1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/Constants.h" 24 #include "llvm/CallingConv.h" 25 #include "llvm/DebugInfo.h" 26 #include "llvm/DerivedTypes.h" 27 #include "llvm/Function.h" 28 #include "llvm/GlobalVariable.h" 29 #include "llvm/InlineAsm.h" 30 #include "llvm/Instructions.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/IntrinsicInst.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Module.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/FastISel.h" 37 #include "llvm/CodeGen/FunctionLoweringInfo.h" 38 #include "llvm/CodeGen/GCStrategy.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineJumpTableInfo.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/SelectionDAG.h" 47 #include "llvm/DataLayout.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLibraryInfo.h" 52 #include "llvm/Target/TargetLowering.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/IntegersSubsetMapping.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MathExtras.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 using namespace llvm; 62 63 /// LimitFloatPrecision - Generate low-precision inline sequences for 64 /// some float libcalls (6, 8 or 12 bits). 65 static unsigned LimitFloatPrecision; 66 67 static cl::opt<unsigned, true> 68 LimitFPPrecision("limit-float-precision", 69 cl::desc("Generate low-precision inline sequences " 70 "for some float libcalls"), 71 cl::location(LimitFloatPrecision), 72 cl::init(0)); 73 74 // Limit the width of DAG chains. This is important in general to prevent 75 // prevent DAG-based analysis from blowing up. For example, alias analysis and 76 // load clustering may not complete in reasonable time. It is difficult to 77 // recognize and avoid this situation within each individual analysis, and 78 // future analyses are likely to have the same behavior. Limiting DAG width is 79 // the safe approach, and will be especially important with global DAGs. 80 // 81 // MaxParallelChains default is arbitrarily high to avoid affecting 82 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 83 // sequence over this should have been converted to llvm.memcpy by the 84 // frontend. It easy to induce this behavior with .ll code such as: 85 // %buffer = alloca [4096 x i8] 86 // %data = load [4096 x i8]* %argPtr 87 // store [4096 x i8] %data, [4096 x i8]* %buffer 88 static const unsigned MaxParallelChains = 64; 89 90 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 91 const SDValue *Parts, unsigned NumParts, 92 EVT PartVT, EVT ValueVT, const Value *V); 93 94 /// getCopyFromParts - Create a value that contains the specified legal parts 95 /// combined into the value they represent. If the parts combine to a type 96 /// larger then ValueVT then AssertOp can be used to specify whether the extra 97 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 98 /// (ISD::AssertSext). 99 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 100 const SDValue *Parts, 101 unsigned NumParts, EVT PartVT, EVT ValueVT, 102 const Value *V, 103 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 104 if (ValueVT.isVector()) 105 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 106 PartVT, ValueVT, V); 107 108 assert(NumParts > 0 && "No parts to assemble!"); 109 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 110 SDValue Val = Parts[0]; 111 112 if (NumParts > 1) { 113 // Assemble the value from multiple parts. 114 if (ValueVT.isInteger()) { 115 unsigned PartBits = PartVT.getSizeInBits(); 116 unsigned ValueBits = ValueVT.getSizeInBits(); 117 118 // Assemble the power of 2 part. 119 unsigned RoundParts = NumParts & (NumParts - 1) ? 120 1 << Log2_32(NumParts) : NumParts; 121 unsigned RoundBits = PartBits * RoundParts; 122 EVT RoundVT = RoundBits == ValueBits ? 123 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 124 SDValue Lo, Hi; 125 126 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 127 128 if (RoundParts > 2) { 129 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 130 PartVT, HalfVT, V); 131 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 132 RoundParts / 2, PartVT, HalfVT, V); 133 } else { 134 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 135 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 136 } 137 138 if (TLI.isBigEndian()) 139 std::swap(Lo, Hi); 140 141 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 142 143 if (RoundParts < NumParts) { 144 // Assemble the trailing non-power-of-2 part. 145 unsigned OddParts = NumParts - RoundParts; 146 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 147 Hi = getCopyFromParts(DAG, DL, 148 Parts + RoundParts, OddParts, PartVT, OddVT, V); 149 150 // Combine the round and odd parts. 151 Lo = Val; 152 if (TLI.isBigEndian()) 153 std::swap(Lo, Hi); 154 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 155 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 156 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 157 DAG.getConstant(Lo.getValueType().getSizeInBits(), 158 TLI.getPointerTy())); 159 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 160 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 161 } 162 } else if (PartVT.isFloatingPoint()) { 163 // FP split into multiple FP parts (for ppcf128) 164 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 165 "Unexpected split"); 166 SDValue Lo, Hi; 167 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 168 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 169 if (TLI.isBigEndian()) 170 std::swap(Lo, Hi); 171 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 172 } else { 173 // FP split into integer parts (soft fp) 174 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 175 !PartVT.isVector() && "Unexpected split"); 176 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 177 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 178 } 179 } 180 181 // There is now one part, held in Val. Correct it to match ValueVT. 182 PartVT = Val.getValueType(); 183 184 if (PartVT == ValueVT) 185 return Val; 186 187 if (PartVT.isInteger() && ValueVT.isInteger()) { 188 if (ValueVT.bitsLT(PartVT)) { 189 // For a truncate, see if we have any information to 190 // indicate whether the truncated bits will always be 191 // zero or sign-extension. 192 if (AssertOp != ISD::DELETED_NODE) 193 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 194 DAG.getValueType(ValueVT)); 195 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 196 } 197 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 198 } 199 200 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 201 // FP_ROUND's are always exact here. 202 if (ValueVT.bitsLT(Val.getValueType())) 203 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 204 DAG.getTargetConstant(1, TLI.getPointerTy())); 205 206 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 207 } 208 209 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 210 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 211 212 llvm_unreachable("Unknown mismatch!"); 213 } 214 215 /// getCopyFromPartsVector - Create a value that contains the specified legal 216 /// parts combined into the value they represent. If the parts combine to a 217 /// type larger then ValueVT then AssertOp can be used to specify whether the 218 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 219 /// ValueVT (ISD::AssertSext). 220 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 221 const SDValue *Parts, unsigned NumParts, 222 EVT PartVT, EVT ValueVT, const Value *V) { 223 assert(ValueVT.isVector() && "Not a vector value"); 224 assert(NumParts > 0 && "No parts to assemble!"); 225 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 226 SDValue Val = Parts[0]; 227 228 // Handle a multi-element vector. 229 if (NumParts > 1) { 230 EVT IntermediateVT, RegisterVT; 231 unsigned NumIntermediates; 232 unsigned NumRegs = 233 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 234 NumIntermediates, RegisterVT); 235 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 236 NumParts = NumRegs; // Silence a compiler warning. 237 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 238 assert(RegisterVT == Parts[0].getValueType() && 239 "Part type doesn't match part!"); 240 241 // Assemble the parts into intermediate operands. 242 SmallVector<SDValue, 8> Ops(NumIntermediates); 243 if (NumIntermediates == NumParts) { 244 // If the register was not expanded, truncate or copy the value, 245 // as appropriate. 246 for (unsigned i = 0; i != NumParts; ++i) 247 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 248 PartVT, IntermediateVT, V); 249 } else if (NumParts > 0) { 250 // If the intermediate type was expanded, build the intermediate 251 // operands from the parts. 252 assert(NumParts % NumIntermediates == 0 && 253 "Must expand into a divisible number of parts!"); 254 unsigned Factor = NumParts / NumIntermediates; 255 for (unsigned i = 0; i != NumIntermediates; ++i) 256 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 257 PartVT, IntermediateVT, V); 258 } 259 260 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 261 // intermediate operands. 262 Val = DAG.getNode(IntermediateVT.isVector() ? 263 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 264 ValueVT, &Ops[0], NumIntermediates); 265 } 266 267 // There is now one part, held in Val. Correct it to match ValueVT. 268 PartVT = Val.getValueType(); 269 270 if (PartVT == ValueVT) 271 return Val; 272 273 if (PartVT.isVector()) { 274 // If the element type of the source/dest vectors are the same, but the 275 // parts vector has more elements than the value vector, then we have a 276 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 277 // elements we want. 278 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 279 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 280 "Cannot narrow, it would be a lossy transformation"); 281 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 282 DAG.getIntPtrConstant(0)); 283 } 284 285 // Vector/Vector bitcast. 286 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 287 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 288 289 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 290 "Cannot handle this kind of promotion"); 291 // Promoted vector extract 292 bool Smaller = ValueVT.bitsLE(PartVT); 293 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 294 DL, ValueVT, Val); 295 296 } 297 298 // Trivial bitcast if the types are the same size and the destination 299 // vector type is legal. 300 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 301 TLI.isTypeLegal(ValueVT)) 302 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 303 304 // Handle cases such as i8 -> <1 x i1> 305 if (ValueVT.getVectorNumElements() != 1) { 306 LLVMContext &Ctx = *DAG.getContext(); 307 Twine ErrMsg("non-trivial scalar-to-vector conversion"); 308 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 309 if (const CallInst *CI = dyn_cast<CallInst>(I)) 310 if (isa<InlineAsm>(CI->getCalledValue())) 311 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 312 Ctx.emitError(I, ErrMsg); 313 } else { 314 Ctx.emitError(ErrMsg); 315 } 316 report_fatal_error("Cannot handle scalar-to-vector conversion!"); 317 } 318 319 if (ValueVT.getVectorNumElements() == 1 && 320 ValueVT.getVectorElementType() != PartVT) { 321 bool Smaller = ValueVT.bitsLE(PartVT); 322 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 323 DL, ValueVT.getScalarType(), Val); 324 } 325 326 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 327 } 328 329 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 330 SDValue Val, SDValue *Parts, unsigned NumParts, 331 EVT PartVT, const Value *V); 332 333 /// getCopyToParts - Create a series of nodes that contain the specified value 334 /// split into legal parts. If the parts contain more bits than Val, then, for 335 /// integers, ExtendKind can be used to specify how to generate the extra bits. 336 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 337 SDValue Val, SDValue *Parts, unsigned NumParts, 338 EVT PartVT, const Value *V, 339 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 340 EVT ValueVT = Val.getValueType(); 341 342 // Handle the vector case separately. 343 if (ValueVT.isVector()) 344 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 345 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 unsigned PartBits = PartVT.getSizeInBits(); 348 unsigned OrigNumParts = NumParts; 349 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 350 351 if (NumParts == 0) 352 return; 353 354 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 355 if (PartVT == ValueVT) { 356 assert(NumParts == 1 && "No-op copy with multiple parts!"); 357 Parts[0] = Val; 358 return; 359 } 360 361 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 362 // If the parts cover more bits than the value has, promote the value. 363 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 364 assert(NumParts == 1 && "Do not know what to promote to!"); 365 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 366 } else { 367 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 368 ValueVT.isInteger() && 369 "Unknown mismatch!"); 370 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 371 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 372 if (PartVT == MVT::x86mmx) 373 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 374 } 375 } else if (PartBits == ValueVT.getSizeInBits()) { 376 // Different types of the same size. 377 assert(NumParts == 1 && PartVT != ValueVT); 378 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 379 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 380 // If the parts cover less bits than value has, truncate the value. 381 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 382 ValueVT.isInteger() && 383 "Unknown mismatch!"); 384 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 385 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 386 if (PartVT == MVT::x86mmx) 387 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 388 } 389 390 // The value may have changed - recompute ValueVT. 391 ValueVT = Val.getValueType(); 392 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 393 "Failed to tile the value with PartVT!"); 394 395 if (NumParts == 1) { 396 if (PartVT != ValueVT) { 397 LLVMContext &Ctx = *DAG.getContext(); 398 Twine ErrMsg("scalar-to-vector conversion failed"); 399 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 400 if (const CallInst *CI = dyn_cast<CallInst>(I)) 401 if (isa<InlineAsm>(CI->getCalledValue())) 402 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 403 Ctx.emitError(I, ErrMsg); 404 } else { 405 Ctx.emitError(ErrMsg); 406 } 407 } 408 409 Parts[0] = Val; 410 return; 411 } 412 413 // Expand the value into multiple parts. 414 if (NumParts & (NumParts - 1)) { 415 // The number of parts is not a power of 2. Split off and copy the tail. 416 assert(PartVT.isInteger() && ValueVT.isInteger() && 417 "Do not know what to expand to!"); 418 unsigned RoundParts = 1 << Log2_32(NumParts); 419 unsigned RoundBits = RoundParts * PartBits; 420 unsigned OddParts = NumParts - RoundParts; 421 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 422 DAG.getIntPtrConstant(RoundBits)); 423 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 424 425 if (TLI.isBigEndian()) 426 // The odd parts were reversed by getCopyToParts - unreverse them. 427 std::reverse(Parts + RoundParts, Parts + NumParts); 428 429 NumParts = RoundParts; 430 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 431 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 432 } 433 434 // The number of parts is a power of 2. Repeatedly bisect the value using 435 // EXTRACT_ELEMENT. 436 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 437 EVT::getIntegerVT(*DAG.getContext(), 438 ValueVT.getSizeInBits()), 439 Val); 440 441 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 442 for (unsigned i = 0; i < NumParts; i += StepSize) { 443 unsigned ThisBits = StepSize * PartBits / 2; 444 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 445 SDValue &Part0 = Parts[i]; 446 SDValue &Part1 = Parts[i+StepSize/2]; 447 448 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 449 ThisVT, Part0, DAG.getIntPtrConstant(1)); 450 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 451 ThisVT, Part0, DAG.getIntPtrConstant(0)); 452 453 if (ThisBits == PartBits && ThisVT != PartVT) { 454 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 455 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 456 } 457 } 458 } 459 460 if (TLI.isBigEndian()) 461 std::reverse(Parts, Parts + OrigNumParts); 462 } 463 464 465 /// getCopyToPartsVector - Create a series of nodes that contain the specified 466 /// value split into legal parts. 467 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 468 SDValue Val, SDValue *Parts, unsigned NumParts, 469 EVT PartVT, const Value *V) { 470 EVT ValueVT = Val.getValueType(); 471 assert(ValueVT.isVector() && "Not a vector"); 472 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 473 474 if (NumParts == 1) { 475 if (PartVT == ValueVT) { 476 // Nothing to do. 477 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 478 // Bitconvert vector->vector case. 479 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 480 } else if (PartVT.isVector() && 481 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 482 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 483 EVT ElementVT = PartVT.getVectorElementType(); 484 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 485 // undef elements. 486 SmallVector<SDValue, 16> Ops; 487 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 488 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 489 ElementVT, Val, DAG.getIntPtrConstant(i))); 490 491 for (unsigned i = ValueVT.getVectorNumElements(), 492 e = PartVT.getVectorNumElements(); i != e; ++i) 493 Ops.push_back(DAG.getUNDEF(ElementVT)); 494 495 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 496 497 // FIXME: Use CONCAT for 2x -> 4x. 498 499 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 500 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 501 } else if (PartVT.isVector() && 502 PartVT.getVectorElementType().bitsGE( 503 ValueVT.getVectorElementType()) && 504 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 505 506 // Promoted vector extract 507 bool Smaller = PartVT.bitsLE(ValueVT); 508 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 509 DL, PartVT, Val); 510 } else{ 511 // Vector -> scalar conversion. 512 assert(ValueVT.getVectorNumElements() == 1 && 513 "Only trivial vector-to-scalar conversions should get here!"); 514 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 515 PartVT, Val, DAG.getIntPtrConstant(0)); 516 517 bool Smaller = ValueVT.bitsLE(PartVT); 518 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 519 DL, PartVT, Val); 520 } 521 522 Parts[0] = Val; 523 return; 524 } 525 526 // Handle a multi-element vector. 527 EVT IntermediateVT, RegisterVT; 528 unsigned NumIntermediates; 529 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 530 IntermediateVT, 531 NumIntermediates, RegisterVT); 532 unsigned NumElements = ValueVT.getVectorNumElements(); 533 534 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 535 NumParts = NumRegs; // Silence a compiler warning. 536 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 537 538 // Split the vector into intermediate operands. 539 SmallVector<SDValue, 8> Ops(NumIntermediates); 540 for (unsigned i = 0; i != NumIntermediates; ++i) { 541 if (IntermediateVT.isVector()) 542 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 543 IntermediateVT, Val, 544 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 545 else 546 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 547 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 548 } 549 550 // Split the intermediate operands into legal parts. 551 if (NumParts == NumIntermediates) { 552 // If the register was not expanded, promote or copy the value, 553 // as appropriate. 554 for (unsigned i = 0; i != NumParts; ++i) 555 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 556 } else if (NumParts > 0) { 557 // If the intermediate type was expanded, split each the value into 558 // legal parts. 559 assert(NumParts % NumIntermediates == 0 && 560 "Must expand into a divisible number of parts!"); 561 unsigned Factor = NumParts / NumIntermediates; 562 for (unsigned i = 0; i != NumIntermediates; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 564 } 565 } 566 567 namespace { 568 /// RegsForValue - This struct represents the registers (physical or virtual) 569 /// that a particular set of values is assigned, and the type information 570 /// about the value. The most common situation is to represent one value at a 571 /// time, but struct or array values are handled element-wise as multiple 572 /// values. The splitting of aggregates is performed recursively, so that we 573 /// never have aggregate-typed registers. The values at this point do not 574 /// necessarily have legal types, so each value may require one or more 575 /// registers of some legal type. 576 /// 577 struct RegsForValue { 578 /// ValueVTs - The value types of the values, which may not be legal, and 579 /// may need be promoted or synthesized from one or more registers. 580 /// 581 SmallVector<EVT, 4> ValueVTs; 582 583 /// RegVTs - The value types of the registers. This is the same size as 584 /// ValueVTs and it records, for each value, what the type of the assigned 585 /// register or registers are. (Individual values are never synthesized 586 /// from more than one type of register.) 587 /// 588 /// With virtual registers, the contents of RegVTs is redundant with TLI's 589 /// getRegisterType member function, however when with physical registers 590 /// it is necessary to have a separate record of the types. 591 /// 592 SmallVector<EVT, 4> RegVTs; 593 594 /// Regs - This list holds the registers assigned to the values. 595 /// Each legal or promoted value requires one register, and each 596 /// expanded value requires multiple registers. 597 /// 598 SmallVector<unsigned, 4> Regs; 599 600 RegsForValue() {} 601 602 RegsForValue(const SmallVector<unsigned, 4> ®s, 603 EVT regvt, EVT valuevt) 604 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 605 606 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 607 unsigned Reg, Type *Ty) { 608 ComputeValueVTs(tli, Ty, ValueVTs); 609 610 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 611 EVT ValueVT = ValueVTs[Value]; 612 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 613 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 614 for (unsigned i = 0; i != NumRegs; ++i) 615 Regs.push_back(Reg + i); 616 RegVTs.push_back(RegisterVT); 617 Reg += NumRegs; 618 } 619 } 620 621 /// areValueTypesLegal - Return true if types of all the values are legal. 622 bool areValueTypesLegal(const TargetLowering &TLI) { 623 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 624 EVT RegisterVT = RegVTs[Value]; 625 if (!TLI.isTypeLegal(RegisterVT)) 626 return false; 627 } 628 return true; 629 } 630 631 /// append - Add the specified values to this one. 632 void append(const RegsForValue &RHS) { 633 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 634 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 635 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 636 } 637 638 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 639 /// this value and returns the result as a ValueVTs value. This uses 640 /// Chain/Flag as the input and updates them for the output Chain/Flag. 641 /// If the Flag pointer is NULL, no flag is used. 642 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 643 DebugLoc dl, 644 SDValue &Chain, SDValue *Flag, 645 const Value *V = 0) const; 646 647 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 648 /// specified value into the registers specified by this object. This uses 649 /// Chain/Flag as the input and updates them for the output Chain/Flag. 650 /// If the Flag pointer is NULL, no flag is used. 651 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 652 SDValue &Chain, SDValue *Flag, const Value *V) const; 653 654 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 655 /// operand list. This adds the code marker, matching input operand index 656 /// (if applicable), and includes the number of values added into it. 657 void AddInlineAsmOperands(unsigned Kind, 658 bool HasMatching, unsigned MatchingIdx, 659 SelectionDAG &DAG, 660 std::vector<SDValue> &Ops) const; 661 }; 662 } 663 664 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 665 /// this value and returns the result as a ValueVT value. This uses 666 /// Chain/Flag as the input and updates them for the output Chain/Flag. 667 /// If the Flag pointer is NULL, no flag is used. 668 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 669 FunctionLoweringInfo &FuncInfo, 670 DebugLoc dl, 671 SDValue &Chain, SDValue *Flag, 672 const Value *V) const { 673 // A Value with type {} or [0 x %t] needs no registers. 674 if (ValueVTs.empty()) 675 return SDValue(); 676 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 679 // Assemble the legal parts into the final values. 680 SmallVector<SDValue, 4> Values(ValueVTs.size()); 681 SmallVector<SDValue, 8> Parts; 682 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 683 // Copy the legal parts from the registers. 684 EVT ValueVT = ValueVTs[Value]; 685 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 686 EVT RegisterVT = RegVTs[Value]; 687 688 Parts.resize(NumRegs); 689 for (unsigned i = 0; i != NumRegs; ++i) { 690 SDValue P; 691 if (Flag == 0) { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 693 } else { 694 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 695 *Flag = P.getValue(2); 696 } 697 698 Chain = P.getValue(1); 699 Parts[i] = P; 700 701 // If the source register was virtual and if we know something about it, 702 // add an assert node. 703 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 704 !RegisterVT.isInteger() || RegisterVT.isVector()) 705 continue; 706 707 const FunctionLoweringInfo::LiveOutInfo *LOI = 708 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 709 if (!LOI) 710 continue; 711 712 unsigned RegSize = RegisterVT.getSizeInBits(); 713 unsigned NumSignBits = LOI->NumSignBits; 714 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 715 716 // FIXME: We capture more information than the dag can represent. For 717 // now, just use the tightest assertzext/assertsext possible. 718 bool isSExt = true; 719 EVT FromVT(MVT::Other); 720 if (NumSignBits == RegSize) 721 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 722 else if (NumZeroBits >= RegSize-1) 723 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 724 else if (NumSignBits > RegSize-8) 725 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 726 else if (NumZeroBits >= RegSize-8) 727 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 728 else if (NumSignBits > RegSize-16) 729 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 730 else if (NumZeroBits >= RegSize-16) 731 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 732 else if (NumSignBits > RegSize-32) 733 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 734 else if (NumZeroBits >= RegSize-32) 735 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 736 else 737 continue; 738 739 // Add an assertion node. 740 assert(FromVT != MVT::Other); 741 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 742 RegisterVT, P, DAG.getValueType(FromVT)); 743 } 744 745 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 746 NumRegs, RegisterVT, ValueVT, V); 747 Part += NumRegs; 748 Parts.clear(); 749 } 750 751 return DAG.getNode(ISD::MERGE_VALUES, dl, 752 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 753 &Values[0], ValueVTs.size()); 754 } 755 756 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 757 /// specified value into the registers specified by this object. This uses 758 /// Chain/Flag as the input and updates them for the output Chain/Flag. 759 /// If the Flag pointer is NULL, no flag is used. 760 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 761 SDValue &Chain, SDValue *Flag, 762 const Value *V) const { 763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 764 765 // Get the list of the values's legal parts. 766 unsigned NumRegs = Regs.size(); 767 SmallVector<SDValue, 8> Parts(NumRegs); 768 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 769 EVT ValueVT = ValueVTs[Value]; 770 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 771 EVT RegisterVT = RegVTs[Value]; 772 773 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 774 &Parts[Part], NumParts, RegisterVT, V); 775 Part += NumParts; 776 } 777 778 // Copy the parts into the registers. 779 SmallVector<SDValue, 8> Chains(NumRegs); 780 for (unsigned i = 0; i != NumRegs; ++i) { 781 SDValue Part; 782 if (Flag == 0) { 783 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 784 } else { 785 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 786 *Flag = Part.getValue(1); 787 } 788 789 Chains[i] = Part.getValue(0); 790 } 791 792 if (NumRegs == 1 || Flag) 793 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 794 // flagged to it. That is the CopyToReg nodes and the user are considered 795 // a single scheduling unit. If we create a TokenFactor and return it as 796 // chain, then the TokenFactor is both a predecessor (operand) of the 797 // user as well as a successor (the TF operands are flagged to the user). 798 // c1, f1 = CopyToReg 799 // c2, f2 = CopyToReg 800 // c3 = TokenFactor c1, c2 801 // ... 802 // = op c3, ..., f2 803 Chain = Chains[NumRegs-1]; 804 else 805 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 806 } 807 808 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 809 /// operand list. This adds the code marker and includes the number of 810 /// values added into it. 811 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 812 unsigned MatchingIdx, 813 SelectionDAG &DAG, 814 std::vector<SDValue> &Ops) const { 815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 816 817 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 818 if (HasMatching) 819 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 820 else if (!Regs.empty() && 821 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 822 // Put the register class of the virtual registers in the flag word. That 823 // way, later passes can recompute register class constraints for inline 824 // assembly as well as normal instructions. 825 // Don't do this for tied operands that can use the regclass information 826 // from the def. 827 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 828 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 829 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 830 } 831 832 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 833 Ops.push_back(Res); 834 835 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 836 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 837 EVT RegisterVT = RegVTs[Value]; 838 for (unsigned i = 0; i != NumRegs; ++i) { 839 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 840 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 841 } 842 } 843 } 844 845 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 846 const TargetLibraryInfo *li) { 847 AA = &aa; 848 GFI = gfi; 849 LibInfo = li; 850 TD = DAG.getTarget().getDataLayout(); 851 Context = DAG.getContext(); 852 LPadToCallSiteMap.clear(); 853 } 854 855 /// clear - Clear out the current SelectionDAG and the associated 856 /// state and prepare this SelectionDAGBuilder object to be used 857 /// for a new block. This doesn't clear out information about 858 /// additional blocks that are needed to complete switch lowering 859 /// or PHI node updating; that information is cleared out as it is 860 /// consumed. 