return; 5820 case Intrinsic::addressofreturnaddress: 5821 setValue(&I, 5822 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5823 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5824 return; 5825 case Intrinsic::sponentry: 5826 setValue(&I, 5827 DAG.getNode(ISD::SPONENTRY, sdl, 5828 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5829 return; 5830 case Intrinsic::frameaddress: 5831 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5832 TLI.getFrameIndexTy(DAG.getDataLayout()), 5833 getValue(I.getArgOperand(0)))); 5834 return; 5835 case Intrinsic::read_volatile_register: 5836 case Intrinsic::read_register: { 5837 Value *Reg = I.getArgOperand(0); 5838 SDValue Chain = getRoot(); 5839 SDValue RegName = 5840 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5841 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5842 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5843 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5844 setValue(&I, Res); 5845 DAG.setRoot(Res.getValue(1)); 5846 return; 5847 } 5848 case Intrinsic::write_register: { 5849 Value *Reg = I.getArgOperand(0); 5850 Value *RegValue = I.getArgOperand(1); 5851 SDValue Chain = getRoot(); 5852 SDValue RegName = 5853 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5854 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5855 RegName, getValue(RegValue))); 5856 return; 5857 } 5858 case Intrinsic::memcpy: { 5859 const auto &MCI = cast<MemCpyInst>(I); 5860 SDValue Op1 = getValue(I.getArgOperand(0)); 5861 SDValue Op2 = getValue(I.getArgOperand(1)); 5862 SDValue Op3 = getValue(I.getArgOperand(2)); 5863 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5864 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5865 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5866 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5867 bool isVol = MCI.isVolatile(); 5868 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5869 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5870 // node. 5871 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5872 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5873 /* AlwaysInline */ false, isTC, 5874 MachinePointerInfo(I.getArgOperand(0)), 5875 MachinePointerInfo(I.getArgOperand(1)), 5876 I.getAAMetadata()); 5877 updateDAGForMaybeTailCall(MC); 5878 return; 5879 } 5880 case Intrinsic::memcpy_inline: { 5881 const auto &MCI = cast<MemCpyInlineInst>(I); 5882 SDValue Dst = getValue(I.getArgOperand(0)); 5883 SDValue Src = getValue(I.getArgOperand(1)); 5884 SDValue Size = getValue(I.getArgOperand(2)); 5885 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5886 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5887 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5888 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5889 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5890 bool isVol = MCI.isVolatile(); 5891 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5892 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5893 // node. 5894 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5895 /* AlwaysInline */ true, isTC, 5896 MachinePointerInfo(I.getArgOperand(0)), 5897 MachinePointerInfo(I.getArgOperand(1)), 5898 I.getAAMetadata()); 5899 updateDAGForMaybeTailCall(MC); 5900 return; 5901 } 5902 case Intrinsic::memset: { 5903 const auto &MSI = cast<MemSetInst>(I); 5904 SDValue Op1 = getValue(I.getArgOperand(0)); 5905 SDValue Op2 = getValue(I.getArgOperand(1)); 5906 SDValue Op3 = getValue(I.getArgOperand(2)); 5907 // @llvm.memset defines 0 and 1 to both mean no alignment. 5908 Align Alignment = MSI.getDestAlign().valueOrOne(); 5909 bool isVol = MSI.isVolatile(); 5910 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5911 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5912 SDValue MS = DAG.getMemset( 5913 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5914 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5915 updateDAGForMaybeTailCall(MS); 5916 return; 5917 } 5918 case Intrinsic::memset_inline: { 5919 const auto &MSII = cast<MemSetInlineInst>(I); 5920 SDValue Dst = getValue(I.getArgOperand(0)); 5921 SDValue Value = getValue(I.getArgOperand(1)); 5922 SDValue Size = getValue(I.getArgOperand(2)); 5923 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5924 // @llvm.memset defines 0 and 1 to both mean no alignment. 5925 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5926 bool isVol = MSII.isVolatile(); 5927 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5928 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5929 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 5930 /* AlwaysInline */ true, isTC, 5931 MachinePointerInfo(I.getArgOperand(0)), 5932 I.getAAMetadata()); 5933 updateDAGForMaybeTailCall(MC); 5934 return; 5935 } 5936 case Intrinsic::memmove: { 5937 const auto &MMI = cast<MemMoveInst>(I); 5938 SDValue Op1 = getValue(I.getArgOperand(0)); 5939 SDValue Op2 = getValue(I.getArgOperand(1)); 5940 SDValue Op3 = getValue(I.getArgOperand(2)); 5941 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5942 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5943 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5944 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5945 bool isVol = MMI.isVolatile(); 5946 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5947 // FIXME: Support passing different dest/src alignments to the memmove DAG 5948 // node. 5949 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5950 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5951 isTC, MachinePointerInfo(I.getArgOperand(0)), 5952 MachinePointerInfo(I.getArgOperand(1)), 5953 I.getAAMetadata()); 5954 updateDAGForMaybeTailCall(MM); 5955 return; 5956 } 5957 case Intrinsic::memcpy_element_unordered_atomic: { 5958 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5959 SDValue Dst = getValue(MI.getRawDest()); 5960 SDValue Src = getValue(MI.getRawSource()); 5961 SDValue Length = getValue(MI.getLength()); 5962 5963 unsigned DstAlign = MI.getDestAlignment(); 5964 unsigned SrcAlign = MI.getSourceAlignment(); 5965 Type *LengthTy = MI.getLength()->getType(); 5966 unsigned ElemSz = MI.getElementSizeInBytes(); 5967 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5968 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5969 SrcAlign, Length, LengthTy, ElemSz, isTC, 5970 MachinePointerInfo(MI.getRawDest()), 5971 MachinePointerInfo(MI.getRawSource())); 5972 updateDAGForMaybeTailCall(MC); 5973 return; 5974 } 5975 case Intrinsic::memmove_element_unordered_atomic: { 5976 auto &MI = cast<AtomicMemMoveInst>(I); 5977 SDValue Dst = getValue(MI.getRawDest()); 5978 SDValue Src = getValue(MI.getRawSource()); 5979 SDValue Length = getValue(MI.getLength()); 5980 5981 unsigned DstAlign = MI.getDestAlignment(); 5982 unsigned SrcAlign = MI.getSourceAlignment(); 5983 Type *LengthTy = MI.getLength()->getType(); 5984 unsigned ElemSz = MI.getElementSizeInBytes(); 5985 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5986 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5987 SrcAlign, Length, LengthTy, ElemSz, isTC, 5988 MachinePointerInfo(MI.getRawDest()), 5989 MachinePointerInfo(MI.getRawSource())); 5990 updateDAGForMaybeTailCall(MC); 5991 return; 5992 } 5993 case Intrinsic::memset_element_unordered_atomic: { 5994 auto &MI = cast<AtomicMemSetInst>(I); 5995 SDValue Dst = getValue(MI.getRawDest()); 5996 SDValue Val = getValue(MI.getValue()); 5997 SDValue Length = getValue(MI.getLength()); 5998 5999 unsigned DstAlign = MI.getDestAlignment(); 6000 Type *LengthTy = MI.getLength()->getType(); 6001 unsigned ElemSz = MI.getElementSizeInBytes(); 6002 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6003 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 6004 LengthTy, ElemSz, isTC, 6005 MachinePointerInfo(MI.getRawDest())); 6006 updateDAGForMaybeTailCall(MC); 6007 return; 6008 } 6009 case Intrinsic::call_preallocated_setup: { 6010 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6011 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6012 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6013 getRoot(), SrcValue); 6014 setValue(&I, Res); 6015 DAG.setRoot(Res); 6016 return; 6017 } 6018 case Intrinsic::call_preallocated_arg: { 6019 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6020 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6021 SDValue Ops[3]; 6022 Ops[0] = getRoot(); 6023 Ops[1] = SrcValue; 6024 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6025 MVT::i32); // arg index 6026 SDValue Res = DAG.getNode( 6027 ISD::PREALLOCATED_ARG, sdl, 6028 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6029 setValue(&I, Res); 6030 DAG.setRoot(Res.getValue(1)); 6031 return; 6032 } 6033 case Intrinsic::dbg_addr: 6034 case Intrinsic::dbg_declare: { 6035 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6036 // they are non-variadic. 6037 const auto &DI = cast<DbgVariableIntrinsic>(I); 6038 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6039 DILocalVariable *Variable = DI.getVariable(); 6040 DIExpression *Expression = DI.getExpression(); 6041 dropDanglingDebugInfo(Variable, Expression); 6042 assert(Variable && "Missing variable"); 6043 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6044 << "\n"); 6045 // Check if address has undef value. 6046 const Value *Address = DI.getVariableLocationOp(0); 6047 if (!Address || isa<UndefValue>(Address) || 6048 (Address->use_empty() && !isa<Argument>(Address))) { 6049 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6050 << " (bad/undef/unused-arg address)\n"); 6051 return; 6052 } 6053 6054 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6055 6056 // Check if this variable can be described by a frame index, typically 6057 // either as a static alloca or a byval parameter. 6058 int FI = std::numeric_limits<int>::max(); 6059 if (const auto *AI = 6060 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6061 if (AI->isStaticAlloca()) { 6062 auto I = FuncInfo.StaticAllocaMap.find(AI); 6063 if (I != FuncInfo.StaticAllocaMap.end()) 6064 FI = I->second; 6065 } 6066 } else if (const auto *Arg = dyn_cast<Argument>( 6067 Address->stripInBoundsConstantOffsets())) { 6068 FI = FuncInfo.getArgumentFrameIndex(Arg); 6069 } 6070 6071 // llvm.dbg.addr is control dependent and always generates indirect 6072 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6073 // the MachineFunction variable table. 6074 if (FI != std::numeric_limits<int>::max()) { 6075 if (Intrinsic == Intrinsic::dbg_addr) { 6076 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6077 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6078 dl, SDNodeOrder); 6079 DAG.AddDbgValue(SDV, isParameter); 6080 } else { 6081 LLVM_DEBUG(dbgs() << "Skipping " << DI 6082 << " (variable info stashed in MF side table)\n"); 6083 } 6084 return; 6085 } 6086 6087 SDValue &N = NodeMap[Address]; 6088 if (!N.getNode() && isa<Argument>(Address)) 6089 // Check unused arguments map. 6090 N = UnusedArgNodeMap[Address]; 6091 SDDbgValue *SDV; 6092 if (N.getNode()) { 6093 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6094 Address = BCI->getOperand(0); 6095 // Parameters are handled specially. 6096 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6097 if (isParameter && FINode) { 6098 // Byval parameter. We have a frame index at this point. 6099 SDV = 6100 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6101 /*IsIndirect*/ true, dl, SDNodeOrder); 6102 } else if (isa<Argument>(Address)) { 6103 // Address is an argument, so try to emit its dbg value using 6104 // virtual register info from the FuncInfo.ValueMap. 6105 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6106 FuncArgumentDbgValueKind::Declare, N); 6107 return; 6108 } else { 6109 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6110 true, dl, SDNodeOrder); 6111 } 6112 DAG.AddDbgValue(SDV, isParameter); 6113 } else { 6114 // If Address is an argument then try to emit its dbg value using 6115 // virtual register info from the FuncInfo.ValueMap. 6116 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6117 FuncArgumentDbgValueKind::Declare, N)) { 6118 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6119 << " (could not emit func-arg dbg_value)\n"); 6120 } 6121 } 6122 return; 6123 } 6124 case Intrinsic::dbg_label: { 6125 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6126 DILabel *Label = DI.getLabel(); 6127 assert(Label && "Missing label"); 6128 6129 SDDbgLabel *SDV; 6130 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6131 DAG.AddDbgLabel(SDV); 6132 return; 6133 } 6134 case Intrinsic::dbg_value: { 6135 const DbgValueInst &DI = cast<DbgValueInst>(I); 6136 assert(DI.getVariable() && "Missing variable"); 6137 6138 DILocalVariable *Variable = DI.getVariable(); 6139 DIExpression *Expression = DI.getExpression(); 6140 dropDanglingDebugInfo(Variable, Expression); 6141 SmallVector<Value *, 4> Values(DI.getValues()); 6142 if (Values.empty()) 6143 return; 6144 6145 if (llvm::is_contained(Values, nullptr)) 6146 return; 6147 6148 bool IsVariadic = DI.hasArgList(); 6149 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6150 SDNodeOrder, IsVariadic)) 6151 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6152 return; 6153 } 6154 6155 case Intrinsic::eh_typeid_for: { 6156 // Find the type id for the given typeinfo. 6157 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6158 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6159 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6160 setValue(&I, Res); 6161 return; 6162 } 6163 6164 case Intrinsic::eh_return_i32: 6165 case Intrinsic::eh_return_i64: 6166 DAG.getMachineFunction().setCallsEHReturn(true); 6167 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6168 MVT::Other, 6169 getControlRoot(), 6170 getValue(I.getArgOperand(0)), 6171 getValue(I.getArgOperand(1)))); 6172 return; 6173 case Intrinsic::eh_unwind_init: 6174 DAG.getMachineFunction().setCallsUnwindInit(true); 6175 return; 6176 case Intrinsic::eh_dwarf_cfa: 6177 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6178 TLI.getPointerTy(DAG.getDataLayout()), 6179 getValue(I.getArgOperand(0)))); 6180 return; 6181 case Intrinsic::eh_sjlj_callsite: { 6182 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6183 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6184 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6185 6186 MMI.setCurrentCallSite(CI->getZExtValue()); 6187 return; 6188 } 6189 case Intrinsic::eh_sjlj_functioncontext: { 6190 // Get and store the index of the function context. 6191 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6192 AllocaInst *FnCtx = 6193 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6194 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6195 MFI.setFunctionContextIndex(FI); 6196 return; 6197 } 6198 case Intrinsic::eh_sjlj_setjmp: { 6199 SDValue Ops[2]; 6200 Ops[0] = getRoot(); 6201 Ops[1] = getValue(I.getArgOperand(0)); 6202 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6203 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6204 setValue(&I, Op.getValue(0)); 6205 DAG.setRoot(Op.getValue(1)); 6206 return; 6207 } 6208 case Intrinsic::eh_sjlj_longjmp: 6209 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6210 getRoot(), getValue(I.getArgOperand(0)))); 6211 return; 6212 case Intrinsic::eh_sjlj_setup_dispatch: 6213 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6214 getRoot())); 6215 return; 6216 case Intrinsic::masked_gather: 6217 visitMaskedGather(I); 6218 return; 6219 case Intrinsic::masked_load: 6220 visitMaskedLoad(I); 6221 return; 6222 case Intrinsic::masked_scatter: 6223 visitMaskedScatter(I); 6224 return; 6225 case Intrinsic::masked_store: 6226 visitMaskedStore(I); 6227 return; 6228 case Intrinsic::masked_expandload: 6229 visitMaskedLoad(I, true /* IsExpanding */); 6230 return; 6231 case Intrinsic::masked_compressstore: 6232 visitMaskedStore(I, true /* IsCompressing */); 6233 return; 6234 case Intrinsic::powi: 6235 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6236 getValue(I.getArgOperand(1)), DAG)); 6237 return; 6238 case Intrinsic::log: 6239 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6240 return; 6241 case Intrinsic::log2: 6242 setValue(&I, 6243 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6244 return; 6245 case Intrinsic::log10: 6246 setValue(&I, 6247 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6248 return; 6249 case Intrinsic::exp: 6250 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6251 return; 6252 case Intrinsic::exp2: 6253 setValue(&I, 6254 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6255 return; 6256 case Intrinsic::pow: 6257 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6258 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6259 return; 6260 case Intrinsic::sqrt: 6261 case Intrinsic::fabs: 6262 case Intrinsic::sin: 6263 case Intrinsic::cos: 6264 case Intrinsic::floor: 6265 case Intrinsic::ceil: 6266 case Intrinsic::trunc: 6267 case Intrinsic::rint: 6268 case Intrinsic::nearbyint: 6269 case Intrinsic::round: 6270 case Intrinsic::roundeven: 6271 case Intrinsic::canonicalize: { 6272 unsigned Opcode; 6273 switch (Intrinsic) { 6274 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6275 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6276 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6277 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6278 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6279 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6280 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6281 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6282 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6283 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6284 case Intrinsic::round: Opcode = ISD::FROUND; break; 6285 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6286 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6287 } 6288 6289 setValue(&I, DAG.getNode(Opcode, sdl, 6290 getValue(I.getArgOperand(0)).getValueType(), 6291 getValue(I.getArgOperand(0)), Flags)); 6292 return; 6293 } 6294 case Intrinsic::lround: 6295 case Intrinsic::llround: 6296 case Intrinsic::lrint: 6297 case Intrinsic::llrint: { 6298 unsigned Opcode; 6299 switch (Intrinsic) { 6300 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6301 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6302 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6303 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6304 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6305 } 6306 6307 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6308 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6309 getValue(I.getArgOperand(0)))); 6310 return; 6311 } 6312 case Intrinsic::minnum: 6313 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6314 getValue(I.getArgOperand(0)).getValueType(), 6315 getValue(I.getArgOperand(0)), 6316 getValue(I.getArgOperand(1)), Flags)); 6317 return; 6318 case Intrinsic::maxnum: 6319 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6320 getValue(I.getArgOperand(0)).getValueType(), 6321 getValue(I.getArgOperand(0)), 6322 getValue(I.getArgOperand(1)), Flags)); 6323 return; 6324 case Intrinsic::minimum: 6325 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6326 getValue(I.getArgOperand(0)).getValueType(), 6327 getValue(I.getArgOperand(0)), 6328 getValue(I.getArgOperand(1)), Flags)); 6329 return; 6330 case Intrinsic::maximum: 6331 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6332 getValue(I.getArgOperand(0)).getValueType(), 6333 getValue(I.getArgOperand(0)), 6334 getValue(I.getArgOperand(1)), Flags)); 6335 return; 6336 case Intrinsic::copysign: 6337 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6338 getValue(I.getArgOperand(0)).getValueType(), 6339 getValue(I.getArgOperand(0)), 6340 getValue(I.getArgOperand(1)), Flags)); 6341 return; 6342 case Intrinsic::arithmetic_fence: { 6343 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6344 getValue(I.getArgOperand(0)).getValueType(), 6345 getValue(I.getArgOperand(0)), Flags)); 6346 return; 6347 } 6348 case Intrinsic::fma: 6349 setValue(&I, DAG.getNode( 6350 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6351 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6352 getValue(I.getArgOperand(2)), Flags)); 6353 return; 6354 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6355 case Intrinsic::INTRINSIC: 6356 #include "llvm/IR/ConstrainedOps.def" 6357 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6358 return; 6359 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6360 #include "llvm/IR/VPIntrinsics.def" 6361 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6362 return; 6363 case Intrinsic::fptrunc_round: { 6364 // Get the last argument, the metadata and convert it to an integer in the 6365 // call 6366 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6367 Optional<RoundingMode> RoundMode = 6368 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6369 6370 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6371 6372 // Propagate fast-math-flags from IR to node(s). 6373 SDNodeFlags Flags; 6374 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6375 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6376 6377 SDValue Result; 6378 Result = DAG.getNode( 6379 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6380 DAG.getTargetConstant((int)RoundMode.getValue(), sdl, 6381 TLI.getPointerTy(DAG.getDataLayout()))); 6382 setValue(&I, Result); 6383 6384 return; 6385 } 6386 case Intrinsic::fmuladd: { 6387 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6388 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6389 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6390 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6391 getValue(I.getArgOperand(0)).getValueType(), 6392 getValue(I.getArgOperand(0)), 6393 getValue(I.getArgOperand(1)), 6394 getValue(I.getArgOperand(2)), Flags)); 6395 } else { 6396 // TODO: Intrinsic calls should have fast-math-flags. 6397 SDValue Mul = DAG.getNode( 6398 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6399 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6400 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6401 getValue(I.getArgOperand(0)).getValueType(), 6402 Mul, getValue(I.getArgOperand(2)), Flags); 6403 setValue(&I, Add); 6404 } 6405 return; 6406 } 6407 case Intrinsic::convert_to_fp16: 6408 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6409 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6410 getValue(I.getArgOperand(0)), 6411 DAG.getTargetConstant(0, sdl, 6412 MVT::i32)))); 6413 return; 6414 case Intrinsic::convert_from_fp16: 6415 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6416 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6417 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6418 getValue(I.getArgOperand(0))))); 6419 return; 6420 case Intrinsic::fptosi_sat: { 6421 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6422 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6423 getValue(I.getArgOperand(0)), 6424 DAG.getValueType(VT.getScalarType()))); 6425 return; 6426 } 6427 case Intrinsic::fptoui_sat: { 6428 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6429 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6430 getValue(I.getArgOperand(0)), 6431 DAG.getValueType(VT.getScalarType()))); 6432 return; 6433 } 6434 case Intrinsic::set_rounding: 6435 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6436 {getRoot(), getValue(I.getArgOperand(0))}); 6437 setValue(&I, Res); 6438 DAG.setRoot(Res.getValue(0)); 6439 return; 6440 case Intrinsic::is_fpclass: { 6441 const DataLayout DLayout = DAG.getDataLayout(); 6442 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6443 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6444 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6445 MachineFunction &MF = DAG.getMachineFunction(); 6446 const Function &F = MF.getFunction(); 6447 SDValue Op = getValue(I.getArgOperand(0)); 6448 SDNodeFlags Flags; 6449 Flags.setNoFPExcept( 6450 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6451 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6452 // expansion can use illegal types. Making expansion early allows 6453 // legalizing these types prior to selection. 