1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/MachineValueType.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include "llvm/Target/TargetIntrinsicInfo.h" 108 #include "llvm/Target/TargetMachine.h" 109 #include "llvm/Target/TargetOptions.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstddef> 113 #include <cstdint> 114 #include <cstring> 115 #include <iterator> 116 #include <limits> 117 #include <numeric> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "isel" 125 126 /// LimitFloatPrecision - Generate low-precision inline sequences for 127 /// some float libcalls (6, 8 or 12 bits). 128 static unsigned LimitFloatPrecision; 129 130 static cl::opt<unsigned, true> 131 LimitFPPrecision("limit-float-precision", 132 cl::desc("Generate low-precision inline sequences " 133 "for some float libcalls"), 134 cl::location(LimitFloatPrecision), cl::Hidden, 135 cl::init(0)); 136 137 static cl::opt<unsigned> SwitchPeelThreshold( 138 "switch-peel-threshold", cl::Hidden, cl::init(66), 139 cl::desc("Set the case probability threshold for peeling the case from a " 140 "switch statement. A value greater than 100 will void this " 141 "optimization")); 142 143 // Limit the width of DAG chains. This is important in general to prevent 144 // DAG-based analysis from blowing up. For example, alias analysis and 145 // load clustering may not complete in reasonable time. It is difficult to 146 // recognize and avoid this situation within each individual analysis, and 147 // future analyses are likely to have the same behavior. Limiting DAG width is 148 // the safe approach and will be especially important with global DAGs. 149 // 150 // MaxParallelChains default is arbitrarily high to avoid affecting 151 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 152 // sequence over this should have been converted to llvm.memcpy by the 153 // frontend. It is easy to induce this behavior with .ll code such as: 154 // %buffer = alloca [4096 x i8] 155 // %data = load [4096 x i8]* %argPtr 156 // store [4096 x i8] %data, [4096 x i8]* %buffer 157 static const unsigned MaxParallelChains = 64; 158 159 // True if the Value passed requires ABI mangling as it is a parameter to a 160 // function or a return value from a function which is not an intrinsic. 161 static bool isABIRegCopy(const Value *V) { 162 const bool IsRetInst = V && isa<ReturnInst>(V); 163 const bool IsCallInst = V && isa<CallInst>(V); 164 const bool IsInLineAsm = 165 IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm(); 166 const bool IsIndirectFunctionCall = 167 IsCallInst && !IsInLineAsm && 168 !static_cast<const CallInst *>(V)->getCalledFunction(); 169 // It is possible that the call instruction is an inline asm statement or an 170 // indirect function call in which case the return value of 171 // getCalledFunction() would be nullptr. 172 const bool IsInstrinsicCall = 173 IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall && 174 static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() != 175 Intrinsic::not_intrinsic; 176 177 return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall)); 178 } 179 180 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 181 const SDValue *Parts, unsigned NumParts, 182 MVT PartVT, EVT ValueVT, const Value *V, 183 bool IsABIRegCopy); 184 185 /// getCopyFromParts - Create a value that contains the specified legal parts 186 /// combined into the value they represent. If the parts combine to a type 187 /// larger than ValueVT then AssertOp can be used to specify whether the extra 188 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 189 /// (ISD::AssertSext). 190 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 191 const SDValue *Parts, unsigned NumParts, 192 MVT PartVT, EVT ValueVT, const Value *V, 193 Optional<ISD::NodeType> AssertOp = None, 194 bool IsABIRegCopy = false) { 195 if (ValueVT.isVector()) 196 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 197 PartVT, ValueVT, V, IsABIRegCopy); 198 199 assert(NumParts > 0 && "No parts to assemble!"); 200 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 201 SDValue Val = Parts[0]; 202 203 if (NumParts > 1) { 204 // Assemble the value from multiple parts. 205 if (ValueVT.isInteger()) { 206 unsigned PartBits = PartVT.getSizeInBits(); 207 unsigned ValueBits = ValueVT.getSizeInBits(); 208 209 // Assemble the power of 2 part. 210 unsigned RoundParts = NumParts & (NumParts - 1) ? 211 1 << Log2_32(NumParts) : NumParts; 212 unsigned RoundBits = PartBits * RoundParts; 213 EVT RoundVT = RoundBits == ValueBits ? 214 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 215 SDValue Lo, Hi; 216 217 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 218 219 if (RoundParts > 2) { 220 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 221 PartVT, HalfVT, V); 222 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 223 RoundParts / 2, PartVT, HalfVT, V); 224 } else { 225 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 226 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 227 } 228 229 if (DAG.getDataLayout().isBigEndian()) 230 std::swap(Lo, Hi); 231 232 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 233 234 if (RoundParts < NumParts) { 235 // Assemble the trailing non-power-of-2 part. 236 unsigned OddParts = NumParts - RoundParts; 237 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 238 Hi = getCopyFromParts(DAG, DL, 239 Parts + RoundParts, OddParts, PartVT, OddVT, V); 240 241 // Combine the round and odd parts. 242 Lo = Val; 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 246 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 247 Hi = 248 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 249 DAG.getConstant(Lo.getValueSizeInBits(), DL, 250 TLI.getPointerTy(DAG.getDataLayout()))); 251 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 252 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 253 } 254 } else if (PartVT.isFloatingPoint()) { 255 // FP split into multiple FP parts (for ppcf128) 256 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 257 "Unexpected split"); 258 SDValue Lo, Hi; 259 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 260 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 261 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 262 std::swap(Lo, Hi); 263 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 264 } else { 265 // FP split into integer parts (soft fp) 266 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 267 !PartVT.isVector() && "Unexpected split"); 268 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 269 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 270 } 271 } 272 273 // There is now one part, held in Val. Correct it to match ValueVT. 274 // PartEVT is the type of the register class that holds the value. 275 // ValueVT is the type of the inline asm operation. 276 EVT PartEVT = Val.getValueType(); 277 278 if (PartEVT == ValueVT) 279 return Val; 280 281 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 282 ValueVT.bitsLT(PartEVT)) { 283 // For an FP value in an integer part, we need to truncate to the right 284 // width first. 285 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 286 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 287 } 288 289 // Handle types that have the same size. 290 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 291 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 292 293 // Handle types with different sizes. 294 if (PartEVT.isInteger() && ValueVT.isInteger()) { 295 if (ValueVT.bitsLT(PartEVT)) { 296 // For a truncate, see if we have any information to 297 // indicate whether the truncated bits will always be 298 // zero or sign-extension. 299 if (AssertOp.hasValue()) 300 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 301 DAG.getValueType(ValueVT)); 302 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 303 } 304 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 305 } 306 307 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 308 // FP_ROUND's are always exact here. 309 if (ValueVT.bitsLT(Val.getValueType())) 310 return DAG.getNode( 311 ISD::FP_ROUND, DL, ValueVT, Val, 312 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 313 314 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 315 } 316 317 llvm_unreachable("Unknown mismatch!"); 318 } 319 320 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 321 const Twine &ErrMsg) { 322 const Instruction *I = dyn_cast_or_null<Instruction>(V); 323 if (!V) 324 return Ctx.emitError(ErrMsg); 325 326 const char *AsmError = ", possible invalid constraint for vector type"; 327 if (const CallInst *CI = dyn_cast<CallInst>(I)) 328 if (isa<InlineAsm>(CI->getCalledValue())) 329 return Ctx.emitError(I, ErrMsg + AsmError); 330 331 return Ctx.emitError(I, ErrMsg); 332 } 333 334 /// getCopyFromPartsVector - Create a value that contains the specified legal 335 /// parts combined into the value they represent. If the parts combine to a 336 /// type larger than ValueVT then AssertOp can be used to specify whether the 337 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 338 /// ValueVT (ISD::AssertSext). 339 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 340 const SDValue *Parts, unsigned NumParts, 341 MVT PartVT, EVT ValueVT, const Value *V, 342 bool IsABIRegCopy) { 343 assert(ValueVT.isVector() && "Not a vector value"); 344 assert(NumParts > 0 && "No parts to assemble!"); 345 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 346 SDValue Val = Parts[0]; 347 348 // Handle a multi-element vector. 349 if (NumParts > 1) { 350 EVT IntermediateVT; 351 MVT RegisterVT; 352 unsigned NumIntermediates; 353 unsigned NumRegs; 354 355 if (IsABIRegCopy) { 356 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 357 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 358 RegisterVT); 359 } else { 360 NumRegs = 361 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 362 NumIntermediates, RegisterVT); 363 } 364 365 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 366 NumParts = NumRegs; // Silence a compiler warning. 367 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 368 assert(RegisterVT.getSizeInBits() == 369 Parts[0].getSimpleValueType().getSizeInBits() && 370 "Part type sizes don't match!"); 371 372 // Assemble the parts into intermediate operands. 373 SmallVector<SDValue, 8> Ops(NumIntermediates); 374 if (NumIntermediates == NumParts) { 375 // If the register was not expanded, truncate or copy the value, 376 // as appropriate. 377 for (unsigned i = 0; i != NumParts; ++i) 378 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 379 PartVT, IntermediateVT, V); 380 } else if (NumParts > 0) { 381 // If the intermediate type was expanded, build the intermediate 382 // operands from the parts. 383 assert(NumParts % NumIntermediates == 0 && 384 "Must expand into a divisible number of parts!"); 385 unsigned Factor = NumParts / NumIntermediates; 386 for (unsigned i = 0; i != NumIntermediates; ++i) 387 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 388 PartVT, IntermediateVT, V); 389 } 390 391 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 392 // intermediate operands. 393 EVT BuiltVectorTy = 394 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 395 (IntermediateVT.isVector() 396 ? IntermediateVT.getVectorNumElements() * NumParts 397 : NumIntermediates)); 398 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 399 : ISD::BUILD_VECTOR, 400 DL, BuiltVectorTy, Ops); 401 } 402 403 // There is now one part, held in Val. Correct it to match ValueVT. 404 EVT PartEVT = Val.getValueType(); 405 406 if (PartEVT == ValueVT) 407 return Val; 408 409 if (PartEVT.isVector()) { 410 // If the element type of the source/dest vectors are the same, but the 411 // parts vector has more elements than the value vector, then we have a 412 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 413 // elements we want. 414 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 415 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 416 "Cannot narrow, it would be a lossy transformation"); 417 return DAG.getNode( 418 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 419 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 420 } 421 422 // Vector/Vector bitcast. 423 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 424 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 425 426 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 427 "Cannot handle this kind of promotion"); 428 // Promoted vector extract 429 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 430 431 } 432 433 // Trivial bitcast if the types are the same size and the destination 434 // vector type is legal. 435 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 436 TLI.isTypeLegal(ValueVT)) 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 439 if (ValueVT.getVectorNumElements() != 1) { 440 // Certain ABIs require that vectors are passed as integers. For vectors 441 // are the same size, this is an obvious bitcast. 442 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 443 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 444 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 445 // Bitcast Val back the original type and extract the corresponding 446 // vector we want. 447 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 448 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 449 ValueVT.getVectorElementType(), Elts); 450 Val = DAG.getBitcast(WiderVecType, Val); 451 return DAG.getNode( 452 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 453 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 454 } 455 456 diagnosePossiblyInvalidConstraint( 457 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 458 return DAG.getUNDEF(ValueVT); 459 } 460 461 // Handle cases such as i8 -> <1 x i1> 462 EVT ValueSVT = ValueVT.getVectorElementType(); 463 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 464 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 465 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 466 467 return DAG.getBuildVector(ValueVT, DL, Val); 468 } 469 470 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V, bool IsABIRegCopy); 473 474 /// getCopyToParts - Create a series of nodes that contain the specified value 475 /// split into legal parts. If the parts contain more bits than Val, then, for 476 /// integers, ExtendKind can be used to specify how to generate the extra bits. 477 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 478 SDValue *Parts, unsigned NumParts, MVT PartVT, 479 const Value *V, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 481 bool IsABIRegCopy = false) { 482 EVT ValueVT = Val.getValueType(); 483 484 // Handle the vector case separately. 485 if (ValueVT.isVector()) 486 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 487 IsABIRegCopy); 488 489 unsigned PartBits = PartVT.getSizeInBits(); 490 unsigned OrigNumParts = NumParts; 491 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 492 "Copying to an illegal type!"); 493 494 if (NumParts == 0) 495 return; 496 497 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 498 EVT PartEVT = PartVT; 499 if (PartEVT == ValueVT) { 500 assert(NumParts == 1 && "No-op copy with multiple parts!"); 501 Parts[0] = Val; 502 return; 503 } 504 505 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 506 // If the parts cover more bits than the value has, promote the value. 