1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Constants.h" 22 #include "llvm/CallingConv.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/Function.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/InlineAsm.h" 27 #include "llvm/Instructions.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/IntrinsicInst.h" 30 #include "llvm/LLVMContext.h" 31 #include "llvm/Module.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/FastISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCStrategy.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineJumpTableInfo.h" 41 #include "llvm/CodeGen/MachineModuleInfo.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/PseudoSourceValue.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameInfo.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 74 const SDValue *Parts, unsigned NumParts, 75 EVT PartVT, EVT ValueVT); 76 77 /// getCopyFromParts - Create a value that contains the specified legal parts 78 /// combined into the value they represent. If the parts combine to a type 79 /// larger then ValueVT then AssertOp can be used to specify whether the extra 80 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 81 /// (ISD::AssertSext). 82 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 83 const SDValue *Parts, 84 unsigned NumParts, EVT PartVT, EVT ValueVT, 85 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 86 if (ValueVT.isVector()) 87 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 88 89 assert(NumParts > 0 && "No parts to assemble!"); 90 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 91 SDValue Val = Parts[0]; 92 93 if (NumParts > 1) { 94 // Assemble the value from multiple parts. 95 if (ValueVT.isInteger()) { 96 unsigned PartBits = PartVT.getSizeInBits(); 97 unsigned ValueBits = ValueVT.getSizeInBits(); 98 99 // Assemble the power of 2 part. 100 unsigned RoundParts = NumParts & (NumParts - 1) ? 101 1 << Log2_32(NumParts) : NumParts; 102 unsigned RoundBits = PartBits * RoundParts; 103 EVT RoundVT = RoundBits == ValueBits ? 104 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 105 SDValue Lo, Hi; 106 107 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 108 109 if (RoundParts > 2) { 110 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 111 PartVT, HalfVT); 112 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 113 RoundParts / 2, PartVT, HalfVT); 114 } else { 115 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]); 116 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]); 117 } 118 119 if (TLI.isBigEndian()) 120 std::swap(Lo, Hi); 121 122 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 123 124 if (RoundParts < NumParts) { 125 // Assemble the trailing non-power-of-2 part. 126 unsigned OddParts = NumParts - RoundParts; 127 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 128 Hi = getCopyFromParts(DAG, DL, 129 Parts + RoundParts, OddParts, PartVT, OddVT); 130 131 // Combine the round and odd parts. 132 Lo = Val; 133 if (TLI.isBigEndian()) 134 std::swap(Lo, Hi); 135 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 136 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 137 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 138 DAG.getConstant(Lo.getValueType().getSizeInBits(), 139 TLI.getPointerTy())); 140 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 141 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 142 } 143 } else if (PartVT.isFloatingPoint()) { 144 // FP split into multiple FP parts (for ppcf128) 145 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 146 "Unexpected split"); 147 SDValue Lo, Hi; 148 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]); 149 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]); 150 if (TLI.isBigEndian()) 151 std::swap(Lo, Hi); 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 153 } else { 154 // FP split into integer parts (soft fp) 155 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 156 !PartVT.isVector() && "Unexpected split"); 157 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 158 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 159 } 160 } 161 162 // There is now one part, held in Val. Correct it to match ValueVT. 163 PartVT = Val.getValueType(); 164 165 if (PartVT == ValueVT) 166 return Val; 167 168 if (PartVT.isInteger() && ValueVT.isInteger()) { 169 if (ValueVT.bitsLT(PartVT)) { 170 // For a truncate, see if we have any information to 171 // indicate whether the truncated bits will always be 172 // zero or sign-extension. 173 if (AssertOp != ISD::DELETED_NODE) 174 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 175 DAG.getValueType(ValueVT)); 176 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 177 } 178 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 179 } 180 181 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 182 // FP_ROUND's are always exact here. 183 if (ValueVT.bitsLT(Val.getValueType())) 184 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 185 DAG.getIntPtrConstant(1)); 186 187 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 188 } 189 190 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 191 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 192 193 llvm_unreachable("Unknown mismatch!"); 194 return SDValue(); 195 } 196 197 /// getCopyFromParts - Create a value that contains the specified legal parts 198 /// combined into the value they represent. If the parts combine to a type 199 /// larger then ValueVT then AssertOp can be used to specify whether the extra 200 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 201 /// (ISD::AssertSext). 202 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 203 const SDValue *Parts, unsigned NumParts, 204 EVT PartVT, EVT ValueVT) { 205 assert(ValueVT.isVector() && "Not a vector value"); 206 assert(NumParts > 0 && "No parts to assemble!"); 207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 208 SDValue Val = Parts[0]; 209 210 // Handle a multi-element vector. 211 if (NumParts > 1) { 212 EVT IntermediateVT, RegisterVT; 213 unsigned NumIntermediates; 214 unsigned NumRegs = 215 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 216 NumIntermediates, RegisterVT); 217 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 218 NumParts = NumRegs; // Silence a compiler warning. 219 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 220 assert(RegisterVT == Parts[0].getValueType() && 221 "Part type doesn't match part!"); 222 223 // Assemble the parts into intermediate operands. 224 SmallVector<SDValue, 8> Ops(NumIntermediates); 225 if (NumIntermediates == NumParts) { 226 // If the register was not expanded, truncate or copy the value, 227 // as appropriate. 228 for (unsigned i = 0; i != NumParts; ++i) 229 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 230 PartVT, IntermediateVT); 231 } else if (NumParts > 0) { 232 // If the intermediate type was expanded, build the intermediate 233 // operands from the parts. 234 assert(NumParts % NumIntermediates == 0 && 235 "Must expand into a divisible number of parts!"); 236 unsigned Factor = NumParts / NumIntermediates; 237 for (unsigned i = 0; i != NumIntermediates; ++i) 238 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 239 PartVT, IntermediateVT); 240 } 241 242 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 243 // intermediate operands. 244 Val = DAG.getNode(IntermediateVT.isVector() ? 245 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 246 ValueVT, &Ops[0], NumIntermediates); 247 } 248 249 // There is now one part, held in Val. Correct it to match ValueVT. 250 PartVT = Val.getValueType(); 251 252 if (PartVT == ValueVT) 253 return Val; 254 255 if (PartVT.isVector()) { 256 // If the element type of the source/dest vectors are the same, but the 257 // parts vector has more elements than the value vector, then we have a 258 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 259 // elements we want. 260 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 261 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 262 "Cannot narrow, it would be a lossy transformation"); 263 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 264 DAG.getIntPtrConstant(0)); 265 } 266 267 // Vector/Vector bitcast. 268 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 269 } 270 271 assert(ValueVT.getVectorElementType() == PartVT && 272 ValueVT.getVectorNumElements() == 1 && 273 "Only trivial scalar-to-vector conversions should get here!"); 274 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 275 } 276 277 278 279 280 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 281 SDValue Val, SDValue *Parts, unsigned NumParts, 282 EVT PartVT); 283 284 /// getCopyToParts - Create a series of nodes that contain the specified value 285 /// split into legal parts. If the parts contain more bits than Val, then, for 286 /// integers, ExtendKind can be used to specify how to generate the extra bits. 287 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 288 SDValue Val, SDValue *Parts, unsigned NumParts, 289 EVT PartVT, 290 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 291 EVT ValueVT = Val.getValueType(); 292 293 // Handle the vector case separately. 294 if (ValueVT.isVector()) 295 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 296 297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 298 unsigned PartBits = PartVT.getSizeInBits(); 299 unsigned OrigNumParts = NumParts; 300 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 301 302 if (NumParts == 0) 303 return; 304 305 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 306 if (PartVT == ValueVT) { 307 assert(NumParts == 1 && "No-op copy with multiple parts!"); 308 Parts[0] = Val; 309 return; 310 } 311 312 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 313 // If the parts cover more bits than the value has, promote the value. 314 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 315 assert(NumParts == 1 && "Do not know what to promote to!"); 316 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 317 } else { 318 assert(PartVT.isInteger() && ValueVT.isInteger() && 319 "Unknown mismatch!"); 320 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 321 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 322 } 323 } else if (PartBits == ValueVT.getSizeInBits()) { 324 // Different types of the same size. 325 assert(NumParts == 1 && PartVT != ValueVT); 326 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 327 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 328 // If the parts cover less bits than value has, truncate the value. 329 assert(PartVT.isInteger() && ValueVT.isInteger() && 330 "Unknown mismatch!"); 331 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 332 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 333 } 334 335 // The value may have changed - recompute ValueVT. 336 ValueVT = Val.getValueType(); 337 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 338 "Failed to tile the value with PartVT!"); 339 340 if (NumParts == 1) { 341 assert(PartVT == ValueVT && "Type conversion failed!"); 342 Parts[0] = Val; 343 return; 344 } 345 346 // Expand the value into multiple parts. 347 if (NumParts & (NumParts - 1)) { 348 // The number of parts is not a power of 2. Split off and copy the tail. 349 assert(PartVT.isInteger() && ValueVT.isInteger() && 350 "Do not know what to expand to!"); 351 unsigned RoundParts = 1 << Log2_32(NumParts); 352 unsigned RoundBits = RoundParts * PartBits; 353 unsigned OddParts = NumParts - RoundParts; 354 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 355 DAG.getIntPtrConstant(RoundBits)); 356 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 357 358 if (TLI.isBigEndian()) 359 // The odd parts were reversed by getCopyToParts - unreverse them. 360 std::reverse(Parts + RoundParts, Parts + NumParts); 361 362 NumParts = RoundParts; 363 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 364 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 365 } 366 367 // The number of parts is a power of 2. Repeatedly bisect the value using 368 // EXTRACT_ELEMENT. 369 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL, 370 EVT::getIntegerVT(*DAG.getContext(), 371 ValueVT.getSizeInBits()), 372 Val); 373 374 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 375 for (unsigned i = 0; i < NumParts; i += StepSize) { 376 unsigned ThisBits = StepSize * PartBits / 2; 377 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 378 SDValue &Part0 = Parts[i]; 379 SDValue &Part1 = Parts[i+StepSize/2]; 380 381 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 382 ThisVT, Part0, DAG.getIntPtrConstant(1)); 383 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 384 ThisVT, Part0, DAG.getIntPtrConstant(0)); 385 386 if (ThisBits == PartBits && ThisVT != PartVT) { 387 Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0); 388 Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1); 389 } 390 } 391 } 392 393 if (TLI.isBigEndian()) 394 std::reverse(Parts, Parts + OrigNumParts); 395 } 396 397 398 /// getCopyToPartsVector - Create a series of nodes that contain the specified 399 /// value split into legal parts. 400 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 401 SDValue Val, SDValue *Parts, unsigned NumParts, 402 EVT PartVT) { 403 EVT ValueVT = Val.getValueType(); 404 assert(ValueVT.isVector() && "Not a vector"); 405 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 406 407 if (NumParts == 1) { 408 if (PartVT == ValueVT) { 409 // Nothing to do. 410 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 411 // Bitconvert vector->vector case. 412 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 413 } else if (PartVT.isVector() && 414 PartVT.getVectorElementType() == ValueVT.getVectorElementType()&& 415 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 416 EVT ElementVT = PartVT.getVectorElementType(); 417 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 418 // undef elements. 419 SmallVector<SDValue, 16> Ops; 420 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 421 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 422 ElementVT, Val, DAG.getIntPtrConstant(i))); 423 424 for (unsigned i = ValueVT.getVectorNumElements(), 425 e = PartVT.getVectorNumElements(); i != e; ++i) 426 Ops.push_back(DAG.getUNDEF(ElementVT)); 427 428 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 429 430 // FIXME: Use CONCAT for 2x -> 4x. 431 432 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 433 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 434 } else { 435 // Vector -> scalar conversion. 436 assert(ValueVT.getVectorElementType() == PartVT && 437 ValueVT.getVectorNumElements() == 1 && 438 "Only trivial vector-to-scalar conversions should get here!"); 439 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 440 PartVT, Val, DAG.getIntPtrConstant(0)); 441 } 442 443 Parts[0] = Val; 444 return; 445 } 446 447 // Handle a multi-element vector. 448 EVT IntermediateVT, RegisterVT; 449 unsigned NumIntermediates; 450 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 451 IntermediateVT, NumIntermediates, RegisterVT); 452 unsigned NumElements = ValueVT.getVectorNumElements(); 453 454 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 455 NumParts = NumRegs; // Silence a compiler warning. 456 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 457 458 // Split the vector into intermediate operands. 459 SmallVector<SDValue, 8> Ops(NumIntermediates); 460 for (unsigned i = 0; i != NumIntermediates; ++i) { 461 if (IntermediateVT.isVector()) 462 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 463 IntermediateVT, Val, 464 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 465 else 466 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 467 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 468 } 469 470 // Split the intermediate operands into legal parts. 471 if (NumParts == NumIntermediates) { 472 // If the register was not expanded, promote or copy the value, 473 // as appropriate. 474 for (unsigned i = 0; i != NumParts; ++i) 475 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 476 } else if (NumParts > 0) { 477 // If the intermediate type was expanded, split each the value into 478 // legal parts. 479 assert(NumParts % NumIntermediates == 0 && 480 "Must expand into a divisible number of parts!"); 481 unsigned Factor = NumParts / NumIntermediates; 482 for (unsigned i = 0; i != NumIntermediates; ++i) 483 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 484 } 485 } 486 487 488 489 490 namespace { 491 /// RegsForValue - This struct represents the registers (physical or virtual) 492 /// that a particular set of values is assigned, and the type information 493 /// about the value. The most common situation is to represent one value at a 494 /// time, but struct or array values are handled element-wise as multiple 495 /// values. The splitting of aggregates is performed recursively, so that we 496 /// never have aggregate-typed registers. The values at this point do not 497 /// necessarily have legal types, so each value may require one or more 498 /// registers of some legal type. 499 /// 500 struct RegsForValue { 501 /// ValueVTs - The value types of the values, which may not be legal, and 502 /// may need be promoted or synthesized from one or more registers. 503 /// 504 SmallVector<EVT, 4> ValueVTs; 505 506 /// RegVTs - The value types of the registers. This is the same size as 507 /// ValueVTs and it records, for each value, what the type of the assigned 508 /// register or registers are. (Individual values are never synthesized 509 /// from more than one type of register.) 510 /// 511 /// With virtual registers, the contents of RegVTs is redundant with TLI's 512 /// getRegisterType member function, however when with physical registers 513 /// it is necessary to have a separate record of the types. 514 /// 515 SmallVector<EVT, 4> RegVTs; 516 517 /// Regs - This list holds the registers assigned to the values. 518 /// Each legal or promoted value requires one register, and each 519 /// expanded value requires multiple registers. 520 /// 521 SmallVector<unsigned, 4> Regs; 522 523 RegsForValue() {} 524 525 RegsForValue(const SmallVector<unsigned, 4> ®s, 526 EVT regvt, EVT valuevt) 527 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 528 529 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 530 unsigned Reg, const Type *Ty) { 531 ComputeValueVTs(tli, Ty, ValueVTs); 532 533 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 534 EVT ValueVT = ValueVTs[Value]; 535 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 536 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 537 for (unsigned i = 0; i != NumRegs; ++i) 538 Regs.push_back(Reg + i); 539 RegVTs.push_back(RegisterVT); 540 Reg += NumRegs; 541 } 542 } 543 544 /// areValueTypesLegal - Return true if types of all the values are legal. 545 bool areValueTypesLegal(const TargetLowering &TLI) { 546 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 547 EVT RegisterVT = RegVTs[Value]; 548 if (!TLI.isTypeLegal(RegisterVT)) 549 return false; 550 } 551 return true; 552 } 553 554 /// append - Add the specified values to this one. 555 void append(const RegsForValue &RHS) { 556 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 557 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 558 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 559 } 560 561 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 562 /// this value and returns the result as a ValueVTs value. This uses 563 /// Chain/Flag as the input and updates them for the output Chain/Flag. 564 /// If the Flag pointer is NULL, no flag is used. 565 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 566 DebugLoc dl, 567 SDValue &Chain, SDValue *Flag) const; 568 569 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 570 /// specified value into the registers specified by this object. This uses 571 /// Chain/Flag as the input and updates them for the output Chain/Flag. 572 /// If the Flag pointer is NULL, no flag is used. 573 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 574 SDValue &Chain, SDValue *Flag) const; 575 576 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 577 /// operand list. This adds the code marker, matching input operand index 578 /// (if applicable), and includes the number of values added into it. 579 void AddInlineAsmOperands(unsigned Kind, 580 bool HasMatching, unsigned MatchingIdx, 581 SelectionDAG &DAG, 582 std::vector<SDValue> &Ops) const; 583 }; 584 } 585 586 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 587 /// this value and returns the result as a ValueVT value. This uses 588 /// Chain/Flag as the input and updates them for the output Chain/Flag. 589 /// If the Flag pointer is NULL, no flag is used. 590 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 591 FunctionLoweringInfo &FuncInfo, 592 DebugLoc dl, 593 SDValue &Chain, SDValue *Flag) const { 594 // A Value with type {} or [0 x %t] needs no registers. 595 if (ValueVTs.empty()) 596 return SDValue(); 597 598 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 599 600 // Assemble the legal parts into the final values. 601 SmallVector<SDValue, 4> Values(ValueVTs.size()); 602 SmallVector<SDValue, 8> Parts; 603 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 604 // Copy the legal parts from the registers. 605 EVT ValueVT = ValueVTs[Value]; 606 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 607 EVT RegisterVT = RegVTs[Value]; 608 609 Parts.resize(NumRegs); 610 for (unsigned i = 0; i != NumRegs; ++i) { 611 SDValue P; 612 if (Flag == 0) { 613 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 614 } else { 615 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 616 *Flag = P.getValue(2); 617 } 618 619 Chain = P.getValue(1); 620 621 // If the source register was virtual and if we know something about it, 622 // add an assert node. 623 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 624 RegisterVT.isInteger() && !RegisterVT.isVector()) { 625 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 626 if (FuncInfo.LiveOutRegInfo.size() > SlotNo) { 627 const FunctionLoweringInfo::LiveOutInfo &LOI = 628 FuncInfo.LiveOutRegInfo[SlotNo]; 629 630 unsigned RegSize = RegisterVT.getSizeInBits(); 631 unsigned NumSignBits = LOI.NumSignBits; 632 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 633 634 // FIXME: We capture more information than the dag can represent. For 635 // now, just use the tightest assertzext/assertsext possible. 636 bool isSExt = true; 637 EVT FromVT(MVT::Other); 638 if (NumSignBits == RegSize) 639 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 640 else if (NumZeroBits >= RegSize-1) 641 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 642 else if (NumSignBits > RegSize-8) 643 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 644 else if (NumZeroBits >= RegSize-8) 645 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 646 else if (NumSignBits > RegSize-16) 647 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 648 else if (NumZeroBits >= RegSize-16) 649 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 650 else if (NumSignBits > RegSize-32) 651 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 652 else if (NumZeroBits >= RegSize-32) 653 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 654 655 if (FromVT != MVT::Other) 656 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 657 RegisterVT, P, DAG.getValueType(FromVT)); 658 } 659 } 660 661 Parts[i] = P; 662 } 663 664 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 665 NumRegs, RegisterVT, ValueVT); 666 Part += NumRegs; 667 Parts.clear(); 668 } 669 670 return DAG.getNode(ISD::MERGE_VALUES, dl, 671 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 672 &Values[0], ValueVTs.size()); 673 } 674 675 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 676 /// specified value into the registers specified by this object. This uses 677 /// Chain/Flag as the input and updates them for the output Chain/Flag. 678 /// If the Flag pointer is NULL, no flag is used. 679 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 680 SDValue &Chain, SDValue *Flag) const { 681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 682 683 // Get the list of the values's legal parts. 684 unsigned NumRegs = Regs.size(); 685 SmallVector<SDValue, 8> Parts(NumRegs); 686 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 687 EVT ValueVT = ValueVTs[Value]; 688 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 689 EVT RegisterVT = RegVTs[Value]; 690 691 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 692 &Parts[Part], NumParts, RegisterVT); 693 Part += NumParts; 694 } 695 696 // Copy the parts into the registers. 697 SmallVector<SDValue, 8> Chains(NumRegs); 698 for (unsigned i = 0; i != NumRegs; ++i) { 699 SDValue Part; 700 if (Flag == 0) { 701 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 702 } else { 703 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 704 *Flag = Part.getValue(1); 705 } 706 707 Chains[i] = Part.getValue(0); 708 } 709 710 if (NumRegs == 1 || Flag) 711 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 712 // flagged to it. That is the CopyToReg nodes and the user are considered 713 // a single scheduling unit. If we create a TokenFactor and return it as 714 // chain, then the TokenFactor is both a predecessor (operand) of the 715 // user as well as a successor (the TF operands are flagged to the user). 716 // c1, f1 = CopyToReg 717 // c2, f2 = CopyToReg 718 // c3 = TokenFactor c1, c2 719 // ... 720 // = op c3, ..., f2 721 Chain = Chains[NumRegs-1]; 722 else 723 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 724 } 725 726 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 727 /// operand list. This adds the code marker and includes the number of 728 /// values added into it. 729 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 730 unsigned MatchingIdx, 731 SelectionDAG &DAG, 732 std::vector<SDValue> &Ops) const { 733 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 734 735 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 736 if (HasMatching) 737 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 738 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 739 Ops.push_back(Res); 740 741 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 742 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 743 EVT RegisterVT = RegVTs[Value]; 744 for (unsigned i = 0; i != NumRegs; ++i) { 745 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 746 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 747 } 748 } 749 } 750 751 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 752 AA = &aa; 753 GFI = gfi; 754 TD = DAG.getTarget().getTargetData(); 755 } 756 757 /// clear - Clear out the current SelectionDAG and the associated 758 /// state and prepare this SelectionDAGBuilder object to be used 759 /// for a new block. This doesn't clear out information about 760 /// additional blocks that are needed to complete switch lowering 761 /// or PHI node updating; that information is cleared out as it is 762 /// consumed. 763 void SelectionDAGBuilder::clear() { 764 NodeMap.clear(); 765 UnusedArgNodeMap.clear(); 766 PendingLoads.clear(); 767 PendingExports.clear(); 768 DanglingDebugInfoMap.clear(); 769 CurDebugLoc = DebugLoc(); 770 HasTailCall = false; 771 } 772 773 /// getRoot - Return the current virtual root of the Selection DAG, 774 /// flushing any PendingLoad items. This must be done before emitting 775 /// a store or any other node that may need to be ordered after any 776 /// prior load instructions. 777 /// 778 SDValue SelectionDAGBuilder::getRoot() { 779 if (PendingLoads.empty()) 780 return DAG.getRoot(); 781 782 if (PendingLoads.size() == 1) { 783 SDValue Root = PendingLoads[0]; 784 DAG.setRoot(Root); 785 PendingLoads.clear(); 786 return Root; 787 } 788 789 // Otherwise, we have to make a token factor node. 790 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 791 &PendingLoads[0], PendingLoads.size()); 792 PendingLoads.clear(); 793 DAG.setRoot(Root); 794 return Root; 795 } 796 797 /// getControlRoot - Similar to getRoot, but instead of flushing all the 798 /// PendingLoad items, flush all the PendingExports items. It is necessary 799 /// to do this before emitting a terminator instruction. 