6454 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6455 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6456 setValue(&I, Result); 6457 return; 6458 } 6459 6460 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6461 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6462 setValue(&I, V); 6463 return; 6464 } 6465 case Intrinsic::pcmarker: { 6466 SDValue Tmp = getValue(I.getArgOperand(0)); 6467 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6468 return; 6469 } 6470 case Intrinsic::readcyclecounter: { 6471 SDValue Op = getRoot(); 6472 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6473 DAG.getVTList(MVT::i64, MVT::Other), Op); 6474 setValue(&I, Res); 6475 DAG.setRoot(Res.getValue(1)); 6476 return; 6477 } 6478 case Intrinsic::bitreverse: 6479 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6480 getValue(I.getArgOperand(0)).getValueType(), 6481 getValue(I.getArgOperand(0)))); 6482 return; 6483 case Intrinsic::bswap: 6484 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6485 getValue(I.getArgOperand(0)).getValueType(), 6486 getValue(I.getArgOperand(0)))); 6487 return; 6488 case Intrinsic::cttz: { 6489 SDValue Arg = getValue(I.getArgOperand(0)); 6490 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6491 EVT Ty = Arg.getValueType(); 6492 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6493 sdl, Ty, Arg)); 6494 return; 6495 } 6496 case Intrinsic::ctlz: { 6497 SDValue Arg = getValue(I.getArgOperand(0)); 6498 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6499 EVT Ty = Arg.getValueType(); 6500 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6501 sdl, Ty, Arg)); 6502 return; 6503 } 6504 case Intrinsic::ctpop: { 6505 SDValue Arg = getValue(I.getArgOperand(0)); 6506 EVT Ty = Arg.getValueType(); 6507 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6508 return; 6509 } 6510 case Intrinsic::fshl: 6511 case Intrinsic::fshr: { 6512 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6513 SDValue X = getValue(I.getArgOperand(0)); 6514 SDValue Y = getValue(I.getArgOperand(1)); 6515 SDValue Z = getValue(I.getArgOperand(2)); 6516 EVT VT = X.getValueType(); 6517 6518 if (X == Y) { 6519 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6520 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6521 } else { 6522 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6523 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6524 } 6525 return; 6526 } 6527 case Intrinsic::sadd_sat: { 6528 SDValue Op1 = getValue(I.getArgOperand(0)); 6529 SDValue Op2 = getValue(I.getArgOperand(1)); 6530 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6531 return; 6532 } 6533 case Intrinsic::uadd_sat: { 6534 SDValue Op1 = getValue(I.getArgOperand(0)); 6535 SDValue Op2 = getValue(I.getArgOperand(1)); 6536 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6537 return; 6538 } 6539 case Intrinsic::ssub_sat: { 6540 SDValue Op1 = getValue(I.getArgOperand(0)); 6541 SDValue Op2 = getValue(I.getArgOperand(1)); 6542 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6543 return; 6544 } 6545 case Intrinsic::usub_sat: { 6546 SDValue Op1 = getValue(I.getArgOperand(0)); 6547 SDValue Op2 = getValue(I.getArgOperand(1)); 6548 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6549 return; 6550 } 6551 case Intrinsic::sshl_sat: { 6552 SDValue Op1 = getValue(I.getArgOperand(0)); 6553 SDValue Op2 = getValue(I.getArgOperand(1)); 6554 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6555 return; 6556 } 6557 case Intrinsic::ushl_sat: { 6558 SDValue Op1 = getValue(I.getArgOperand(0)); 6559 SDValue Op2 = getValue(I.getArgOperand(1)); 6560 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6561 return; 6562 } 6563 case Intrinsic::smul_fix: 6564 case Intrinsic::umul_fix: 6565 case Intrinsic::smul_fix_sat: 6566 case Intrinsic::umul_fix_sat: { 6567 SDValue Op1 = getValue(I.getArgOperand(0)); 6568 SDValue Op2 = getValue(I.getArgOperand(1)); 6569 SDValue Op3 = getValue(I.getArgOperand(2)); 6570 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6571 Op1.getValueType(), Op1, Op2, Op3)); 6572 return; 6573 } 6574 case Intrinsic::sdiv_fix: 6575 case Intrinsic::udiv_fix: 6576 case Intrinsic::sdiv_fix_sat: 6577 case Intrinsic::udiv_fix_sat: { 6578 SDValue Op1 = getValue(I.getArgOperand(0)); 6579 SDValue Op2 = getValue(I.getArgOperand(1)); 6580 SDValue Op3 = getValue(I.getArgOperand(2)); 6581 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6582 Op1, Op2, Op3, DAG, TLI)); 6583 return; 6584 } 6585 case Intrinsic::smax: { 6586 SDValue Op1 = getValue(I.getArgOperand(0)); 6587 SDValue Op2 = getValue(I.getArgOperand(1)); 6588 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6589 return; 6590 } 6591 case Intrinsic::smin: { 6592 SDValue Op1 = getValue(I.getArgOperand(0)); 6593 SDValue Op2 = getValue(I.getArgOperand(1)); 6594 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6595 return; 6596 } 6597 case Intrinsic::umax: { 6598 SDValue Op1 = getValue(I.getArgOperand(0)); 6599 SDValue Op2 = getValue(I.getArgOperand(1)); 6600 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6601 return; 6602 } 6603 case Intrinsic::umin: { 6604 SDValue Op1 = getValue(I.getArgOperand(0)); 6605 SDValue Op2 = getValue(I.getArgOperand(1)); 6606 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6607 return; 6608 } 6609 case Intrinsic::abs: { 6610 // TODO: Preserve "int min is poison" arg in SDAG? 6611 SDValue Op1 = getValue(I.getArgOperand(0)); 6612 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6613 return; 6614 } 6615 case Intrinsic::stacksave: { 6616 SDValue Op = getRoot(); 6617 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6618 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6619 setValue(&I, Res); 6620 DAG.setRoot(Res.getValue(1)); 6621 return; 6622 } 6623 case Intrinsic::stackrestore: 6624 Res = getValue(I.getArgOperand(0)); 6625 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6626 return; 6627 case Intrinsic::get_dynamic_area_offset: { 6628 SDValue Op = getRoot(); 6629 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6630 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6631 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6632 // target. 6633 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6634 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6635 " intrinsic!"); 6636 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6637 Op); 6638 DAG.setRoot(Op); 6639 setValue(&I, Res); 6640 return; 6641 } 6642 case Intrinsic::stackguard: { 6643 MachineFunction &MF = DAG.getMachineFunction(); 6644 const Module &M = *MF.getFunction().getParent(); 6645 SDValue Chain = getRoot(); 6646 if (TLI.useLoadStackGuardNode()) { 6647 Res = getLoadStackGuard(DAG, sdl, Chain); 6648 } else { 6649 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6650 const Value *Global = TLI.getSDagStackGuard(M); 6651 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6652 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6653 MachinePointerInfo(Global, 0), Align, 6654 MachineMemOperand::MOVolatile); 6655 } 6656 if (TLI.useStackGuardXorFP()) 6657 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6658 DAG.setRoot(Chain); 6659 setValue(&I, Res); 6660 return; 6661 } 6662 case Intrinsic::stackprotector: { 6663 // Emit code into the DAG to store the stack guard onto the stack. 6664 MachineFunction &MF = DAG.getMachineFunction(); 6665 MachineFrameInfo &MFI = MF.getFrameInfo(); 6666 SDValue Src, Chain = getRoot(); 6667 6668 if (TLI.useLoadStackGuardNode()) 6669 Src = getLoadStackGuard(DAG, sdl, Chain); 6670 else 6671 Src = getValue(I.getArgOperand(0)); // The guard's value. 6672 6673 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6674 6675 int FI = FuncInfo.StaticAllocaMap[Slot]; 6676 MFI.setStackProtectorIndex(FI); 6677 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6678 6679 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6680 6681 // Store the stack protector onto the stack. 6682 Res = DAG.getStore( 6683 Chain, sdl, Src, FIN, 6684 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6685 MaybeAlign(), MachineMemOperand::MOVolatile); 6686 setValue(&I, Res); 6687 DAG.setRoot(Res); 6688 return; 6689 } 6690 case Intrinsic::objectsize: 6691 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6692 6693 case Intrinsic::is_constant: 6694 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6695 6696 case Intrinsic::annotation: 6697 case Intrinsic::ptr_annotation: 6698 case Intrinsic::launder_invariant_group: 6699 case Intrinsic::strip_invariant_group: 6700 // Drop the intrinsic, but forward the value 6701 setValue(&I, getValue(I.getOperand(0))); 6702 return; 6703 6704 case Intrinsic::assume: 6705 case Intrinsic::experimental_noalias_scope_decl: 6706 case Intrinsic::var_annotation: 6707 case Intrinsic::sideeffect: 6708 // Discard annotate attributes, noalias scope declarations, assumptions, and 6709 // artificial side-effects. 6710 return; 6711 6712 case Intrinsic::codeview_annotation: { 6713 // Emit a label associated with this metadata. 6714 MachineFunction &MF = DAG.getMachineFunction(); 6715 MCSymbol *Label = 6716 MF.getMMI().getContext().createTempSymbol("annotation", true); 6717 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6718 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6719 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6720 DAG.setRoot(Res); 6721 return; 6722 } 6723 6724 case Intrinsic::init_trampoline: { 6725 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6726 6727 SDValue Ops[6]; 6728 Ops[0] = getRoot(); 6729 Ops[1] = getValue(I.getArgOperand(0)); 6730 Ops[2] = getValue(I.getArgOperand(1)); 6731 Ops[3] = getValue(I.getArgOperand(2)); 6732 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6733 Ops[5] = DAG.getSrcValue(F); 6734 6735 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6736 6737 DAG.setRoot(Res); 6738 return; 6739 } 6740 case Intrinsic::adjust_trampoline: 6741 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6742 TLI.getPointerTy(DAG.getDataLayout()), 6743 getValue(I.getArgOperand(0)))); 6744 return; 6745 case Intrinsic::gcroot: { 6746 assert(DAG.getMachineFunction().getFunction().hasGC() && 6747 "only valid in functions with gc specified, enforced by Verifier"); 6748 assert(GFI && "implied by previous"); 6749 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6750 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6751 6752 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6753 GFI->addStackRoot(FI->getIndex(), TypeMap); 6754 return; 6755 } 6756 case Intrinsic::gcread: 6757 case Intrinsic::gcwrite: 6758 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6759 case Intrinsic::flt_rounds: 6760 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6761 setValue(&I, Res); 6762 DAG.setRoot(Res.getValue(1)); 6763 return; 6764 6765 case Intrinsic::expect: 6766 // Just replace __builtin_expect(exp, c) with EXP. 6767 setValue(&I, getValue(I.getArgOperand(0))); 6768 return; 6769 6770 case Intrinsic::ubsantrap: 6771 case Intrinsic::debugtrap: 6772 case Intrinsic::trap: { 6773 StringRef TrapFuncName = 6774 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6775 if (TrapFuncName.empty()) { 6776 switch (Intrinsic) { 6777 case Intrinsic::trap: 6778 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6779 break; 6780 case Intrinsic::debugtrap: 6781 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6782 break; 6783 case Intrinsic::ubsantrap: 6784 DAG.setRoot(DAG.getNode( 6785 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6786 DAG.getTargetConstant( 6787 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6788 MVT::i32))); 6789 break; 6790 default: llvm_unreachable("unknown trap intrinsic"); 6791 } 6792 return; 6793 } 6794 TargetLowering::ArgListTy Args; 6795 if (Intrinsic == Intrinsic::ubsantrap) { 6796 Args.push_back(TargetLoweringBase::ArgListEntry()); 6797 Args[0].Val = I.getArgOperand(0); 6798 Args[0].Node = getValue(Args[0].Val); 6799 Args[0].Ty = Args[0].Val->getType(); 6800 } 6801 6802 TargetLowering::CallLoweringInfo CLI(DAG); 6803 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6804 CallingConv::C, I.getType(), 6805 DAG.getExternalSymbol(TrapFuncName.data(), 6806 TLI.getPointerTy(DAG.getDataLayout())), 6807 std::move(Args)); 6808 6809 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6810 DAG.setRoot(Result.second); 6811 return; 6812 } 6813 6814 case Intrinsic::uadd_with_overflow: 6815 case Intrinsic::sadd_with_overflow: 6816 case Intrinsic::usub_with_overflow: 6817 case Intrinsic::ssub_with_overflow: 6818 case Intrinsic::umul_with_overflow: 6819 case Intrinsic::smul_with_overflow: { 6820 ISD::NodeType Op; 6821 switch (Intrinsic) { 6822 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6823 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6824 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6825 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6826 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6827 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6828 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6829 } 6830 SDValue Op1 = getValue(I.getArgOperand(0)); 6831 SDValue Op2 = getValue(I.getArgOperand(1)); 6832 6833 EVT ResultVT = Op1.getValueType(); 6834 EVT OverflowVT = MVT::i1; 6835 if (ResultVT.isVector()) 6836 OverflowVT = EVT::getVectorVT( 6837 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6838 6839 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6840 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6841 return; 6842 } 6843 case Intrinsic::prefetch: { 6844 SDValue Ops[5]; 6845 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6846 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6847 Ops[0] = DAG.getRoot(); 6848 Ops[1] = getValue(I.getArgOperand(0)); 6849 Ops[2] = getValue(I.getArgOperand(1)); 6850 Ops[3] = getValue(I.getArgOperand(2)); 6851 Ops[4] = getValue(I.getArgOperand(3)); 6852 SDValue Result = DAG.getMemIntrinsicNode( 6853 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6854 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6855 /* align */ None, Flags); 6856 6857 // Chain the prefetch in parallell with any pending loads, to stay out of 6858 // the way of later optimizations. 6859 PendingLoads.push_back(Result); 6860 Result = getRoot(); 6861 DAG.setRoot(Result); 6862 return; 6863 } 6864 case Intrinsic::lifetime_start: 6865 case Intrinsic::lifetime_end: { 6866 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6867 // Stack coloring is not enabled in O0, discard region information. 6868 if (TM.getOptLevel() == CodeGenOpt::None) 6869 return; 6870 6871 const int64_t ObjectSize = 6872 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6873 Value *const ObjectPtr = I.getArgOperand(1); 6874 SmallVector<const Value *, 4> Allocas; 6875 getUnderlyingObjects(ObjectPtr, Allocas); 6876 6877 for (const Value *Alloca : Allocas) { 6878 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6879 6880 // Could not find an Alloca. 6881 if (!LifetimeObject) 6882 continue; 6883 6884 // First check that the Alloca is static, otherwise it won't have a 6885 // valid frame index. 6886 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6887 if (SI == FuncInfo.StaticAllocaMap.end()) 6888 return; 6889 6890 const int FrameIndex = SI->second; 6891 int64_t Offset; 6892 if (GetPointerBaseWithConstantOffset( 6893 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6894 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6895 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6896 Offset); 6897 DAG.setRoot(Res); 6898 } 6899 return; 6900 } 6901 case Intrinsic::pseudoprobe: { 6902 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6903 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6904 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6905 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6906 DAG.setRoot(Res); 6907 return; 6908 } 6909 case Intrinsic::invariant_start: 6910 // Discard region information. 6911 setValue(&I, 6912 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6913 return; 6914 case Intrinsic::invariant_end: 6915 // Discard region information. 6916 return; 6917 case Intrinsic::clear_cache: 6918 /// FunctionName may be null. 6919 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6920 lowerCallToExternalSymbol(I, FunctionName); 6921 return; 6922 case Intrinsic::donothing: 6923 case Intrinsic::seh_try_begin: 6924 case Intrinsic::seh_scope_begin: 6925 case Intrinsic::seh_try_end: 6926 case Intrinsic::seh_scope_end: 6927 // ignore 6928 return; 6929 case Intrinsic::experimental_stackmap: 6930 visitStackmap(I); 6931 return; 6932 case Intrinsic::experimental_patchpoint_void: 6933 case Intrinsic::experimental_patchpoint_i64: 6934 visitPatchpoint(I); 6935 return; 6936 case Intrinsic::experimental_gc_statepoint: 6937 LowerStatepoint(cast<GCStatepointInst>(I)); 6938 return; 6939 case Intrinsic::experimental_gc_result: 6940 visitGCResult(cast<GCResultInst>(I)); 6941 return; 6942 case Intrinsic::experimental_gc_relocate: 6943 visitGCRelocate(cast<GCRelocateInst>(I)); 6944 return; 6945 case Intrinsic::instrprof_cover: 6946 llvm_unreachable("instrprof failed to lower a cover"); 6947 case Intrinsic::instrprof_increment: 6948 llvm_unreachable("instrprof failed to lower an increment"); 6949 case Intrinsic::instrprof_value_profile: 6950 llvm_unreachable("instrprof failed to lower a value profiling call"); 6951 case Intrinsic::localescape: { 6952 MachineFunction &MF = DAG.getMachineFunction(); 6953 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6954 6955 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6956 // is the same on all targets. 6957 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6958 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6959 if (isa<ConstantPointerNull>(Arg)) 6960 continue; // Skip null pointers. They represent a hole in index space. 6961 AllocaInst *Slot = cast<AllocaInst>(Arg); 6962 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6963 "can only escape static allocas"); 6964 int FI = FuncInfo.StaticAllocaMap[Slot]; 6965 MCSymbol *FrameAllocSym = 6966 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6967 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6968 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6969 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6970 .addSym(FrameAllocSym) 6971 .addFrameIndex(FI); 6972 } 6973 6974 return; 6975 } 6976 6977 case Intrinsic::localrecover: { 6978 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6979 MachineFunction &MF = DAG.getMachineFunction(); 6980 6981 // Get the symbol that defines the frame offset. 6982 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6983 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6984 unsigned IdxVal = 6985 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6986 MCSymbol *FrameAllocSym = 6987 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6988 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6989 6990 Value *FP = I.getArgOperand(1); 6991 SDValue FPVal = getValue(FP); 6992 EVT PtrVT = FPVal.getValueType(); 6993 6994 // Create a MCSymbol for the label to avoid any target lowering 6995 // that would make this PC relative. 6996 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6997 SDValue OffsetVal = 6998 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6999 7000 // Add the offset to the FP. 7001 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7002 setValue(&I, Add); 7003 7004 return; 7005 } 7006 7007 case Intrinsic::eh_exceptionpointer: 7008 case Intrinsic::eh_exceptioncode: { 7009 // Get the exception pointer vreg, copy from it, and resize it to fit. 7010 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7011 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7012 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7013 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7014 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7015 if (Intrinsic == Intrinsic::eh_exceptioncode) 7016 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7017 setValue(&I, N); 7018 return; 7019 } 7020 case Intrinsic::xray_customevent: { 7021 // Here we want to make sure that the intrinsic behaves as if it has a 7022 // specific calling convention, and only for x86_64. 7023 // FIXME: Support other platforms later. 7024 const auto &Triple = DAG.getTarget().getTargetTriple(); 7025 if (Triple.getArch() != Triple::x86_64) 7026 return; 7027 7028 SmallVector<SDValue, 8> Ops; 7029 7030 // We want to say that we always want the arguments in registers. 7031 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7032 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7033 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7034 SDValue Chain = getRoot(); 7035 Ops.push_back(LogEntryVal); 7036 Ops.push_back(StrSizeVal); 7037 Ops.push_back(Chain); 7038 7039 // We need to enforce the calling convention for the callsite, so that 7040 // argument ordering is enforced correctly, and that register allocation can 7041 // see that some registers may be assumed clobbered and have to preserve 7042 // them across calls to the intrinsic. 7043 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7044 sdl, NodeTys, Ops); 7045 SDValue patchableNode = SDValue(MN, 0); 7046 DAG.setRoot(patchableNode); 7047 setValue(&I, patchableNode); 7048 return; 7049 } 7050 case Intrinsic::xray_typedevent: { 7051 // Here we want to make sure that the intrinsic behaves as if it has a 7052 // specific calling convention, and only for x86_64. 7053 // FIXME: Support other platforms later. 7054 const auto &Triple = DAG.getTarget().getTargetTriple(); 7055 if (Triple.getArch() != Triple::x86_64) 7056 return; 7057 7058 SmallVector<SDValue, 8> Ops; 7059 7060 // We want to say that we always want the arguments in registers. 7061 // It's unclear to me how manipulating the selection DAG here forces callers 7062 // to provide arguments in registers instead of on the stack. 7063 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7064 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7065 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7066 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7067 SDValue Chain = getRoot(); 7068 Ops.push_back(LogTypeId); 7069 Ops.push_back(LogEntryVal); 7070 Ops.push_back(StrSizeVal); 7071 Ops.push_back(Chain); 7072 7073 // We need to enforce the calling convention for the callsite, so that 7074 // argument ordering is enforced correctly, and that register allocation can 7075 // see that some registers may be assumed clobbered and have to preserve 7076 // them across calls to the intrinsic. 7077 MachineSDNode *MN = DAG.getMachineNode( 7078 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7079 SDValue patchableNode = SDValue(MN, 0); 7080 DAG.setRoot(patchableNode); 7081 setValue(&I, patchableNode); 7082 return; 7083 } 7084 case Intrinsic::experimental_deoptimize: 7085 LowerDeoptimizeCall(&I); 7086 return; 7087 case Intrinsic::experimental_stepvector: 7088 visitStepVector(I); 7089 return; 7090 case Intrinsic::vector_reduce_fadd: 7091 case Intrinsic::vector_reduce_fmul: 7092 case Intrinsic::vector_reduce_add: 7093 case Intrinsic::vector_reduce_mul: 7094 case Intrinsic::vector_reduce_and: 7095 case Intrinsic::vector_reduce_or: 7096 case Intrinsic::vector_reduce_xor: 7097 case Intrinsic::vector_reduce_smax: 7098 case Intrinsic::vector_reduce_smin: 7099 case Intrinsic::vector_reduce_umax: 7100 case Intrinsic::vector_reduce_umin: 7101 case Intrinsic::vector_reduce_fmax: 7102 case Intrinsic::vector_reduce_fmin: 7103 visitVectorReduce(I, Intrinsic); 7104 return; 7105 7106 case Intrinsic::icall_branch_funnel: { 7107 SmallVector<SDValue, 16> Ops; 7108 Ops.push_back(getValue(I.getArgOperand(0))); 7109 7110 int64_t Offset; 7111 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7112 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7113 if (!Base) 7114 report_fatal_error( 7115 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7116 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7117 7118 struct BranchFunnelTarget { 7119 int64_t Offset; 7120 SDValue Target; 7121 }; 7122 SmallVector<BranchFunnelTarget, 8> Targets; 7123 7124 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7125 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7126 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7127 if (ElemBase != Base) 7128 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7129 "to the same GlobalValue"); 7130 7131 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7132 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7133 if (!GA) 7134 report_fatal_error( 7135 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7136 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7137 GA->getGlobal(), sdl, Val.getValueType(), 7138 GA->getOffset())}); 7139 } 7140 llvm::sort(Targets, 7141 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7142 return T1.Offset < T2.Offset; 7143 }); 7144 7145 for (auto &T : Targets) { 7146 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7147 Ops.push_back(T.Target); 7148 } 7149 7150 Ops.push_back(DAG.getRoot()); // Chain 7151 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7152 MVT::Other, Ops), 7153 0); 7154 DAG.setRoot(N); 7155 setValue(&I, N); 7156 HasTailCall = true; 7157 return; 7158 } 7159 7160 case Intrinsic::wasm_landingpad_index: 7161 // Information this intrinsic contained has been transferred to 7162 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7163 // delete it now. 7164 return; 7165 7166 case Intrinsic::aarch64_settag: 7167 case Intrinsic::aarch64_settag_zero: { 7168 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7169 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7170 SDValue Val = TSI.EmitTargetCodeForSetTag( 7171 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7172 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7173 ZeroMemory); 7174 DAG.setRoot(Val); 7175 setValue(&I, Val); 7176 return; 7177 } 7178 case Intrinsic::ptrmask: { 7179 SDValue Ptr = getValue(I.getOperand(0)); 7180 SDValue Const = getValue(I.getOperand(1)); 7181 7182 EVT PtrVT = Ptr.getValueType(); 7183 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7184 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7185 return; 7186 } 7187 case Intrinsic::get_active_lane_mask: { 7188 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7189 SDValue Index = getValue(I.getOperand(0)); 7190 EVT ElementVT = Index.getValueType(); 7191 7192 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7193 visitTargetIntrinsic(I, Intrinsic); 7194 return; 7195 } 7196 7197 SDValue TripCount = getValue(I.getOperand(1)); 7198 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7199 7200 SDValue VectorIndex, VectorTripCount; 7201 if (VecTy.isScalableVector()) { 7202 VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); 7203 VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); 7204 } else { 7205 VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); 7206 VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); 7207 } 7208 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7209 SDValue VectorInduction = DAG.getNode( 7210 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7211 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7212 VectorTripCount, ISD::CondCode::SETULT); 7213 setValue(&I, SetCC); 7214 return; 7215 } 7216 case Intrinsic::experimental_vector_insert: { 7217 SDValue Vec = getValue(I.getOperand(0)); 7218 SDValue SubVec = getValue(I.getOperand(1)); 7219 SDValue Index = getValue(I.getOperand(2)); 7220 7221 // The intrinsic's index type is i64, but the SDNode requires an index type 7222 // suitable for the target. Convert the index as required. 7223 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7224 if (Index.getValueType() != VectorIdxTy) 7225 Index = DAG.getVectorIdxConstant( 7226 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7227 7228 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7229 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7230 Index)); 7231 return; 7232 } 7233 case Intrinsic::experimental_vector_extract: { 7234 SDValue Vec = getValue(I.getOperand(0)); 7235 SDValue Index = getValue(I.getOperand(1)); 7236 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7237 7238 // The intrinsic's index type is i64, but the SDNode requires an index type 7239 // suitable for the target. Convert the index as required. 