861 void SelectionDAGBuilder::clear() { 862 NodeMap.clear(); 863 UnusedArgNodeMap.clear(); 864 PendingLoads.clear(); 865 PendingExports.clear(); 866 CurDebugLoc = DebugLoc(); 867 HasTailCall = false; 868 } 869 870 /// clearDanglingDebugInfo - Clear the dangling debug information 871 /// map. This function is separated from the clear so that debug 872 /// information that is dangling in a basic block can be properly 873 /// resolved in a different basic block. This allows the 874 /// SelectionDAG to resolve dangling debug information attached 875 /// to PHI nodes. 876 void SelectionDAGBuilder::clearDanglingDebugInfo() { 877 DanglingDebugInfoMap.clear(); 878 } 879 880 /// getRoot - Return the current virtual root of the Selection DAG, 881 /// flushing any PendingLoad items. This must be done before emitting 882 /// a store or any other node that may need to be ordered after any 883 /// prior load instructions. 884 /// 885 SDValue SelectionDAGBuilder::getRoot() { 886 if (PendingLoads.empty()) 887 return DAG.getRoot(); 888 889 if (PendingLoads.size() == 1) { 890 SDValue Root = PendingLoads[0]; 891 DAG.setRoot(Root); 892 PendingLoads.clear(); 893 return Root; 894 } 895 896 // Otherwise, we have to make a token factor node. 897 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 898 &PendingLoads[0], PendingLoads.size()); 899 PendingLoads.clear(); 900 DAG.setRoot(Root); 901 return Root; 902 } 903 904 /// getControlRoot - Similar to getRoot, but instead of flushing all the 905 /// PendingLoad items, flush all the PendingExports items. It is necessary 906 /// to do this before emitting a terminator instruction. 907 /// 908 SDValue SelectionDAGBuilder::getControlRoot() { 909 SDValue Root = DAG.getRoot(); 910 911 if (PendingExports.empty()) 912 return Root; 913 914 // Turn all of the CopyToReg chains into one factored node. 915 if (Root.getOpcode() != ISD::EntryToken) { 916 unsigned i = 0, e = PendingExports.size(); 917 for (; i != e; ++i) { 918 assert(PendingExports[i].getNode()->getNumOperands() > 1); 919 if (PendingExports[i].getNode()->getOperand(0) == Root) 920 break; // Don't add the root if we already indirectly depend on it. 921 } 922 923 if (i == e) 924 PendingExports.push_back(Root); 925 } 926 927 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 928 &PendingExports[0], 929 PendingExports.size()); 930 PendingExports.clear(); 931 DAG.setRoot(Root); 932 return Root; 933 } 934 935 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 936 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 937 DAG.AssignOrdering(Node, SDNodeOrder); 938 939 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 940 AssignOrderingToNode(Node->getOperand(I).getNode()); 941 } 942 943 void SelectionDAGBuilder::visit(const Instruction &I) { 944 // Set up outgoing PHI node register values before emitting the terminator. 945 if (isa<TerminatorInst>(&I)) 946 HandlePHINodesInSuccessorBlocks(I.getParent()); 947 948 CurDebugLoc = I.getDebugLoc(); 949 950 visit(I.getOpcode(), I); 951 952 if (!isa<TerminatorInst>(&I) && !HasTailCall) 953 CopyToExportRegsIfNeeded(&I); 954 955 CurDebugLoc = DebugLoc(); 956 } 957 958 void SelectionDAGBuilder::visitPHI(const PHINode &) { 959 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 960 } 961 962 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 963 // Note: this doesn't use InstVisitor, because it has to work with 964 // ConstantExpr's in addition to instructions. 965 switch (Opcode) { 966 default: llvm_unreachable("Unknown instruction type encountered!"); 967 // Build the switch statement using the Instruction.def file. 968 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 969 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 970 #include "llvm/Instruction.def" 971 } 972 973 // Assign the ordering to the freshly created DAG nodes. 974 if (NodeMap.count(&I)) { 975 ++SDNodeOrder; 976 AssignOrderingToNode(getValue(&I).getNode()); 977 } 978 } 979 980 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 981 // generate the debug data structures now that we've seen its definition. 982 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 983 SDValue Val) { 984 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 985 if (DDI.getDI()) { 986 const DbgValueInst *DI = DDI.getDI(); 987 DebugLoc dl = DDI.getdl(); 988 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 989 MDNode *Variable = DI->getVariable(); 990 uint64_t Offset = DI->getOffset(); 991 SDDbgValue *SDV; 992 if (Val.getNode()) { 993 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 994 SDV = DAG.getDbgValue(Variable, Val.getNode(), 995 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 996 DAG.AddDbgValue(SDV, Val.getNode(), false); 997 } 998 } else 999 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1000 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1001 } 1002 } 1003 1004 /// getValue - Return an SDValue for the given Value. 1005 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1006 // If we already have an SDValue for this value, use it. It's important 1007 // to do this first, so that we don't create a CopyFromReg if we already 1008 // have a regular SDValue. 1009 SDValue &N = NodeMap[V]; 1010 if (N.getNode()) return N; 1011 1012 // If there's a virtual register allocated and initialized for this 1013 // value, use it. 1014 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1015 if (It != FuncInfo.ValueMap.end()) { 1016 unsigned InReg = It->second; 1017 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 1018 SDValue Chain = DAG.getEntryNode(); 1019 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V); 1020 resolveDanglingDebugInfo(V, N); 1021 return N; 1022 } 1023 1024 // Otherwise create a new SDValue and remember it. 1025 SDValue Val = getValueImpl(V); 1026 NodeMap[V] = Val; 1027 resolveDanglingDebugInfo(V, Val); 1028 return Val; 1029 } 1030 1031 /// getNonRegisterValue - Return an SDValue for the given Value, but 1032 /// don't look in FuncInfo.ValueMap for a virtual register. 1033 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1034 // If we already have an SDValue for this value, use it. 1035 SDValue &N = NodeMap[V]; 1036 if (N.getNode()) return N; 1037 1038 // Otherwise create a new SDValue and remember it. 1039 SDValue Val = getValueImpl(V); 1040 NodeMap[V] = Val; 1041 resolveDanglingDebugInfo(V, Val); 1042 return Val; 1043 } 1044 1045 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1046 /// Create an SDValue for the given value. 1047 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1048 if (const Constant *C = dyn_cast<Constant>(V)) { 1049 EVT VT = TLI.getValueType(V->getType(), true); 1050 1051 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1052 return DAG.getConstant(*CI, VT); 1053 1054 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1055 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1056 1057 if (isa<ConstantPointerNull>(C)) 1058 return DAG.getConstant(0, TLI.getPointerTy()); 1059 1060 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1061 return DAG.getConstantFP(*CFP, VT); 1062 1063 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1064 return DAG.getUNDEF(VT); 1065 1066 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1067 visit(CE->getOpcode(), *CE); 1068 SDValue N1 = NodeMap[V]; 1069 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1070 return N1; 1071 } 1072 1073 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1074 SmallVector<SDValue, 4> Constants; 1075 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1076 OI != OE; ++OI) { 1077 SDNode *Val = getValue(*OI).getNode(); 1078 // If the operand is an empty aggregate, there are no values. 1079 if (!Val) continue; 1080 // Add each leaf value from the operand to the Constants list 1081 // to form a flattened list of all the values. 1082 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1083 Constants.push_back(SDValue(Val, i)); 1084 } 1085 1086 return DAG.getMergeValues(&Constants[0], Constants.size(), 1087 getCurDebugLoc()); 1088 } 1089 1090 if (const ConstantDataSequential *CDS = 1091 dyn_cast<ConstantDataSequential>(C)) { 1092 SmallVector<SDValue, 4> Ops; 1093 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1094 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1095 // Add each leaf value from the operand to the Constants list 1096 // to form a flattened list of all the values. 1097 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1098 Ops.push_back(SDValue(Val, i)); 1099 } 1100 1101 if (isa<ArrayType>(CDS->getType())) 1102 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc()); 1103 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1104 VT, &Ops[0], Ops.size()); 1105 } 1106 1107 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1108 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1109 "Unknown struct or array constant!"); 1110 1111 SmallVector<EVT, 4> ValueVTs; 1112 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1113 unsigned NumElts = ValueVTs.size(); 1114 if (NumElts == 0) 1115 return SDValue(); // empty struct 1116 SmallVector<SDValue, 4> Constants(NumElts); 1117 for (unsigned i = 0; i != NumElts; ++i) { 1118 EVT EltVT = ValueVTs[i]; 1119 if (isa<UndefValue>(C)) 1120 Constants[i] = DAG.getUNDEF(EltVT); 1121 else if (EltVT.isFloatingPoint()) 1122 Constants[i] = DAG.getConstantFP(0, EltVT); 1123 else 1124 Constants[i] = DAG.getConstant(0, EltVT); 1125 } 1126 1127 return DAG.getMergeValues(&Constants[0], NumElts, 1128 getCurDebugLoc()); 1129 } 1130 1131 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1132 return DAG.getBlockAddress(BA, VT); 1133 1134 VectorType *VecTy = cast<VectorType>(V->getType()); 1135 unsigned NumElements = VecTy->getNumElements(); 1136 1137 // Now that we know the number and type of the elements, get that number of 1138 // elements into the Ops array based on what kind of constant it is. 1139 SmallVector<SDValue, 16> Ops; 1140 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1141 for (unsigned i = 0; i != NumElements; ++i) 1142 Ops.push_back(getValue(CV->getOperand(i))); 1143 } else { 1144 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1145 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1146 1147 SDValue Op; 1148 if (EltVT.isFloatingPoint()) 1149 Op = DAG.getConstantFP(0, EltVT); 1150 else 1151 Op = DAG.getConstant(0, EltVT); 1152 Ops.assign(NumElements, Op); 1153 } 1154 1155 // Create a BUILD_VECTOR node. 1156 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1157 VT, &Ops[0], Ops.size()); 1158 } 1159 1160 // If this is a static alloca, generate it as the frameindex instead of 1161 // computation. 1162 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1163 DenseMap<const AllocaInst*, int>::iterator SI = 1164 FuncInfo.StaticAllocaMap.find(AI); 1165 if (SI != FuncInfo.StaticAllocaMap.end()) 1166 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1167 } 1168 1169 // If this is an instruction which fast-isel has deferred, select it now. 1170 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1171 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1172 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1173 SDValue Chain = DAG.getEntryNode(); 1174 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V); 1175 } 1176 1177 llvm_unreachable("Can't get register for value!"); 1178 } 1179 1180 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1181 SDValue Chain = getControlRoot(); 1182 SmallVector<ISD::OutputArg, 8> Outs; 1183 SmallVector<SDValue, 8> OutVals; 1184 1185 if (!FuncInfo.CanLowerReturn) { 1186 unsigned DemoteReg = FuncInfo.DemoteRegister; 1187 const Function *F = I.getParent()->getParent(); 1188 1189 // Emit a store of the return value through the virtual register. 1190 // Leave Outs empty so that LowerReturn won't try to load return 1191 // registers the usual way. 1192 SmallVector<EVT, 1> PtrValueVTs; 1193 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1194 PtrValueVTs); 1195 1196 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1197 SDValue RetOp = getValue(I.getOperand(0)); 1198 1199 SmallVector<EVT, 4> ValueVTs; 1200 SmallVector<uint64_t, 4> Offsets; 1201 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1202 unsigned NumValues = ValueVTs.size(); 1203 1204 SmallVector<SDValue, 4> Chains(NumValues); 1205 for (unsigned i = 0; i != NumValues; ++i) { 1206 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1207 RetPtr.getValueType(), RetPtr, 1208 DAG.getIntPtrConstant(Offsets[i])); 1209 Chains[i] = 1210 DAG.getStore(Chain, getCurDebugLoc(), 1211 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1212 // FIXME: better loc info would be nice. 1213 Add, MachinePointerInfo(), false, false, 0); 1214 } 1215 1216 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1217 MVT::Other, &Chains[0], NumValues); 1218 } else if (I.getNumOperands() != 0) { 1219 SmallVector<EVT, 4> ValueVTs; 1220 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1221 unsigned NumValues = ValueVTs.size(); 1222 if (NumValues) { 1223 SDValue RetOp = getValue(I.getOperand(0)); 1224 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1225 EVT VT = ValueVTs[j]; 1226 1227 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1228 1229 const Function *F = I.getParent()->getParent(); 1230 if (F->getRetAttributes().hasAttribute(Attributes::SExt)) 1231 ExtendKind = ISD::SIGN_EXTEND; 1232 else if (F->getRetAttributes().hasAttribute(Attributes::ZExt)) 1233 ExtendKind = ISD::ZERO_EXTEND; 1234 1235 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1236 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1237 1238 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1239 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1240 SmallVector<SDValue, 4> Parts(NumParts); 1241 getCopyToParts(DAG, getCurDebugLoc(), 1242 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1243 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1244 1245 // 'inreg' on function refers to return value 1246 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1247 if (F->getRetAttributes().hasAttribute(Attributes::InReg)) 1248 Flags.setInReg(); 1249 1250 // Propagate extension type if any 1251 if (ExtendKind == ISD::SIGN_EXTEND) 1252 Flags.setSExt(); 1253 else if (ExtendKind == ISD::ZERO_EXTEND) 1254 Flags.setZExt(); 1255 1256 for (unsigned i = 0; i < NumParts; ++i) { 1257 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1258 /*isfixed=*/true, 0, 0)); 1259 OutVals.push_back(Parts[i]); 1260 } 1261 } 1262 } 1263 } 1264 1265 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1266 CallingConv::ID CallConv = 1267 DAG.getMachineFunction().getFunction()->getCallingConv(); 1268 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1269 Outs, OutVals, getCurDebugLoc(), DAG); 1270 1271 // Verify that the target's LowerReturn behaved as expected. 1272 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1273 "LowerReturn didn't return a valid chain!"); 1274 1275 // Update the DAG with the new chain value resulting from return lowering. 1276 DAG.setRoot(Chain); 1277 } 1278 1279 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1280 /// created for it, emit nodes to copy the value into the virtual 1281 /// registers. 1282 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1283 // Skip empty types 1284 if (V->getType()->isEmptyTy()) 1285 return; 1286 1287 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1288 if (VMI != FuncInfo.ValueMap.end()) { 1289 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1290 CopyValueToVirtualRegister(V, VMI->second); 1291 } 1292 } 1293 1294 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1295 /// the current basic block, add it to ValueMap now so that we'll get a 1296 /// CopyTo/FromReg. 1297 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1298 // No need to export constants. 1299 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1300 1301 // Already exported? 1302 if (FuncInfo.isExportedInst(V)) return; 1303 1304 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1305 CopyValueToVirtualRegister(V, Reg); 1306 } 1307 1308 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1309 const BasicBlock *FromBB) { 1310 // The operands of the setcc have to be in this block. We don't know 1311 // how to export them from some other block. 1312 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1313 // Can export from current BB. 1314 if (VI->getParent() == FromBB) 1315 return true; 1316 1317 // Is already exported, noop. 1318 return FuncInfo.isExportedInst(V); 1319 } 1320 1321 // If this is an argument, we can export it if the BB is the entry block or 1322 // if it is already exported. 1323 if (isa<Argument>(V)) { 1324 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1325 return true; 1326 1327 // Otherwise, can only export this if it is already exported. 1328 return FuncInfo.isExportedInst(V); 1329 } 1330 1331 // Otherwise, constants can always be exported. 1332 return true; 1333 } 1334 1335 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1336 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1337 const MachineBasicBlock *Dst) const { 1338 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1339 if (!BPI) 1340 return 0; 1341 const BasicBlock *SrcBB = Src->getBasicBlock(); 1342 const BasicBlock *DstBB = Dst->getBasicBlock(); 1343 return BPI->getEdgeWeight(SrcBB, DstBB); 1344 } 1345 1346 void SelectionDAGBuilder:: 1347 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1348 uint32_t Weight /* = 0 */) { 1349 if (!Weight) 1350 Weight = getEdgeWeight(Src, Dst); 1351 Src->addSuccessor(Dst, Weight); 1352 } 1353 1354 1355 static bool InBlock(const Value *V, const BasicBlock *BB) { 1356 if (const Instruction *I = dyn_cast<Instruction>(V)) 1357 return I->getParent() == BB; 1358 return true; 1359 } 1360 1361 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1362 /// This function emits a branch and is used at the leaves of an OR or an 1363 /// AND operator tree. 1364 /// 1365 void 1366 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1367 MachineBasicBlock *TBB, 1368 MachineBasicBlock *FBB, 1369 MachineBasicBlock *CurBB, 1370 MachineBasicBlock *SwitchBB) { 1371 const BasicBlock *BB = CurBB->getBasicBlock(); 1372 1373 // If the leaf of the tree is a comparison, merge the condition into 1374 // the caseblock. 1375 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1376 // The operands of the cmp have to be in this block. We don't know 1377 // how to export them from some other block. If this is the first block 1378 // of the sequence, no exporting is needed. 1379 if (CurBB == SwitchBB || 1380 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1381 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1382 ISD::CondCode Condition; 1383 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1384 Condition = getICmpCondCode(IC->getPredicate()); 1385 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1386 Condition = getFCmpCondCode(FC->getPredicate()); 1387 if (TM.Options.NoNaNsFPMath) 1388 Condition = getFCmpCodeWithoutNaN(Condition); 1389 } else { 1390 Condition = ISD::SETEQ; // silence warning. 1391 llvm_unreachable("Unknown compare instruction"); 1392 } 1393 1394 CaseBlock CB(Condition, BOp->getOperand(0), 1395 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1396 SwitchCases.push_back(CB); 1397 return; 1398 } 1399 } 1400 1401 // Create a CaseBlock record representing this branch. 1402 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1403 NULL, TBB, FBB, CurBB); 1404 SwitchCases.push_back(CB); 1405 } 1406 1407 /// FindMergedConditions - If Cond is an expression like 1408 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1409 MachineBasicBlock *TBB, 1410 MachineBasicBlock *FBB, 1411 MachineBasicBlock *CurBB, 1412 MachineBasicBlock *SwitchBB, 1413 unsigned Opc) { 1414 // If this node is not part of the or/and tree, emit it as a branch. 1415 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1416 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1417 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1418 BOp->getParent() != CurBB->getBasicBlock() || 1419 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1420 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1421 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1422 return; 1423 } 1424 1425 // Create TmpBB after CurBB. 1426 MachineFunction::iterator BBI = CurBB; 1427 MachineFunction &MF = DAG.getMachineFunction(); 1428 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1429 CurBB->getParent()->insert(++BBI, TmpBB); 1430 1431 if (Opc == Instruction::Or) { 1432 // Codegen X | Y as: 1433 // jmp_if_X TBB 1434 // jmp TmpBB 1435 // TmpBB: 1436 // jmp_if_Y TBB 1437 // jmp FBB 1438 // 1439 1440 // Emit the LHS condition. 1441 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1442 1443 // Emit the RHS condition into TmpBB. 1444 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1445 } else { 1446 assert(Opc == Instruction::And && "Unknown merge op!"); 1447 // Codegen X & Y as: 1448 // jmp_if_X TmpBB 1449 // jmp FBB 1450 // TmpBB: 1451 // jmp_if_Y TBB 1452 // jmp FBB 1453 // 1454 // This requires creation of TmpBB after CurBB. 1455 1456 // Emit the LHS condition. 1457 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1458 1459 // Emit the RHS condition into TmpBB. 1460 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1461 } 1462 } 1463 1464 /// If the set of cases should be emitted as a series of branches, return true. 1465 /// If we should emit this as a bunch of and/or'd together conditions, return 1466 /// false. 1467 bool 1468 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1469 if (Cases.size() != 2) return true; 1470 1471 // If this is two comparisons of the same values or'd or and'd together, they 1472 // will get folded into a single comparison, so don't emit two blocks. 1473 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1474 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1475 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1476 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1477 return false; 1478 } 1479 1480 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1481 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1482 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1483 Cases[0].CC == Cases[1].CC && 1484 isa<Constant>(Cases[0].CmpRHS) && 1485 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1486 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1487 return false; 1488 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1489 return false; 1490 } 1491 1492 return true; 1493 } 1494 1495 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1496 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1497 1498 // Update machine-CFG edges. 1499 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1500 1501 // Figure out which block is immediately after the current one. 1502 MachineBasicBlock *NextBlock = 0; 1503 MachineFunction::iterator BBI = BrMBB; 1504 if (++BBI != FuncInfo.MF->end()) 1505 NextBlock = BBI; 1506 1507 if (I.isUnconditional()) { 1508 // Update machine-CFG edges. 1509 BrMBB->addSuccessor(Succ0MBB); 1510 1511 // If this is not a fall-through branch, emit the branch. 1512 if (Succ0MBB != NextBlock) 1513 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1514 MVT::Other, getControlRoot(), 1515 DAG.getBasicBlock(Succ0MBB))); 1516 1517 return; 1518 } 1519 1520 // If this condition is one of the special cases we handle, do special stuff 1521 // now. 1522 const Value *CondVal = I.getCondition(); 1523 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1524 1525 // If this is a series of conditions that are or'd or and'd together, emit 1526 // this as a sequence of branches instead of setcc's with and/or operations. 1527 // As long as jumps are not expensive, this should improve performance. 1528 // For example, instead of something like: 1529 // cmp A, B 1530 // C = seteq 1531 // cmp D, E 1532 // F = setle 1533 // or C, F 1534 // jnz foo 1535 // Emit: 1536 // cmp A, B 1537 // je foo 1538 // cmp D, E 1539 // jle foo 1540 // 1541 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1542 if (!TLI.isJumpExpensive() && 1543 BOp->hasOneUse() && 1544 (BOp->getOpcode() == Instruction::And || 1545 BOp->getOpcode() == Instruction::Or)) { 1546 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1547 BOp->getOpcode()); 1548 // If the compares in later blocks need to use values not currently 1549 // exported from this block, export them now. This block should always 1550 // be the first entry. 1551 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1552 1553 // Allow some cases to be rejected. 1554 if (ShouldEmitAsBranches(SwitchCases)) { 1555 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1556 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1557 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1558 } 1559 1560 // Emit the branch for this block. 1561 visitSwitchCase(SwitchCases[0], BrMBB); 1562 SwitchCases.erase(SwitchCases.begin()); 1563 return; 1564 } 1565 1566 // Okay, we decided not to do this, remove any inserted MBB's and clear 1567 // SwitchCases. 1568 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1569 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1570 1571 SwitchCases.clear(); 1572 } 1573 } 1574 1575 // Create a CaseBlock record representing this branch. 1576 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1577 NULL, Succ0MBB, Succ1MBB, BrMBB); 1578 1579 // Use visitSwitchCase to actually insert the fast branch sequence for this 1580 // cond branch. 1581 visitSwitchCase(CB, BrMBB); 1582 } 1583 1584 /// visitSwitchCase - Emits the necessary code to represent a single node in 1585 /// the binary search tree resulting from lowering a switch instruction. 1586 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1587 MachineBasicBlock *SwitchBB) { 1588 SDValue Cond; 1589 SDValue CondLHS = getValue(CB.CmpLHS); 1590 DebugLoc dl = getCurDebugLoc(); 1591 1592 // Build the setcc now. 1593 if (CB.CmpMHS == NULL) { 1594 // Fold "(X == true)" to X and "(X == false)" to !X to 1595 // handle common cases produced by branch lowering. 1596 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1597 CB.CC == ISD::SETEQ) 1598 Cond = CondLHS; 1599 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1600 CB.CC == ISD::SETEQ) { 1601 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1602 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1603 } else 1604 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1605 } else { 1606 assert(CB.CC == ISD::SETCC_INVALID && 1607 "Condition is undefined for to-the-range belonging check."); 1608 1609 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1610 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1611 1612 SDValue CmpOp = getValue(CB.CmpMHS); 1613 EVT VT = CmpOp.getValueType(); 1614 1615 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) { 1616 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1617 ISD::SETULE); 1618 } else { 1619 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1620 VT, CmpOp, DAG.getConstant(Low, VT)); 1621 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1622 DAG.getConstant(High-Low, VT), ISD::SETULE); 1623 } 1624 } 1625 1626 // Update successor info 1627 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1628 // TrueBB and FalseBB are always different unless the incoming IR is 1629 // degenerate. This only happens when running llc on weird IR. 1630 if (CB.TrueBB != CB.FalseBB) 1631 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1632 1633 // Set NextBlock to be the MBB immediately after the current one, if any. 1634 // This is used to avoid emitting unnecessary branches to the next block. 1635 MachineBasicBlock *NextBlock = 0; 1636 MachineFunction::iterator BBI = SwitchBB; 1637 if (++BBI != FuncInfo.MF->end()) 1638 NextBlock = BBI; 1639 1640 // If the lhs block is the next block, invert the condition so that we can 1641 // fall through to the lhs instead of the rhs block. 1642 if (CB.TrueBB == NextBlock) { 1643 std::swap(CB.TrueBB, CB.FalseBB); 1644 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1645 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1646 } 1647 1648 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1649 MVT::Other, getControlRoot(), Cond, 1650 DAG.getBasicBlock(CB.TrueBB)); 1651 1652 // Insert the false branch. Do this even if it's a fall through branch, 1653 // this makes it easier to do DAG optimizations which require inverting 1654 // the branch condition. 1655 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1656 DAG.getBasicBlock(CB.FalseBB)); 1657 1658 DAG.setRoot(BrCond); 1659 } 1660 1661 /// visitJumpTable - Emit JumpTable node in the current MBB 1662 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1663 // Emit the code for the jump table 1664 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1665 EVT PTy = TLI.getPointerTy(); 1666 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1667 JT.Reg, PTy); 1668 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1669 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1670 MVT::Other, Index.getValue(1), 1671 Table, Index); 1672 DAG.setRoot(BrJumpTable); 1673 } 1674 1675 /// visitJumpTableHeader - This function emits necessary code to produce index 1676 /// in the JumpTable from switch case. 1677 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1678 JumpTableHeader &JTH, 1679 MachineBasicBlock *SwitchBB) { 1680 // Subtract the lowest switch case value from the value being switched on and 1681 // conditional branch to default mbb if the result is greater than the 1682 // difference between smallest and largest cases. 1683 SDValue SwitchOp = getValue(JTH.SValue); 1684 EVT VT = SwitchOp.getValueType(); 1685 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1686 DAG.getConstant(JTH.First, VT)); 1687 1688 // The SDNode we just created, which holds the value being switched on minus 1689 // the smallest case value, needs to be copied to a virtual register so it 1690 // can be used as an index into the jump table in a subsequent basic block. 1691 // This value may be smaller or larger than the target's pointer type, and 1692 // therefore require extension or truncating. 1693 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1694 1695 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1696 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1697 JumpTableReg, SwitchOp); 1698 JT.Reg = JumpTableReg; 1699 1700 // Emit the range check for the jump table, and branch to the default block 1701 // for the switch statement if the value being switched on exceeds the largest 1702 // case in the switch. 1703 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1704 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1705 DAG.getConstant(JTH.Last-JTH.First,VT), 1706 ISD::SETUGT); 1707 1708 // Set NextBlock to be the MBB immediately after the current one, if any. 1709 // This is used to avoid emitting unnecessary branches to the next block. 1710 MachineBasicBlock *NextBlock = 0; 1711 MachineFunction::iterator BBI = SwitchBB; 1712 1713 if (++BBI != FuncInfo.MF->end()) 1714 NextBlock = BBI; 1715 1716 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1717 MVT::Other, CopyTo, CMP, 1718 DAG.getBasicBlock(JT.Default)); 1719 1720 if (JT.MBB != NextBlock) 1721 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1722 DAG.getBasicBlock(JT.MBB)); 1723 1724 DAG.setRoot(BrCond); 1725 } 1726 1727 /// visitBitTestHeader - This function emits necessary code to produce value 1728 /// suitable for "bit tests" 1729 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1730 MachineBasicBlock *SwitchBB) { 1731 // Subtract the minimum value 1732 SDValue SwitchOp = getValue(B.SValue); 1733 EVT VT = SwitchOp.getValueType(); 1734 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1735 DAG.getConstant(B.First, VT)); 1736 1737 // Check range 1738 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1739 TLI.getSetCCResultType(Sub.getValueType()), 1740 Sub, DAG.getConstant(B.Range, VT), 1741 ISD::SETUGT); 1742 1743 // Determine the type of the test operands. 