507 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 508 assert(NumParts == 1 && "Do not know what to promote to!"); 509 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 510 } else { 511 if (ValueVT.isFloatingPoint()) { 512 // FP values need to be bitcast, then extended if they are being put 513 // into a larger container. 514 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 515 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 516 } 517 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 518 ValueVT.isInteger() && 519 "Unknown mismatch!"); 520 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 521 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 522 if (PartVT == MVT::x86mmx) 523 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 524 } 525 } else if (PartBits == ValueVT.getSizeInBits()) { 526 // Different types of the same size. 527 assert(NumParts == 1 && PartEVT != ValueVT); 528 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 529 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 530 // If the parts cover less bits than value has, truncate the value. 531 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 532 ValueVT.isInteger() && 533 "Unknown mismatch!"); 534 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 535 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 536 if (PartVT == MVT::x86mmx) 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } 539 540 // The value may have changed - recompute ValueVT. 541 ValueVT = Val.getValueType(); 542 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 543 "Failed to tile the value with PartVT!"); 544 545 if (NumParts == 1) { 546 if (PartEVT != ValueVT) { 547 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 548 "scalar-to-vector conversion failed"); 549 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 550 } 551 552 Parts[0] = Val; 553 return; 554 } 555 556 // Expand the value into multiple parts. 557 if (NumParts & (NumParts - 1)) { 558 // The number of parts is not a power of 2. Split off and copy the tail. 559 assert(PartVT.isInteger() && ValueVT.isInteger() && 560 "Do not know what to expand to!"); 561 unsigned RoundParts = 1 << Log2_32(NumParts); 562 unsigned RoundBits = RoundParts * PartBits; 563 unsigned OddParts = NumParts - RoundParts; 564 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 565 DAG.getIntPtrConstant(RoundBits, DL)); 566 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 567 568 if (DAG.getDataLayout().isBigEndian()) 569 // The odd parts were reversed by getCopyToParts - unreverse them. 570 std::reverse(Parts + RoundParts, Parts + NumParts); 571 572 NumParts = RoundParts; 573 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 574 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 575 } 576 577 // The number of parts is a power of 2. Repeatedly bisect the value using 578 // EXTRACT_ELEMENT. 579 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 580 EVT::getIntegerVT(*DAG.getContext(), 581 ValueVT.getSizeInBits()), 582 Val); 583 584 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 585 for (unsigned i = 0; i < NumParts; i += StepSize) { 586 unsigned ThisBits = StepSize * PartBits / 2; 587 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 588 SDValue &Part0 = Parts[i]; 589 SDValue &Part1 = Parts[i+StepSize/2]; 590 591 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 592 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 593 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 594 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 595 596 if (ThisBits == PartBits && ThisVT != PartVT) { 597 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 598 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 599 } 600 } 601 } 602 603 if (DAG.getDataLayout().isBigEndian()) 604 std::reverse(Parts, Parts + OrigNumParts); 605 } 606 607 608 /// getCopyToPartsVector - Create a series of nodes that contain the specified 609 /// value split into legal parts. 610 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 611 SDValue Val, SDValue *Parts, unsigned NumParts, 612 MVT PartVT, const Value *V, 613 bool IsABIRegCopy) { 614 EVT ValueVT = Val.getValueType(); 615 assert(ValueVT.isVector() && "Not a vector"); 616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 617 618 if (NumParts == 1) { 619 EVT PartEVT = PartVT; 620 if (PartEVT == ValueVT) { 621 // Nothing to do. 622 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 623 // Bitconvert vector->vector case. 624 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 625 } else if (PartVT.isVector() && 626 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 627 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 628 EVT ElementVT = PartVT.getVectorElementType(); 629 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 630 // undef elements. 631 SmallVector<SDValue, 16> Ops; 632 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 633 Ops.push_back(DAG.getNode( 634 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 635 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 636 637 for (unsigned i = ValueVT.getVectorNumElements(), 638 e = PartVT.getVectorNumElements(); i != e; ++i) 639 Ops.push_back(DAG.getUNDEF(ElementVT)); 640 641 Val = DAG.getBuildVector(PartVT, DL, Ops); 642 643 // FIXME: Use CONCAT for 2x -> 4x. 644 645 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 646 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 647 } else if (PartVT.isVector() && 648 PartEVT.getVectorElementType().bitsGE( 649 ValueVT.getVectorElementType()) && 650 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 651 652 // Promoted vector extract 653 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 654 } else { 655 if (ValueVT.getVectorNumElements() == 1) { 656 Val = DAG.getNode( 657 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 658 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 659 } else { 660 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 661 "lossy conversion of vector to scalar type"); 662 EVT IntermediateType = 663 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 664 Val = DAG.getBitcast(IntermediateType, Val); 665 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 666 } 667 } 668 669 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 670 Parts[0] = Val; 671 return; 672 } 673 674 // Handle a multi-element vector. 675 EVT IntermediateVT; 676 MVT RegisterVT; 677 unsigned NumIntermediates; 678 unsigned NumRegs; 679 if (IsABIRegCopy) { 680 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 681 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 682 RegisterVT); 683 } else { 684 NumRegs = 685 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 686 NumIntermediates, RegisterVT); 687 } 688 unsigned NumElements = ValueVT.getVectorNumElements(); 689 690 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 691 NumParts = NumRegs; // Silence a compiler warning. 692 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 693 694 // Convert the vector to the appropiate type if necessary. 695 unsigned DestVectorNoElts = 696 NumIntermediates * 697 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 698 EVT BuiltVectorTy = EVT::getVectorVT( 699 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 700 if (Val.getValueType() != BuiltVectorTy) 701 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 702 703 // Split the vector into intermediate operands. 704 SmallVector<SDValue, 8> Ops(NumIntermediates); 705 for (unsigned i = 0; i != NumIntermediates; ++i) { 706 if (IntermediateVT.isVector()) 707 Ops[i] = 708 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 709 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 710 TLI.getVectorIdxTy(DAG.getDataLayout()))); 711 else 712 Ops[i] = DAG.getNode( 713 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 714 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 715 } 716 717 // Split the intermediate operands into legal parts. 718 if (NumParts == NumIntermediates) { 719 // If the register was not expanded, promote or copy the value, 720 // as appropriate. 721 for (unsigned i = 0; i != NumParts; ++i) 722 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 723 } else if (NumParts > 0) { 724 // If the intermediate type was expanded, split each the value into 725 // legal parts. 726 assert(NumIntermediates != 0 && "division by zero"); 727 assert(NumParts % NumIntermediates == 0 && 728 "Must expand into a divisible number of parts!"); 729 unsigned Factor = NumParts / NumIntermediates; 730 for (unsigned i = 0; i != NumIntermediates; ++i) 731 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 732 } 733 } 734 735 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 736 EVT valuevt, bool IsABIMangledValue) 737 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 738 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 739 740 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 741 const DataLayout &DL, unsigned Reg, Type *Ty, 742 bool IsABIMangledValue) { 743 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 744 745 IsABIMangled = IsABIMangledValue; 746 747 for (EVT ValueVT : ValueVTs) { 748 unsigned NumRegs = IsABIMangledValue 749 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 750 : TLI.getNumRegisters(Context, ValueVT); 751 MVT RegisterVT = IsABIMangledValue 752 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 753 : TLI.getRegisterType(Context, ValueVT); 754 for (unsigned i = 0; i != NumRegs; ++i) 755 Regs.push_back(Reg + i); 756 RegVTs.push_back(RegisterVT); 757 RegCount.push_back(NumRegs); 758 Reg += NumRegs; 759 } 760 } 761 762 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 763 FunctionLoweringInfo &FuncInfo, 764 const SDLoc &dl, SDValue &Chain, 765 SDValue *Flag, const Value *V) const { 766 // A Value with type {} or [0 x %t] needs no registers. 767 if (ValueVTs.empty()) 768 return SDValue(); 769 770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 771 772 // Assemble the legal parts into the final values. 773 SmallVector<SDValue, 4> Values(ValueVTs.size()); 774 SmallVector<SDValue, 8> Parts; 775 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 776 // Copy the legal parts from the registers. 777 EVT ValueVT = ValueVTs[Value]; 778 unsigned NumRegs = RegCount[Value]; 779 MVT RegisterVT = IsABIMangled 780 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 781 : RegVTs[Value]; 782 783 Parts.resize(NumRegs); 784 for (unsigned i = 0; i != NumRegs; ++i) { 785 SDValue P; 786 if (!Flag) { 787 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 788 } else { 789 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 790 *Flag = P.getValue(2); 791 } 792 793 Chain = P.getValue(1); 794 Parts[i] = P; 795 796 // If the source register was virtual and if we know something about it, 797 // add an assert node. 798 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 799 !RegisterVT.isInteger() || RegisterVT.isVector()) 800 continue; 801 802 const FunctionLoweringInfo::LiveOutInfo *LOI = 803 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 804 if (!LOI) 805 continue; 806 807 unsigned RegSize = RegisterVT.getSizeInBits(); 808 unsigned NumSignBits = LOI->NumSignBits; 809 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 810 811 if (NumZeroBits == RegSize) { 812 // The current value is a zero. 813 // Explicitly express that as it would be easier for 814 // optimizations to kick in. 815 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 816 continue; 817 } 818 819 // FIXME: We capture more information than the dag can represent. For 820 // now, just use the tightest assertzext/assertsext possible. 821 bool isSExt = true; 822 EVT FromVT(MVT::Other); 823 if (NumSignBits == RegSize) { 824 isSExt = true; // ASSERT SEXT 1 825 FromVT = MVT::i1; 826 } else if (NumZeroBits >= RegSize - 1) { 827 isSExt = false; // ASSERT ZEXT 1 828 FromVT = MVT::i1; 829 } else if (NumSignBits > RegSize - 8) { 830 isSExt = true; // ASSERT SEXT 8 831 FromVT = MVT::i8; 832 } else if (NumZeroBits >= RegSize - 8) { 833 isSExt = false; // ASSERT ZEXT 8 834 FromVT = MVT::i8; 835 } else if (NumSignBits > RegSize - 16) { 836 isSExt = true; // ASSERT SEXT 16 837 FromVT = MVT::i16; 838 } else if (NumZeroBits >= RegSize - 16) { 839 isSExt = false; // ASSERT ZEXT 16 840 FromVT = MVT::i16; 841 } else if (NumSignBits > RegSize - 32) { 842 isSExt = true; // ASSERT SEXT 32 843 FromVT = MVT::i32; 844 } else if (NumZeroBits >= RegSize - 32) { 845 isSExt = false; // ASSERT ZEXT 32 846 FromVT = MVT::i32; 847 } else { 848 continue; 849 } 850 // Add an assertion node. 851 assert(FromVT != MVT::Other); 852 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 853 RegisterVT, P, DAG.getValueType(FromVT)); 854 } 855 856 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 857 NumRegs, RegisterVT, ValueVT, V); 858 Part += NumRegs; 859 Parts.clear(); 860 } 861 862 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 863 } 864 865 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 866 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 867 const Value *V, 868 ISD::NodeType PreferredExtendType) const { 869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 870 ISD::NodeType ExtendKind = PreferredExtendType; 871 872 // Get the list of the values's legal parts. 873 unsigned NumRegs = Regs.size(); 874 SmallVector<SDValue, 8> Parts(NumRegs); 875 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 876 unsigned NumParts = RegCount[Value]; 877 878 MVT RegisterVT = IsABIMangled 879 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 880 : RegVTs[Value]; 881 882 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 883 ExtendKind = ISD::ZERO_EXTEND; 884 885 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 886 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 887 Part += NumParts; 888 } 889 890 // Copy the parts into the registers. 891 SmallVector<SDValue, 8> Chains(NumRegs); 892 for (unsigned i = 0; i != NumRegs; ++i) { 893 SDValue Part; 894 if (!Flag) { 895 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 896 } else { 897 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 898 *Flag = Part.getValue(1); 899 } 900 901 Chains[i] = Part.getValue(0); 902 } 903 904 if (NumRegs == 1 || Flag) 905 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 906 // flagged to it. That is the CopyToReg nodes and the user are considered 907 // a single scheduling unit. If we create a TokenFactor and return it as 908 // chain, then the TokenFactor is both a predecessor (operand) of the 909 // user as well as a successor (the TF operands are flagged to the user). 910 // c1, f1 = CopyToReg 911 // c2, f2 = CopyToReg 912 // c3 = TokenFactor c1, c2 913 // ... 