800 /// 801 SDValue SelectionDAGBuilder::getControlRoot() { 802 SDValue Root = DAG.getRoot(); 803 804 if (PendingExports.empty()) 805 return Root; 806 807 // Turn all of the CopyToReg chains into one factored node. 808 if (Root.getOpcode() != ISD::EntryToken) { 809 unsigned i = 0, e = PendingExports.size(); 810 for (; i != e; ++i) { 811 assert(PendingExports[i].getNode()->getNumOperands() > 1); 812 if (PendingExports[i].getNode()->getOperand(0) == Root) 813 break; // Don't add the root if we already indirectly depend on it. 814 } 815 816 if (i == e) 817 PendingExports.push_back(Root); 818 } 819 820 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 821 &PendingExports[0], 822 PendingExports.size()); 823 PendingExports.clear(); 824 DAG.setRoot(Root); 825 return Root; 826 } 827 828 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 829 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 830 DAG.AssignOrdering(Node, SDNodeOrder); 831 832 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 833 AssignOrderingToNode(Node->getOperand(I).getNode()); 834 } 835 836 void SelectionDAGBuilder::visit(const Instruction &I) { 837 // Set up outgoing PHI node register values before emitting the terminator. 838 if (isa<TerminatorInst>(&I)) 839 HandlePHINodesInSuccessorBlocks(I.getParent()); 840 841 CurDebugLoc = I.getDebugLoc(); 842 843 visit(I.getOpcode(), I); 844 845 if (!isa<TerminatorInst>(&I) && !HasTailCall) 846 CopyToExportRegsIfNeeded(&I); 847 848 CurDebugLoc = DebugLoc(); 849 } 850 851 void SelectionDAGBuilder::visitPHI(const PHINode &) { 852 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 853 } 854 855 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 856 // Note: this doesn't use InstVisitor, because it has to work with 857 // ConstantExpr's in addition to instructions. 858 switch (Opcode) { 859 default: llvm_unreachable("Unknown instruction type encountered!"); 860 // Build the switch statement using the Instruction.def file. 861 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 862 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 863 #include "llvm/Instruction.def" 864 } 865 866 // Assign the ordering to the freshly created DAG nodes. 867 if (NodeMap.count(&I)) { 868 ++SDNodeOrder; 869 AssignOrderingToNode(getValue(&I).getNode()); 870 } 871 } 872 873 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 874 // generate the debug data structures now that we've seen its definition. 875 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 876 SDValue Val) { 877 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 878 MDNode *Variable = NULL; 879 uint64_t Offset = 0; 880 881 if (const DbgValueInst *DI = dyn_cast_or_null<DbgValueInst>(DDI.getDI())) { 882 Variable = DI->getVariable(); 883 Offset = DI->getOffset(); 884 } else if (const DbgDeclareInst *DI = 885 dyn_cast_or_null<DbgDeclareInst>(DDI.getDI())) 886 Variable = DI->getVariable(); 887 else { 888 assert (DDI.getDI() == NULL && "Invalid debug info intrinsic!"); 889 return; 890 } 891 892 if (Variable) { 893 DebugLoc dl = DDI.getdl(); 894 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 895 SDDbgValue *SDV; 896 if (Val.getNode()) { 897 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 898 SDV = DAG.getDbgValue(Variable, Val.getNode(), 899 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 900 DAG.AddDbgValue(SDV, Val.getNode(), false); 901 } 902 } else { 903 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 904 Offset, dl, SDNodeOrder); 905 DAG.AddDbgValue(SDV, 0, false); 906 } 907 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 908 } 909 } 910 911 // getValue - Return an SDValue for the given Value. 912 SDValue SelectionDAGBuilder::getValue(const Value *V) { 913 // If we already have an SDValue for this value, use it. It's important 914 // to do this first, so that we don't create a CopyFromReg if we already 915 // have a regular SDValue. 916 SDValue &N = NodeMap[V]; 917 if (N.getNode()) return N; 918 919 // If there's a virtual register allocated and initialized for this 920 // value, use it. 921 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 922 if (It != FuncInfo.ValueMap.end()) { 923 unsigned InReg = It->second; 924 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 925 SDValue Chain = DAG.getEntryNode(); 926 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 927 resolveDanglingDebugInfo(V, N); 928 return N; 929 } 930 931 // Otherwise create a new SDValue and remember it. 932 SDValue Val = getValueImpl(V); 933 NodeMap[V] = Val; 934 resolveDanglingDebugInfo(V, Val); 935 return Val; 936 } 937 938 /// getNonRegisterValue - Return an SDValue for the given Value, but 939 /// don't look in FuncInfo.ValueMap for a virtual register. 940 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 941 // If we already have an SDValue for this value, use it. 942 SDValue &N = NodeMap[V]; 943 if (N.getNode()) return N; 944 945 // Otherwise create a new SDValue and remember it. 946 SDValue Val = getValueImpl(V); 947 NodeMap[V] = Val; 948 resolveDanglingDebugInfo(V, Val); 949 return Val; 950 } 951 952 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 953 /// Create an SDValue for the given value. 954 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 955 if (const Constant *C = dyn_cast<Constant>(V)) { 956 EVT VT = TLI.getValueType(V->getType(), true); 957 958 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 959 return DAG.getConstant(*CI, VT); 960 961 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 962 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 963 964 if (isa<ConstantPointerNull>(C)) 965 return DAG.getConstant(0, TLI.getPointerTy()); 966 967 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 968 return DAG.getConstantFP(*CFP, VT); 969 970 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 971 return DAG.getUNDEF(VT); 972 973 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 974 visit(CE->getOpcode(), *CE); 975 SDValue N1 = NodeMap[V]; 976 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 977 return N1; 978 } 979 980 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 981 SmallVector<SDValue, 4> Constants; 982 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 983 OI != OE; ++OI) { 984 SDNode *Val = getValue(*OI).getNode(); 985 // If the operand is an empty aggregate, there are no values. 986 if (!Val) continue; 987 // Add each leaf value from the operand to the Constants list 988 // to form a flattened list of all the values. 989 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 990 Constants.push_back(SDValue(Val, i)); 991 } 992 993 return DAG.getMergeValues(&Constants[0], Constants.size(), 994 getCurDebugLoc()); 995 } 996 997 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 998 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 999 "Unknown struct or array constant!"); 1000 1001 SmallVector<EVT, 4> ValueVTs; 1002 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1003 unsigned NumElts = ValueVTs.size(); 1004 if (NumElts == 0) 1005 return SDValue(); // empty struct 1006 SmallVector<SDValue, 4> Constants(NumElts); 1007 for (unsigned i = 0; i != NumElts; ++i) { 1008 EVT EltVT = ValueVTs[i]; 1009 if (isa<UndefValue>(C)) 1010 Constants[i] = DAG.getUNDEF(EltVT); 1011 else if (EltVT.isFloatingPoint()) 1012 Constants[i] = DAG.getConstantFP(0, EltVT); 1013 else 1014 Constants[i] = DAG.getConstant(0, EltVT); 1015 } 1016 1017 return DAG.getMergeValues(&Constants[0], NumElts, 1018 getCurDebugLoc()); 1019 } 1020 1021 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1022 return DAG.getBlockAddress(BA, VT); 1023 1024 const VectorType *VecTy = cast<VectorType>(V->getType()); 1025 unsigned NumElements = VecTy->getNumElements(); 1026 1027 // Now that we know the number and type of the elements, get that number of 1028 // elements into the Ops array based on what kind of constant it is. 1029 SmallVector<SDValue, 16> Ops; 1030 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1031 for (unsigned i = 0; i != NumElements; ++i) 1032 Ops.push_back(getValue(CP->getOperand(i))); 1033 } else { 1034 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1035 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1036 1037 SDValue Op; 1038 if (EltVT.isFloatingPoint()) 1039 Op = DAG.getConstantFP(0, EltVT); 1040 else 1041 Op = DAG.getConstant(0, EltVT); 1042 Ops.assign(NumElements, Op); 1043 } 1044 1045 // Create a BUILD_VECTOR node. 1046 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1047 VT, &Ops[0], Ops.size()); 1048 } 1049 1050 // If this is a static alloca, generate it as the frameindex instead of 1051 // computation. 1052 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1053 DenseMap<const AllocaInst*, int>::iterator SI = 1054 FuncInfo.StaticAllocaMap.find(AI); 1055 if (SI != FuncInfo.StaticAllocaMap.end()) 1056 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1057 } 1058 1059 // If this is an instruction which fast-isel has deferred, select it now. 1060 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1061 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1062 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1063 SDValue Chain = DAG.getEntryNode(); 1064 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1065 } 1066 1067 llvm_unreachable("Can't get register for value!"); 1068 return SDValue(); 1069 } 1070 1071 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1072 SDValue Chain = getControlRoot(); 1073 SmallVector<ISD::OutputArg, 8> Outs; 1074 SmallVector<SDValue, 8> OutVals; 1075 1076 if (!FuncInfo.CanLowerReturn) { 1077 unsigned DemoteReg = FuncInfo.DemoteRegister; 1078 const Function *F = I.getParent()->getParent(); 1079 1080 // Emit a store of the return value through the virtual register. 1081 // Leave Outs empty so that LowerReturn won't try to load return 1082 // registers the usual way. 1083 SmallVector<EVT, 1> PtrValueVTs; 1084 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1085 PtrValueVTs); 1086 1087 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1088 SDValue RetOp = getValue(I.getOperand(0)); 1089 1090 SmallVector<EVT, 4> ValueVTs; 1091 SmallVector<uint64_t, 4> Offsets; 1092 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1093 unsigned NumValues = ValueVTs.size(); 1094 1095 SmallVector<SDValue, 4> Chains(NumValues); 1096 for (unsigned i = 0; i != NumValues; ++i) { 1097 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1098 RetPtr.getValueType(), RetPtr, 1099 DAG.getIntPtrConstant(Offsets[i])); 1100 Chains[i] = 1101 DAG.getStore(Chain, getCurDebugLoc(), 1102 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1103 Add, NULL, Offsets[i], false, false, 0); 1104 } 1105 1106 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1107 MVT::Other, &Chains[0], NumValues); 1108 } else if (I.getNumOperands() != 0) { 1109 SmallVector<EVT, 4> ValueVTs; 1110 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1111 unsigned NumValues = ValueVTs.size(); 1112 if (NumValues) { 1113 SDValue RetOp = getValue(I.getOperand(0)); 1114 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1115 EVT VT = ValueVTs[j]; 1116 1117 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1118 1119 const Function *F = I.getParent()->getParent(); 1120 if (F->paramHasAttr(0, Attribute::SExt)) 1121 ExtendKind = ISD::SIGN_EXTEND; 1122 else if (F->paramHasAttr(0, Attribute::ZExt)) 1123 ExtendKind = ISD::ZERO_EXTEND; 1124 1125 // FIXME: C calling convention requires the return type to be promoted 1126 // to at least 32-bit. But this is not necessary for non-C calling 1127 // conventions. The frontend should mark functions whose return values 1128 // require promoting with signext or zeroext attributes. 1129 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1130 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 1131 if (VT.bitsLT(MinVT)) 1132 VT = MinVT; 1133 } 1134 1135 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1136 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1137 SmallVector<SDValue, 4> Parts(NumParts); 1138 getCopyToParts(DAG, getCurDebugLoc(), 1139 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1140 &Parts[0], NumParts, PartVT, ExtendKind); 1141 1142 // 'inreg' on function refers to return value 1143 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1144 if (F->paramHasAttr(0, Attribute::InReg)) 1145 Flags.setInReg(); 1146 1147 // Propagate extension type if any 1148 if (F->paramHasAttr(0, Attribute::SExt)) 1149 Flags.setSExt(); 1150 else if (F->paramHasAttr(0, Attribute::ZExt)) 1151 Flags.setZExt(); 1152 1153 for (unsigned i = 0; i < NumParts; ++i) { 1154 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1155 /*isfixed=*/true)); 1156 OutVals.push_back(Parts[i]); 1157 } 1158 } 1159 } 1160 } 1161 1162 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1163 CallingConv::ID CallConv = 1164 DAG.getMachineFunction().getFunction()->getCallingConv(); 1165 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1166 Outs, OutVals, getCurDebugLoc(), DAG); 1167 1168 // Verify that the target's LowerReturn behaved as expected. 1169 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1170 "LowerReturn didn't return a valid chain!"); 1171 1172 // Update the DAG with the new chain value resulting from return lowering. 1173 DAG.setRoot(Chain); 1174 } 1175 1176 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1177 /// created for it, emit nodes to copy the value into the virtual 1178 /// registers. 1179 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1180 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1181 if (VMI != FuncInfo.ValueMap.end()) { 1182 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1183 CopyValueToVirtualRegister(V, VMI->second); 1184 } 1185 } 1186 1187 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1188 /// the current basic block, add it to ValueMap now so that we'll get a 1189 /// CopyTo/FromReg. 1190 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1191 // No need to export constants. 1192 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1193 1194 // Already exported? 1195 if (FuncInfo.isExportedInst(V)) return; 1196 1197 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1198 CopyValueToVirtualRegister(V, Reg); 1199 } 1200 1201 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1202 const BasicBlock *FromBB) { 1203 // The operands of the setcc have to be in this block. We don't know 1204 // how to export them from some other block. 1205 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1206 // Can export from current BB. 1207 if (VI->getParent() == FromBB) 1208 return true; 1209 1210 // Is already exported, noop. 1211 return FuncInfo.isExportedInst(V); 1212 } 1213 1214 // If this is an argument, we can export it if the BB is the entry block or 1215 // if it is already exported. 1216 if (isa<Argument>(V)) { 1217 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1218 return true; 1219 1220 // Otherwise, can only export this if it is already exported. 1221 return FuncInfo.isExportedInst(V); 1222 } 1223 1224 // Otherwise, constants can always be exported. 1225 return true; 1226 } 1227 1228 static bool InBlock(const Value *V, const BasicBlock *BB) { 1229 if (const Instruction *I = dyn_cast<Instruction>(V)) 1230 return I->getParent() == BB; 1231 return true; 1232 } 1233 1234 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1235 /// This function emits a branch and is used at the leaves of an OR or an 1236 /// AND operator tree. 1237 /// 1238 void 1239 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1240 MachineBasicBlock *TBB, 1241 MachineBasicBlock *FBB, 1242 MachineBasicBlock *CurBB, 1243 MachineBasicBlock *SwitchBB) { 1244 const BasicBlock *BB = CurBB->getBasicBlock(); 1245 1246 // If the leaf of the tree is a comparison, merge the condition into 1247 // the caseblock. 1248 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1249 // The operands of the cmp have to be in this block. We don't know 1250 // how to export them from some other block. If this is the first block 1251 // of the sequence, no exporting is needed. 1252 if (CurBB == SwitchBB || 1253 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1254 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1255 ISD::CondCode Condition; 1256 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1257 Condition = getICmpCondCode(IC->getPredicate()); 1258 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1259 Condition = getFCmpCondCode(FC->getPredicate()); 1260 } else { 1261 Condition = ISD::SETEQ; // silence warning. 1262 llvm_unreachable("Unknown compare instruction"); 1263 } 1264 1265 CaseBlock CB(Condition, BOp->getOperand(0), 1266 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1267 SwitchCases.push_back(CB); 1268 return; 1269 } 1270 } 1271 1272 // Create a CaseBlock record representing this branch. 1273 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1274 NULL, TBB, FBB, CurBB); 1275 SwitchCases.push_back(CB); 1276 } 1277 1278 /// FindMergedConditions - If Cond is an expression like 1279 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1280 MachineBasicBlock *TBB, 1281 MachineBasicBlock *FBB, 1282 MachineBasicBlock *CurBB, 1283 MachineBasicBlock *SwitchBB, 1284 unsigned Opc) { 1285 // If this node is not part of the or/and tree, emit it as a branch. 1286 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1287 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1288 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1289 BOp->getParent() != CurBB->getBasicBlock() || 1290 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1291 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1292 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1293 return; 1294 } 1295 1296 // Create TmpBB after CurBB. 1297 MachineFunction::iterator BBI = CurBB; 1298 MachineFunction &MF = DAG.getMachineFunction(); 1299 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1300 CurBB->getParent()->insert(++BBI, TmpBB); 1301 1302 if (Opc == Instruction::Or) { 1303 // Codegen X | Y as: 1304 // jmp_if_X TBB 1305 // jmp TmpBB 1306 // TmpBB: 1307 // jmp_if_Y TBB 1308 // jmp FBB 1309 // 1310 1311 // Emit the LHS condition. 1312 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1313 1314 // Emit the RHS condition into TmpBB. 1315 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1316 } else { 1317 assert(Opc == Instruction::And && "Unknown merge op!"); 1318 // Codegen X & Y as: 1319 // jmp_if_X TmpBB 1320 // jmp FBB 1321 // TmpBB: 1322 // jmp_if_Y TBB 1323 // jmp FBB 1324 // 1325 // This requires creation of TmpBB after CurBB. 1326 1327 // Emit the LHS condition. 1328 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1329 1330 // Emit the RHS condition into TmpBB. 1331 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1332 } 1333 } 1334 1335 /// If the set of cases should be emitted as a series of branches, return true. 1336 /// If we should emit this as a bunch of and/or'd together conditions, return 1337 /// false. 1338 bool 1339 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1340 if (Cases.size() != 2) return true; 1341 1342 // If this is two comparisons of the same values or'd or and'd together, they 1343 // will get folded into a single comparison, so don't emit two blocks. 1344 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1345 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1346 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1347 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1348 return false; 1349 } 1350 1351 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1352 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1353 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1354 Cases[0].CC == Cases[1].CC && 1355 isa<Constant>(Cases[0].CmpRHS) && 1356 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1357 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1358 return false; 1359 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1360 return false; 1361 } 1362 1363 return true; 1364 } 1365 1366 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1367 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1368 1369 // Update machine-CFG edges. 1370 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1371 1372 // Figure out which block is immediately after the current one. 1373 MachineBasicBlock *NextBlock = 0; 1374 MachineFunction::iterator BBI = BrMBB; 1375 if (++BBI != FuncInfo.MF->end()) 1376 NextBlock = BBI; 1377 1378 if (I.isUnconditional()) { 1379 // Update machine-CFG edges. 1380 BrMBB->addSuccessor(Succ0MBB); 1381 1382 // If this is not a fall-through branch, emit the branch. 1383 if (Succ0MBB != NextBlock) 1384 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1385 MVT::Other, getControlRoot(), 1386 DAG.getBasicBlock(Succ0MBB))); 1387 1388 return; 1389 } 1390 1391 // If this condition is one of the special cases we handle, do special stuff 1392 // now. 1393 const Value *CondVal = I.getCondition(); 1394 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1395 1396 // If this is a series of conditions that are or'd or and'd together, emit 1397 // this as a sequence of branches instead of setcc's with and/or operations. 1398 // For example, instead of something like: 1399 // cmp A, B 1400 // C = seteq 1401 // cmp D, E 1402 // F = setle 1403 // or C, F 1404 // jnz foo 1405 // Emit: 1406 // cmp A, B 1407 // je foo 1408 // cmp D, E 1409 // jle foo 1410 // 1411 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1412 if (BOp->hasOneUse() && 1413 (BOp->getOpcode() == Instruction::And || 1414 BOp->getOpcode() == Instruction::Or)) { 1415 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1416 BOp->getOpcode()); 1417 // If the compares in later blocks need to use values not currently 1418 // exported from this block, export them now. This block should always 1419 // be the first entry. 1420 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1421 1422 // Allow some cases to be rejected. 1423 if (ShouldEmitAsBranches(SwitchCases)) { 1424 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1425 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1426 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1427 } 1428 1429 // Emit the branch for this block. 1430 visitSwitchCase(SwitchCases[0], BrMBB); 1431 SwitchCases.erase(SwitchCases.begin()); 1432 return; 1433 } 1434 1435 // Okay, we decided not to do this, remove any inserted MBB's and clear 1436 // SwitchCases. 1437 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1438 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1439 1440 SwitchCases.clear(); 1441 } 1442 } 1443 1444 // Create a CaseBlock record representing this branch. 1445 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1446 NULL, Succ0MBB, Succ1MBB, BrMBB); 1447 1448 // Use visitSwitchCase to actually insert the fast branch sequence for this 1449 // cond branch. 1450 visitSwitchCase(CB, BrMBB); 1451 } 1452 1453 /// visitSwitchCase - Emits the necessary code to represent a single node in 1454 /// the binary search tree resulting from lowering a switch instruction. 1455 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1456 MachineBasicBlock *SwitchBB) { 1457 SDValue Cond; 1458 SDValue CondLHS = getValue(CB.CmpLHS); 1459 DebugLoc dl = getCurDebugLoc(); 1460 1461 // Build the setcc now. 1462 if (CB.CmpMHS == NULL) { 1463 // Fold "(X == true)" to X and "(X == false)" to !X to 1464 // handle common cases produced by branch lowering. 1465 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1466 CB.CC == ISD::SETEQ) 1467 Cond = CondLHS; 1468 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1469 CB.CC == ISD::SETEQ) { 1470 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1471 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1472 } else 1473 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1474 } else { 1475 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1476 1477 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1478 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1479 1480 SDValue CmpOp = getValue(CB.CmpMHS); 1481 EVT VT = CmpOp.getValueType(); 1482 1483 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1484 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1485 ISD::SETLE); 1486 } else { 1487 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1488 VT, CmpOp, DAG.getConstant(Low, VT)); 1489 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1490 DAG.getConstant(High-Low, VT), ISD::SETULE); 1491 } 1492 } 1493 1494 // Update successor info 1495 SwitchBB->addSuccessor(CB.TrueBB); 1496 SwitchBB->addSuccessor(CB.FalseBB); 1497 1498 // Set NextBlock to be the MBB immediately after the current one, if any. 1499 // This is used to avoid emitting unnecessary branches to the next block. 1500 MachineBasicBlock *NextBlock = 0; 1501 MachineFunction::iterator BBI = SwitchBB; 1502 if (++BBI != FuncInfo.MF->end()) 1503 NextBlock = BBI; 1504 1505 // If the lhs block is the next block, invert the condition so that we can 1506 // fall through to the lhs instead of the rhs block. 1507 if (CB.TrueBB == NextBlock) { 1508 std::swap(CB.TrueBB, CB.FalseBB); 1509 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1510 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1511 } 1512 1513 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1514 MVT::Other, getControlRoot(), Cond, 1515 DAG.getBasicBlock(CB.TrueBB)); 1516 1517 // Insert the false branch. 1518 if (CB.FalseBB != NextBlock) 1519 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1520 DAG.getBasicBlock(CB.FalseBB)); 1521 1522 DAG.setRoot(BrCond); 1523 } 1524 1525 /// visitJumpTable - Emit JumpTable node in the current MBB 1526 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1527 // Emit the code for the jump table 1528 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1529 EVT PTy = TLI.getPointerTy(); 1530 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1531 JT.Reg, PTy); 1532 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1533 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1534 MVT::Other, Index.getValue(1), 1535 Table, Index); 1536 DAG.setRoot(BrJumpTable); 1537 } 1538 1539 /// visitJumpTableHeader - This function emits necessary code to produce index 1540 /// in the JumpTable from switch case. 1541 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1542 JumpTableHeader &JTH, 1543 MachineBasicBlock *SwitchBB) { 1544 // Subtract the lowest switch case value from the value being switched on and 1545 // conditional branch to default mbb if the result is greater than the 1546 // difference between smallest and largest cases. 1547 SDValue SwitchOp = getValue(JTH.SValue); 1548 EVT VT = SwitchOp.getValueType(); 1549 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1550 DAG.getConstant(JTH.First, VT)); 1551 1552 // The SDNode we just created, which holds the value being switched on minus 1553 // the smallest case value, needs to be copied to a virtual register so it 1554 // can be used as an index into the jump table in a subsequent basic block. 1555 // This value may be smaller or larger than the target's pointer type, and 1556 // therefore require extension or truncating. 1557 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1558 1559 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1560 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1561 JumpTableReg, SwitchOp); 1562 JT.Reg = JumpTableReg; 1563 1564 // Emit the range check for the jump table, and branch to the default block 1565 // for the switch statement if the value being switched on exceeds the largest 1566 // case in the switch. 1567 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1568 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1569 DAG.getConstant(JTH.Last-JTH.First,VT), 1570 ISD::SETUGT); 1571 1572 // Set NextBlock to be the MBB immediately after the current one, if any. 1573 // This is used to avoid emitting unnecessary branches to the next block. 