7240 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7241 if (Index.getValueType() != VectorIdxTy) 7242 Index = DAG.getVectorIdxConstant( 7243 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7244 7245 setValue(&I, 7246 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7247 return; 7248 } 7249 case Intrinsic::experimental_vector_reverse: 7250 visitVectorReverse(I); 7251 return; 7252 case Intrinsic::experimental_vector_splice: 7253 visitVectorSplice(I); 7254 return; 7255 } 7256 } 7257 7258 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7259 const ConstrainedFPIntrinsic &FPI) { 7260 SDLoc sdl = getCurSDLoc(); 7261 7262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7263 SmallVector<EVT, 4> ValueVTs; 7264 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7265 ValueVTs.push_back(MVT::Other); // Out chain 7266 7267 // We do not need to serialize constrained FP intrinsics against 7268 // each other or against (nonvolatile) loads, so they can be 7269 // chained like loads. 7270 SDValue Chain = DAG.getRoot(); 7271 SmallVector<SDValue, 4> Opers; 7272 Opers.push_back(Chain); 7273 if (FPI.isUnaryOp()) { 7274 Opers.push_back(getValue(FPI.getArgOperand(0))); 7275 } else if (FPI.isTernaryOp()) { 7276 Opers.push_back(getValue(FPI.getArgOperand(0))); 7277 Opers.push_back(getValue(FPI.getArgOperand(1))); 7278 Opers.push_back(getValue(FPI.getArgOperand(2))); 7279 } else { 7280 Opers.push_back(getValue(FPI.getArgOperand(0))); 7281 Opers.push_back(getValue(FPI.getArgOperand(1))); 7282 } 7283 7284 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7285 assert(Result.getNode()->getNumValues() == 2); 7286 7287 // Push node to the appropriate list so that future instructions can be 7288 // chained up correctly. 7289 SDValue OutChain = Result.getValue(1); 7290 switch (EB) { 7291 case fp::ExceptionBehavior::ebIgnore: 7292 // The only reason why ebIgnore nodes still need to be chained is that 7293 // they might depend on the current rounding mode, and therefore must 7294 // not be moved across instruction that may change that mode. 7295 LLVM_FALLTHROUGH; 7296 case fp::ExceptionBehavior::ebMayTrap: 7297 // These must not be moved across calls or instructions that may change 7298 // floating-point exception masks. 7299 PendingConstrainedFP.push_back(OutChain); 7300 break; 7301 case fp::ExceptionBehavior::ebStrict: 7302 // These must not be moved across calls or instructions that may change 7303 // floating-point exception masks or read floating-point exception flags. 7304 // In addition, they cannot be optimized out even if unused. 7305 PendingConstrainedFPStrict.push_back(OutChain); 7306 break; 7307 } 7308 }; 7309 7310 SDVTList VTs = DAG.getVTList(ValueVTs); 7311 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7312 7313 SDNodeFlags Flags; 7314 if (EB == fp::ExceptionBehavior::ebIgnore) 7315 Flags.setNoFPExcept(true); 7316 7317 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7318 Flags.copyFMF(*FPOp); 7319 7320 unsigned Opcode; 7321 switch (FPI.getIntrinsicID()) { 7322 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7323 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7324 case Intrinsic::INTRINSIC: \ 7325 Opcode = ISD::STRICT_##DAGN; \ 7326 break; 7327 #include "llvm/IR/ConstrainedOps.def" 7328 case Intrinsic::experimental_constrained_fmuladd: { 7329 Opcode = ISD::STRICT_FMA; 7330 // Break fmuladd into fmul and fadd. 7331 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7332 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7333 ValueVTs[0])) { 7334 Opers.pop_back(); 7335 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7336 pushOutChain(Mul, EB); 7337 Opcode = ISD::STRICT_FADD; 7338 Opers.clear(); 7339 Opers.push_back(Mul.getValue(1)); 7340 Opers.push_back(Mul.getValue(0)); 7341 Opers.push_back(getValue(FPI.getArgOperand(2))); 7342 } 7343 break; 7344 } 7345 } 7346 7347 // A few strict DAG nodes carry additional operands that are not 7348 // set up by the default code above. 7349 switch (Opcode) { 7350 default: break; 7351 case ISD::STRICT_FP_ROUND: 7352 Opers.push_back( 7353 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7354 break; 7355 case ISD::STRICT_FSETCC: 7356 case ISD::STRICT_FSETCCS: { 7357 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7358 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7359 if (TM.Options.NoNaNsFPMath) 7360 Condition = getFCmpCodeWithoutNaN(Condition); 7361 Opers.push_back(DAG.getCondCode(Condition)); 7362 break; 7363 } 7364 } 7365 7366 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7367 pushOutChain(Result, EB); 7368 7369 SDValue FPResult = Result.getValue(0); 7370 setValue(&FPI, FPResult); 7371 } 7372 7373 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7374 Optional<unsigned> ResOPC; 7375 switch (VPIntrin.getIntrinsicID()) { 7376 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7377 case Intrinsic::VPID: \ 7378 ResOPC = ISD::VPSD; \ 7379 break; 7380 #include "llvm/IR/VPIntrinsics.def" 7381 } 7382 7383 if (!ResOPC.hasValue()) 7384 llvm_unreachable( 7385 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7386 7387 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7388 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7389 if (VPIntrin.getFastMathFlags().allowReassoc()) 7390 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7391 : ISD::VP_REDUCE_FMUL; 7392 } 7393 7394 return ResOPC.getValue(); 7395 } 7396 7397 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT, 7398 SmallVector<SDValue, 7> &OpValues, 7399 bool IsGather) { 7400 SDLoc DL = getCurSDLoc(); 7401 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7402 Value *PtrOperand = VPIntrin.getArgOperand(0); 7403 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7404 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7405 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7406 SDValue LD; 7407 bool AddToChain = true; 7408 if (!IsGather) { 7409 // Do not serialize variable-length loads of constant memory with 7410 // anything. 7411 if (!Alignment) 7412 Alignment = DAG.getEVTAlign(VT); 7413 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7414 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7415 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7416 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7417 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7418 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7419 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7420 MMO, false /*IsExpanding */); 7421 } else { 7422 if (!Alignment) 7423 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7424 unsigned AS = 7425 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7426 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7427 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7428 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7429 SDValue Base, Index, Scale; 7430 ISD::MemIndexType IndexType; 7431 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7432 this, VPIntrin.getParent(), 7433 VT.getScalarStoreSize()); 7434 if (!UniformBase) { 7435 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7436 Index = getValue(PtrOperand); 7437 IndexType = ISD::SIGNED_SCALED; 7438 Scale = 7439 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7440 } 7441 EVT IdxVT = Index.getValueType(); 7442 EVT EltTy = IdxVT.getVectorElementType(); 7443 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7444 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7445 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7446 } 7447 LD = DAG.getGatherVP( 7448 DAG.getVTList(VT, MVT::Other), VT, DL, 7449 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7450 IndexType); 7451 } 7452 if (AddToChain) 7453 PendingLoads.push_back(LD.getValue(1)); 7454 setValue(&VPIntrin, LD); 7455 } 7456 7457 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin, 7458 SmallVector<SDValue, 7> &OpValues, 7459 bool IsScatter) { 7460 SDLoc DL = getCurSDLoc(); 7461 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7462 Value *PtrOperand = VPIntrin.getArgOperand(1); 7463 EVT VT = OpValues[0].getValueType(); 7464 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7465 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7466 SDValue ST; 7467 if (!IsScatter) { 7468 if (!Alignment) 7469 Alignment = DAG.getEVTAlign(VT); 7470 SDValue Ptr = OpValues[1]; 7471 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7472 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7473 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7474 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7475 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7476 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7477 /* IsTruncating */ false, /*IsCompressing*/ false); 7478 } else { 7479 if (!Alignment) 7480 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7481 unsigned AS = 7482 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7483 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7484 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7485 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7486 SDValue Base, Index, Scale; 7487 ISD::MemIndexType IndexType; 7488 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7489 this, VPIntrin.getParent(), 7490 VT.getScalarStoreSize()); 7491 if (!UniformBase) { 7492 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7493 Index = getValue(PtrOperand); 7494 IndexType = ISD::SIGNED_SCALED; 7495 Scale = 7496 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7497 } 7498 EVT IdxVT = Index.getValueType(); 7499 EVT EltTy = IdxVT.getVectorElementType(); 7500 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7501 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7502 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7503 } 7504 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7505 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7506 OpValues[2], OpValues[3]}, 7507 MMO, IndexType); 7508 } 7509 DAG.setRoot(ST); 7510 setValue(&VPIntrin, ST); 7511 } 7512 7513 void SelectionDAGBuilder::visitVPStridedLoad( 7514 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7515 SDLoc DL = getCurSDLoc(); 7516 Value *PtrOperand = VPIntrin.getArgOperand(0); 7517 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7518 if (!Alignment) 7519 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7520 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7521 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7522 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7523 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7524 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7525 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7526 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7527 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7528 7529 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7530 OpValues[2], OpValues[3], MMO, 7531 false /*IsExpanding*/); 7532 7533 if (AddToChain) 7534 PendingLoads.push_back(LD.getValue(1)); 7535 setValue(&VPIntrin, LD); 7536 } 7537 7538 void SelectionDAGBuilder::visitVPStridedStore( 7539 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7540 SDLoc DL = getCurSDLoc(); 7541 Value *PtrOperand = VPIntrin.getArgOperand(1); 7542 EVT VT = OpValues[0].getValueType(); 7543 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7544 if (!Alignment) 7545 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7546 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7547 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7548 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7549 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7550 7551 SDValue ST = DAG.getStridedStoreVP( 7552 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7553 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7554 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7555 /*IsCompressing*/ false); 7556 7557 DAG.setRoot(ST); 7558 setValue(&VPIntrin, ST); 7559 } 7560 7561 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7563 SDLoc DL = getCurSDLoc(); 7564 7565 ISD::CondCode Condition; 7566 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7567 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7568 if (IsFP) { 7569 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7570 // flags, but calls that don't return floating-point types can't be 7571 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7572 Condition = getFCmpCondCode(CondCode); 7573 if (TM.Options.NoNaNsFPMath) 7574 Condition = getFCmpCodeWithoutNaN(Condition); 7575 } else { 7576 Condition = getICmpCondCode(CondCode); 7577 } 7578 7579 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7580 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7581 // #2 is the condition code 7582 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7583 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7584 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7585 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7586 "Unexpected target EVL type"); 7587 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7588 7589 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7590 VPIntrin.getType()); 7591 setValue(&VPIntrin, 7592 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7593 } 7594 7595 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7596 const VPIntrinsic &VPIntrin) { 7597 SDLoc DL = getCurSDLoc(); 7598 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7599 7600 auto IID = VPIntrin.getIntrinsicID(); 7601 7602 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7603 return visitVPCmp(*CmpI); 7604 7605 SmallVector<EVT, 4> ValueVTs; 7606 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7607 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7608 SDVTList VTs = DAG.getVTList(ValueVTs); 7609 7610 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7611 7612 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7613 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7614 "Unexpected target EVL type"); 7615 7616 // Request operands. 7617 SmallVector<SDValue, 7> OpValues; 7618 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7619 auto Op = getValue(VPIntrin.getArgOperand(I)); 7620 if (I == EVLParamPos) 7621 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7622 OpValues.push_back(Op); 7623 } 7624 7625 switch (Opcode) { 7626 default: { 7627 SDNodeFlags SDFlags; 7628 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7629 SDFlags.copyFMF(*FPMO); 7630 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7631 setValue(&VPIntrin, Result); 7632 break; 7633 } 7634 case ISD::VP_LOAD: 7635 case ISD::VP_GATHER: 7636 visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues, 7637 Opcode == ISD::VP_GATHER); 7638 break; 7639 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7640 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7641 break; 7642 case ISD::VP_STORE: 7643 case ISD::VP_SCATTER: 7644 visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER); 7645 break; 7646 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7647 visitVPStridedStore(VPIntrin, OpValues); 7648 break; 7649 } 7650 } 7651 7652 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7653 const BasicBlock *EHPadBB, 7654 MCSymbol *&BeginLabel) { 7655 MachineFunction &MF = DAG.getMachineFunction(); 7656 MachineModuleInfo &MMI = MF.getMMI(); 7657 7658 // Insert a label before the invoke call to mark the try range. This can be 7659 // used to detect deletion of the invoke via the MachineModuleInfo. 7660 BeginLabel = MMI.getContext().createTempSymbol(); 7661 7662 // For SjLj, keep track of which landing pads go with which invokes 7663 // so as to maintain the ordering of pads in the LSDA. 7664 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7665 if (CallSiteIndex) { 7666 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7667 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7668 7669 // Now that the call site is handled, stop tracking it. 7670 MMI.setCurrentCallSite(0); 7671 } 7672 7673 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7674 } 7675 7676 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7677 const BasicBlock *EHPadBB, 7678 MCSymbol *BeginLabel) { 7679 assert(BeginLabel && "BeginLabel should've been set"); 7680 7681 MachineFunction &MF = DAG.getMachineFunction(); 7682 MachineModuleInfo &MMI = MF.getMMI(); 7683 7684 // Insert a label at the end of the invoke call to mark the try range. This 7685 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7686 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7687 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7688 7689 // Inform MachineModuleInfo of range. 7690 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7691 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7692 // actually use outlined funclets and their LSDA info style. 7693 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7694 assert(II && "II should've been set"); 7695 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7696 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7697 } else if (!isScopedEHPersonality(Pers)) { 7698 assert(EHPadBB); 7699 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7700 } 7701 7702 return Chain; 7703 } 7704 7705 std::pair<SDValue, SDValue> 7706 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7707 const BasicBlock *EHPadBB) { 7708 MCSymbol *BeginLabel = nullptr; 7709 7710 if (EHPadBB) { 7711 // Both PendingLoads and PendingExports must be flushed here; 7712 // this call might not return. 7713 (void)getRoot(); 7714 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7715 CLI.setChain(getRoot()); 7716 } 7717 7718 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7719 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7720 7721 assert((CLI.IsTailCall || Result.second.getNode()) && 7722 "Non-null chain expected with non-tail call!"); 7723 assert((Result.second.getNode() || !Result.first.getNode()) && 7724 "Null value expected with tail call!"); 7725 7726 if (!Result.second.getNode()) { 7727 // As a special case, a null chain means that a tail call has been emitted 7728 // and the DAG root is already updated. 7729 HasTailCall = true; 7730 7731 // Since there's no actual continuation from this block, nothing can be 7732 // relying on us setting vregs for them. 7733 PendingExports.clear(); 7734 } else { 7735 DAG.setRoot(Result.second); 7736 } 7737 7738 if (EHPadBB) { 7739 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7740 BeginLabel)); 7741 } 7742 7743 return Result; 7744 } 7745 7746 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7747 bool isTailCall, 7748 bool isMustTailCall, 7749 const BasicBlock *EHPadBB) { 7750 auto &DL = DAG.getDataLayout(); 7751 FunctionType *FTy = CB.getFunctionType(); 7752 Type *RetTy = CB.getType(); 7753 7754 TargetLowering::ArgListTy Args; 7755 Args.reserve(CB.arg_size()); 7756 7757 const Value *SwiftErrorVal = nullptr; 7758 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7759 7760 if (isTailCall) { 7761 // Avoid emitting tail calls in functions with the disable-tail-calls 7762 // attribute. 7763 auto *Caller = CB.getParent()->getParent(); 7764 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7765 "true" && !isMustTailCall) 7766 isTailCall = false; 7767 7768 // We can't tail call inside a function with a swifterror argument. Lowering 7769 // does not support this yet. It would have to move into the swifterror 7770 // register before the call. 7771 if (TLI.supportSwiftError() && 7772 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7773 isTailCall = false; 7774 } 7775 7776 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7777 TargetLowering::ArgListEntry Entry; 7778 const Value *V = *I; 7779 7780 // Skip empty types 7781 if (V->getType()->isEmptyTy()) 7782 continue; 7783 7784 SDValue ArgNode = getValue(V); 7785 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7786 7787 Entry.setAttributes(&CB, I - CB.arg_begin()); 7788 7789 // Use swifterror virtual register as input to the call. 7790 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7791 SwiftErrorVal = V; 7792 // We find the virtual register for the actual swifterror argument. 7793 // Instead of using the Value, we use the virtual register instead. 7794 Entry.Node = 7795 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7796 EVT(TLI.getPointerTy(DL))); 7797 } 7798 7799 Args.push_back(Entry); 7800 7801 // If we have an explicit sret argument that is an Instruction, (i.e., it 7802 // might point to function-local memory), we can't meaningfully tail-call. 7803 if (Entry.IsSRet && isa<Instruction>(V)) 7804 isTailCall = false; 7805 } 7806 7807 // If call site has a cfguardtarget operand bundle, create and add an 7808 // additional ArgListEntry. 7809 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7810 TargetLowering::ArgListEntry Entry; 7811 Value *V = Bundle->Inputs[0]; 7812 SDValue ArgNode = getValue(V); 7813 Entry.Node = ArgNode; 7814 Entry.Ty = V->getType(); 7815 Entry.IsCFGuardTarget = true; 7816 Args.push_back(Entry); 7817 } 7818 7819 // Check if target-independent constraints permit a tail call here. 7820 // Target-dependent constraints are checked within TLI->LowerCallTo. 7821 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7822 isTailCall = false; 7823 7824 // Disable tail calls if there is an swifterror argument. Targets have not 7825 // been updated to support tail calls. 7826 if (TLI.supportSwiftError() && SwiftErrorVal) 7827 isTailCall = false; 7828 7829 TargetLowering::CallLoweringInfo CLI(DAG); 7830 CLI.setDebugLoc(getCurSDLoc()) 7831 .setChain(getRoot()) 7832 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7833 .setTailCall(isTailCall) 7834 .setConvergent(CB.isConvergent()) 7835 .setIsPreallocated( 7836 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7837 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7838 7839 if (Result.first.getNode()) { 7840 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7841 setValue(&CB, Result.first); 7842 } 7843 7844 // The last element of CLI.InVals has the SDValue for swifterror return. 7845 // Here we copy it to a virtual register and update SwiftErrorMap for 7846 // book-keeping. 7847 if (SwiftErrorVal && TLI.supportSwiftError()) { 7848 // Get the last element of InVals. 7849 SDValue Src = CLI.InVals.back(); 7850 Register VReg = 7851 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7852 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7853 DAG.setRoot(CopyNode); 7854 } 7855 } 7856 7857 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7858 SelectionDAGBuilder &Builder) { 7859 // Check to see if this load can be trivially constant folded, e.g. if the 7860 // input is from a string literal. 7861 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7862 // Cast pointer to the type we really want to load. 7863 Type *LoadTy = 7864 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7865 if (LoadVT.isVector()) 7866 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7867 7868 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7869 PointerType::getUnqual(LoadTy)); 7870 7871 if (const Constant *LoadCst = 7872 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7873 LoadTy, Builder.DAG.getDataLayout())) 7874 return Builder.getValue(LoadCst); 7875 } 7876 7877 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7878 // still constant memory, the input chain can be the entry node. 7879 SDValue Root; 7880 bool ConstantMemory = false; 7881 7882 // Do not serialize (non-volatile) loads of constant memory with anything. 7883 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7884 Root = Builder.DAG.getEntryNode(); 7885 ConstantMemory = true; 7886 } else { 7887 // Do not serialize non-volatile loads against each other. 7888 Root = Builder.DAG.getRoot(); 7889 } 7890 7891 SDValue Ptr = Builder.getValue(PtrVal); 7892 SDValue LoadVal = 7893 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7894 MachinePointerInfo(PtrVal), Align(1)); 7895 7896 if (!ConstantMemory) 7897 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7898 return LoadVal; 7899 } 7900 7901 /// Record the value for an instruction that produces an integer result, 7902 /// converting the type where necessary. 7903 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7904 SDValue Value, 7905 bool IsSigned) { 7906 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7907 I.getType(), true); 7908 if (IsSigned) 7909 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7910 else 7911 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7912 setValue(&I, Value); 7913 } 7914 7915 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7916 /// true and lower it. Otherwise return false, and it will be lowered like a 7917 /// normal call. 7918 /// The caller already checked that \p I calls the appropriate LibFunc with a 7919 /// correct prototype. 7920 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7921 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7922 const Value *Size = I.getArgOperand(2); 7923 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 7924 if (CSize && CSize->getZExtValue() == 0) { 7925 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7926 I.getType(), true); 7927 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7928 return true; 7929 } 7930 7931 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7932 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7933 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7934 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7935 if (Res.first.getNode()) { 7936 processIntegerCallValue(I, Res.first, true); 7937 PendingLoads.push_back(Res.second); 7938 return true; 7939 } 7940 7941 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7942 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7943 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7944 return false; 7945 7946 // If the target has a fast compare for the given size, it will return a 7947 // preferred load type for that size. Require that the load VT is legal and 7948 // that the target supports unaligned loads of that type. Otherwise, return 7949 // INVALID. 