914 // = op c3, ..., f2 915 Chain = Chains[NumRegs-1]; 916 else 917 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 918 } 919 920 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 921 unsigned MatchingIdx, const SDLoc &dl, 922 SelectionDAG &DAG, 923 std::vector<SDValue> &Ops) const { 924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 925 926 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 927 if (HasMatching) 928 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 929 else if (!Regs.empty() && 930 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 931 // Put the register class of the virtual registers in the flag word. That 932 // way, later passes can recompute register class constraints for inline 933 // assembly as well as normal instructions. 934 // Don't do this for tied operands that can use the regclass information 935 // from the def. 936 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 937 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 938 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 939 } 940 941 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 942 Ops.push_back(Res); 943 944 if (Code == InlineAsm::Kind_Clobber) { 945 // Clobbers should always have a 1:1 mapping with registers, and may 946 // reference registers that have illegal (e.g. vector) types. Hence, we 947 // shouldn't try to apply any sort of splitting logic to them. 948 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 949 "No 1:1 mapping from clobbers to regs?"); 950 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 951 (void)SP; 952 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 953 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 954 assert( 955 (Regs[I] != SP || 956 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 957 "If we clobbered the stack pointer, MFI should know about it."); 958 } 959 return; 960 } 961 962 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 963 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 964 MVT RegisterVT = RegVTs[Value]; 965 for (unsigned i = 0; i != NumRegs; ++i) { 966 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 967 unsigned TheReg = Regs[Reg++]; 968 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 969 } 970 } 971 } 972 973 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 974 const TargetLibraryInfo *li) { 975 AA = aa; 976 GFI = gfi; 977 LibInfo = li; 978 DL = &DAG.getDataLayout(); 979 Context = DAG.getContext(); 980 LPadToCallSiteMap.clear(); 981 } 982 983 void SelectionDAGBuilder::clear() { 984 NodeMap.clear(); 985 UnusedArgNodeMap.clear(); 986 PendingLoads.clear(); 987 PendingExports.clear(); 988 CurInst = nullptr; 989 HasTailCall = false; 990 SDNodeOrder = LowestSDNodeOrder; 991 StatepointLowering.clear(); 992 } 993 994 void SelectionDAGBuilder::clearDanglingDebugInfo() { 995 DanglingDebugInfoMap.clear(); 996 } 997 998 SDValue SelectionDAGBuilder::getRoot() { 999 if (PendingLoads.empty()) 1000 return DAG.getRoot(); 1001 1002 if (PendingLoads.size() == 1) { 1003 SDValue Root = PendingLoads[0]; 1004 DAG.setRoot(Root); 1005 PendingLoads.clear(); 1006 return Root; 1007 } 1008 1009 // Otherwise, we have to make a token factor node. 1010 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1011 PendingLoads); 1012 PendingLoads.clear(); 1013 DAG.setRoot(Root); 1014 return Root; 1015 } 1016 1017 SDValue SelectionDAGBuilder::getControlRoot() { 1018 SDValue Root = DAG.getRoot(); 1019 1020 if (PendingExports.empty()) 1021 return Root; 1022 1023 // Turn all of the CopyToReg chains into one factored node. 1024 if (Root.getOpcode() != ISD::EntryToken) { 1025 unsigned i = 0, e = PendingExports.size(); 1026 for (; i != e; ++i) { 1027 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1028 if (PendingExports[i].getNode()->getOperand(0) == Root) 1029 break; // Don't add the root if we already indirectly depend on it. 1030 } 1031 1032 if (i == e) 1033 PendingExports.push_back(Root); 1034 } 1035 1036 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1037 PendingExports); 1038 PendingExports.clear(); 1039 DAG.setRoot(Root); 1040 return Root; 1041 } 1042 1043 void SelectionDAGBuilder::visit(const Instruction &I) { 1044 // Set up outgoing PHI node register values before emitting the terminator. 1045 if (isa<TerminatorInst>(&I)) { 1046 HandlePHINodesInSuccessorBlocks(I.getParent()); 1047 } 1048 1049 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1050 if (!isa<DbgInfoIntrinsic>(I)) 1051 ++SDNodeOrder; 1052 1053 CurInst = &I; 1054 1055 visit(I.getOpcode(), I); 1056 1057 if (!isa<TerminatorInst>(&I) && !HasTailCall && 1058 !isStatepoint(&I)) // statepoints handle their exports internally 1059 CopyToExportRegsIfNeeded(&I); 1060 1061 CurInst = nullptr; 1062 } 1063 1064 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1065 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1066 } 1067 1068 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1069 // Note: this doesn't use InstVisitor, because it has to work with 1070 // ConstantExpr's in addition to instructions. 1071 switch (Opcode) { 1072 default: llvm_unreachable("Unknown instruction type encountered!"); 1073 // Build the switch statement using the Instruction.def file. 1074 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1075 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1076 #include "llvm/IR/Instruction.def" 1077 } 1078 } 1079 1080 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1081 // generate the debug data structures now that we've seen its definition. 1082 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1083 SDValue Val) { 1084 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1085 if (DDI.getDI()) { 1086 const DbgValueInst *DI = DDI.getDI(); 1087 DebugLoc dl = DDI.getdl(); 1088 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1089 DILocalVariable *Variable = DI->getVariable(); 1090 DIExpression *Expr = DI->getExpression(); 1091 assert(Variable->isValidLocationForIntrinsic(dl) && 1092 "Expected inlined-at fields to agree"); 1093 SDDbgValue *SDV; 1094 if (Val.getNode()) { 1095 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1096 SDV = getDbgValue(Val, Variable, Expr, dl, DbgSDNodeOrder); 1097 DAG.AddDbgValue(SDV, Val.getNode(), false); 1098 } 1099 } else 1100 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1101 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1102 } 1103 } 1104 1105 /// getCopyFromRegs - If there was virtual register allocated for the value V 1106 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1107 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1108 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1109 SDValue Result; 1110 1111 if (It != FuncInfo.ValueMap.end()) { 1112 unsigned InReg = It->second; 1113 1114 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1115 DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V)); 1116 SDValue Chain = DAG.getEntryNode(); 1117 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1118 V); 1119 resolveDanglingDebugInfo(V, Result); 1120 } 1121 1122 return Result; 1123 } 1124 1125 /// getValue - Return an SDValue for the given Value. 1126 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1127 // If we already have an SDValue for this value, use it. It's important 1128 // to do this first, so that we don't create a CopyFromReg if we already 1129 // have a regular SDValue. 1130 SDValue &N = NodeMap[V]; 1131 if (N.getNode()) return N; 1132 1133 // If there's a virtual register allocated and initialized for this 1134 // value, use it. 1135 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1136 return copyFromReg; 1137 1138 // Otherwise create a new SDValue and remember it. 1139 SDValue Val = getValueImpl(V); 1140 NodeMap[V] = Val; 1141 resolveDanglingDebugInfo(V, Val); 1142 return Val; 1143 } 1144 1145 // Return true if SDValue exists for the given Value 1146 bool SelectionDAGBuilder::findValue(const Value *V) const { 1147 return (NodeMap.find(V) != NodeMap.end()) || 1148 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1149 } 1150 1151 /// getNonRegisterValue - Return an SDValue for the given Value, but 1152 /// don't look in FuncInfo.ValueMap for a virtual register. 1153 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1154 // If we already have an SDValue for this value, use it. 1155 SDValue &N = NodeMap[V]; 1156 if (N.getNode()) { 1157 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1158 // Remove the debug location from the node as the node is about to be used 1159 // in a location which may differ from the original debug location. This 1160 // is relevant to Constant and ConstantFP nodes because they can appear 1161 // as constant expressions inside PHI nodes. 1162 N->setDebugLoc(DebugLoc()); 1163 } 1164 return N; 1165 } 1166 1167 // Otherwise create a new SDValue and remember it. 1168 SDValue Val = getValueImpl(V); 1169 NodeMap[V] = Val; 1170 resolveDanglingDebugInfo(V, Val); 1171 return Val; 1172 } 1173 1174 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1175 /// Create an SDValue for the given value. 1176 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1177 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1178 1179 if (const Constant *C = dyn_cast<Constant>(V)) { 1180 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1181 1182 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1183 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1184 1185 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1186 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1187 1188 if (isa<ConstantPointerNull>(C)) { 1189 unsigned AS = V->getType()->getPointerAddressSpace(); 1190 return DAG.getConstant(0, getCurSDLoc(), 1191 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1192 } 1193 1194 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1195 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1196 1197 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1198 return DAG.getUNDEF(VT); 1199 1200 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1201 visit(CE->getOpcode(), *CE); 1202 SDValue N1 = NodeMap[V]; 1203 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1204 return N1; 1205 } 1206 1207 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1208 SmallVector<SDValue, 4> Constants; 1209 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1210 OI != OE; ++OI) { 1211 SDNode *Val = getValue(*OI).getNode(); 1212 // If the operand is an empty aggregate, there are no values. 1213 if (!Val) continue; 1214 // Add each leaf value from the operand to the Constants list 1215 // to form a flattened list of all the values. 1216 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1217 Constants.push_back(SDValue(Val, i)); 1218 } 1219 1220 return DAG.getMergeValues(Constants, getCurSDLoc()); 1221 } 1222 1223 if (const ConstantDataSequential *CDS = 1224 dyn_cast<ConstantDataSequential>(C)) { 1225 SmallVector<SDValue, 4> Ops; 1226 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1227 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1228 // Add each leaf value from the operand to the Constants list 1229 // to form a flattened list of all the values. 1230 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1231 Ops.push_back(SDValue(Val, i)); 1232 } 1233 1234 if (isa<ArrayType>(CDS->getType())) 1235 return DAG.getMergeValues(Ops, getCurSDLoc()); 1236 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1237 } 1238 1239 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1240 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1241 "Unknown struct or array constant!"); 1242 1243 SmallVector<EVT, 4> ValueVTs; 1244 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1245 unsigned NumElts = ValueVTs.size(); 1246 if (NumElts == 0) 1247 return SDValue(); // empty struct 1248 SmallVector<SDValue, 4> Constants(NumElts); 1249 for (unsigned i = 0; i != NumElts; ++i) { 1250 EVT EltVT = ValueVTs[i]; 1251 if (isa<UndefValue>(C)) 1252 Constants[i] = DAG.getUNDEF(EltVT); 1253 else if (EltVT.isFloatingPoint()) 1254 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1255 else 1256 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1257 } 1258 1259 return DAG.getMergeValues(Constants, getCurSDLoc()); 1260 } 1261 1262 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1263 return DAG.getBlockAddress(BA, VT); 1264 1265 VectorType *VecTy = cast<VectorType>(V->getType()); 1266 unsigned NumElements = VecTy->getNumElements(); 1267 1268 // Now that we know the number and type of the elements, get that number of 1269 // elements into the Ops array based on what kind of constant it is. 1270 SmallVector<SDValue, 16> Ops; 1271 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1272 for (unsigned i = 0; i != NumElements; ++i) 1273 Ops.push_back(getValue(CV->getOperand(i))); 1274 } else { 1275 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1276 EVT EltVT = 1277 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1278 1279 SDValue Op; 1280 if (EltVT.isFloatingPoint()) 1281 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1282 else 1283 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1284 Ops.assign(NumElements, Op); 1285 } 1286 1287 // Create a BUILD_VECTOR node. 1288 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1289 } 1290 1291 // If this is a static alloca, generate it as the frameindex instead of 1292 // computation. 1293 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1294 DenseMap<const AllocaInst*, int>::iterator SI = 1295 FuncInfo.StaticAllocaMap.find(AI); 1296 if (SI != FuncInfo.StaticAllocaMap.end()) 1297 return DAG.getFrameIndex(SI->second, 1298 TLI.getFrameIndexTy(DAG.getDataLayout())); 1299 } 1300 1301 // If this is an instruction which fast-isel has deferred, select it now. 1302 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1303 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1304 1305 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1306 Inst->getType(), isABIRegCopy(V)); 1307 SDValue Chain = DAG.getEntryNode(); 1308 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1309 } 1310 1311 llvm_unreachable("Can't get register for value!"); 1312 } 1313 1314 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1315 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1316 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1317 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1318 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1319 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1320 if (IsMSVCCXX || IsCoreCLR) 1321 CatchPadMBB->setIsEHFuncletEntry(); 1322 1323 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1324 } 1325 1326 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1327 // Update machine-CFG edge. 1328 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1329 FuncInfo.MBB->addSuccessor(TargetMBB); 1330 1331 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1332 bool IsSEH = isAsynchronousEHPersonality(Pers); 1333 if (IsSEH) { 1334 // If this is not a fall-through branch or optimizations are switched off, 1335 // emit the branch. 