1744 bool UsePtrType = false; 1745 if (!TLI.isTypeLegal(VT)) 1746 UsePtrType = true; 1747 else { 1748 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1749 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1750 // Switch table case range are encoded into series of masks. 1751 // Just use pointer type, it's guaranteed to fit. 1752 UsePtrType = true; 1753 break; 1754 } 1755 } 1756 if (UsePtrType) { 1757 VT = TLI.getPointerTy(); 1758 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1759 } 1760 1761 B.RegVT = VT; 1762 B.Reg = FuncInfo.CreateReg(VT); 1763 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1764 B.Reg, Sub); 1765 1766 // Set NextBlock to be the MBB immediately after the current one, if any. 1767 // This is used to avoid emitting unnecessary branches to the next block. 1768 MachineBasicBlock *NextBlock = 0; 1769 MachineFunction::iterator BBI = SwitchBB; 1770 if (++BBI != FuncInfo.MF->end()) 1771 NextBlock = BBI; 1772 1773 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1774 1775 addSuccessorWithWeight(SwitchBB, B.Default); 1776 addSuccessorWithWeight(SwitchBB, MBB); 1777 1778 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1779 MVT::Other, CopyTo, RangeCmp, 1780 DAG.getBasicBlock(B.Default)); 1781 1782 if (MBB != NextBlock) 1783 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1784 DAG.getBasicBlock(MBB)); 1785 1786 DAG.setRoot(BrRange); 1787 } 1788 1789 /// visitBitTestCase - this function produces one "bit test" 1790 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1791 MachineBasicBlock* NextMBB, 1792 uint32_t BranchWeightToNext, 1793 unsigned Reg, 1794 BitTestCase &B, 1795 MachineBasicBlock *SwitchBB) { 1796 EVT VT = BB.RegVT; 1797 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1798 Reg, VT); 1799 SDValue Cmp; 1800 unsigned PopCount = CountPopulation_64(B.Mask); 1801 if (PopCount == 1) { 1802 // Testing for a single bit; just compare the shift count with what it 1803 // would need to be to shift a 1 bit in that position. 1804 Cmp = DAG.getSetCC(getCurDebugLoc(), 1805 TLI.getSetCCResultType(VT), 1806 ShiftOp, 1807 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1808 ISD::SETEQ); 1809 } else if (PopCount == BB.Range) { 1810 // There is only one zero bit in the range, test for it directly. 1811 Cmp = DAG.getSetCC(getCurDebugLoc(), 1812 TLI.getSetCCResultType(VT), 1813 ShiftOp, 1814 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1815 ISD::SETNE); 1816 } else { 1817 // Make desired shift 1818 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1819 DAG.getConstant(1, VT), ShiftOp); 1820 1821 // Emit bit tests and jumps 1822 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1823 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1824 Cmp = DAG.getSetCC(getCurDebugLoc(), 1825 TLI.getSetCCResultType(VT), 1826 AndOp, DAG.getConstant(0, VT), 1827 ISD::SETNE); 1828 } 1829 1830 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1831 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1832 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1833 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1834 1835 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1836 MVT::Other, getControlRoot(), 1837 Cmp, DAG.getBasicBlock(B.TargetBB)); 1838 1839 // Set NextBlock to be the MBB immediately after the current one, if any. 1840 // This is used to avoid emitting unnecessary branches to the next block. 1841 MachineBasicBlock *NextBlock = 0; 1842 MachineFunction::iterator BBI = SwitchBB; 1843 if (++BBI != FuncInfo.MF->end()) 1844 NextBlock = BBI; 1845 1846 if (NextMBB != NextBlock) 1847 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1848 DAG.getBasicBlock(NextMBB)); 1849 1850 DAG.setRoot(BrAnd); 1851 } 1852 1853 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1854 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1855 1856 // Retrieve successors. 1857 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1858 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1859 1860 const Value *Callee(I.getCalledValue()); 1861 const Function *Fn = dyn_cast<Function>(Callee); 1862 if (isa<InlineAsm>(Callee)) 1863 visitInlineAsm(&I); 1864 else if (Fn && Fn->isIntrinsic()) { 1865 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 1866 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1867 } else 1868 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1869 1870 // If the value of the invoke is used outside of its defining block, make it 1871 // available as a virtual register. 1872 CopyToExportRegsIfNeeded(&I); 1873 1874 // Update successor info 1875 addSuccessorWithWeight(InvokeMBB, Return); 1876 addSuccessorWithWeight(InvokeMBB, LandingPad); 1877 1878 // Drop into normal successor. 1879 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1880 MVT::Other, getControlRoot(), 1881 DAG.getBasicBlock(Return))); 1882 } 1883 1884 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1885 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1886 } 1887 1888 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1889 assert(FuncInfo.MBB->isLandingPad() && 1890 "Call to landingpad not in landing pad!"); 1891 1892 MachineBasicBlock *MBB = FuncInfo.MBB; 1893 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1894 AddLandingPadInfo(LP, MMI, MBB); 1895 1896 // If there aren't registers to copy the values into (e.g., during SjLj 1897 // exceptions), then don't bother to create these DAG nodes. 1898 if (TLI.getExceptionPointerRegister() == 0 && 1899 TLI.getExceptionSelectorRegister() == 0) 1900 return; 1901 1902 SmallVector<EVT, 2> ValueVTs; 1903 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1904 1905 // Insert the EXCEPTIONADDR instruction. 1906 assert(FuncInfo.MBB->isLandingPad() && 1907 "Call to eh.exception not in landing pad!"); 1908 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1909 SDValue Ops[2]; 1910 Ops[0] = DAG.getRoot(); 1911 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1912 SDValue Chain = Op1.getValue(1); 1913 1914 // Insert the EHSELECTION instruction. 1915 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1916 Ops[0] = Op1; 1917 Ops[1] = Chain; 1918 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1919 Chain = Op2.getValue(1); 1920 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1921 1922 Ops[0] = Op1; 1923 Ops[1] = Op2; 1924 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1925 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1926 &Ops[0], 2); 1927 1928 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1929 setValue(&LP, RetPair.first); 1930 DAG.setRoot(RetPair.second); 1931 } 1932 1933 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1934 /// small case ranges). 1935 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1936 CaseRecVector& WorkList, 1937 const Value* SV, 1938 MachineBasicBlock *Default, 1939 MachineBasicBlock *SwitchBB) { 1940 // Size is the number of Cases represented by this range. 1941 size_t Size = CR.Range.second - CR.Range.first; 1942 if (Size > 3) 1943 return false; 1944 1945 // Get the MachineFunction which holds the current MBB. This is used when 1946 // inserting any additional MBBs necessary to represent the switch. 1947 MachineFunction *CurMF = FuncInfo.MF; 1948 1949 // Figure out which block is immediately after the current one. 1950 MachineBasicBlock *NextBlock = 0; 1951 MachineFunction::iterator BBI = CR.CaseBB; 1952 1953 if (++BBI != FuncInfo.MF->end()) 1954 NextBlock = BBI; 1955 1956 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1957 // If any two of the cases has the same destination, and if one value 1958 // is the same as the other, but has one bit unset that the other has set, 1959 // use bit manipulation to do two compares at once. For example: 1960 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1961 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1962 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1963 if (Size == 2 && CR.CaseBB == SwitchBB) { 1964 Case &Small = *CR.Range.first; 1965 Case &Big = *(CR.Range.second-1); 1966 1967 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1968 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1969 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1970 1971 // Check that there is only one bit different. 1972 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1973 (SmallValue | BigValue) == BigValue) { 1974 // Isolate the common bit. 1975 APInt CommonBit = BigValue & ~SmallValue; 1976 assert((SmallValue | CommonBit) == BigValue && 1977 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1978 1979 SDValue CondLHS = getValue(SV); 1980 EVT VT = CondLHS.getValueType(); 1981 DebugLoc DL = getCurDebugLoc(); 1982 1983 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1984 DAG.getConstant(CommonBit, VT)); 1985 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1986 Or, DAG.getConstant(BigValue, VT), 1987 ISD::SETEQ); 1988 1989 // Update successor info. 1990 // Both Small and Big will jump to Small.BB, so we sum up the weights. 1991 addSuccessorWithWeight(SwitchBB, Small.BB, 1992 Small.ExtraWeight + Big.ExtraWeight); 1993 addSuccessorWithWeight(SwitchBB, Default, 1994 // The default destination is the first successor in IR. 1995 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 1996 1997 // Insert the true branch. 1998 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1999 getControlRoot(), Cond, 2000 DAG.getBasicBlock(Small.BB)); 2001 2002 // Insert the false branch. 2003 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2004 DAG.getBasicBlock(Default)); 2005 2006 DAG.setRoot(BrCond); 2007 return true; 2008 } 2009 } 2010 } 2011 2012 // Order cases by weight so the most likely case will be checked first. 2013 uint32_t UnhandledWeights = 0; 2014 if (BPI) { 2015 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2016 uint32_t IWeight = I->ExtraWeight; 2017 UnhandledWeights += IWeight; 2018 for (CaseItr J = CR.Range.first; J < I; ++J) { 2019 uint32_t JWeight = J->ExtraWeight; 2020 if (IWeight > JWeight) 2021 std::swap(*I, *J); 2022 } 2023 } 2024 } 2025 // Rearrange the case blocks so that the last one falls through if possible. 2026 Case &BackCase = *(CR.Range.second-1); 2027 if (Size > 1 && 2028 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2029 // The last case block won't fall through into 'NextBlock' if we emit the 2030 // branches in this order. See if rearranging a case value would help. 2031 // We start at the bottom as it's the case with the least weight. 2032 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){ 2033 if (I->BB == NextBlock) { 2034 std::swap(*I, BackCase); 2035 break; 2036 } 2037 } 2038 } 2039 2040 // Create a CaseBlock record representing a conditional branch to 2041 // the Case's target mbb if the value being switched on SV is equal 2042 // to C. 2043 MachineBasicBlock *CurBlock = CR.CaseBB; 2044 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2045 MachineBasicBlock *FallThrough; 2046 if (I != E-1) { 2047 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2048 CurMF->insert(BBI, FallThrough); 2049 2050 // Put SV in a virtual register to make it available from the new blocks. 2051 ExportFromCurrentBlock(SV); 2052 } else { 2053 // If the last case doesn't match, go to the default block. 2054 FallThrough = Default; 2055 } 2056 2057 const Value *RHS, *LHS, *MHS; 2058 ISD::CondCode CC; 2059 if (I->High == I->Low) { 2060 // This is just small small case range :) containing exactly 1 case 2061 CC = ISD::SETEQ; 2062 LHS = SV; RHS = I->High; MHS = NULL; 2063 } else { 2064 CC = ISD::SETCC_INVALID; 2065 LHS = I->Low; MHS = SV; RHS = I->High; 2066 } 2067 2068 // The false weight should be sum of all un-handled cases. 2069 UnhandledWeights -= I->ExtraWeight; 2070 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2071 /* me */ CurBlock, 2072 /* trueweight */ I->ExtraWeight, 2073 /* falseweight */ UnhandledWeights); 2074 2075 // If emitting the first comparison, just call visitSwitchCase to emit the 2076 // code into the current block. Otherwise, push the CaseBlock onto the 2077 // vector to be later processed by SDISel, and insert the node's MBB 2078 // before the next MBB. 2079 if (CurBlock == SwitchBB) 2080 visitSwitchCase(CB, SwitchBB); 2081 else 2082 SwitchCases.push_back(CB); 2083 2084 CurBlock = FallThrough; 2085 } 2086 2087 return true; 2088 } 2089 2090 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2091 return TLI.supportJumpTables() && 2092 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2093 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2094 } 2095 2096 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2097 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2098 APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth); 2099 return (LastExt - FirstExt + 1ULL); 2100 } 2101 2102 /// handleJTSwitchCase - Emit jumptable for current switch case range 2103 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2104 CaseRecVector &WorkList, 2105 const Value *SV, 2106 MachineBasicBlock *Default, 2107 MachineBasicBlock *SwitchBB) { 2108 Case& FrontCase = *CR.Range.first; 2109 Case& BackCase = *(CR.Range.second-1); 2110 2111 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2112 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2113 2114 APInt TSize(First.getBitWidth(), 0); 2115 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2116 TSize += I->size(); 2117 2118 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2119 return false; 2120 2121 APInt Range = ComputeRange(First, Last); 2122 // The density is TSize / Range. Require at least 40%. 2123 // It should not be possible for IntTSize to saturate for sane code, but make 2124 // sure we handle Range saturation correctly. 2125 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2126 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2127 if (IntTSize * 10 < IntRange * 4) 2128 return false; 2129 2130 DEBUG(dbgs() << "Lowering jump table\n" 2131 << "First entry: " << First << ". Last entry: " << Last << '\n' 2132 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2133 2134 // Get the MachineFunction which holds the current MBB. This is used when 2135 // inserting any additional MBBs necessary to represent the switch. 2136 MachineFunction *CurMF = FuncInfo.MF; 2137 2138 // Figure out which block is immediately after the current one. 2139 MachineFunction::iterator BBI = CR.CaseBB; 2140 ++BBI; 2141 2142 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2143 2144 // Create a new basic block to hold the code for loading the address 2145 // of the jump table, and jumping to it. Update successor information; 2146 // we will either branch to the default case for the switch, or the jump 2147 // table. 2148 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2149 CurMF->insert(BBI, JumpTableBB); 2150 2151 addSuccessorWithWeight(CR.CaseBB, Default); 2152 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2153 2154 // Build a vector of destination BBs, corresponding to each target 2155 // of the jump table. If the value of the jump table slot corresponds to 2156 // a case statement, push the case's BB onto the vector, otherwise, push 2157 // the default BB. 2158 std::vector<MachineBasicBlock*> DestBBs; 2159 APInt TEI = First; 2160 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2161 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2162 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2163 2164 if (Low.ule(TEI) && TEI.ule(High)) { 2165 DestBBs.push_back(I->BB); 2166 if (TEI==High) 2167 ++I; 2168 } else { 2169 DestBBs.push_back(Default); 2170 } 2171 } 2172 2173 // Calculate weight for each unique destination in CR. 2174 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2175 if (FuncInfo.BPI) 2176 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2177 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2178 DestWeights.find(I->BB); 2179 if (Itr != DestWeights.end()) 2180 Itr->second += I->ExtraWeight; 2181 else 2182 DestWeights[I->BB] = I->ExtraWeight; 2183 } 2184 2185 // Update successor info. Add one edge to each unique successor. 2186 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2187 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2188 E = DestBBs.end(); I != E; ++I) { 2189 if (!SuccsHandled[(*I)->getNumber()]) { 2190 SuccsHandled[(*I)->getNumber()] = true; 2191 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2192 DestWeights.find(*I); 2193 addSuccessorWithWeight(JumpTableBB, *I, 2194 Itr != DestWeights.end() ? Itr->second : 0); 2195 } 2196 } 2197 2198 // Create a jump table index for this jump table. 2199 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2200 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2201 ->createJumpTableIndex(DestBBs); 2202 2203 // Set the jump table information so that we can codegen it as a second 2204 // MachineBasicBlock 2205 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2206 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2207 if (CR.CaseBB == SwitchBB) 2208 visitJumpTableHeader(JT, JTH, SwitchBB); 2209 2210 JTCases.push_back(JumpTableBlock(JTH, JT)); 2211 return true; 2212 } 2213 2214 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2215 /// 2 subtrees. 2216 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2217 CaseRecVector& WorkList, 2218 const Value* SV, 2219 MachineBasicBlock *Default, 2220 MachineBasicBlock *SwitchBB) { 2221 // Get the MachineFunction which holds the current MBB. This is used when 2222 // inserting any additional MBBs necessary to represent the switch. 2223 MachineFunction *CurMF = FuncInfo.MF; 2224 2225 // Figure out which block is immediately after the current one. 2226 MachineFunction::iterator BBI = CR.CaseBB; 2227 ++BBI; 2228 2229 Case& FrontCase = *CR.Range.first; 2230 Case& BackCase = *(CR.Range.second-1); 2231 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2232 2233 // Size is the number of Cases represented by this range. 2234 unsigned Size = CR.Range.second - CR.Range.first; 2235 2236 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2237 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2238 double FMetric = 0; 2239 CaseItr Pivot = CR.Range.first + Size/2; 2240 2241 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2242 // (heuristically) allow us to emit JumpTable's later. 2243 APInt TSize(First.getBitWidth(), 0); 2244 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2245 I!=E; ++I) 2246 TSize += I->size(); 2247 2248 APInt LSize = FrontCase.size(); 2249 APInt RSize = TSize-LSize; 2250 DEBUG(dbgs() << "Selecting best pivot: \n" 2251 << "First: " << First << ", Last: " << Last <<'\n' 2252 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2253 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2254 J!=E; ++I, ++J) { 2255 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2256 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2257 APInt Range = ComputeRange(LEnd, RBegin); 2258 assert((Range - 2ULL).isNonNegative() && 2259 "Invalid case distance"); 2260 // Use volatile double here to avoid excess precision issues on some hosts, 2261 // e.g. that use 80-bit X87 registers. 2262 volatile double LDensity = 2263 (double)LSize.roundToDouble() / 2264 (LEnd - First + 1ULL).roundToDouble(); 2265 volatile double RDensity = 2266 (double)RSize.roundToDouble() / 2267 (Last - RBegin + 1ULL).roundToDouble(); 2268 double Metric = Range.logBase2()*(LDensity+RDensity); 2269 // Should always split in some non-trivial place 2270 DEBUG(dbgs() <<"=>Step\n" 2271 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2272 << "LDensity: " << LDensity 2273 << ", RDensity: " << RDensity << '\n' 2274 << "Metric: " << Metric << '\n'); 2275 if (FMetric < Metric) { 2276 Pivot = J; 2277 FMetric = Metric; 2278 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2279 } 2280 2281 LSize += J->size(); 2282 RSize -= J->size(); 2283 } 2284 if (areJTsAllowed(TLI)) { 2285 // If our case is dense we *really* should handle it earlier! 2286 assert((FMetric > 0) && "Should handle dense range earlier!"); 2287 } else { 2288 Pivot = CR.Range.first + Size/2; 2289 } 2290 2291 CaseRange LHSR(CR.Range.first, Pivot); 2292 CaseRange RHSR(Pivot, CR.Range.second); 2293 const Constant *C = Pivot->Low; 2294 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2295 2296 // We know that we branch to the LHS if the Value being switched on is 2297 // less than the Pivot value, C. We use this to optimize our binary 2298 // tree a bit, by recognizing that if SV is greater than or equal to the 2299 // LHS's Case Value, and that Case Value is exactly one less than the 2300 // Pivot's Value, then we can branch directly to the LHS's Target, 2301 // rather than creating a leaf node for it. 2302 if ((LHSR.second - LHSR.first) == 1 && 2303 LHSR.first->High == CR.GE && 2304 cast<ConstantInt>(C)->getValue() == 2305 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2306 TrueBB = LHSR.first->BB; 2307 } else { 2308 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2309 CurMF->insert(BBI, TrueBB); 2310 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2311 2312 // Put SV in a virtual register to make it available from the new blocks. 2313 ExportFromCurrentBlock(SV); 2314 } 2315 2316 // Similar to the optimization above, if the Value being switched on is 2317 // known to be less than the Constant CR.LT, and the current Case Value 2318 // is CR.LT - 1, then we can branch directly to the target block for 2319 // the current Case Value, rather than emitting a RHS leaf node for it. 2320 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2321 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2322 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2323 FalseBB = RHSR.first->BB; 2324 } else { 2325 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2326 CurMF->insert(BBI, FalseBB); 2327 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2328 2329 // Put SV in a virtual register to make it available from the new blocks. 2330 ExportFromCurrentBlock(SV); 2331 } 2332 2333 // Create a CaseBlock record representing a conditional branch to 2334 // the LHS node if the value being switched on SV is less than C. 2335 // Otherwise, branch to LHS. 2336 CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2337 2338 if (CR.CaseBB == SwitchBB) 2339 visitSwitchCase(CB, SwitchBB); 2340 else 2341 SwitchCases.push_back(CB); 2342 2343 return true; 2344 } 2345 2346 /// handleBitTestsSwitchCase - if current case range has few destination and 2347 /// range span less, than machine word bitwidth, encode case range into series 2348 /// of masks and emit bit tests with these masks. 2349 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2350 CaseRecVector& WorkList, 2351 const Value* SV, 2352 MachineBasicBlock* Default, 2353 MachineBasicBlock *SwitchBB){ 2354 EVT PTy = TLI.getPointerTy(); 2355 unsigned IntPtrBits = PTy.getSizeInBits(); 2356 2357 Case& FrontCase = *CR.Range.first; 2358 Case& BackCase = *(CR.Range.second-1); 2359 2360 // Get the MachineFunction which holds the current MBB. This is used when 2361 // inserting any additional MBBs necessary to represent the switch. 2362 MachineFunction *CurMF = FuncInfo.MF; 2363 2364 // If target does not have legal shift left, do not emit bit tests at all. 2365 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2366 return false; 2367 2368 size_t numCmps = 0; 2369 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2370 I!=E; ++I) { 2371 // Single case counts one, case range - two. 2372 numCmps += (I->Low == I->High ? 1 : 2); 2373 } 2374 2375 // Count unique destinations 2376 SmallSet<MachineBasicBlock*, 4> Dests; 2377 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2378 Dests.insert(I->BB); 2379 if (Dests.size() > 3) 2380 // Don't bother the code below, if there are too much unique destinations 2381 return false; 2382 } 2383 DEBUG(dbgs() << "Total number of unique destinations: " 2384 << Dests.size() << '\n' 2385 << "Total number of comparisons: " << numCmps << '\n'); 2386 2387 // Compute span of values. 2388 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2389 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2390 APInt cmpRange = maxValue - minValue; 2391 2392 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2393 << "Low bound: " << minValue << '\n' 2394 << "High bound: " << maxValue << '\n'); 2395 2396 if (cmpRange.uge(IntPtrBits) || 2397 (!(Dests.size() == 1 && numCmps >= 3) && 2398 !(Dests.size() == 2 && numCmps >= 5) && 2399 !(Dests.size() >= 3 && numCmps >= 6))) 2400 return false; 2401 2402 DEBUG(dbgs() << "Emitting bit tests\n"); 2403 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2404 2405 // Optimize the case where all the case values fit in a 2406 // word without having to subtract minValue. In this case, 2407 // we can optimize away the subtraction. 2408 if (maxValue.ult(IntPtrBits)) { 2409 cmpRange = maxValue; 2410 } else { 2411 lowBound = minValue; 2412 } 2413 2414 CaseBitsVector CasesBits; 2415 unsigned i, count = 0; 2416 2417 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2418 MachineBasicBlock* Dest = I->BB; 2419 for (i = 0; i < count; ++i) 2420 if (Dest == CasesBits[i].BB) 2421 break; 2422 2423 if (i == count) { 2424 assert((count < 3) && "Too much destinations to test!"); 2425 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2426 count++; 2427 } 2428 2429 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2430 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2431 2432 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2433 uint64_t hi = (highValue - lowBound).getZExtValue(); 2434 CasesBits[i].ExtraWeight += I->ExtraWeight; 2435 2436 for (uint64_t j = lo; j <= hi; j++) { 2437 CasesBits[i].Mask |= 1ULL << j; 2438 CasesBits[i].Bits++; 2439 } 2440 2441 } 2442 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2443 2444 BitTestInfo BTC; 2445 2446 // Figure out which block is immediately after the current one. 2447 MachineFunction::iterator BBI = CR.CaseBB; 2448 ++BBI; 2449 2450 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2451 2452 DEBUG(dbgs() << "Cases:\n"); 2453 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2454 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2455 << ", Bits: " << CasesBits[i].Bits 2456 << ", BB: " << CasesBits[i].BB << '\n'); 2457 2458 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2459 CurMF->insert(BBI, CaseBB); 2460 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2461 CaseBB, 2462 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2463 2464 // Put SV in a virtual register to make it available from the new blocks. 2465 ExportFromCurrentBlock(SV); 2466 } 2467 2468 BitTestBlock BTB(lowBound, cmpRange, SV, 2469 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2470 CR.CaseBB, Default, BTC); 2471 2472 if (CR.CaseBB == SwitchBB) 2473 visitBitTestHeader(BTB, SwitchBB); 2474 2475 BitTestCases.push_back(BTB); 2476 2477 return true; 2478 } 2479 2480 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2481 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2482 const SwitchInst& SI) { 2483 2484 /// Use a shorter form of declaration, and also 2485 /// show the we want to use CRSBuilder as Clusterifier. 2486 typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier; 2487 2488 Clusterifier TheClusterifier; 2489 2490 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2491 // Start with "simple" cases 2492 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2493 i != e; ++i) { 2494 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2495 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2496 2497 TheClusterifier.add(i.getCaseValueEx(), SMBB, 2498 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0); 2499 } 2500 2501 TheClusterifier.optimize(); 2502 2503 size_t numCmps = 0; 2504 for (Clusterifier::RangeIterator i = TheClusterifier.begin(), 2505 e = TheClusterifier.end(); i != e; ++i, ++numCmps) { 2506 Clusterifier::Cluster &C = *i; 2507 // Update edge weight for the cluster. 2508 unsigned W = C.first.Weight; 2509 2510 // FIXME: Currently work with ConstantInt based numbers. 2511 // Changing it to APInt based is a pretty heavy for this commit. 2512 Cases.push_back(Case(C.first.getLow().toConstantInt(), 2513 C.first.getHigh().toConstantInt(), C.second, W)); 2514 2515 if (C.first.getLow() != C.first.getHigh()) 2516 // A range counts double, since it requires two compares. 2517 ++numCmps; 2518 } 2519 2520 return numCmps; 2521 } 2522 2523 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2524 MachineBasicBlock *Last) { 2525 // Update JTCases. 2526 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2527 if (JTCases[i].first.HeaderBB == First) 2528 JTCases[i].first.HeaderBB = Last; 2529 2530 // Update BitTestCases. 2531 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2532 if (BitTestCases[i].Parent == First) 2533 BitTestCases[i].Parent = Last; 2534 } 2535 2536 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2537 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2538 2539 // Figure out which block is immediately after the current one. 2540 MachineBasicBlock *NextBlock = 0; 2541 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2542 2543 // If there is only the default destination, branch to it if it is not the 2544 // next basic block. Otherwise, just fall through. 2545 if (!SI.getNumCases()) { 2546 // Update machine-CFG edges. 2547 2548 // If this is not a fall-through branch, emit the branch. 2549 SwitchMBB->addSuccessor(Default); 2550 if (Default != NextBlock) 2551 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2552 MVT::Other, getControlRoot(), 2553 DAG.getBasicBlock(Default))); 2554 2555 return; 2556 } 2557 2558 // If there are any non-default case statements, create a vector of Cases 2559 // representing each one, and sort the vector so that we can efficiently 2560 // create a binary search tree from them. 2561 CaseVector Cases; 2562 size_t numCmps = Clusterify(Cases, SI); 2563 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2564 << ". Total compares: " << numCmps << '\n'); 2565 (void)numCmps; 2566 2567 // Get the Value to be switched on and default basic blocks, which will be 2568 // inserted into CaseBlock records, representing basic blocks in the binary 2569 // search tree. 2570 const Value *SV = SI.getCondition(); 2571 2572 // Push the initial CaseRec onto the worklist 2573 CaseRecVector WorkList; 2574 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2575 CaseRange(Cases.begin(),Cases.end()))); 2576 2577 while (!WorkList.empty()) { 2578 // Grab a record representing a case range to process off the worklist 2579 CaseRec CR = WorkList.back(); 2580 WorkList.pop_back(); 2581 2582 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2583 continue; 2584 2585 // If the range has few cases (two or less) emit a series of specific 2586 // tests. 2587 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2588 continue; 2589 2590 // If the switch has more than N blocks, and is at least 40% dense, and the 2591 // target supports indirect branches, then emit a jump table rather than 2592 // lowering the switch to a binary tree of conditional branches. 