7950 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7952 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7953 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7954 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7955 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7956 // TODO: Check alignment of src and dest ptrs. 7957 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7958 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7959 if (!TLI.isTypeLegal(LVT) || 7960 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7961 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7962 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7963 } 7964 7965 return LVT; 7966 }; 7967 7968 // This turns into unaligned loads. We only do this if the target natively 7969 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7970 // we'll only produce a small number of byte loads. 7971 MVT LoadVT; 7972 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7973 switch (NumBitsToCompare) { 7974 default: 7975 return false; 7976 case 16: 7977 LoadVT = MVT::i16; 7978 break; 7979 case 32: 7980 LoadVT = MVT::i32; 7981 break; 7982 case 64: 7983 case 128: 7984 case 256: 7985 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7986 break; 7987 } 7988 7989 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7990 return false; 7991 7992 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7993 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7994 7995 // Bitcast to a wide integer type if the loads are vectors. 7996 if (LoadVT.isVector()) { 7997 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7998 LoadL = DAG.getBitcast(CmpVT, LoadL); 7999 LoadR = DAG.getBitcast(CmpVT, LoadR); 8000 } 8001 8002 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8003 processIntegerCallValue(I, Cmp, false); 8004 return true; 8005 } 8006 8007 /// See if we can lower a memchr call into an optimized form. If so, return 8008 /// true and lower it. Otherwise return false, and it will be lowered like a 8009 /// normal call. 8010 /// The caller already checked that \p I calls the appropriate LibFunc with a 8011 /// correct prototype. 8012 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8013 const Value *Src = I.getArgOperand(0); 8014 const Value *Char = I.getArgOperand(1); 8015 const Value *Length = I.getArgOperand(2); 8016 8017 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8018 std::pair<SDValue, SDValue> Res = 8019 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8020 getValue(Src), getValue(Char), getValue(Length), 8021 MachinePointerInfo(Src)); 8022 if (Res.first.getNode()) { 8023 setValue(&I, Res.first); 8024 PendingLoads.push_back(Res.second); 8025 return true; 8026 } 8027 8028 return false; 8029 } 8030 8031 /// See if we can lower a mempcpy call into an optimized form. If so, return 8032 /// true and lower it. Otherwise return false, and it will be lowered like a 8033 /// normal call. 8034 /// The caller already checked that \p I calls the appropriate LibFunc with a 8035 /// correct prototype. 8036 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8037 SDValue Dst = getValue(I.getArgOperand(0)); 8038 SDValue Src = getValue(I.getArgOperand(1)); 8039 SDValue Size = getValue(I.getArgOperand(2)); 8040 8041 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8042 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8043 // DAG::getMemcpy needs Alignment to be defined. 8044 Align Alignment = std::min(DstAlign, SrcAlign); 8045 8046 bool isVol = false; 8047 SDLoc sdl = getCurSDLoc(); 8048 8049 // In the mempcpy context we need to pass in a false value for isTailCall 8050 // because the return pointer needs to be adjusted by the size of 8051 // the copied memory. 8052 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8053 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8054 /*isTailCall=*/false, 8055 MachinePointerInfo(I.getArgOperand(0)), 8056 MachinePointerInfo(I.getArgOperand(1)), 8057 I.getAAMetadata()); 8058 assert(MC.getNode() != nullptr && 8059 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8060 DAG.setRoot(MC); 8061 8062 // Check if Size needs to be truncated or extended. 8063 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8064 8065 // Adjust return pointer to point just past the last dst byte. 8066 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8067 Dst, Size); 8068 setValue(&I, DstPlusSize); 8069 return true; 8070 } 8071 8072 /// See if we can lower a strcpy call into an optimized form. If so, return 8073 /// true and lower it, otherwise return false and it will be lowered like a 8074 /// normal call. 8075 /// The caller already checked that \p I calls the appropriate LibFunc with a 8076 /// correct prototype. 8077 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8078 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8079 8080 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8081 std::pair<SDValue, SDValue> Res = 8082 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8083 getValue(Arg0), getValue(Arg1), 8084 MachinePointerInfo(Arg0), 8085 MachinePointerInfo(Arg1), isStpcpy); 8086 if (Res.first.getNode()) { 8087 setValue(&I, Res.first); 8088 DAG.setRoot(Res.second); 8089 return true; 8090 } 8091 8092 return false; 8093 } 8094 8095 /// See if we can lower a strcmp call into an optimized form. If so, return 8096 /// true and lower it, otherwise return false and it will be lowered like a 8097 /// normal call. 8098 /// The caller already checked that \p I calls the appropriate LibFunc with a 8099 /// correct prototype. 8100 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8101 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8102 8103 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8104 std::pair<SDValue, SDValue> Res = 8105 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8106 getValue(Arg0), getValue(Arg1), 8107 MachinePointerInfo(Arg0), 8108 MachinePointerInfo(Arg1)); 8109 if (Res.first.getNode()) { 8110 processIntegerCallValue(I, Res.first, true); 8111 PendingLoads.push_back(Res.second); 8112 return true; 8113 } 8114 8115 return false; 8116 } 8117 8118 /// See if we can lower a strlen call into an optimized form. If so, return 8119 /// true and lower it, otherwise return false and it will be lowered like a 8120 /// normal call. 8121 /// The caller already checked that \p I calls the appropriate LibFunc with a 8122 /// correct prototype. 8123 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8124 const Value *Arg0 = I.getArgOperand(0); 8125 8126 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8127 std::pair<SDValue, SDValue> Res = 8128 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8129 getValue(Arg0), MachinePointerInfo(Arg0)); 8130 if (Res.first.getNode()) { 8131 processIntegerCallValue(I, Res.first, false); 8132 PendingLoads.push_back(Res.second); 8133 return true; 8134 } 8135 8136 return false; 8137 } 8138 8139 /// See if we can lower a strnlen call into an optimized form. If so, return 8140 /// true and lower it, otherwise return false and it will be lowered like a 8141 /// normal call. 8142 /// The caller already checked that \p I calls the appropriate LibFunc with a 8143 /// correct prototype. 8144 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8145 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8146 8147 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8148 std::pair<SDValue, SDValue> Res = 8149 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8150 getValue(Arg0), getValue(Arg1), 8151 MachinePointerInfo(Arg0)); 8152 if (Res.first.getNode()) { 8153 processIntegerCallValue(I, Res.first, false); 8154 PendingLoads.push_back(Res.second); 8155 return true; 8156 } 8157 8158 return false; 8159 } 8160 8161 /// See if we can lower a unary floating-point operation into an SDNode with 8162 /// the specified Opcode. If so, return true and lower it, otherwise return 8163 /// false and it will be lowered like a normal call. 8164 /// The caller already checked that \p I calls the appropriate LibFunc with a 8165 /// correct prototype. 8166 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8167 unsigned Opcode) { 8168 // We already checked this call's prototype; verify it doesn't modify errno. 8169 if (!I.onlyReadsMemory()) 8170 return false; 8171 8172 SDNodeFlags Flags; 8173 Flags.copyFMF(cast<FPMathOperator>(I)); 8174 8175 SDValue Tmp = getValue(I.getArgOperand(0)); 8176 setValue(&I, 8177 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8178 return true; 8179 } 8180 8181 /// See if we can lower a binary floating-point operation into an SDNode with 8182 /// the specified Opcode. If so, return true and lower it. Otherwise return 8183 /// false, and it will be lowered like a normal call. 8184 /// The caller already checked that \p I calls the appropriate LibFunc with a 8185 /// correct prototype. 8186 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8187 unsigned Opcode) { 8188 // We already checked this call's prototype; verify it doesn't modify errno. 8189 if (!I.onlyReadsMemory()) 8190 return false; 8191 8192 SDNodeFlags Flags; 8193 Flags.copyFMF(cast<FPMathOperator>(I)); 8194 8195 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8196 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8197 EVT VT = Tmp0.getValueType(); 8198 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8199 return true; 8200 } 8201 8202 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8203 // Handle inline assembly differently. 8204 if (I.isInlineAsm()) { 8205 visitInlineAsm(I); 8206 return; 8207 } 8208 8209 if (Function *F = I.getCalledFunction()) { 8210 diagnoseDontCall(I); 8211 8212 if (F->isDeclaration()) { 8213 // Is this an LLVM intrinsic or a target-specific intrinsic? 8214 unsigned IID = F->getIntrinsicID(); 8215 if (!IID) 8216 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8217 IID = II->getIntrinsicID(F); 8218 8219 if (IID) { 8220 visitIntrinsicCall(I, IID); 8221 return; 8222 } 8223 } 8224 8225 // Check for well-known libc/libm calls. If the function is internal, it 8226 // can't be a library call. Don't do the check if marked as nobuiltin for 8227 // some reason or the call site requires strict floating point semantics. 8228 LibFunc Func; 8229 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8230 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8231 LibInfo->hasOptimizedCodeGen(Func)) { 8232 switch (Func) { 8233 default: break; 8234 case LibFunc_bcmp: 8235 if (visitMemCmpBCmpCall(I)) 8236 return; 8237 break; 8238 case LibFunc_copysign: 8239 case LibFunc_copysignf: 8240 case LibFunc_copysignl: 8241 // We already checked this call's prototype; verify it doesn't modify 8242 // errno. 8243 if (I.onlyReadsMemory()) { 8244 SDValue LHS = getValue(I.getArgOperand(0)); 8245 SDValue RHS = getValue(I.getArgOperand(1)); 8246 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8247 LHS.getValueType(), LHS, RHS)); 8248 return; 8249 } 8250 break; 8251 case LibFunc_fabs: 8252 case LibFunc_fabsf: 8253 case LibFunc_fabsl: 8254 if (visitUnaryFloatCall(I, ISD::FABS)) 8255 return; 8256 break; 8257 case LibFunc_fmin: 8258 case LibFunc_fminf: 8259 case LibFunc_fminl: 8260 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8261 return; 8262 break; 8263 case LibFunc_fmax: 8264 case LibFunc_fmaxf: 8265 case LibFunc_fmaxl: 8266 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8267 return; 8268 break; 8269 case LibFunc_sin: 8270 case LibFunc_sinf: 8271 case LibFunc_sinl: 8272 if (visitUnaryFloatCall(I, ISD::FSIN)) 8273 return; 8274 break; 8275 case LibFunc_cos: 8276 case LibFunc_cosf: 8277 case LibFunc_cosl: 8278 if (visitUnaryFloatCall(I, ISD::FCOS)) 8279 return; 8280 break; 8281 case LibFunc_sqrt: 8282 case LibFunc_sqrtf: 8283 case LibFunc_sqrtl: 8284 case LibFunc_sqrt_finite: 8285 case LibFunc_sqrtf_finite: 8286 case LibFunc_sqrtl_finite: 8287 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8288 return; 8289 break; 8290 case LibFunc_floor: 8291 case LibFunc_floorf: 8292 case LibFunc_floorl: 8293 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8294 return; 8295 break; 8296 case LibFunc_nearbyint: 8297 case LibFunc_nearbyintf: 8298 case LibFunc_nearbyintl: 8299 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8300 return; 8301 break; 8302 case LibFunc_ceil: 8303 case LibFunc_ceilf: 8304 case LibFunc_ceill: 8305 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8306 return; 8307 break; 8308 case LibFunc_rint: 8309 case LibFunc_rintf: 8310 case LibFunc_rintl: 8311 if (visitUnaryFloatCall(I, ISD::FRINT)) 8312 return; 8313 break; 8314 case LibFunc_round: 8315 case LibFunc_roundf: 8316 case LibFunc_roundl: 8317 if (visitUnaryFloatCall(I, ISD::FROUND)) 8318 return; 8319 break; 8320 case LibFunc_trunc: 8321 case LibFunc_truncf: 8322 case LibFunc_truncl: 8323 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8324 return; 8325 break; 8326 case LibFunc_log2: 8327 case LibFunc_log2f: 8328 case LibFunc_log2l: 8329 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8330 return; 8331 break; 8332 case LibFunc_exp2: 8333 case LibFunc_exp2f: 8334 case LibFunc_exp2l: 8335 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8336 return; 8337 break; 8338 case LibFunc_memcmp: 8339 if (visitMemCmpBCmpCall(I)) 8340 return; 8341 break; 8342 case LibFunc_mempcpy: 8343 if (visitMemPCpyCall(I)) 8344 return; 8345 break; 8346 case LibFunc_memchr: 8347 if (visitMemChrCall(I)) 8348 return; 8349 break; 8350 case LibFunc_strcpy: 8351 if (visitStrCpyCall(I, false)) 8352 return; 8353 break; 8354 case LibFunc_stpcpy: 8355 if (visitStrCpyCall(I, true)) 8356 return; 8357 break; 8358 case LibFunc_strcmp: 8359 if (visitStrCmpCall(I)) 8360 return; 8361 break; 8362 case LibFunc_strlen: 8363 if (visitStrLenCall(I)) 8364 return; 8365 break; 8366 case LibFunc_strnlen: 8367 if (visitStrNLenCall(I)) 8368 return; 8369 break; 8370 } 8371 } 8372 } 8373 8374 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8375 // have to do anything here to lower funclet bundles. 8376 // CFGuardTarget bundles are lowered in LowerCallTo. 8377 assert(!I.hasOperandBundlesOtherThan( 8378 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8379 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8380 LLVMContext::OB_clang_arc_attachedcall}) && 8381 "Cannot lower calls with arbitrary operand bundles!"); 8382 8383 SDValue Callee = getValue(I.getCalledOperand()); 8384 8385 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8386 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8387 else 8388 // Check if we can potentially perform a tail call. More detailed checking 8389 // is be done within LowerCallTo, after more information about the call is 8390 // known. 8391 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8392 } 8393 8394 namespace { 8395 8396 /// AsmOperandInfo - This contains information for each constraint that we are 8397 /// lowering. 8398 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8399 public: 8400 /// CallOperand - If this is the result output operand or a clobber 8401 /// this is null, otherwise it is the incoming operand to the CallInst. 8402 /// This gets modified as the asm is processed. 8403 SDValue CallOperand; 8404 8405 /// AssignedRegs - If this is a register or register class operand, this 8406 /// contains the set of register corresponding to the operand. 8407 RegsForValue AssignedRegs; 8408 8409 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8410 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8411 } 8412 8413 /// Whether or not this operand accesses memory 8414 bool hasMemory(const TargetLowering &TLI) const { 8415 // Indirect operand accesses access memory. 8416 if (isIndirect) 8417 return true; 8418 8419 for (const auto &Code : Codes) 8420 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8421 return true; 8422 8423 return false; 8424 } 8425 8426 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 8427 /// corresponds to. If there is no Value* for this operand, it returns 8428 /// MVT::Other. 8429 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 8430 const DataLayout &DL, 8431 llvm::Type *ParamElemType) const { 8432 if (!CallOperandVal) return MVT::Other; 8433 8434 if (isa<BasicBlock>(CallOperandVal)) 8435 return TLI.getProgramPointerTy(DL); 8436 8437 llvm::Type *OpTy = CallOperandVal->getType(); 8438 8439 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 8440 // If this is an indirect operand, the operand is a pointer to the 8441 // accessed type. 8442 if (isIndirect) { 8443 OpTy = ParamElemType; 8444 assert(OpTy && "Indirect operand must have elementtype attribute"); 8445 } 8446 8447 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 8448 if (StructType *STy = dyn_cast<StructType>(OpTy)) 8449 if (STy->getNumElements() == 1) 8450 OpTy = STy->getElementType(0); 8451 8452 // If OpTy is not a single value, it may be a struct/union that we 8453 // can tile with integers. 8454 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 8455 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 8456 switch (BitSize) { 8457 default: break; 8458 case 1: 8459 case 8: 8460 case 16: 8461 case 32: 8462 case 64: 8463 case 128: 8464 OpTy = IntegerType::get(Context, BitSize); 8465 break; 8466 } 8467 } 8468 8469 return TLI.getAsmOperandValueType(DL, OpTy, true); 8470 } 8471 }; 8472 8473 8474 } // end anonymous namespace 8475 8476 /// Make sure that the output operand \p OpInfo and its corresponding input 8477 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8478 /// out). 8479 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8480 SDISelAsmOperandInfo &MatchingOpInfo, 8481 SelectionDAG &DAG) { 8482 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8483 return; 8484 8485 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8486 const auto &TLI = DAG.getTargetLoweringInfo(); 8487 8488 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8489 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8490 OpInfo.ConstraintVT); 8491 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8492 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8493 MatchingOpInfo.ConstraintVT); 8494 if ((OpInfo.ConstraintVT.isInteger() != 8495 MatchingOpInfo.ConstraintVT.isInteger()) || 8496 (MatchRC.second != InputRC.second)) { 8497 // FIXME: error out in a more elegant fashion 8498 report_fatal_error("Unsupported asm: input constraint" 8499 " with a matching output constraint of" 8500 " incompatible type!"); 8501 } 8502 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8503 } 8504 8505 /// Get a direct memory input to behave well as an indirect operand. 8506 /// This may introduce stores, hence the need for a \p Chain. 8507 /// \return The (possibly updated) chain. 8508 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8509 SDISelAsmOperandInfo &OpInfo, 8510 SelectionDAG &DAG) { 8511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8512 8513 // If we don't have an indirect input, put it in the constpool if we can, 8514 // otherwise spill it to a stack slot. 8515 // TODO: This isn't quite right. We need to handle these according to 8516 // the addressing mode that the constraint wants. Also, this may take 8517 // an additional register for the computation and we don't want that 8518 // either. 8519 8520 // If the operand is a float, integer, or vector constant, spill to a 8521 // constant pool entry to get its address. 8522 const Value *OpVal = OpInfo.CallOperandVal; 8523 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8524 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8525 OpInfo.CallOperand = DAG.getConstantPool( 8526 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8527 return Chain; 8528 } 8529 8530 // Otherwise, create a stack slot and emit a store to it before the asm. 8531 Type *Ty = OpVal->getType(); 8532 auto &DL = DAG.getDataLayout(); 8533 uint64_t TySize = DL.getTypeAllocSize(Ty); 8534 MachineFunction &MF = DAG.getMachineFunction(); 8535 int SSFI = MF.getFrameInfo().CreateStackObject( 8536 TySize, DL.getPrefTypeAlign(Ty), false); 8537 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8538 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8539 MachinePointerInfo::getFixedStack(MF, SSFI), 8540 TLI.getMemValueType(DL, Ty)); 8541 OpInfo.CallOperand = StackSlot; 8542 8543 return Chain; 8544 } 8545 8546 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8547 /// specified operand. We prefer to assign virtual registers, to allow the 8548 /// register allocator to handle the assignment process. However, if the asm 8549 /// uses features that we can't model on machineinstrs, we have SDISel do the 8550 /// allocation. This produces generally horrible, but correct, code. 8551 /// 8552 /// OpInfo describes the operand 8553 /// RefOpInfo describes the matching operand if any, the operand otherwise 8554 static llvm::Optional<unsigned> 8555 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8556 SDISelAsmOperandInfo &OpInfo, 8557 SDISelAsmOperandInfo &RefOpInfo) { 8558 LLVMContext &Context = *DAG.getContext(); 8559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8560 8561 MachineFunction &MF = DAG.getMachineFunction(); 8562 SmallVector<unsigned, 4> Regs; 8563 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8564 8565 // No work to do for memory/address operands. 8566 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8567 OpInfo.ConstraintType == TargetLowering::C_Address) 8568 return None; 8569 8570 // If this is a constraint for a single physreg, or a constraint for a 8571 // register class, find it. 8572 unsigned AssignedReg; 8573 const TargetRegisterClass *RC; 8574 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8575 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8576 // RC is unset only on failure. Return immediately. 8577 if (!RC) 8578 return None; 8579 8580 // Get the actual register value type. This is important, because the user 8581 // may have asked for (e.g.) the AX register in i32 type. We need to 8582 // remember that AX is actually i16 to get the right extension. 8583 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8584 8585 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8586 // If this is an FP operand in an integer register (or visa versa), or more 8587 // generally if the operand value disagrees with the register class we plan 8588 // to stick it in, fix the operand type. 8589 // 8590 // If this is an input value, the bitcast to the new type is done now. 8591 // Bitcast for output value is done at the end of visitInlineAsm(). 8592 if ((OpInfo.Type == InlineAsm::isOutput || 8593 OpInfo.Type == InlineAsm::isInput) && 8594 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8595 // Try to convert to the first EVT that the reg class contains. If the 8596 // types are identical size, use a bitcast to convert (e.g. two differing 8597 // vector types). Note: output bitcast is done at the end of 8598 // visitInlineAsm(). 8599 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8600 // Exclude indirect inputs while they are unsupported because the code 8601 // to perform the load is missing and thus OpInfo.CallOperand still 8602 // refers to the input address rather than the pointed-to value. 8603 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8604 OpInfo.CallOperand = 8605 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8606 OpInfo.ConstraintVT = RegVT; 8607 // If the operand is an FP value and we want it in integer registers, 8608 // use the corresponding integer type. This turns an f64 value into 8609 // i64, which can be passed with two i32 values on a 32-bit machine. 8610 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8611 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8612 if (OpInfo.Type == InlineAsm::isInput) 8613 OpInfo.CallOperand = 8614 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8615 OpInfo.ConstraintVT = VT; 8616 } 8617 } 8618 } 8619 8620 // No need to allocate a matching input constraint since the constraint it's 8621 // matching to has already been allocated. 8622 if (OpInfo.isMatchingInputConstraint()) 8623 return None; 8624 8625 EVT ValueVT = OpInfo.ConstraintVT; 8626 if (OpInfo.ConstraintVT == MVT::Other) 8627 ValueVT = RegVT; 8628 8629 // Initialize NumRegs. 8630 unsigned NumRegs = 1; 8631 if (OpInfo.ConstraintVT != MVT::Other) 8632 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8633 8634 // If this is a constraint for a specific physical register, like {r17}, 8635 // assign it now. 8636 8637 // If this associated to a specific register, initialize iterator to correct 8638 // place. If virtual, make sure we have enough registers 8639 8640 // Initialize iterator if necessary 8641 TargetRegisterClass::iterator I = RC->begin(); 8642 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8643 8644 // Do not check for single registers. 8645 if (AssignedReg) { 8646 I = std::find(I, RC->end(), AssignedReg); 8647 if (I == RC->end()) { 8648 // RC does not contain the selected register, which indicates a 8649 // mismatch between the register and the required type/bitwidth. 8650 return {AssignedReg}; 8651 } 8652 } 8653 8654 for (; NumRegs; --NumRegs, ++I) { 8655 assert(I != RC->end() && "Ran out of registers to allocate!"); 8656 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8657 Regs.push_back(R); 8658 } 8659 8660 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8661 return None; 8662 } 8663 8664 static unsigned 8665 findMatchingInlineAsmOperand(unsigned OperandNo, 8666 const std::vector<SDValue> &AsmNodeOperands) { 8667 // Scan until we find the definition we already emitted of this operand. 8668 unsigned CurOp = InlineAsm::Op_FirstOperand; 8669 for (; OperandNo; --OperandNo) { 8670 // Advance to the next operand. 