1336 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1337 TM.getOptLevel() == CodeGenOpt::None) 1338 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1339 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1340 return; 1341 } 1342 1343 // Figure out the funclet membership for the catchret's successor. 1344 // This will be used by the FuncletLayout pass to determine how to order the 1345 // BB's. 1346 // A 'catchret' returns to the outer scope's color. 1347 Value *ParentPad = I.getCatchSwitchParentPad(); 1348 const BasicBlock *SuccessorColor; 1349 if (isa<ConstantTokenNone>(ParentPad)) 1350 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1351 else 1352 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1353 assert(SuccessorColor && "No parent funclet for catchret!"); 1354 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1355 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1356 1357 // Create the terminator node. 1358 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1359 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1360 DAG.getBasicBlock(SuccessorColorMBB)); 1361 DAG.setRoot(Ret); 1362 } 1363 1364 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1365 // Don't emit any special code for the cleanuppad instruction. It just marks 1366 // the start of a funclet. 1367 FuncInfo.MBB->setIsEHFuncletEntry(); 1368 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1369 } 1370 1371 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1372 /// many places it could ultimately go. In the IR, we have a single unwind 1373 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1374 /// This function skips over imaginary basic blocks that hold catchswitch 1375 /// instructions, and finds all the "real" machine 1376 /// basic block destinations. As those destinations may not be successors of 1377 /// EHPadBB, here we also calculate the edge probability to those destinations. 1378 /// The passed-in Prob is the edge probability to EHPadBB. 1379 static void findUnwindDestinations( 1380 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1381 BranchProbability Prob, 1382 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1383 &UnwindDests) { 1384 EHPersonality Personality = 1385 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1386 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1387 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1388 1389 while (EHPadBB) { 1390 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1391 BasicBlock *NewEHPadBB = nullptr; 1392 if (isa<LandingPadInst>(Pad)) { 1393 // Stop on landingpads. They are not funclets. 1394 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1395 break; 1396 } else if (isa<CleanupPadInst>(Pad)) { 1397 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1398 // personalities. 1399 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1400 UnwindDests.back().first->setIsEHFuncletEntry(); 1401 break; 1402 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1403 // Add the catchpad handlers to the possible destinations. 1404 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1405 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1406 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1407 if (IsMSVCCXX || IsCoreCLR) 1408 UnwindDests.back().first->setIsEHFuncletEntry(); 1409 } 1410 NewEHPadBB = CatchSwitch->getUnwindDest(); 1411 } else { 1412 continue; 1413 } 1414 1415 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1416 if (BPI && NewEHPadBB) 1417 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1418 EHPadBB = NewEHPadBB; 1419 } 1420 } 1421 1422 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1423 // Update successor info. 1424 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1425 auto UnwindDest = I.getUnwindDest(); 1426 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1427 BranchProbability UnwindDestProb = 1428 (BPI && UnwindDest) 1429 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1430 : BranchProbability::getZero(); 1431 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1432 for (auto &UnwindDest : UnwindDests) { 1433 UnwindDest.first->setIsEHPad(); 1434 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1435 } 1436 FuncInfo.MBB->normalizeSuccProbs(); 1437 1438 // Create the terminator node. 1439 SDValue Ret = 1440 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1441 DAG.setRoot(Ret); 1442 } 1443 1444 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1445 report_fatal_error("visitCatchSwitch not yet implemented!"); 1446 } 1447 1448 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1450 auto &DL = DAG.getDataLayout(); 1451 SDValue Chain = getControlRoot(); 1452 SmallVector<ISD::OutputArg, 8> Outs; 1453 SmallVector<SDValue, 8> OutVals; 1454 1455 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1456 // lower 1457 // 1458 // %val = call <ty> @llvm.experimental.deoptimize() 1459 // ret <ty> %val 1460 // 1461 // differently. 1462 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1463 LowerDeoptimizingReturn(); 1464 return; 1465 } 1466 1467 if (!FuncInfo.CanLowerReturn) { 1468 unsigned DemoteReg = FuncInfo.DemoteRegister; 1469 const Function *F = I.getParent()->getParent(); 1470 1471 // Emit a store of the return value through the virtual register. 1472 // Leave Outs empty so that LowerReturn won't try to load return 1473 // registers the usual way. 1474 SmallVector<EVT, 1> PtrValueVTs; 1475 ComputeValueVTs(TLI, DL, 1476 F->getReturnType()->getPointerTo( 1477 DAG.getDataLayout().getAllocaAddrSpace()), 1478 PtrValueVTs); 1479 1480 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1481 DemoteReg, PtrValueVTs[0]); 1482 SDValue RetOp = getValue(I.getOperand(0)); 1483 1484 SmallVector<EVT, 4> ValueVTs; 1485 SmallVector<uint64_t, 4> Offsets; 1486 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1487 unsigned NumValues = ValueVTs.size(); 1488 1489 SmallVector<SDValue, 4> Chains(NumValues); 1490 for (unsigned i = 0; i != NumValues; ++i) { 1491 // An aggregate return value cannot wrap around the address space, so 1492 // offsets to its parts don't wrap either. 1493 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1494 Chains[i] = DAG.getStore( 1495 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1496 // FIXME: better loc info would be nice. 1497 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1498 } 1499 1500 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1501 MVT::Other, Chains); 1502 } else if (I.getNumOperands() != 0) { 1503 SmallVector<EVT, 4> ValueVTs; 1504 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1505 unsigned NumValues = ValueVTs.size(); 1506 if (NumValues) { 1507 SDValue RetOp = getValue(I.getOperand(0)); 1508 1509 const Function *F = I.getParent()->getParent(); 1510 1511 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1512 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1513 Attribute::SExt)) 1514 ExtendKind = ISD::SIGN_EXTEND; 1515 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1516 Attribute::ZExt)) 1517 ExtendKind = ISD::ZERO_EXTEND; 1518 1519 LLVMContext &Context = F->getContext(); 1520 bool RetInReg = F->getAttributes().hasAttribute( 1521 AttributeList::ReturnIndex, Attribute::InReg); 1522 1523 for (unsigned j = 0; j != NumValues; ++j) { 1524 EVT VT = ValueVTs[j]; 1525 1526 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1527 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1528 1529 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1530 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1531 SmallVector<SDValue, 4> Parts(NumParts); 1532 getCopyToParts(DAG, getCurSDLoc(), 1533 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1534 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1535 1536 // 'inreg' on function refers to return value 1537 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1538 if (RetInReg) 1539 Flags.setInReg(); 1540 1541 // Propagate extension type if any 1542 if (ExtendKind == ISD::SIGN_EXTEND) 1543 Flags.setSExt(); 1544 else if (ExtendKind == ISD::ZERO_EXTEND) 1545 Flags.setZExt(); 1546 1547 for (unsigned i = 0; i < NumParts; ++i) { 1548 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1549 VT, /*isfixed=*/true, 0, 0)); 1550 OutVals.push_back(Parts[i]); 1551 } 1552 } 1553 } 1554 } 1555 1556 // Push in swifterror virtual register as the last element of Outs. This makes 1557 // sure swifterror virtual register will be returned in the swifterror 1558 // physical register. 1559 const Function *F = I.getParent()->getParent(); 1560 if (TLI.supportSwiftError() && 1561 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1562 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1563 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1564 Flags.setSwiftError(); 1565 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1566 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1567 true /*isfixed*/, 1 /*origidx*/, 1568 0 /*partOffs*/)); 1569 // Create SDNode for the swifterror virtual register. 1570 OutVals.push_back( 1571 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1572 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1573 EVT(TLI.getPointerTy(DL)))); 1574 } 1575 1576 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1577 CallingConv::ID CallConv = 1578 DAG.getMachineFunction().getFunction()->getCallingConv(); 1579 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1580 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1581 1582 // Verify that the target's LowerReturn behaved as expected. 1583 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1584 "LowerReturn didn't return a valid chain!"); 1585 1586 // Update the DAG with the new chain value resulting from return lowering. 1587 DAG.setRoot(Chain); 1588 } 1589 1590 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1591 /// created for it, emit nodes to copy the value into the virtual 1592 /// registers. 1593 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1594 // Skip empty types 1595 if (V->getType()->isEmptyTy()) 1596 return; 1597 1598 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1599 if (VMI != FuncInfo.ValueMap.end()) { 1600 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1601 CopyValueToVirtualRegister(V, VMI->second); 1602 } 1603 } 1604 1605 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1606 /// the current basic block, add it to ValueMap now so that we'll get a 1607 /// CopyTo/FromReg. 1608 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1609 // No need to export constants. 1610 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1611 1612 // Already exported? 1613 if (FuncInfo.isExportedInst(V)) return; 1614 1615 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1616 CopyValueToVirtualRegister(V, Reg); 1617 } 1618 1619 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1620 const BasicBlock *FromBB) { 1621 // The operands of the setcc have to be in this block. We don't know 1622 // how to export them from some other block. 1623 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1624 // Can export from current BB. 1625 if (VI->getParent() == FromBB) 1626 return true; 1627 1628 // Is already exported, noop. 1629 return FuncInfo.isExportedInst(V); 1630 } 1631 1632 // If this is an argument, we can export it if the BB is the entry block or 1633 // if it is already exported. 1634 if (isa<Argument>(V)) { 1635 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1636 return true; 1637 1638 // Otherwise, can only export this if it is already exported. 1639 return FuncInfo.isExportedInst(V); 1640 } 1641 1642 // Otherwise, constants can always be exported. 1643 return true; 1644 } 1645 1646 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1647 BranchProbability 1648 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1649 const MachineBasicBlock *Dst) const { 1650 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1651 const BasicBlock *SrcBB = Src->getBasicBlock(); 1652 const BasicBlock *DstBB = Dst->getBasicBlock(); 1653 if (!BPI) { 1654 // If BPI is not available, set the default probability as 1 / N, where N is 1655 // the number of successors. 1656 auto SuccSize = std::max<uint32_t>( 1657 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1658 return BranchProbability(1, SuccSize); 1659 } 1660 return BPI->getEdgeProbability(SrcBB, DstBB); 1661 } 1662 1663 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1664 MachineBasicBlock *Dst, 1665 BranchProbability Prob) { 1666 if (!FuncInfo.BPI) 1667 Src->addSuccessorWithoutProb(Dst); 1668 else { 1669 if (Prob.isUnknown()) 1670 Prob = getEdgeProbability(Src, Dst); 1671 Src->addSuccessor(Dst, Prob); 1672 } 1673 } 1674 1675 static bool InBlock(const Value *V, const BasicBlock *BB) { 1676 if (const Instruction *I = dyn_cast<Instruction>(V)) 1677 return I->getParent() == BB; 1678 return true; 1679 } 1680 1681 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1682 /// This function emits a branch and is used at the leaves of an OR or an 1683 /// AND operator tree. 1684 void 1685 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1686 MachineBasicBlock *TBB, 1687 MachineBasicBlock *FBB, 1688 MachineBasicBlock *CurBB, 1689 MachineBasicBlock *SwitchBB, 1690 BranchProbability TProb, 1691 BranchProbability FProb, 1692 bool InvertCond) { 1693 const BasicBlock *BB = CurBB->getBasicBlock(); 1694 1695 // If the leaf of the tree is a comparison, merge the condition into 1696 // the caseblock. 1697 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1698 // The operands of the cmp have to be in this block. We don't know 1699 // how to export them from some other block. If this is the first block 1700 // of the sequence, no exporting is needed. 1701 if (CurBB == SwitchBB || 1702 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1703 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1704 ISD::CondCode Condition; 1705 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1706 ICmpInst::Predicate Pred = 1707 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1708 Condition = getICmpCondCode(Pred); 1709 } else { 1710 const FCmpInst *FC = cast<FCmpInst>(Cond); 1711 FCmpInst::Predicate Pred = 1712 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1713 Condition = getFCmpCondCode(Pred); 1714 if (TM.Options.NoNaNsFPMath) 1715 Condition = getFCmpCodeWithoutNaN(Condition); 1716 } 1717 1718 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1719 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1720 SwitchCases.push_back(CB); 1721 return; 1722 } 1723 } 1724 1725 // Create a CaseBlock record representing this branch. 1726 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1727 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1728 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1729 SwitchCases.push_back(CB); 1730 } 1731 1732 /// FindMergedConditions - If Cond is an expression like 1733 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1734 MachineBasicBlock *TBB, 1735 MachineBasicBlock *FBB, 1736 MachineBasicBlock *CurBB, 1737 MachineBasicBlock *SwitchBB, 1738 Instruction::BinaryOps Opc, 1739 BranchProbability TProb, 1740 BranchProbability FProb, 1741 bool InvertCond) { 1742 // Skip over not part of the tree and remember to invert op and operands at 1743 // next level. 