2593 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2594 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2595 continue; 2596 2597 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2598 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2599 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2600 } 2601 } 2602 2603 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2604 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2605 2606 // Update machine-CFG edges with unique successors. 2607 SmallSet<BasicBlock*, 32> Done; 2608 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2609 BasicBlock *BB = I.getSuccessor(i); 2610 bool Inserted = Done.insert(BB); 2611 if (!Inserted) 2612 continue; 2613 2614 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2615 addSuccessorWithWeight(IndirectBrMBB, Succ); 2616 } 2617 2618 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2619 MVT::Other, getControlRoot(), 2620 getValue(I.getAddress()))); 2621 } 2622 2623 void SelectionDAGBuilder::visitFSub(const User &I) { 2624 // -0.0 - X --> fneg 2625 Type *Ty = I.getType(); 2626 if (isa<Constant>(I.getOperand(0)) && 2627 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2628 SDValue Op2 = getValue(I.getOperand(1)); 2629 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2630 Op2.getValueType(), Op2)); 2631 return; 2632 } 2633 2634 visitBinary(I, ISD::FSUB); 2635 } 2636 2637 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2638 SDValue Op1 = getValue(I.getOperand(0)); 2639 SDValue Op2 = getValue(I.getOperand(1)); 2640 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2641 Op1.getValueType(), Op1, Op2)); 2642 } 2643 2644 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2645 SDValue Op1 = getValue(I.getOperand(0)); 2646 SDValue Op2 = getValue(I.getOperand(1)); 2647 2648 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2649 2650 // Coerce the shift amount to the right type if we can. 2651 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2652 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2653 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2654 DebugLoc DL = getCurDebugLoc(); 2655 2656 // If the operand is smaller than the shift count type, promote it. 2657 if (ShiftSize > Op2Size) 2658 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2659 2660 // If the operand is larger than the shift count type but the shift 2661 // count type has enough bits to represent any shift value, truncate 2662 // it now. This is a common case and it exposes the truncate to 2663 // optimization early. 2664 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2665 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2666 // Otherwise we'll need to temporarily settle for some other convenient 2667 // type. Type legalization will make adjustments once the shiftee is split. 2668 else 2669 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2670 } 2671 2672 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2673 Op1.getValueType(), Op1, Op2)); 2674 } 2675 2676 void SelectionDAGBuilder::visitSDiv(const User &I) { 2677 SDValue Op1 = getValue(I.getOperand(0)); 2678 SDValue Op2 = getValue(I.getOperand(1)); 2679 2680 // Turn exact SDivs into multiplications. 2681 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2682 // exact bit. 2683 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2684 !isa<ConstantSDNode>(Op1) && 2685 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2686 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2687 else 2688 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2689 Op1, Op2)); 2690 } 2691 2692 void SelectionDAGBuilder::visitICmp(const User &I) { 2693 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2694 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2695 predicate = IC->getPredicate(); 2696 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2697 predicate = ICmpInst::Predicate(IC->getPredicate()); 2698 SDValue Op1 = getValue(I.getOperand(0)); 2699 SDValue Op2 = getValue(I.getOperand(1)); 2700 ISD::CondCode Opcode = getICmpCondCode(predicate); 2701 2702 EVT DestVT = TLI.getValueType(I.getType()); 2703 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2704 } 2705 2706 void SelectionDAGBuilder::visitFCmp(const User &I) { 2707 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2708 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2709 predicate = FC->getPredicate(); 2710 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2711 predicate = FCmpInst::Predicate(FC->getPredicate()); 2712 SDValue Op1 = getValue(I.getOperand(0)); 2713 SDValue Op2 = getValue(I.getOperand(1)); 2714 ISD::CondCode Condition = getFCmpCondCode(predicate); 2715 if (TM.Options.NoNaNsFPMath) 2716 Condition = getFCmpCodeWithoutNaN(Condition); 2717 EVT DestVT = TLI.getValueType(I.getType()); 2718 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2719 } 2720 2721 void SelectionDAGBuilder::visitSelect(const User &I) { 2722 SmallVector<EVT, 4> ValueVTs; 2723 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2724 unsigned NumValues = ValueVTs.size(); 2725 if (NumValues == 0) return; 2726 2727 SmallVector<SDValue, 4> Values(NumValues); 2728 SDValue Cond = getValue(I.getOperand(0)); 2729 SDValue TrueVal = getValue(I.getOperand(1)); 2730 SDValue FalseVal = getValue(I.getOperand(2)); 2731 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2732 ISD::VSELECT : ISD::SELECT; 2733 2734 for (unsigned i = 0; i != NumValues; ++i) 2735 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2736 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2737 Cond, 2738 SDValue(TrueVal.getNode(), 2739 TrueVal.getResNo() + i), 2740 SDValue(FalseVal.getNode(), 2741 FalseVal.getResNo() + i)); 2742 2743 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2744 DAG.getVTList(&ValueVTs[0], NumValues), 2745 &Values[0], NumValues)); 2746 } 2747 2748 void SelectionDAGBuilder::visitTrunc(const User &I) { 2749 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2750 SDValue N = getValue(I.getOperand(0)); 2751 EVT DestVT = TLI.getValueType(I.getType()); 2752 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2753 } 2754 2755 void SelectionDAGBuilder::visitZExt(const User &I) { 2756 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2757 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2758 SDValue N = getValue(I.getOperand(0)); 2759 EVT DestVT = TLI.getValueType(I.getType()); 2760 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2761 } 2762 2763 void SelectionDAGBuilder::visitSExt(const User &I) { 2764 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2765 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2766 SDValue N = getValue(I.getOperand(0)); 2767 EVT DestVT = TLI.getValueType(I.getType()); 2768 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2769 } 2770 2771 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2772 // FPTrunc is never a no-op cast, no need to check 2773 SDValue N = getValue(I.getOperand(0)); 2774 EVT DestVT = TLI.getValueType(I.getType()); 2775 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2776 DestVT, N, 2777 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2778 } 2779 2780 void SelectionDAGBuilder::visitFPExt(const User &I){ 2781 // FPExt is never a no-op cast, no need to check 2782 SDValue N = getValue(I.getOperand(0)); 2783 EVT DestVT = TLI.getValueType(I.getType()); 2784 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2785 } 2786 2787 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2788 // FPToUI is never a no-op cast, no need to check 2789 SDValue N = getValue(I.getOperand(0)); 2790 EVT DestVT = TLI.getValueType(I.getType()); 2791 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2792 } 2793 2794 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2795 // FPToSI is never a no-op cast, no need to check 2796 SDValue N = getValue(I.getOperand(0)); 2797 EVT DestVT = TLI.getValueType(I.getType()); 2798 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2799 } 2800 2801 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2802 // UIToFP is never a no-op cast, no need to check 2803 SDValue N = getValue(I.getOperand(0)); 2804 EVT DestVT = TLI.getValueType(I.getType()); 2805 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2806 } 2807 2808 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2809 // SIToFP is never a no-op cast, no need to check 2810 SDValue N = getValue(I.getOperand(0)); 2811 EVT DestVT = TLI.getValueType(I.getType()); 2812 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2813 } 2814 2815 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2816 // What to do depends on the size of the integer and the size of the pointer. 2817 // We can either truncate, zero extend, or no-op, accordingly. 2818 SDValue N = getValue(I.getOperand(0)); 2819 EVT DestVT = TLI.getValueType(I.getType()); 2820 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2821 } 2822 2823 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2824 // What to do depends on the size of the integer and the size of the pointer. 2825 // We can either truncate, zero extend, or no-op, accordingly. 2826 SDValue N = getValue(I.getOperand(0)); 2827 EVT DestVT = TLI.getValueType(I.getType()); 2828 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2829 } 2830 2831 void SelectionDAGBuilder::visitBitCast(const User &I) { 2832 SDValue N = getValue(I.getOperand(0)); 2833 EVT DestVT = TLI.getValueType(I.getType()); 2834 2835 // BitCast assures us that source and destination are the same size so this is 2836 // either a BITCAST or a no-op. 2837 if (DestVT != N.getValueType()) 2838 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2839 DestVT, N)); // convert types. 2840 else 2841 setValue(&I, N); // noop cast. 2842 } 2843 2844 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2845 SDValue InVec = getValue(I.getOperand(0)); 2846 SDValue InVal = getValue(I.getOperand(1)); 2847 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2848 TLI.getPointerTy(), 2849 getValue(I.getOperand(2))); 2850 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2851 TLI.getValueType(I.getType()), 2852 InVec, InVal, InIdx)); 2853 } 2854 2855 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2856 SDValue InVec = getValue(I.getOperand(0)); 2857 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2858 TLI.getPointerTy(), 2859 getValue(I.getOperand(1))); 2860 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2861 TLI.getValueType(I.getType()), InVec, InIdx)); 2862 } 2863 2864 // Utility for visitShuffleVector - Return true if every element in Mask, 2865 // beginning from position Pos and ending in Pos+Size, falls within the 2866 // specified sequential range [L, L+Pos). or is undef. 2867 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2868 unsigned Pos, unsigned Size, int Low) { 2869 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2870 if (Mask[i] >= 0 && Mask[i] != Low) 2871 return false; 2872 return true; 2873 } 2874 2875 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2876 SDValue Src1 = getValue(I.getOperand(0)); 2877 SDValue Src2 = getValue(I.getOperand(1)); 2878 2879 SmallVector<int, 8> Mask; 2880 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2881 unsigned MaskNumElts = Mask.size(); 2882 2883 EVT VT = TLI.getValueType(I.getType()); 2884 EVT SrcVT = Src1.getValueType(); 2885 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2886 2887 if (SrcNumElts == MaskNumElts) { 2888 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2889 &Mask[0])); 2890 return; 2891 } 2892 2893 // Normalize the shuffle vector since mask and vector length don't match. 2894 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2895 // Mask is longer than the source vectors and is a multiple of the source 2896 // vectors. We can use concatenate vector to make the mask and vectors 2897 // lengths match. 2898 if (SrcNumElts*2 == MaskNumElts) { 2899 // First check for Src1 in low and Src2 in high 2900 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2901 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2902 // The shuffle is concatenating two vectors together. 2903 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2904 VT, Src1, Src2)); 2905 return; 2906 } 2907 // Then check for Src2 in low and Src1 in high 2908 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2909 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2910 // The shuffle is concatenating two vectors together. 2911 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2912 VT, Src2, Src1)); 2913 return; 2914 } 2915 } 2916 2917 // Pad both vectors with undefs to make them the same length as the mask. 2918 unsigned NumConcat = MaskNumElts / SrcNumElts; 2919 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2920 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2921 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2922 2923 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2924 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2925 MOps1[0] = Src1; 2926 MOps2[0] = Src2; 2927 2928 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2929 getCurDebugLoc(), VT, 2930 &MOps1[0], NumConcat); 2931 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2932 getCurDebugLoc(), VT, 2933 &MOps2[0], NumConcat); 2934 2935 // Readjust mask for new input vector length. 2936 SmallVector<int, 8> MappedOps; 2937 for (unsigned i = 0; i != MaskNumElts; ++i) { 2938 int Idx = Mask[i]; 2939 if (Idx >= (int)SrcNumElts) 2940 Idx -= SrcNumElts - MaskNumElts; 2941 MappedOps.push_back(Idx); 2942 } 2943 2944 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2945 &MappedOps[0])); 2946 return; 2947 } 2948 2949 if (SrcNumElts > MaskNumElts) { 2950 // Analyze the access pattern of the vector to see if we can extract 2951 // two subvectors and do the shuffle. The analysis is done by calculating 2952 // the range of elements the mask access on both vectors. 2953 int MinRange[2] = { static_cast<int>(SrcNumElts), 2954 static_cast<int>(SrcNumElts)}; 2955 int MaxRange[2] = {-1, -1}; 2956 2957 for (unsigned i = 0; i != MaskNumElts; ++i) { 2958 int Idx = Mask[i]; 2959 unsigned Input = 0; 2960 if (Idx < 0) 2961 continue; 2962 2963 if (Idx >= (int)SrcNumElts) { 2964 Input = 1; 2965 Idx -= SrcNumElts; 2966 } 2967 if (Idx > MaxRange[Input]) 2968 MaxRange[Input] = Idx; 2969 if (Idx < MinRange[Input]) 2970 MinRange[Input] = Idx; 2971 } 2972 2973 // Check if the access is smaller than the vector size and can we find 2974 // a reasonable extract index. 2975 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2976 // Extract. 2977 int StartIdx[2]; // StartIdx to extract from 2978 for (unsigned Input = 0; Input < 2; ++Input) { 2979 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2980 RangeUse[Input] = 0; // Unused 2981 StartIdx[Input] = 0; 2982 continue; 2983 } 2984 2985 // Find a good start index that is a multiple of the mask length. Then 2986 // see if the rest of the elements are in range. 2987 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2988 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2989 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2990 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2991 } 2992 2993 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2994 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2995 return; 2996 } 2997 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2998 // Extract appropriate subvector and generate a vector shuffle 2999 for (unsigned Input = 0; Input < 2; ++Input) { 3000 SDValue &Src = Input == 0 ? Src1 : Src2; 3001 if (RangeUse[Input] == 0) 3002 Src = DAG.getUNDEF(VT); 3003 else 3004 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 3005 Src, DAG.getIntPtrConstant(StartIdx[Input])); 3006 } 3007 3008 // Calculate new mask. 3009 SmallVector<int, 8> MappedOps; 3010 for (unsigned i = 0; i != MaskNumElts; ++i) { 3011 int Idx = Mask[i]; 3012 if (Idx >= 0) { 3013 if (Idx < (int)SrcNumElts) 3014 Idx -= StartIdx[0]; 3015 else 3016 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3017 } 3018 MappedOps.push_back(Idx); 3019 } 3020 3021 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 3022 &MappedOps[0])); 3023 return; 3024 } 3025 } 3026 3027 // We can't use either concat vectors or extract subvectors so fall back to 3028 // replacing the shuffle with extract and build vector. 3029 // to insert and build vector. 3030 EVT EltVT = VT.getVectorElementType(); 3031 EVT PtrVT = TLI.getPointerTy(); 3032 SmallVector<SDValue,8> Ops; 3033 for (unsigned i = 0; i != MaskNumElts; ++i) { 3034 int Idx = Mask[i]; 3035 SDValue Res; 3036 3037 if (Idx < 0) { 3038 Res = DAG.getUNDEF(EltVT); 3039 } else { 3040 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3041 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3042 3043 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 3044 EltVT, Src, DAG.getConstant(Idx, PtrVT)); 3045 } 3046 3047 Ops.push_back(Res); 3048 } 3049 3050 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 3051 VT, &Ops[0], Ops.size())); 3052 } 3053 3054 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3055 const Value *Op0 = I.getOperand(0); 3056 const Value *Op1 = I.getOperand(1); 3057 Type *AggTy = I.getType(); 3058 Type *ValTy = Op1->getType(); 3059 bool IntoUndef = isa<UndefValue>(Op0); 3060 bool FromUndef = isa<UndefValue>(Op1); 3061 3062 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3063 3064 SmallVector<EVT, 4> AggValueVTs; 3065 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3066 SmallVector<EVT, 4> ValValueVTs; 3067 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3068 3069 unsigned NumAggValues = AggValueVTs.size(); 3070 unsigned NumValValues = ValValueVTs.size(); 3071 SmallVector<SDValue, 4> Values(NumAggValues); 3072 3073 SDValue Agg = getValue(Op0); 3074 unsigned i = 0; 3075 // Copy the beginning value(s) from the original aggregate. 3076 for (; i != LinearIndex; ++i) 3077 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3078 SDValue(Agg.getNode(), Agg.getResNo() + i); 3079 // Copy values from the inserted value(s). 3080 if (NumValValues) { 3081 SDValue Val = getValue(Op1); 3082 for (; i != LinearIndex + NumValValues; ++i) 3083 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3084 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3085 } 3086 // Copy remaining value(s) from the original aggregate. 3087 for (; i != NumAggValues; ++i) 3088 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3089 SDValue(Agg.getNode(), Agg.getResNo() + i); 3090 3091 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3092 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3093 &Values[0], NumAggValues)); 3094 } 3095 3096 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3097 const Value *Op0 = I.getOperand(0); 3098 Type *AggTy = Op0->getType(); 3099 Type *ValTy = I.getType(); 3100 bool OutOfUndef = isa<UndefValue>(Op0); 3101 3102 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3103 3104 SmallVector<EVT, 4> ValValueVTs; 3105 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3106 3107 unsigned NumValValues = ValValueVTs.size(); 3108 3109 // Ignore a extractvalue that produces an empty object 3110 if (!NumValValues) { 3111 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3112 return; 3113 } 3114 3115 SmallVector<SDValue, 4> Values(NumValValues); 3116 3117 SDValue Agg = getValue(Op0); 3118 // Copy out the selected value(s). 3119 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3120 Values[i - LinearIndex] = 3121 OutOfUndef ? 3122 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3123 SDValue(Agg.getNode(), Agg.getResNo() + i); 3124 3125 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3126 DAG.getVTList(&ValValueVTs[0], NumValValues), 3127 &Values[0], NumValValues)); 3128 } 3129 3130 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3131 SDValue N = getValue(I.getOperand(0)); 3132 // Note that the pointer operand may be a vector of pointers. Take the scalar 3133 // element which holds a pointer. 3134 Type *Ty = I.getOperand(0)->getType()->getScalarType(); 3135 3136 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3137 OI != E; ++OI) { 3138 const Value *Idx = *OI; 3139 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3140 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3141 if (Field) { 3142 // N = N + Offset 3143 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3144 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3145 DAG.getConstant(Offset, N.getValueType())); 3146 } 3147 3148 Ty = StTy->getElementType(Field); 3149 } else { 3150 Ty = cast<SequentialType>(Ty)->getElementType(); 3151 3152 // If this is a constant subscript, handle it quickly. 3153 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3154 if (CI->isZero()) continue; 3155 uint64_t Offs = 3156 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3157 SDValue OffsVal; 3158 EVT PTy = TLI.getPointerTy(); 3159 unsigned PtrBits = PTy.getSizeInBits(); 3160 if (PtrBits < 64) 3161 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3162 TLI.getPointerTy(), 3163 DAG.getConstant(Offs, MVT::i64)); 3164 else 3165 OffsVal = DAG.getIntPtrConstant(Offs); 3166 3167 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3168 OffsVal); 3169 continue; 3170 } 3171 3172 // N = N + Idx * ElementSize; 3173 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3174 TD->getTypeAllocSize(Ty)); 3175 SDValue IdxN = getValue(Idx); 3176 3177 // If the index is smaller or larger than intptr_t, truncate or extend 3178 // it. 3179 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3180 3181 // If this is a multiply by a power of two, turn it into a shl 3182 // immediately. This is a very common case. 3183 if (ElementSize != 1) { 3184 if (ElementSize.isPowerOf2()) { 3185 unsigned Amt = ElementSize.logBase2(); 3186 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3187 N.getValueType(), IdxN, 3188 DAG.getConstant(Amt, IdxN.getValueType())); 3189 } else { 3190 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3191 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3192 N.getValueType(), IdxN, Scale); 3193 } 3194 } 3195 3196 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3197 N.getValueType(), N, IdxN); 3198 } 3199 } 3200 3201 setValue(&I, N); 3202 } 3203 3204 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3205 // If this is a fixed sized alloca in the entry block of the function, 3206 // allocate it statically on the stack. 3207 if (FuncInfo.StaticAllocaMap.count(&I)) 3208 return; // getValue will auto-populate this. 3209 3210 Type *Ty = I.getAllocatedType(); 3211 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3212 unsigned Align = 3213 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3214 I.getAlignment()); 3215 3216 SDValue AllocSize = getValue(I.getArraySize()); 3217 3218 EVT IntPtr = TLI.getPointerTy(); 3219 if (AllocSize.getValueType() != IntPtr) 3220 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3221 3222 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3223 AllocSize, 3224 DAG.getConstant(TySize, IntPtr)); 3225 3226 // Handle alignment. If the requested alignment is less than or equal to 3227 // the stack alignment, ignore it. If the size is greater than or equal to 3228 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3229 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3230 if (Align <= StackAlign) 3231 Align = 0; 3232 3233 // Round the size of the allocation up to the stack alignment size 3234 // by add SA-1 to the size. 3235 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3236 AllocSize.getValueType(), AllocSize, 3237 DAG.getIntPtrConstant(StackAlign-1)); 3238 3239 // Mask out the low bits for alignment purposes. 3240 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3241 AllocSize.getValueType(), AllocSize, 3242 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3243 3244 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3245 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3246 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3247 VTs, Ops, 3); 3248 setValue(&I, DSA); 3249 DAG.setRoot(DSA.getValue(1)); 3250 3251 // Inform the Frame Information that we have just allocated a variable-sized 3252 // object. 3253 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3254 } 3255 3256 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3257 if (I.isAtomic()) 3258 return visitAtomicLoad(I); 3259 3260 const Value *SV = I.getOperand(0); 3261 SDValue Ptr = getValue(SV); 3262 3263 Type *Ty = I.getType(); 3264 3265 bool isVolatile = I.isVolatile(); 3266 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3267 bool isInvariant = I.getMetadata("invariant.load") != 0; 3268 unsigned Alignment = I.getAlignment(); 3269 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3270 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3271 3272 SmallVector<EVT, 4> ValueVTs; 3273 SmallVector<uint64_t, 4> Offsets; 3274 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3275 unsigned NumValues = ValueVTs.size(); 3276 if (NumValues == 0) 3277 return; 3278 3279 SDValue Root; 3280 bool ConstantMemory = false; 3281 if (I.isVolatile() || NumValues > MaxParallelChains) 3282 // Serialize volatile loads with other side effects. 3283 Root = getRoot(); 3284 else if (AA->pointsToConstantMemory( 3285 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3286 // Do not serialize (non-volatile) loads of constant memory with anything. 3287 Root = DAG.getEntryNode(); 3288 ConstantMemory = true; 3289 } else { 3290 // Do not serialize non-volatile loads against each other. 3291 Root = DAG.getRoot(); 3292 } 3293 3294 SmallVector<SDValue, 4> Values(NumValues); 3295 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3296 NumValues)); 3297 EVT PtrVT = Ptr.getValueType(); 3298 unsigned ChainI = 0; 3299 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3300 // Serializing loads here may result in excessive register pressure, and 3301 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3302 // could recover a bit by hoisting nodes upward in the chain by recognizing 3303 // they are side-effect free or do not alias. The optimizer should really 3304 // avoid this case by converting large object/array copies to llvm.memcpy 3305 // (MaxParallelChains should always remain as failsafe). 3306 if (ChainI == MaxParallelChains) { 3307 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3308 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3309 MVT::Other, &Chains[0], ChainI); 3310 Root = Chain; 3311 ChainI = 0; 3312 } 3313 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3314 PtrVT, Ptr, 3315 DAG.getConstant(Offsets[i], PtrVT)); 3316 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3317 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3318 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3319 Ranges); 3320 3321 Values[i] = L; 3322 Chains[ChainI] = L.getValue(1); 3323 } 3324 3325 if (!ConstantMemory) { 3326 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3327 MVT::Other, &Chains[0], ChainI); 3328 if (isVolatile) 3329 DAG.setRoot(Chain); 3330 else 3331 PendingLoads.push_back(Chain); 3332 } 3333 3334 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3335 DAG.getVTList(&ValueVTs[0], NumValues), 3336 &Values[0], NumValues)); 3337 } 3338 3339 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3340 if (I.isAtomic()) 3341 return visitAtomicStore(I); 3342 3343 const Value *SrcV = I.getOperand(0); 3344 const Value *PtrV = I.getOperand(1); 3345 3346 SmallVector<EVT, 4> ValueVTs; 3347 SmallVector<uint64_t, 4> Offsets; 3348 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3349 unsigned NumValues = ValueVTs.size(); 3350 if (NumValues == 0) 3351 return; 3352 3353 // Get the lowered operands. Note that we do this after 3354 // checking if NumResults is zero, because with zero results 3355 // the operands won't have values in the map. 3356 SDValue Src = getValue(SrcV); 3357 SDValue Ptr = getValue(PtrV); 3358 3359 SDValue Root = getRoot(); 3360 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3361 NumValues)); 3362 EVT PtrVT = Ptr.getValueType(); 3363 bool isVolatile = I.isVolatile(); 3364 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3365 unsigned Alignment = I.getAlignment(); 3366 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3367 3368 unsigned ChainI = 0; 3369 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3370 // See visitLoad comments. 3371 if (ChainI == MaxParallelChains) { 3372 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3373 MVT::Other, &Chains[0], ChainI); 3374 Root = Chain; 3375 ChainI = 0; 3376 } 3377 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3378 DAG.getConstant(Offsets[i], PtrVT)); 3379 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3380 SDValue(Src.getNode(), Src.getResNo() + i), 3381 Add, MachinePointerInfo(PtrV, Offsets[i]), 3382 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3383 Chains[ChainI] = St; 3384 } 3385 3386 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3387 MVT::Other, &Chains[0], ChainI); 3388 ++SDNodeOrder; 3389 AssignOrderingToNode(StoreNode.getNode()); 3390 DAG.setRoot(StoreNode); 3391 } 3392 3393 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3394 SynchronizationScope Scope, 3395 bool Before, DebugLoc dl, 3396 SelectionDAG &DAG, 3397 const TargetLowering &TLI) { 3398 // Fence, if necessary 3399 if (Before) { 3400 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3401 Order = Release; 3402 else if (Order == Acquire || Order == Monotonic) 3403 return Chain; 3404 } else { 3405 if (Order == AcquireRelease) 3406 Order = Acquire; 3407 else if (Order == Release || Order == Monotonic) 3408 return Chain; 3409 } 3410 SDValue Ops[3]; 3411 Ops[0] = Chain; 3412 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3413 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3414 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3415 } 3416 3417 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3418 DebugLoc dl = getCurDebugLoc(); 3419 AtomicOrdering Order = I.getOrdering(); 3420 SynchronizationScope Scope = I.getSynchScope(); 3421 3422 SDValue InChain = getRoot(); 3423 3424 if (TLI.getInsertFencesForAtomic()) 3425 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3426 DAG, TLI); 3427 3428 SDValue L = 3429 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3430 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3431 InChain, 3432 getValue(I.getPointerOperand()), 3433 getValue(I.getCompareOperand()), 3434 getValue(I.getNewValOperand()), 3435 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3436 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3437 Scope); 3438 3439 SDValue OutChain = L.getValue(1); 3440 3441 if (TLI.getInsertFencesForAtomic()) 3442 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3443 DAG, TLI); 3444 3445 setValue(&I, L); 3446 DAG.setRoot(OutChain); 3447 } 3448 3449 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3450 DebugLoc dl = getCurDebugLoc(); 3451 ISD::NodeType NT; 3452 switch (I.getOperation()) { 3453 default: llvm_unreachable("Unknown atomicrmw operation"); 3454 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3455 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3456 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3457 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3458 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3459 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3460 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3461 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3462 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3463 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3464 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3465 } 3466 AtomicOrdering Order = I.getOrdering(); 3467 SynchronizationScope Scope = I.getSynchScope(); 3468 3469 SDValue InChain = getRoot(); 3470 3471 if (TLI.getInsertFencesForAtomic()) 3472 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3473 DAG, TLI); 3474 3475 SDValue L = 3476 DAG.getAtomic(NT, dl, 3477 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3478 InChain, 3479 getValue(I.getPointerOperand()), 3480 getValue(I.getValOperand()), 3481 I.getPointerOperand(), 0 /* Alignment */, 3482 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3483 Scope); 3484 3485 SDValue OutChain = L.getValue(1); 3486 3487 if (TLI.getInsertFencesForAtomic()) 3488 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3489 DAG, TLI); 3490 3491 setValue(&I, L); 3492 DAG.setRoot(OutChain); 3493 } 3494 3495 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3496 DebugLoc dl = getCurDebugLoc(); 3497 SDValue Ops[3]; 3498 Ops[0] = getRoot(); 3499 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3500 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3501 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3502 } 3503 3504 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3505 DebugLoc dl = getCurDebugLoc(); 3506 AtomicOrdering Order = I.getOrdering(); 3507 SynchronizationScope Scope = I.getSynchScope(); 3508 3509 SDValue InChain = getRoot(); 3510 3511 EVT VT = TLI.getValueType(I.getType()); 3512 3513 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3514 report_fatal_error("Cannot generate unaligned atomic load"); 3515 3516 SDValue L = 3517 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3518 getValue(I.getPointerOperand()), 3519 I.getPointerOperand(), I.getAlignment(), 3520 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3521 Scope); 3522 3523 SDValue OutChain = L.getValue(1); 3524 3525 if (TLI.getInsertFencesForAtomic()) 3526 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3527 DAG, TLI); 3528 3529 setValue(&I, L); 3530 DAG.setRoot(OutChain); 3531 } 3532 3533 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3534 DebugLoc dl = getCurDebugLoc(); 3535 3536 AtomicOrdering Order = I.getOrdering(); 3537 SynchronizationScope Scope = I.getSynchScope(); 3538 3539 SDValue InChain = getRoot(); 3540 3541 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3542 3543 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3544 report_fatal_error("Cannot generate unaligned atomic store"); 3545 3546 if (TLI.getInsertFencesForAtomic()) 3547 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3548 DAG, TLI); 3549 3550 SDValue OutChain = 3551 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3552 InChain, 3553 getValue(I.getPointerOperand()), 3554 getValue(I.getValueOperand()), 3555 I.getPointerOperand(), I.getAlignment(), 3556 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3557 Scope); 3558 3559 if (TLI.getInsertFencesForAtomic()) 3560 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3561 DAG, TLI); 3562 3563 DAG.setRoot(OutChain); 3564 } 3565 3566 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3567 /// node. 3568 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3569 unsigned Intrinsic) { 3570 bool HasChain = !I.doesNotAccessMemory(); 3571 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3572 3573 // Build the operand list. 3574 SmallVector<SDValue, 8> Ops; 3575 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3576 if (OnlyLoad) { 3577 // We don't need to serialize loads against other loads. 