1574 MachineBasicBlock *NextBlock = 0; 1575 MachineFunction::iterator BBI = SwitchBB; 1576 1577 if (++BBI != FuncInfo.MF->end()) 1578 NextBlock = BBI; 1579 1580 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1581 MVT::Other, CopyTo, CMP, 1582 DAG.getBasicBlock(JT.Default)); 1583 1584 if (JT.MBB != NextBlock) 1585 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1586 DAG.getBasicBlock(JT.MBB)); 1587 1588 DAG.setRoot(BrCond); 1589 } 1590 1591 /// visitBitTestHeader - This function emits necessary code to produce value 1592 /// suitable for "bit tests" 1593 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1594 MachineBasicBlock *SwitchBB) { 1595 // Subtract the minimum value 1596 SDValue SwitchOp = getValue(B.SValue); 1597 EVT VT = SwitchOp.getValueType(); 1598 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1599 DAG.getConstant(B.First, VT)); 1600 1601 // Check range 1602 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1603 TLI.getSetCCResultType(Sub.getValueType()), 1604 Sub, DAG.getConstant(B.Range, VT), 1605 ISD::SETUGT); 1606 1607 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1608 TLI.getPointerTy()); 1609 1610 B.Reg = FuncInfo.CreateReg(TLI.getPointerTy()); 1611 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1612 B.Reg, ShiftOp); 1613 1614 // Set NextBlock to be the MBB immediately after the current one, if any. 1615 // This is used to avoid emitting unnecessary branches to the next block. 1616 MachineBasicBlock *NextBlock = 0; 1617 MachineFunction::iterator BBI = SwitchBB; 1618 if (++BBI != FuncInfo.MF->end()) 1619 NextBlock = BBI; 1620 1621 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1622 1623 SwitchBB->addSuccessor(B.Default); 1624 SwitchBB->addSuccessor(MBB); 1625 1626 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1627 MVT::Other, CopyTo, RangeCmp, 1628 DAG.getBasicBlock(B.Default)); 1629 1630 if (MBB != NextBlock) 1631 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1632 DAG.getBasicBlock(MBB)); 1633 1634 DAG.setRoot(BrRange); 1635 } 1636 1637 /// visitBitTestCase - this function produces one "bit test" 1638 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1639 unsigned Reg, 1640 BitTestCase &B, 1641 MachineBasicBlock *SwitchBB) { 1642 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1643 TLI.getPointerTy()); 1644 SDValue Cmp; 1645 if (CountPopulation_64(B.Mask) == 1) { 1646 // Testing for a single bit; just compare the shift count with what it 1647 // would need to be to shift a 1 bit in that position. 1648 Cmp = DAG.getSetCC(getCurDebugLoc(), 1649 TLI.getSetCCResultType(ShiftOp.getValueType()), 1650 ShiftOp, 1651 DAG.getConstant(CountTrailingZeros_64(B.Mask), 1652 TLI.getPointerTy()), 1653 ISD::SETEQ); 1654 } else { 1655 // Make desired shift 1656 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1657 TLI.getPointerTy(), 1658 DAG.getConstant(1, TLI.getPointerTy()), 1659 ShiftOp); 1660 1661 // Emit bit tests and jumps 1662 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1663 TLI.getPointerTy(), SwitchVal, 1664 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1665 Cmp = DAG.getSetCC(getCurDebugLoc(), 1666 TLI.getSetCCResultType(AndOp.getValueType()), 1667 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1668 ISD::SETNE); 1669 } 1670 1671 SwitchBB->addSuccessor(B.TargetBB); 1672 SwitchBB->addSuccessor(NextMBB); 1673 1674 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1675 MVT::Other, getControlRoot(), 1676 Cmp, DAG.getBasicBlock(B.TargetBB)); 1677 1678 // Set NextBlock to be the MBB immediately after the current one, if any. 1679 // This is used to avoid emitting unnecessary branches to the next block. 1680 MachineBasicBlock *NextBlock = 0; 1681 MachineFunction::iterator BBI = SwitchBB; 1682 if (++BBI != FuncInfo.MF->end()) 1683 NextBlock = BBI; 1684 1685 if (NextMBB != NextBlock) 1686 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1687 DAG.getBasicBlock(NextMBB)); 1688 1689 DAG.setRoot(BrAnd); 1690 } 1691 1692 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1693 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1694 1695 // Retrieve successors. 1696 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1697 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1698 1699 const Value *Callee(I.getCalledValue()); 1700 if (isa<InlineAsm>(Callee)) 1701 visitInlineAsm(&I); 1702 else 1703 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1704 1705 // If the value of the invoke is used outside of its defining block, make it 1706 // available as a virtual register. 1707 CopyToExportRegsIfNeeded(&I); 1708 1709 // Update successor info 1710 InvokeMBB->addSuccessor(Return); 1711 InvokeMBB->addSuccessor(LandingPad); 1712 1713 // Drop into normal successor. 1714 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1715 MVT::Other, getControlRoot(), 1716 DAG.getBasicBlock(Return))); 1717 } 1718 1719 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1720 } 1721 1722 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1723 /// small case ranges). 1724 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1725 CaseRecVector& WorkList, 1726 const Value* SV, 1727 MachineBasicBlock *Default, 1728 MachineBasicBlock *SwitchBB) { 1729 Case& BackCase = *(CR.Range.second-1); 1730 1731 // Size is the number of Cases represented by this range. 1732 size_t Size = CR.Range.second - CR.Range.first; 1733 if (Size > 3) 1734 return false; 1735 1736 // Get the MachineFunction which holds the current MBB. This is used when 1737 // inserting any additional MBBs necessary to represent the switch. 1738 MachineFunction *CurMF = FuncInfo.MF; 1739 1740 // Figure out which block is immediately after the current one. 1741 MachineBasicBlock *NextBlock = 0; 1742 MachineFunction::iterator BBI = CR.CaseBB; 1743 1744 if (++BBI != FuncInfo.MF->end()) 1745 NextBlock = BBI; 1746 1747 // TODO: If any two of the cases has the same destination, and if one value 1748 // is the same as the other, but has one bit unset that the other has set, 1749 // use bit manipulation to do two compares at once. For example: 1750 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1751 1752 // Rearrange the case blocks so that the last one falls through if possible. 1753 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1754 // The last case block won't fall through into 'NextBlock' if we emit the 1755 // branches in this order. See if rearranging a case value would help. 1756 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1757 if (I->BB == NextBlock) { 1758 std::swap(*I, BackCase); 1759 break; 1760 } 1761 } 1762 } 1763 1764 // Create a CaseBlock record representing a conditional branch to 1765 // the Case's target mbb if the value being switched on SV is equal 1766 // to C. 1767 MachineBasicBlock *CurBlock = CR.CaseBB; 1768 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1769 MachineBasicBlock *FallThrough; 1770 if (I != E-1) { 1771 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1772 CurMF->insert(BBI, FallThrough); 1773 1774 // Put SV in a virtual register to make it available from the new blocks. 1775 ExportFromCurrentBlock(SV); 1776 } else { 1777 // If the last case doesn't match, go to the default block. 1778 FallThrough = Default; 1779 } 1780 1781 const Value *RHS, *LHS, *MHS; 1782 ISD::CondCode CC; 1783 if (I->High == I->Low) { 1784 // This is just small small case range :) containing exactly 1 case 1785 CC = ISD::SETEQ; 1786 LHS = SV; RHS = I->High; MHS = NULL; 1787 } else { 1788 CC = ISD::SETLE; 1789 LHS = I->Low; MHS = SV; RHS = I->High; 1790 } 1791 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1792 1793 // If emitting the first comparison, just call visitSwitchCase to emit the 1794 // code into the current block. Otherwise, push the CaseBlock onto the 1795 // vector to be later processed by SDISel, and insert the node's MBB 1796 // before the next MBB. 1797 if (CurBlock == SwitchBB) 1798 visitSwitchCase(CB, SwitchBB); 1799 else 1800 SwitchCases.push_back(CB); 1801 1802 CurBlock = FallThrough; 1803 } 1804 1805 return true; 1806 } 1807 1808 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1809 return !DisableJumpTables && 1810 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1811 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1812 } 1813 1814 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1815 APInt LastExt(Last), FirstExt(First); 1816 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1817 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1818 return (LastExt - FirstExt + 1ULL); 1819 } 1820 1821 /// handleJTSwitchCase - Emit jumptable for current switch case range 1822 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1823 CaseRecVector& WorkList, 1824 const Value* SV, 1825 MachineBasicBlock* Default, 1826 MachineBasicBlock *SwitchBB) { 1827 Case& FrontCase = *CR.Range.first; 1828 Case& BackCase = *(CR.Range.second-1); 1829 1830 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1831 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1832 1833 APInt TSize(First.getBitWidth(), 0); 1834 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1835 I!=E; ++I) 1836 TSize += I->size(); 1837 1838 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1839 return false; 1840 1841 APInt Range = ComputeRange(First, Last); 1842 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1843 if (Density < 0.4) 1844 return false; 1845 1846 DEBUG(dbgs() << "Lowering jump table\n" 1847 << "First entry: " << First << ". Last entry: " << Last << '\n' 1848 << "Range: " << Range 1849 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1850 1851 // Get the MachineFunction which holds the current MBB. This is used when 1852 // inserting any additional MBBs necessary to represent the switch. 1853 MachineFunction *CurMF = FuncInfo.MF; 1854 1855 // Figure out which block is immediately after the current one. 1856 MachineFunction::iterator BBI = CR.CaseBB; 1857 ++BBI; 1858 1859 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1860 1861 // Create a new basic block to hold the code for loading the address 1862 // of the jump table, and jumping to it. Update successor information; 1863 // we will either branch to the default case for the switch, or the jump 1864 // table. 1865 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1866 CurMF->insert(BBI, JumpTableBB); 1867 CR.CaseBB->addSuccessor(Default); 1868 CR.CaseBB->addSuccessor(JumpTableBB); 1869 1870 // Build a vector of destination BBs, corresponding to each target 1871 // of the jump table. If the value of the jump table slot corresponds to 1872 // a case statement, push the case's BB onto the vector, otherwise, push 1873 // the default BB. 1874 std::vector<MachineBasicBlock*> DestBBs; 1875 APInt TEI = First; 1876 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1877 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1878 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1879 1880 if (Low.sle(TEI) && TEI.sle(High)) { 1881 DestBBs.push_back(I->BB); 1882 if (TEI==High) 1883 ++I; 1884 } else { 1885 DestBBs.push_back(Default); 1886 } 1887 } 1888 1889 // Update successor info. Add one edge to each unique successor. 1890 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1891 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1892 E = DestBBs.end(); I != E; ++I) { 1893 if (!SuccsHandled[(*I)->getNumber()]) { 1894 SuccsHandled[(*I)->getNumber()] = true; 1895 JumpTableBB->addSuccessor(*I); 1896 } 1897 } 1898 1899 // Create a jump table index for this jump table. 1900 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1901 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1902 ->createJumpTableIndex(DestBBs); 1903 1904 // Set the jump table information so that we can codegen it as a second 1905 // MachineBasicBlock 1906 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1907 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1908 if (CR.CaseBB == SwitchBB) 1909 visitJumpTableHeader(JT, JTH, SwitchBB); 1910 1911 JTCases.push_back(JumpTableBlock(JTH, JT)); 1912 1913 return true; 1914 } 1915 1916 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1917 /// 2 subtrees. 1918 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1919 CaseRecVector& WorkList, 1920 const Value* SV, 1921 MachineBasicBlock *Default, 1922 MachineBasicBlock *SwitchBB) { 1923 // Get the MachineFunction which holds the current MBB. This is used when 1924 // inserting any additional MBBs necessary to represent the switch. 1925 MachineFunction *CurMF = FuncInfo.MF; 1926 1927 // Figure out which block is immediately after the current one. 1928 MachineFunction::iterator BBI = CR.CaseBB; 1929 ++BBI; 1930 1931 Case& FrontCase = *CR.Range.first; 1932 Case& BackCase = *(CR.Range.second-1); 1933 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1934 1935 // Size is the number of Cases represented by this range. 1936 unsigned Size = CR.Range.second - CR.Range.first; 1937 1938 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1939 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1940 double FMetric = 0; 1941 CaseItr Pivot = CR.Range.first + Size/2; 1942 1943 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1944 // (heuristically) allow us to emit JumpTable's later. 1945 APInt TSize(First.getBitWidth(), 0); 1946 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1947 I!=E; ++I) 1948 TSize += I->size(); 1949 1950 APInt LSize = FrontCase.size(); 1951 APInt RSize = TSize-LSize; 1952 DEBUG(dbgs() << "Selecting best pivot: \n" 1953 << "First: " << First << ", Last: " << Last <<'\n' 1954 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1955 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1956 J!=E; ++I, ++J) { 1957 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1958 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1959 APInt Range = ComputeRange(LEnd, RBegin); 1960 assert((Range - 2ULL).isNonNegative() && 1961 "Invalid case distance"); 1962 double LDensity = (double)LSize.roundToDouble() / 1963 (LEnd - First + 1ULL).roundToDouble(); 1964 double RDensity = (double)RSize.roundToDouble() / 1965 (Last - RBegin + 1ULL).roundToDouble(); 1966 double Metric = Range.logBase2()*(LDensity+RDensity); 1967 // Should always split in some non-trivial place 1968 DEBUG(dbgs() <<"=>Step\n" 1969 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1970 << "LDensity: " << LDensity 1971 << ", RDensity: " << RDensity << '\n' 1972 << "Metric: " << Metric << '\n'); 1973 if (FMetric < Metric) { 1974 Pivot = J; 1975 FMetric = Metric; 1976 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1977 } 1978 1979 LSize += J->size(); 1980 RSize -= J->size(); 1981 } 1982 if (areJTsAllowed(TLI)) { 1983 // If our case is dense we *really* should handle it earlier! 1984 assert((FMetric > 0) && "Should handle dense range earlier!"); 1985 } else { 1986 Pivot = CR.Range.first + Size/2; 1987 } 1988 1989 CaseRange LHSR(CR.Range.first, Pivot); 1990 CaseRange RHSR(Pivot, CR.Range.second); 1991 Constant *C = Pivot->Low; 1992 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1993 1994 // We know that we branch to the LHS if the Value being switched on is 1995 // less than the Pivot value, C. We use this to optimize our binary 1996 // tree a bit, by recognizing that if SV is greater than or equal to the 1997 // LHS's Case Value, and that Case Value is exactly one less than the 1998 // Pivot's Value, then we can branch directly to the LHS's Target, 1999 // rather than creating a leaf node for it. 2000 if ((LHSR.second - LHSR.first) == 1 && 2001 LHSR.first->High == CR.GE && 2002 cast<ConstantInt>(C)->getValue() == 2003 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2004 TrueBB = LHSR.first->BB; 2005 } else { 2006 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2007 CurMF->insert(BBI, TrueBB); 2008 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2009 2010 // Put SV in a virtual register to make it available from the new blocks. 2011 ExportFromCurrentBlock(SV); 2012 } 2013 2014 // Similar to the optimization above, if the Value being switched on is 2015 // known to be less than the Constant CR.LT, and the current Case Value 2016 // is CR.LT - 1, then we can branch directly to the target block for 2017 // the current Case Value, rather than emitting a RHS leaf node for it. 2018 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2019 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2020 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2021 FalseBB = RHSR.first->BB; 2022 } else { 2023 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2024 CurMF->insert(BBI, FalseBB); 2025 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2026 2027 // Put SV in a virtual register to make it available from the new blocks. 2028 ExportFromCurrentBlock(SV); 2029 } 2030 2031 // Create a CaseBlock record representing a conditional branch to 2032 // the LHS node if the value being switched on SV is less than C. 2033 // Otherwise, branch to LHS. 2034 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2035 2036 if (CR.CaseBB == SwitchBB) 2037 visitSwitchCase(CB, SwitchBB); 2038 else 2039 SwitchCases.push_back(CB); 2040 2041 return true; 2042 } 2043 2044 /// handleBitTestsSwitchCase - if current case range has few destination and 2045 /// range span less, than machine word bitwidth, encode case range into series 2046 /// of masks and emit bit tests with these masks. 2047 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2048 CaseRecVector& WorkList, 2049 const Value* SV, 2050 MachineBasicBlock* Default, 2051 MachineBasicBlock *SwitchBB){ 2052 EVT PTy = TLI.getPointerTy(); 2053 unsigned IntPtrBits = PTy.getSizeInBits(); 2054 2055 Case& FrontCase = *CR.Range.first; 2056 Case& BackCase = *(CR.Range.second-1); 2057 2058 // Get the MachineFunction which holds the current MBB. This is used when 2059 // inserting any additional MBBs necessary to represent the switch. 2060 MachineFunction *CurMF = FuncInfo.MF; 2061 2062 // If target does not have legal shift left, do not emit bit tests at all. 2063 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2064 return false; 2065 2066 size_t numCmps = 0; 2067 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2068 I!=E; ++I) { 2069 // Single case counts one, case range - two. 2070 numCmps += (I->Low == I->High ? 1 : 2); 2071 } 2072 2073 // Count unique destinations 2074 SmallSet<MachineBasicBlock*, 4> Dests; 2075 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2076 Dests.insert(I->BB); 2077 if (Dests.size() > 3) 2078 // Don't bother the code below, if there are too much unique destinations 2079 return false; 2080 } 2081 DEBUG(dbgs() << "Total number of unique destinations: " 2082 << Dests.size() << '\n' 2083 << "Total number of comparisons: " << numCmps << '\n'); 2084 2085 // Compute span of values. 2086 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2087 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2088 APInt cmpRange = maxValue - minValue; 2089 2090 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2091 << "Low bound: " << minValue << '\n' 2092 << "High bound: " << maxValue << '\n'); 2093 2094 if (cmpRange.uge(IntPtrBits) || 2095 (!(Dests.size() == 1 && numCmps >= 3) && 2096 !(Dests.size() == 2 && numCmps >= 5) && 2097 !(Dests.size() >= 3 && numCmps >= 6))) 2098 return false; 2099 2100 DEBUG(dbgs() << "Emitting bit tests\n"); 2101 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2102 2103 // Optimize the case where all the case values fit in a 2104 // word without having to subtract minValue. In this case, 2105 // we can optimize away the subtraction. 2106 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2107 cmpRange = maxValue; 2108 } else { 2109 lowBound = minValue; 2110 } 2111 2112 CaseBitsVector CasesBits; 2113 unsigned i, count = 0; 2114 2115 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2116 MachineBasicBlock* Dest = I->BB; 2117 for (i = 0; i < count; ++i) 2118 if (Dest == CasesBits[i].BB) 2119 break; 2120 2121 if (i == count) { 2122 assert((count < 3) && "Too much destinations to test!"); 2123 CasesBits.push_back(CaseBits(0, Dest, 0)); 2124 count++; 2125 } 2126 2127 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2128 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2129 2130 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2131 uint64_t hi = (highValue - lowBound).getZExtValue(); 2132 2133 for (uint64_t j = lo; j <= hi; j++) { 2134 CasesBits[i].Mask |= 1ULL << j; 2135 CasesBits[i].Bits++; 2136 } 2137 2138 } 2139 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2140 2141 BitTestInfo BTC; 2142 2143 // Figure out which block is immediately after the current one. 2144 MachineFunction::iterator BBI = CR.CaseBB; 2145 ++BBI; 2146 2147 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2148 2149 DEBUG(dbgs() << "Cases:\n"); 2150 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2151 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2152 << ", Bits: " << CasesBits[i].Bits 2153 << ", BB: " << CasesBits[i].BB << '\n'); 2154 2155 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2156 CurMF->insert(BBI, CaseBB); 2157 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2158 CaseBB, 2159 CasesBits[i].BB)); 2160 2161 // Put SV in a virtual register to make it available from the new blocks. 2162 ExportFromCurrentBlock(SV); 2163 } 2164 2165 BitTestBlock BTB(lowBound, cmpRange, SV, 2166 -1U, (CR.CaseBB == SwitchBB), 2167 CR.CaseBB, Default, BTC); 2168 2169 if (CR.CaseBB == SwitchBB) 2170 visitBitTestHeader(BTB, SwitchBB); 2171 2172 BitTestCases.push_back(BTB); 2173 2174 return true; 2175 } 2176 2177 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2178 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2179 const SwitchInst& SI) { 2180 size_t numCmps = 0; 2181 2182 // Start with "simple" cases 2183 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2184 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2185 Cases.push_back(Case(SI.getSuccessorValue(i), 2186 SI.getSuccessorValue(i), 2187 SMBB)); 2188 } 2189 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2190 2191 // Merge case into clusters 2192 if (Cases.size() >= 2) 2193 // Must recompute end() each iteration because it may be 2194 // invalidated by erase if we hold on to it 2195 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 2196 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2197 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2198 MachineBasicBlock* nextBB = J->BB; 2199 MachineBasicBlock* currentBB = I->BB; 2200 2201 // If the two neighboring cases go to the same destination, merge them 2202 // into a single case. 2203 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2204 I->High = J->High; 2205 J = Cases.erase(J); 2206 } else { 2207 I = J++; 2208 } 2209 } 2210 2211 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2212 if (I->Low != I->High) 2213 // A range counts double, since it requires two compares. 2214 ++numCmps; 2215 } 2216 2217 return numCmps; 2218 } 2219 2220 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2221 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2222 2223 // Figure out which block is immediately after the current one. 2224 MachineBasicBlock *NextBlock = 0; 2225 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2226 2227 // If there is only the default destination, branch to it if it is not the 2228 // next basic block. Otherwise, just fall through. 2229 if (SI.getNumOperands() == 2) { 2230 // Update machine-CFG edges. 2231 2232 // If this is not a fall-through branch, emit the branch. 2233 SwitchMBB->addSuccessor(Default); 2234 if (Default != NextBlock) 2235 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2236 MVT::Other, getControlRoot(), 2237 DAG.getBasicBlock(Default))); 2238 2239 return; 2240 } 2241 2242 // If there are any non-default case statements, create a vector of Cases 2243 // representing each one, and sort the vector so that we can efficiently 2244 // create a binary search tree from them. 2245 CaseVector Cases; 2246 size_t numCmps = Clusterify(Cases, SI); 2247 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2248 << ". Total compares: " << numCmps << '\n'); 2249 numCmps = 0; 2250 2251 // Get the Value to be switched on and default basic blocks, which will be 2252 // inserted into CaseBlock records, representing basic blocks in the binary 2253 // search tree. 2254 const Value *SV = SI.getOperand(0); 2255 2256 // Push the initial CaseRec onto the worklist 2257 CaseRecVector WorkList; 2258 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2259 CaseRange(Cases.begin(),Cases.end()))); 2260 2261 while (!WorkList.empty()) { 2262 // Grab a record representing a case range to process off the worklist 2263 CaseRec CR = WorkList.back(); 2264 WorkList.pop_back(); 2265 2266 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2267 continue; 2268 2269 // If the range has few cases (two or less) emit a series of specific 2270 // tests. 2271 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2272 continue; 2273 2274 // If the switch has more than 5 blocks, and at least 40% dense, and the 2275 // target supports indirect branches, then emit a jump table rather than 2276 // lowering the switch to a binary tree of conditional branches. 2277 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2278 continue; 2279 2280 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2281 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2282 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2283 } 2284 } 2285 2286 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2287 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2288 2289 // Update machine-CFG edges with unique successors. 2290 SmallVector<BasicBlock*, 32> succs; 2291 succs.reserve(I.getNumSuccessors()); 2292 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2293 succs.push_back(I.getSuccessor(i)); 2294 array_pod_sort(succs.begin(), succs.end()); 2295 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2296 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2297 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2298 2299 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2300 MVT::Other, getControlRoot(), 2301 getValue(I.getAddress()))); 2302 } 2303 2304 void SelectionDAGBuilder::visitFSub(const User &I) { 2305 // -0.0 - X --> fneg 2306 const Type *Ty = I.getType(); 2307 if (Ty->isVectorTy()) { 2308 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2309 const VectorType *DestTy = cast<VectorType>(I.getType()); 2310 const Type *ElTy = DestTy->getElementType(); 2311 unsigned VL = DestTy->getNumElements(); 2312 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2313 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2314 if (CV == CNZ) { 2315 SDValue Op2 = getValue(I.getOperand(1)); 2316 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2317 Op2.getValueType(), Op2)); 2318 return; 2319 } 2320 } 2321 } 2322 2323 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2324 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2325 SDValue Op2 = getValue(I.getOperand(1)); 2326 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2327 Op2.getValueType(), Op2)); 2328 return; 2329 } 2330 2331 visitBinary(I, ISD::FSUB); 2332 } 2333 2334 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2335 SDValue Op1 = getValue(I.getOperand(0)); 2336 SDValue Op2 = getValue(I.getOperand(1)); 2337 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2338 Op1.getValueType(), Op1, Op2)); 2339 } 2340 2341 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2342 SDValue Op1 = getValue(I.getOperand(0)); 2343 SDValue Op2 = getValue(I.getOperand(1)); 2344 if (!I.getType()->isVectorTy() && 2345 Op2.getValueType() != TLI.getShiftAmountTy()) { 2346 // If the operand is smaller than the shift count type, promote it. 2347 EVT PTy = TLI.getPointerTy(); 2348 EVT STy = TLI.getShiftAmountTy(); 2349 if (STy.bitsGT(Op2.getValueType())) 2350 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2351 TLI.getShiftAmountTy(), Op2); 2352 // If the operand is larger than the shift count type but the shift 2353 // count type has enough bits to represent any shift value, truncate 2354 // it now. This is a common case and it exposes the truncate to 2355 // optimization early. 2356 else if (STy.getSizeInBits() >= 2357 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2358 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2359 TLI.getShiftAmountTy(), Op2); 2360 // Otherwise we'll need to temporarily settle for some other 2361 // convenient type; type legalization will make adjustments as 2362 // needed. 