1744 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1745 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1746 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1747 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1748 !InvertCond); 1749 return; 1750 } 1751 } 1752 1753 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1754 // Compute the effective opcode for Cond, taking into account whether it needs 1755 // to be inverted, e.g. 1756 // and (not (or A, B)), C 1757 // gets lowered as 1758 // and (and (not A, not B), C) 1759 unsigned BOpc = 0; 1760 if (BOp) { 1761 BOpc = BOp->getOpcode(); 1762 if (InvertCond) { 1763 if (BOpc == Instruction::And) 1764 BOpc = Instruction::Or; 1765 else if (BOpc == Instruction::Or) 1766 BOpc = Instruction::And; 1767 } 1768 } 1769 1770 // If this node is not part of the or/and tree, emit it as a branch. 1771 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1772 BOpc != Opc || !BOp->hasOneUse() || 1773 BOp->getParent() != CurBB->getBasicBlock() || 1774 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1775 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1776 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1777 TProb, FProb, InvertCond); 1778 return; 1779 } 1780 1781 // Create TmpBB after CurBB. 1782 MachineFunction::iterator BBI(CurBB); 1783 MachineFunction &MF = DAG.getMachineFunction(); 1784 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1785 CurBB->getParent()->insert(++BBI, TmpBB); 1786 1787 if (Opc == Instruction::Or) { 1788 // Codegen X | Y as: 1789 // BB1: 1790 // jmp_if_X TBB 1791 // jmp TmpBB 1792 // TmpBB: 1793 // jmp_if_Y TBB 1794 // jmp FBB 1795 // 1796 1797 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1798 // The requirement is that 1799 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1800 // = TrueProb for original BB. 1801 // Assuming the original probabilities are A and B, one choice is to set 1802 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1803 // A/(1+B) and 2B/(1+B). This choice assumes that 1804 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1805 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1806 // TmpBB, but the math is more complicated. 1807 1808 auto NewTrueProb = TProb / 2; 1809 auto NewFalseProb = TProb / 2 + FProb; 1810 // Emit the LHS condition. 1811 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1812 NewTrueProb, NewFalseProb, InvertCond); 1813 1814 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1815 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1816 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1817 // Emit the RHS condition into TmpBB. 1818 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1819 Probs[0], Probs[1], InvertCond); 1820 } else { 1821 assert(Opc == Instruction::And && "Unknown merge op!"); 1822 // Codegen X & Y as: 1823 // BB1: 1824 // jmp_if_X TmpBB 1825 // jmp FBB 1826 // TmpBB: 1827 // jmp_if_Y TBB 1828 // jmp FBB 1829 // 1830 // This requires creation of TmpBB after CurBB. 1831 1832 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1833 // The requirement is that 1834 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1835 // = FalseProb for original BB. 1836 // Assuming the original probabilities are A and B, one choice is to set 1837 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1838 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1839 // TrueProb for BB1 * FalseProb for TmpBB. 1840 1841 auto NewTrueProb = TProb + FProb / 2; 1842 auto NewFalseProb = FProb / 2; 1843 // Emit the LHS condition. 1844 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1845 NewTrueProb, NewFalseProb, InvertCond); 1846 1847 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1848 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1849 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1850 // Emit the RHS condition into TmpBB. 1851 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1852 Probs[0], Probs[1], InvertCond); 1853 } 1854 } 1855 1856 /// If the set of cases should be emitted as a series of branches, return true. 1857 /// If we should emit this as a bunch of and/or'd together conditions, return 1858 /// false. 1859 bool 1860 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1861 if (Cases.size() != 2) return true; 1862 1863 // If this is two comparisons of the same values or'd or and'd together, they 1864 // will get folded into a single comparison, so don't emit two blocks. 1865 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1866 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1867 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1868 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1869 return false; 1870 } 1871 1872 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1873 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1874 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1875 Cases[0].CC == Cases[1].CC && 1876 isa<Constant>(Cases[0].CmpRHS) && 1877 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1878 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1879 return false; 1880 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1881 return false; 1882 } 1883 1884 return true; 1885 } 1886 1887 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1888 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1889 1890 // Update machine-CFG edges. 1891 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1892 1893 if (I.isUnconditional()) { 1894 // Update machine-CFG edges. 1895 BrMBB->addSuccessor(Succ0MBB); 1896 1897 // If this is not a fall-through branch or optimizations are switched off, 1898 // emit the branch. 1899 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1900 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1901 MVT::Other, getControlRoot(), 1902 DAG.getBasicBlock(Succ0MBB))); 1903 1904 return; 1905 } 1906 1907 // If this condition is one of the special cases we handle, do special stuff 1908 // now. 1909 const Value *CondVal = I.getCondition(); 1910 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1911 1912 // If this is a series of conditions that are or'd or and'd together, emit 1913 // this as a sequence of branches instead of setcc's with and/or operations. 1914 // As long as jumps are not expensive, this should improve performance. 1915 // For example, instead of something like: 1916 // cmp A, B 1917 // C = seteq 1918 // cmp D, E 1919 // F = setle 1920 // or C, F 1921 // jnz foo 1922 // Emit: 1923 // cmp A, B 1924 // je foo 1925 // cmp D, E 1926 // jle foo 1927 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1928 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1929 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1930 !I.getMetadata(LLVMContext::MD_unpredictable) && 1931 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1932 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1933 Opcode, 1934 getEdgeProbability(BrMBB, Succ0MBB), 1935 getEdgeProbability(BrMBB, Succ1MBB), 1936 /*InvertCond=*/false); 1937 // If the compares in later blocks need to use values not currently 1938 // exported from this block, export them now. This block should always 1939 // be the first entry. 1940 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1941 1942 // Allow some cases to be rejected. 1943 if (ShouldEmitAsBranches(SwitchCases)) { 1944 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1945 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1946 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1947 } 1948 1949 // Emit the branch for this block. 1950 visitSwitchCase(SwitchCases[0], BrMBB); 1951 SwitchCases.erase(SwitchCases.begin()); 1952 return; 1953 } 1954 1955 // Okay, we decided not to do this, remove any inserted MBB's and clear 1956 // SwitchCases. 1957 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1958 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1959 1960 SwitchCases.clear(); 1961 } 1962 } 1963 1964 // Create a CaseBlock record representing this branch. 1965 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1966 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 1967 1968 // Use visitSwitchCase to actually insert the fast branch sequence for this 1969 // cond branch. 1970 visitSwitchCase(CB, BrMBB); 1971 } 1972 1973 /// visitSwitchCase - Emits the necessary code to represent a single node in 1974 /// the binary search tree resulting from lowering a switch instruction. 1975 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1976 MachineBasicBlock *SwitchBB) { 1977 SDValue Cond; 1978 SDValue CondLHS = getValue(CB.CmpLHS); 1979 SDLoc dl = CB.DL; 1980 1981 // Build the setcc now. 1982 if (!CB.CmpMHS) { 1983 // Fold "(X == true)" to X and "(X == false)" to !X to 1984 // handle common cases produced by branch lowering. 1985 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1986 CB.CC == ISD::SETEQ) 1987 Cond = CondLHS; 1988 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1989 CB.CC == ISD::SETEQ) { 1990 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1991 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1992 } else 1993 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1994 } else { 1995 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1996 1997 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1998 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1999 2000 SDValue CmpOp = getValue(CB.CmpMHS); 2001 EVT VT = CmpOp.getValueType(); 2002 2003 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2004 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2005 ISD::SETLE); 2006 } else { 2007 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2008 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2009 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2010 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2011 } 2012 } 2013 2014 // Update successor info 2015 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2016 // TrueBB and FalseBB are always different unless the incoming IR is 2017 // degenerate. This only happens when running llc on weird IR. 2018 if (CB.TrueBB != CB.FalseBB) 2019 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2020 SwitchBB->normalizeSuccProbs(); 2021 2022 // If the lhs block is the next block, invert the condition so that we can 2023 // fall through to the lhs instead of the rhs block. 2024 if (CB.TrueBB == NextBlock(SwitchBB)) { 2025 std::swap(CB.TrueBB, CB.FalseBB); 2026 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2027 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2028 } 2029 2030 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2031 MVT::Other, getControlRoot(), Cond, 2032 DAG.getBasicBlock(CB.TrueBB)); 2033 2034 // Insert the false branch. Do this even if it's a fall through branch, 2035 // this makes it easier to do DAG optimizations which require inverting 2036 // the branch condition. 2037 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2038 DAG.getBasicBlock(CB.FalseBB)); 2039 2040 DAG.setRoot(BrCond); 2041 } 2042 2043 /// visitJumpTable - Emit JumpTable node in the current MBB 2044 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2045 // Emit the code for the jump table 2046 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2047 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2048 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2049 JT.Reg, PTy); 2050 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2051 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2052 MVT::Other, Index.getValue(1), 2053 Table, Index); 2054 DAG.setRoot(BrJumpTable); 2055 } 2056 2057 /// visitJumpTableHeader - This function emits necessary code to produce index 2058 /// in the JumpTable from switch case. 2059 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2060 JumpTableHeader &JTH, 2061 MachineBasicBlock *SwitchBB) { 2062 SDLoc dl = getCurSDLoc(); 2063 2064 // Subtract the lowest switch case value from the value being switched on and 2065 // conditional branch to default mbb if the result is greater than the 2066 // difference between smallest and largest cases. 2067 SDValue SwitchOp = getValue(JTH.SValue); 2068 EVT VT = SwitchOp.getValueType(); 2069 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2070 DAG.getConstant(JTH.First, dl, VT)); 2071 2072 // The SDNode we just created, which holds the value being switched on minus 2073 // the smallest case value, needs to be copied to a virtual register so it 2074 // can be used as an index into the jump table in a subsequent basic block. 2075 // This value may be smaller or larger than the target's pointer type, and 2076 // therefore require extension or truncating. 2077 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2078 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2079 2080 unsigned JumpTableReg = 2081 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2082 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2083 JumpTableReg, SwitchOp); 2084 JT.Reg = JumpTableReg; 2085 2086 // Emit the range check for the jump table, and branch to the default block 2087 // for the switch statement if the value being switched on exceeds the largest 2088 // case in the switch. 2089 SDValue CMP = DAG.getSetCC( 2090 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2091 Sub.getValueType()), 2092 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2093 2094 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2095 MVT::Other, CopyTo, CMP, 2096 DAG.getBasicBlock(JT.Default)); 2097 2098 // Avoid emitting unnecessary branches to the next block. 2099 if (JT.MBB != NextBlock(SwitchBB)) 2100 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2101 DAG.getBasicBlock(JT.MBB)); 2102 2103 DAG.setRoot(BrCond); 2104 } 2105 2106 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2107 /// variable if there exists one. 2108 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2109 SDValue &Chain) { 2110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2111 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2112 MachineFunction &MF = DAG.getMachineFunction(); 2113 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 2114 MachineSDNode *Node = 2115 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2116 if (Global) { 2117 MachinePointerInfo MPInfo(Global); 2118 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2119 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2120 MachineMemOperand::MODereferenceable; 2121 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2122 DAG.getEVTAlignment(PtrTy)); 2123 Node->setMemRefs(MemRefs, MemRefs + 1); 2124 } 2125 return SDValue(Node, 0); 2126 } 2127 2128 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2129 /// tail spliced into a stack protector check success bb. 2130 /// 2131 /// For a high level explanation of how this fits into the stack protector 2132 /// generation see the comment on the declaration of class 2133 /// StackProtectorDescriptor. 