3578 Ops.push_back(DAG.getRoot()); 3579 } else { 3580 Ops.push_back(getRoot()); 3581 } 3582 } 3583 3584 // Info is set by getTgtMemInstrinsic 3585 TargetLowering::IntrinsicInfo Info; 3586 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3587 3588 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3589 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3590 Info.opc == ISD::INTRINSIC_W_CHAIN) 3591 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3592 3593 // Add all operands of the call to the operand list. 3594 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3595 SDValue Op = getValue(I.getArgOperand(i)); 3596 Ops.push_back(Op); 3597 } 3598 3599 SmallVector<EVT, 4> ValueVTs; 3600 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3601 3602 if (HasChain) 3603 ValueVTs.push_back(MVT::Other); 3604 3605 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3606 3607 // Create the node. 3608 SDValue Result; 3609 if (IsTgtIntrinsic) { 3610 // This is target intrinsic that touches memory 3611 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3612 VTs, &Ops[0], Ops.size(), 3613 Info.memVT, 3614 MachinePointerInfo(Info.ptrVal, Info.offset), 3615 Info.align, Info.vol, 3616 Info.readMem, Info.writeMem); 3617 } else if (!HasChain) { 3618 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3619 VTs, &Ops[0], Ops.size()); 3620 } else if (!I.getType()->isVoidTy()) { 3621 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3622 VTs, &Ops[0], Ops.size()); 3623 } else { 3624 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3625 VTs, &Ops[0], Ops.size()); 3626 } 3627 3628 if (HasChain) { 3629 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3630 if (OnlyLoad) 3631 PendingLoads.push_back(Chain); 3632 else 3633 DAG.setRoot(Chain); 3634 } 3635 3636 if (!I.getType()->isVoidTy()) { 3637 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3638 EVT VT = TLI.getValueType(PTy); 3639 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3640 } 3641 3642 setValue(&I, Result); 3643 } else { 3644 // Assign order to result here. If the intrinsic does not produce a result, 3645 // it won't be mapped to a SDNode and visit() will not assign it an order 3646 // number. 3647 ++SDNodeOrder; 3648 AssignOrderingToNode(Result.getNode()); 3649 } 3650 } 3651 3652 /// GetSignificand - Get the significand and build it into a floating-point 3653 /// number with exponent of 1: 3654 /// 3655 /// Op = (Op & 0x007fffff) | 0x3f800000; 3656 /// 3657 /// where Op is the hexidecimal representation of floating point value. 3658 static SDValue 3659 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3660 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3661 DAG.getConstant(0x007fffff, MVT::i32)); 3662 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3663 DAG.getConstant(0x3f800000, MVT::i32)); 3664 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3665 } 3666 3667 /// GetExponent - Get the exponent: 3668 /// 3669 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3670 /// 3671 /// where Op is the hexidecimal representation of floating point value. 3672 static SDValue 3673 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3674 DebugLoc dl) { 3675 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3676 DAG.getConstant(0x7f800000, MVT::i32)); 3677 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3678 DAG.getConstant(23, TLI.getPointerTy())); 3679 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3680 DAG.getConstant(127, MVT::i32)); 3681 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3682 } 3683 3684 /// getF32Constant - Get 32-bit floating point constant. 3685 static SDValue 3686 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3687 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3688 } 3689 3690 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3691 /// limited-precision mode. 3692 void 3693 SelectionDAGBuilder::visitExp(const CallInst &I) { 3694 SDValue result; 3695 DebugLoc dl = getCurDebugLoc(); 3696 3697 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3698 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3699 SDValue Op = getValue(I.getArgOperand(0)); 3700 3701 // Put the exponent in the right bit position for later addition to the 3702 // final result: 3703 // 3704 // #define LOG2OFe 1.4426950f 3705 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3706 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3707 getF32Constant(DAG, 0x3fb8aa3b)); 3708 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3709 3710 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3711 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3712 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3713 3714 // IntegerPartOfX <<= 23; 3715 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3716 DAG.getConstant(23, TLI.getPointerTy())); 3717 3718 if (LimitFloatPrecision <= 6) { 3719 // For floating-point precision of 6: 3720 // 3721 // TwoToFractionalPartOfX = 3722 // 0.997535578f + 3723 // (0.735607626f + 0.252464424f * x) * x; 3724 // 3725 // error 0.0144103317, which is 6 bits 3726 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3727 getF32Constant(DAG, 0x3e814304)); 3728 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3729 getF32Constant(DAG, 0x3f3c50c8)); 3730 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3731 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3732 getF32Constant(DAG, 0x3f7f5e7e)); 3733 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3734 3735 // Add the exponent into the result in integer domain. 3736 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3737 TwoToFracPartOfX, IntegerPartOfX); 3738 3739 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3740 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3741 // For floating-point precision of 12: 3742 // 3743 // TwoToFractionalPartOfX = 3744 // 0.999892986f + 3745 // (0.696457318f + 3746 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3747 // 3748 // 0.000107046256 error, which is 13 to 14 bits 3749 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3750 getF32Constant(DAG, 0x3da235e3)); 3751 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3752 getF32Constant(DAG, 0x3e65b8f3)); 3753 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3754 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3755 getF32Constant(DAG, 0x3f324b07)); 3756 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3757 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3758 getF32Constant(DAG, 0x3f7ff8fd)); 3759 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3760 3761 // Add the exponent into the result in integer domain. 3762 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3763 TwoToFracPartOfX, IntegerPartOfX); 3764 3765 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3766 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3767 // For floating-point precision of 18: 3768 // 3769 // TwoToFractionalPartOfX = 3770 // 0.999999982f + 3771 // (0.693148872f + 3772 // (0.240227044f + 3773 // (0.554906021e-1f + 3774 // (0.961591928e-2f + 3775 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3776 // 3777 // error 2.47208000*10^(-7), which is better than 18 bits 3778 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3779 getF32Constant(DAG, 0x3924b03e)); 3780 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3781 getF32Constant(DAG, 0x3ab24b87)); 3782 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3783 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3784 getF32Constant(DAG, 0x3c1d8c17)); 3785 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3786 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3787 getF32Constant(DAG, 0x3d634a1d)); 3788 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3789 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3790 getF32Constant(DAG, 0x3e75fe14)); 3791 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3792 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3793 getF32Constant(DAG, 0x3f317234)); 3794 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3795 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3796 getF32Constant(DAG, 0x3f800000)); 3797 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3798 MVT::i32, t13); 3799 3800 // Add the exponent into the result in integer domain. 3801 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3802 TwoToFracPartOfX, IntegerPartOfX); 3803 3804 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3805 } 3806 } else { 3807 // No special expansion. 3808 result = DAG.getNode(ISD::FEXP, dl, 3809 getValue(I.getArgOperand(0)).getValueType(), 3810 getValue(I.getArgOperand(0))); 3811 } 3812 3813 setValue(&I, result); 3814 } 3815 3816 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3817 /// limited-precision mode. 3818 void 3819 SelectionDAGBuilder::visitLog(const CallInst &I) { 3820 SDValue result; 3821 DebugLoc dl = getCurDebugLoc(); 3822 3823 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3824 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3825 SDValue Op = getValue(I.getArgOperand(0)); 3826 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3827 3828 // Scale the exponent by log(2) [0.69314718f]. 3829 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3830 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3831 getF32Constant(DAG, 0x3f317218)); 3832 3833 // Get the significand and build it into a floating-point number with 3834 // exponent of 1. 3835 SDValue X = GetSignificand(DAG, Op1, dl); 3836 3837 SDValue LogOfMantissa; 3838 if (LimitFloatPrecision <= 6) { 3839 // For floating-point precision of 6: 3840 // 3841 // LogofMantissa = 3842 // -1.1609546f + 3843 // (1.4034025f - 0.23903021f * x) * x; 3844 // 3845 // error 0.0034276066, which is better than 8 bits 3846 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3847 getF32Constant(DAG, 0xbe74c456)); 3848 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3849 getF32Constant(DAG, 0x3fb3a2b1)); 3850 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3851 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3852 getF32Constant(DAG, 0x3f949a29)); 3853 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3854 // For floating-point precision of 12: 3855 // 3856 // LogOfMantissa = 3857 // -1.7417939f + 3858 // (2.8212026f + 3859 // (-1.4699568f + 3860 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3861 // 3862 // error 0.000061011436, which is 14 bits 3863 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3864 getF32Constant(DAG, 0xbd67b6d6)); 3865 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3866 getF32Constant(DAG, 0x3ee4f4b8)); 3867 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3868 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3869 getF32Constant(DAG, 0x3fbc278b)); 3870 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3871 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3872 getF32Constant(DAG, 0x40348e95)); 3873 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3874 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3875 getF32Constant(DAG, 0x3fdef31a)); 3876 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3877 // For floating-point precision of 18: 3878 // 3879 // LogOfMantissa = 3880 // -2.1072184f + 3881 // (4.2372794f + 3882 // (-3.7029485f + 3883 // (2.2781945f + 3884 // (-0.87823314f + 3885 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3886 // 3887 // error 0.0000023660568, which is better than 18 bits 3888 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3889 getF32Constant(DAG, 0xbc91e5ac)); 3890 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3891 getF32Constant(DAG, 0x3e4350aa)); 3892 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3893 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3894 getF32Constant(DAG, 0x3f60d3e3)); 3895 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3896 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3897 getF32Constant(DAG, 0x4011cdf0)); 3898 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3899 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3900 getF32Constant(DAG, 0x406cfd1c)); 3901 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3902 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3903 getF32Constant(DAG, 0x408797cb)); 3904 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3905 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3906 getF32Constant(DAG, 0x4006dcab)); 3907 } 3908 3909 result = DAG.getNode(ISD::FADD, dl, 3910 MVT::f32, LogOfExponent, LogOfMantissa); 3911 } else { 3912 // No special expansion. 3913 result = DAG.getNode(ISD::FLOG, dl, 3914 getValue(I.getArgOperand(0)).getValueType(), 3915 getValue(I.getArgOperand(0))); 3916 } 3917 3918 setValue(&I, result); 3919 } 3920 3921 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3922 /// limited-precision mode. 3923 void 3924 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3925 SDValue result; 3926 DebugLoc dl = getCurDebugLoc(); 3927 3928 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3929 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3930 SDValue Op = getValue(I.getArgOperand(0)); 3931 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3932 3933 // Get the exponent. 3934 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3935 3936 // Get the significand and build it into a floating-point number with 3937 // exponent of 1. 3938 SDValue X = GetSignificand(DAG, Op1, dl); 3939 3940 // Different possible minimax approximations of significand in 3941 // floating-point for various degrees of accuracy over [1,2]. 3942 SDValue Log2ofMantissa; 3943 if (LimitFloatPrecision <= 6) { 3944 // For floating-point precision of 6: 3945 // 3946 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3947 // 3948 // error 0.0049451742, which is more than 7 bits 3949 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3950 getF32Constant(DAG, 0xbeb08fe0)); 3951 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3952 getF32Constant(DAG, 0x40019463)); 3953 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3954 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3955 getF32Constant(DAG, 0x3fd6633d)); 3956 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3957 // For floating-point precision of 12: 3958 // 3959 // Log2ofMantissa = 3960 // -2.51285454f + 3961 // (4.07009056f + 3962 // (-2.12067489f + 3963 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3964 // 3965 // error 0.0000876136000, which is better than 13 bits 3966 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3967 getF32Constant(DAG, 0xbda7262e)); 3968 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3969 getF32Constant(DAG, 0x3f25280b)); 3970 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3971 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3972 getF32Constant(DAG, 0x4007b923)); 3973 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3974 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3975 getF32Constant(DAG, 0x40823e2f)); 3976 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3977 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3978 getF32Constant(DAG, 0x4020d29c)); 3979 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3980 // For floating-point precision of 18: 3981 // 3982 // Log2ofMantissa = 3983 // -3.0400495f + 3984 // (6.1129976f + 3985 // (-5.3420409f + 3986 // (3.2865683f + 3987 // (-1.2669343f + 3988 // (0.27515199f - 3989 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3990 // 3991 // error 0.0000018516, which is better than 18 bits 3992 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3993 getF32Constant(DAG, 0xbcd2769e)); 3994 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3995 getF32Constant(DAG, 0x3e8ce0b9)); 3996 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3997 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3998 getF32Constant(DAG, 0x3fa22ae7)); 3999 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4000 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4001 getF32Constant(DAG, 0x40525723)); 4002 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4003 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4004 getF32Constant(DAG, 0x40aaf200)); 4005 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4006 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4007 getF32Constant(DAG, 0x40c39dad)); 4008 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4009 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4010 getF32Constant(DAG, 0x4042902c)); 4011 } 4012 4013 result = DAG.getNode(ISD::FADD, dl, 4014 MVT::f32, LogOfExponent, Log2ofMantissa); 4015 } else { 4016 // No special expansion. 4017 result = DAG.getNode(ISD::FLOG2, dl, 4018 getValue(I.getArgOperand(0)).getValueType(), 4019 getValue(I.getArgOperand(0))); 4020 } 4021 4022 setValue(&I, result); 4023 } 4024 4025 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 4026 /// limited-precision mode. 4027 void 4028 SelectionDAGBuilder::visitLog10(const CallInst &I) { 4029 SDValue result; 4030 DebugLoc dl = getCurDebugLoc(); 4031 4032 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4033 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4034 SDValue Op = getValue(I.getArgOperand(0)); 4035 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4036 4037 // Scale the exponent by log10(2) [0.30102999f]. 4038 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4039 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4040 getF32Constant(DAG, 0x3e9a209a)); 4041 4042 // Get the significand and build it into a floating-point number with 4043 // exponent of 1. 4044 SDValue X = GetSignificand(DAG, Op1, dl); 4045 4046 SDValue Log10ofMantissa; 4047 if (LimitFloatPrecision <= 6) { 4048 // For floating-point precision of 6: 4049 // 4050 // Log10ofMantissa = 4051 // -0.50419619f + 4052 // (0.60948995f - 0.10380950f * x) * x; 4053 // 4054 // error 0.0014886165, which is 6 bits 4055 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4056 getF32Constant(DAG, 0xbdd49a13)); 4057 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4058 getF32Constant(DAG, 0x3f1c0789)); 4059 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4060 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4061 getF32Constant(DAG, 0x3f011300)); 4062 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4063 // For floating-point precision of 12: 4064 // 4065 // Log10ofMantissa = 4066 // -0.64831180f + 4067 // (0.91751397f + 4068 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4069 // 4070 // error 0.00019228036, which is better than 12 bits 4071 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4072 getF32Constant(DAG, 0x3d431f31)); 4073 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4074 getF32Constant(DAG, 0x3ea21fb2)); 4075 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4076 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4077 getF32Constant(DAG, 0x3f6ae232)); 4078 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4079 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4080 getF32Constant(DAG, 0x3f25f7c3)); 4081 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4082 // For floating-point precision of 18: 4083 // 4084 // Log10ofMantissa = 4085 // -0.84299375f + 4086 // (1.5327582f + 4087 // (-1.0688956f + 4088 // (0.49102474f + 4089 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4090 // 4091 // error 0.0000037995730, which is better than 18 bits 4092 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4093 getF32Constant(DAG, 0x3c5d51ce)); 4094 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4095 getF32Constant(DAG, 0x3e00685a)); 4096 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4097 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4098 getF32Constant(DAG, 0x3efb6798)); 4099 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4100 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4101 getF32Constant(DAG, 0x3f88d192)); 4102 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4103 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4104 getF32Constant(DAG, 0x3fc4316c)); 4105 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4106 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4107 getF32Constant(DAG, 0x3f57ce70)); 4108 } 4109 4110 result = DAG.getNode(ISD::FADD, dl, 4111 MVT::f32, LogOfExponent, Log10ofMantissa); 4112 } else { 4113 // No special expansion. 4114 result = DAG.getNode(ISD::FLOG10, dl, 4115 getValue(I.getArgOperand(0)).getValueType(), 4116 getValue(I.getArgOperand(0))); 4117 } 4118 4119 setValue(&I, result); 4120 } 4121 4122 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4123 /// limited-precision mode. 4124 void 4125 SelectionDAGBuilder::visitExp2(const CallInst &I) { 4126 SDValue result; 4127 DebugLoc dl = getCurDebugLoc(); 4128 4129 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4130 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4131 SDValue Op = getValue(I.getArgOperand(0)); 4132 4133 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4134 4135 // FractionalPartOfX = x - (float)IntegerPartOfX; 4136 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4137 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4138 4139 // IntegerPartOfX <<= 23; 4140 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4141 DAG.getConstant(23, TLI.getPointerTy())); 4142 4143 if (LimitFloatPrecision <= 6) { 4144 // For floating-point precision of 6: 4145 // 4146 // TwoToFractionalPartOfX = 4147 // 0.997535578f + 4148 // (0.735607626f + 0.252464424f * x) * x; 4149 // 4150 // error 0.0144103317, which is 6 bits 4151 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4152 getF32Constant(DAG, 0x3e814304)); 4153 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4154 getF32Constant(DAG, 0x3f3c50c8)); 4155 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4156 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4157 getF32Constant(DAG, 0x3f7f5e7e)); 4158 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4159 SDValue TwoToFractionalPartOfX = 4160 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4161 4162 result = DAG.getNode(ISD::BITCAST, dl, 4163 MVT::f32, TwoToFractionalPartOfX); 4164 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4165 // For floating-point precision of 12: 4166 // 4167 // TwoToFractionalPartOfX = 4168 // 0.999892986f + 4169 // (0.696457318f + 4170 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4171 // 4172 // error 0.000107046256, which is 13 to 14 bits 4173 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4174 getF32Constant(DAG, 0x3da235e3)); 4175 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4176 getF32Constant(DAG, 0x3e65b8f3)); 4177 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4178 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4179 getF32Constant(DAG, 0x3f324b07)); 4180 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4181 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4182 getF32Constant(DAG, 0x3f7ff8fd)); 4183 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4184 SDValue TwoToFractionalPartOfX = 4185 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4186 4187 result = DAG.getNode(ISD::BITCAST, dl, 4188 MVT::f32, TwoToFractionalPartOfX); 4189 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4190 // For floating-point precision of 18: 4191 // 4192 // TwoToFractionalPartOfX = 4193 // 0.999999982f + 4194 // (0.693148872f + 4195 // (0.240227044f + 4196 // (0.554906021e-1f + 4197 // (0.961591928e-2f + 4198 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4199 // error 2.47208000*10^(-7), which is better than 18 bits 4200 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4201 getF32Constant(DAG, 0x3924b03e)); 4202 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4203 getF32Constant(DAG, 0x3ab24b87)); 4204 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4205 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4206 getF32Constant(DAG, 0x3c1d8c17)); 4207 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4208 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4209 getF32Constant(DAG, 0x3d634a1d)); 4210 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4211 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4212 getF32Constant(DAG, 0x3e75fe14)); 4213 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4214 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4215 getF32Constant(DAG, 0x3f317234)); 4216 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4217 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4218 getF32Constant(DAG, 0x3f800000)); 4219 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4220 SDValue TwoToFractionalPartOfX = 4221 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4222 4223 result = DAG.getNode(ISD::BITCAST, dl, 4224 MVT::f32, TwoToFractionalPartOfX); 4225 } 4226 } else { 4227 // No special expansion. 4228 result = DAG.getNode(ISD::FEXP2, dl, 4229 getValue(I.getArgOperand(0)).getValueType(), 4230 getValue(I.getArgOperand(0))); 4231 } 4232 4233 setValue(&I, result); 4234 } 4235 4236 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4237 /// limited-precision mode with x == 10.0f. 4238 void 4239 SelectionDAGBuilder::visitPow(const CallInst &I) { 4240 SDValue result; 4241 const Value *Val = I.getArgOperand(0); 4242 DebugLoc dl = getCurDebugLoc(); 4243 bool IsExp10 = false; 4244 4245 if (getValue(Val).getValueType() == MVT::f32 && 4246 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4247 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4248 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4249 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4250 APFloat Ten(10.0f); 4251 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4252 } 4253 } 4254 } 4255 4256 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4257 SDValue Op = getValue(I.getArgOperand(1)); 4258 4259 // Put the exponent in the right bit position for later addition to the 4260 // final result: 4261 // 4262 // #define LOG2OF10 3.3219281f 4263 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4264 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4265 getF32Constant(DAG, 0x40549a78)); 4266 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4267 4268 // FractionalPartOfX = x - (float)IntegerPartOfX; 4269 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4270 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4271 4272 // IntegerPartOfX <<= 23; 4273 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4274 DAG.getConstant(23, TLI.getPointerTy())); 4275 4276 if (LimitFloatPrecision <= 6) { 4277 // For floating-point precision of 6: 4278 // 4279 // twoToFractionalPartOfX = 4280 // 0.997535578f + 4281 // (0.735607626f + 0.252464424f * x) * x; 4282 // 4283 // error 0.0144103317, which is 6 bits 4284 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4285 getF32Constant(DAG, 0x3e814304)); 4286 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4287 getF32Constant(DAG, 0x3f3c50c8)); 4288 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4289 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4290 getF32Constant(DAG, 0x3f7f5e7e)); 4291 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4292 SDValue TwoToFractionalPartOfX = 4293 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4294 4295 result = DAG.getNode(ISD::BITCAST, dl, 4296 MVT::f32, TwoToFractionalPartOfX); 4297 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4298 // For floating-point precision of 12: 4299 // 4300 // TwoToFractionalPartOfX = 4301 // 0.999892986f + 4302 // (0.696457318f + 4303 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4304 // 4305 // error 0.000107046256, which is 13 to 14 bits 4306 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4307 getF32Constant(DAG, 0x3da235e3)); 4308 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4309 getF32Constant(DAG, 0x3e65b8f3)); 4310 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4311 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4312 getF32Constant(DAG, 0x3f324b07)); 4313 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4314 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4315 getF32Constant(DAG, 0x3f7ff8fd)); 4316 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4317 SDValue TwoToFractionalPartOfX = 4318 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4319 4320 result = DAG.getNode(ISD::BITCAST, dl, 4321 MVT::f32, TwoToFractionalPartOfX); 4322 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4323 // For floating-point precision of 18: 4324 // 4325 // TwoToFractionalPartOfX = 4326 // 0.999999982f + 4327 // (0.693148872f + 4328 // (0.240227044f + 4329 // (0.554906021e-1f + 4330 // (0.961591928e-2f + 4331 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4332 // error 2.47208000*10^(-7), which is better than 18 bits 4333 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4334 getF32Constant(DAG, 0x3924b03e)); 4335 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4336 getF32Constant(DAG, 0x3ab24b87)); 4337 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4338 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4339 getF32Constant(DAG, 0x3c1d8c17)); 4340 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4341 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4342 getF32Constant(DAG, 0x3d634a1d)); 4343 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4344 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4345 getF32Constant(DAG, 0x3e75fe14)); 4346 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4347 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4348 getF32Constant(DAG, 0x3f317234)); 4349 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4350 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4351 getF32Constant(DAG, 0x3f800000)); 4352 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4353 SDValue TwoToFractionalPartOfX = 4354 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4355 4356 result = DAG.getNode(ISD::BITCAST, dl, 4357 MVT::f32, TwoToFractionalPartOfX); 4358 } 4359 } else { 4360 // No special expansion. 