8671 unsigned OpFlag = 8672 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8673 assert((InlineAsm::isRegDefKind(OpFlag) || 8674 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8675 InlineAsm::isMemKind(OpFlag)) && 8676 "Skipped past definitions?"); 8677 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8678 } 8679 return CurOp; 8680 } 8681 8682 namespace { 8683 8684 class ExtraFlags { 8685 unsigned Flags = 0; 8686 8687 public: 8688 explicit ExtraFlags(const CallBase &Call) { 8689 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8690 if (IA->hasSideEffects()) 8691 Flags |= InlineAsm::Extra_HasSideEffects; 8692 if (IA->isAlignStack()) 8693 Flags |= InlineAsm::Extra_IsAlignStack; 8694 if (Call.isConvergent()) 8695 Flags |= InlineAsm::Extra_IsConvergent; 8696 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8697 } 8698 8699 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8700 // Ideally, we would only check against memory constraints. However, the 8701 // meaning of an Other constraint can be target-specific and we can't easily 8702 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8703 // for Other constraints as well. 8704 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8705 OpInfo.ConstraintType == TargetLowering::C_Other) { 8706 if (OpInfo.Type == InlineAsm::isInput) 8707 Flags |= InlineAsm::Extra_MayLoad; 8708 else if (OpInfo.Type == InlineAsm::isOutput) 8709 Flags |= InlineAsm::Extra_MayStore; 8710 else if (OpInfo.Type == InlineAsm::isClobber) 8711 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8712 } 8713 } 8714 8715 unsigned get() const { return Flags; } 8716 }; 8717 8718 } // end anonymous namespace 8719 8720 /// visitInlineAsm - Handle a call to an InlineAsm object. 8721 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8722 const BasicBlock *EHPadBB) { 8723 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8724 8725 /// ConstraintOperands - Information about all of the constraints. 8726 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8727 8728 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8729 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8730 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8731 8732 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8733 // AsmDialect, MayLoad, MayStore). 8734 bool HasSideEffect = IA->hasSideEffects(); 8735 ExtraFlags ExtraInfo(Call); 8736 8737 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8738 unsigned ResNo = 0; // ResNo - The result number of the next output. 8739 for (auto &T : TargetConstraints) { 8740 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8741 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8742 8743 // Compute the value type for each operand. 8744 if (OpInfo.hasArg()) { 8745 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 8746 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8747 Type *ParamElemTy = Call.getParamElementType(ArgNo); 8748 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8749 DAG.getDataLayout(), ParamElemTy); 8750 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8751 ArgNo++; 8752 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8753 // The return value of the call is this value. As such, there is no 8754 // corresponding argument. 8755 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8756 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8757 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8758 DAG.getDataLayout(), STy->getElementType(ResNo)); 8759 } else { 8760 assert(ResNo == 0 && "Asm only has one result!"); 8761 OpInfo.ConstraintVT = TLI.getAsmOperandValueType( 8762 DAG.getDataLayout(), Call.getType()).getSimpleVT(); 8763 } 8764 ++ResNo; 8765 } else { 8766 OpInfo.ConstraintVT = MVT::Other; 8767 } 8768 8769 if (!HasSideEffect) 8770 HasSideEffect = OpInfo.hasMemory(TLI); 8771 8772 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8773 // FIXME: Could we compute this on OpInfo rather than T? 8774 8775 // Compute the constraint code and ConstraintType to use. 8776 TLI.ComputeConstraintToUse(T, SDValue()); 8777 8778 if (T.ConstraintType == TargetLowering::C_Immediate && 8779 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8780 // We've delayed emitting a diagnostic like the "n" constraint because 8781 // inlining could cause an integer showing up. 8782 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8783 "' expects an integer constant " 8784 "expression"); 8785 8786 ExtraInfo.update(T); 8787 } 8788 8789 // We won't need to flush pending loads if this asm doesn't touch 8790 // memory and is nonvolatile. 8791 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8792 8793 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8794 if (EmitEHLabels) { 8795 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8796 } 8797 bool IsCallBr = isa<CallBrInst>(Call); 8798 8799 if (IsCallBr || EmitEHLabels) { 8800 // If this is a callbr or invoke we need to flush pending exports since 8801 // inlineasm_br and invoke are terminators. 8802 // We need to do this before nodes are glued to the inlineasm_br node. 8803 Chain = getControlRoot(); 8804 } 8805 8806 MCSymbol *BeginLabel = nullptr; 8807 if (EmitEHLabels) { 8808 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8809 } 8810 8811 // Second pass over the constraints: compute which constraint option to use. 8812 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8813 // If this is an output operand with a matching input operand, look up the 8814 // matching input. If their types mismatch, e.g. one is an integer, the 8815 // other is floating point, or their sizes are different, flag it as an 8816 // error. 8817 if (OpInfo.hasMatchingInput()) { 8818 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8819 patchMatchingInput(OpInfo, Input, DAG); 8820 } 8821 8822 // Compute the constraint code and ConstraintType to use. 8823 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8824 8825 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8826 OpInfo.Type == InlineAsm::isClobber) || 8827 OpInfo.ConstraintType == TargetLowering::C_Address) 8828 continue; 8829 8830 // If this is a memory input, and if the operand is not indirect, do what we 8831 // need to provide an address for the memory input. 8832 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8833 !OpInfo.isIndirect) { 8834 assert((OpInfo.isMultipleAlternative || 8835 (OpInfo.Type == InlineAsm::isInput)) && 8836 "Can only indirectify direct input operands!"); 8837 8838 // Memory operands really want the address of the value. 8839 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8840 8841 // There is no longer a Value* corresponding to this operand. 8842 OpInfo.CallOperandVal = nullptr; 8843 8844 // It is now an indirect operand. 8845 OpInfo.isIndirect = true; 8846 } 8847 8848 } 8849 8850 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8851 std::vector<SDValue> AsmNodeOperands; 8852 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8853 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8854 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8855 8856 // If we have a !srcloc metadata node associated with it, we want to attach 8857 // this to the ultimately generated inline asm machineinstr. To do this, we 8858 // pass in the third operand as this (potentially null) inline asm MDNode. 8859 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8860 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8861 8862 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8863 // bits as operand 3. 8864 AsmNodeOperands.push_back(DAG.getTargetConstant( 8865 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8866 8867 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8868 // this, assign virtual and physical registers for inputs and otput. 8869 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8870 // Assign Registers. 8871 SDISelAsmOperandInfo &RefOpInfo = 8872 OpInfo.isMatchingInputConstraint() 8873 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8874 : OpInfo; 8875 const auto RegError = 8876 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8877 if (RegError.hasValue()) { 8878 const MachineFunction &MF = DAG.getMachineFunction(); 8879 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8880 const char *RegName = TRI.getName(RegError.getValue()); 8881 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8882 "' allocated for constraint '" + 8883 Twine(OpInfo.ConstraintCode) + 8884 "' does not match required type"); 8885 return; 8886 } 8887 8888 auto DetectWriteToReservedRegister = [&]() { 8889 const MachineFunction &MF = DAG.getMachineFunction(); 8890 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8891 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8892 if (Register::isPhysicalRegister(Reg) && 8893 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8894 const char *RegName = TRI.getName(Reg); 8895 emitInlineAsmError(Call, "write to reserved register '" + 8896 Twine(RegName) + "'"); 8897 return true; 8898 } 8899 } 8900 return false; 8901 }; 8902 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 8903 (OpInfo.Type == InlineAsm::isInput && 8904 !OpInfo.isMatchingInputConstraint())) && 8905 "Only address as input operand is allowed."); 8906 8907 switch (OpInfo.Type) { 8908 case InlineAsm::isOutput: 8909 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8910 unsigned ConstraintID = 8911 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8912 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8913 "Failed to convert memory constraint code to constraint id."); 8914 8915 // Add information to the INLINEASM node to know about this output. 8916 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8917 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8918 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8919 MVT::i32)); 8920 AsmNodeOperands.push_back(OpInfo.CallOperand); 8921 } else { 8922 // Otherwise, this outputs to a register (directly for C_Register / 8923 // C_RegisterClass, and a target-defined fashion for 8924 // C_Immediate/C_Other). Find a register that we can use. 8925 if (OpInfo.AssignedRegs.Regs.empty()) { 8926 emitInlineAsmError( 8927 Call, "couldn't allocate output register for constraint '" + 8928 Twine(OpInfo.ConstraintCode) + "'"); 8929 return; 8930 } 8931 8932 if (DetectWriteToReservedRegister()) 8933 return; 8934 8935 // Add information to the INLINEASM node to know that this register is 8936 // set. 8937 OpInfo.AssignedRegs.AddInlineAsmOperands( 8938 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8939 : InlineAsm::Kind_RegDef, 8940 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8941 } 8942 break; 8943 8944 case InlineAsm::isInput: { 8945 SDValue InOperandVal = OpInfo.CallOperand; 8946 8947 if (OpInfo.isMatchingInputConstraint()) { 8948 // If this is required to match an output register we have already set, 8949 // just use its register. 8950 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8951 AsmNodeOperands); 8952 unsigned OpFlag = 8953 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8954 if (InlineAsm::isRegDefKind(OpFlag) || 8955 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8956 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8957 if (OpInfo.isIndirect) { 8958 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8959 emitInlineAsmError(Call, "inline asm not supported yet: " 8960 "don't know how to handle tied " 8961 "indirect register inputs"); 8962 return; 8963 } 8964 8965 SmallVector<unsigned, 4> Regs; 8966 MachineFunction &MF = DAG.getMachineFunction(); 8967 MachineRegisterInfo &MRI = MF.getRegInfo(); 8968 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8969 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8970 Register TiedReg = R->getReg(); 8971 MVT RegVT = R->getSimpleValueType(0); 8972 const TargetRegisterClass *RC = 8973 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8974 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8975 : TRI.getMinimalPhysRegClass(TiedReg); 8976 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8977 for (unsigned i = 0; i != NumRegs; ++i) 8978 Regs.push_back(MRI.createVirtualRegister(RC)); 8979 8980 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8981 8982 SDLoc dl = getCurSDLoc(); 8983 // Use the produced MatchedRegs object to 8984 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8985 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8986 true, OpInfo.getMatchedOperand(), dl, 8987 DAG, AsmNodeOperands); 8988 break; 8989 } 8990 8991 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8992 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8993 "Unexpected number of operands"); 8994 // Add information to the INLINEASM node to know about this input. 8995 // See InlineAsm.h isUseOperandTiedToDef. 8996 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8997 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8998 OpInfo.getMatchedOperand()); 8999 AsmNodeOperands.push_back(DAG.getTargetConstant( 9000 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9001 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9002 break; 9003 } 9004 9005 // Treat indirect 'X' constraint as memory. 9006 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9007 OpInfo.isIndirect) 9008 OpInfo.ConstraintType = TargetLowering::C_Memory; 9009 9010 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9011 OpInfo.ConstraintType == TargetLowering::C_Other) { 9012 std::vector<SDValue> Ops; 9013 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9014 Ops, DAG); 9015 if (Ops.empty()) { 9016 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9017 if (isa<ConstantSDNode>(InOperandVal)) { 9018 emitInlineAsmError(Call, "value out of range for constraint '" + 9019 Twine(OpInfo.ConstraintCode) + "'"); 9020 return; 9021 } 9022 9023 emitInlineAsmError(Call, 9024 "invalid operand for inline asm constraint '" + 9025 Twine(OpInfo.ConstraintCode) + "'"); 9026 return; 9027 } 9028 9029 // Add information to the INLINEASM node to know about this input. 9030 unsigned ResOpType = 9031 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 9032 AsmNodeOperands.push_back(DAG.getTargetConstant( 9033 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9034 llvm::append_range(AsmNodeOperands, Ops); 9035 break; 9036 } 9037 9038 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9039 OpInfo.ConstraintType == TargetLowering::C_Address) { 9040 assert((OpInfo.isIndirect || 9041 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9042 "Operand must be indirect to be a mem!"); 9043 assert(InOperandVal.getValueType() == 9044 TLI.getPointerTy(DAG.getDataLayout()) && 9045 "Memory operands expect pointer values"); 9046 9047 unsigned ConstraintID = 9048 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9049 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9050 "Failed to convert memory constraint code to constraint id."); 9051 9052 // Add information to the INLINEASM node to know about this input. 9053 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9054 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9055 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9056 getCurSDLoc(), 9057 MVT::i32)); 9058 AsmNodeOperands.push_back(InOperandVal); 9059 break; 9060 } 9061 9062 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9063 OpInfo.ConstraintType == TargetLowering::C_Register) && 9064 "Unknown constraint type!"); 9065 9066 // TODO: Support this. 9067 if (OpInfo.isIndirect) { 9068 emitInlineAsmError( 9069 Call, "Don't know how to handle indirect register inputs yet " 9070 "for constraint '" + 9071 Twine(OpInfo.ConstraintCode) + "'"); 9072 return; 9073 } 9074 9075 // Copy the input into the appropriate registers. 9076 if (OpInfo.AssignedRegs.Regs.empty()) { 9077 emitInlineAsmError(Call, 9078 "couldn't allocate input reg for constraint '" + 9079 Twine(OpInfo.ConstraintCode) + "'"); 9080 return; 9081 } 9082 9083 if (DetectWriteToReservedRegister()) 9084 return; 9085 9086 SDLoc dl = getCurSDLoc(); 9087 9088 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9089 &Call); 9090 9091 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9092 dl, DAG, AsmNodeOperands); 9093 break; 9094 } 9095 case InlineAsm::isClobber: 9096 // Add the clobbered value to the operand list, so that the register 9097 // allocator is aware that the physreg got clobbered. 9098 if (!OpInfo.AssignedRegs.Regs.empty()) 9099 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9100 false, 0, getCurSDLoc(), DAG, 9101 AsmNodeOperands); 9102 break; 9103 } 9104 } 9105 9106 // Finish up input operands. Set the input chain and add the flag last. 9107 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9108 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9109 9110 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9111 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9112 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9113 Flag = Chain.getValue(1); 9114 9115 // Do additional work to generate outputs. 9116 9117 SmallVector<EVT, 1> ResultVTs; 9118 SmallVector<SDValue, 1> ResultValues; 9119 SmallVector<SDValue, 8> OutChains; 9120 9121 llvm::Type *CallResultType = Call.getType(); 9122 ArrayRef<Type *> ResultTypes; 9123 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9124 ResultTypes = StructResult->elements(); 9125 else if (!CallResultType->isVoidTy()) 9126 ResultTypes = makeArrayRef(CallResultType); 9127 9128 auto CurResultType = ResultTypes.begin(); 9129 auto handleRegAssign = [&](SDValue V) { 9130 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9131 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9132 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9133 ++CurResultType; 9134 // If the type of the inline asm call site return value is different but has 9135 // same size as the type of the asm output bitcast it. One example of this 9136 // is for vectors with different width / number of elements. This can 9137 // happen for register classes that can contain multiple different value 9138 // types. The preg or vreg allocated may not have the same VT as was 9139 // expected. 9140 // 9141 // This can also happen for a return value that disagrees with the register 9142 // class it is put in, eg. a double in a general-purpose register on a 9143 // 32-bit machine. 9144 if (ResultVT != V.getValueType() && 9145 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9146 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9147 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9148 V.getValueType().isInteger()) { 9149 // If a result value was tied to an input value, the computed result 9150 // may have a wider width than the expected result. Extract the 9151 // relevant portion. 9152 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9153 } 9154 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9155 ResultVTs.push_back(ResultVT); 9156 ResultValues.push_back(V); 9157 }; 9158 9159 // Deal with output operands. 9160 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9161 if (OpInfo.Type == InlineAsm::isOutput) { 9162 SDValue Val; 9163 // Skip trivial output operands. 9164 if (OpInfo.AssignedRegs.Regs.empty()) 9165 continue; 9166 9167 switch (OpInfo.ConstraintType) { 9168 case TargetLowering::C_Register: 9169 case TargetLowering::C_RegisterClass: 9170 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9171 Chain, &Flag, &Call); 9172 break; 9173 case TargetLowering::C_Immediate: 9174 case TargetLowering::C_Other: 9175 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9176 OpInfo, DAG); 9177 break; 9178 case TargetLowering::C_Memory: 9179 break; // Already handled. 9180 case TargetLowering::C_Address: 9181 break; // Silence warning. 9182 case TargetLowering::C_Unknown: 9183 assert(false && "Unexpected unknown constraint"); 9184 } 9185 9186 // Indirect output manifest as stores. Record output chains. 9187 if (OpInfo.isIndirect) { 9188 const Value *Ptr = OpInfo.CallOperandVal; 9189 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9190 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9191 MachinePointerInfo(Ptr)); 9192 OutChains.push_back(Store); 9193 } else { 9194 // generate CopyFromRegs to associated registers. 9195 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9196 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9197 for (const SDValue &V : Val->op_values()) 9198 handleRegAssign(V); 9199 } else 9200 handleRegAssign(Val); 9201 } 9202 } 9203 } 9204 9205 // Set results. 9206 if (!ResultValues.empty()) { 9207 assert(CurResultType == ResultTypes.end() && 9208 "Mismatch in number of ResultTypes"); 9209 assert(ResultValues.size() == ResultTypes.size() && 9210 "Mismatch in number of output operands in asm result"); 9211 9212 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9213 DAG.getVTList(ResultVTs), ResultValues); 9214 setValue(&Call, V); 9215 } 9216 9217 // Collect store chains. 9218 if (!OutChains.empty()) 9219 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9220 9221 if (EmitEHLabels) { 9222 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9223 } 9224 9225 // Only Update Root if inline assembly has a memory effect. 9226 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9227 EmitEHLabels) 9228 DAG.setRoot(Chain); 9229 } 9230 9231 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9232 const Twine &Message) { 9233 LLVMContext &Ctx = *DAG.getContext(); 9234 Ctx.emitError(&Call, Message); 9235 9236 // Make sure we leave the DAG in a valid state 9237 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9238 SmallVector<EVT, 1> ValueVTs; 9239 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9240 9241 if (ValueVTs.empty()) 9242 return; 9243 9244 SmallVector<SDValue, 1> Ops; 9245 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9246 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9247 9248 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9249 } 9250 9251 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9252 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9253 MVT::Other, getRoot(), 9254 getValue(I.getArgOperand(0)), 9255 DAG.getSrcValue(I.getArgOperand(0)))); 9256 } 9257 9258 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9259 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9260 const DataLayout &DL = DAG.getDataLayout(); 9261 SDValue V = DAG.getVAArg( 9262 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9263 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9264 DL.getABITypeAlign(I.getType()).value()); 9265 DAG.setRoot(V.getValue(1)); 9266 9267 if (I.getType()->isPointerTy()) 9268 V = DAG.getPtrExtOrTrunc( 9269 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9270 setValue(&I, V); 9271 } 9272 9273 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9274 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9275 MVT::Other, getRoot(), 9276 getValue(I.getArgOperand(0)), 9277 DAG.getSrcValue(I.getArgOperand(0)))); 9278 } 9279 9280 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9281 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9282 MVT::Other, getRoot(), 9283 getValue(I.getArgOperand(0)), 9284 getValue(I.getArgOperand(1)), 9285 DAG.getSrcValue(I.getArgOperand(0)), 9286 DAG.getSrcValue(I.getArgOperand(1)))); 9287 } 9288 9289 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9290 const Instruction &I, 9291 SDValue Op) { 9292 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9293 if (!Range) 9294 return Op; 9295 9296 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9297 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9298 return Op; 9299 9300 APInt Lo = CR.getUnsignedMin(); 9301 if (!Lo.isMinValue()) 9302 return Op; 9303 9304 APInt Hi = CR.getUnsignedMax(); 9305 unsigned Bits = std::max(Hi.getActiveBits(), 9306 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9307 9308 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9309 9310 SDLoc SL = getCurSDLoc(); 9311 9312 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9313 DAG.getValueType(SmallVT)); 9314 unsigned NumVals = Op.getNode()->getNumValues(); 9315 if (NumVals == 1) 9316 return ZExt; 9317 9318 SmallVector<SDValue, 4> Ops; 9319 9320 Ops.push_back(ZExt); 9321 for (unsigned I = 1; I != NumVals; ++I) 9322 Ops.push_back(Op.getValue(I)); 9323 9324 return DAG.getMergeValues(Ops, SL); 9325 } 9326 9327 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9328 /// the call being lowered. 9329 /// 9330 /// This is a helper for lowering intrinsics that follow a target calling 9331 /// convention or require stack pointer adjustment. Only a subset of the 9332 /// intrinsic's operands need to participate in the calling convention. 9333 void SelectionDAGBuilder::populateCallLoweringInfo( 9334 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9335 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9336 bool IsPatchPoint) { 9337 TargetLowering::ArgListTy Args; 9338 Args.reserve(NumArgs); 9339 9340 // Populate the argument list. 9341 // Attributes for args start at offset 1, after the return attribute. 9342 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9343 ArgI != ArgE; ++ArgI) { 9344 const Value *V = Call->getOperand(ArgI); 9345 9346 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9347 9348 TargetLowering::ArgListEntry Entry; 9349 Entry.Node = getValue(V); 9350 Entry.Ty = V->getType(); 9351 Entry.setAttributes(Call, ArgI); 9352 Args.push_back(Entry); 9353 } 9354 9355 CLI.setDebugLoc(getCurSDLoc()) 9356 .setChain(getRoot()) 9357 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9358 .setDiscardResult(Call->use_empty()) 9359 .setIsPatchPoint(IsPatchPoint) 9360 .setIsPreallocated( 9361 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9362 } 9363 9364 /// Add a stack map intrinsic call's live variable operands to a stackmap 9365 /// or patchpoint target node's operand list. 9366 /// 9367 /// Constants are converted to TargetConstants purely as an optimization to 9368 /// avoid constant materialization and register allocation. 9369 /// 9370 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9371 /// generate addess computation nodes, and so FinalizeISel can convert the 9372 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9373 /// address materialization and register allocation, but may also be required 9374 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9375 /// alloca in the entry block, then the runtime may assume that the alloca's 9376 /// StackMap location can be read immediately after compilation and that the 9377 /// location is valid at any point during execution (this is similar to the 9378 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9379 /// only available in a register, then the runtime would need to trap when 9380 /// execution reaches the StackMap in order to read the alloca's location. 