2134 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2135 MachineBasicBlock *ParentBB) { 2136 2137 // First create the loads to the guard/stack slot for the comparison. 2138 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2139 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2140 2141 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2142 int FI = MFI.getStackProtectorIndex(); 2143 2144 SDValue Guard; 2145 SDLoc dl = getCurSDLoc(); 2146 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2147 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2148 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2149 2150 // Generate code to load the content of the guard slot. 2151 SDValue StackSlot = DAG.getLoad( 2152 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2153 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2154 MachineMemOperand::MOVolatile); 2155 2156 // Retrieve guard check function, nullptr if instrumentation is inlined. 2157 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2158 // The target provides a guard check function to validate the guard value. 2159 // Generate a call to that function with the content of the guard slot as 2160 // argument. 2161 auto *Fn = cast<Function>(GuardCheck); 2162 FunctionType *FnTy = Fn->getFunctionType(); 2163 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2164 2165 TargetLowering::ArgListTy Args; 2166 TargetLowering::ArgListEntry Entry; 2167 Entry.Node = StackSlot; 2168 Entry.Ty = FnTy->getParamType(0); 2169 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2170 Entry.IsInReg = true; 2171 Args.push_back(Entry); 2172 2173 TargetLowering::CallLoweringInfo CLI(DAG); 2174 CLI.setDebugLoc(getCurSDLoc()) 2175 .setChain(DAG.getEntryNode()) 2176 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2177 getValue(GuardCheck), std::move(Args)); 2178 2179 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2180 DAG.setRoot(Result.second); 2181 return; 2182 } 2183 2184 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2185 // Otherwise, emit a volatile load to retrieve the stack guard value. 2186 SDValue Chain = DAG.getEntryNode(); 2187 if (TLI.useLoadStackGuardNode()) { 2188 Guard = getLoadStackGuard(DAG, dl, Chain); 2189 } else { 2190 const Value *IRGuard = TLI.getSDagStackGuard(M); 2191 SDValue GuardPtr = getValue(IRGuard); 2192 2193 Guard = 2194 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2195 Align, MachineMemOperand::MOVolatile); 2196 } 2197 2198 // Perform the comparison via a subtract/getsetcc. 2199 EVT VT = Guard.getValueType(); 2200 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2201 2202 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2203 *DAG.getContext(), 2204 Sub.getValueType()), 2205 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2206 2207 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2208 // branch to failure MBB. 2209 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2210 MVT::Other, StackSlot.getOperand(0), 2211 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2212 // Otherwise branch to success MBB. 2213 SDValue Br = DAG.getNode(ISD::BR, dl, 2214 MVT::Other, BrCond, 2215 DAG.getBasicBlock(SPD.getSuccessMBB())); 2216 2217 DAG.setRoot(Br); 2218 } 2219 2220 /// Codegen the failure basic block for a stack protector check. 2221 /// 2222 /// A failure stack protector machine basic block consists simply of a call to 2223 /// __stack_chk_fail(). 2224 /// 2225 /// For a high level explanation of how this fits into the stack protector 2226 /// generation see the comment on the declaration of class 2227 /// StackProtectorDescriptor. 2228 void 2229 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2230 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2231 SDValue Chain = 2232 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2233 None, false, getCurSDLoc(), false, false).second; 2234 DAG.setRoot(Chain); 2235 } 2236 2237 /// visitBitTestHeader - This function emits necessary code to produce value 2238 /// suitable for "bit tests" 2239 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2240 MachineBasicBlock *SwitchBB) { 2241 SDLoc dl = getCurSDLoc(); 2242 2243 // Subtract the minimum value 2244 SDValue SwitchOp = getValue(B.SValue); 2245 EVT VT = SwitchOp.getValueType(); 2246 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2247 DAG.getConstant(B.First, dl, VT)); 2248 2249 // Check range 2250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2251 SDValue RangeCmp = DAG.getSetCC( 2252 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2253 Sub.getValueType()), 2254 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2255 2256 // Determine the type of the test operands. 2257 bool UsePtrType = false; 2258 if (!TLI.isTypeLegal(VT)) 2259 UsePtrType = true; 2260 else { 2261 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2262 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2263 // Switch table case range are encoded into series of masks. 2264 // Just use pointer type, it's guaranteed to fit. 2265 UsePtrType = true; 2266 break; 2267 } 2268 } 2269 if (UsePtrType) { 2270 VT = TLI.getPointerTy(DAG.getDataLayout()); 2271 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2272 } 2273 2274 B.RegVT = VT.getSimpleVT(); 2275 B.Reg = FuncInfo.CreateReg(B.RegVT); 2276 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2277 2278 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2279 2280 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2281 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2282 SwitchBB->normalizeSuccProbs(); 2283 2284 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2285 MVT::Other, CopyTo, RangeCmp, 2286 DAG.getBasicBlock(B.Default)); 2287 2288 // Avoid emitting unnecessary branches to the next block. 2289 if (MBB != NextBlock(SwitchBB)) 2290 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2291 DAG.getBasicBlock(MBB)); 2292 2293 DAG.setRoot(BrRange); 2294 } 2295 2296 /// visitBitTestCase - this function produces one "bit test" 2297 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2298 MachineBasicBlock* NextMBB, 2299 BranchProbability BranchProbToNext, 2300 unsigned Reg, 2301 BitTestCase &B, 2302 MachineBasicBlock *SwitchBB) { 2303 SDLoc dl = getCurSDLoc(); 2304 MVT VT = BB.RegVT; 2305 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2306 SDValue Cmp; 2307 unsigned PopCount = countPopulation(B.Mask); 2308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2309 if (PopCount == 1) { 2310 // Testing for a single bit; just compare the shift count with what it 2311 // would need to be to shift a 1 bit in that position. 2312 Cmp = DAG.getSetCC( 2313 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2314 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2315 ISD::SETEQ); 2316 } else if (PopCount == BB.Range) { 2317 // There is only one zero bit in the range, test for it directly. 2318 Cmp = DAG.getSetCC( 2319 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2320 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2321 ISD::SETNE); 2322 } else { 2323 // Make desired shift 2324 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2325 DAG.getConstant(1, dl, VT), ShiftOp); 2326 2327 // Emit bit tests and jumps 2328 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2329 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2330 Cmp = DAG.getSetCC( 2331 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2332 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2333 } 2334 2335 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2336 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2337 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2338 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2339 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2340 // one as they are relative probabilities (and thus work more like weights), 2341 // and hence we need to normalize them to let the sum of them become one. 2342 SwitchBB->normalizeSuccProbs(); 2343 2344 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2345 MVT::Other, getControlRoot(), 2346 Cmp, DAG.getBasicBlock(B.TargetBB)); 2347 2348 // Avoid emitting unnecessary branches to the next block. 2349 if (NextMBB != NextBlock(SwitchBB)) 2350 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2351 DAG.getBasicBlock(NextMBB)); 2352 2353 DAG.setRoot(BrAnd); 2354 } 2355 2356 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2357 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2358 2359 // Retrieve successors. Look through artificial IR level blocks like 2360 // catchswitch for successors. 2361 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2362 const BasicBlock *EHPadBB = I.getSuccessor(1); 2363 2364 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2365 // have to do anything here to lower funclet bundles. 2366 assert(!I.hasOperandBundlesOtherThan( 2367 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2368 "Cannot lower invokes with arbitrary operand bundles yet!"); 2369 2370 const Value *Callee(I.getCalledValue()); 2371 const Function *Fn = dyn_cast<Function>(Callee); 2372 if (isa<InlineAsm>(Callee)) 2373 visitInlineAsm(&I); 2374 else if (Fn && Fn->isIntrinsic()) { 2375 switch (Fn->getIntrinsicID()) { 2376 default: 2377 llvm_unreachable("Cannot invoke this intrinsic"); 2378 case Intrinsic::donothing: 2379 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2380 break; 2381 case Intrinsic::experimental_patchpoint_void: 2382 case Intrinsic::experimental_patchpoint_i64: 2383 visitPatchpoint(&I, EHPadBB); 2384 break; 2385 case Intrinsic::experimental_gc_statepoint: 2386 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2387 break; 2388 } 2389 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2390 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2391 // Eventually we will support lowering the @llvm.experimental.deoptimize 2392 // intrinsic, and right now there are no plans to support other intrinsics 2393 // with deopt state. 2394 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2395 } else { 2396 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2397 } 2398 2399 // If the value of the invoke is used outside of its defining block, make it 2400 // available as a virtual register. 2401 // We already took care of the exported value for the statepoint instruction 2402 // during call to the LowerStatepoint. 2403 if (!isStatepoint(I)) { 2404 CopyToExportRegsIfNeeded(&I); 2405 } 2406 2407 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2408 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2409 BranchProbability EHPadBBProb = 2410 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2411 : BranchProbability::getZero(); 2412 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2413 2414 // Update successor info. 2415 addSuccessorWithProb(InvokeMBB, Return); 2416 for (auto &UnwindDest : UnwindDests) { 2417 UnwindDest.first->setIsEHPad(); 2418 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2419 } 2420 InvokeMBB->normalizeSuccProbs(); 2421 2422 // Drop into normal successor. 2423 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2424 MVT::Other, getControlRoot(), 2425 DAG.getBasicBlock(Return))); 2426 } 2427 2428 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2429 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2430 } 2431 2432 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2433 assert(FuncInfo.MBB->isEHPad() && 2434 "Call to landingpad not in landing pad!"); 2435 2436 MachineBasicBlock *MBB = FuncInfo.MBB; 2437 addLandingPadInfo(LP, *MBB); 2438 2439 // If there aren't registers to copy the values into (e.g., during SjLj 2440 // exceptions), then don't bother to create these DAG nodes. 2441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2442 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2443 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2444 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2445 return; 2446 2447 // If landingpad's return type is token type, we don't create DAG nodes 2448 // for its exception pointer and selector value. The extraction of exception 2449 // pointer or selector value from token type landingpads is not currently 2450 // supported. 2451 if (LP.getType()->isTokenTy()) 2452 return; 2453 2454 SmallVector<EVT, 2> ValueVTs; 2455 SDLoc dl = getCurSDLoc(); 2456 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2457 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2458 2459 // Get the two live-in registers as SDValues. The physregs have already been 2460 // copied into virtual registers. 2461 SDValue Ops[2]; 2462 if (FuncInfo.ExceptionPointerVirtReg) { 2463 Ops[0] = DAG.getZExtOrTrunc( 2464 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2465 FuncInfo.ExceptionPointerVirtReg, 2466 TLI.getPointerTy(DAG.getDataLayout())), 2467 dl, ValueVTs[0]); 2468 } else { 2469 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2470 } 2471 Ops[1] = DAG.getZExtOrTrunc( 2472 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2473 FuncInfo.ExceptionSelectorVirtReg, 2474 TLI.getPointerTy(DAG.getDataLayout())), 2475 dl, ValueVTs[1]); 2476 2477 // Merge into one. 2478 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2479 DAG.getVTList(ValueVTs), Ops); 2480 setValue(&LP, Res); 2481 } 2482 2483 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2484 #ifndef NDEBUG 2485 for (const CaseCluster &CC : Clusters) 2486 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2487 #endif 2488 2489 std::sort(Clusters.begin(), Clusters.end(), 2490 [](const CaseCluster &a, const CaseCluster &b) { 2491 return a.Low->getValue().slt(b.Low->getValue()); 2492 }); 2493 2494 // Merge adjacent clusters with the same destination. 2495 const unsigned N = Clusters.size(); 2496 unsigned DstIndex = 0; 2497 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2498 CaseCluster &CC = Clusters[SrcIndex]; 2499 const ConstantInt *CaseVal = CC.Low; 2500 MachineBasicBlock *Succ = CC.MBB; 2501 2502 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2503 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2504 // If this case has the same successor and is a neighbour, merge it into 2505 // the previous cluster. 2506 Clusters[DstIndex - 1].High = CaseVal; 2507 Clusters[DstIndex - 1].Prob += CC.Prob; 2508 } else { 2509 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2510 sizeof(Clusters[SrcIndex])); 2511 } 2512 } 2513 Clusters.resize(DstIndex); 2514 } 2515 2516 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2517 MachineBasicBlock *Last) { 2518 // Update JTCases. 2519 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2520 if (JTCases[i].first.HeaderBB == First) 2521 JTCases[i].first.HeaderBB = Last; 2522 2523 // Update BitTestCases. 2524 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2525 if (BitTestCases[i].Parent == First) 2526 BitTestCases[i].Parent = Last; 2527 } 2528 2529 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2530 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2531 2532 // Update machine-CFG edges with unique successors. 