4361 result = DAG.getNode(ISD::FPOW, dl, 4362 getValue(I.getArgOperand(0)).getValueType(), 4363 getValue(I.getArgOperand(0)), 4364 getValue(I.getArgOperand(1))); 4365 } 4366 4367 setValue(&I, result); 4368 } 4369 4370 4371 /// ExpandPowI - Expand a llvm.powi intrinsic. 4372 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4373 SelectionDAG &DAG) { 4374 // If RHS is a constant, we can expand this out to a multiplication tree, 4375 // otherwise we end up lowering to a call to __powidf2 (for example). When 4376 // optimizing for size, we only want to do this if the expansion would produce 4377 // a small number of multiplies, otherwise we do the full expansion. 4378 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4379 // Get the exponent as a positive value. 4380 unsigned Val = RHSC->getSExtValue(); 4381 if ((int)Val < 0) Val = -Val; 4382 4383 // powi(x, 0) -> 1.0 4384 if (Val == 0) 4385 return DAG.getConstantFP(1.0, LHS.getValueType()); 4386 4387 const Function *F = DAG.getMachineFunction().getFunction(); 4388 if (!F->getFnAttributes().hasAttribute(Attributes::OptimizeForSize) || 4389 // If optimizing for size, don't insert too many multiplies. This 4390 // inserts up to 5 multiplies. 4391 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4392 // We use the simple binary decomposition method to generate the multiply 4393 // sequence. There are more optimal ways to do this (for example, 4394 // powi(x,15) generates one more multiply than it should), but this has 4395 // the benefit of being both really simple and much better than a libcall. 4396 SDValue Res; // Logically starts equal to 1.0 4397 SDValue CurSquare = LHS; 4398 while (Val) { 4399 if (Val & 1) { 4400 if (Res.getNode()) 4401 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4402 else 4403 Res = CurSquare; // 1.0*CurSquare. 4404 } 4405 4406 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4407 CurSquare, CurSquare); 4408 Val >>= 1; 4409 } 4410 4411 // If the original was negative, invert the result, producing 1/(x*x*x). 4412 if (RHSC->getSExtValue() < 0) 4413 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4414 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4415 return Res; 4416 } 4417 } 4418 4419 // Otherwise, expand to a libcall. 4420 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4421 } 4422 4423 // getTruncatedArgReg - Find underlying register used for an truncated 4424 // argument. 4425 static unsigned getTruncatedArgReg(const SDValue &N) { 4426 if (N.getOpcode() != ISD::TRUNCATE) 4427 return 0; 4428 4429 const SDValue &Ext = N.getOperand(0); 4430 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4431 const SDValue &CFR = Ext.getOperand(0); 4432 if (CFR.getOpcode() == ISD::CopyFromReg) 4433 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4434 if (CFR.getOpcode() == ISD::TRUNCATE) 4435 return getTruncatedArgReg(CFR); 4436 } 4437 return 0; 4438 } 4439 4440 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4441 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4442 /// At the end of instruction selection, they will be inserted to the entry BB. 4443 bool 4444 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4445 int64_t Offset, 4446 const SDValue &N) { 4447 const Argument *Arg = dyn_cast<Argument>(V); 4448 if (!Arg) 4449 return false; 4450 4451 MachineFunction &MF = DAG.getMachineFunction(); 4452 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4453 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4454 4455 // Ignore inlined function arguments here. 4456 DIVariable DV(Variable); 4457 if (DV.isInlinedFnArgument(MF.getFunction())) 4458 return false; 4459 4460 unsigned Reg = 0; 4461 // Some arguments' frame index is recorded during argument lowering. 4462 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4463 if (Offset) 4464 Reg = TRI->getFrameRegister(MF); 4465 4466 if (!Reg && N.getNode()) { 4467 if (N.getOpcode() == ISD::CopyFromReg) 4468 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4469 else 4470 Reg = getTruncatedArgReg(N); 4471 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4472 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4473 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4474 if (PR) 4475 Reg = PR; 4476 } 4477 } 4478 4479 if (!Reg) { 4480 // Check if ValueMap has reg number. 4481 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4482 if (VMI != FuncInfo.ValueMap.end()) 4483 Reg = VMI->second; 4484 } 4485 4486 if (!Reg && N.getNode()) { 4487 // Check if frame index is available. 4488 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4489 if (FrameIndexSDNode *FINode = 4490 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4491 Reg = TRI->getFrameRegister(MF); 4492 Offset = FINode->getIndex(); 4493 } 4494 } 4495 4496 if (!Reg) 4497 return false; 4498 4499 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4500 TII->get(TargetOpcode::DBG_VALUE)) 4501 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4502 FuncInfo.ArgDbgValues.push_back(&*MIB); 4503 return true; 4504 } 4505 4506 // VisualStudio defines setjmp as _setjmp 4507 #if defined(_MSC_VER) && defined(setjmp) && \ 4508 !defined(setjmp_undefined_for_msvc) 4509 # pragma push_macro("setjmp") 4510 # undef setjmp 4511 # define setjmp_undefined_for_msvc 4512 #endif 4513 4514 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4515 /// we want to emit this as a call to a named external function, return the name 4516 /// otherwise lower it and return null. 4517 const char * 4518 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4519 DebugLoc dl = getCurDebugLoc(); 4520 SDValue Res; 4521 4522 switch (Intrinsic) { 4523 default: 4524 // By default, turn this into a target intrinsic node. 4525 visitTargetIntrinsic(I, Intrinsic); 4526 return 0; 4527 case Intrinsic::vastart: visitVAStart(I); return 0; 4528 case Intrinsic::vaend: visitVAEnd(I); return 0; 4529 case Intrinsic::vacopy: visitVACopy(I); return 0; 4530 case Intrinsic::returnaddress: 4531 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4532 getValue(I.getArgOperand(0)))); 4533 return 0; 4534 case Intrinsic::frameaddress: 4535 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4536 getValue(I.getArgOperand(0)))); 4537 return 0; 4538 case Intrinsic::setjmp: 4539 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4540 case Intrinsic::longjmp: 4541 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4542 case Intrinsic::memcpy: { 4543 // Assert for address < 256 since we support only user defined address 4544 // spaces. 4545 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4546 < 256 && 4547 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4548 < 256 && 4549 "Unknown address space"); 4550 SDValue Op1 = getValue(I.getArgOperand(0)); 4551 SDValue Op2 = getValue(I.getArgOperand(1)); 4552 SDValue Op3 = getValue(I.getArgOperand(2)); 4553 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4554 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4555 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4556 MachinePointerInfo(I.getArgOperand(0)), 4557 MachinePointerInfo(I.getArgOperand(1)))); 4558 return 0; 4559 } 4560 case Intrinsic::memset: { 4561 // Assert for address < 256 since we support only user defined address 4562 // spaces. 4563 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4564 < 256 && 4565 "Unknown address space"); 4566 SDValue Op1 = getValue(I.getArgOperand(0)); 4567 SDValue Op2 = getValue(I.getArgOperand(1)); 4568 SDValue Op3 = getValue(I.getArgOperand(2)); 4569 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4570 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4571 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4572 MachinePointerInfo(I.getArgOperand(0)))); 4573 return 0; 4574 } 4575 case Intrinsic::memmove: { 4576 // Assert for address < 256 since we support only user defined address 4577 // spaces. 4578 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4579 < 256 && 4580 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4581 < 256 && 4582 "Unknown address space"); 4583 SDValue Op1 = getValue(I.getArgOperand(0)); 4584 SDValue Op2 = getValue(I.getArgOperand(1)); 4585 SDValue Op3 = getValue(I.getArgOperand(2)); 4586 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4587 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4588 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4589 MachinePointerInfo(I.getArgOperand(0)), 4590 MachinePointerInfo(I.getArgOperand(1)))); 4591 return 0; 4592 } 4593 case Intrinsic::dbg_declare: { 4594 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4595 MDNode *Variable = DI.getVariable(); 4596 const Value *Address = DI.getAddress(); 4597 if (!Address || !DIVariable(Variable).Verify()) { 4598 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4599 return 0; 4600 } 4601 4602 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4603 // but do not always have a corresponding SDNode built. The SDNodeOrder 4604 // absolute, but not relative, values are different depending on whether 4605 // debug info exists. 4606 ++SDNodeOrder; 4607 4608 // Check if address has undef value. 4609 if (isa<UndefValue>(Address) || 4610 (Address->use_empty() && !isa<Argument>(Address))) { 4611 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4612 return 0; 4613 } 4614 4615 SDValue &N = NodeMap[Address]; 4616 if (!N.getNode() && isa<Argument>(Address)) 4617 // Check unused arguments map. 4618 N = UnusedArgNodeMap[Address]; 4619 SDDbgValue *SDV; 4620 if (N.getNode()) { 4621 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4622 Address = BCI->getOperand(0); 4623 // Parameters are handled specially. 4624 bool isParameter = 4625 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4626 isa<Argument>(Address)); 4627 4628 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4629 4630 if (isParameter && !AI) { 4631 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4632 if (FINode) 4633 // Byval parameter. We have a frame index at this point. 4634 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4635 0, dl, SDNodeOrder); 4636 else { 4637 // Address is an argument, so try to emit its dbg value using 4638 // virtual register info from the FuncInfo.ValueMap. 4639 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4640 return 0; 4641 } 4642 } else if (AI) 4643 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4644 0, dl, SDNodeOrder); 4645 else { 4646 // Can't do anything with other non-AI cases yet. 4647 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4648 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4649 DEBUG(Address->dump()); 4650 return 0; 4651 } 4652 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4653 } else { 4654 // If Address is an argument then try to emit its dbg value using 4655 // virtual register info from the FuncInfo.ValueMap. 4656 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4657 // If variable is pinned by a alloca in dominating bb then 4658 // use StaticAllocaMap. 4659 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4660 if (AI->getParent() != DI.getParent()) { 4661 DenseMap<const AllocaInst*, int>::iterator SI = 4662 FuncInfo.StaticAllocaMap.find(AI); 4663 if (SI != FuncInfo.StaticAllocaMap.end()) { 4664 SDV = DAG.getDbgValue(Variable, SI->second, 4665 0, dl, SDNodeOrder); 4666 DAG.AddDbgValue(SDV, 0, false); 4667 return 0; 4668 } 4669 } 4670 } 4671 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4672 } 4673 } 4674 return 0; 4675 } 4676 case Intrinsic::dbg_value: { 4677 const DbgValueInst &DI = cast<DbgValueInst>(I); 4678 if (!DIVariable(DI.getVariable()).Verify()) 4679 return 0; 4680 4681 MDNode *Variable = DI.getVariable(); 4682 uint64_t Offset = DI.getOffset(); 4683 const Value *V = DI.getValue(); 4684 if (!V) 4685 return 0; 4686 4687 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4688 // but do not always have a corresponding SDNode built. The SDNodeOrder 4689 // absolute, but not relative, values are different depending on whether 4690 // debug info exists. 4691 ++SDNodeOrder; 4692 SDDbgValue *SDV; 4693 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4694 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4695 DAG.AddDbgValue(SDV, 0, false); 4696 } else { 4697 // Do not use getValue() in here; we don't want to generate code at 4698 // this point if it hasn't been done yet. 4699 SDValue N = NodeMap[V]; 4700 if (!N.getNode() && isa<Argument>(V)) 4701 // Check unused arguments map. 4702 N = UnusedArgNodeMap[V]; 4703 if (N.getNode()) { 4704 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4705 SDV = DAG.getDbgValue(Variable, N.getNode(), 4706 N.getResNo(), Offset, dl, SDNodeOrder); 4707 DAG.AddDbgValue(SDV, N.getNode(), false); 4708 } 4709 } else if (!V->use_empty() ) { 4710 // Do not call getValue(V) yet, as we don't want to generate code. 4711 // Remember it for later. 4712 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4713 DanglingDebugInfoMap[V] = DDI; 4714 } else { 4715 // We may expand this to cover more cases. One case where we have no 4716 // data available is an unreferenced parameter. 4717 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4718 } 4719 } 4720 4721 // Build a debug info table entry. 4722 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4723 V = BCI->getOperand(0); 4724 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4725 // Don't handle byval struct arguments or VLAs, for example. 4726 if (!AI) { 4727 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4728 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4729 return 0; 4730 } 4731 DenseMap<const AllocaInst*, int>::iterator SI = 4732 FuncInfo.StaticAllocaMap.find(AI); 4733 if (SI == FuncInfo.StaticAllocaMap.end()) 4734 return 0; // VLAs. 4735 int FI = SI->second; 4736 4737 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4738 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4739 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4740 return 0; 4741 } 4742 4743 case Intrinsic::eh_typeid_for: { 4744 // Find the type id for the given typeinfo. 4745 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4746 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4747 Res = DAG.getConstant(TypeID, MVT::i32); 4748 setValue(&I, Res); 4749 return 0; 4750 } 4751 4752 case Intrinsic::eh_return_i32: 4753 case Intrinsic::eh_return_i64: 4754 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4755 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4756 MVT::Other, 4757 getControlRoot(), 4758 getValue(I.getArgOperand(0)), 4759 getValue(I.getArgOperand(1)))); 4760 return 0; 4761 case Intrinsic::eh_unwind_init: 4762 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4763 return 0; 4764 case Intrinsic::eh_dwarf_cfa: { 4765 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4766 TLI.getPointerTy()); 4767 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4768 TLI.getPointerTy(), 4769 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4770 TLI.getPointerTy()), 4771 CfaArg); 4772 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4773 TLI.getPointerTy(), 4774 DAG.getConstant(0, TLI.getPointerTy())); 4775 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4776 FA, Offset)); 4777 return 0; 4778 } 4779 case Intrinsic::eh_sjlj_callsite: { 4780 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4781 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4782 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4783 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4784 4785 MMI.setCurrentCallSite(CI->getZExtValue()); 4786 return 0; 4787 } 4788 case Intrinsic::eh_sjlj_functioncontext: { 4789 // Get and store the index of the function context. 4790 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4791 AllocaInst *FnCtx = 4792 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4793 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4794 MFI->setFunctionContextIndex(FI); 4795 return 0; 4796 } 4797 case Intrinsic::eh_sjlj_setjmp: { 4798 SDValue Ops[2]; 4799 Ops[0] = getRoot(); 4800 Ops[1] = getValue(I.getArgOperand(0)); 4801 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4802 DAG.getVTList(MVT::i32, MVT::Other), 4803 Ops, 2); 4804 setValue(&I, Op.getValue(0)); 4805 DAG.setRoot(Op.getValue(1)); 4806 return 0; 4807 } 4808 case Intrinsic::eh_sjlj_longjmp: { 4809 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4810 getRoot(), getValue(I.getArgOperand(0)))); 4811 return 0; 4812 } 4813 4814 case Intrinsic::x86_mmx_pslli_w: 4815 case Intrinsic::x86_mmx_pslli_d: 4816 case Intrinsic::x86_mmx_pslli_q: 4817 case Intrinsic::x86_mmx_psrli_w: 4818 case Intrinsic::x86_mmx_psrli_d: 4819 case Intrinsic::x86_mmx_psrli_q: 4820 case Intrinsic::x86_mmx_psrai_w: 4821 case Intrinsic::x86_mmx_psrai_d: { 4822 SDValue ShAmt = getValue(I.getArgOperand(1)); 4823 if (isa<ConstantSDNode>(ShAmt)) { 4824 visitTargetIntrinsic(I, Intrinsic); 4825 return 0; 4826 } 4827 unsigned NewIntrinsic = 0; 4828 EVT ShAmtVT = MVT::v2i32; 4829 switch (Intrinsic) { 4830 case Intrinsic::x86_mmx_pslli_w: 4831 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4832 break; 4833 case Intrinsic::x86_mmx_pslli_d: 4834 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4835 break; 4836 case Intrinsic::x86_mmx_pslli_q: 4837 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4838 break; 4839 case Intrinsic::x86_mmx_psrli_w: 4840 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4841 break; 4842 case Intrinsic::x86_mmx_psrli_d: 4843 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4844 break; 4845 case Intrinsic::x86_mmx_psrli_q: 4846 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4847 break; 4848 case Intrinsic::x86_mmx_psrai_w: 4849 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4850 break; 4851 case Intrinsic::x86_mmx_psrai_d: 4852 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4853 break; 4854 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4855 } 4856 4857 // The vector shift intrinsics with scalars uses 32b shift amounts but 4858 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4859 // to be zero. 4860 // We must do this early because v2i32 is not a legal type. 4861 DebugLoc dl = getCurDebugLoc(); 4862 SDValue ShOps[2]; 4863 ShOps[0] = ShAmt; 4864 ShOps[1] = DAG.getConstant(0, MVT::i32); 4865 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4866 EVT DestVT = TLI.getValueType(I.getType()); 4867 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4868 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4869 DAG.getConstant(NewIntrinsic, MVT::i32), 4870 getValue(I.getArgOperand(0)), ShAmt); 4871 setValue(&I, Res); 4872 return 0; 4873 } 4874 case Intrinsic::x86_avx_vinsertf128_pd_256: 4875 case Intrinsic::x86_avx_vinsertf128_ps_256: 4876 case Intrinsic::x86_avx_vinsertf128_si_256: 4877 case Intrinsic::x86_avx2_vinserti128: { 4878 DebugLoc dl = getCurDebugLoc(); 4879 EVT DestVT = TLI.getValueType(I.getType()); 4880 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4881 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4882 ElVT.getVectorNumElements(); 4883 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT, 4884 getValue(I.getArgOperand(0)), 4885 getValue(I.getArgOperand(1)), 4886 DAG.getIntPtrConstant(Idx)); 4887 setValue(&I, Res); 4888 return 0; 4889 } 4890 case Intrinsic::x86_avx_vextractf128_pd_256: 4891 case Intrinsic::x86_avx_vextractf128_ps_256: 4892 case Intrinsic::x86_avx_vextractf128_si_256: 4893 case Intrinsic::x86_avx2_vextracti128: { 4894 DebugLoc dl = getCurDebugLoc(); 4895 EVT DestVT = TLI.getValueType(I.getType()); 4896 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4897 DestVT.getVectorNumElements(); 4898 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, 4899 getValue(I.getArgOperand(0)), 4900 DAG.getIntPtrConstant(Idx)); 4901 setValue(&I, Res); 4902 return 0; 4903 } 4904 case Intrinsic::convertff: 4905 case Intrinsic::convertfsi: 4906 case Intrinsic::convertfui: 4907 case Intrinsic::convertsif: 4908 case Intrinsic::convertuif: 4909 case Intrinsic::convertss: 4910 case Intrinsic::convertsu: 4911 case Intrinsic::convertus: 4912 case Intrinsic::convertuu: { 4913 ISD::CvtCode Code = ISD::CVT_INVALID; 4914 switch (Intrinsic) { 4915 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4916 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4917 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4918 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4919 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4920 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4921 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4922 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4923 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4924 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4925 } 4926 EVT DestVT = TLI.getValueType(I.getType()); 4927 const Value *Op1 = I.getArgOperand(0); 4928 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4929 DAG.getValueType(DestVT), 4930 DAG.getValueType(getValue(Op1).getValueType()), 4931 getValue(I.getArgOperand(1)), 4932 getValue(I.getArgOperand(2)), 4933 Code); 4934 setValue(&I, Res); 4935 return 0; 4936 } 4937 case Intrinsic::powi: 4938 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4939 getValue(I.getArgOperand(1)), DAG)); 4940 return 0; 4941 case Intrinsic::log: 4942 visitLog(I); 4943 return 0; 4944 case Intrinsic::log2: 4945 visitLog2(I); 4946 return 0; 4947 case Intrinsic::log10: 4948 visitLog10(I); 4949 return 0; 4950 case Intrinsic::exp: 4951 visitExp(I); 4952 return 0; 4953 case Intrinsic::exp2: 4954 visitExp2(I); 4955 return 0; 4956 case Intrinsic::pow: 4957 visitPow(I); 4958 return 0; 4959 case Intrinsic::sqrt: 4960 case Intrinsic::fabs: 4961 case Intrinsic::sin: 4962 case Intrinsic::cos: 4963 case Intrinsic::floor: 4964 case Intrinsic::ceil: 4965 case Intrinsic::trunc: 4966 case Intrinsic::rint: 4967 case Intrinsic::nearbyint: { 4968 unsigned Opcode; 4969 switch (Intrinsic) { 4970 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4971 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4972 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4973 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4974 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4975 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4976 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4977 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4978 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4979 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4980 } 4981 4982 setValue(&I, DAG.getNode(Opcode, dl, 4983 getValue(I.getArgOperand(0)).getValueType(), 4984 getValue(I.getArgOperand(0)))); 4985 return 0; 4986 } 4987 case Intrinsic::fma: 4988 setValue(&I, DAG.getNode(ISD::FMA, dl, 4989 getValue(I.getArgOperand(0)).getValueType(), 4990 getValue(I.getArgOperand(0)), 4991 getValue(I.getArgOperand(1)), 4992 getValue(I.getArgOperand(2)))); 4993 return 0; 4994 case Intrinsic::fmuladd: { 4995 EVT VT = TLI.getValueType(I.getType()); 4996 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4997 TLI.isOperationLegal(ISD::FMA, VT) && 4998 TLI.isFMAFasterThanMulAndAdd(VT)){ 4999 setValue(&I, DAG.getNode(ISD::FMA, dl, 5000 getValue(I.getArgOperand(0)).getValueType(), 5001 getValue(I.getArgOperand(0)), 5002 getValue(I.getArgOperand(1)), 5003 getValue(I.getArgOperand(2)))); 5004 } else { 5005 SDValue Mul = DAG.getNode(ISD::FMUL, dl, 5006 getValue(I.getArgOperand(0)).getValueType(), 5007 getValue(I.getArgOperand(0)), 5008 getValue(I.getArgOperand(1))); 5009 SDValue Add = DAG.getNode(ISD::FADD, dl, 5010 getValue(I.getArgOperand(0)).getValueType(), 5011 Mul, 5012 getValue(I.getArgOperand(2))); 5013 setValue(&I, Add); 5014 } 5015 return 0; 5016 } 5017 case Intrinsic::convert_to_fp16: 5018 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 5019 MVT::i16, getValue(I.getArgOperand(0)))); 5020 return 0; 5021 case Intrinsic::convert_from_fp16: 5022 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 5023 MVT::f32, getValue(I.getArgOperand(0)))); 5024 return 0; 5025 case Intrinsic::pcmarker: { 5026 SDValue Tmp = getValue(I.getArgOperand(0)); 5027 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 5028 return 0; 5029 } 5030 case Intrinsic::readcyclecounter: { 5031 SDValue Op = getRoot(); 5032 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 5033 DAG.getVTList(MVT::i64, MVT::Other), 5034 &Op, 1); 5035 setValue(&I, Res); 5036 DAG.setRoot(Res.getValue(1)); 5037 return 0; 5038 } 5039 case Intrinsic::bswap: 5040 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 5041 getValue(I.getArgOperand(0)).getValueType(), 5042 getValue(I.getArgOperand(0)))); 5043 return 0; 5044 case Intrinsic::cttz: { 5045 SDValue Arg = getValue(I.getArgOperand(0)); 5046 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5047 EVT Ty = Arg.getValueType(); 5048 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5049 dl, Ty, Arg)); 5050 return 0; 5051 } 5052 case Intrinsic::ctlz: { 5053 SDValue Arg = getValue(I.getArgOperand(0)); 5054 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5055 EVT Ty = Arg.getValueType(); 5056 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5057 dl, Ty, Arg)); 5058 return 0; 5059 } 5060 case Intrinsic::ctpop: { 5061 SDValue Arg = getValue(I.getArgOperand(0)); 5062 EVT Ty = Arg.getValueType(); 5063 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 5064 return 0; 5065 } 5066 case Intrinsic::stacksave: { 5067 SDValue Op = getRoot(); 5068 Res = DAG.getNode(ISD::STACKSAVE, dl, 5069 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 5070 setValue(&I, Res); 5071 DAG.setRoot(Res.getValue(1)); 5072 return 0; 5073 } 5074 case Intrinsic::stackrestore: { 5075 Res = getValue(I.getArgOperand(0)); 5076 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 5077 return 0; 5078 } 5079 case Intrinsic::stackprotector: { 5080 // Emit code into the DAG to store the stack guard onto the stack. 5081 MachineFunction &MF = DAG.getMachineFunction(); 5082 MachineFrameInfo *MFI = MF.getFrameInfo(); 5083 EVT PtrTy = TLI.getPointerTy(); 5084 5085 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5086 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5087 5088 int FI = FuncInfo.StaticAllocaMap[Slot]; 5089 MFI->setStackProtectorIndex(FI); 5090 5091 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5092 5093 // Store the stack protector onto the stack. 5094 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 5095 MachinePointerInfo::getFixedStack(FI), 5096 true, false, 0); 5097 setValue(&I, Res); 5098 DAG.setRoot(Res); 5099 return 0; 5100 } 5101 case Intrinsic::objectsize: { 5102 // If we don't know by now, we're never going to know. 5103 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5104 5105 assert(CI && "Non-constant type in __builtin_object_size?"); 5106 5107 SDValue Arg = getValue(I.getCalledValue()); 5108 EVT Ty = Arg.getValueType(); 5109 5110 if (CI->isZero()) 5111 Res = DAG.getConstant(-1ULL, Ty); 5112 else 5113 Res = DAG.getConstant(0, Ty); 5114 5115 setValue(&I, Res); 5116 return 0; 5117 } 5118 case Intrinsic::var_annotation: 5119 // Discard annotate attributes 5120 return 0; 5121 5122 case Intrinsic::init_trampoline: { 5123 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5124 5125 SDValue Ops[6]; 5126 Ops[0] = getRoot(); 5127 Ops[1] = getValue(I.getArgOperand(0)); 5128 Ops[2] = getValue(I.getArgOperand(1)); 5129 Ops[3] = getValue(I.getArgOperand(2)); 5130 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5131 Ops[5] = DAG.getSrcValue(F); 5132 5133 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5134 5135 DAG.setRoot(Res); 5136 return 0; 5137 } 5138 case Intrinsic::adjust_trampoline: { 5139 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5140 TLI.getPointerTy(), 5141 getValue(I.getArgOperand(0)))); 5142 return 0; 5143 } 5144 case Intrinsic::gcroot: 5145 if (GFI) { 5146 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5147 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5148 5149 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5150 GFI->addStackRoot(FI->getIndex(), TypeMap); 5151 } 5152 return 0; 5153 case Intrinsic::gcread: 5154 case Intrinsic::gcwrite: 5155 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5156 case Intrinsic::flt_rounds: 5157 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5158 return 0; 5159 5160 case Intrinsic::expect: { 5161 // Just replace __builtin_expect(exp, c) with EXP. 5162 setValue(&I, getValue(I.getArgOperand(0))); 5163 return 0; 5164 } 5165 5166 case Intrinsic::debugtrap: 5167 case Intrinsic::trap: { 5168 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5169 if (TrapFuncName.empty()) { 5170 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5171 ISD::TRAP : ISD::DEBUGTRAP; 5172 DAG.setRoot(DAG.getNode(Op, dl,MVT::Other, getRoot())); 5173 return 0; 5174 } 5175 TargetLowering::ArgListTy Args; 5176 TargetLowering:: 5177 CallLoweringInfo CLI(getRoot(), I.getType(), 5178 false, false, false, false, 0, CallingConv::C, 5179 /*isTailCall=*/false, 5180 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5181 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5182 Args, DAG, getCurDebugLoc()); 5183 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5184 DAG.setRoot(Result.second); 5185 return 0; 5186 } 5187 5188 case Intrinsic::uadd_with_overflow: 5189 case Intrinsic::sadd_with_overflow: 5190 case Intrinsic::usub_with_overflow: 5191 case Intrinsic::ssub_with_overflow: 5192 case Intrinsic::umul_with_overflow: 5193 case Intrinsic::smul_with_overflow: { 5194 ISD::NodeType Op; 5195 switch (Intrinsic) { 5196 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5197 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5198 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5199 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5200 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5201 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5202 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5203 } 5204 SDValue Op1 = getValue(I.getArgOperand(0)); 5205 SDValue Op2 = getValue(I.getArgOperand(1)); 5206 5207 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5208 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 5209 return 0; 5210 } 5211 case Intrinsic::prefetch: { 5212 SDValue Ops[5]; 5213 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5214 Ops[0] = getRoot(); 5215 Ops[1] = getValue(I.getArgOperand(0)); 5216 Ops[2] = getValue(I.getArgOperand(1)); 5217 Ops[3] = getValue(I.getArgOperand(2)); 5218 Ops[4] = getValue(I.getArgOperand(3)); 5219 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5220 DAG.getVTList(MVT::Other), 5221 &Ops[0], 5, 5222 EVT::getIntegerVT(*Context, 8), 5223 MachinePointerInfo(I.getArgOperand(0)), 5224 0, /* align */ 5225 false, /* volatile */ 5226 rw==0, /* read */ 5227 rw==1)); /* write */ 5228 return 0; 5229 } 5230 case Intrinsic::lifetime_start: 5231 case Intrinsic::lifetime_end: { 5232 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5233 // Stack coloring is not enabled in O0, discard region information. 