2363 else if (PTy.bitsLT(Op2.getValueType())) 2364 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2365 TLI.getPointerTy(), Op2); 2366 else if (PTy.bitsGT(Op2.getValueType())) 2367 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2368 TLI.getPointerTy(), Op2); 2369 } 2370 2371 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2372 Op1.getValueType(), Op1, Op2)); 2373 } 2374 2375 void SelectionDAGBuilder::visitICmp(const User &I) { 2376 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2377 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2378 predicate = IC->getPredicate(); 2379 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2380 predicate = ICmpInst::Predicate(IC->getPredicate()); 2381 SDValue Op1 = getValue(I.getOperand(0)); 2382 SDValue Op2 = getValue(I.getOperand(1)); 2383 ISD::CondCode Opcode = getICmpCondCode(predicate); 2384 2385 EVT DestVT = TLI.getValueType(I.getType()); 2386 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2387 } 2388 2389 void SelectionDAGBuilder::visitFCmp(const User &I) { 2390 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2391 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2392 predicate = FC->getPredicate(); 2393 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2394 predicate = FCmpInst::Predicate(FC->getPredicate()); 2395 SDValue Op1 = getValue(I.getOperand(0)); 2396 SDValue Op2 = getValue(I.getOperand(1)); 2397 ISD::CondCode Condition = getFCmpCondCode(predicate); 2398 EVT DestVT = TLI.getValueType(I.getType()); 2399 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2400 } 2401 2402 void SelectionDAGBuilder::visitSelect(const User &I) { 2403 SmallVector<EVT, 4> ValueVTs; 2404 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2405 unsigned NumValues = ValueVTs.size(); 2406 if (NumValues == 0) return; 2407 2408 SmallVector<SDValue, 4> Values(NumValues); 2409 SDValue Cond = getValue(I.getOperand(0)); 2410 SDValue TrueVal = getValue(I.getOperand(1)); 2411 SDValue FalseVal = getValue(I.getOperand(2)); 2412 2413 for (unsigned i = 0; i != NumValues; ++i) 2414 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2415 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2416 Cond, 2417 SDValue(TrueVal.getNode(), 2418 TrueVal.getResNo() + i), 2419 SDValue(FalseVal.getNode(), 2420 FalseVal.getResNo() + i)); 2421 2422 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2423 DAG.getVTList(&ValueVTs[0], NumValues), 2424 &Values[0], NumValues)); 2425 } 2426 2427 void SelectionDAGBuilder::visitTrunc(const User &I) { 2428 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2429 SDValue N = getValue(I.getOperand(0)); 2430 EVT DestVT = TLI.getValueType(I.getType()); 2431 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2432 } 2433 2434 void SelectionDAGBuilder::visitZExt(const User &I) { 2435 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2436 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2437 SDValue N = getValue(I.getOperand(0)); 2438 EVT DestVT = TLI.getValueType(I.getType()); 2439 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2440 } 2441 2442 void SelectionDAGBuilder::visitSExt(const User &I) { 2443 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2444 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2445 SDValue N = getValue(I.getOperand(0)); 2446 EVT DestVT = TLI.getValueType(I.getType()); 2447 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2448 } 2449 2450 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2451 // FPTrunc is never a no-op cast, no need to check 2452 SDValue N = getValue(I.getOperand(0)); 2453 EVT DestVT = TLI.getValueType(I.getType()); 2454 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2455 DestVT, N, DAG.getIntPtrConstant(0))); 2456 } 2457 2458 void SelectionDAGBuilder::visitFPExt(const User &I){ 2459 // FPTrunc is never a no-op cast, no need to check 2460 SDValue N = getValue(I.getOperand(0)); 2461 EVT DestVT = TLI.getValueType(I.getType()); 2462 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2463 } 2464 2465 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2466 // FPToUI is never a no-op cast, no need to check 2467 SDValue N = getValue(I.getOperand(0)); 2468 EVT DestVT = TLI.getValueType(I.getType()); 2469 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2470 } 2471 2472 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2473 // FPToSI is never a no-op cast, no need to check 2474 SDValue N = getValue(I.getOperand(0)); 2475 EVT DestVT = TLI.getValueType(I.getType()); 2476 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2477 } 2478 2479 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2480 // UIToFP is never a no-op cast, no need to check 2481 SDValue N = getValue(I.getOperand(0)); 2482 EVT DestVT = TLI.getValueType(I.getType()); 2483 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2484 } 2485 2486 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2487 // SIToFP is never a no-op cast, no need to check 2488 SDValue N = getValue(I.getOperand(0)); 2489 EVT DestVT = TLI.getValueType(I.getType()); 2490 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2491 } 2492 2493 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2494 // What to do depends on the size of the integer and the size of the pointer. 2495 // We can either truncate, zero extend, or no-op, accordingly. 2496 SDValue N = getValue(I.getOperand(0)); 2497 EVT DestVT = TLI.getValueType(I.getType()); 2498 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2499 } 2500 2501 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2502 // What to do depends on the size of the integer and the size of the pointer. 2503 // We can either truncate, zero extend, or no-op, accordingly. 2504 SDValue N = getValue(I.getOperand(0)); 2505 EVT DestVT = TLI.getValueType(I.getType()); 2506 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2507 } 2508 2509 void SelectionDAGBuilder::visitBitCast(const User &I) { 2510 SDValue N = getValue(I.getOperand(0)); 2511 EVT DestVT = TLI.getValueType(I.getType()); 2512 2513 // BitCast assures us that source and destination are the same size so this is 2514 // either a BIT_CONVERT or a no-op. 2515 if (DestVT != N.getValueType()) 2516 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2517 DestVT, N)); // convert types. 2518 else 2519 setValue(&I, N); // noop cast. 2520 } 2521 2522 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2523 SDValue InVec = getValue(I.getOperand(0)); 2524 SDValue InVal = getValue(I.getOperand(1)); 2525 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2526 TLI.getPointerTy(), 2527 getValue(I.getOperand(2))); 2528 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2529 TLI.getValueType(I.getType()), 2530 InVec, InVal, InIdx)); 2531 } 2532 2533 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2534 SDValue InVec = getValue(I.getOperand(0)); 2535 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2536 TLI.getPointerTy(), 2537 getValue(I.getOperand(1))); 2538 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2539 TLI.getValueType(I.getType()), InVec, InIdx)); 2540 } 2541 2542 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2543 // from SIndx and increasing to the element length (undefs are allowed). 2544 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2545 unsigned MaskNumElts = Mask.size(); 2546 for (unsigned i = 0; i != MaskNumElts; ++i) 2547 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2548 return false; 2549 return true; 2550 } 2551 2552 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2553 SmallVector<int, 8> Mask; 2554 SDValue Src1 = getValue(I.getOperand(0)); 2555 SDValue Src2 = getValue(I.getOperand(1)); 2556 2557 // Convert the ConstantVector mask operand into an array of ints, with -1 2558 // representing undef values. 2559 SmallVector<Constant*, 8> MaskElts; 2560 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2561 unsigned MaskNumElts = MaskElts.size(); 2562 for (unsigned i = 0; i != MaskNumElts; ++i) { 2563 if (isa<UndefValue>(MaskElts[i])) 2564 Mask.push_back(-1); 2565 else 2566 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2567 } 2568 2569 EVT VT = TLI.getValueType(I.getType()); 2570 EVT SrcVT = Src1.getValueType(); 2571 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2572 2573 if (SrcNumElts == MaskNumElts) { 2574 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2575 &Mask[0])); 2576 return; 2577 } 2578 2579 // Normalize the shuffle vector since mask and vector length don't match. 2580 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2581 // Mask is longer than the source vectors and is a multiple of the source 2582 // vectors. We can use concatenate vector to make the mask and vectors 2583 // lengths match. 2584 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2585 // The shuffle is concatenating two vectors together. 2586 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2587 VT, Src1, Src2)); 2588 return; 2589 } 2590 2591 // Pad both vectors with undefs to make them the same length as the mask. 2592 unsigned NumConcat = MaskNumElts / SrcNumElts; 2593 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2594 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2595 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2596 2597 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2598 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2599 MOps1[0] = Src1; 2600 MOps2[0] = Src2; 2601 2602 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2603 getCurDebugLoc(), VT, 2604 &MOps1[0], NumConcat); 2605 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2606 getCurDebugLoc(), VT, 2607 &MOps2[0], NumConcat); 2608 2609 // Readjust mask for new input vector length. 2610 SmallVector<int, 8> MappedOps; 2611 for (unsigned i = 0; i != MaskNumElts; ++i) { 2612 int Idx = Mask[i]; 2613 if (Idx < (int)SrcNumElts) 2614 MappedOps.push_back(Idx); 2615 else 2616 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2617 } 2618 2619 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2620 &MappedOps[0])); 2621 return; 2622 } 2623 2624 if (SrcNumElts > MaskNumElts) { 2625 // Analyze the access pattern of the vector to see if we can extract 2626 // two subvectors and do the shuffle. The analysis is done by calculating 2627 // the range of elements the mask access on both vectors. 2628 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2629 int MaxRange[2] = {-1, -1}; 2630 2631 for (unsigned i = 0; i != MaskNumElts; ++i) { 2632 int Idx = Mask[i]; 2633 int Input = 0; 2634 if (Idx < 0) 2635 continue; 2636 2637 if (Idx >= (int)SrcNumElts) { 2638 Input = 1; 2639 Idx -= SrcNumElts; 2640 } 2641 if (Idx > MaxRange[Input]) 2642 MaxRange[Input] = Idx; 2643 if (Idx < MinRange[Input]) 2644 MinRange[Input] = Idx; 2645 } 2646 2647 // Check if the access is smaller than the vector size and can we find 2648 // a reasonable extract index. 2649 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2650 // Extract. 2651 int StartIdx[2]; // StartIdx to extract from 2652 for (int Input=0; Input < 2; ++Input) { 2653 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2654 RangeUse[Input] = 0; // Unused 2655 StartIdx[Input] = 0; 2656 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2657 // Fits within range but we should see if we can find a good 2658 // start index that is a multiple of the mask length. 2659 if (MaxRange[Input] < (int)MaskNumElts) { 2660 RangeUse[Input] = 1; // Extract from beginning of the vector 2661 StartIdx[Input] = 0; 2662 } else { 2663 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2664 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2665 StartIdx[Input] + MaskNumElts < SrcNumElts) 2666 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2667 } 2668 } 2669 } 2670 2671 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2672 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2673 return; 2674 } 2675 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2676 // Extract appropriate subvector and generate a vector shuffle 2677 for (int Input=0; Input < 2; ++Input) { 2678 SDValue &Src = Input == 0 ? Src1 : Src2; 2679 if (RangeUse[Input] == 0) 2680 Src = DAG.getUNDEF(VT); 2681 else 2682 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2683 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2684 } 2685 2686 // Calculate new mask. 2687 SmallVector<int, 8> MappedOps; 2688 for (unsigned i = 0; i != MaskNumElts; ++i) { 2689 int Idx = Mask[i]; 2690 if (Idx < 0) 2691 MappedOps.push_back(Idx); 2692 else if (Idx < (int)SrcNumElts) 2693 MappedOps.push_back(Idx - StartIdx[0]); 2694 else 2695 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2696 } 2697 2698 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2699 &MappedOps[0])); 2700 return; 2701 } 2702 } 2703 2704 // We can't use either concat vectors or extract subvectors so fall back to 2705 // replacing the shuffle with extract and build vector. 2706 // to insert and build vector. 2707 EVT EltVT = VT.getVectorElementType(); 2708 EVT PtrVT = TLI.getPointerTy(); 2709 SmallVector<SDValue,8> Ops; 2710 for (unsigned i = 0; i != MaskNumElts; ++i) { 2711 if (Mask[i] < 0) { 2712 Ops.push_back(DAG.getUNDEF(EltVT)); 2713 } else { 2714 int Idx = Mask[i]; 2715 SDValue Res; 2716 2717 if (Idx < (int)SrcNumElts) 2718 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2719 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2720 else 2721 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2722 EltVT, Src2, 2723 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2724 2725 Ops.push_back(Res); 2726 } 2727 } 2728 2729 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2730 VT, &Ops[0], Ops.size())); 2731 } 2732 2733 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2734 const Value *Op0 = I.getOperand(0); 2735 const Value *Op1 = I.getOperand(1); 2736 const Type *AggTy = I.getType(); 2737 const Type *ValTy = Op1->getType(); 2738 bool IntoUndef = isa<UndefValue>(Op0); 2739 bool FromUndef = isa<UndefValue>(Op1); 2740 2741 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2742 I.idx_begin(), I.idx_end()); 2743 2744 SmallVector<EVT, 4> AggValueVTs; 2745 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2746 SmallVector<EVT, 4> ValValueVTs; 2747 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2748 2749 unsigned NumAggValues = AggValueVTs.size(); 2750 unsigned NumValValues = ValValueVTs.size(); 2751 SmallVector<SDValue, 4> Values(NumAggValues); 2752 2753 SDValue Agg = getValue(Op0); 2754 SDValue Val = getValue(Op1); 2755 unsigned i = 0; 2756 // Copy the beginning value(s) from the original aggregate. 2757 for (; i != LinearIndex; ++i) 2758 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2759 SDValue(Agg.getNode(), Agg.getResNo() + i); 2760 // Copy values from the inserted value(s). 2761 for (; i != LinearIndex + NumValValues; ++i) 2762 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2763 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2764 // Copy remaining value(s) from the original aggregate. 2765 for (; i != NumAggValues; ++i) 2766 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2767 SDValue(Agg.getNode(), Agg.getResNo() + i); 2768 2769 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2770 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2771 &Values[0], NumAggValues)); 2772 } 2773 2774 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2775 const Value *Op0 = I.getOperand(0); 2776 const Type *AggTy = Op0->getType(); 2777 const Type *ValTy = I.getType(); 2778 bool OutOfUndef = isa<UndefValue>(Op0); 2779 2780 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2781 I.idx_begin(), I.idx_end()); 2782 2783 SmallVector<EVT, 4> ValValueVTs; 2784 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2785 2786 unsigned NumValValues = ValValueVTs.size(); 2787 SmallVector<SDValue, 4> Values(NumValValues); 2788 2789 SDValue Agg = getValue(Op0); 2790 // Copy out the selected value(s). 2791 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2792 Values[i - LinearIndex] = 2793 OutOfUndef ? 2794 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2795 SDValue(Agg.getNode(), Agg.getResNo() + i); 2796 2797 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2798 DAG.getVTList(&ValValueVTs[0], NumValValues), 2799 &Values[0], NumValValues)); 2800 } 2801 2802 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2803 SDValue N = getValue(I.getOperand(0)); 2804 const Type *Ty = I.getOperand(0)->getType(); 2805 2806 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2807 OI != E; ++OI) { 2808 const Value *Idx = *OI; 2809 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2810 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2811 if (Field) { 2812 // N = N + Offset 2813 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2814 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2815 DAG.getIntPtrConstant(Offset)); 2816 } 2817 2818 Ty = StTy->getElementType(Field); 2819 } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) { 2820 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2821 2822 // Offset canonically 0 for unions, but type changes 2823 Ty = UnTy->getElementType(Field); 2824 } else { 2825 Ty = cast<SequentialType>(Ty)->getElementType(); 2826 2827 // If this is a constant subscript, handle it quickly. 2828 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2829 if (CI->isZero()) continue; 2830 uint64_t Offs = 2831 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2832 SDValue OffsVal; 2833 EVT PTy = TLI.getPointerTy(); 2834 unsigned PtrBits = PTy.getSizeInBits(); 2835 if (PtrBits < 64) 2836 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2837 TLI.getPointerTy(), 2838 DAG.getConstant(Offs, MVT::i64)); 2839 else 2840 OffsVal = DAG.getIntPtrConstant(Offs); 2841 2842 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2843 OffsVal); 2844 continue; 2845 } 2846 2847 // N = N + Idx * ElementSize; 2848 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2849 TD->getTypeAllocSize(Ty)); 2850 SDValue IdxN = getValue(Idx); 2851 2852 // If the index is smaller or larger than intptr_t, truncate or extend 2853 // it. 2854 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2855 2856 // If this is a multiply by a power of two, turn it into a shl 2857 // immediately. This is a very common case. 2858 if (ElementSize != 1) { 2859 if (ElementSize.isPowerOf2()) { 2860 unsigned Amt = ElementSize.logBase2(); 2861 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2862 N.getValueType(), IdxN, 2863 DAG.getConstant(Amt, TLI.getPointerTy())); 2864 } else { 2865 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2866 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2867 N.getValueType(), IdxN, Scale); 2868 } 2869 } 2870 2871 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2872 N.getValueType(), N, IdxN); 2873 } 2874 } 2875 2876 setValue(&I, N); 2877 } 2878 2879 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2880 // If this is a fixed sized alloca in the entry block of the function, 2881 // allocate it statically on the stack. 2882 if (FuncInfo.StaticAllocaMap.count(&I)) 2883 return; // getValue will auto-populate this. 2884 2885 const Type *Ty = I.getAllocatedType(); 2886 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2887 unsigned Align = 2888 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2889 I.getAlignment()); 2890 2891 SDValue AllocSize = getValue(I.getArraySize()); 2892 2893 EVT IntPtr = TLI.getPointerTy(); 2894 if (AllocSize.getValueType() != IntPtr) 2895 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2896 2897 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 2898 AllocSize, 2899 DAG.getConstant(TySize, IntPtr)); 2900 2901 // Handle alignment. If the requested alignment is less than or equal to 2902 // the stack alignment, ignore it. If the size is greater than or equal to 2903 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2904 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2905 if (Align <= StackAlign) 2906 Align = 0; 2907 2908 // Round the size of the allocation up to the stack alignment size 2909 // by add SA-1 to the size. 2910 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2911 AllocSize.getValueType(), AllocSize, 2912 DAG.getIntPtrConstant(StackAlign-1)); 2913 2914 // Mask out the low bits for alignment purposes. 2915 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2916 AllocSize.getValueType(), AllocSize, 2917 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2918 2919 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2920 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2921 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2922 VTs, Ops, 3); 2923 setValue(&I, DSA); 2924 DAG.setRoot(DSA.getValue(1)); 2925 2926 // Inform the Frame Information that we have just allocated a variable-sized 2927 // object. 2928 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 2929 } 2930 2931 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2932 const Value *SV = I.getOperand(0); 2933 SDValue Ptr = getValue(SV); 2934 2935 const Type *Ty = I.getType(); 2936 2937 bool isVolatile = I.isVolatile(); 2938 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2939 unsigned Alignment = I.getAlignment(); 2940 2941 SmallVector<EVT, 4> ValueVTs; 2942 SmallVector<uint64_t, 4> Offsets; 2943 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2944 unsigned NumValues = ValueVTs.size(); 2945 if (NumValues == 0) 2946 return; 2947 2948 SDValue Root; 2949 bool ConstantMemory = false; 2950 if (I.isVolatile()) 2951 // Serialize volatile loads with other side effects. 2952 Root = getRoot(); 2953 else if (AA->pointsToConstantMemory(SV)) { 2954 // Do not serialize (non-volatile) loads of constant memory with anything. 2955 Root = DAG.getEntryNode(); 2956 ConstantMemory = true; 2957 } else { 2958 // Do not serialize non-volatile loads against each other. 2959 Root = DAG.getRoot(); 2960 } 2961 2962 SmallVector<SDValue, 4> Values(NumValues); 2963 SmallVector<SDValue, 4> Chains(NumValues); 2964 EVT PtrVT = Ptr.getValueType(); 2965 for (unsigned i = 0; i != NumValues; ++i) { 2966 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2967 PtrVT, Ptr, 2968 DAG.getConstant(Offsets[i], PtrVT)); 2969 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2970 A, SV, Offsets[i], isVolatile, 2971 isNonTemporal, Alignment); 2972 2973 Values[i] = L; 2974 Chains[i] = L.getValue(1); 2975 } 2976 2977 if (!ConstantMemory) { 2978 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2979 MVT::Other, &Chains[0], NumValues); 2980 if (isVolatile) 2981 DAG.setRoot(Chain); 2982 else 2983 PendingLoads.push_back(Chain); 2984 } 2985 2986 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2987 DAG.getVTList(&ValueVTs[0], NumValues), 2988 &Values[0], NumValues)); 2989 } 2990 2991 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2992 const Value *SrcV = I.getOperand(0); 2993 const Value *PtrV = I.getOperand(1); 2994 2995 SmallVector<EVT, 4> ValueVTs; 2996 SmallVector<uint64_t, 4> Offsets; 2997 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2998 unsigned NumValues = ValueVTs.size(); 2999 if (NumValues == 0) 3000 return; 3001 3002 // Get the lowered operands. Note that we do this after 3003 // checking if NumResults is zero, because with zero results 3004 // the operands won't have values in the map. 3005 SDValue Src = getValue(SrcV); 3006 SDValue Ptr = getValue(PtrV); 3007 3008 SDValue Root = getRoot(); 3009 SmallVector<SDValue, 4> Chains(NumValues); 3010 EVT PtrVT = Ptr.getValueType(); 3011 bool isVolatile = I.isVolatile(); 3012 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3013 unsigned Alignment = I.getAlignment(); 3014 3015 for (unsigned i = 0; i != NumValues; ++i) { 3016 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3017 DAG.getConstant(Offsets[i], PtrVT)); 3018 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 3019 SDValue(Src.getNode(), Src.getResNo() + i), 3020 Add, PtrV, Offsets[i], isVolatile, 3021 isNonTemporal, Alignment); 3022 } 3023 3024 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3025 MVT::Other, &Chains[0], NumValues)); 3026 } 3027 3028 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3029 /// node. 3030 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3031 unsigned Intrinsic) { 3032 bool HasChain = !I.doesNotAccessMemory(); 3033 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3034 3035 // Build the operand list. 3036 SmallVector<SDValue, 8> Ops; 3037 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3038 if (OnlyLoad) { 3039 // We don't need to serialize loads against other loads. 3040 Ops.push_back(DAG.getRoot()); 3041 } else { 3042 Ops.push_back(getRoot()); 3043 } 3044 } 3045 3046 // Info is set by getTgtMemInstrinsic 3047 TargetLowering::IntrinsicInfo Info; 3048 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3049 3050 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3051 if (!IsTgtIntrinsic) 3052 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3053 3054 // Add all operands of the call to the operand list. 3055 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3056 SDValue Op = getValue(I.getArgOperand(i)); 3057 assert(TLI.isTypeLegal(Op.getValueType()) && 3058 "Intrinsic uses a non-legal type?"); 3059 Ops.push_back(Op); 3060 } 3061 3062 SmallVector<EVT, 4> ValueVTs; 3063 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3064 #ifndef NDEBUG 3065 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3066 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3067 "Intrinsic uses a non-legal type?"); 3068 } 3069 #endif // NDEBUG 3070 3071 if (HasChain) 3072 ValueVTs.push_back(MVT::Other); 3073 3074 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3075 3076 // Create the node. 3077 SDValue Result; 3078 if (IsTgtIntrinsic) { 3079 // This is target intrinsic that touches memory 3080 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3081 VTs, &Ops[0], Ops.size(), 3082 Info.memVT, Info.ptrVal, Info.offset, 3083 Info.align, Info.vol, 3084 Info.readMem, Info.writeMem); 3085 } else if (!HasChain) { 3086 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3087 VTs, &Ops[0], Ops.size()); 3088 } else if (!I.getType()->isVoidTy()) { 3089 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3090 VTs, &Ops[0], Ops.size()); 3091 } else { 3092 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3093 VTs, &Ops[0], Ops.size()); 3094 } 3095 3096 if (HasChain) { 3097 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3098 if (OnlyLoad) 3099 PendingLoads.push_back(Chain); 3100 else 3101 DAG.setRoot(Chain); 3102 } 3103 3104 if (!I.getType()->isVoidTy()) { 3105 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3106 EVT VT = TLI.getValueType(PTy); 3107 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 3108 } 3109 3110 setValue(&I, Result); 3111 } 3112 } 3113 3114 /// GetSignificand - Get the significand and build it into a floating-point 3115 /// number with exponent of 1: 3116 /// 3117 /// Op = (Op & 0x007fffff) | 0x3f800000; 3118 /// 3119 /// where Op is the hexidecimal representation of floating point value. 3120 static SDValue 3121 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3122 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3123 DAG.getConstant(0x007fffff, MVT::i32)); 3124 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3125 DAG.getConstant(0x3f800000, MVT::i32)); 3126 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 3127 } 3128 3129 /// GetExponent - Get the exponent: 3130 /// 3131 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3132 /// 3133 /// where Op is the hexidecimal representation of floating point value. 3134 static SDValue 3135 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3136 DebugLoc dl) { 3137 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3138 DAG.getConstant(0x7f800000, MVT::i32)); 3139 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3140 DAG.getConstant(23, TLI.getPointerTy())); 3141 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3142 DAG.getConstant(127, MVT::i32)); 3143 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3144 } 3145 3146 /// getF32Constant - Get 32-bit floating point constant. 