2533 SmallSet<BasicBlock*, 32> Done; 2534 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2535 BasicBlock *BB = I.getSuccessor(i); 2536 bool Inserted = Done.insert(BB).second; 2537 if (!Inserted) 2538 continue; 2539 2540 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2541 addSuccessorWithProb(IndirectBrMBB, Succ); 2542 } 2543 IndirectBrMBB->normalizeSuccProbs(); 2544 2545 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2546 MVT::Other, getControlRoot(), 2547 getValue(I.getAddress()))); 2548 } 2549 2550 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2551 if (DAG.getTarget().Options.TrapUnreachable) 2552 DAG.setRoot( 2553 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2554 } 2555 2556 void SelectionDAGBuilder::visitFSub(const User &I) { 2557 // -0.0 - X --> fneg 2558 Type *Ty = I.getType(); 2559 if (isa<Constant>(I.getOperand(0)) && 2560 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2561 SDValue Op2 = getValue(I.getOperand(1)); 2562 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2563 Op2.getValueType(), Op2)); 2564 return; 2565 } 2566 2567 visitBinary(I, ISD::FSUB); 2568 } 2569 2570 /// Checks if the given instruction performs a vector reduction, in which case 2571 /// we have the freedom to alter the elements in the result as long as the 2572 /// reduction of them stays unchanged. 2573 static bool isVectorReductionOp(const User *I) { 2574 const Instruction *Inst = dyn_cast<Instruction>(I); 2575 if (!Inst || !Inst->getType()->isVectorTy()) 2576 return false; 2577 2578 auto OpCode = Inst->getOpcode(); 2579 switch (OpCode) { 2580 case Instruction::Add: 2581 case Instruction::Mul: 2582 case Instruction::And: 2583 case Instruction::Or: 2584 case Instruction::Xor: 2585 break; 2586 case Instruction::FAdd: 2587 case Instruction::FMul: 2588 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2589 if (FPOp->getFastMathFlags().isFast()) 2590 break; 2591 LLVM_FALLTHROUGH; 2592 default: 2593 return false; 2594 } 2595 2596 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2597 unsigned ElemNumToReduce = ElemNum; 2598 2599 // Do DFS search on the def-use chain from the given instruction. We only 2600 // allow four kinds of operations during the search until we reach the 2601 // instruction that extracts the first element from the vector: 2602 // 2603 // 1. The reduction operation of the same opcode as the given instruction. 2604 // 2605 // 2. PHI node. 2606 // 2607 // 3. ShuffleVector instruction together with a reduction operation that 2608 // does a partial reduction. 2609 // 2610 // 4. ExtractElement that extracts the first element from the vector, and we 2611 // stop searching the def-use chain here. 2612 // 2613 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2614 // from 1-3 to the stack to continue the DFS. The given instruction is not 2615 // a reduction operation if we meet any other instructions other than those 2616 // listed above. 2617 2618 SmallVector<const User *, 16> UsersToVisit{Inst}; 2619 SmallPtrSet<const User *, 16> Visited; 2620 bool ReduxExtracted = false; 2621 2622 while (!UsersToVisit.empty()) { 2623 auto User = UsersToVisit.back(); 2624 UsersToVisit.pop_back(); 2625 if (!Visited.insert(User).second) 2626 continue; 2627 2628 for (const auto &U : User->users()) { 2629 auto Inst = dyn_cast<Instruction>(U); 2630 if (!Inst) 2631 return false; 2632 2633 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2634 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2635 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2636 return false; 2637 UsersToVisit.push_back(U); 2638 } else if (const ShuffleVectorInst *ShufInst = 2639 dyn_cast<ShuffleVectorInst>(U)) { 2640 // Detect the following pattern: A ShuffleVector instruction together 2641 // with a reduction that do partial reduction on the first and second 2642 // ElemNumToReduce / 2 elements, and store the result in 2643 // ElemNumToReduce / 2 elements in another vector. 2644 2645 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2646 if (ResultElements < ElemNum) 2647 return false; 2648 2649 if (ElemNumToReduce == 1) 2650 return false; 2651 if (!isa<UndefValue>(U->getOperand(1))) 2652 return false; 2653 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2654 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2655 return false; 2656 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2657 if (ShufInst->getMaskValue(i) != -1) 2658 return false; 2659 2660 // There is only one user of this ShuffleVector instruction, which 2661 // must be a reduction operation. 2662 if (!U->hasOneUse()) 2663 return false; 2664 2665 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2666 if (!U2 || U2->getOpcode() != OpCode) 2667 return false; 2668 2669 // Check operands of the reduction operation. 2670 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2671 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2672 UsersToVisit.push_back(U2); 2673 ElemNumToReduce /= 2; 2674 } else 2675 return false; 2676 } else if (isa<ExtractElementInst>(U)) { 2677 // At this moment we should have reduced all elements in the vector. 2678 if (ElemNumToReduce != 1) 2679 return false; 2680 2681 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2682 if (!Val || Val->getZExtValue() != 0) 2683 return false; 2684 2685 ReduxExtracted = true; 2686 } else 2687 return false; 2688 } 2689 } 2690 return ReduxExtracted; 2691 } 2692 2693 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2694 SDValue Op1 = getValue(I.getOperand(0)); 2695 SDValue Op2 = getValue(I.getOperand(1)); 2696 2697 bool nuw = false; 2698 bool nsw = false; 2699 bool exact = false; 2700 bool vec_redux = false; 2701 FastMathFlags FMF; 2702 2703 if (const OverflowingBinaryOperator *OFBinOp = 2704 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2705 nuw = OFBinOp->hasNoUnsignedWrap(); 2706 nsw = OFBinOp->hasNoSignedWrap(); 2707 } 2708 if (const PossiblyExactOperator *ExactOp = 2709 dyn_cast<const PossiblyExactOperator>(&I)) 2710 exact = ExactOp->isExact(); 2711 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2712 FMF = FPOp->getFastMathFlags(); 2713 2714 if (isVectorReductionOp(&I)) { 2715 vec_redux = true; 2716 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2717 } 2718 2719 SDNodeFlags Flags; 2720 Flags.setExact(exact); 2721 Flags.setNoSignedWrap(nsw); 2722 Flags.setNoUnsignedWrap(nuw); 2723 Flags.setVectorReduction(vec_redux); 2724 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2725 Flags.setAllowContract(FMF.allowContract()); 2726 Flags.setNoInfs(FMF.noInfs()); 2727 Flags.setNoNaNs(FMF.noNaNs()); 2728 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2729 Flags.setUnsafeAlgebra(FMF.isFast()); 2730 2731 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2732 Op1, Op2, Flags); 2733 setValue(&I, BinNodeValue); 2734 } 2735 2736 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2737 SDValue Op1 = getValue(I.getOperand(0)); 2738 SDValue Op2 = getValue(I.getOperand(1)); 2739 2740 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2741 Op2.getValueType(), DAG.getDataLayout()); 2742 2743 // Coerce the shift amount to the right type if we can. 2744 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2745 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2746 unsigned Op2Size = Op2.getValueSizeInBits(); 2747 SDLoc DL = getCurSDLoc(); 2748 2749 // If the operand is smaller than the shift count type, promote it. 2750 if (ShiftSize > Op2Size) 2751 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2752 2753 // If the operand is larger than the shift count type but the shift 2754 // count type has enough bits to represent any shift value, truncate 2755 // it now. This is a common case and it exposes the truncate to 2756 // optimization early. 2757 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2758 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2759 // Otherwise we'll need to temporarily settle for some other convenient 2760 // type. Type legalization will make adjustments once the shiftee is split. 2761 else 2762 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2763 } 2764 2765 bool nuw = false; 2766 bool nsw = false; 2767 bool exact = false; 2768 2769 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2770 2771 if (const OverflowingBinaryOperator *OFBinOp = 2772 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2773 nuw = OFBinOp->hasNoUnsignedWrap(); 2774 nsw = OFBinOp->hasNoSignedWrap(); 2775 } 2776 if (const PossiblyExactOperator *ExactOp = 2777 dyn_cast<const PossiblyExactOperator>(&I)) 2778 exact = ExactOp->isExact(); 2779 } 2780 SDNodeFlags Flags; 2781 Flags.setExact(exact); 2782 Flags.setNoSignedWrap(nsw); 2783 Flags.setNoUnsignedWrap(nuw); 2784 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2785 Flags); 2786 setValue(&I, Res); 2787 } 2788 2789 void SelectionDAGBuilder::visitSDiv(const User &I) { 2790 SDValue Op1 = getValue(I.getOperand(0)); 2791 SDValue Op2 = getValue(I.getOperand(1)); 2792 2793 SDNodeFlags Flags; 2794 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2795 cast<PossiblyExactOperator>(&I)->isExact()); 2796 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2797 Op2, Flags)); 2798 } 2799 2800 void SelectionDAGBuilder::visitICmp(const User &I) { 2801 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2802 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2803 predicate = IC->getPredicate(); 2804 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2805 predicate = ICmpInst::Predicate(IC->getPredicate()); 2806 SDValue Op1 = getValue(I.getOperand(0)); 2807 SDValue Op2 = getValue(I.getOperand(1)); 2808 ISD::CondCode Opcode = getICmpCondCode(predicate); 2809 2810 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2811 I.getType()); 2812 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2813 } 2814 2815 void SelectionDAGBuilder::visitFCmp(const User &I) { 2816 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2817 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2818 predicate = FC->getPredicate(); 2819 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2820 predicate = FCmpInst::Predicate(FC->getPredicate()); 2821 SDValue Op1 = getValue(I.getOperand(0)); 2822 SDValue Op2 = getValue(I.getOperand(1)); 2823 ISD::CondCode Condition = getFCmpCondCode(predicate); 2824 2825 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2826 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2827 // further optimization, but currently FMF is only applicable to binary nodes. 2828 if (TM.Options.NoNaNsFPMath) 2829 Condition = getFCmpCodeWithoutNaN(Condition); 2830 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2831 I.getType()); 2832 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2833 } 2834 2835 // Check if the condition of the select has one use or two users that are both 2836 // selects with the same condition. 2837 static bool hasOnlySelectUsers(const Value *Cond) { 2838 return llvm::all_of(Cond->users(), [](const Value *V) { 2839 return isa<SelectInst>(V); 2840 }); 2841 } 2842 2843 void SelectionDAGBuilder::visitSelect(const User &I) { 2844 SmallVector<EVT, 4> ValueVTs; 2845 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2846 ValueVTs); 2847 unsigned NumValues = ValueVTs.size(); 2848 if (NumValues == 0) return; 2849 2850 SmallVector<SDValue, 4> Values(NumValues); 2851 SDValue Cond = getValue(I.getOperand(0)); 2852 SDValue LHSVal = getValue(I.getOperand(1)); 2853 SDValue RHSVal = getValue(I.getOperand(2)); 2854 auto BaseOps = {Cond}; 2855 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2856 ISD::VSELECT : ISD::SELECT; 2857 2858 // Min/max matching is only viable if all output VTs are the same. 2859 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2860 EVT VT = ValueVTs[0]; 2861 LLVMContext &Ctx = *DAG.getContext(); 2862 auto &TLI = DAG.getTargetLoweringInfo(); 2863 2864 // We care about the legality of the operation after it has been type 2865 // legalized. 2866 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2867 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2868 VT = TLI.getTypeToTransformTo(Ctx, VT); 2869 2870 // If the vselect is legal, assume we want to leave this as a vector setcc + 2871 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2872 // min/max is legal on the scalar type. 2873 bool UseScalarMinMax = VT.isVector() && 2874 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2875 2876 Value *LHS, *RHS; 2877 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2878 ISD::NodeType Opc = ISD::DELETED_NODE; 2879 switch (SPR.Flavor) { 2880 case SPF_UMAX: Opc = ISD::UMAX; break; 2881 case SPF_UMIN: Opc = ISD::UMIN; break; 2882 case SPF_SMAX: Opc = ISD::SMAX; break; 2883 case SPF_SMIN: Opc = ISD::SMIN; break; 2884 case SPF_FMINNUM: 2885 switch (SPR.NaNBehavior) { 2886 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2887 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2888 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2889 case SPNB_RETURNS_ANY: { 2890 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2891 Opc = ISD::FMINNUM; 2892 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2893 Opc = ISD::FMINNAN; 2894 else if (UseScalarMinMax) 2895 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2896 ISD::FMINNUM : ISD::FMINNAN; 2897 break; 2898 } 2899 } 2900 break; 2901 case SPF_FMAXNUM: 2902 switch (SPR.NaNBehavior) { 2903 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2904 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2905 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2906 case SPNB_RETURNS_ANY: 2907 2908 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2909 Opc = ISD::FMAXNUM; 2910 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2911 Opc = ISD::FMAXNAN; 2912 else if (UseScalarMinMax) 2913 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2914 ISD::FMAXNUM : ISD::FMAXNAN; 2915 break; 2916 } 2917 break; 2918 default: break; 2919 } 2920 2921 if (Opc != ISD::DELETED_NODE && 2922 (TLI.isOperationLegalOrCustom(Opc, VT) || 2923 (UseScalarMinMax && 2924 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2925 // If the underlying comparison instruction is used by any other 2926 // instruction, the consumed instructions won't be destroyed, so it is 2927 // not profitable to convert to a min/max. 2928 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2929 OpCode = Opc; 2930 LHSVal = getValue(LHS); 2931 RHSVal = getValue(RHS); 2932 BaseOps = {}; 2933 } 2934 } 2935 2936 for (unsigned i = 0; i != NumValues; ++i) { 2937 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2938 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2939 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2940 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2941 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2942 Ops); 2943 } 2944 2945 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2946 DAG.getVTList(ValueVTs), Values)); 2947 } 2948 2949 void SelectionDAGBuilder::visitTrunc(const User &I) { 2950 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2951 SDValue N = getValue(I.getOperand(0)); 2952 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2953 