5234 if (TM.getOptLevel() == CodeGenOpt::None) 5235 return 0; 5236 5237 SmallVector<Value *, 4> Allocas; 5238 GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD); 5239 5240 for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(), 5241 E = Allocas.end(); Object != E; ++Object) { 5242 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5243 5244 // Could not find an Alloca. 5245 if (!LifetimeObject) 5246 continue; 5247 5248 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5249 5250 SDValue Ops[2]; 5251 Ops[0] = getRoot(); 5252 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5253 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5254 5255 Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2); 5256 DAG.setRoot(Res); 5257 } 5258 } 5259 case Intrinsic::invariant_start: 5260 // Discard region information. 5261 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5262 return 0; 5263 case Intrinsic::invariant_end: 5264 // Discard region information. 5265 return 0; 5266 case Intrinsic::donothing: 5267 // ignore 5268 return 0; 5269 } 5270 } 5271 5272 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5273 bool isTailCall, 5274 MachineBasicBlock *LandingPad) { 5275 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5276 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5277 Type *RetTy = FTy->getReturnType(); 5278 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5279 MCSymbol *BeginLabel = 0; 5280 5281 TargetLowering::ArgListTy Args; 5282 TargetLowering::ArgListEntry Entry; 5283 Args.reserve(CS.arg_size()); 5284 5285 // Check whether the function can return without sret-demotion. 5286 SmallVector<ISD::OutputArg, 4> Outs; 5287 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5288 Outs, TLI); 5289 5290 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5291 DAG.getMachineFunction(), 5292 FTy->isVarArg(), Outs, 5293 FTy->getContext()); 5294 5295 SDValue DemoteStackSlot; 5296 int DemoteStackIdx = -100; 5297 5298 if (!CanLowerReturn) { 5299 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize( 5300 FTy->getReturnType()); 5301 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment( 5302 FTy->getReturnType()); 5303 MachineFunction &MF = DAG.getMachineFunction(); 5304 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5305 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5306 5307 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5308 Entry.Node = DemoteStackSlot; 5309 Entry.Ty = StackSlotPtrType; 5310 Entry.isSExt = false; 5311 Entry.isZExt = false; 5312 Entry.isInReg = false; 5313 Entry.isSRet = true; 5314 Entry.isNest = false; 5315 Entry.isByVal = false; 5316 Entry.Alignment = Align; 5317 Args.push_back(Entry); 5318 RetTy = Type::getVoidTy(FTy->getContext()); 5319 } 5320 5321 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5322 i != e; ++i) { 5323 const Value *V = *i; 5324 5325 // Skip empty types 5326 if (V->getType()->isEmptyTy()) 5327 continue; 5328 5329 SDValue ArgNode = getValue(V); 5330 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5331 5332 unsigned attrInd = i - CS.arg_begin() + 1; 5333 Entry.isSExt = CS.paramHasAttr(attrInd, Attributes::SExt); 5334 Entry.isZExt = CS.paramHasAttr(attrInd, Attributes::ZExt); 5335 Entry.isInReg = CS.paramHasAttr(attrInd, Attributes::InReg); 5336 Entry.isSRet = CS.paramHasAttr(attrInd, Attributes::StructRet); 5337 Entry.isNest = CS.paramHasAttr(attrInd, Attributes::Nest); 5338 Entry.isByVal = CS.paramHasAttr(attrInd, Attributes::ByVal); 5339 Entry.Alignment = CS.getParamAlignment(attrInd); 5340 Args.push_back(Entry); 5341 } 5342 5343 if (LandingPad) { 5344 // Insert a label before the invoke call to mark the try range. This can be 5345 // used to detect deletion of the invoke via the MachineModuleInfo. 5346 BeginLabel = MMI.getContext().CreateTempSymbol(); 5347 5348 // For SjLj, keep track of which landing pads go with which invokes 5349 // so as to maintain the ordering of pads in the LSDA. 5350 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5351 if (CallSiteIndex) { 5352 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5353 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5354 5355 // Now that the call site is handled, stop tracking it. 5356 MMI.setCurrentCallSite(0); 5357 } 5358 5359 // Both PendingLoads and PendingExports must be flushed here; 5360 // this call might not return. 5361 (void)getRoot(); 5362 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5363 } 5364 5365 // Check if target-independent constraints permit a tail call here. 5366 // Target-dependent constraints are checked within TLI.LowerCallTo. 5367 if (isTailCall && 5368 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5369 isTailCall = false; 5370 5371 // If there's a possibility that fast-isel has already selected some amount 5372 // of the current basic block, don't emit a tail call. 5373 if (isTailCall && TM.Options.EnableFastISel) 5374 isTailCall = false; 5375 5376 TargetLowering:: 5377 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5378 getCurDebugLoc(), CS); 5379 std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI); 5380 assert((isTailCall || Result.second.getNode()) && 5381 "Non-null chain expected with non-tail call!"); 5382 assert((Result.second.getNode() || !Result.first.getNode()) && 5383 "Null value expected with tail call!"); 5384 if (Result.first.getNode()) { 5385 setValue(CS.getInstruction(), Result.first); 5386 } else if (!CanLowerReturn && Result.second.getNode()) { 5387 // The instruction result is the result of loading from the 5388 // hidden sret parameter. 5389 SmallVector<EVT, 1> PVTs; 5390 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5391 5392 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5393 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5394 EVT PtrVT = PVTs[0]; 5395 5396 SmallVector<EVT, 4> RetTys; 5397 SmallVector<uint64_t, 4> Offsets; 5398 RetTy = FTy->getReturnType(); 5399 ComputeValueVTs(TLI, RetTy, RetTys, &Offsets); 5400 5401 unsigned NumValues = RetTys.size(); 5402 SmallVector<SDValue, 4> Values(NumValues); 5403 SmallVector<SDValue, 4> Chains(NumValues); 5404 5405 for (unsigned i = 0; i < NumValues; ++i) { 5406 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5407 DemoteStackSlot, 5408 DAG.getConstant(Offsets[i], PtrVT)); 5409 SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add, 5410 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5411 false, false, false, 1); 5412 Values[i] = L; 5413 Chains[i] = L.getValue(1); 5414 } 5415 5416 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5417 MVT::Other, &Chains[0], NumValues); 5418 PendingLoads.push_back(Chain); 5419 5420 setValue(CS.getInstruction(), 5421 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5422 DAG.getVTList(&RetTys[0], RetTys.size()), 5423 &Values[0], Values.size())); 5424 } 5425 5426 // Assign order to nodes here. If the call does not produce a result, it won't 5427 // be mapped to a SDNode and visit() will not assign it an order number. 5428 if (!Result.second.getNode()) { 5429 // As a special case, a null chain means that a tail call has been emitted and 5430 // the DAG root is already updated. 5431 HasTailCall = true; 5432 ++SDNodeOrder; 5433 AssignOrderingToNode(DAG.getRoot().getNode()); 5434 } else { 5435 DAG.setRoot(Result.second); 5436 ++SDNodeOrder; 5437 AssignOrderingToNode(Result.second.getNode()); 5438 } 5439 5440 if (LandingPad) { 5441 // Insert a label at the end of the invoke call to mark the try range. This 5442 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5443 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5444 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5445 5446 // Inform MachineModuleInfo of range. 5447 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5448 } 5449 } 5450 5451 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5452 /// value is equal or not-equal to zero. 5453 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5454 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5455 UI != E; ++UI) { 5456 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5457 if (IC->isEquality()) 5458 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5459 if (C->isNullValue()) 5460 continue; 5461 // Unknown instruction. 5462 return false; 5463 } 5464 return true; 5465 } 5466 5467 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5468 Type *LoadTy, 5469 SelectionDAGBuilder &Builder) { 5470 5471 // Check to see if this load can be trivially constant folded, e.g. if the 5472 // input is from a string literal. 5473 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5474 // Cast pointer to the type we really want to load. 5475 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5476 PointerType::getUnqual(LoadTy)); 5477 5478 if (const Constant *LoadCst = 5479 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5480 Builder.TD)) 5481 return Builder.getValue(LoadCst); 5482 } 5483 5484 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5485 // still constant memory, the input chain can be the entry node. 5486 SDValue Root; 5487 bool ConstantMemory = false; 5488 5489 // Do not serialize (non-volatile) loads of constant memory with anything. 5490 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5491 Root = Builder.DAG.getEntryNode(); 5492 ConstantMemory = true; 5493 } else { 5494 // Do not serialize non-volatile loads against each other. 5495 Root = Builder.DAG.getRoot(); 5496 } 5497 5498 SDValue Ptr = Builder.getValue(PtrVal); 5499 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5500 Ptr, MachinePointerInfo(PtrVal), 5501 false /*volatile*/, 5502 false /*nontemporal*/, 5503 false /*isinvariant*/, 1 /* align=1 */); 5504 5505 if (!ConstantMemory) 5506 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5507 return LoadVal; 5508 } 5509 5510 5511 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5512 /// If so, return true and lower it, otherwise return false and it will be 5513 /// lowered like a normal call. 5514 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5515 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5516 if (I.getNumArgOperands() != 3) 5517 return false; 5518 5519 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5520 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5521 !I.getArgOperand(2)->getType()->isIntegerTy() || 5522 !I.getType()->isIntegerTy()) 5523 return false; 5524 5525 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5526 5527 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5528 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5529 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5530 bool ActuallyDoIt = true; 5531 MVT LoadVT; 5532 Type *LoadTy; 5533 switch (Size->getZExtValue()) { 5534 default: 5535 LoadVT = MVT::Other; 5536 LoadTy = 0; 5537 ActuallyDoIt = false; 5538 break; 5539 case 2: 5540 LoadVT = MVT::i16; 5541 LoadTy = Type::getInt16Ty(Size->getContext()); 5542 break; 5543 case 4: 5544 LoadVT = MVT::i32; 5545 LoadTy = Type::getInt32Ty(Size->getContext()); 5546 break; 5547 case 8: 5548 LoadVT = MVT::i64; 5549 LoadTy = Type::getInt64Ty(Size->getContext()); 5550 break; 5551 /* 5552 case 16: 5553 LoadVT = MVT::v4i32; 5554 LoadTy = Type::getInt32Ty(Size->getContext()); 5555 LoadTy = VectorType::get(LoadTy, 4); 5556 break; 5557 */ 5558 } 5559 5560 // This turns into unaligned loads. We only do this if the target natively 5561 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5562 // we'll only produce a small number of byte loads. 5563 5564 // Require that we can find a legal MVT, and only do this if the target 5565 // supports unaligned loads of that type. Expanding into byte loads would 5566 // bloat the code. 5567 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5568 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5569 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5570 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5571 ActuallyDoIt = false; 5572 } 5573 5574 if (ActuallyDoIt) { 5575 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5576 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5577 5578 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5579 ISD::SETNE); 5580 EVT CallVT = TLI.getValueType(I.getType(), true); 5581 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5582 return true; 5583 } 5584 } 5585 5586 5587 return false; 5588 } 5589 5590 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5591 /// operation (as expected), translate it to an SDNode with the specified opcode 5592 /// and return true. 5593 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5594 unsigned Opcode) { 5595 // Sanity check that it really is a unary floating-point call. 5596 if (I.getNumArgOperands() != 1 || 5597 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5598 I.getType() != I.getArgOperand(0)->getType() || 5599 !I.onlyReadsMemory()) 5600 return false; 5601 5602 SDValue Tmp = getValue(I.getArgOperand(0)); 5603 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp)); 5604 return true; 5605 } 5606 5607 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5608 // Handle inline assembly differently. 5609 if (isa<InlineAsm>(I.getCalledValue())) { 5610 visitInlineAsm(&I); 5611 return; 5612 } 5613 5614 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5615 ComputeUsesVAFloatArgument(I, &MMI); 5616 5617 const char *RenameFn = 0; 5618 if (Function *F = I.getCalledFunction()) { 5619 if (F->isDeclaration()) { 5620 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5621 if (unsigned IID = II->getIntrinsicID(F)) { 5622 RenameFn = visitIntrinsicCall(I, IID); 5623 if (!RenameFn) 5624 return; 5625 } 5626 } 5627 if (unsigned IID = F->getIntrinsicID()) { 5628 RenameFn = visitIntrinsicCall(I, IID); 5629 if (!RenameFn) 5630 return; 5631 } 5632 } 5633 5634 // Check for well-known libc/libm calls. If the function is internal, it 5635 // can't be a library call. 5636 LibFunc::Func Func; 5637 if (!F->hasLocalLinkage() && F->hasName() && 5638 LibInfo->getLibFunc(F->getName(), Func) && 5639 LibInfo->hasOptimizedCodeGen(Func)) { 5640 switch (Func) { 5641 default: break; 5642 case LibFunc::copysign: 5643 case LibFunc::copysignf: 5644 case LibFunc::copysignl: 5645 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5646 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5647 I.getType() == I.getArgOperand(0)->getType() && 5648 I.getType() == I.getArgOperand(1)->getType() && 5649 I.onlyReadsMemory()) { 5650 SDValue LHS = getValue(I.getArgOperand(0)); 5651 SDValue RHS = getValue(I.getArgOperand(1)); 5652 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5653 LHS.getValueType(), LHS, RHS)); 5654 return; 5655 } 5656 break; 5657 case LibFunc::fabs: 5658 case LibFunc::fabsf: 5659 case LibFunc::fabsl: 5660 if (visitUnaryFloatCall(I, ISD::FABS)) 5661 return; 5662 break; 5663 case LibFunc::sin: 5664 case LibFunc::sinf: 5665 case LibFunc::sinl: 5666 if (visitUnaryFloatCall(I, ISD::FSIN)) 5667 return; 5668 break; 5669 case LibFunc::cos: 5670 case LibFunc::cosf: 5671 case LibFunc::cosl: 5672 if (visitUnaryFloatCall(I, ISD::FCOS)) 5673 return; 5674 break; 5675 case LibFunc::sqrt: 5676 case LibFunc::sqrtf: 5677 case LibFunc::sqrtl: 5678 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5679 return; 5680 break; 5681 case LibFunc::floor: 5682 case LibFunc::floorf: 5683 case LibFunc::floorl: 5684 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5685 return; 5686 break; 5687 case LibFunc::nearbyint: 5688 case LibFunc::nearbyintf: 5689 case LibFunc::nearbyintl: 5690 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5691 return; 5692 break; 5693 case LibFunc::ceil: 5694 case LibFunc::ceilf: 5695 case LibFunc::ceill: 5696 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5697 return; 5698 break; 5699 case LibFunc::rint: 5700 case LibFunc::rintf: 5701 case LibFunc::rintl: 5702 if (visitUnaryFloatCall(I, ISD::FRINT)) 5703 return; 5704 break; 5705 case LibFunc::trunc: 5706 case LibFunc::truncf: 5707 case LibFunc::truncl: 5708 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5709 return; 5710 break; 5711 case LibFunc::log2: 5712 case LibFunc::log2f: 5713 case LibFunc::log2l: 5714 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5715 return; 5716 break; 5717 case LibFunc::exp2: 5718 case LibFunc::exp2f: 5719 case LibFunc::exp2l: 5720 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5721 return; 5722 break; 5723 case LibFunc::memcmp: 5724 if (visitMemCmpCall(I)) 5725 return; 5726 break; 5727 } 5728 } 5729 } 5730 5731 SDValue Callee; 5732 if (!RenameFn) 5733 Callee = getValue(I.getCalledValue()); 5734 else 5735 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5736 5737 // Check if we can potentially perform a tail call. More detailed checking is 5738 // be done within LowerCallTo, after more information about the call is known. 5739 LowerCallTo(&I, Callee, I.isTailCall()); 5740 } 5741 5742 namespace { 5743 5744 /// AsmOperandInfo - This contains information for each constraint that we are 5745 /// lowering. 5746 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5747 public: 5748 /// CallOperand - If this is the result output operand or a clobber 5749 /// this is null, otherwise it is the incoming operand to the CallInst. 5750 /// This gets modified as the asm is processed. 5751 SDValue CallOperand; 5752 5753 /// AssignedRegs - If this is a register or register class operand, this 5754 /// contains the set of register corresponding to the operand. 5755 RegsForValue AssignedRegs; 5756 5757 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5758 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5759 } 5760 5761 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5762 /// corresponds to. If there is no Value* for this operand, it returns 5763 /// MVT::Other. 5764 EVT getCallOperandValEVT(LLVMContext &Context, 5765 const TargetLowering &TLI, 5766 const DataLayout *TD) const { 5767 if (CallOperandVal == 0) return MVT::Other; 5768 5769 if (isa<BasicBlock>(CallOperandVal)) 5770 return TLI.getPointerTy(); 5771 5772 llvm::Type *OpTy = CallOperandVal->getType(); 5773 5774 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5775 // If this is an indirect operand, the operand is a pointer to the 5776 // accessed type. 5777 if (isIndirect) { 5778 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5779 if (!PtrTy) 5780 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5781 OpTy = PtrTy->getElementType(); 5782 } 5783 5784 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5785 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5786 if (STy->getNumElements() == 1) 5787 OpTy = STy->getElementType(0); 5788 5789 // If OpTy is not a single value, it may be a struct/union that we 5790 // can tile with integers. 5791 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5792 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5793 switch (BitSize) { 5794 default: break; 5795 case 1: 5796 case 8: 5797 case 16: 5798 case 32: 5799 case 64: 5800 case 128: 5801 OpTy = IntegerType::get(Context, BitSize); 5802 break; 5803 } 5804 } 5805 5806 return TLI.getValueType(OpTy, true); 5807 } 5808 }; 5809 5810 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5811 5812 } // end anonymous namespace 5813 5814 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5815 /// specified operand. We prefer to assign virtual registers, to allow the 5816 /// register allocator to handle the assignment process. However, if the asm 5817 /// uses features that we can't model on machineinstrs, we have SDISel do the 5818 /// allocation. This produces generally horrible, but correct, code. 5819 /// 5820 /// OpInfo describes the operand. 5821 /// 5822 static void GetRegistersForValue(SelectionDAG &DAG, 5823 const TargetLowering &TLI, 5824 DebugLoc DL, 5825 SDISelAsmOperandInfo &OpInfo) { 5826 LLVMContext &Context = *DAG.getContext(); 5827 5828 MachineFunction &MF = DAG.getMachineFunction(); 5829 SmallVector<unsigned, 4> Regs; 5830 5831 // If this is a constraint for a single physreg, or a constraint for a 5832 // register class, find it. 5833 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5834 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5835 OpInfo.ConstraintVT); 5836 5837 unsigned NumRegs = 1; 5838 if (OpInfo.ConstraintVT != MVT::Other) { 5839 // If this is a FP input in an integer register (or visa versa) insert a bit 5840 // cast of the input value. More generally, handle any case where the input 5841 // value disagrees with the register class we plan to stick this in. 5842 if (OpInfo.Type == InlineAsm::isInput && 5843 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5844 // Try to convert to the first EVT that the reg class contains. If the 5845 // types are identical size, use a bitcast to convert (e.g. two differing 5846 // vector types). 5847 EVT RegVT = *PhysReg.second->vt_begin(); 5848 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5849 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5850 RegVT, OpInfo.CallOperand); 5851 OpInfo.ConstraintVT = RegVT; 5852 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5853 // If the input is a FP value and we want it in FP registers, do a 5854 // bitcast to the corresponding integer type. This turns an f64 value 5855 // into i64, which can be passed with two i32 values on a 32-bit 5856 // machine. 5857 RegVT = EVT::getIntegerVT(Context, 5858 OpInfo.ConstraintVT.getSizeInBits()); 5859 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5860 RegVT, OpInfo.CallOperand); 5861 OpInfo.ConstraintVT = RegVT; 5862 } 5863 } 5864 5865 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5866 } 5867 5868 EVT RegVT; 5869 EVT ValueVT = OpInfo.ConstraintVT; 5870 5871 // If this is a constraint for a specific physical register, like {r17}, 5872 // assign it now. 5873 if (unsigned AssignedReg = PhysReg.first) { 5874 const TargetRegisterClass *RC = PhysReg.second; 5875 if (OpInfo.ConstraintVT == MVT::Other) 5876 ValueVT = *RC->vt_begin(); 5877 5878 // Get the actual register value type. This is important, because the user 5879 // may have asked for (e.g.) the AX register in i32 type. We need to 5880 // remember that AX is actually i16 to get the right extension. 5881 RegVT = *RC->vt_begin(); 5882 5883 // This is a explicit reference to a physical register. 5884 Regs.push_back(AssignedReg); 5885 5886 // If this is an expanded reference, add the rest of the regs to Regs. 5887 if (NumRegs != 1) { 5888 TargetRegisterClass::iterator I = RC->begin(); 5889 for (; *I != AssignedReg; ++I) 5890 assert(I != RC->end() && "Didn't find reg!"); 5891 5892 // Already added the first reg. 5893 --NumRegs; ++I; 5894 for (; NumRegs; --NumRegs, ++I) { 5895 assert(I != RC->end() && "Ran out of registers to allocate!"); 5896 Regs.push_back(*I); 5897 } 5898 } 5899 5900 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5901 return; 5902 } 5903 5904 // Otherwise, if this was a reference to an LLVM register class, create vregs 5905 // for this reference. 5906 if (const TargetRegisterClass *RC = PhysReg.second) { 5907 RegVT = *RC->vt_begin(); 5908 if (OpInfo.ConstraintVT == MVT::Other) 5909 ValueVT = RegVT; 5910 5911 // Create the appropriate number of virtual registers. 5912 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5913 for (; NumRegs; --NumRegs) 5914 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5915 5916 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5917 return; 5918 } 5919 5920 // Otherwise, we couldn't allocate enough registers for this. 5921 } 5922 5923 /// visitInlineAsm - Handle a call to an InlineAsm object. 5924 /// 5925 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5926 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5927 5928 /// ConstraintOperands - Information about all of the constraints. 5929 SDISelAsmOperandInfoVector ConstraintOperands; 5930 5931 TargetLowering::AsmOperandInfoVector 5932 TargetConstraints = TLI.ParseConstraints(CS); 5933 5934 bool hasMemory = false; 5935 5936 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5937 unsigned ResNo = 0; // ResNo - The result number of the next output. 5938 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5939 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5940 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5941 5942 EVT OpVT = MVT::Other; 5943 5944 // Compute the value type for each operand. 5945 switch (OpInfo.Type) { 5946 case InlineAsm::isOutput: 5947 // Indirect outputs just consume an argument. 5948 if (OpInfo.isIndirect) { 5949 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5950 break; 5951 } 5952 5953 // The return value of the call is this value. As such, there is no 5954 // corresponding argument. 5955 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5956 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5957 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5958 } else { 5959 assert(ResNo == 0 && "Asm only has one result!"); 5960 OpVT = TLI.getValueType(CS.getType()); 5961 } 5962 ++ResNo; 5963 break; 5964 case InlineAsm::isInput: 5965 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5966 break; 5967 case InlineAsm::isClobber: 5968 // Nothing to do. 5969 break; 5970 } 5971 5972 // If this is an input or an indirect output, process the call argument. 5973 // BasicBlocks are labels, currently appearing only in asm's. 5974 if (OpInfo.CallOperandVal) { 5975 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5976 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5977 } else { 5978 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5979 } 5980 5981 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5982 } 5983 5984 OpInfo.ConstraintVT = OpVT; 5985 5986 // Indirect operand accesses access memory. 5987 if (OpInfo.isIndirect) 5988 hasMemory = true; 5989 else { 5990 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5991 TargetLowering::ConstraintType 5992 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5993 if (CType == TargetLowering::C_Memory) { 5994 hasMemory = true; 5995 break; 5996 } 5997 } 5998 } 5999 } 6000 6001 SDValue Chain, Flag; 6002 6003 // We won't need to flush pending loads if this asm doesn't touch 6004 // memory and is nonvolatile. 6005 if (hasMemory || IA->hasSideEffects()) 6006 Chain = getRoot(); 6007 else 6008 Chain = DAG.getRoot(); 6009 6010 // Second pass over the constraints: compute which constraint option to use 6011 // and assign registers to constraints that want a specific physreg. 6012 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6013 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6014 6015 // If this is an output operand with a matching input operand, look up the 6016 // matching input. If their types mismatch, e.g. one is an integer, the 6017 // other is floating point, or their sizes are different, flag it as an 6018 // error. 6019 if (OpInfo.hasMatchingInput()) { 6020 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6021 6022 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6023 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6024 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6025 OpInfo.ConstraintVT); 6026 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6027 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 6028 Input.ConstraintVT); 6029 if ((OpInfo.ConstraintVT.isInteger() != 6030 Input.ConstraintVT.isInteger()) || 6031 (MatchRC.second != InputRC.second)) { 6032 report_fatal_error("Unsupported asm: input constraint" 6033 " with a matching output constraint of" 6034 " incompatible type!"); 6035 } 6036 Input.ConstraintVT = OpInfo.ConstraintVT; 6037 } 6038 } 6039 6040 // Compute the constraint code and ConstraintType to use. 6041 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6042 6043 // If this is a memory input, and if the operand is not indirect, do what we 6044 // need to to provide an address for the memory input. 6045 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6046 !OpInfo.isIndirect) { 6047 assert((OpInfo.isMultipleAlternative || 6048 (OpInfo.Type == InlineAsm::isInput)) && 6049 "Can only indirectify direct input operands!"); 6050 6051 // Memory operands really want the address of the value. If we don't have 6052 // an indirect input, put it in the constpool if we can, otherwise spill 6053 // it to a stack slot. 6054 // TODO: This isn't quite right. We need to handle these according to 6055 // the addressing mode that the constraint wants. Also, this may take 6056 // an additional register for the computation and we don't want that 6057 // either. 6058 6059 // If the operand is a float, integer, or vector constant, spill to a 6060 // constant pool entry to get its address. 6061 const Value *OpVal = OpInfo.CallOperandVal; 6062 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6063 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6064 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6065 TLI.getPointerTy()); 6066 } else { 6067 // Otherwise, create a stack slot and emit a store to it before the 6068 // asm. 6069 Type *Ty = OpVal->getType(); 6070 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6071 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6072 MachineFunction &MF = DAG.getMachineFunction(); 6073 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6074 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6075 Chain = DAG.getStore(Chain, getCurDebugLoc(), 6076 OpInfo.CallOperand, StackSlot, 6077 MachinePointerInfo::getFixedStack(SSFI), 6078 false, false, 0); 6079 OpInfo.CallOperand = StackSlot; 6080 } 6081 6082 // There is no longer a Value* corresponding to this operand. 6083 OpInfo.CallOperandVal = 0; 6084 6085 // It is now an indirect operand. 6086 OpInfo.isIndirect = true; 6087 } 6088 6089 // If this constraint is for a specific register, allocate it before 6090 // anything else. 6091 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6092 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6093 } 6094 6095 // Second pass - Loop over all of the operands, assigning virtual or physregs 6096 // to register class operands. 6097 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6098 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6099 6100 // C_Register operands have already been allocated, Other/Memory don't need 6101 // to be. 6102 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6103 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6104 } 6105 6106 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6107 std::vector<SDValue> AsmNodeOperands; 6108 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6109 AsmNodeOperands.push_back( 6110 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6111 TLI.getPointerTy())); 6112 6113 // If we have a !srcloc metadata node associated with it, we want to attach 6114 // this to the ultimately generated inline asm machineinstr. To do this, we 6115 // pass in the third operand as this (potentially null) inline asm MDNode. 