3147 static SDValue 3148 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3149 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3150 } 3151 3152 /// Inlined utility function to implement binary input atomic intrinsics for 3153 /// visitIntrinsicCall: I is a call instruction 3154 /// Op is the associated NodeType for I 3155 const char * 3156 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3157 ISD::NodeType Op) { 3158 SDValue Root = getRoot(); 3159 SDValue L = 3160 DAG.getAtomic(Op, getCurDebugLoc(), 3161 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3162 Root, 3163 getValue(I.getArgOperand(0)), 3164 getValue(I.getArgOperand(1)), 3165 I.getArgOperand(0)); 3166 setValue(&I, L); 3167 DAG.setRoot(L.getValue(1)); 3168 return 0; 3169 } 3170 3171 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3172 const char * 3173 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3174 SDValue Op1 = getValue(I.getArgOperand(0)); 3175 SDValue Op2 = getValue(I.getArgOperand(1)); 3176 3177 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3178 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3179 return 0; 3180 } 3181 3182 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3183 /// limited-precision mode. 3184 void 3185 SelectionDAGBuilder::visitExp(const CallInst &I) { 3186 SDValue result; 3187 DebugLoc dl = getCurDebugLoc(); 3188 3189 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3190 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3191 SDValue Op = getValue(I.getArgOperand(0)); 3192 3193 // Put the exponent in the right bit position for later addition to the 3194 // final result: 3195 // 3196 // #define LOG2OFe 1.4426950f 3197 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3198 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3199 getF32Constant(DAG, 0x3fb8aa3b)); 3200 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3201 3202 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3203 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3204 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3205 3206 // IntegerPartOfX <<= 23; 3207 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3208 DAG.getConstant(23, TLI.getPointerTy())); 3209 3210 if (LimitFloatPrecision <= 6) { 3211 // For floating-point precision of 6: 3212 // 3213 // TwoToFractionalPartOfX = 3214 // 0.997535578f + 3215 // (0.735607626f + 0.252464424f * x) * x; 3216 // 3217 // error 0.0144103317, which is 6 bits 3218 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3219 getF32Constant(DAG, 0x3e814304)); 3220 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3221 getF32Constant(DAG, 0x3f3c50c8)); 3222 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3223 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3224 getF32Constant(DAG, 0x3f7f5e7e)); 3225 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 3226 3227 // Add the exponent into the result in integer domain. 3228 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3229 TwoToFracPartOfX, IntegerPartOfX); 3230 3231 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 3232 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3233 // For floating-point precision of 12: 3234 // 3235 // TwoToFractionalPartOfX = 3236 // 0.999892986f + 3237 // (0.696457318f + 3238 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3239 // 3240 // 0.000107046256 error, which is 13 to 14 bits 3241 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3242 getF32Constant(DAG, 0x3da235e3)); 3243 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3244 getF32Constant(DAG, 0x3e65b8f3)); 3245 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3246 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3247 getF32Constant(DAG, 0x3f324b07)); 3248 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3249 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3250 getF32Constant(DAG, 0x3f7ff8fd)); 3251 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3252 3253 // Add the exponent into the result in integer domain. 3254 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3255 TwoToFracPartOfX, IntegerPartOfX); 3256 3257 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3258 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3259 // For floating-point precision of 18: 3260 // 3261 // TwoToFractionalPartOfX = 3262 // 0.999999982f + 3263 // (0.693148872f + 3264 // (0.240227044f + 3265 // (0.554906021e-1f + 3266 // (0.961591928e-2f + 3267 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3268 // 3269 // error 2.47208000*10^(-7), which is better than 18 bits 3270 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3271 getF32Constant(DAG, 0x3924b03e)); 3272 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3273 getF32Constant(DAG, 0x3ab24b87)); 3274 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3275 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3276 getF32Constant(DAG, 0x3c1d8c17)); 3277 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3278 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3279 getF32Constant(DAG, 0x3d634a1d)); 3280 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3281 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3282 getF32Constant(DAG, 0x3e75fe14)); 3283 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3284 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3285 getF32Constant(DAG, 0x3f317234)); 3286 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3287 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3288 getF32Constant(DAG, 0x3f800000)); 3289 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3290 MVT::i32, t13); 3291 3292 // Add the exponent into the result in integer domain. 3293 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3294 TwoToFracPartOfX, IntegerPartOfX); 3295 3296 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3297 } 3298 } else { 3299 // No special expansion. 3300 result = DAG.getNode(ISD::FEXP, dl, 3301 getValue(I.getArgOperand(0)).getValueType(), 3302 getValue(I.getArgOperand(0))); 3303 } 3304 3305 setValue(&I, result); 3306 } 3307 3308 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3309 /// limited-precision mode. 3310 void 3311 SelectionDAGBuilder::visitLog(const CallInst &I) { 3312 SDValue result; 3313 DebugLoc dl = getCurDebugLoc(); 3314 3315 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3316 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3317 SDValue Op = getValue(I.getArgOperand(0)); 3318 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3319 3320 // Scale the exponent by log(2) [0.69314718f]. 3321 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3322 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3323 getF32Constant(DAG, 0x3f317218)); 3324 3325 // Get the significand and build it into a floating-point number with 3326 // exponent of 1. 3327 SDValue X = GetSignificand(DAG, Op1, dl); 3328 3329 if (LimitFloatPrecision <= 6) { 3330 // For floating-point precision of 6: 3331 // 3332 // LogofMantissa = 3333 // -1.1609546f + 3334 // (1.4034025f - 0.23903021f * x) * x; 3335 // 3336 // error 0.0034276066, which is better than 8 bits 3337 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3338 getF32Constant(DAG, 0xbe74c456)); 3339 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3340 getF32Constant(DAG, 0x3fb3a2b1)); 3341 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3342 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3343 getF32Constant(DAG, 0x3f949a29)); 3344 3345 result = DAG.getNode(ISD::FADD, dl, 3346 MVT::f32, LogOfExponent, LogOfMantissa); 3347 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3348 // For floating-point precision of 12: 3349 // 3350 // LogOfMantissa = 3351 // -1.7417939f + 3352 // (2.8212026f + 3353 // (-1.4699568f + 3354 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3355 // 3356 // error 0.000061011436, which is 14 bits 3357 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3358 getF32Constant(DAG, 0xbd67b6d6)); 3359 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3360 getF32Constant(DAG, 0x3ee4f4b8)); 3361 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3362 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3363 getF32Constant(DAG, 0x3fbc278b)); 3364 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3365 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3366 getF32Constant(DAG, 0x40348e95)); 3367 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3368 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3369 getF32Constant(DAG, 0x3fdef31a)); 3370 3371 result = DAG.getNode(ISD::FADD, dl, 3372 MVT::f32, LogOfExponent, LogOfMantissa); 3373 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3374 // For floating-point precision of 18: 3375 // 3376 // LogOfMantissa = 3377 // -2.1072184f + 3378 // (4.2372794f + 3379 // (-3.7029485f + 3380 // (2.2781945f + 3381 // (-0.87823314f + 3382 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3383 // 3384 // error 0.0000023660568, which is better than 18 bits 3385 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3386 getF32Constant(DAG, 0xbc91e5ac)); 3387 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3388 getF32Constant(DAG, 0x3e4350aa)); 3389 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3390 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3391 getF32Constant(DAG, 0x3f60d3e3)); 3392 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3393 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3394 getF32Constant(DAG, 0x4011cdf0)); 3395 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3396 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3397 getF32Constant(DAG, 0x406cfd1c)); 3398 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3399 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3400 getF32Constant(DAG, 0x408797cb)); 3401 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3402 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3403 getF32Constant(DAG, 0x4006dcab)); 3404 3405 result = DAG.getNode(ISD::FADD, dl, 3406 MVT::f32, LogOfExponent, LogOfMantissa); 3407 } 3408 } else { 3409 // No special expansion. 3410 result = DAG.getNode(ISD::FLOG, dl, 3411 getValue(I.getArgOperand(0)).getValueType(), 3412 getValue(I.getArgOperand(0))); 3413 } 3414 3415 setValue(&I, result); 3416 } 3417 3418 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3419 /// limited-precision mode. 3420 void 3421 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3422 SDValue result; 3423 DebugLoc dl = getCurDebugLoc(); 3424 3425 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3426 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3427 SDValue Op = getValue(I.getArgOperand(0)); 3428 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3429 3430 // Get the exponent. 3431 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3432 3433 // Get the significand and build it into a floating-point number with 3434 // exponent of 1. 3435 SDValue X = GetSignificand(DAG, Op1, dl); 3436 3437 // Different possible minimax approximations of significand in 3438 // floating-point for various degrees of accuracy over [1,2]. 3439 if (LimitFloatPrecision <= 6) { 3440 // For floating-point precision of 6: 3441 // 3442 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3443 // 3444 // error 0.0049451742, which is more than 7 bits 3445 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3446 getF32Constant(DAG, 0xbeb08fe0)); 3447 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3448 getF32Constant(DAG, 0x40019463)); 3449 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3450 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3451 getF32Constant(DAG, 0x3fd6633d)); 3452 3453 result = DAG.getNode(ISD::FADD, dl, 3454 MVT::f32, LogOfExponent, Log2ofMantissa); 3455 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3456 // For floating-point precision of 12: 3457 // 3458 // Log2ofMantissa = 3459 // -2.51285454f + 3460 // (4.07009056f + 3461 // (-2.12067489f + 3462 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3463 // 3464 // error 0.0000876136000, which is better than 13 bits 3465 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3466 getF32Constant(DAG, 0xbda7262e)); 3467 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3468 getF32Constant(DAG, 0x3f25280b)); 3469 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3470 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3471 getF32Constant(DAG, 0x4007b923)); 3472 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3473 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3474 getF32Constant(DAG, 0x40823e2f)); 3475 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3476 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3477 getF32Constant(DAG, 0x4020d29c)); 3478 3479 result = DAG.getNode(ISD::FADD, dl, 3480 MVT::f32, LogOfExponent, Log2ofMantissa); 3481 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3482 // For floating-point precision of 18: 3483 // 3484 // Log2ofMantissa = 3485 // -3.0400495f + 3486 // (6.1129976f + 3487 // (-5.3420409f + 3488 // (3.2865683f + 3489 // (-1.2669343f + 3490 // (0.27515199f - 3491 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3492 // 3493 // error 0.0000018516, which is better than 18 bits 3494 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3495 getF32Constant(DAG, 0xbcd2769e)); 3496 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3497 getF32Constant(DAG, 0x3e8ce0b9)); 3498 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3499 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3500 getF32Constant(DAG, 0x3fa22ae7)); 3501 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3502 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3503 getF32Constant(DAG, 0x40525723)); 3504 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3505 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3506 getF32Constant(DAG, 0x40aaf200)); 3507 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3508 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3509 getF32Constant(DAG, 0x40c39dad)); 3510 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3511 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3512 getF32Constant(DAG, 0x4042902c)); 3513 3514 result = DAG.getNode(ISD::FADD, dl, 3515 MVT::f32, LogOfExponent, Log2ofMantissa); 3516 } 3517 } else { 3518 // No special expansion. 3519 result = DAG.getNode(ISD::FLOG2, dl, 3520 getValue(I.getArgOperand(0)).getValueType(), 3521 getValue(I.getArgOperand(0))); 3522 } 3523 3524 setValue(&I, result); 3525 } 3526 3527 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3528 /// limited-precision mode. 3529 void 3530 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3531 SDValue result; 3532 DebugLoc dl = getCurDebugLoc(); 3533 3534 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3535 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3536 SDValue Op = getValue(I.getArgOperand(0)); 3537 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3538 3539 // Scale the exponent by log10(2) [0.30102999f]. 3540 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3541 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3542 getF32Constant(DAG, 0x3e9a209a)); 3543 3544 // Get the significand and build it into a floating-point number with 3545 // exponent of 1. 3546 SDValue X = GetSignificand(DAG, Op1, dl); 3547 3548 if (LimitFloatPrecision <= 6) { 3549 // For floating-point precision of 6: 3550 // 3551 // Log10ofMantissa = 3552 // -0.50419619f + 3553 // (0.60948995f - 0.10380950f * x) * x; 3554 // 3555 // error 0.0014886165, which is 6 bits 3556 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3557 getF32Constant(DAG, 0xbdd49a13)); 3558 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3559 getF32Constant(DAG, 0x3f1c0789)); 3560 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3561 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3562 getF32Constant(DAG, 0x3f011300)); 3563 3564 result = DAG.getNode(ISD::FADD, dl, 3565 MVT::f32, LogOfExponent, Log10ofMantissa); 3566 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3567 // For floating-point precision of 12: 3568 // 3569 // Log10ofMantissa = 3570 // -0.64831180f + 3571 // (0.91751397f + 3572 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3573 // 3574 // error 0.00019228036, which is better than 12 bits 3575 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3576 getF32Constant(DAG, 0x3d431f31)); 3577 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3578 getF32Constant(DAG, 0x3ea21fb2)); 3579 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3580 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3581 getF32Constant(DAG, 0x3f6ae232)); 3582 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3583 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3584 getF32Constant(DAG, 0x3f25f7c3)); 3585 3586 result = DAG.getNode(ISD::FADD, dl, 3587 MVT::f32, LogOfExponent, Log10ofMantissa); 3588 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3589 // For floating-point precision of 18: 3590 // 3591 // Log10ofMantissa = 3592 // -0.84299375f + 3593 // (1.5327582f + 3594 // (-1.0688956f + 3595 // (0.49102474f + 3596 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3597 // 3598 // error 0.0000037995730, which is better than 18 bits 3599 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3600 getF32Constant(DAG, 0x3c5d51ce)); 3601 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3602 getF32Constant(DAG, 0x3e00685a)); 3603 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3604 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3605 getF32Constant(DAG, 0x3efb6798)); 3606 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3607 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3608 getF32Constant(DAG, 0x3f88d192)); 3609 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3610 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3611 getF32Constant(DAG, 0x3fc4316c)); 3612 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3613 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3614 getF32Constant(DAG, 0x3f57ce70)); 3615 3616 result = DAG.getNode(ISD::FADD, dl, 3617 MVT::f32, LogOfExponent, Log10ofMantissa); 3618 } 3619 } else { 3620 // No special expansion. 3621 result = DAG.getNode(ISD::FLOG10, dl, 3622 getValue(I.getArgOperand(0)).getValueType(), 3623 getValue(I.getArgOperand(0))); 3624 } 3625 3626 setValue(&I, result); 3627 } 3628 3629 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3630 /// limited-precision mode. 3631 void 3632 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3633 SDValue result; 3634 DebugLoc dl = getCurDebugLoc(); 3635 3636 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3637 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3638 SDValue Op = getValue(I.getArgOperand(0)); 3639 3640 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3641 3642 // FractionalPartOfX = x - (float)IntegerPartOfX; 3643 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3644 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3645 3646 // IntegerPartOfX <<= 23; 3647 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3648 DAG.getConstant(23, TLI.getPointerTy())); 3649 3650 if (LimitFloatPrecision <= 6) { 3651 // For floating-point precision of 6: 3652 // 3653 // TwoToFractionalPartOfX = 3654 // 0.997535578f + 3655 // (0.735607626f + 0.252464424f * x) * x; 3656 // 3657 // error 0.0144103317, which is 6 bits 3658 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3659 getF32Constant(DAG, 0x3e814304)); 3660 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3661 getF32Constant(DAG, 0x3f3c50c8)); 3662 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3663 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3664 getF32Constant(DAG, 0x3f7f5e7e)); 3665 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3666 SDValue TwoToFractionalPartOfX = 3667 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3668 3669 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3670 MVT::f32, TwoToFractionalPartOfX); 3671 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3672 // For floating-point precision of 12: 3673 // 3674 // TwoToFractionalPartOfX = 3675 // 0.999892986f + 3676 // (0.696457318f + 3677 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3678 // 3679 // error 0.000107046256, which is 13 to 14 bits 3680 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3681 getF32Constant(DAG, 0x3da235e3)); 3682 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3683 getF32Constant(DAG, 0x3e65b8f3)); 3684 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3685 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3686 getF32Constant(DAG, 0x3f324b07)); 3687 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3688 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3689 getF32Constant(DAG, 0x3f7ff8fd)); 3690 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3691 SDValue TwoToFractionalPartOfX = 3692 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3693 3694 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3695 MVT::f32, TwoToFractionalPartOfX); 3696 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3697 // For floating-point precision of 18: 3698 // 3699 // TwoToFractionalPartOfX = 3700 // 0.999999982f + 3701 // (0.693148872f + 3702 // (0.240227044f + 3703 // (0.554906021e-1f + 3704 // (0.961591928e-2f + 3705 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3706 // error 2.47208000*10^(-7), which is better than 18 bits 3707 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3708 getF32Constant(DAG, 0x3924b03e)); 3709 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3710 getF32Constant(DAG, 0x3ab24b87)); 3711 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3712 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3713 getF32Constant(DAG, 0x3c1d8c17)); 3714 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3715 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3716 getF32Constant(DAG, 0x3d634a1d)); 3717 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3718 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3719 getF32Constant(DAG, 0x3e75fe14)); 3720 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3721 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3722 getF32Constant(DAG, 0x3f317234)); 3723 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3724 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3725 getF32Constant(DAG, 0x3f800000)); 3726 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3727 SDValue TwoToFractionalPartOfX = 3728 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3729 3730 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3731 MVT::f32, TwoToFractionalPartOfX); 3732 } 3733 } else { 3734 // No special expansion. 3735 result = DAG.getNode(ISD::FEXP2, dl, 3736 getValue(I.getArgOperand(0)).getValueType(), 3737 getValue(I.getArgOperand(0))); 3738 } 3739 3740 setValue(&I, result); 3741 } 3742 3743 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3744 /// limited-precision mode with x == 10.0f. 3745 void 3746 SelectionDAGBuilder::visitPow(const CallInst &I) { 3747 SDValue result; 3748 const Value *Val = I.getArgOperand(0); 3749 DebugLoc dl = getCurDebugLoc(); 3750 bool IsExp10 = false; 3751 3752 if (getValue(Val).getValueType() == MVT::f32 && 3753 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3754 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3755 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3756 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3757 APFloat Ten(10.0f); 3758 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3759 } 3760 } 3761 } 3762 3763 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3764 SDValue Op = getValue(I.getArgOperand(1)); 3765 3766 // Put the exponent in the right bit position for later addition to the 3767 // final result: 3768 // 3769 // #define LOG2OF10 3.3219281f 3770 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3771 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3772 getF32Constant(DAG, 0x40549a78)); 3773 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3774 3775 // FractionalPartOfX = x - (float)IntegerPartOfX; 3776 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3777 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3778 3779 // IntegerPartOfX <<= 23; 3780 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3781 DAG.getConstant(23, TLI.getPointerTy())); 3782 3783 if (LimitFloatPrecision <= 6) { 3784 // For floating-point precision of 6: 3785 // 3786 // twoToFractionalPartOfX = 3787 // 0.997535578f + 3788 // (0.735607626f + 0.252464424f * x) * x; 3789 // 3790 // error 0.0144103317, which is 6 bits 3791 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3792 getF32Constant(DAG, 0x3e814304)); 3793 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3794 getF32Constant(DAG, 0x3f3c50c8)); 3795 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3796 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3797 getF32Constant(DAG, 0x3f7f5e7e)); 3798 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3799 SDValue TwoToFractionalPartOfX = 3800 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3801 3802 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3803 MVT::f32, TwoToFractionalPartOfX); 3804 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3805 // For floating-point precision of 12: 3806 // 3807 // TwoToFractionalPartOfX = 3808 // 0.999892986f + 3809 // (0.696457318f + 3810 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3811 // 3812 // error 0.000107046256, which is 13 to 14 bits 3813 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3814 getF32Constant(DAG, 0x3da235e3)); 3815 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3816 getF32Constant(DAG, 0x3e65b8f3)); 3817 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3818 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3819 getF32Constant(DAG, 0x3f324b07)); 3820 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3821 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3822 getF32Constant(DAG, 0x3f7ff8fd)); 3823 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3824 SDValue TwoToFractionalPartOfX = 3825 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3826 3827 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3828 MVT::f32, TwoToFractionalPartOfX); 3829 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3830 // For floating-point precision of 18: 3831 // 3832 // TwoToFractionalPartOfX = 3833 // 0.999999982f + 3834 // (0.693148872f + 3835 // (0.240227044f + 3836 // (0.554906021e-1f + 3837 // (0.961591928e-2f + 3838 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3839 // error 2.47208000*10^(-7), which is better than 18 bits 3840 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3841 getF32Constant(DAG, 0x3924b03e)); 3842 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3843 getF32Constant(DAG, 0x3ab24b87)); 3844 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3845 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3846 getF32Constant(DAG, 0x3c1d8c17)); 3847 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3848 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3849 getF32Constant(DAG, 0x3d634a1d)); 3850 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3851 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3852 getF32Constant(DAG, 0x3e75fe14)); 3853 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3854 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3855 getF32Constant(DAG, 0x3f317234)); 3856 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3857 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3858 getF32Constant(DAG, 0x3f800000)); 3859 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3860 SDValue TwoToFractionalPartOfX = 3861 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3862 3863 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3864 MVT::f32, TwoToFractionalPartOfX); 3865 } 3866 } else { 3867 // No special expansion. 3868 result = DAG.getNode(ISD::FPOW, dl, 3869 getValue(I.getArgOperand(0)).getValueType(), 3870 getValue(I.getArgOperand(0)), 3871 getValue(I.getArgOperand(1))); 3872 } 3873 3874 setValue(&I, result); 3875 } 3876 3877 3878 /// ExpandPowI - Expand a llvm.powi intrinsic. 3879 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3880 SelectionDAG &DAG) { 3881 // If RHS is a constant, we can expand this out to a multiplication tree, 3882 // otherwise we end up lowering to a call to __powidf2 (for example). When 3883 // optimizing for size, we only want to do this if the expansion would produce 3884 // a small number of multiplies, otherwise we do the full expansion. 3885 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3886 // Get the exponent as a positive value. 3887 unsigned Val = RHSC->getSExtValue(); 3888 if ((int)Val < 0) Val = -Val; 3889 3890 // powi(x, 0) -> 1.0 3891 if (Val == 0) 3892 return DAG.getConstantFP(1.0, LHS.getValueType()); 3893 3894 const Function *F = DAG.getMachineFunction().getFunction(); 3895 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3896 // If optimizing for size, don't insert too many multiplies. This 3897 // inserts up to 5 multiplies. 