9381 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9382 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9383 SelectionDAGBuilder &Builder) { 9384 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 9385 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 9386 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 9387 Ops.push_back( 9388 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 9389 Ops.push_back( 9390 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 9391 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 9392 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 9393 Ops.push_back(Builder.DAG.getTargetFrameIndex( 9394 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 9395 } else 9396 Ops.push_back(OpVal); 9397 } 9398 } 9399 9400 /// Lower llvm.experimental.stackmap directly to its target opcode. 9401 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9402 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 9403 // [live variables...]) 9404 9405 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9406 9407 SDValue Chain, InFlag, Callee, NullPtr; 9408 SmallVector<SDValue, 32> Ops; 9409 9410 SDLoc DL = getCurSDLoc(); 9411 Callee = getValue(CI.getCalledOperand()); 9412 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9413 9414 // The stackmap intrinsic only records the live variables (the arguments 9415 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9416 // intrinsic, this won't be lowered to a function call. This means we don't 9417 // have to worry about calling conventions and target specific lowering code. 9418 // Instead we perform the call lowering right here. 9419 // 9420 // chain, flag = CALLSEQ_START(chain, 0, 0) 9421 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9422 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9423 // 9424 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9425 InFlag = Chain.getValue(1); 9426 9427 // Add the <id> and <numBytes> constants. 9428 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 9429 Ops.push_back(DAG.getTargetConstant( 9430 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 9431 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 9432 Ops.push_back(DAG.getTargetConstant( 9433 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 9434 MVT::i32)); 9435 9436 // Push live variables for the stack map. 9437 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9438 9439 // We are not pushing any register mask info here on the operands list, 9440 // because the stackmap doesn't clobber anything. 9441 9442 // Push the chain and the glue flag. 9443 Ops.push_back(Chain); 9444 Ops.push_back(InFlag); 9445 9446 // Create the STACKMAP node. 9447 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9448 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 9449 Chain = SDValue(SM, 0); 9450 InFlag = Chain.getValue(1); 9451 9452 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9453 9454 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9455 9456 // Set the root to the target-lowered call chain. 9457 DAG.setRoot(Chain); 9458 9459 // Inform the Frame Information that we have a stackmap in this function. 9460 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9461 } 9462 9463 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9464 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9465 const BasicBlock *EHPadBB) { 9466 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9467 // i32 <numBytes>, 9468 // i8* <target>, 9469 // i32 <numArgs>, 9470 // [Args...], 9471 // [live variables...]) 9472 9473 CallingConv::ID CC = CB.getCallingConv(); 9474 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9475 bool HasDef = !CB.getType()->isVoidTy(); 9476 SDLoc dl = getCurSDLoc(); 9477 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9478 9479 // Handle immediate and symbolic callees. 9480 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9481 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9482 /*isTarget=*/true); 9483 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9484 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9485 SDLoc(SymbolicCallee), 9486 SymbolicCallee->getValueType(0)); 9487 9488 // Get the real number of arguments participating in the call <numArgs> 9489 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9490 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9491 9492 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9493 // Intrinsics include all meta-operands up to but not including CC. 9494 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9495 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9496 "Not enough arguments provided to the patchpoint intrinsic"); 9497 9498 // For AnyRegCC the arguments are lowered later on manually. 9499 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9500 Type *ReturnTy = 9501 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9502 9503 TargetLowering::CallLoweringInfo CLI(DAG); 9504 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9505 ReturnTy, true); 9506 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9507 9508 SDNode *CallEnd = Result.second.getNode(); 9509 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9510 CallEnd = CallEnd->getOperand(0).getNode(); 9511 9512 /// Get a call instruction from the call sequence chain. 9513 /// Tail calls are not allowed. 9514 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9515 "Expected a callseq node."); 9516 SDNode *Call = CallEnd->getOperand(0).getNode(); 9517 bool HasGlue = Call->getGluedNode(); 9518 9519 // Replace the target specific call node with the patchable intrinsic. 9520 SmallVector<SDValue, 8> Ops; 9521 9522 // Add the <id> and <numBytes> constants. 9523 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9524 Ops.push_back(DAG.getTargetConstant( 9525 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9526 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9527 Ops.push_back(DAG.getTargetConstant( 9528 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9529 MVT::i32)); 9530 9531 // Add the callee. 9532 Ops.push_back(Callee); 9533 9534 // Adjust <numArgs> to account for any arguments that have been passed on the 9535 // stack instead. 9536 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9537 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9538 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9539 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9540 9541 // Add the calling convention 9542 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9543 9544 // Add the arguments we omitted previously. The register allocator should 9545 // place these in any free register. 9546 if (IsAnyRegCC) 9547 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9548 Ops.push_back(getValue(CB.getArgOperand(i))); 9549 9550 // Push the arguments from the call instruction up to the register mask. 9551 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9552 Ops.append(Call->op_begin() + 2, e); 9553 9554 // Push live variables for the stack map. 9555 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9556 9557 // Push the register mask info. 9558 if (HasGlue) 9559 Ops.push_back(*(Call->op_end()-2)); 9560 else 9561 Ops.push_back(*(Call->op_end()-1)); 9562 9563 // Push the chain (this is originally the first operand of the call, but 9564 // becomes now the last or second to last operand). 9565 Ops.push_back(*(Call->op_begin())); 9566 9567 // Push the glue flag (last operand). 9568 if (HasGlue) 9569 Ops.push_back(*(Call->op_end()-1)); 9570 9571 SDVTList NodeTys; 9572 if (IsAnyRegCC && HasDef) { 9573 // Create the return types based on the intrinsic definition 9574 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9575 SmallVector<EVT, 3> ValueVTs; 9576 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9577 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9578 9579 // There is always a chain and a glue type at the end 9580 ValueVTs.push_back(MVT::Other); 9581 ValueVTs.push_back(MVT::Glue); 9582 NodeTys = DAG.getVTList(ValueVTs); 9583 } else 9584 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9585 9586 // Replace the target specific call node with a PATCHPOINT node. 9587 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9588 dl, NodeTys, Ops); 9589 9590 // Update the NodeMap. 9591 if (HasDef) { 9592 if (IsAnyRegCC) 9593 setValue(&CB, SDValue(MN, 0)); 9594 else 9595 setValue(&CB, Result.first); 9596 } 9597 9598 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9599 // call sequence. Furthermore the location of the chain and glue can change 9600 // when the AnyReg calling convention is used and the intrinsic returns a 9601 // value. 9602 if (IsAnyRegCC && HasDef) { 9603 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9604 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9605 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9606 } else 9607 DAG.ReplaceAllUsesWith(Call, MN); 9608 DAG.DeleteNode(Call); 9609 9610 // Inform the Frame Information that we have a patchpoint in this function. 9611 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9612 } 9613 9614 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9615 unsigned Intrinsic) { 9616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9617 SDValue Op1 = getValue(I.getArgOperand(0)); 9618 SDValue Op2; 9619 if (I.arg_size() > 1) 9620 Op2 = getValue(I.getArgOperand(1)); 9621 SDLoc dl = getCurSDLoc(); 9622 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9623 SDValue Res; 9624 SDNodeFlags SDFlags; 9625 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9626 SDFlags.copyFMF(*FPMO); 9627 9628 switch (Intrinsic) { 9629 case Intrinsic::vector_reduce_fadd: 9630 if (SDFlags.hasAllowReassociation()) 9631 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9632 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9633 SDFlags); 9634 else 9635 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9636 break; 9637 case Intrinsic::vector_reduce_fmul: 9638 if (SDFlags.hasAllowReassociation()) 9639 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9640 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9641 SDFlags); 9642 else 9643 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9644 break; 9645 case Intrinsic::vector_reduce_add: 9646 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9647 break; 9648 case Intrinsic::vector_reduce_mul: 9649 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9650 break; 9651 case Intrinsic::vector_reduce_and: 9652 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9653 break; 9654 case Intrinsic::vector_reduce_or: 9655 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9656 break; 9657 case Intrinsic::vector_reduce_xor: 9658 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9659 break; 9660 case Intrinsic::vector_reduce_smax: 9661 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9662 break; 9663 case Intrinsic::vector_reduce_smin: 9664 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9665 break; 9666 case Intrinsic::vector_reduce_umax: 9667 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9668 break; 9669 case Intrinsic::vector_reduce_umin: 9670 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9671 break; 9672 case Intrinsic::vector_reduce_fmax: 9673 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9674 break; 9675 case Intrinsic::vector_reduce_fmin: 9676 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9677 break; 9678 default: 9679 llvm_unreachable("Unhandled vector reduce intrinsic"); 9680 } 9681 setValue(&I, Res); 9682 } 9683 9684 /// Returns an AttributeList representing the attributes applied to the return 9685 /// value of the given call. 9686 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9687 SmallVector<Attribute::AttrKind, 2> Attrs; 9688 if (CLI.RetSExt) 9689 Attrs.push_back(Attribute::SExt); 9690 if (CLI.RetZExt) 9691 Attrs.push_back(Attribute::ZExt); 9692 if (CLI.IsInReg) 9693 Attrs.push_back(Attribute::InReg); 9694 9695 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9696 Attrs); 9697 } 9698 9699 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9700 /// implementation, which just calls LowerCall. 9701 /// FIXME: When all targets are 9702 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9703 std::pair<SDValue, SDValue> 9704 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9705 // Handle the incoming return values from the call. 9706 CLI.Ins.clear(); 9707 Type *OrigRetTy = CLI.RetTy; 9708 SmallVector<EVT, 4> RetTys; 9709 SmallVector<uint64_t, 4> Offsets; 9710 auto &DL = CLI.DAG.getDataLayout(); 9711 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9712 9713 if (CLI.IsPostTypeLegalization) { 9714 // If we are lowering a libcall after legalization, split the return type. 9715 SmallVector<EVT, 4> OldRetTys; 9716 SmallVector<uint64_t, 4> OldOffsets; 9717 RetTys.swap(OldRetTys); 9718 Offsets.swap(OldOffsets); 9719 9720 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9721 EVT RetVT = OldRetTys[i]; 9722 uint64_t Offset = OldOffsets[i]; 9723 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9724 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9725 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9726 RetTys.append(NumRegs, RegisterVT); 9727 for (unsigned j = 0; j != NumRegs; ++j) 9728 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9729 } 9730 } 9731 9732 SmallVector<ISD::OutputArg, 4> Outs; 9733 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9734 9735 bool CanLowerReturn = 9736 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9737 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9738 9739 SDValue DemoteStackSlot; 9740 int DemoteStackIdx = -100; 9741 if (!CanLowerReturn) { 9742 // FIXME: equivalent assert? 9743 // assert(!CS.hasInAllocaArgument() && 9744 // "sret demotion is incompatible with inalloca"); 9745 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9746 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9747 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9748 DemoteStackIdx = 9749 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9750 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9751 DL.getAllocaAddrSpace()); 9752 9753 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9754 ArgListEntry Entry; 9755 Entry.Node = DemoteStackSlot; 9756 Entry.Ty = StackSlotPtrType; 9757 Entry.IsSExt = false; 9758 Entry.IsZExt = false; 9759 Entry.IsInReg = false; 9760 Entry.IsSRet = true; 9761 Entry.IsNest = false; 9762 Entry.IsByVal = false; 9763 Entry.IsByRef = false; 9764 Entry.IsReturned = false; 9765 Entry.IsSwiftSelf = false; 9766 Entry.IsSwiftAsync = false; 9767 Entry.IsSwiftError = false; 9768 Entry.IsCFGuardTarget = false; 9769 Entry.Alignment = Alignment; 9770 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9771 CLI.NumFixedArgs += 1; 9772 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9773 9774 // sret demotion isn't compatible with tail-calls, since the sret argument 9775 // points into the callers stack frame. 9776 CLI.IsTailCall = false; 9777 } else { 9778 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9779 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9780 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9781 ISD::ArgFlagsTy Flags; 9782 if (NeedsRegBlock) { 9783 Flags.setInConsecutiveRegs(); 9784 if (I == RetTys.size() - 1) 9785 Flags.setInConsecutiveRegsLast(); 9786 } 9787 EVT VT = RetTys[I]; 9788 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9789 CLI.CallConv, VT); 9790 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9791 CLI.CallConv, VT); 9792 for (unsigned i = 0; i != NumRegs; ++i) { 9793 ISD::InputArg MyFlags; 9794 MyFlags.Flags = Flags; 9795 MyFlags.VT = RegisterVT; 9796 MyFlags.ArgVT = VT; 9797 MyFlags.Used = CLI.IsReturnValueUsed; 9798 if (CLI.RetTy->isPointerTy()) { 9799 MyFlags.Flags.setPointer(); 9800 MyFlags.Flags.setPointerAddrSpace( 9801 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9802 } 9803 if (CLI.RetSExt) 9804 MyFlags.Flags.setSExt(); 9805 if (CLI.RetZExt) 9806 MyFlags.Flags.setZExt(); 9807 if (CLI.IsInReg) 9808 MyFlags.Flags.setInReg(); 9809 CLI.Ins.push_back(MyFlags); 9810 } 9811 } 9812 } 9813 9814 // We push in swifterror return as the last element of CLI.Ins. 9815 ArgListTy &Args = CLI.getArgs(); 9816 if (supportSwiftError()) { 9817 for (const ArgListEntry &Arg : Args) { 9818 if (Arg.IsSwiftError) { 9819 ISD::InputArg MyFlags; 9820 MyFlags.VT = getPointerTy(DL); 9821 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9822 MyFlags.Flags.setSwiftError(); 9823 CLI.Ins.push_back(MyFlags); 9824 } 9825 } 9826 } 9827 9828 // Handle all of the outgoing arguments. 9829 CLI.Outs.clear(); 9830 CLI.OutVals.clear(); 9831 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9832 SmallVector<EVT, 4> ValueVTs; 9833 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9834 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9835 Type *FinalType = Args[i].Ty; 9836 if (Args[i].IsByVal) 9837 FinalType = Args[i].IndirectType; 9838 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9839 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9840 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9841 ++Value) { 9842 EVT VT = ValueVTs[Value]; 9843 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9844 SDValue Op = SDValue(Args[i].Node.getNode(), 9845 Args[i].Node.getResNo() + Value); 9846 ISD::ArgFlagsTy Flags; 9847 9848 // Certain targets (such as MIPS), may have a different ABI alignment 9849 // for a type depending on the context. Give the target a chance to 9850 // specify the alignment it wants. 9851 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9852 Flags.setOrigAlign(OriginalAlignment); 9853 9854 if (Args[i].Ty->isPointerTy()) { 9855 Flags.setPointer(); 9856 Flags.setPointerAddrSpace( 9857 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9858 } 9859 if (Args[i].IsZExt) 9860 Flags.setZExt(); 9861 if (Args[i].IsSExt) 9862 Flags.setSExt(); 9863 if (Args[i].IsInReg) { 9864 // If we are using vectorcall calling convention, a structure that is 9865 // passed InReg - is surely an HVA 9866 if (CLI.CallConv == CallingConv::X86_VectorCall && 9867 isa<StructType>(FinalType)) { 9868 // The first value of a structure is marked 9869 if (0 == Value) 9870 Flags.setHvaStart(); 9871 Flags.setHva(); 9872 } 9873 // Set InReg Flag 9874 Flags.setInReg(); 9875 } 9876 if (Args[i].IsSRet) 9877 Flags.setSRet(); 9878 if (Args[i].IsSwiftSelf) 9879 Flags.setSwiftSelf(); 9880 if (Args[i].IsSwiftAsync) 9881 Flags.setSwiftAsync(); 9882 if (Args[i].IsSwiftError) 9883 Flags.setSwiftError(); 9884 if (Args[i].IsCFGuardTarget) 9885 Flags.setCFGuardTarget(); 9886 if (Args[i].IsByVal) 9887 Flags.setByVal(); 9888 if (Args[i].IsByRef) 9889 Flags.setByRef(); 9890 if (Args[i].IsPreallocated) { 9891 Flags.setPreallocated(); 9892 // Set the byval flag for CCAssignFn callbacks that don't know about 9893 // preallocated. This way we can know how many bytes we should've 9894 // allocated and how many bytes a callee cleanup function will pop. If 9895 // we port preallocated to more targets, we'll have to add custom 9896 // preallocated handling in the various CC lowering callbacks. 9897 Flags.setByVal(); 9898 } 9899 if (Args[i].IsInAlloca) { 9900 Flags.setInAlloca(); 9901 // Set the byval flag for CCAssignFn callbacks that don't know about 9902 // inalloca. This way we can know how many bytes we should've allocated 9903 // and how many bytes a callee cleanup function will pop. If we port 9904 // inalloca to more targets, we'll have to add custom inalloca handling 9905 // in the various CC lowering callbacks. 9906 Flags.setByVal(); 9907 } 9908 Align MemAlign; 9909 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9910 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9911 Flags.setByValSize(FrameSize); 9912 9913 // info is not there but there are cases it cannot get right. 9914 if (auto MA = Args[i].Alignment) 9915 MemAlign = *MA; 9916 else 9917 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9918 } else if (auto MA = Args[i].Alignment) { 9919 MemAlign = *MA; 9920 } else { 9921 MemAlign = OriginalAlignment; 9922 } 9923 Flags.setMemAlign(MemAlign); 9924 if (Args[i].IsNest) 9925 Flags.setNest(); 9926 if (NeedsRegBlock) 9927 Flags.setInConsecutiveRegs(); 9928 9929 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9930 CLI.CallConv, VT); 9931 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9932 CLI.CallConv, VT); 9933 SmallVector<SDValue, 4> Parts(NumParts); 9934 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9935 9936 if (Args[i].IsSExt) 9937 ExtendKind = ISD::SIGN_EXTEND; 9938 else if (Args[i].IsZExt) 9939 ExtendKind = ISD::ZERO_EXTEND; 9940 9941 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9942 // for now. 9943 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9944 CanLowerReturn) { 9945 assert((CLI.RetTy == Args[i].Ty || 9946 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9947 CLI.RetTy->getPointerAddressSpace() == 9948 Args[i].Ty->getPointerAddressSpace())) && 9949 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9950 // Before passing 'returned' to the target lowering code, ensure that 9951 // either the register MVT and the actual EVT are the same size or that 9952 // the return value and argument are extended in the same way; in these 9953 // cases it's safe to pass the argument register value unchanged as the 9954 // return register value (although it's at the target's option whether 9955 // to do so) 9956 // TODO: allow code generation to take advantage of partially preserved 9957 // registers rather than clobbering the entire register when the 9958 // parameter extension method is not compatible with the return 9959 // extension method 9960 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9961 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9962 CLI.RetZExt == Args[i].IsZExt)) 9963 Flags.setReturned(); 9964 } 9965 9966 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9967 CLI.CallConv, ExtendKind); 9968 9969 for (unsigned j = 0; j != NumParts; ++j) { 9970 // if it isn't first piece, alignment must be 1 9971 // For scalable vectors the scalable part is currently handled 9972 // by individual targets, so we just use the known minimum size here. 9973 ISD::OutputArg MyFlags( 9974 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9975 i < CLI.NumFixedArgs, i, 9976 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9977 if (NumParts > 1 && j == 0) 9978 MyFlags.Flags.setSplit(); 9979 else if (j != 0) { 9980 MyFlags.Flags.setOrigAlign(Align(1)); 9981 if (j == NumParts - 1) 9982 MyFlags.Flags.setSplitEnd(); 9983 } 9984 9985 CLI.Outs.push_back(MyFlags); 9986 CLI.OutVals.push_back(Parts[j]); 9987 } 9988 9989 if (NeedsRegBlock && Value == NumValues - 1) 9990 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9991 } 9992 } 9993 9994 SmallVector<SDValue, 4> InVals; 9995 CLI.Chain = LowerCall(CLI, InVals); 9996 9997 // Update CLI.InVals to use outside of this function. 9998 CLI.InVals = InVals; 9999 10000 // Verify that the target's LowerCall behaved as expected. 10001 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10002 "LowerCall didn't return a valid chain!"); 10003 assert((!CLI.IsTailCall || InVals.empty()) && 10004 "LowerCall emitted a return value for a tail call!"); 10005 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10006 "LowerCall didn't emit the correct number of values!"); 10007 10008 // For a tail call, the return value is merely live-out and there aren't 10009 // any nodes in the DAG representing it. Return a special value to 10010 // indicate that a tail call has been emitted and no more Instructions 10011 // should be processed in the current block. 10012 if (CLI.IsTailCall) { 10013 CLI.DAG.setRoot(CLI.Chain); 10014 return std::make_pair(SDValue(), SDValue()); 10015 } 10016 10017 #ifndef NDEBUG 10018 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10019 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10020 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10021 "LowerCall emitted a value with the wrong type!"); 10022 } 10023 #endif 10024 10025 SmallVector<SDValue, 4> ReturnValues; 10026 if (!CanLowerReturn) { 10027 // The instruction result is the result of loading from the 10028 // hidden sret parameter. 10029 SmallVector<EVT, 1> PVTs; 10030 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 10031 10032 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10033 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10034 EVT PtrVT = PVTs[0]; 10035 10036 unsigned NumValues = RetTys.size(); 10037 ReturnValues.resize(NumValues); 10038 SmallVector<SDValue, 4> Chains(NumValues); 10039 10040 // An aggregate return value cannot wrap around the address space, so 10041 // offsets to its parts don't wrap either. 10042 SDNodeFlags Flags; 10043 Flags.setNoUnsignedWrap(true); 10044 10045 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10046 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10047 for (unsigned i = 0; i < NumValues; ++i) { 10048 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10049 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10050 PtrVT), Flags); 10051 SDValue L = CLI.DAG.getLoad( 10052 RetTys[i], CLI.DL, CLI.Chain, Add, 10053 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10054 DemoteStackIdx, Offsets[i]), 10055 HiddenSRetAlign); 10056 ReturnValues[i] = L; 10057 Chains[i] = L.getValue(1); 10058 } 10059 10060 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10061 } else { 10062 // Collect the legal value parts into potentially illegal values 10063 // that correspond to the original function's return values. 