6116 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6117 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6118 6119 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6120 // bits as operand 3. 6121 unsigned ExtraInfo = 0; 6122 if (IA->hasSideEffects()) 6123 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6124 if (IA->isAlignStack()) 6125 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6126 // Set the asm dialect. 6127 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6128 6129 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6130 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6131 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6132 6133 // Compute the constraint code and ConstraintType to use. 6134 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6135 6136 // Ideally, we would only check against memory constraints. However, the 6137 // meaning of an other constraint can be target-specific and we can't easily 6138 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6139 // for other constriants as well. 6140 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6141 OpInfo.ConstraintType == TargetLowering::C_Other) { 6142 if (OpInfo.Type == InlineAsm::isInput) 6143 ExtraInfo |= InlineAsm::Extra_MayLoad; 6144 else if (OpInfo.Type == InlineAsm::isOutput) 6145 ExtraInfo |= InlineAsm::Extra_MayStore; 6146 } 6147 } 6148 6149 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6150 TLI.getPointerTy())); 6151 6152 // Loop over all of the inputs, copying the operand values into the 6153 // appropriate registers and processing the output regs. 6154 RegsForValue RetValRegs; 6155 6156 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6157 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6158 6159 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6160 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6161 6162 switch (OpInfo.Type) { 6163 case InlineAsm::isOutput: { 6164 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6165 OpInfo.ConstraintType != TargetLowering::C_Register) { 6166 // Memory output, or 'other' output (e.g. 'X' constraint). 6167 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6168 6169 // Add information to the INLINEASM node to know about this output. 6170 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6171 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6172 TLI.getPointerTy())); 6173 AsmNodeOperands.push_back(OpInfo.CallOperand); 6174 break; 6175 } 6176 6177 // Otherwise, this is a register or register class output. 6178 6179 // Copy the output from the appropriate register. Find a register that 6180 // we can use. 6181 if (OpInfo.AssignedRegs.Regs.empty()) { 6182 LLVMContext &Ctx = *DAG.getContext(); 6183 Ctx.emitError(CS.getInstruction(), 6184 "couldn't allocate output register for constraint '" + 6185 Twine(OpInfo.ConstraintCode) + "'"); 6186 break; 6187 } 6188 6189 // If this is an indirect operand, store through the pointer after the 6190 // asm. 6191 if (OpInfo.isIndirect) { 6192 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6193 OpInfo.CallOperandVal)); 6194 } else { 6195 // This is the result value of the call. 6196 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6197 // Concatenate this output onto the outputs list. 6198 RetValRegs.append(OpInfo.AssignedRegs); 6199 } 6200 6201 // Add information to the INLINEASM node to know that this register is 6202 // set. 6203 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6204 InlineAsm::Kind_RegDefEarlyClobber : 6205 InlineAsm::Kind_RegDef, 6206 false, 6207 0, 6208 DAG, 6209 AsmNodeOperands); 6210 break; 6211 } 6212 case InlineAsm::isInput: { 6213 SDValue InOperandVal = OpInfo.CallOperand; 6214 6215 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6216 // If this is required to match an output register we have already set, 6217 // just use its register. 6218 unsigned OperandNo = OpInfo.getMatchedOperand(); 6219 6220 // Scan until we find the definition we already emitted of this operand. 6221 // When we find it, create a RegsForValue operand. 6222 unsigned CurOp = InlineAsm::Op_FirstOperand; 6223 for (; OperandNo; --OperandNo) { 6224 // Advance to the next operand. 6225 unsigned OpFlag = 6226 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6227 assert((InlineAsm::isRegDefKind(OpFlag) || 6228 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6229 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6230 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6231 } 6232 6233 unsigned OpFlag = 6234 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6235 if (InlineAsm::isRegDefKind(OpFlag) || 6236 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6237 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6238 if (OpInfo.isIndirect) { 6239 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6240 LLVMContext &Ctx = *DAG.getContext(); 6241 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6242 " don't know how to handle tied " 6243 "indirect register inputs"); 6244 } 6245 6246 RegsForValue MatchedRegs; 6247 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6248 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6249 MatchedRegs.RegVTs.push_back(RegVT); 6250 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6251 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6252 i != e; ++i) 6253 MatchedRegs.Regs.push_back 6254 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6255 6256 // Use the produced MatchedRegs object to 6257 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6258 Chain, &Flag, CS.getInstruction()); 6259 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6260 true, OpInfo.getMatchedOperand(), 6261 DAG, AsmNodeOperands); 6262 break; 6263 } 6264 6265 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6266 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6267 "Unexpected number of operands"); 6268 // Add information to the INLINEASM node to know about this input. 6269 // See InlineAsm.h isUseOperandTiedToDef. 6270 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6271 OpInfo.getMatchedOperand()); 6272 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6273 TLI.getPointerTy())); 6274 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6275 break; 6276 } 6277 6278 // Treat indirect 'X' constraint as memory. 6279 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6280 OpInfo.isIndirect) 6281 OpInfo.ConstraintType = TargetLowering::C_Memory; 6282 6283 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6284 std::vector<SDValue> Ops; 6285 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6286 Ops, DAG); 6287 if (Ops.empty()) { 6288 LLVMContext &Ctx = *DAG.getContext(); 6289 Ctx.emitError(CS.getInstruction(), 6290 "invalid operand for inline asm constraint '" + 6291 Twine(OpInfo.ConstraintCode) + "'"); 6292 break; 6293 } 6294 6295 // Add information to the INLINEASM node to know about this input. 6296 unsigned ResOpType = 6297 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6298 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6299 TLI.getPointerTy())); 6300 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6301 break; 6302 } 6303 6304 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6305 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6306 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6307 "Memory operands expect pointer values"); 6308 6309 // Add information to the INLINEASM node to know about this input. 6310 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6311 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6312 TLI.getPointerTy())); 6313 AsmNodeOperands.push_back(InOperandVal); 6314 break; 6315 } 6316 6317 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6318 OpInfo.ConstraintType == TargetLowering::C_Register) && 6319 "Unknown constraint type!"); 6320 6321 // TODO: Support this. 6322 if (OpInfo.isIndirect) { 6323 LLVMContext &Ctx = *DAG.getContext(); 6324 Ctx.emitError(CS.getInstruction(), 6325 "Don't know how to handle indirect register inputs yet " 6326 "for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); 6327 break; 6328 } 6329 6330 // Copy the input into the appropriate registers. 6331 if (OpInfo.AssignedRegs.Regs.empty()) { 6332 LLVMContext &Ctx = *DAG.getContext(); 6333 Ctx.emitError(CS.getInstruction(), 6334 "couldn't allocate input reg for constraint '" + 6335 Twine(OpInfo.ConstraintCode) + "'"); 6336 break; 6337 } 6338 6339 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6340 Chain, &Flag, CS.getInstruction()); 6341 6342 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6343 DAG, AsmNodeOperands); 6344 break; 6345 } 6346 case InlineAsm::isClobber: { 6347 // Add the clobbered value to the operand list, so that the register 6348 // allocator is aware that the physreg got clobbered. 6349 if (!OpInfo.AssignedRegs.Regs.empty()) 6350 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6351 false, 0, DAG, 6352 AsmNodeOperands); 6353 break; 6354 } 6355 } 6356 } 6357 6358 // Finish up input operands. Set the input chain and add the flag last. 6359 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6360 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6361 6362 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6363 DAG.getVTList(MVT::Other, MVT::Glue), 6364 &AsmNodeOperands[0], AsmNodeOperands.size()); 6365 Flag = Chain.getValue(1); 6366 6367 // If this asm returns a register value, copy the result from that register 6368 // and set it as the value of the call. 6369 if (!RetValRegs.Regs.empty()) { 6370 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6371 Chain, &Flag, CS.getInstruction()); 6372 6373 // FIXME: Why don't we do this for inline asms with MRVs? 6374 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6375 EVT ResultType = TLI.getValueType(CS.getType()); 6376 6377 // If any of the results of the inline asm is a vector, it may have the 6378 // wrong width/num elts. This can happen for register classes that can 6379 // contain multiple different value types. The preg or vreg allocated may 6380 // not have the same VT as was expected. Convert it to the right type 6381 // with bit_convert. 6382 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6383 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6384 ResultType, Val); 6385 6386 } else if (ResultType != Val.getValueType() && 6387 ResultType.isInteger() && Val.getValueType().isInteger()) { 6388 // If a result value was tied to an input value, the computed result may 6389 // have a wider width than the expected result. Extract the relevant 6390 // portion. 6391 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6392 } 6393 6394 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6395 } 6396 6397 setValue(CS.getInstruction(), Val); 6398 // Don't need to use this as a chain in this case. 6399 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6400 return; 6401 } 6402 6403 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6404 6405 // Process indirect outputs, first output all of the flagged copies out of 6406 // physregs. 6407 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6408 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6409 const Value *Ptr = IndirectStoresToEmit[i].second; 6410 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6411 Chain, &Flag, IA); 6412 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6413 } 6414 6415 // Emit the non-flagged stores from the physregs. 6416 SmallVector<SDValue, 8> OutChains; 6417 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6418 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6419 StoresToEmit[i].first, 6420 getValue(StoresToEmit[i].second), 6421 MachinePointerInfo(StoresToEmit[i].second), 6422 false, false, 0); 6423 OutChains.push_back(Val); 6424 } 6425 6426 if (!OutChains.empty()) 6427 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6428 &OutChains[0], OutChains.size()); 6429 6430 DAG.setRoot(Chain); 6431 } 6432 6433 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6434 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6435 MVT::Other, getRoot(), 6436 getValue(I.getArgOperand(0)), 6437 DAG.getSrcValue(I.getArgOperand(0)))); 6438 } 6439 6440 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6441 const DataLayout &TD = *TLI.getDataLayout(); 6442 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6443 getRoot(), getValue(I.getOperand(0)), 6444 DAG.getSrcValue(I.getOperand(0)), 6445 TD.getABITypeAlignment(I.getType())); 6446 setValue(&I, V); 6447 DAG.setRoot(V.getValue(1)); 6448 } 6449 6450 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6451 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6452 MVT::Other, getRoot(), 6453 getValue(I.getArgOperand(0)), 6454 DAG.getSrcValue(I.getArgOperand(0)))); 6455 } 6456 6457 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6458 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6459 MVT::Other, getRoot(), 6460 getValue(I.getArgOperand(0)), 6461 getValue(I.getArgOperand(1)), 6462 DAG.getSrcValue(I.getArgOperand(0)), 6463 DAG.getSrcValue(I.getArgOperand(1)))); 6464 } 6465 6466 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6467 /// implementation, which just calls LowerCall. 6468 /// FIXME: When all targets are 6469 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6470 std::pair<SDValue, SDValue> 6471 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6472 // Handle all of the outgoing arguments. 6473 CLI.Outs.clear(); 6474 CLI.OutVals.clear(); 6475 ArgListTy &Args = CLI.Args; 6476 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6477 SmallVector<EVT, 4> ValueVTs; 6478 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6479 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6480 Value != NumValues; ++Value) { 6481 EVT VT = ValueVTs[Value]; 6482 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6483 SDValue Op = SDValue(Args[i].Node.getNode(), 6484 Args[i].Node.getResNo() + Value); 6485 ISD::ArgFlagsTy Flags; 6486 unsigned OriginalAlignment = 6487 getDataLayout()->getABITypeAlignment(ArgTy); 6488 6489 if (Args[i].isZExt) 6490 Flags.setZExt(); 6491 if (Args[i].isSExt) 6492 Flags.setSExt(); 6493 if (Args[i].isInReg) 6494 Flags.setInReg(); 6495 if (Args[i].isSRet) 6496 Flags.setSRet(); 6497 if (Args[i].isByVal) { 6498 Flags.setByVal(); 6499 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6500 Type *ElementTy = Ty->getElementType(); 6501 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6502 // For ByVal, alignment should come from FE. BE will guess if this 6503 // info is not there but there are cases it cannot get right. 6504 unsigned FrameAlign; 6505 if (Args[i].Alignment) 6506 FrameAlign = Args[i].Alignment; 6507 else 6508 FrameAlign = getByValTypeAlignment(ElementTy); 6509 Flags.setByValAlign(FrameAlign); 6510 } 6511 if (Args[i].isNest) 6512 Flags.setNest(); 6513 Flags.setOrigAlign(OriginalAlignment); 6514 6515 EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6516 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6517 SmallVector<SDValue, 4> Parts(NumParts); 6518 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6519 6520 if (Args[i].isSExt) 6521 ExtendKind = ISD::SIGN_EXTEND; 6522 else if (Args[i].isZExt) 6523 ExtendKind = ISD::ZERO_EXTEND; 6524 6525 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 6526 PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind); 6527 6528 for (unsigned j = 0; j != NumParts; ++j) { 6529 // if it isn't first piece, alignment must be 1 6530 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6531 i < CLI.NumFixedArgs, 6532 i, j*Parts[j].getValueType().getStoreSize()); 6533 if (NumParts > 1 && j == 0) 6534 MyFlags.Flags.setSplit(); 6535 else if (j != 0) 6536 MyFlags.Flags.setOrigAlign(1); 6537 6538 CLI.Outs.push_back(MyFlags); 6539 CLI.OutVals.push_back(Parts[j]); 6540 } 6541 } 6542 } 6543 6544 // Handle the incoming return values from the call. 6545 CLI.Ins.clear(); 6546 SmallVector<EVT, 4> RetTys; 6547 ComputeValueVTs(*this, CLI.RetTy, RetTys); 6548 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6549 EVT VT = RetTys[I]; 6550 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6551 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6552 for (unsigned i = 0; i != NumRegs; ++i) { 6553 ISD::InputArg MyFlags; 6554 MyFlags.VT = RegisterVT.getSimpleVT(); 6555 MyFlags.Used = CLI.IsReturnValueUsed; 6556 if (CLI.RetSExt) 6557 MyFlags.Flags.setSExt(); 6558 if (CLI.RetZExt) 6559 MyFlags.Flags.setZExt(); 6560 if (CLI.IsInReg) 6561 MyFlags.Flags.setInReg(); 6562 CLI.Ins.push_back(MyFlags); 6563 } 6564 } 6565 6566 SmallVector<SDValue, 4> InVals; 6567 CLI.Chain = LowerCall(CLI, InVals); 6568 6569 // Verify that the target's LowerCall behaved as expected. 6570 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6571 "LowerCall didn't return a valid chain!"); 6572 assert((!CLI.IsTailCall || InVals.empty()) && 6573 "LowerCall emitted a return value for a tail call!"); 6574 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6575 "LowerCall didn't emit the correct number of values!"); 6576 6577 // For a tail call, the return value is merely live-out and there aren't 6578 // any nodes in the DAG representing it. Return a special value to 6579 // indicate that a tail call has been emitted and no more Instructions 6580 // should be processed in the current block. 6581 if (CLI.IsTailCall) { 6582 CLI.DAG.setRoot(CLI.Chain); 6583 return std::make_pair(SDValue(), SDValue()); 6584 } 6585 6586 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6587 assert(InVals[i].getNode() && 6588 "LowerCall emitted a null value!"); 6589 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6590 "LowerCall emitted a value with the wrong type!"); 6591 }); 6592 6593 // Collect the legal value parts into potentially illegal values 6594 // that correspond to the original function's return values. 6595 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6596 if (CLI.RetSExt) 6597 AssertOp = ISD::AssertSext; 6598 else if (CLI.RetZExt) 6599 AssertOp = ISD::AssertZext; 6600 SmallVector<SDValue, 4> ReturnValues; 6601 unsigned CurReg = 0; 6602 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6603 EVT VT = RetTys[I]; 6604 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6605 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6606 6607 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6608 NumRegs, RegisterVT, VT, NULL, 6609 AssertOp)); 6610 CurReg += NumRegs; 6611 } 6612 6613 // For a function returning void, there is no return value. We can't create 6614 // such a node, so we just return a null return value in that case. In 6615 // that case, nothing will actually look at the value. 6616 if (ReturnValues.empty()) 6617 return std::make_pair(SDValue(), CLI.Chain); 6618 6619 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6620 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 6621 &ReturnValues[0], ReturnValues.size()); 6622 return std::make_pair(Res, CLI.Chain); 6623 } 6624 6625 void TargetLowering::LowerOperationWrapper(SDNode *N, 6626 SmallVectorImpl<SDValue> &Results, 6627 SelectionDAG &DAG) const { 6628 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6629 if (Res.getNode()) 6630 Results.push_back(Res); 6631 } 6632 6633 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6634 llvm_unreachable("LowerOperation not implemented for this target!"); 6635 } 6636 6637 void 6638 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6639 SDValue Op = getNonRegisterValue(V); 6640 assert((Op.getOpcode() != ISD::CopyFromReg || 6641 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6642 "Copy from a reg to the same reg!"); 6643 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6644 6645 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6646 SDValue Chain = DAG.getEntryNode(); 6647 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0, V); 6648 PendingExports.push_back(Chain); 6649 } 6650 6651 #include "llvm/CodeGen/SelectionDAGISel.h" 6652 6653 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6654 /// entry block, return true. This includes arguments used by switches, since 6655 /// the switch may expand into multiple basic blocks. 6656 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6657 // With FastISel active, we may be splitting blocks, so force creation 6658 // of virtual registers for all non-dead arguments. 6659 if (FastISel) 6660 return A->use_empty(); 6661 6662 const BasicBlock *Entry = A->getParent()->begin(); 6663 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6664 UI != E; ++UI) { 6665 const User *U = *UI; 6666 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6667 return false; // Use not in entry block. 6668 } 6669 return true; 6670 } 6671 6672 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6673 // If this is the entry block, emit arguments. 6674 const Function &F = *LLVMBB->getParent(); 6675 SelectionDAG &DAG = SDB->DAG; 6676 DebugLoc dl = SDB->getCurDebugLoc(); 6677 const DataLayout *TD = TLI.getDataLayout(); 6678 SmallVector<ISD::InputArg, 16> Ins; 6679 6680 // Check whether the function can return without sret-demotion. 6681 SmallVector<ISD::OutputArg, 4> Outs; 6682 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6683 Outs, TLI); 6684 6685 if (!FuncInfo->CanLowerReturn) { 6686 // Put in an sret pointer parameter before all the other parameters. 6687 SmallVector<EVT, 1> ValueVTs; 6688 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6689 6690 // NOTE: Assuming that a pointer will never break down to more than one VT 6691 // or one register. 6692 ISD::ArgFlagsTy Flags; 6693 Flags.setSRet(); 6694 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6695 ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0); 6696 Ins.push_back(RetArg); 6697 } 6698 6699 // Set up the incoming argument description vector. 6700 unsigned Idx = 1; 6701 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6702 I != E; ++I, ++Idx) { 6703 SmallVector<EVT, 4> ValueVTs; 6704 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6705 bool isArgValueUsed = !I->use_empty(); 6706 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6707 Value != NumValues; ++Value) { 6708 EVT VT = ValueVTs[Value]; 6709 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6710 ISD::ArgFlagsTy Flags; 6711 unsigned OriginalAlignment = 6712 TD->getABITypeAlignment(ArgTy); 6713 6714 if (F.getParamAttributes(Idx).hasAttribute(Attributes::ZExt)) 6715 Flags.setZExt(); 6716 if (F.getParamAttributes(Idx).hasAttribute(Attributes::SExt)) 6717 Flags.setSExt(); 6718 if (F.getParamAttributes(Idx).hasAttribute(Attributes::InReg)) 6719 Flags.setInReg(); 6720 if (F.getParamAttributes(Idx).hasAttribute(Attributes::StructRet)) 6721 Flags.setSRet(); 6722 if (F.getParamAttributes(Idx).hasAttribute(Attributes::ByVal)) { 6723 Flags.setByVal(); 6724 PointerType *Ty = cast<PointerType>(I->getType()); 6725 Type *ElementTy = Ty->getElementType(); 6726 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6727 // For ByVal, alignment should be passed from FE. BE will guess if 6728 // this info is not there but there are cases it cannot get right. 6729 unsigned FrameAlign; 6730 if (F.getParamAlignment(Idx)) 6731 FrameAlign = F.getParamAlignment(Idx); 6732 else 6733 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6734 Flags.setByValAlign(FrameAlign); 6735 } 6736 if (F.getParamAttributes(Idx).hasAttribute(Attributes::Nest)) 6737 Flags.setNest(); 6738 Flags.setOrigAlign(OriginalAlignment); 6739 6740 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6741 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6742 for (unsigned i = 0; i != NumRegs; ++i) { 6743 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed, 6744 Idx-1, i*RegisterVT.getStoreSize()); 6745 if (NumRegs > 1 && i == 0) 6746 MyFlags.Flags.setSplit(); 6747 // if it isn't first piece, alignment must be 1 6748 else if (i > 0) 6749 MyFlags.Flags.setOrigAlign(1); 6750 Ins.push_back(MyFlags); 6751 } 6752 } 6753 } 6754 6755 // Call the target to set up the argument values. 6756 SmallVector<SDValue, 8> InVals; 6757 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6758 F.isVarArg(), Ins, 6759 dl, DAG, InVals); 6760 6761 // Verify that the target's LowerFormalArguments behaved as expected. 6762 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6763 "LowerFormalArguments didn't return a valid chain!"); 6764 assert(InVals.size() == Ins.size() && 6765 "LowerFormalArguments didn't emit the correct number of values!"); 6766 DEBUG({ 6767 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6768 assert(InVals[i].getNode() && 6769 "LowerFormalArguments emitted a null value!"); 6770 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6771 "LowerFormalArguments emitted a value with the wrong type!"); 6772 } 6773 }); 6774 6775 // Update the DAG with the new chain value resulting from argument lowering. 6776 DAG.setRoot(NewRoot); 6777 6778 // Set up the argument values. 6779 unsigned i = 0; 6780 Idx = 1; 6781 if (!FuncInfo->CanLowerReturn) { 6782 // Create a virtual register for the sret pointer, and put in a copy 6783 // from the sret argument into it. 6784 SmallVector<EVT, 1> ValueVTs; 6785 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6786 EVT VT = ValueVTs[0]; 6787 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6788 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6789 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6790 RegVT, VT, NULL, AssertOp); 6791 6792 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6793 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6794 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6795 FuncInfo->DemoteRegister = SRetReg; 6796 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6797 SRetReg, ArgValue); 6798 DAG.setRoot(NewRoot); 6799 6800 // i indexes lowered arguments. Bump it past the hidden sret argument. 6801 // Idx indexes LLVM arguments. Don't touch it. 6802 ++i; 6803 } 6804 6805 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6806 ++I, ++Idx) { 6807 SmallVector<SDValue, 4> ArgValues; 6808 SmallVector<EVT, 4> ValueVTs; 6809 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6810 unsigned NumValues = ValueVTs.size(); 6811 6812 // If this argument is unused then remember its value. It is used to generate 6813 // debugging information. 6814 if (I->use_empty() && NumValues) 6815 SDB->setUnusedArgValue(I, InVals[i]); 6816 6817 for (unsigned Val = 0; Val != NumValues; ++Val) { 6818 EVT VT = ValueVTs[Val]; 6819 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6820 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6821 6822 if (!I->use_empty()) { 6823 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6824 if (F.getParamAttributes(Idx).hasAttribute(Attributes::SExt)) 6825 AssertOp = ISD::AssertSext; 6826 else if (F.getParamAttributes(Idx).hasAttribute(Attributes::ZExt)) 6827 AssertOp = ISD::AssertZext; 6828 6829 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6830 NumParts, PartVT, VT, 6831 NULL, AssertOp)); 6832 } 6833 6834 i += NumParts; 6835 } 6836 6837 // We don't need to do anything else for unused arguments. 6838 if (ArgValues.empty()) 6839 continue; 6840 6841 // Note down frame index. 6842 if (FrameIndexSDNode *FI = 6843 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6844 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6845 6846 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6847 SDB->getCurDebugLoc()); 6848 6849 SDB->setValue(I, Res); 6850 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6851 if (LoadSDNode *LNode = 6852 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6853 if (FrameIndexSDNode *FI = 6854 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6855 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6856 } 6857 6858 // If this argument is live outside of the entry block, insert a copy from 6859 // wherever we got it to the vreg that other BB's will reference it as. 6860 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6861 // If we can, though, try to skip creating an unnecessary vreg. 6862 // FIXME: This isn't very clean... it would be nice to make this more 6863 // general. It's also subtly incompatible with the hacks FastISel 6864 // uses with vregs. 6865 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6866 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6867 FuncInfo->ValueMap[I] = Reg; 6868 continue; 6869 } 6870 } 6871 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6872 FuncInfo->InitializeRegForValue(I); 6873 SDB->CopyToExportRegsIfNeeded(I); 6874 } 6875 } 6876 6877 assert(i == InVals.size() && "Argument register count mismatch!"); 6878 6879 // Finally, if the target has anything special to do, allow it to do so. 6880 // FIXME: this should insert code into the DAG! 6881 EmitFunctionEntryCode(); 6882 } 6883 6884 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6885 /// ensure constants are generated when needed. Remember the virtual registers 6886 /// that need to be added to the Machine PHI nodes as input. We cannot just 6887 /// directly add them, because expansion might result in multiple MBB's for one 6888 /// BB. As such, the start of the BB might correspond to a different MBB than 6889 /// the end. 6890 /// 6891 void 6892 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6893 const TerminatorInst *TI = LLVMBB->getTerminator(); 6894 6895 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6896 6897 // Check successor nodes' PHI nodes that expect a constant to be available 6898 // from this block. 6899 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6900 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6901 if (!isa<PHINode>(SuccBB->begin())) continue; 6902 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6903 6904 // If this terminator has multiple identical successors (common for 6905 // switches), only handle each succ once. 6906 if (!SuccsHandled.insert(SuccMBB)) continue; 6907 6908 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6909 6910 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6911 // nodes and Machine PHI nodes, but the incoming operands have not been 6912 // emitted yet. 6913 for (BasicBlock::const_iterator I = SuccBB->begin(); 6914 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6915 // Ignore dead phi's. 6916 if (PN->use_empty()) continue; 6917 6918 // Skip empty types 6919 if (PN->getType()->isEmptyTy()) 6920 continue; 6921 6922 unsigned Reg; 6923 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6924 6925 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6926 unsigned &RegOut = ConstantsOut[C]; 6927 if (RegOut == 0) { 6928 RegOut = FuncInfo.CreateRegs(C->getType()); 6929 CopyValueToVirtualRegister(C, RegOut); 6930 } 6931 Reg = RegOut; 6932 } else { 6933 DenseMap<const Value *, unsigned>::iterator I = 6934 FuncInfo.ValueMap.find(PHIOp); 6935 if (I != FuncInfo.ValueMap.end()) 6936 Reg = I->second; 6937 else { 6938 assert(isa<AllocaInst>(PHIOp) && 6939 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6940 "Didn't codegen value into a register!??"); 6941 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6942 CopyValueToVirtualRegister(PHIOp, Reg); 6943 } 6944 } 6945 6946 // Remember that this register needs to added to the machine PHI node as 6947 // the input for this MBB. 6948 SmallVector<EVT, 4> ValueVTs; 6949 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6950 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6951 EVT VT = ValueVTs[vti]; 6952 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6953 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6954 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6955 Reg += NumRegisters; 6956 } 6957 } 6958 } 6959 ConstantsOut.clear(); 6960 } 6961