3898 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3899 // We use the simple binary decomposition method to generate the multiply 3900 // sequence. There are more optimal ways to do this (for example, 3901 // powi(x,15) generates one more multiply than it should), but this has 3902 // the benefit of being both really simple and much better than a libcall. 3903 SDValue Res; // Logically starts equal to 1.0 3904 SDValue CurSquare = LHS; 3905 while (Val) { 3906 if (Val & 1) { 3907 if (Res.getNode()) 3908 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3909 else 3910 Res = CurSquare; // 1.0*CurSquare. 3911 } 3912 3913 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3914 CurSquare, CurSquare); 3915 Val >>= 1; 3916 } 3917 3918 // If the original was negative, invert the result, producing 1/(x*x*x). 3919 if (RHSC->getSExtValue() < 0) 3920 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3921 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3922 return Res; 3923 } 3924 } 3925 3926 // Otherwise, expand to a libcall. 3927 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3928 } 3929 3930 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3931 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3932 /// At the end of instruction selection, they will be inserted to the entry BB. 3933 bool 3934 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 3935 uint64_t Offset, 3936 const SDValue &N) { 3937 if (!isa<Argument>(V)) 3938 return false; 3939 3940 MachineFunction &MF = DAG.getMachineFunction(); 3941 // Ignore inlined function arguments here. 3942 DIVariable DV(Variable); 3943 if (DV.isInlinedFnArgument(MF.getFunction())) 3944 return false; 3945 3946 MachineBasicBlock *MBB = FuncInfo.MBB; 3947 if (MBB != &MF.front()) 3948 return false; 3949 3950 unsigned Reg = 0; 3951 if (N.getOpcode() == ISD::CopyFromReg) { 3952 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3953 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3954 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3955 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3956 if (PR) 3957 Reg = PR; 3958 } 3959 } 3960 3961 if (!Reg) { 3962 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3963 if (VMI == FuncInfo.ValueMap.end()) 3964 return false; 3965 Reg = VMI->second; 3966 } 3967 3968 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 3969 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 3970 TII->get(TargetOpcode::DBG_VALUE)) 3971 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 3972 FuncInfo.ArgDbgValues.push_back(&*MIB); 3973 return true; 3974 } 3975 3976 // VisualStudio defines setjmp as _setjmp 3977 #if defined(_MSC_VER) && defined(setjmp) 3978 #define setjmp_undefined_for_visual_studio 3979 #undef setjmp 3980 #endif 3981 3982 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3983 /// we want to emit this as a call to a named external function, return the name 3984 /// otherwise lower it and return null. 3985 const char * 3986 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 3987 DebugLoc dl = getCurDebugLoc(); 3988 SDValue Res; 3989 3990 switch (Intrinsic) { 3991 default: 3992 // By default, turn this into a target intrinsic node. 3993 visitTargetIntrinsic(I, Intrinsic); 3994 return 0; 3995 case Intrinsic::vastart: visitVAStart(I); return 0; 3996 case Intrinsic::vaend: visitVAEnd(I); return 0; 3997 case Intrinsic::vacopy: visitVACopy(I); return 0; 3998 case Intrinsic::returnaddress: 3999 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4000 getValue(I.getArgOperand(0)))); 4001 return 0; 4002 case Intrinsic::frameaddress: 4003 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4004 getValue(I.getArgOperand(0)))); 4005 return 0; 4006 case Intrinsic::setjmp: 4007 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4008 case Intrinsic::longjmp: 4009 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4010 case Intrinsic::memcpy: { 4011 // Assert for address < 256 since we support only user defined address 4012 // spaces. 4013 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4014 < 256 && 4015 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4016 < 256 && 4017 "Unknown address space"); 4018 SDValue Op1 = getValue(I.getArgOperand(0)); 4019 SDValue Op2 = getValue(I.getArgOperand(1)); 4020 SDValue Op3 = getValue(I.getArgOperand(2)); 4021 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4022 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4023 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4024 I.getArgOperand(0), 0, I.getArgOperand(1), 0)); 4025 return 0; 4026 } 4027 case Intrinsic::memset: { 4028 // Assert for address < 256 since we support only user defined address 4029 // spaces. 4030 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4031 < 256 && 4032 "Unknown address space"); 4033 SDValue Op1 = getValue(I.getArgOperand(0)); 4034 SDValue Op2 = getValue(I.getArgOperand(1)); 4035 SDValue Op3 = getValue(I.getArgOperand(2)); 4036 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4037 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4038 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4039 I.getArgOperand(0), 0)); 4040 return 0; 4041 } 4042 case Intrinsic::memmove: { 4043 // Assert for address < 256 since we support only user defined address 4044 // spaces. 4045 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4046 < 256 && 4047 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4048 < 256 && 4049 "Unknown address space"); 4050 SDValue Op1 = getValue(I.getArgOperand(0)); 4051 SDValue Op2 = getValue(I.getArgOperand(1)); 4052 SDValue Op3 = getValue(I.getArgOperand(2)); 4053 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4054 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4055 4056 // If the source and destination are known to not be aliases, we can 4057 // lower memmove as memcpy. 4058 uint64_t Size = -1ULL; 4059 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 4060 Size = C->getZExtValue(); 4061 if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) == 4062 AliasAnalysis::NoAlias) { 4063 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4064 false, I.getArgOperand(0), 0, 4065 I.getArgOperand(1), 0)); 4066 return 0; 4067 } 4068 4069 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4070 I.getArgOperand(0), 0, I.getArgOperand(1), 0)); 4071 return 0; 4072 } 4073 case Intrinsic::dbg_declare: { 4074 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4075 if (!DIVariable(DI.getVariable()).Verify()) 4076 return 0; 4077 4078 MDNode *Variable = DI.getVariable(); 4079 // Parameters are handled specially. 4080 bool isParameter = 4081 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4082 const Value *Address = DI.getAddress(); 4083 if (!Address) 4084 return 0; 4085 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4086 Address = BCI->getOperand(0); 4087 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4088 4089 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4090 // but do not always have a corresponding SDNode built. The SDNodeOrder 4091 // absolute, but not relative, values are different depending on whether 4092 // debug info exists. 4093 ++SDNodeOrder; 4094 SDValue &N = NodeMap[Address]; 4095 SDDbgValue *SDV; 4096 if (N.getNode()) { 4097 if (isParameter && !AI) { 4098 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4099 if (FINode) 4100 // Byval parameter. We have a frame index at this point. 4101 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4102 0, dl, SDNodeOrder); 4103 else 4104 // Can't do anything with other non-AI cases yet. This might be a 4105 // parameter of a callee function that got inlined, for example. 4106 return 0; 4107 } else if (AI) 4108 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4109 0, dl, SDNodeOrder); 4110 else 4111 // Can't do anything with other non-AI cases yet. 4112 return 0; 4113 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4114 } else { 4115 // This isn't useful, but it shows what we're missing. 4116 SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4117 0, dl, SDNodeOrder); 4118 DAG.AddDbgValue(SDV, 0, isParameter); 4119 } 4120 return 0; 4121 } 4122 case Intrinsic::dbg_value: { 4123 const DbgValueInst &DI = cast<DbgValueInst>(I); 4124 if (!DIVariable(DI.getVariable()).Verify()) 4125 return 0; 4126 4127 MDNode *Variable = DI.getVariable(); 4128 uint64_t Offset = DI.getOffset(); 4129 const Value *V = DI.getValue(); 4130 if (!V) 4131 return 0; 4132 4133 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4134 // but do not always have a corresponding SDNode built. The SDNodeOrder 4135 // absolute, but not relative, values are different depending on whether 4136 // debug info exists. 4137 ++SDNodeOrder; 4138 SDDbgValue *SDV; 4139 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4140 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4141 DAG.AddDbgValue(SDV, 0, false); 4142 } else { 4143 bool createUndef = false; 4144 // Do not use getValue() in here; we don't want to generate code at 4145 // this point if it hasn't been done yet. 4146 SDValue N = NodeMap[V]; 4147 if (!N.getNode() && isa<Argument>(V)) 4148 // Check unused arguments map. 4149 N = UnusedArgNodeMap[V]; 4150 if (N.getNode()) { 4151 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4152 SDV = DAG.getDbgValue(Variable, N.getNode(), 4153 N.getResNo(), Offset, dl, SDNodeOrder); 4154 DAG.AddDbgValue(SDV, N.getNode(), false); 4155 } 4156 } else if (isa<PHINode>(V) && !V->use_empty() ) { 4157 // Do not call getValue(V) yet, as we don't want to generate code. 4158 // Remember it for later. 4159 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4160 DanglingDebugInfoMap[V] = DDI; 4161 } else 4162 createUndef = true; 4163 if (createUndef) { 4164 // We may expand this to cover more cases. One case where we have no 4165 // data available is an unreferenced parameter; we need this fallback. 4166 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 4167 Offset, dl, SDNodeOrder); 4168 DAG.AddDbgValue(SDV, 0, false); 4169 } 4170 } 4171 4172 // Build a debug info table entry. 4173 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4174 V = BCI->getOperand(0); 4175 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4176 // Don't handle byval struct arguments or VLAs, for example. 4177 if (!AI) 4178 return 0; 4179 DenseMap<const AllocaInst*, int>::iterator SI = 4180 FuncInfo.StaticAllocaMap.find(AI); 4181 if (SI == FuncInfo.StaticAllocaMap.end()) 4182 return 0; // VLAs. 4183 int FI = SI->second; 4184 4185 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4186 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4187 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4188 return 0; 4189 } 4190 case Intrinsic::eh_exception: { 4191 // Insert the EXCEPTIONADDR instruction. 4192 assert(FuncInfo.MBB->isLandingPad() && 4193 "Call to eh.exception not in landing pad!"); 4194 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4195 SDValue Ops[1]; 4196 Ops[0] = DAG.getRoot(); 4197 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4198 setValue(&I, Op); 4199 DAG.setRoot(Op.getValue(1)); 4200 return 0; 4201 } 4202 4203 case Intrinsic::eh_selector: { 4204 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4205 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4206 if (CallMBB->isLandingPad()) 4207 AddCatchInfo(I, &MMI, CallMBB); 4208 else { 4209 #ifndef NDEBUG 4210 FuncInfo.CatchInfoLost.insert(&I); 4211 #endif 4212 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4213 unsigned Reg = TLI.getExceptionSelectorRegister(); 4214 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4215 } 4216 4217 // Insert the EHSELECTION instruction. 4218 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4219 SDValue Ops[2]; 4220 Ops[0] = getValue(I.getArgOperand(0)); 4221 Ops[1] = getRoot(); 4222 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4223 DAG.setRoot(Op.getValue(1)); 4224 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4225 return 0; 4226 } 4227 4228 case Intrinsic::eh_typeid_for: { 4229 // Find the type id for the given typeinfo. 4230 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4231 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4232 Res = DAG.getConstant(TypeID, MVT::i32); 4233 setValue(&I, Res); 4234 return 0; 4235 } 4236 4237 case Intrinsic::eh_return_i32: 4238 case Intrinsic::eh_return_i64: 4239 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4240 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4241 MVT::Other, 4242 getControlRoot(), 4243 getValue(I.getArgOperand(0)), 4244 getValue(I.getArgOperand(1)))); 4245 return 0; 4246 case Intrinsic::eh_unwind_init: 4247 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4248 return 0; 4249 case Intrinsic::eh_dwarf_cfa: { 4250 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4251 TLI.getPointerTy()); 4252 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4253 TLI.getPointerTy(), 4254 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4255 TLI.getPointerTy()), 4256 CfaArg); 4257 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4258 TLI.getPointerTy(), 4259 DAG.getConstant(0, TLI.getPointerTy())); 4260 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4261 FA, Offset)); 4262 return 0; 4263 } 4264 case Intrinsic::eh_sjlj_callsite: { 4265 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4266 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4267 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4268 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4269 4270 MMI.setCurrentCallSite(CI->getZExtValue()); 4271 return 0; 4272 } 4273 case Intrinsic::eh_sjlj_setjmp: { 4274 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4275 getValue(I.getArgOperand(0)))); 4276 return 0; 4277 } 4278 case Intrinsic::eh_sjlj_longjmp: { 4279 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4280 getRoot(), 4281 getValue(I.getArgOperand(0)))); 4282 return 0; 4283 } 4284 4285 case Intrinsic::convertff: 4286 case Intrinsic::convertfsi: 4287 case Intrinsic::convertfui: 4288 case Intrinsic::convertsif: 4289 case Intrinsic::convertuif: 4290 case Intrinsic::convertss: 4291 case Intrinsic::convertsu: 4292 case Intrinsic::convertus: 4293 case Intrinsic::convertuu: { 4294 ISD::CvtCode Code = ISD::CVT_INVALID; 4295 switch (Intrinsic) { 4296 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4297 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4298 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4299 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4300 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4301 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4302 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4303 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4304 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4305 } 4306 EVT DestVT = TLI.getValueType(I.getType()); 4307 const Value *Op1 = I.getArgOperand(0); 4308 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4309 DAG.getValueType(DestVT), 4310 DAG.getValueType(getValue(Op1).getValueType()), 4311 getValue(I.getArgOperand(1)), 4312 getValue(I.getArgOperand(2)), 4313 Code); 4314 setValue(&I, Res); 4315 return 0; 4316 } 4317 case Intrinsic::sqrt: 4318 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4319 getValue(I.getArgOperand(0)).getValueType(), 4320 getValue(I.getArgOperand(0)))); 4321 return 0; 4322 case Intrinsic::powi: 4323 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4324 getValue(I.getArgOperand(1)), DAG)); 4325 return 0; 4326 case Intrinsic::sin: 4327 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4328 getValue(I.getArgOperand(0)).getValueType(), 4329 getValue(I.getArgOperand(0)))); 4330 return 0; 4331 case Intrinsic::cos: 4332 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4333 getValue(I.getArgOperand(0)).getValueType(), 4334 getValue(I.getArgOperand(0)))); 4335 return 0; 4336 case Intrinsic::log: 4337 visitLog(I); 4338 return 0; 4339 case Intrinsic::log2: 4340 visitLog2(I); 4341 return 0; 4342 case Intrinsic::log10: 4343 visitLog10(I); 4344 return 0; 4345 case Intrinsic::exp: 4346 visitExp(I); 4347 return 0; 4348 case Intrinsic::exp2: 4349 visitExp2(I); 4350 return 0; 4351 case Intrinsic::pow: 4352 visitPow(I); 4353 return 0; 4354 case Intrinsic::convert_to_fp16: 4355 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4356 MVT::i16, getValue(I.getArgOperand(0)))); 4357 return 0; 4358 case Intrinsic::convert_from_fp16: 4359 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4360 MVT::f32, getValue(I.getArgOperand(0)))); 4361 return 0; 4362 case Intrinsic::pcmarker: { 4363 SDValue Tmp = getValue(I.getArgOperand(0)); 4364 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4365 return 0; 4366 } 4367 case Intrinsic::readcyclecounter: { 4368 SDValue Op = getRoot(); 4369 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4370 DAG.getVTList(MVT::i64, MVT::Other), 4371 &Op, 1); 4372 setValue(&I, Res); 4373 DAG.setRoot(Res.getValue(1)); 4374 return 0; 4375 } 4376 case Intrinsic::bswap: 4377 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4378 getValue(I.getArgOperand(0)).getValueType(), 4379 getValue(I.getArgOperand(0)))); 4380 return 0; 4381 case Intrinsic::cttz: { 4382 SDValue Arg = getValue(I.getArgOperand(0)); 4383 EVT Ty = Arg.getValueType(); 4384 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4385 return 0; 4386 } 4387 case Intrinsic::ctlz: { 4388 SDValue Arg = getValue(I.getArgOperand(0)); 4389 EVT Ty = Arg.getValueType(); 4390 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4391 return 0; 4392 } 4393 case Intrinsic::ctpop: { 4394 SDValue Arg = getValue(I.getArgOperand(0)); 4395 EVT Ty = Arg.getValueType(); 4396 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4397 return 0; 4398 } 4399 case Intrinsic::stacksave: { 4400 SDValue Op = getRoot(); 4401 Res = DAG.getNode(ISD::STACKSAVE, dl, 4402 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4403 setValue(&I, Res); 4404 DAG.setRoot(Res.getValue(1)); 4405 return 0; 4406 } 4407 case Intrinsic::stackrestore: { 4408 Res = getValue(I.getArgOperand(0)); 4409 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4410 return 0; 4411 } 4412 case Intrinsic::stackprotector: { 4413 // Emit code into the DAG to store the stack guard onto the stack. 4414 MachineFunction &MF = DAG.getMachineFunction(); 4415 MachineFrameInfo *MFI = MF.getFrameInfo(); 4416 EVT PtrTy = TLI.getPointerTy(); 4417 4418 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4419 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4420 4421 int FI = FuncInfo.StaticAllocaMap[Slot]; 4422 MFI->setStackProtectorIndex(FI); 4423 4424 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4425 4426 // Store the stack protector onto the stack. 4427 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4428 PseudoSourceValue::getFixedStack(FI), 4429 0, true, false, 0); 4430 setValue(&I, Res); 4431 DAG.setRoot(Res); 4432 return 0; 4433 } 4434 case Intrinsic::objectsize: { 4435 // If we don't know by now, we're never going to know. 4436 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4437 4438 assert(CI && "Non-constant type in __builtin_object_size?"); 4439 4440 SDValue Arg = getValue(I.getCalledValue()); 4441 EVT Ty = Arg.getValueType(); 4442 4443 if (CI->isZero()) 4444 Res = DAG.getConstant(-1ULL, Ty); 4445 else 4446 Res = DAG.getConstant(0, Ty); 4447 4448 setValue(&I, Res); 4449 return 0; 4450 } 4451 case Intrinsic::var_annotation: 4452 // Discard annotate attributes 4453 return 0; 4454 4455 case Intrinsic::init_trampoline: { 4456 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4457 4458 SDValue Ops[6]; 4459 Ops[0] = getRoot(); 4460 Ops[1] = getValue(I.getArgOperand(0)); 4461 Ops[2] = getValue(I.getArgOperand(1)); 4462 Ops[3] = getValue(I.getArgOperand(2)); 4463 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4464 Ops[5] = DAG.getSrcValue(F); 4465 4466 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4467 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4468 Ops, 6); 4469 4470 setValue(&I, Res); 4471 DAG.setRoot(Res.getValue(1)); 4472 return 0; 4473 } 4474 case Intrinsic::gcroot: 4475 if (GFI) { 4476 const Value *Alloca = I.getArgOperand(0); 4477 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4478 4479 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4480 GFI->addStackRoot(FI->getIndex(), TypeMap); 4481 } 4482 return 0; 4483 case Intrinsic::gcread: 4484 case Intrinsic::gcwrite: 4485 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4486 return 0; 4487 case Intrinsic::flt_rounds: 4488 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4489 return 0; 4490 case Intrinsic::trap: 4491 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4492 return 0; 4493 case Intrinsic::uadd_with_overflow: 4494 return implVisitAluOverflow(I, ISD::UADDO); 4495 case Intrinsic::sadd_with_overflow: 4496 return implVisitAluOverflow(I, ISD::SADDO); 4497 case Intrinsic::usub_with_overflow: 4498 return implVisitAluOverflow(I, ISD::USUBO); 4499 case Intrinsic::ssub_with_overflow: 4500 return implVisitAluOverflow(I, ISD::SSUBO); 4501 case Intrinsic::umul_with_overflow: 4502 return implVisitAluOverflow(I, ISD::UMULO); 4503 case Intrinsic::smul_with_overflow: 4504 return implVisitAluOverflow(I, ISD::SMULO); 4505 4506 case Intrinsic::prefetch: { 4507 SDValue Ops[4]; 4508 Ops[0] = getRoot(); 4509 Ops[1] = getValue(I.getArgOperand(0)); 4510 Ops[2] = getValue(I.getArgOperand(1)); 4511 Ops[3] = getValue(I.getArgOperand(2)); 4512 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4513 return 0; 4514 } 4515 4516 case Intrinsic::memory_barrier: { 4517 SDValue Ops[6]; 4518 Ops[0] = getRoot(); 4519 for (int x = 1; x < 6; ++x) 4520 Ops[x] = getValue(I.getArgOperand(x - 1)); 4521 4522 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4523 return 0; 4524 } 4525 case Intrinsic::atomic_cmp_swap: { 4526 SDValue Root = getRoot(); 4527 SDValue L = 4528 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4529 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4530 Root, 4531 getValue(I.getArgOperand(0)), 4532 getValue(I.getArgOperand(1)), 4533 getValue(I.getArgOperand(2)), 4534 I.getArgOperand(0)); 4535 setValue(&I, L); 4536 DAG.setRoot(L.getValue(1)); 4537 return 0; 4538 } 4539 case Intrinsic::atomic_load_add: 4540 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4541 case Intrinsic::atomic_load_sub: 4542 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4543 case Intrinsic::atomic_load_or: 4544 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4545 case Intrinsic::atomic_load_xor: 4546 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4547 case Intrinsic::atomic_load_and: 4548 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4549 case Intrinsic::atomic_load_nand: 4550 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4551 case Intrinsic::atomic_load_max: 4552 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4553 case Intrinsic::atomic_load_min: 4554 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4555 case Intrinsic::atomic_load_umin: 4556 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4557 case Intrinsic::atomic_load_umax: 4558 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4559 case Intrinsic::atomic_swap: 4560 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4561 4562 case Intrinsic::invariant_start: 4563 case Intrinsic::lifetime_start: 4564 // Discard region information. 4565 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4566 return 0; 4567 case Intrinsic::invariant_end: 4568 case Intrinsic::lifetime_end: 4569 // Discard region information. 4570 return 0; 4571 } 4572 } 4573 4574 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4575 bool isTailCall, 4576 MachineBasicBlock *LandingPad) { 4577 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4578 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4579 const Type *RetTy = FTy->getReturnType(); 4580 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4581 MCSymbol *BeginLabel = 0; 4582 4583 TargetLowering::ArgListTy Args; 4584 TargetLowering::ArgListEntry Entry; 4585 Args.reserve(CS.arg_size()); 4586 4587 // Check whether the function can return without sret-demotion. 4588 SmallVector<ISD::OutputArg, 4> Outs; 4589 SmallVector<uint64_t, 4> Offsets; 4590 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4591 Outs, TLI, &Offsets); 4592 4593 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4594 FTy->isVarArg(), Outs, FTy->getContext()); 4595 4596 SDValue DemoteStackSlot; 4597 4598 if (!CanLowerReturn) { 4599 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4600 FTy->getReturnType()); 4601 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4602 FTy->getReturnType()); 4603 MachineFunction &MF = DAG.getMachineFunction(); 4604 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4605 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4606 4607 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4608 Entry.Node = DemoteStackSlot; 4609 Entry.Ty = StackSlotPtrType; 4610 Entry.isSExt = false; 4611 Entry.isZExt = false; 4612 Entry.isInReg = false; 4613 Entry.isSRet = true; 4614 Entry.isNest = false; 4615 Entry.isByVal = false; 4616 Entry.Alignment = Align; 4617 Args.push_back(Entry); 4618 RetTy = Type::getVoidTy(FTy->getContext()); 4619 } 4620 4621 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4622 i != e; ++i) { 4623 SDValue ArgNode = getValue(*i); 4624 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4625 4626 unsigned attrInd = i - CS.arg_begin() + 1; 4627 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4628 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4629 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4630 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4631 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4632 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4633 Entry.Alignment = CS.getParamAlignment(attrInd); 4634 Args.push_back(Entry); 4635 } 4636 4637 if (LandingPad) { 4638 // Insert a label before the invoke call to mark the try range. This can be 4639 // used to detect deletion of the invoke via the MachineModuleInfo. 4640 BeginLabel = MMI.getContext().CreateTempSymbol(); 4641 4642 // For SjLj, keep track of which landing pads go with which invokes 4643 // so as to maintain the ordering of pads in the LSDA. 4644 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4645 if (CallSiteIndex) { 4646 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4647 // Now that the call site is handled, stop tracking it. 4648 MMI.setCurrentCallSite(0); 4649 } 4650 4651 // Both PendingLoads and PendingExports must be flushed here; 4652 // this call might not return. 4653 (void)getRoot(); 4654 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4655 } 4656 4657 // Check if target-independent constraints permit a tail call here. 4658 // Target-dependent constraints are checked within TLI.LowerCallTo. 4659 if (isTailCall && 4660 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4661 isTailCall = false; 4662 4663 std::pair<SDValue,SDValue> Result = 4664 TLI.LowerCallTo(getRoot(), RetTy, 4665 CS.paramHasAttr(0, Attribute::SExt), 4666 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4667 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4668 CS.getCallingConv(), 4669 isTailCall, 4670 !CS.getInstruction()->use_empty(), 4671 Callee, Args, DAG, getCurDebugLoc()); 4672 assert((isTailCall || Result.second.getNode()) && 4673 "Non-null chain expected with non-tail call!"); 4674 assert((Result.second.getNode() || !Result.first.getNode()) && 4675 "Null value expected with tail call!"); 4676 if (Result.first.getNode()) { 4677 setValue(CS.getInstruction(), Result.first); 4678 } else if (!CanLowerReturn && Result.second.getNode()) { 4679 // The instruction result is the result of loading from the 4680 // hidden sret parameter. 