10064 Optional<ISD::NodeType> AssertOp; 10065 if (CLI.RetSExt) 10066 AssertOp = ISD::AssertSext; 10067 else if (CLI.RetZExt) 10068 AssertOp = ISD::AssertZext; 10069 unsigned CurReg = 0; 10070 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10071 EVT VT = RetTys[I]; 10072 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10073 CLI.CallConv, VT); 10074 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10075 CLI.CallConv, VT); 10076 10077 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10078 NumRegs, RegisterVT, VT, nullptr, 10079 CLI.CallConv, AssertOp)); 10080 CurReg += NumRegs; 10081 } 10082 10083 // For a function returning void, there is no return value. We can't create 10084 // such a node, so we just return a null return value in that case. In 10085 // that case, nothing will actually look at the value. 10086 if (ReturnValues.empty()) 10087 return std::make_pair(SDValue(), CLI.Chain); 10088 } 10089 10090 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10091 CLI.DAG.getVTList(RetTys), ReturnValues); 10092 return std::make_pair(Res, CLI.Chain); 10093 } 10094 10095 /// Places new result values for the node in Results (their number 10096 /// and types must exactly match those of the original return values of 10097 /// the node), or leaves Results empty, which indicates that the node is not 10098 /// to be custom lowered after all. 10099 void TargetLowering::LowerOperationWrapper(SDNode *N, 10100 SmallVectorImpl<SDValue> &Results, 10101 SelectionDAG &DAG) const { 10102 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10103 10104 if (!Res.getNode()) 10105 return; 10106 10107 // If the original node has one result, take the return value from 10108 // LowerOperation as is. It might not be result number 0. 10109 if (N->getNumValues() == 1) { 10110 Results.push_back(Res); 10111 return; 10112 } 10113 10114 // If the original node has multiple results, then the return node should 10115 // have the same number of results. 10116 assert((N->getNumValues() == Res->getNumValues()) && 10117 "Lowering returned the wrong number of results!"); 10118 10119 // Places new result values base on N result number. 10120 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10121 Results.push_back(Res.getValue(I)); 10122 } 10123 10124 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10125 llvm_unreachable("LowerOperation not implemented for this target!"); 10126 } 10127 10128 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10129 unsigned Reg, 10130 ISD::NodeType ExtendType) { 10131 SDValue Op = getNonRegisterValue(V); 10132 assert((Op.getOpcode() != ISD::CopyFromReg || 10133 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10134 "Copy from a reg to the same reg!"); 10135 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10136 10137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10138 // If this is an InlineAsm we have to match the registers required, not the 10139 // notional registers required by the type. 10140 10141 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10142 None); // This is not an ABI copy. 10143 SDValue Chain = DAG.getEntryNode(); 10144 10145 if (ExtendType == ISD::ANY_EXTEND) { 10146 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10147 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10148 ExtendType = PreferredExtendIt->second; 10149 } 10150 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10151 PendingExports.push_back(Chain); 10152 } 10153 10154 #include "llvm/CodeGen/SelectionDAGISel.h" 10155 10156 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10157 /// entry block, return true. This includes arguments used by switches, since 10158 /// the switch may expand into multiple basic blocks. 10159 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10160 // With FastISel active, we may be splitting blocks, so force creation 10161 // of virtual registers for all non-dead arguments. 10162 if (FastISel) 10163 return A->use_empty(); 10164 10165 const BasicBlock &Entry = A->getParent()->front(); 10166 for (const User *U : A->users()) 10167 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10168 return false; // Use not in entry block. 10169 10170 return true; 10171 } 10172 10173 using ArgCopyElisionMapTy = 10174 DenseMap<const Argument *, 10175 std::pair<const AllocaInst *, const StoreInst *>>; 10176 10177 /// Scan the entry block of the function in FuncInfo for arguments that look 10178 /// like copies into a local alloca. Record any copied arguments in 10179 /// ArgCopyElisionCandidates. 10180 static void 10181 findArgumentCopyElisionCandidates(const DataLayout &DL, 10182 FunctionLoweringInfo *FuncInfo, 10183 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10184 // Record the state of every static alloca used in the entry block. Argument 10185 // allocas are all used in the entry block, so we need approximately as many 10186 // entries as we have arguments. 10187 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10188 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10189 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10190 StaticAllocas.reserve(NumArgs * 2); 10191 10192 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10193 if (!V) 10194 return nullptr; 10195 V = V->stripPointerCasts(); 10196 const auto *AI = dyn_cast<AllocaInst>(V); 10197 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10198 return nullptr; 10199 auto Iter = StaticAllocas.insert({AI, Unknown}); 10200 return &Iter.first->second; 10201 }; 10202 10203 // Look for stores of arguments to static allocas. Look through bitcasts and 10204 // GEPs to handle type coercions, as long as the alloca is fully initialized 10205 // by the store. Any non-store use of an alloca escapes it and any subsequent 10206 // unanalyzed store might write it. 10207 // FIXME: Handle structs initialized with multiple stores. 10208 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10209 // Look for stores, and handle non-store uses conservatively. 10210 const auto *SI = dyn_cast<StoreInst>(&I); 10211 if (!SI) { 10212 // We will look through cast uses, so ignore them completely. 10213 if (I.isCast()) 10214 continue; 10215 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10216 // to allocas. 10217 if (I.isDebugOrPseudoInst()) 10218 continue; 10219 // This is an unknown instruction. Assume it escapes or writes to all 10220 // static alloca operands. 10221 for (const Use &U : I.operands()) { 10222 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10223 *Info = StaticAllocaInfo::Clobbered; 10224 } 10225 continue; 10226 } 10227 10228 // If the stored value is a static alloca, mark it as escaped. 10229 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10230 *Info = StaticAllocaInfo::Clobbered; 10231 10232 // Check if the destination is a static alloca. 10233 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10234 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10235 if (!Info) 10236 continue; 10237 const AllocaInst *AI = cast<AllocaInst>(Dst); 10238 10239 // Skip allocas that have been initialized or clobbered. 10240 if (*Info != StaticAllocaInfo::Unknown) 10241 continue; 10242 10243 // Check if the stored value is an argument, and that this store fully 10244 // initializes the alloca. 10245 // If the argument type has padding bits we can't directly forward a pointer 10246 // as the upper bits may contain garbage. 10247 // Don't elide copies from the same argument twice. 10248 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10249 const auto *Arg = dyn_cast<Argument>(Val); 10250 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10251 Arg->getType()->isEmptyTy() || 10252 DL.getTypeStoreSize(Arg->getType()) != 10253 DL.getTypeAllocSize(AI->getAllocatedType()) || 10254 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10255 ArgCopyElisionCandidates.count(Arg)) { 10256 *Info = StaticAllocaInfo::Clobbered; 10257 continue; 10258 } 10259 10260 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10261 << '\n'); 10262 10263 // Mark this alloca and store for argument copy elision. 10264 *Info = StaticAllocaInfo::Elidable; 10265 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10266 10267 // Stop scanning if we've seen all arguments. This will happen early in -O0 10268 // builds, which is useful, because -O0 builds have large entry blocks and 10269 // many allocas. 10270 if (ArgCopyElisionCandidates.size() == NumArgs) 10271 break; 10272 } 10273 } 10274 10275 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10276 /// ArgVal is a load from a suitable fixed stack object. 10277 static void tryToElideArgumentCopy( 10278 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10279 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10280 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10281 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10282 SDValue ArgVal, bool &ArgHasUses) { 10283 // Check if this is a load from a fixed stack object. 10284 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10285 if (!LNode) 10286 return; 10287 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10288 if (!FINode) 10289 return; 10290 10291 // Check that the fixed stack object is the right size and alignment. 10292 // Look at the alignment that the user wrote on the alloca instead of looking 10293 // at the stack object. 10294 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10295 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10296 const AllocaInst *AI = ArgCopyIter->second.first; 10297 int FixedIndex = FINode->getIndex(); 10298 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10299 int OldIndex = AllocaIndex; 10300 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10301 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10302 LLVM_DEBUG( 10303 dbgs() << " argument copy elision failed due to bad fixed stack " 10304 "object size\n"); 10305 return; 10306 } 10307 Align RequiredAlignment = AI->getAlign(); 10308 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10309 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10310 "greater than stack argument alignment (" 10311 << DebugStr(RequiredAlignment) << " vs " 10312 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10313 return; 10314 } 10315 10316 // Perform the elision. Delete the old stack object and replace its only use 10317 // in the variable info map. Mark the stack object as mutable. 10318 LLVM_DEBUG({ 10319 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10320 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10321 << '\n'; 10322 }); 10323 MFI.RemoveStackObject(OldIndex); 10324 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10325 AllocaIndex = FixedIndex; 10326 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10327 Chains.push_back(ArgVal.getValue(1)); 10328 10329 // Avoid emitting code for the store implementing the copy. 10330 const StoreInst *SI = ArgCopyIter->second.second; 10331 ElidedArgCopyInstrs.insert(SI); 10332 10333 // Check for uses of the argument again so that we can avoid exporting ArgVal 10334 // if it is't used by anything other than the store. 10335 for (const Value *U : Arg.users()) { 10336 if (U != SI) { 10337 ArgHasUses = true; 10338 break; 10339 } 10340 } 10341 } 10342 10343 void SelectionDAGISel::LowerArguments(const Function &F) { 10344 SelectionDAG &DAG = SDB->DAG; 10345 SDLoc dl = SDB->getCurSDLoc(); 10346 const DataLayout &DL = DAG.getDataLayout(); 10347 SmallVector<ISD::InputArg, 16> Ins; 10348 10349 // In Naked functions we aren't going to save any registers. 10350 if (F.hasFnAttribute(Attribute::Naked)) 10351 return; 10352 10353 if (!FuncInfo->CanLowerReturn) { 10354 // Put in an sret pointer parameter before all the other parameters. 10355 SmallVector<EVT, 1> ValueVTs; 10356 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10357 F.getReturnType()->getPointerTo( 10358 DAG.getDataLayout().getAllocaAddrSpace()), 10359 ValueVTs); 10360 10361 // NOTE: Assuming that a pointer will never break down to more than one VT 10362 // or one register. 10363 ISD::ArgFlagsTy Flags; 10364 Flags.setSRet(); 10365 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10366 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10367 ISD::InputArg::NoArgIndex, 0); 10368 Ins.push_back(RetArg); 10369 } 10370 10371 // Look for stores of arguments to static allocas. Mark such arguments with a 10372 // flag to ask the target to give us the memory location of that argument if 10373 // available. 10374 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10375 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10376 ArgCopyElisionCandidates); 10377 10378 // Set up the incoming argument description vector. 10379 for (const Argument &Arg : F.args()) { 10380 unsigned ArgNo = Arg.getArgNo(); 10381 SmallVector<EVT, 4> ValueVTs; 10382 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10383 bool isArgValueUsed = !Arg.use_empty(); 10384 unsigned PartBase = 0; 10385 Type *FinalType = Arg.getType(); 10386 if (Arg.hasAttribute(Attribute::ByVal)) 10387 FinalType = Arg.getParamByValType(); 10388 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10389 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10390 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10391 Value != NumValues; ++Value) { 10392 EVT VT = ValueVTs[Value]; 10393 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10394 ISD::ArgFlagsTy Flags; 10395 10396 10397 if (Arg.getType()->isPointerTy()) { 10398 Flags.setPointer(); 10399 Flags.setPointerAddrSpace( 10400 cast<PointerType>(Arg.getType())->getAddressSpace()); 10401 } 10402 if (Arg.hasAttribute(Attribute::ZExt)) 10403 Flags.setZExt(); 10404 if (Arg.hasAttribute(Attribute::SExt)) 10405 Flags.setSExt(); 10406 if (Arg.hasAttribute(Attribute::InReg)) { 10407 // If we are using vectorcall calling convention, a structure that is 10408 // passed InReg - is surely an HVA 10409 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10410 isa<StructType>(Arg.getType())) { 10411 // The first value of a structure is marked 10412 if (0 == Value) 10413 Flags.setHvaStart(); 10414 Flags.setHva(); 10415 } 10416 // Set InReg Flag 10417 Flags.setInReg(); 10418 } 10419 if (Arg.hasAttribute(Attribute::StructRet)) 10420 Flags.setSRet(); 10421 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10422 Flags.setSwiftSelf(); 10423 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10424 Flags.setSwiftAsync(); 10425 if (Arg.hasAttribute(Attribute::SwiftError)) 10426 Flags.setSwiftError(); 10427 if (Arg.hasAttribute(Attribute::ByVal)) 10428 Flags.setByVal(); 10429 if (Arg.hasAttribute(Attribute::ByRef)) 10430 Flags.setByRef(); 10431 if (Arg.hasAttribute(Attribute::InAlloca)) { 10432 Flags.setInAlloca(); 10433 // Set the byval flag for CCAssignFn callbacks that don't know about 10434 // inalloca. This way we can know how many bytes we should've allocated 10435 // and how many bytes a callee cleanup function will pop. If we port 10436 // inalloca to more targets, we'll have to add custom inalloca handling 10437 // in the various CC lowering callbacks. 10438 Flags.setByVal(); 10439 } 10440 if (Arg.hasAttribute(Attribute::Preallocated)) { 10441 Flags.setPreallocated(); 10442 // Set the byval flag for CCAssignFn callbacks that don't know about 10443 // preallocated. This way we can know how many bytes we should've 10444 // allocated and how many bytes a callee cleanup function will pop. If 10445 // we port preallocated to more targets, we'll have to add custom 10446 // preallocated handling in the various CC lowering callbacks. 10447 Flags.setByVal(); 10448 } 10449 10450 // Certain targets (such as MIPS), may have a different ABI alignment 10451 // for a type depending on the context. Give the target a chance to 10452 // specify the alignment it wants. 10453 const Align OriginalAlignment( 10454 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10455 Flags.setOrigAlign(OriginalAlignment); 10456 10457 Align MemAlign; 10458 Type *ArgMemTy = nullptr; 10459 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10460 Flags.isByRef()) { 10461 if (!ArgMemTy) 10462 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10463 10464 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10465 10466 // For in-memory arguments, size and alignment should be passed from FE. 10467 // BE will guess if this info is not there but there are cases it cannot 10468 // get right. 10469 if (auto ParamAlign = Arg.getParamStackAlign()) 10470 MemAlign = *ParamAlign; 10471 else if ((ParamAlign = Arg.getParamAlign())) 10472 MemAlign = *ParamAlign; 10473 else 10474 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10475 if (Flags.isByRef()) 10476 Flags.setByRefSize(MemSize); 10477 else 10478 Flags.setByValSize(MemSize); 10479 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10480 MemAlign = *ParamAlign; 10481 } else { 10482 MemAlign = OriginalAlignment; 10483 } 10484 Flags.setMemAlign(MemAlign); 10485 10486 if (Arg.hasAttribute(Attribute::Nest)) 10487 Flags.setNest(); 10488 if (NeedsRegBlock) 10489 Flags.setInConsecutiveRegs(); 10490 if (ArgCopyElisionCandidates.count(&Arg)) 10491 Flags.setCopyElisionCandidate(); 10492 if (Arg.hasAttribute(Attribute::Returned)) 10493 Flags.setReturned(); 10494 10495 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10496 *CurDAG->getContext(), F.getCallingConv(), VT); 10497 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10498 *CurDAG->getContext(), F.getCallingConv(), VT); 10499 for (unsigned i = 0; i != NumRegs; ++i) { 10500 // For scalable vectors, use the minimum size; individual targets 10501 // are responsible for handling scalable vector arguments and 10502 // return values. 10503 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10504 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10505 if (NumRegs > 1 && i == 0) 10506 MyFlags.Flags.setSplit(); 10507 // if it isn't first piece, alignment must be 1 10508 else if (i > 0) { 10509 MyFlags.Flags.setOrigAlign(Align(1)); 10510 if (i == NumRegs - 1) 10511 MyFlags.Flags.setSplitEnd(); 10512 } 10513 Ins.push_back(MyFlags); 10514 } 10515 if (NeedsRegBlock && Value == NumValues - 1) 10516 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10517 PartBase += VT.getStoreSize().getKnownMinSize(); 10518 } 10519 } 10520 10521 // Call the target to set up the argument values. 10522 SmallVector<SDValue, 8> InVals; 10523 SDValue NewRoot = TLI->LowerFormalArguments( 10524 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10525 10526 // Verify that the target's LowerFormalArguments behaved as expected. 10527 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10528 "LowerFormalArguments didn't return a valid chain!"); 10529 assert(InVals.size() == Ins.size() && 10530 "LowerFormalArguments didn't emit the correct number of values!"); 10531 LLVM_DEBUG({ 10532 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10533 assert(InVals[i].getNode() && 10534 "LowerFormalArguments emitted a null value!"); 10535 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10536 "LowerFormalArguments emitted a value with the wrong type!"); 10537 } 10538 }); 10539 10540 // Update the DAG with the new chain value resulting from argument lowering. 10541 DAG.setRoot(NewRoot); 10542 10543 // Set up the argument values. 10544 unsigned i = 0; 10545 if (!FuncInfo->CanLowerReturn) { 10546 // Create a virtual register for the sret pointer, and put in a copy 10547 // from the sret argument into it. 10548 SmallVector<EVT, 1> ValueVTs; 10549 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10550 F.getReturnType()->getPointerTo( 10551 DAG.getDataLayout().getAllocaAddrSpace()), 10552 ValueVTs); 10553 MVT VT = ValueVTs[0].getSimpleVT(); 10554 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10555 Optional<ISD::NodeType> AssertOp = None; 10556 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10557 nullptr, F.getCallingConv(), AssertOp); 10558 10559 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10560 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10561 Register SRetReg = 10562 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10563 FuncInfo->DemoteRegister = SRetReg; 10564 NewRoot = 10565 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10566 DAG.setRoot(NewRoot); 10567 10568 // i indexes lowered arguments. Bump it past the hidden sret argument. 10569 ++i; 10570 } 10571 10572 SmallVector<SDValue, 4> Chains; 10573 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10574 for (const Argument &Arg : F.args()) { 10575 SmallVector<SDValue, 4> ArgValues; 10576 SmallVector<EVT, 4> ValueVTs; 10577 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10578 unsigned NumValues = ValueVTs.size(); 10579 if (NumValues == 0) 10580 continue; 10581 10582 bool ArgHasUses = !Arg.use_empty(); 10583 10584 // Elide the copying store if the target loaded this argument from a 10585 // suitable fixed stack object. 10586 if (Ins[i].Flags.isCopyElisionCandidate()) { 10587 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10588 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10589 InVals[i], ArgHasUses); 10590 } 10591 10592 // If this argument is unused then remember its value. It is used to generate 10593 // debugging information. 10594 bool isSwiftErrorArg = 10595 TLI->supportSwiftError() && 10596 Arg.hasAttribute(Attribute::SwiftError); 10597 if (!ArgHasUses && !isSwiftErrorArg) { 10598 SDB->setUnusedArgValue(&Arg, InVals[i]); 10599 10600 // Also remember any frame index for use in FastISel. 10601 if (FrameIndexSDNode *FI = 10602 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10603 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10604 } 10605 10606 for (unsigned Val = 0; Val != NumValues; ++Val) { 10607 EVT VT = ValueVTs[Val]; 10608 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10609 F.getCallingConv(), VT); 10610 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10611 *CurDAG->getContext(), F.getCallingConv(), VT); 10612 10613 // Even an apparent 'unused' swifterror argument needs to be returned. So 10614 // we do generate a copy for it that can be used on return from the 10615 // function. 10616 if (ArgHasUses || isSwiftErrorArg) { 10617 Optional<ISD::NodeType> AssertOp; 10618 if (Arg.hasAttribute(Attribute::SExt)) 10619 AssertOp = ISD::AssertSext; 10620 else if (Arg.hasAttribute(Attribute::ZExt)) 10621 AssertOp = ISD::AssertZext; 10622 10623 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10624 PartVT, VT, nullptr, 10625 F.getCallingConv(), AssertOp)); 10626 } 10627 10628 i += NumParts; 10629 } 10630 10631 // We don't need to do anything else for unused arguments. 10632 if (ArgValues.empty()) 10633 continue; 10634 10635 // Note down frame index. 10636 if (FrameIndexSDNode *FI = 10637 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10638 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10639 10640 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10641 SDB->getCurSDLoc()); 10642 10643 SDB->setValue(&Arg, Res); 10644 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10645 // We want to associate the argument with the frame index, among 10646 // involved operands, that correspond to the lowest address. The 10647 // getCopyFromParts function, called earlier, is swapping the order of 10648 // the operands to BUILD_PAIR depending on endianness. The result of 10649 // that swapping is that the least significant bits of the argument will 10650 // be in the first operand of the BUILD_PAIR node, and the most 10651 // significant bits will be in the second operand. 10652 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10653 if (LoadSDNode *LNode = 10654 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10655 if (FrameIndexSDNode *FI = 10656 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10657 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10658 } 10659 10660 // Analyses past this point are naive and don't expect an assertion. 10661 if (Res.getOpcode() == ISD::AssertZext) 10662 Res = Res.getOperand(0); 10663 10664 // Update the SwiftErrorVRegDefMap. 10665 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10666 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10667 if (Register::isVirtualRegister(Reg)) 10668 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10669 Reg); 10670 } 10671 10672 // If this argument is live outside of the entry block, insert a copy from 10673 // wherever we got it to the vreg that other BB's will reference it as. 10674 if (Res.getOpcode() == ISD::CopyFromReg) { 10675 // If we can, though, try to skip creating an unnecessary vreg. 10676 // FIXME: This isn't very clean... it would be nice to make this more 10677 // general. 10678 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10679 if (Register::isVirtualRegister(Reg)) { 10680 FuncInfo->ValueMap[&Arg] = Reg; 10681 continue; 10682 } 10683 } 10684 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10685 FuncInfo->InitializeRegForValue(&Arg); 10686 SDB->CopyToExportRegsIfNeeded(&Arg); 10687 } 10688 } 10689 10690 if (!Chains.empty()) { 10691 Chains.push_back(NewRoot); 10692 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10693 } 10694 10695 DAG.setRoot(NewRoot); 10696 10697 assert(i == InVals.size() && "Argument register count mismatch!"); 10698 10699 // If any argument copy elisions occurred and we have debug info, update the 10700 // stale frame indices used in the dbg.declare variable info table. 10701 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10702 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10703 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10704 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10705 if (I != ArgCopyElisionFrameIndexMap.end()) 10706 VI.Slot = I->second; 10707 } 10708 } 10709 10710 // Finally, if the target has anything special to do, allow it to do so. 10711 emitFunctionEntryCode(); 10712 } 10713 10714 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10715 /// ensure constants are generated when needed. Remember the virtual registers 10716 /// that need to be added to the Machine PHI nodes as input. We cannot just 10717 /// directly add them, because expansion might result in multiple MBB's for one 10718 /// BB. As such, the start of the BB might correspond to a different MBB than 10719 /// the end. 10720 void 10721 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10722 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10723 const Instruction *TI = LLVMBB->getTerminator(); 10724 10725 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10726 10727 // Check PHI nodes in successors that expect a value to be available from this 10728 // block. 