4681 SmallVector<EVT, 1> PVTs; 4682 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4683 4684 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4685 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4686 EVT PtrVT = PVTs[0]; 4687 unsigned NumValues = Outs.size(); 4688 SmallVector<SDValue, 4> Values(NumValues); 4689 SmallVector<SDValue, 4> Chains(NumValues); 4690 4691 for (unsigned i = 0; i < NumValues; ++i) { 4692 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4693 DemoteStackSlot, 4694 DAG.getConstant(Offsets[i], PtrVT)); 4695 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 4696 Add, NULL, Offsets[i], false, false, 1); 4697 Values[i] = L; 4698 Chains[i] = L.getValue(1); 4699 } 4700 4701 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4702 MVT::Other, &Chains[0], NumValues); 4703 PendingLoads.push_back(Chain); 4704 4705 // Collect the legal value parts into potentially illegal values 4706 // that correspond to the original function's return values. 4707 SmallVector<EVT, 4> RetTys; 4708 RetTy = FTy->getReturnType(); 4709 ComputeValueVTs(TLI, RetTy, RetTys); 4710 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4711 SmallVector<SDValue, 4> ReturnValues; 4712 unsigned CurReg = 0; 4713 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4714 EVT VT = RetTys[I]; 4715 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4716 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4717 4718 SDValue ReturnValue = 4719 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4720 RegisterVT, VT, AssertOp); 4721 ReturnValues.push_back(ReturnValue); 4722 CurReg += NumRegs; 4723 } 4724 4725 setValue(CS.getInstruction(), 4726 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4727 DAG.getVTList(&RetTys[0], RetTys.size()), 4728 &ReturnValues[0], ReturnValues.size())); 4729 4730 } 4731 4732 // As a special case, a null chain means that a tail call has been emitted and 4733 // the DAG root is already updated. 4734 if (Result.second.getNode()) 4735 DAG.setRoot(Result.second); 4736 else 4737 HasTailCall = true; 4738 4739 if (LandingPad) { 4740 // Insert a label at the end of the invoke call to mark the try range. This 4741 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4742 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4743 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4744 4745 // Inform MachineModuleInfo of range. 4746 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4747 } 4748 } 4749 4750 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4751 /// value is equal or not-equal to zero. 4752 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4753 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4754 UI != E; ++UI) { 4755 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4756 if (IC->isEquality()) 4757 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4758 if (C->isNullValue()) 4759 continue; 4760 // Unknown instruction. 4761 return false; 4762 } 4763 return true; 4764 } 4765 4766 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4767 const Type *LoadTy, 4768 SelectionDAGBuilder &Builder) { 4769 4770 // Check to see if this load can be trivially constant folded, e.g. if the 4771 // input is from a string literal. 4772 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4773 // Cast pointer to the type we really want to load. 4774 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4775 PointerType::getUnqual(LoadTy)); 4776 4777 if (const Constant *LoadCst = 4778 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4779 Builder.TD)) 4780 return Builder.getValue(LoadCst); 4781 } 4782 4783 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4784 // still constant memory, the input chain can be the entry node. 4785 SDValue Root; 4786 bool ConstantMemory = false; 4787 4788 // Do not serialize (non-volatile) loads of constant memory with anything. 4789 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4790 Root = Builder.DAG.getEntryNode(); 4791 ConstantMemory = true; 4792 } else { 4793 // Do not serialize non-volatile loads against each other. 4794 Root = Builder.DAG.getRoot(); 4795 } 4796 4797 SDValue Ptr = Builder.getValue(PtrVal); 4798 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4799 Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/, 4800 false /*volatile*/, 4801 false /*nontemporal*/, 1 /* align=1 */); 4802 4803 if (!ConstantMemory) 4804 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4805 return LoadVal; 4806 } 4807 4808 4809 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4810 /// If so, return true and lower it, otherwise return false and it will be 4811 /// lowered like a normal call. 4812 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 4813 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4814 if (I.getNumArgOperands() != 3) 4815 return false; 4816 4817 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 4818 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4819 !I.getArgOperand(2)->getType()->isIntegerTy() || 4820 !I.getType()->isIntegerTy()) 4821 return false; 4822 4823 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 4824 4825 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4826 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4827 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4828 bool ActuallyDoIt = true; 4829 MVT LoadVT; 4830 const Type *LoadTy; 4831 switch (Size->getZExtValue()) { 4832 default: 4833 LoadVT = MVT::Other; 4834 LoadTy = 0; 4835 ActuallyDoIt = false; 4836 break; 4837 case 2: 4838 LoadVT = MVT::i16; 4839 LoadTy = Type::getInt16Ty(Size->getContext()); 4840 break; 4841 case 4: 4842 LoadVT = MVT::i32; 4843 LoadTy = Type::getInt32Ty(Size->getContext()); 4844 break; 4845 case 8: 4846 LoadVT = MVT::i64; 4847 LoadTy = Type::getInt64Ty(Size->getContext()); 4848 break; 4849 /* 4850 case 16: 4851 LoadVT = MVT::v4i32; 4852 LoadTy = Type::getInt32Ty(Size->getContext()); 4853 LoadTy = VectorType::get(LoadTy, 4); 4854 break; 4855 */ 4856 } 4857 4858 // This turns into unaligned loads. We only do this if the target natively 4859 // supports the MVT we'll be loading or if it is small enough (<= 4) that 4860 // we'll only produce a small number of byte loads. 4861 4862 // Require that we can find a legal MVT, and only do this if the target 4863 // supports unaligned loads of that type. Expanding into byte loads would 4864 // bloat the code. 4865 if (ActuallyDoIt && Size->getZExtValue() > 4) { 4866 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 4867 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 4868 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 4869 ActuallyDoIt = false; 4870 } 4871 4872 if (ActuallyDoIt) { 4873 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 4874 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 4875 4876 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 4877 ISD::SETNE); 4878 EVT CallVT = TLI.getValueType(I.getType(), true); 4879 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 4880 return true; 4881 } 4882 } 4883 4884 4885 return false; 4886 } 4887 4888 4889 void SelectionDAGBuilder::visitCall(const CallInst &I) { 4890 // Handle inline assembly differently. 4891 if (isa<InlineAsm>(I.getCalledValue())) { 4892 visitInlineAsm(&I); 4893 return; 4894 } 4895 4896 const char *RenameFn = 0; 4897 if (Function *F = I.getCalledFunction()) { 4898 if (F->isDeclaration()) { 4899 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 4900 if (unsigned IID = II->getIntrinsicID(F)) { 4901 RenameFn = visitIntrinsicCall(I, IID); 4902 if (!RenameFn) 4903 return; 4904 } 4905 } 4906 if (unsigned IID = F->getIntrinsicID()) { 4907 RenameFn = visitIntrinsicCall(I, IID); 4908 if (!RenameFn) 4909 return; 4910 } 4911 } 4912 4913 // Check for well-known libc/libm calls. If the function is internal, it 4914 // can't be a library call. 4915 if (!F->hasLocalLinkage() && F->hasName()) { 4916 StringRef Name = F->getName(); 4917 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 4918 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 4919 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4920 I.getType() == I.getArgOperand(0)->getType() && 4921 I.getType() == I.getArgOperand(1)->getType()) { 4922 SDValue LHS = getValue(I.getArgOperand(0)); 4923 SDValue RHS = getValue(I.getArgOperand(1)); 4924 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4925 LHS.getValueType(), LHS, RHS)); 4926 return; 4927 } 4928 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4929 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4930 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4931 I.getType() == I.getArgOperand(0)->getType()) { 4932 SDValue Tmp = getValue(I.getArgOperand(0)); 4933 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4934 Tmp.getValueType(), Tmp)); 4935 return; 4936 } 4937 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4938 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4939 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4940 I.getType() == I.getArgOperand(0)->getType() && 4941 I.onlyReadsMemory()) { 4942 SDValue Tmp = getValue(I.getArgOperand(0)); 4943 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4944 Tmp.getValueType(), Tmp)); 4945 return; 4946 } 4947 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4948 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4949 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4950 I.getType() == I.getArgOperand(0)->getType() && 4951 I.onlyReadsMemory()) { 4952 SDValue Tmp = getValue(I.getArgOperand(0)); 4953 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4954 Tmp.getValueType(), Tmp)); 4955 return; 4956 } 4957 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4958 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4959 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4960 I.getType() == I.getArgOperand(0)->getType() && 4961 I.onlyReadsMemory()) { 4962 SDValue Tmp = getValue(I.getArgOperand(0)); 4963 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4964 Tmp.getValueType(), Tmp)); 4965 return; 4966 } 4967 } else if (Name == "memcmp") { 4968 if (visitMemCmpCall(I)) 4969 return; 4970 } 4971 } 4972 } 4973 4974 SDValue Callee; 4975 if (!RenameFn) 4976 Callee = getValue(I.getCalledValue()); 4977 else 4978 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4979 4980 // Check if we can potentially perform a tail call. More detailed checking is 4981 // be done within LowerCallTo, after more information about the call is known. 4982 LowerCallTo(&I, Callee, I.isTailCall()); 4983 } 4984 4985 namespace llvm { 4986 4987 /// AsmOperandInfo - This contains information for each constraint that we are 4988 /// lowering. 4989 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo : 4990 public TargetLowering::AsmOperandInfo { 4991 public: 4992 /// CallOperand - If this is the result output operand or a clobber 4993 /// this is null, otherwise it is the incoming operand to the CallInst. 4994 /// This gets modified as the asm is processed. 4995 SDValue CallOperand; 4996 4997 /// AssignedRegs - If this is a register or register class operand, this 4998 /// contains the set of register corresponding to the operand. 4999 RegsForValue AssignedRegs; 5000 5001 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 5002 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5003 } 5004 5005 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5006 /// busy in OutputRegs/InputRegs. 5007 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5008 std::set<unsigned> &OutputRegs, 5009 std::set<unsigned> &InputRegs, 5010 const TargetRegisterInfo &TRI) const { 5011 if (isOutReg) { 5012 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5013 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5014 } 5015 if (isInReg) { 5016 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5017 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5018 } 5019 } 5020 5021 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5022 /// corresponds to. If there is no Value* for this operand, it returns 5023 /// MVT::Other. 5024 EVT getCallOperandValEVT(LLVMContext &Context, 5025 const TargetLowering &TLI, 5026 const TargetData *TD) const { 5027 if (CallOperandVal == 0) return MVT::Other; 5028 5029 if (isa<BasicBlock>(CallOperandVal)) 5030 return TLI.getPointerTy(); 5031 5032 const llvm::Type *OpTy = CallOperandVal->getType(); 5033 5034 // If this is an indirect operand, the operand is a pointer to the 5035 // accessed type. 5036 if (isIndirect) { 5037 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5038 if (!PtrTy) 5039 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5040 OpTy = PtrTy->getElementType(); 5041 } 5042 5043 // If OpTy is not a single value, it may be a struct/union that we 5044 // can tile with integers. 5045 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5046 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5047 switch (BitSize) { 5048 default: break; 5049 case 1: 5050 case 8: 5051 case 16: 5052 case 32: 5053 case 64: 5054 case 128: 5055 OpTy = IntegerType::get(Context, BitSize); 5056 break; 5057 } 5058 } 5059 5060 return TLI.getValueType(OpTy, true); 5061 } 5062 5063 private: 5064 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5065 /// specified set. 5066 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5067 const TargetRegisterInfo &TRI) { 5068 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5069 Regs.insert(Reg); 5070 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5071 for (; *Aliases; ++Aliases) 5072 Regs.insert(*Aliases); 5073 } 5074 }; 5075 5076 } // end llvm namespace. 5077 5078 /// isAllocatableRegister - If the specified register is safe to allocate, 5079 /// i.e. it isn't a stack pointer or some other special register, return the 5080 /// register class for the register. Otherwise, return null. 5081 static const TargetRegisterClass * 5082 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5083 const TargetLowering &TLI, 5084 const TargetRegisterInfo *TRI) { 5085 EVT FoundVT = MVT::Other; 5086 const TargetRegisterClass *FoundRC = 0; 5087 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5088 E = TRI->regclass_end(); RCI != E; ++RCI) { 5089 EVT ThisVT = MVT::Other; 5090 5091 const TargetRegisterClass *RC = *RCI; 5092 // If none of the value types for this register class are valid, we 5093 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5094 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5095 I != E; ++I) { 5096 if (TLI.isTypeLegal(*I)) { 5097 // If we have already found this register in a different register class, 5098 // choose the one with the largest VT specified. For example, on 5099 // PowerPC, we favor f64 register classes over f32. 5100 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5101 ThisVT = *I; 5102 break; 5103 } 5104 } 5105 } 5106 5107 if (ThisVT == MVT::Other) continue; 5108 5109 // NOTE: This isn't ideal. In particular, this might allocate the 5110 // frame pointer in functions that need it (due to them not being taken 5111 // out of allocation, because a variable sized allocation hasn't been seen 5112 // yet). This is a slight code pessimization, but should still work. 5113 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5114 E = RC->allocation_order_end(MF); I != E; ++I) 5115 if (*I == Reg) { 5116 // We found a matching register class. Keep looking at others in case 5117 // we find one with larger registers that this physreg is also in. 5118 FoundRC = RC; 5119 FoundVT = ThisVT; 5120 break; 5121 } 5122 } 5123 return FoundRC; 5124 } 5125 5126 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5127 /// specified operand. We prefer to assign virtual registers, to allow the 5128 /// register allocator to handle the assignment process. However, if the asm 5129 /// uses features that we can't model on machineinstrs, we have SDISel do the 5130 /// allocation. This produces generally horrible, but correct, code. 5131 /// 5132 /// OpInfo describes the operand. 5133 /// Input and OutputRegs are the set of already allocated physical registers. 5134 /// 5135 void SelectionDAGBuilder:: 5136 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5137 std::set<unsigned> &OutputRegs, 5138 std::set<unsigned> &InputRegs) { 5139 LLVMContext &Context = FuncInfo.Fn->getContext(); 5140 5141 // Compute whether this value requires an input register, an output register, 5142 // or both. 5143 bool isOutReg = false; 5144 bool isInReg = false; 5145 switch (OpInfo.Type) { 5146 case InlineAsm::isOutput: 5147 isOutReg = true; 5148 5149 // If there is an input constraint that matches this, we need to reserve 5150 // the input register so no other inputs allocate to it. 5151 isInReg = OpInfo.hasMatchingInput(); 5152 break; 5153 case InlineAsm::isInput: 5154 isInReg = true; 5155 isOutReg = false; 5156 break; 5157 case InlineAsm::isClobber: 5158 isOutReg = true; 5159 isInReg = true; 5160 break; 5161 } 5162 5163 5164 MachineFunction &MF = DAG.getMachineFunction(); 5165 SmallVector<unsigned, 4> Regs; 5166 5167 // If this is a constraint for a single physreg, or a constraint for a 5168 // register class, find it. 5169 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5170 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5171 OpInfo.ConstraintVT); 5172 5173 unsigned NumRegs = 1; 5174 if (OpInfo.ConstraintVT != MVT::Other) { 5175 // If this is a FP input in an integer register (or visa versa) insert a bit 5176 // cast of the input value. More generally, handle any case where the input 5177 // value disagrees with the register class we plan to stick this in. 5178 if (OpInfo.Type == InlineAsm::isInput && 5179 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5180 // Try to convert to the first EVT that the reg class contains. If the 5181 // types are identical size, use a bitcast to convert (e.g. two differing 5182 // vector types). 5183 EVT RegVT = *PhysReg.second->vt_begin(); 5184 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5185 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5186 RegVT, OpInfo.CallOperand); 5187 OpInfo.ConstraintVT = RegVT; 5188 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5189 // If the input is a FP value and we want it in FP registers, do a 5190 // bitcast to the corresponding integer type. This turns an f64 value 5191 // into i64, which can be passed with two i32 values on a 32-bit 5192 // machine. 5193 RegVT = EVT::getIntegerVT(Context, 5194 OpInfo.ConstraintVT.getSizeInBits()); 5195 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5196 RegVT, OpInfo.CallOperand); 5197 OpInfo.ConstraintVT = RegVT; 5198 } 5199 } 5200 5201 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5202 } 5203 5204 EVT RegVT; 5205 EVT ValueVT = OpInfo.ConstraintVT; 5206 5207 // If this is a constraint for a specific physical register, like {r17}, 5208 // assign it now. 5209 if (unsigned AssignedReg = PhysReg.first) { 5210 const TargetRegisterClass *RC = PhysReg.second; 5211 if (OpInfo.ConstraintVT == MVT::Other) 5212 ValueVT = *RC->vt_begin(); 5213 5214 // Get the actual register value type. This is important, because the user 5215 // may have asked for (e.g.) the AX register in i32 type. We need to 5216 // remember that AX is actually i16 to get the right extension. 5217 RegVT = *RC->vt_begin(); 5218 5219 // This is a explicit reference to a physical register. 5220 Regs.push_back(AssignedReg); 5221 5222 // If this is an expanded reference, add the rest of the regs to Regs. 5223 if (NumRegs != 1) { 5224 TargetRegisterClass::iterator I = RC->begin(); 5225 for (; *I != AssignedReg; ++I) 5226 assert(I != RC->end() && "Didn't find reg!"); 5227 5228 // Already added the first reg. 5229 --NumRegs; ++I; 5230 for (; NumRegs; --NumRegs, ++I) { 5231 assert(I != RC->end() && "Ran out of registers to allocate!"); 5232 Regs.push_back(*I); 5233 } 5234 } 5235 5236 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5237 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5238 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5239 return; 5240 } 5241 5242 // Otherwise, if this was a reference to an LLVM register class, create vregs 5243 // for this reference. 5244 if (const TargetRegisterClass *RC = PhysReg.second) { 5245 RegVT = *RC->vt_begin(); 5246 if (OpInfo.ConstraintVT == MVT::Other) 5247 ValueVT = RegVT; 5248 5249 // Create the appropriate number of virtual registers. 5250 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5251 for (; NumRegs; --NumRegs) 5252 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5253 5254 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5255 return; 5256 } 5257 5258 // This is a reference to a register class that doesn't directly correspond 5259 // to an LLVM register class. Allocate NumRegs consecutive, available, 5260 // registers from the class. 5261 std::vector<unsigned> RegClassRegs 5262 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5263 OpInfo.ConstraintVT); 5264 5265 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5266 unsigned NumAllocated = 0; 5267 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5268 unsigned Reg = RegClassRegs[i]; 5269 // See if this register is available. 5270 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5271 (isInReg && InputRegs.count(Reg))) { // Already used. 5272 // Make sure we find consecutive registers. 5273 NumAllocated = 0; 5274 continue; 5275 } 5276 5277 // Check to see if this register is allocatable (i.e. don't give out the 5278 // stack pointer). 5279 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5280 if (!RC) { // Couldn't allocate this register. 5281 // Reset NumAllocated to make sure we return consecutive registers. 5282 NumAllocated = 0; 5283 continue; 5284 } 5285 5286 // Okay, this register is good, we can use it. 5287 ++NumAllocated; 5288 5289 // If we allocated enough consecutive registers, succeed. 5290 if (NumAllocated == NumRegs) { 5291 unsigned RegStart = (i-NumAllocated)+1; 5292 unsigned RegEnd = i+1; 5293 // Mark all of the allocated registers used. 5294 for (unsigned i = RegStart; i != RegEnd; ++i) 5295 Regs.push_back(RegClassRegs[i]); 5296 5297 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 5298 OpInfo.ConstraintVT); 5299 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5300 return; 5301 } 5302 } 5303 5304 // Otherwise, we couldn't allocate enough registers for this. 5305 } 5306 5307 /// visitInlineAsm - Handle a call to an InlineAsm object. 5308 /// 5309 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5310 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5311 5312 /// ConstraintOperands - Information about all of the constraints. 5313 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5314 5315 std::set<unsigned> OutputRegs, InputRegs; 5316 5317 // Do a prepass over the constraints, canonicalizing them, and building up the 5318 // ConstraintOperands list. 5319 std::vector<InlineAsm::ConstraintInfo> 5320 ConstraintInfos = IA->ParseConstraints(); 5321 5322 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5323 5324 SDValue Chain, Flag; 5325 5326 // We won't need to flush pending loads if this asm doesn't touch 5327 // memory and is nonvolatile. 5328 if (hasMemory || IA->hasSideEffects()) 5329 Chain = getRoot(); 5330 else 5331 Chain = DAG.getRoot(); 5332 5333 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5334 unsigned ResNo = 0; // ResNo - The result number of the next output. 5335 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5336 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5337 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5338 5339 EVT OpVT = MVT::Other; 5340 5341 // Compute the value type for each operand. 5342 switch (OpInfo.Type) { 5343 case InlineAsm::isOutput: 5344 // Indirect outputs just consume an argument. 5345 if (OpInfo.isIndirect) { 5346 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5347 break; 5348 } 5349 5350 // The return value of the call is this value. As such, there is no 5351 // corresponding argument. 5352 assert(!CS.getType()->isVoidTy() && 5353 "Bad inline asm!"); 5354 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5355 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5356 } else { 5357 assert(ResNo == 0 && "Asm only has one result!"); 5358 OpVT = TLI.getValueType(CS.getType()); 5359 } 5360 ++ResNo; 5361 break; 5362 case InlineAsm::isInput: 5363 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5364 break; 5365 case InlineAsm::isClobber: 5366 // Nothing to do. 5367 break; 5368 } 5369 5370 // If this is an input or an indirect output, process the call argument. 5371 // BasicBlocks are labels, currently appearing only in asm's. 5372 if (OpInfo.CallOperandVal) { 5373 // Strip bitcasts, if any. This mostly comes up for functions. 5374 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5375 5376 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5377 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5378 } else { 5379 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5380 } 5381 5382 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5383 } 5384 5385 OpInfo.ConstraintVT = OpVT; 5386 } 5387 5388 // Second pass over the constraints: compute which constraint option to use 5389 // and assign registers to constraints that want a specific physreg. 5390 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5391 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5392 5393 // If this is an output operand with a matching input operand, look up the 5394 // matching input. If their types mismatch, e.g. one is an integer, the 5395 // other is floating point, or their sizes are different, flag it as an 5396 // error. 5397 if (OpInfo.hasMatchingInput()) { 5398 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5399 5400 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5401 if ((OpInfo.ConstraintVT.isInteger() != 5402 Input.ConstraintVT.isInteger()) || 5403 (OpInfo.ConstraintVT.getSizeInBits() != 5404 Input.ConstraintVT.getSizeInBits())) { 5405 report_fatal_error("Unsupported asm: input constraint" 5406 " with a matching output constraint of" 5407 " incompatible type!"); 5408 } 5409 Input.ConstraintVT = OpInfo.ConstraintVT; 5410 } 5411 } 5412 5413 // Compute the constraint code and ConstraintType to use. 5414 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5415 5416 // If this is a memory input, and if the operand is not indirect, do what we 5417 // need to to provide an address for the memory input. 5418 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5419 !OpInfo.isIndirect) { 5420 assert(OpInfo.Type == InlineAsm::isInput && 5421 "Can only indirectify direct input operands!"); 5422 5423 // Memory operands really want the address of the value. If we don't have 5424 // an indirect input, put it in the constpool if we can, otherwise spill 5425 // it to a stack slot. 5426 5427 // If the operand is a float, integer, or vector constant, spill to a 5428 // constant pool entry to get its address. 5429 const Value *OpVal = OpInfo.CallOperandVal; 5430 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5431 isa<ConstantVector>(OpVal)) { 5432 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5433 TLI.getPointerTy()); 5434 } else { 5435 // Otherwise, create a stack slot and emit a store to it before the 5436 // asm. 5437 const Type *Ty = OpVal->getType(); 5438 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5439 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5440 MachineFunction &MF = DAG.getMachineFunction(); 5441 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5442 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5443 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5444 OpInfo.CallOperand, StackSlot, NULL, 0, 5445 false, false, 0); 5446 OpInfo.CallOperand = StackSlot; 5447 } 5448 5449 // There is no longer a Value* corresponding to this operand. 5450 OpInfo.CallOperandVal = 0; 5451 5452 // It is now an indirect operand. 5453 OpInfo.isIndirect = true; 5454 } 5455 5456 // If this constraint is for a specific register, allocate it before 5457 // anything else. 5458 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5459 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5460 } 5461 5462 ConstraintInfos.clear(); 5463 5464 // Second pass - Loop over all of the operands, assigning virtual or physregs 5465 // to register class operands. 5466 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5467 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5468 5469 // C_Register operands have already been allocated, Other/Memory don't need 5470 // to be. 5471 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5472 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5473 } 5474 5475 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5476 std::vector<SDValue> AsmNodeOperands; 5477 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5478 AsmNodeOperands.push_back( 5479 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5480 TLI.getPointerTy())); 5481 5482 // If we have a !srcloc metadata node associated with it, we want to attach 5483 // this to the ultimately generated inline asm machineinstr. To do this, we 5484 // pass in the third operand as this (potentially null) inline asm MDNode. 5485 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5486 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5487 5488 // Remember the AlignStack bit as operand 3. 5489 AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0, 5490 MVT::i1)); 5491 5492 // Loop over all of the inputs, copying the operand values into the 5493 // appropriate registers and processing the output regs. 5494 RegsForValue RetValRegs; 5495 5496 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5497 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5498 5499 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5500 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5501 5502 switch (OpInfo.Type) { 5503 case InlineAsm::isOutput: { 5504 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5505 OpInfo.ConstraintType != TargetLowering::C_Register) { 5506 // Memory output, or 'other' output (e.g. 'X' constraint). 5507 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5508 5509 // Add information to the INLINEASM node to know about this output. 5510 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5511 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5512 TLI.getPointerTy())); 5513 AsmNodeOperands.push_back(OpInfo.CallOperand); 5514 break; 5515 } 5516 5517 // Otherwise, this is a register or register class output. 5518 5519 // Copy the output from the appropriate register. Find a register that 5520 // we can use. 5521 if (OpInfo.AssignedRegs.Regs.empty()) 5522 report_fatal_error("Couldn't allocate output reg for constraint '" + 5523 Twine(OpInfo.ConstraintCode) + "'!"); 5524 5525 // If this is an indirect operand, store through the pointer after the 5526 // asm. 5527 if (OpInfo.isIndirect) { 5528 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5529 OpInfo.CallOperandVal)); 5530 } else { 5531 // This is the result value of the call. 5532 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5533 // Concatenate this output onto the outputs list. 5534 RetValRegs.append(OpInfo.AssignedRegs); 5535 } 5536 5537 // Add information to the INLINEASM node to know that this register is 5538 // set. 5539 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5540 InlineAsm::Kind_RegDefEarlyClobber : 5541 InlineAsm::Kind_RegDef, 5542 false, 5543 0, 5544 DAG, 5545 AsmNodeOperands); 5546 break; 5547 } 5548 case InlineAsm::isInput: { 5549 SDValue InOperandVal = OpInfo.CallOperand; 5550 5551 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5552 // If this is required to match an output register we have already set, 5553 // just use its register. 5554 unsigned OperandNo = OpInfo.getMatchedOperand(); 5555 5556 // Scan until we find the definition we already emitted of this operand. 5557 // When we find it, create a RegsForValue operand. 5558 unsigned CurOp = InlineAsm::Op_FirstOperand; 5559 for (; OperandNo; --OperandNo) { 5560 // Advance to the next operand. 5561 unsigned OpFlag = 5562 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5563 assert((InlineAsm::isRegDefKind(OpFlag) || 5564 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5565 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5566 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5567 } 5568 5569 unsigned OpFlag = 5570 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5571 if (InlineAsm::isRegDefKind(OpFlag) || 5572 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5573 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5574 if (OpInfo.isIndirect) { 5575 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5576 LLVMContext &Ctx = *DAG.getContext(); 5577 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5578 " don't know how to handle tied " 5579 "indirect register inputs"); 5580 } 5581 5582 RegsForValue MatchedRegs; 5583 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5584 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5585 MatchedRegs.RegVTs.push_back(RegVT); 5586 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5587 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5588 i != e; ++i) 5589 MatchedRegs.Regs.push_back 5590 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5591 5592 // Use the produced MatchedRegs object to 5593 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5594 Chain, &Flag); 5595 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5596 true, OpInfo.getMatchedOperand(), 5597 DAG, AsmNodeOperands); 5598 break; 5599 } 5600 5601 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5602 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5603 "Unexpected number of operands"); 5604 // Add information to the INLINEASM node to know about this input. 5605 // See InlineAsm.h isUseOperandTiedToDef. 5606 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5607 OpInfo.getMatchedOperand()); 5608 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5609 TLI.getPointerTy())); 5610 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5611 break; 5612 } 5613 5614 // Treat indirect 'X' constraint as memory. 5615 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5616 OpInfo.isIndirect) 5617 OpInfo.ConstraintType = TargetLowering::C_Memory; 5618 5619 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5620 std::vector<SDValue> Ops; 5621 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5622 Ops, DAG); 5623 if (Ops.empty()) 5624 report_fatal_error("Invalid operand for inline asm constraint '" + 5625 Twine(OpInfo.ConstraintCode) + "'!"); 5626 5627 // Add information to the INLINEASM node to know about this input. 5628 unsigned ResOpType = 5629 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5630 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5631 TLI.getPointerTy())); 5632 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5633 break; 5634 } 5635 5636 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5637 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5638 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5639 "Memory operands expect pointer values"); 5640 5641 // Add information to the INLINEASM node to know about this input. 5642 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5643 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5644 TLI.getPointerTy())); 5645 AsmNodeOperands.push_back(InOperandVal); 5646 break; 5647 } 5648 5649 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5650 OpInfo.ConstraintType == TargetLowering::C_Register) && 5651 "Unknown constraint type!"); 5652 assert(!OpInfo.isIndirect && 5653 "Don't know how to handle indirect register inputs yet!"); 5654 5655 // Copy the input into the appropriate registers. 5656 if (OpInfo.AssignedRegs.Regs.empty() || 5657 !OpInfo.AssignedRegs.areValueTypesLegal(TLI)) 5658 report_fatal_error("Couldn't allocate input reg for constraint '" + 5659 Twine(OpInfo.ConstraintCode) + "'!"); 5660 5661 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5662 Chain, &Flag); 5663 5664 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5665 DAG, AsmNodeOperands); 5666 break; 5667 } 5668 case InlineAsm::isClobber: { 5669 // Add the clobbered value to the operand list, so that the register 5670 // allocator is aware that the physreg got clobbered. 5671 if (!OpInfo.AssignedRegs.Regs.empty()) 5672 OpInfo.AssignedRegs.AddInlineAsmOperands( 5673 InlineAsm::Kind_RegDefEarlyClobber, 5674 false, 0, DAG, 5675 AsmNodeOperands); 5676 break; 5677 } 5678 } 5679 } 5680 5681 // Finish up input operands. Set the input chain and add the flag last. 5682 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 5683 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5684 5685 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5686 DAG.getVTList(MVT::Other, MVT::Flag), 5687 &AsmNodeOperands[0], AsmNodeOperands.size()); 5688 Flag = Chain.getValue(1); 5689 5690 // If this asm returns a register value, copy the result from that register 5691 // and set it as the value of the call. 5692 if (!RetValRegs.Regs.empty()) { 5693 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5694 Chain, &Flag); 5695 5696 // FIXME: Why don't we do this for inline asms with MRVs? 5697 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5698 EVT ResultType = TLI.getValueType(CS.getType()); 5699 5700 // If any of the results of the inline asm is a vector, it may have the 5701 // wrong width/num elts. This can happen for register classes that can 5702 // contain multiple different value types. The preg or vreg allocated may 5703 // not have the same VT as was expected. Convert it to the right type 5704 // with bit_convert. 5705 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5706 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5707 ResultType, Val); 5708 5709 } else if (ResultType != Val.getValueType() && 5710 ResultType.isInteger() && Val.getValueType().isInteger()) { 5711 // If a result value was tied to an input value, the computed result may 5712 // have a wider width than the expected result. Extract the relevant 5713 // portion. 5714 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5715 } 5716 5717 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5718 } 5719 5720 setValue(CS.getInstruction(), Val); 5721 // Don't need to use this as a chain in this case. 5722 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5723 return; 5724 } 5725 5726 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5727 5728 // Process indirect outputs, first output all of the flagged copies out of 5729 // physregs. 5730 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5731 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5732 const Value *Ptr = IndirectStoresToEmit[i].second; 5733 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5734 Chain, &Flag); 5735 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5736 } 5737 5738 // Emit the non-flagged stores from the physregs. 5739 SmallVector<SDValue, 8> OutChains; 5740 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5741 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5742 StoresToEmit[i].first, 5743 getValue(StoresToEmit[i].second), 5744 StoresToEmit[i].second, 0, 5745 false, false, 0); 5746 OutChains.push_back(Val); 5747 } 5748 5749 if (!OutChains.empty()) 5750 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5751 &OutChains[0], OutChains.size()); 5752 5753 DAG.setRoot(Chain); 5754 } 5755 5756 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5757 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5758 MVT::Other, getRoot(), 5759 getValue(I.getArgOperand(0)), 5760 DAG.getSrcValue(I.getArgOperand(0)))); 5761 } 5762 5763 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 5764 const TargetData &TD = *TLI.getTargetData(); 5765 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5766 getRoot(), getValue(I.getOperand(0)), 5767 DAG.getSrcValue(I.getOperand(0)), 5768 TD.getABITypeAlignment(I.getType())); 5769 setValue(&I, V); 5770 DAG.setRoot(V.getValue(1)); 5771 } 5772 5773 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 5774 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5775 MVT::Other, getRoot(), 5776 getValue(I.getArgOperand(0)), 5777 DAG.getSrcValue(I.getArgOperand(0)))); 5778 } 5779 5780 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 5781 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5782 MVT::Other, getRoot(), 5783 getValue(I.getArgOperand(0)), 5784 getValue(I.getArgOperand(1)), 5785 DAG.getSrcValue(I.getArgOperand(0)), 5786 DAG.getSrcValue(I.getArgOperand(1)))); 5787 } 5788 5789 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5790 /// implementation, which just calls LowerCall. 5791 /// FIXME: When all targets are 5792 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5793 std::pair<SDValue, SDValue> 5794 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5795 bool RetSExt, bool RetZExt, bool isVarArg, 5796 bool isInreg, unsigned NumFixedArgs, 5797 CallingConv::ID CallConv, bool isTailCall, 5798 bool isReturnValueUsed, 5799 SDValue Callee, 5800 ArgListTy &Args, SelectionDAG &DAG, 5801 DebugLoc dl) const { 5802 // Handle all of the outgoing arguments. 5803 SmallVector<ISD::OutputArg, 32> Outs; 5804 SmallVector<SDValue, 32> OutVals; 5805 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5806 SmallVector<EVT, 4> ValueVTs; 5807 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5808 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5809 Value != NumValues; ++Value) { 5810 EVT VT = ValueVTs[Value]; 5811 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5812 SDValue Op = SDValue(Args[i].Node.getNode(), 5813 Args[i].Node.getResNo() + Value); 5814 ISD::ArgFlagsTy Flags; 5815 unsigned OriginalAlignment = 5816 getTargetData()->getABITypeAlignment(ArgTy); 5817 5818 if (Args[i].isZExt) 5819 Flags.setZExt(); 5820 if (Args[i].isSExt) 5821 Flags.setSExt(); 5822 if (Args[i].isInReg) 5823 Flags.setInReg(); 5824 if (Args[i].isSRet) 5825 Flags.setSRet(); 5826 if (Args[i].isByVal) { 5827 Flags.setByVal(); 5828 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5829 const Type *ElementTy = Ty->getElementType(); 5830 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5831 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5832 // For ByVal, alignment should come from FE. BE will guess if this 5833 // info is not there but there are cases it cannot get right. 5834 if (Args[i].Alignment) 5835 FrameAlign = Args[i].Alignment; 5836 Flags.setByValAlign(FrameAlign); 5837 Flags.setByValSize(FrameSize); 5838 } 5839 if (Args[i].isNest) 5840 Flags.setNest(); 5841 Flags.setOrigAlign(OriginalAlignment); 5842 5843 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5844 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5845 SmallVector<SDValue, 4> Parts(NumParts); 5846 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5847 5848 if (Args[i].isSExt) 5849 ExtendKind = ISD::SIGN_EXTEND; 5850 else if (Args[i].isZExt) 5851 ExtendKind = ISD::ZERO_EXTEND; 5852 5853 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 5854 PartVT, ExtendKind); 5855 5856 for (unsigned j = 0; j != NumParts; ++j) { 5857 // if it isn't first piece, alignment must be 1 5858 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 5859 i < NumFixedArgs); 5860 if (NumParts > 1 && j == 0) 5861 MyFlags.Flags.setSplit(); 5862 else if (j != 0) 5863 MyFlags.Flags.setOrigAlign(1); 5864 5865 Outs.push_back(MyFlags); 5866 OutVals.push_back(Parts[j]); 5867 } 5868 } 5869 } 5870 5871 // Handle the incoming return values from the call. 5872 SmallVector<ISD::InputArg, 32> Ins; 5873 SmallVector<EVT, 4> RetTys; 5874 ComputeValueVTs(*this, RetTy, RetTys); 5875 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5876 EVT VT = RetTys[I]; 5877 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5878 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5879 for (unsigned i = 0; i != NumRegs; ++i) { 5880 ISD::InputArg MyFlags; 5881 MyFlags.VT = RegisterVT; 5882 MyFlags.Used = isReturnValueUsed; 5883 if (RetSExt) 5884 MyFlags.Flags.setSExt(); 5885 if (RetZExt) 5886 MyFlags.Flags.setZExt(); 5887 if (isInreg) 5888 MyFlags.Flags.setInReg(); 5889 Ins.push_back(MyFlags); 5890 } 5891 } 5892 5893 SmallVector<SDValue, 4> InVals; 5894 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5895 Outs, OutVals, Ins, dl, DAG, InVals); 5896 5897 // Verify that the target's LowerCall behaved as expected. 5898 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5899 "LowerCall didn't return a valid chain!"); 5900 assert((!isTailCall || InVals.empty()) && 5901 "LowerCall emitted a return value for a tail call!"); 5902 assert((isTailCall || InVals.size() == Ins.size()) && 5903 "LowerCall didn't emit the correct number of values!"); 5904 5905 // For a tail call, the return value is merely live-out and there aren't 5906 // any nodes in the DAG representing it. Return a special value to 5907 // indicate that a tail call has been emitted and no more Instructions 5908 // should be processed in the current block. 5909 if (isTailCall) { 5910 DAG.setRoot(Chain); 5911 return std::make_pair(SDValue(), SDValue()); 5912 } 5913 5914 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5915 assert(InVals[i].getNode() && 5916 "LowerCall emitted a null value!"); 5917 assert(Ins[i].VT == InVals[i].getValueType() && 5918 "LowerCall emitted a value with the wrong type!"); 5919 }); 5920 5921 // Collect the legal value parts into potentially illegal values 5922 // that correspond to the original function's return values. 5923 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5924 if (RetSExt) 5925 AssertOp = ISD::AssertSext; 5926 else if (RetZExt) 5927 AssertOp = ISD::AssertZext; 5928 SmallVector<SDValue, 4> ReturnValues; 5929 unsigned CurReg = 0; 5930 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5931 EVT VT = RetTys[I]; 5932 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5933 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5934 5935 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 5936 NumRegs, RegisterVT, VT, 5937 AssertOp)); 5938 CurReg += NumRegs; 5939 } 5940 5941 // For a function returning void, there is no return value. We can't create 5942 // such a node, so we just return a null return value in that case. In 5943 // that case, nothing will actualy look at the value. 5944 if (ReturnValues.empty()) 5945 return std::make_pair(SDValue(), Chain); 5946 5947 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5948 DAG.getVTList(&RetTys[0], RetTys.size()), 5949 &ReturnValues[0], ReturnValues.size()); 5950 return std::make_pair(Res, Chain); 5951 } 5952 5953 void TargetLowering::LowerOperationWrapper(SDNode *N, 5954 SmallVectorImpl<SDValue> &Results, 5955 SelectionDAG &DAG) const { 5956 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5957 if (Res.getNode()) 5958 Results.push_back(Res); 5959 } 5960 5961 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5962 llvm_unreachable("LowerOperation not implemented for this target!"); 5963 return SDValue(); 5964 } 5965 5966 void 5967 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 5968 SDValue Op = getNonRegisterValue(V); 5969 assert((Op.getOpcode() != ISD::CopyFromReg || 5970 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5971 "Copy from a reg to the same reg!"); 5972 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5973 5974 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5975 SDValue Chain = DAG.getEntryNode(); 5976 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5977 PendingExports.push_back(Chain); 5978 } 5979 5980 #include "llvm/CodeGen/SelectionDAGISel.h" 5981 5982 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 5983 // If this is the entry block, emit arguments. 5984 const Function &F = *LLVMBB->getParent(); 5985 SelectionDAG &DAG = SDB->DAG; 5986 DebugLoc dl = SDB->getCurDebugLoc(); 5987 const TargetData *TD = TLI.getTargetData(); 5988 SmallVector<ISD::InputArg, 16> Ins; 5989 5990 // Check whether the function can return without sret-demotion. 5991 SmallVector<ISD::OutputArg, 4> Outs; 5992 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5993 Outs, TLI); 5994 5995 if (!FuncInfo->CanLowerReturn) { 5996 // Put in an sret pointer parameter before all the other parameters. 5997 SmallVector<EVT, 1> ValueVTs; 5998 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5999 6000 // NOTE: Assuming that a pointer will never break down to more than one VT 6001 // or one register. 6002 ISD::ArgFlagsTy Flags; 6003 Flags.setSRet(); 6004 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6005 ISD::InputArg RetArg(Flags, RegisterVT, true); 6006 Ins.push_back(RetArg); 6007 } 6008 6009 // Set up the incoming argument description vector. 6010 unsigned Idx = 1; 6011 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6012 I != E; ++I, ++Idx) { 6013 SmallVector<EVT, 4> ValueVTs; 6014 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6015 bool isArgValueUsed = !I->use_empty(); 6016 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6017 Value != NumValues; ++Value) { 6018 EVT VT = ValueVTs[Value]; 6019 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6020 ISD::ArgFlagsTy Flags; 6021 unsigned OriginalAlignment = 6022 TD->getABITypeAlignment(ArgTy); 6023 6024 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6025 Flags.setZExt(); 6026 if (F.paramHasAttr(Idx, Attribute::SExt)) 6027 Flags.setSExt(); 6028 if (F.paramHasAttr(Idx, Attribute::InReg)) 6029 Flags.setInReg(); 6030 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6031 Flags.setSRet(); 6032 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6033 Flags.setByVal(); 6034 const PointerType *Ty = cast<PointerType>(I->getType()); 6035 const Type *ElementTy = Ty->getElementType(); 6036 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6037 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 6038 // For ByVal, alignment should be passed from FE. BE will guess if 6039 // this info is not there but there are cases it cannot get right. 6040 if (F.getParamAlignment(Idx)) 6041 FrameAlign = F.getParamAlignment(Idx); 6042 Flags.setByValAlign(FrameAlign); 6043 Flags.setByValSize(FrameSize); 6044 } 6045 if (F.paramHasAttr(Idx, Attribute::Nest)) 6046 Flags.setNest(); 6047 Flags.setOrigAlign(OriginalAlignment); 6048 6049 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6050 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6051 for (unsigned i = 0; i != NumRegs; ++i) { 6052 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6053 if (NumRegs > 1 && i == 0) 6054 MyFlags.Flags.setSplit(); 6055 // if it isn't first piece, alignment must be 1 6056 else if (i > 0) 6057 MyFlags.Flags.setOrigAlign(1); 6058 Ins.push_back(MyFlags); 6059 } 6060 } 6061 } 6062 6063 // Call the target to set up the argument values. 6064 SmallVector<SDValue, 8> InVals; 6065 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6066 F.isVarArg(), Ins, 6067 dl, DAG, InVals); 6068 6069 // Verify that the target's LowerFormalArguments behaved as expected. 6070 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6071 "LowerFormalArguments didn't return a valid chain!"); 6072 assert(InVals.size() == Ins.size() && 6073 "LowerFormalArguments didn't emit the correct number of values!"); 6074 DEBUG({ 6075 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6076 assert(InVals[i].getNode() && 6077 "LowerFormalArguments emitted a null value!"); 6078 assert(Ins[i].VT == InVals[i].getValueType() && 6079 "LowerFormalArguments emitted a value with the wrong type!"); 6080 } 6081 }); 6082 6083 // Update the DAG with the new chain value resulting from argument lowering. 6084 DAG.setRoot(NewRoot); 6085 6086 // Set up the argument values. 6087 unsigned i = 0; 6088 Idx = 1; 6089 if (!FuncInfo->CanLowerReturn) { 6090 // Create a virtual register for the sret pointer, and put in a copy 6091 // from the sret argument into it. 6092 SmallVector<EVT, 1> ValueVTs; 6093 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6094 EVT VT = ValueVTs[0]; 6095 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6096 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6097 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6098 RegVT, VT, AssertOp); 6099 6100 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6101 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6102 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6103 FuncInfo->DemoteRegister = SRetReg; 6104 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6105 SRetReg, ArgValue); 6106 DAG.setRoot(NewRoot); 6107 6108 // i indexes lowered arguments. Bump it past the hidden sret argument. 6109 // Idx indexes LLVM arguments. Don't touch it. 6110 ++i; 6111 } 6112 6113 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6114 ++I, ++Idx) { 6115 SmallVector<SDValue, 4> ArgValues; 6116 SmallVector<EVT, 4> ValueVTs; 6117 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6118 unsigned NumValues = ValueVTs.size(); 6119 6120 // If this argument is unused then remember its value. It is used to generate 6121 // debugging information. 6122 if (I->use_empty() && NumValues) 6123 SDB->setUnusedArgValue(I, InVals[i]); 6124 6125 for (unsigned Value = 0; Value != NumValues; ++Value) { 6126 EVT VT = ValueVTs[Value]; 6127 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6128 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6129 6130 if (!I->use_empty()) { 6131 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6132 if (F.paramHasAttr(Idx, Attribute::SExt)) 6133 AssertOp = ISD::AssertSext; 6134 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6135 AssertOp = ISD::AssertZext; 6136 6137 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6138 NumParts, PartVT, VT, 6139 AssertOp)); 6140 } 6141 6142 i += NumParts; 6143 } 6144 6145 if (!I->use_empty()) { 6146 SDValue Res; 6147 if (!ArgValues.empty()) 6148 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6149 SDB->getCurDebugLoc()); 6150 SDB->setValue(I, Res); 6151 6152 // If this argument is live outside of the entry block, insert a copy from 6153 // whereever we got it to the vreg that other BB's will reference it as. 6154 SDB->CopyToExportRegsIfNeeded(I); 6155 } 6156 } 6157 6158 assert(i == InVals.size() && "Argument register count mismatch!"); 6159 6160 // Finally, if the target has anything special to do, allow it to do so. 6161 // FIXME: this should insert code into the DAG! 6162 EmitFunctionEntryCode(); 6163 } 6164 6165 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6166 /// ensure constants are generated when needed. Remember the virtual registers 6167 /// that need to be added to the Machine PHI nodes as input. We cannot just 6168 /// directly add them, because expansion might result in multiple MBB's for one 6169 /// BB. As such, the start of the BB might correspond to a different MBB than 6170 /// the end. 6171 /// 6172 void 6173 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6174 const TerminatorInst *TI = LLVMBB->getTerminator(); 6175 6176 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6177 6178 // Check successor nodes' PHI nodes that expect a constant to be available 6179 // from this block. 6180 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6181 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6182 if (!isa<PHINode>(SuccBB->begin())) continue; 6183 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6184 6185 // If this terminator has multiple identical successors (common for 6186 // switches), only handle each succ once. 6187 if (!SuccsHandled.insert(SuccMBB)) continue; 6188 6189 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6190 6191 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6192 // nodes and Machine PHI nodes, but the incoming operands have not been 6193 // emitted yet. 6194 for (BasicBlock::const_iterator I = SuccBB->begin(); 6195 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6196 // Ignore dead phi's. 6197 if (PN->use_empty()) continue; 6198 6199 unsigned Reg; 6200 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6201 6202 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6203 unsigned &RegOut = ConstantsOut[C]; 6204 if (RegOut == 0) { 6205 RegOut = FuncInfo.CreateRegs(C->getType()); 6206 CopyValueToVirtualRegister(C, RegOut); 6207 } 6208 Reg = RegOut; 6209 } else { 6210 DenseMap<const Value *, unsigned>::iterator I = 6211 FuncInfo.ValueMap.find(PHIOp); 6212 if (I != FuncInfo.ValueMap.end()) 6213 Reg = I->second; 6214 else { 6215 assert(isa<AllocaInst>(PHIOp) && 6216 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6217 "Didn't codegen value into a register!??"); 6218 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6219 CopyValueToVirtualRegister(PHIOp, Reg); 6220 } 6221 } 6222 6223 // Remember that this register needs to added to the machine PHI node as 6224 // the input for this MBB. 6225 SmallVector<EVT, 4> ValueVTs; 6226 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6227 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6228 EVT VT = ValueVTs[vti]; 6229 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6230 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6231 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6232 Reg += NumRegisters; 6233 } 6234 } 6235 } 6236 ConstantsOut.clear(); 6237 } 6238