10729 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10730 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10731 if (!isa<PHINode>(SuccBB->begin())) continue; 10732 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10733 10734 // If this terminator has multiple identical successors (common for 10735 // switches), only handle each succ once. 10736 if (!SuccsHandled.insert(SuccMBB).second) 10737 continue; 10738 10739 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10740 10741 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10742 // nodes and Machine PHI nodes, but the incoming operands have not been 10743 // emitted yet. 10744 for (const PHINode &PN : SuccBB->phis()) { 10745 // Ignore dead phi's. 10746 if (PN.use_empty()) 10747 continue; 10748 10749 // Skip empty types 10750 if (PN.getType()->isEmptyTy()) 10751 continue; 10752 10753 unsigned Reg; 10754 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10755 10756 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10757 unsigned &RegOut = ConstantsOut[C]; 10758 if (RegOut == 0) { 10759 RegOut = FuncInfo.CreateRegs(C); 10760 // We need to zero/sign extend ConstantInt phi operands to match 10761 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10762 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10763 if (auto *CI = dyn_cast<ConstantInt>(C)) 10764 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10765 : ISD::ZERO_EXTEND; 10766 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10767 } 10768 Reg = RegOut; 10769 } else { 10770 DenseMap<const Value *, Register>::iterator I = 10771 FuncInfo.ValueMap.find(PHIOp); 10772 if (I != FuncInfo.ValueMap.end()) 10773 Reg = I->second; 10774 else { 10775 assert(isa<AllocaInst>(PHIOp) && 10776 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10777 "Didn't codegen value into a register!??"); 10778 Reg = FuncInfo.CreateRegs(PHIOp); 10779 CopyValueToVirtualRegister(PHIOp, Reg); 10780 } 10781 } 10782 10783 // Remember that this register needs to added to the machine PHI node as 10784 // the input for this MBB. 10785 SmallVector<EVT, 4> ValueVTs; 10786 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10787 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10788 EVT VT = ValueVTs[vti]; 10789 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10790 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10791 FuncInfo.PHINodesToUpdate.push_back( 10792 std::make_pair(&*MBBI++, Reg + i)); 10793 Reg += NumRegisters; 10794 } 10795 } 10796 } 10797 10798 ConstantsOut.clear(); 10799 } 10800 10801 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10802 MachineFunction::iterator I(MBB); 10803 if (++I == FuncInfo.MF->end()) 10804 return nullptr; 10805 return &*I; 10806 } 10807 10808 /// During lowering new call nodes can be created (such as memset, etc.). 10809 /// Those will become new roots of the current DAG, but complications arise 10810 /// when they are tail calls. In such cases, the call lowering will update 10811 /// the root, but the builder still needs to know that a tail call has been 10812 /// lowered in order to avoid generating an additional return. 10813 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10814 // If the node is null, we do have a tail call. 10815 if (MaybeTC.getNode() != nullptr) 10816 DAG.setRoot(MaybeTC); 10817 else 10818 HasTailCall = true; 10819 } 10820 10821 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10822 MachineBasicBlock *SwitchMBB, 10823 MachineBasicBlock *DefaultMBB) { 10824 MachineFunction *CurMF = FuncInfo.MF; 10825 MachineBasicBlock *NextMBB = nullptr; 10826 MachineFunction::iterator BBI(W.MBB); 10827 if (++BBI != FuncInfo.MF->end()) 10828 NextMBB = &*BBI; 10829 10830 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10831 10832 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10833 10834 if (Size == 2 && W.MBB == SwitchMBB) { 10835 // If any two of the cases has the same destination, and if one value 10836 // is the same as the other, but has one bit unset that the other has set, 10837 // use bit manipulation to do two compares at once. For example: 10838 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10839 // TODO: This could be extended to merge any 2 cases in switches with 3 10840 // cases. 10841 // TODO: Handle cases where W.CaseBB != SwitchBB. 10842 CaseCluster &Small = *W.FirstCluster; 10843 CaseCluster &Big = *W.LastCluster; 10844 10845 if (Small.Low == Small.High && Big.Low == Big.High && 10846 Small.MBB == Big.MBB) { 10847 const APInt &SmallValue = Small.Low->getValue(); 10848 const APInt &BigValue = Big.Low->getValue(); 10849 10850 // Check that there is only one bit different. 10851 APInt CommonBit = BigValue ^ SmallValue; 10852 if (CommonBit.isPowerOf2()) { 10853 SDValue CondLHS = getValue(Cond); 10854 EVT VT = CondLHS.getValueType(); 10855 SDLoc DL = getCurSDLoc(); 10856 10857 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10858 DAG.getConstant(CommonBit, DL, VT)); 10859 SDValue Cond = DAG.getSetCC( 10860 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10861 ISD::SETEQ); 10862 10863 // Update successor info. 10864 // Both Small and Big will jump to Small.BB, so we sum up the 10865 // probabilities. 10866 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10867 if (BPI) 10868 addSuccessorWithProb( 10869 SwitchMBB, DefaultMBB, 10870 // The default destination is the first successor in IR. 10871 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10872 else 10873 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10874 10875 // Insert the true branch. 10876 SDValue BrCond = 10877 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10878 DAG.getBasicBlock(Small.MBB)); 10879 // Insert the false branch. 10880 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10881 DAG.getBasicBlock(DefaultMBB)); 10882 10883 DAG.setRoot(BrCond); 10884 return; 10885 } 10886 } 10887 } 10888 10889 if (TM.getOptLevel() != CodeGenOpt::None) { 10890 // Here, we order cases by probability so the most likely case will be 10891 // checked first. However, two clusters can have the same probability in 10892 // which case their relative ordering is non-deterministic. So we use Low 10893 // as a tie-breaker as clusters are guaranteed to never overlap. 10894 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10895 [](const CaseCluster &a, const CaseCluster &b) { 10896 return a.Prob != b.Prob ? 10897 a.Prob > b.Prob : 10898 a.Low->getValue().slt(b.Low->getValue()); 10899 }); 10900 10901 // Rearrange the case blocks so that the last one falls through if possible 10902 // without changing the order of probabilities. 10903 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10904 --I; 10905 if (I->Prob > W.LastCluster->Prob) 10906 break; 10907 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10908 std::swap(*I, *W.LastCluster); 10909 break; 10910 } 10911 } 10912 } 10913 10914 // Compute total probability. 10915 BranchProbability DefaultProb = W.DefaultProb; 10916 BranchProbability UnhandledProbs = DefaultProb; 10917 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10918 UnhandledProbs += I->Prob; 10919 10920 MachineBasicBlock *CurMBB = W.MBB; 10921 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10922 bool FallthroughUnreachable = false; 10923 MachineBasicBlock *Fallthrough; 10924 if (I == W.LastCluster) { 10925 // For the last cluster, fall through to the default destination. 10926 Fallthrough = DefaultMBB; 10927 FallthroughUnreachable = isa<UnreachableInst>( 10928 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10929 } else { 10930 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10931 CurMF->insert(BBI, Fallthrough); 10932 // Put Cond in a virtual register to make it available from the new blocks. 10933 ExportFromCurrentBlock(Cond); 10934 } 10935 UnhandledProbs -= I->Prob; 10936 10937 switch (I->Kind) { 10938 case CC_JumpTable: { 10939 // FIXME: Optimize away range check based on pivot comparisons. 10940 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10941 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10942 10943 // The jump block hasn't been inserted yet; insert it here. 10944 MachineBasicBlock *JumpMBB = JT->MBB; 10945 CurMF->insert(BBI, JumpMBB); 10946 10947 auto JumpProb = I->Prob; 10948 auto FallthroughProb = UnhandledProbs; 10949 10950 // If the default statement is a target of the jump table, we evenly 10951 // distribute the default probability to successors of CurMBB. Also 10952 // update the probability on the edge from JumpMBB to Fallthrough. 10953 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10954 SE = JumpMBB->succ_end(); 10955 SI != SE; ++SI) { 10956 if (*SI == DefaultMBB) { 10957 JumpProb += DefaultProb / 2; 10958 FallthroughProb -= DefaultProb / 2; 10959 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10960 JumpMBB->normalizeSuccProbs(); 10961 break; 10962 } 10963 } 10964 10965 if (FallthroughUnreachable) 10966 JTH->FallthroughUnreachable = true; 10967 10968 if (!JTH->FallthroughUnreachable) 10969 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10970 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10971 CurMBB->normalizeSuccProbs(); 10972 10973 // The jump table header will be inserted in our current block, do the 10974 // range check, and fall through to our fallthrough block. 10975 JTH->HeaderBB = CurMBB; 10976 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10977 10978 // If we're in the right place, emit the jump table header right now. 10979 if (CurMBB == SwitchMBB) { 10980 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10981 JTH->Emitted = true; 10982 } 10983 break; 10984 } 10985 case CC_BitTests: { 10986 // FIXME: Optimize away range check based on pivot comparisons. 10987 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10988 10989 // The bit test blocks haven't been inserted yet; insert them here. 10990 for (BitTestCase &BTC : BTB->Cases) 10991 CurMF->insert(BBI, BTC.ThisBB); 10992 10993 // Fill in fields of the BitTestBlock. 10994 BTB->Parent = CurMBB; 10995 BTB->Default = Fallthrough; 10996 10997 BTB->DefaultProb = UnhandledProbs; 10998 // If the cases in bit test don't form a contiguous range, we evenly 10999 // distribute the probability on the edge to Fallthrough to two 11000 // successors of CurMBB. 11001 if (!BTB->ContiguousRange) { 11002 BTB->Prob += DefaultProb / 2; 11003 BTB->DefaultProb -= DefaultProb / 2; 11004 } 11005 11006 if (FallthroughUnreachable) 11007 BTB->FallthroughUnreachable = true; 11008 11009 // If we're in the right place, emit the bit test header right now. 11010 if (CurMBB == SwitchMBB) { 11011 visitBitTestHeader(*BTB, SwitchMBB); 11012 BTB->Emitted = true; 11013 } 11014 break; 11015 } 11016 case CC_Range: { 11017 const Value *RHS, *LHS, *MHS; 11018 ISD::CondCode CC; 11019 if (I->Low == I->High) { 11020 // Check Cond == I->Low. 11021 CC = ISD::SETEQ; 11022 LHS = Cond; 11023 RHS=I->Low; 11024 MHS = nullptr; 11025 } else { 11026 // Check I->Low <= Cond <= I->High. 11027 CC = ISD::SETLE; 11028 LHS = I->Low; 11029 MHS = Cond; 11030 RHS = I->High; 11031 } 11032 11033 // If Fallthrough is unreachable, fold away the comparison. 11034 if (FallthroughUnreachable) 11035 CC = ISD::SETTRUE; 11036 11037 // The false probability is the sum of all unhandled cases. 11038 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11039 getCurSDLoc(), I->Prob, UnhandledProbs); 11040 11041 if (CurMBB == SwitchMBB) 11042 visitSwitchCase(CB, SwitchMBB); 11043 else 11044 SL->SwitchCases.push_back(CB); 11045 11046 break; 11047 } 11048 } 11049 CurMBB = Fallthrough; 11050 } 11051 } 11052 11053 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11054 CaseClusterIt First, 11055 CaseClusterIt Last) { 11056 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11057 if (X.Prob != CC.Prob) 11058 return X.Prob > CC.Prob; 11059 11060 // Ties are broken by comparing the case value. 11061 return X.Low->getValue().slt(CC.Low->getValue()); 11062 }); 11063 } 11064 11065 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11066 const SwitchWorkListItem &W, 11067 Value *Cond, 11068 MachineBasicBlock *SwitchMBB) { 11069 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11070 "Clusters not sorted?"); 11071 11072 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11073 11074 // Balance the tree based on branch probabilities to create a near-optimal (in 11075 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11076 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11077 CaseClusterIt LastLeft = W.FirstCluster; 11078 CaseClusterIt FirstRight = W.LastCluster; 11079 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11080 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11081 11082 // Move LastLeft and FirstRight towards each other from opposite directions to 11083 // find a partitioning of the clusters which balances the probability on both 11084 // sides. If LeftProb and RightProb are equal, alternate which side is 11085 // taken to ensure 0-probability nodes are distributed evenly. 11086 unsigned I = 0; 11087 while (LastLeft + 1 < FirstRight) { 11088 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11089 LeftProb += (++LastLeft)->Prob; 11090 else 11091 RightProb += (--FirstRight)->Prob; 11092 I++; 11093 } 11094 11095 while (true) { 11096 // Our binary search tree differs from a typical BST in that ours can have up 11097 // to three values in each leaf. The pivot selection above doesn't take that 11098 // into account, which means the tree might require more nodes and be less 11099 // efficient. We compensate for this here. 11100 11101 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11102 unsigned NumRight = W.LastCluster - FirstRight + 1; 11103 11104 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11105 // If one side has less than 3 clusters, and the other has more than 3, 11106 // consider taking a cluster from the other side. 11107 11108 if (NumLeft < NumRight) { 11109 // Consider moving the first cluster on the right to the left side. 11110 CaseCluster &CC = *FirstRight; 11111 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11112 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11113 if (LeftSideRank <= RightSideRank) { 11114 // Moving the cluster to the left does not demote it. 11115 ++LastLeft; 11116 ++FirstRight; 11117 continue; 11118 } 11119 } else { 11120 assert(NumRight < NumLeft); 11121 // Consider moving the last element on the left to the right side. 11122 CaseCluster &CC = *LastLeft; 11123 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11124 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11125 if (RightSideRank <= LeftSideRank) { 11126 // Moving the cluster to the right does not demot it. 11127 --LastLeft; 11128 --FirstRight; 11129 continue; 11130 } 11131 } 11132 } 11133 break; 11134 } 11135 11136 assert(LastLeft + 1 == FirstRight); 11137 assert(LastLeft >= W.FirstCluster); 11138 assert(FirstRight <= W.LastCluster); 11139 11140 // Use the first element on the right as pivot since we will make less-than 11141 // comparisons against it. 11142 CaseClusterIt PivotCluster = FirstRight; 11143 assert(PivotCluster > W.FirstCluster); 11144 assert(PivotCluster <= W.LastCluster); 11145 11146 CaseClusterIt FirstLeft = W.FirstCluster; 11147 CaseClusterIt LastRight = W.LastCluster; 11148 11149 const ConstantInt *Pivot = PivotCluster->Low; 11150 11151 // New blocks will be inserted immediately after the current one. 11152 MachineFunction::iterator BBI(W.MBB); 11153 ++BBI; 11154 11155 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11156 // we can branch to its destination directly if it's squeezed exactly in 11157 // between the known lower bound and Pivot - 1. 11158 MachineBasicBlock *LeftMBB; 11159 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11160 FirstLeft->Low == W.GE && 11161 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11162 LeftMBB = FirstLeft->MBB; 11163 } else { 11164 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11165 FuncInfo.MF->insert(BBI, LeftMBB); 11166 WorkList.push_back( 11167 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11168 // Put Cond in a virtual register to make it available from the new blocks. 11169 ExportFromCurrentBlock(Cond); 11170 } 11171 11172 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11173 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11174 // directly if RHS.High equals the current upper bound. 11175 MachineBasicBlock *RightMBB; 11176 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11177 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11178 RightMBB = FirstRight->MBB; 11179 } else { 11180 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11181 FuncInfo.MF->insert(BBI, RightMBB); 11182 WorkList.push_back( 11183 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11184 // Put Cond in a virtual register to make it available from the new blocks. 11185 ExportFromCurrentBlock(Cond); 11186 } 11187 11188 // Create the CaseBlock record that will be used to lower the branch. 11189 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11190 getCurSDLoc(), LeftProb, RightProb); 11191 11192 if (W.MBB == SwitchMBB) 11193 visitSwitchCase(CB, SwitchMBB); 11194 else 11195 SL->SwitchCases.push_back(CB); 11196 } 11197 11198 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11199 // from the swith statement. 11200 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11201 BranchProbability PeeledCaseProb) { 11202 if (PeeledCaseProb == BranchProbability::getOne()) 11203 return BranchProbability::getZero(); 11204 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11205 11206 uint32_t Numerator = CaseProb.getNumerator(); 11207 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11208 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11209 } 11210 11211 // Try to peel the top probability case if it exceeds the threshold. 11212 // Return current MachineBasicBlock for the switch statement if the peeling 11213 // does not occur. 11214 // If the peeling is performed, return the newly created MachineBasicBlock 11215 // for the peeled switch statement. Also update Clusters to remove the peeled 11216 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11217 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11218 const SwitchInst &SI, CaseClusterVector &Clusters, 11219 BranchProbability &PeeledCaseProb) { 11220 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11221 // Don't perform if there is only one cluster or optimizing for size. 11222 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11223 TM.getOptLevel() == CodeGenOpt::None || 11224 SwitchMBB->getParent()->getFunction().hasMinSize()) 11225 return SwitchMBB; 11226 11227 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11228 unsigned PeeledCaseIndex = 0; 11229 bool SwitchPeeled = false; 11230 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11231 CaseCluster &CC = Clusters[Index]; 11232 if (CC.Prob < TopCaseProb) 11233 continue; 11234 TopCaseProb = CC.Prob; 11235 PeeledCaseIndex = Index; 11236 SwitchPeeled = true; 11237 } 11238 if (!SwitchPeeled) 11239 return SwitchMBB; 11240 11241 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11242 << TopCaseProb << "\n"); 11243 11244 // Record the MBB for the peeled switch statement. 11245 MachineFunction::iterator BBI(SwitchMBB); 11246 ++BBI; 11247 MachineBasicBlock *PeeledSwitchMBB = 11248 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11249 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11250 11251 ExportFromCurrentBlock(SI.getCondition()); 11252 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11253 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11254 nullptr, nullptr, TopCaseProb.getCompl()}; 11255 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11256 11257 Clusters.erase(PeeledCaseIt); 11258 for (CaseCluster &CC : Clusters) { 11259 LLVM_DEBUG( 11260 dbgs() << "Scale the probablity for one cluster, before scaling: " 11261 << CC.Prob << "\n"); 11262 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11263 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11264 } 11265 PeeledCaseProb = TopCaseProb; 11266 return PeeledSwitchMBB; 11267 } 11268 11269 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11270 // Extract cases from the switch. 11271 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11272 CaseClusterVector Clusters; 11273 Clusters.reserve(SI.getNumCases()); 11274 for (auto I : SI.cases()) { 11275 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11276 const ConstantInt *CaseVal = I.getCaseValue(); 11277 BranchProbability Prob = 11278 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11279 : BranchProbability(1, SI.getNumCases() + 1); 11280 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11281 } 11282 11283 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11284 11285 // Cluster adjacent cases with the same destination. We do this at all 11286 // optimization levels because it's cheap to do and will make codegen faster 11287 // if there are many clusters. 11288 sortAndRangeify(Clusters); 11289 11290 // The branch probablity of the peeled case. 11291 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11292 MachineBasicBlock *PeeledSwitchMBB = 11293 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11294 11295 // If there is only the default destination, jump there directly. 11296 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11297 if (Clusters.empty()) { 11298 assert(PeeledSwitchMBB == SwitchMBB); 11299 SwitchMBB->addSuccessor(DefaultMBB); 11300 if (DefaultMBB != NextBlock(SwitchMBB)) { 11301 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11302 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11303 } 11304 return; 11305 } 11306 11307 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11308 SL->findBitTestClusters(Clusters, &SI); 11309 11310 LLVM_DEBUG({ 11311 dbgs() << "Case clusters: "; 11312 for (const CaseCluster &C : Clusters) { 11313 if (C.Kind == CC_JumpTable) 11314 dbgs() << "JT:"; 11315 if (C.Kind == CC_BitTests) 11316 dbgs() << "BT:"; 11317 11318 C.Low->getValue().print(dbgs(), true); 11319 if (C.Low != C.High) { 11320 dbgs() << '-'; 11321 C.High->getValue().print(dbgs(), true); 11322 } 11323 dbgs() << ' '; 11324 } 11325 dbgs() << '\n'; 11326 }); 11327 11328 assert(!Clusters.empty()); 11329 SwitchWorkList WorkList; 11330 CaseClusterIt First = Clusters.begin(); 11331 CaseClusterIt Last = Clusters.end() - 1; 11332 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11333 // Scale the branchprobability for DefaultMBB if the peel occurs and 11334 // DefaultMBB is not replaced. 11335 if (PeeledCaseProb != BranchProbability::getZero() && 11336 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11337 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11338 WorkList.push_back( 11339 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11340 11341 while (!WorkList.empty()) { 11342 SwitchWorkListItem W = WorkList.pop_back_val(); 11343 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11344 11345 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11346 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11347 // For optimized builds, lower large range as a balanced binary tree. 11348 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11349 continue; 11350 } 11351 11352 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11353 } 11354 } 11355 11356 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11358 auto DL = getCurSDLoc(); 11359 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11360 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11361 } 11362 11363 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11364 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11365 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11366 11367 SDLoc DL = getCurSDLoc(); 11368 SDValue V = getValue(I.getOperand(0)); 11369 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11370 11371 if (VT.isScalableVector()) { 11372 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11373 return; 11374 } 11375 11376 // Use VECTOR_SHUFFLE for the fixed-length vector 11377 // to maintain existing behavior. 11378 SmallVector<int, 8> Mask; 11379 unsigned NumElts = VT.getVectorMinNumElements(); 11380 for (unsigned i = 0; i != NumElts; ++i) 11381 Mask.push_back(NumElts - 1 - i); 11382 11383 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11384 } 11385 11386 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11387 SmallVector<EVT, 4> ValueVTs; 11388 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11389 ValueVTs); 11390 unsigned NumValues = ValueVTs.size(); 11391 if (NumValues == 0) return; 11392 11393 SmallVector<SDValue, 4> Values(NumValues); 11394 SDValue Op = getValue(I.getOperand(0)); 11395 11396 for (unsigned i = 0; i != NumValues; ++i) 11397 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11398 SDValue(Op.getNode(), Op.getResNo() + i)); 11399 11400 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11401 DAG.getVTList(ValueVTs), Values)); 11402 } 11403 11404 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11405 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11406 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11407 11408 SDLoc DL = getCurSDLoc(); 11409 SDValue V1 = getValue(I.getOperand(0)); 11410 SDValue V2 = getValue(I.getOperand(1)); 11411 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11412 11413 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11414 if (VT.isScalableVector()) { 11415 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11416 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11417 DAG.getConstant(Imm, DL, IdxVT))); 11418 return; 11419 } 11420 11421 unsigned NumElts = VT.getVectorNumElements(); 11422 11423 uint64_t Idx = (NumElts + Imm) % NumElts; 11424 11425 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11426 SmallVector<int, 8> Mask; 11427 for (unsigned i = 0; i < NumElts; ++i) 11428 Mask.push_back(Idx + i); 11429 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11430 } 11431