I.getType()); 2954 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2955 } 2956 2957 void SelectionDAGBuilder::visitZExt(const User &I) { 2958 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2959 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2960 SDValue N = getValue(I.getOperand(0)); 2961 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2962 I.getType()); 2963 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2964 } 2965 2966 void SelectionDAGBuilder::visitSExt(const User &I) { 2967 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2968 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2969 SDValue N = getValue(I.getOperand(0)); 2970 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2971 I.getType()); 2972 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2973 } 2974 2975 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2976 // FPTrunc is never a no-op cast, no need to check 2977 SDValue N = getValue(I.getOperand(0)); 2978 SDLoc dl = getCurSDLoc(); 2979 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2980 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2981 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2982 DAG.getTargetConstant( 2983 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2984 } 2985 2986 void SelectionDAGBuilder::visitFPExt(const User &I) { 2987 // FPExt is never a no-op cast, no need to check 2988 SDValue N = getValue(I.getOperand(0)); 2989 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2990 I.getType()); 2991 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2992 } 2993 2994 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2995 // FPToUI is never a no-op cast, no need to check 2996 SDValue N = getValue(I.getOperand(0)); 2997 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2998 I.getType()); 2999 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3000 } 3001 3002 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3003 // FPToSI is never a no-op cast, no need to check 3004 SDValue N = getValue(I.getOperand(0)); 3005 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3006 I.getType()); 3007 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3008 } 3009 3010 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3011 // UIToFP is never a no-op cast, no need to check 3012 SDValue N = getValue(I.getOperand(0)); 3013 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3014 I.getType()); 3015 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3016 } 3017 3018 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3019 // SIToFP is never a no-op cast, no need to check 3020 SDValue N = getValue(I.getOperand(0)); 3021 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3022 I.getType()); 3023 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3024 } 3025 3026 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3027 // What to do depends on the size of the integer and the size of the pointer. 3028 // We can either truncate, zero extend, or no-op, accordingly. 3029 SDValue N = getValue(I.getOperand(0)); 3030 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3031 I.getType()); 3032 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3033 } 3034 3035 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3036 // What to do depends on the size of the integer and the size of the pointer. 3037 // We can either truncate, zero extend, or no-op, accordingly. 3038 SDValue N = getValue(I.getOperand(0)); 3039 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3040 I.getType()); 3041 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3042 } 3043 3044 void SelectionDAGBuilder::visitBitCast(const User &I) { 3045 SDValue N = getValue(I.getOperand(0)); 3046 SDLoc dl = getCurSDLoc(); 3047 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3048 I.getType()); 3049 3050 // BitCast assures us that source and destination are the same size so this is 3051 // either a BITCAST or a no-op. 3052 if (DestVT != N.getValueType()) 3053 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3054 DestVT, N)); // convert types. 3055 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3056 // might fold any kind of constant expression to an integer constant and that 3057 // is not what we are looking for. Only recognize a bitcast of a genuine 3058 // constant integer as an opaque constant. 3059 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3060 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3061 /*isOpaque*/true)); 3062 else 3063 setValue(&I, N); // noop cast. 3064 } 3065 3066 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3067 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3068 const Value *SV = I.getOperand(0); 3069 SDValue N = getValue(SV); 3070 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3071 3072 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3073 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3074 3075 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3076 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3077 3078 setValue(&I, N); 3079 } 3080 3081 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3082 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3083 SDValue InVec = getValue(I.getOperand(0)); 3084 SDValue InVal = getValue(I.getOperand(1)); 3085 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3086 TLI.getVectorIdxTy(DAG.getDataLayout())); 3087 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3088 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3089 InVec, InVal, InIdx)); 3090 } 3091 3092 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3094 SDValue InVec = getValue(I.getOperand(0)); 3095 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3096 TLI.getVectorIdxTy(DAG.getDataLayout())); 3097 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3098 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3099 InVec, InIdx)); 3100 } 3101 3102 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3103 SDValue Src1 = getValue(I.getOperand(0)); 3104 SDValue Src2 = getValue(I.getOperand(1)); 3105 SDLoc DL = getCurSDLoc(); 3106 3107 SmallVector<int, 8> Mask; 3108 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3109 unsigned MaskNumElts = Mask.size(); 3110 3111 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3112 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3113 EVT SrcVT = Src1.getValueType(); 3114 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3115 3116 if (SrcNumElts == MaskNumElts) { 3117 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3118 return; 3119 } 3120 3121 // Normalize the shuffle vector since mask and vector length don't match. 3122 if (SrcNumElts < MaskNumElts) { 3123 // Mask is longer than the source vectors. We can use concatenate vector to 3124 // make the mask and vectors lengths match. 3125 3126 if (MaskNumElts % SrcNumElts == 0) { 3127 // Mask length is a multiple of the source vector length. 3128 // Check if the shuffle is some kind of concatenation of the input 3129 // vectors. 3130 unsigned NumConcat = MaskNumElts / SrcNumElts; 3131 bool IsConcat = true; 3132 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3133 for (unsigned i = 0; i != MaskNumElts; ++i) { 3134 int Idx = Mask[i]; 3135 if (Idx < 0) 3136 continue; 3137 // Ensure the indices in each SrcVT sized piece are sequential and that 3138 // the same source is used for the whole piece. 3139 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3140 (ConcatSrcs[i / SrcNumElts] >= 0 && 3141 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3142 IsConcat = false; 3143 break; 3144 } 3145 // Remember which source this index came from. 3146 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3147 } 3148 3149 // The shuffle is concatenating multiple vectors together. Just emit 3150 // a CONCAT_VECTORS operation. 3151 if (IsConcat) { 3152 SmallVector<SDValue, 8> ConcatOps; 3153 for (auto Src : ConcatSrcs) { 3154 if (Src < 0) 3155 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3156 else if (Src == 0) 3157 ConcatOps.push_back(Src1); 3158 else 3159 ConcatOps.push_back(Src2); 3160 } 3161 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3162 return; 3163 } 3164 } 3165 3166 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3167 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3168 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3169 PaddedMaskNumElts); 3170 3171 // Pad both vectors with undefs to make them the same length as the mask. 3172 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3173 3174 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3175 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3176 MOps1[0] = Src1; 3177 MOps2[0] = Src2; 3178 3179 Src1 = Src1.isUndef() 3180 ? DAG.getUNDEF(PaddedVT) 3181 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3182 Src2 = Src2.isUndef() 3183 ? DAG.getUNDEF(PaddedVT) 3184 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3185 3186 // Readjust mask for new input vector length. 3187 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3188 for (unsigned i = 0; i != MaskNumElts; ++i) { 3189 int Idx = Mask[i]; 3190 if (Idx >= (int)SrcNumElts) 3191 Idx -= SrcNumElts - PaddedMaskNumElts; 3192 MappedOps[i] = Idx; 3193 } 3194 3195 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3196 3197 // If the concatenated vector was padded, extract a subvector with the 3198 // correct number of elements. 3199 if (MaskNumElts != PaddedMaskNumElts) 3200 Result = DAG.getNode( 3201 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3202 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3203 3204 setValue(&I, Result); 3205 return; 3206 } 3207 3208 if (SrcNumElts > MaskNumElts) { 3209 // Analyze the access pattern of the vector to see if we can extract 3210 // two subvectors and do the shuffle. 3211 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3212 bool CanExtract = true; 3213 for (int Idx : Mask) { 3214 unsigned Input = 0; 3215 if (Idx < 0) 3216 continue; 3217 3218 if (Idx >= (int)SrcNumElts) { 3219 Input = 1; 3220 Idx -= SrcNumElts; 3221 } 3222 3223 // If all the indices come from the same MaskNumElts sized portion of 3224 // the sources we can use extract. Also make sure the extract wouldn't 3225 // extract past the end of the source. 3226 int NewStartIdx = alignDown(Idx, MaskNumElts); 3227 if (NewStartIdx + MaskNumElts > SrcNumElts || 3228 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3229 CanExtract = false; 3230 // Make sure we always update StartIdx as we use it to track if all 3231 // elements are undef. 3232 StartIdx[Input] = NewStartIdx; 3233 } 3234 3235 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3236 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3237 return; 3238 } 3239 if (CanExtract) { 3240 // Extract appropriate subvector and generate a vector shuffle 3241 for (unsigned Input = 0; Input < 2; ++Input) { 3242 SDValue &Src = Input == 0 ? Src1 : Src2; 3243 if (StartIdx[Input] < 0) 3244 Src = DAG.getUNDEF(VT); 3245 else { 3246 Src = DAG.getNode( 3247 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3248 DAG.getConstant(StartIdx[Input], DL, 3249 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3250 } 3251 } 3252 3253 // Calculate new mask. 3254 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3255 for (int &Idx : MappedOps) { 3256 if (Idx >= (int)SrcNumElts) 3257 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3258 else if (Idx >= 0) 3259 Idx -= StartIdx[0]; 3260 } 3261 3262 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3263 return; 3264 } 3265 } 3266 3267 // We can't use either concat vectors or extract subvectors so fall back to 3268 // replacing the shuffle with extract and build vector. 3269 // to insert and build vector. 3270 EVT EltVT = VT.getVectorElementType(); 3271 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3272 SmallVector<SDValue,8> Ops; 3273 for (int Idx : Mask) { 3274 SDValue Res; 3275 3276 if (Idx < 0) { 3277 Res = DAG.getUNDEF(EltVT); 3278 } else { 3279 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3280 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3281 3282 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3283 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3284 } 3285 3286 Ops.push_back(Res); 3287 } 3288 3289 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3290 } 3291 3292 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3293 ArrayRef<unsigned> Indices; 3294 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3295 Indices = IV->getIndices(); 3296 else 3297 Indices = cast<ConstantExpr>(&I)->getIndices(); 3298 3299 const Value *Op0 = I.getOperand(0); 3300 const Value *Op1 = I.getOperand(1); 3301 Type *AggTy = I.getType(); 3302 Type *ValTy = Op1->getType(); 3303 bool IntoUndef = isa<UndefValue>(Op0); 3304 bool FromUndef = isa<UndefValue>(Op1); 3305 3306 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3307 3308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3309 SmallVector<EVT, 4> AggValueVTs; 3310 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3311 SmallVector<EVT, 4> ValValueVTs; 3312 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3313 3314 unsigned NumAggValues = AggValueVTs.size(); 3315 unsigned NumValValues = ValValueVTs.size(); 3316 SmallVector<SDValue, 4> Values(NumAggValues); 3317 3318 // Ignore an insertvalue that produces an empty object 3319 if (!NumAggValues) { 3320 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3321 return; 3322 } 3323 3324 SDValue Agg = getValue(Op0); 3325 unsigned i = 0; 3326 // Copy the beginning value(s) from the original aggregate. 3327 for (; i != LinearIndex; ++i) 3328 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3329 SDValue(Agg.getNode(), Agg.getResNo() + i); 3330 // Copy values from the inserted value(s). 3331 if (NumValValues) { 3332 SDValue Val = getValue(Op1); 3333 for (; i != LinearIndex + NumValValues; ++i) 3334 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3335 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3336 } 3337 // Copy remaining value(s) from the original aggregate. 3338 for (; i != NumAggValues; ++i) 3339 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3340 SDValue(Agg.getNode(), Agg.getResNo() + i); 3341 3342 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3343 DAG.getVTList(AggValueVTs), Values)); 3344 } 3345 3346 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3347 ArrayRef<unsigned> Indices; 3348 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3349 Indices = EV->getIndices(); 3350 else 3351 Indices = cast<ConstantExpr>(&I)->getIndices(); 3352 3353 const Value *Op0 = I.getOperand(0); 3354 Type *AggTy = Op0->getType(); 3355 Type *ValTy = I.getType(); 3356 bool OutOfUndef = isa<UndefValue>(Op0); 3357 3358 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3359 3360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3361 SmallVector<EVT, 4> ValValueVTs; 3362 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3363 3364 unsigned NumValValues = ValValueVTs.size(); 3365 3366 // Ignore a extractvalue that produces an empty object 3367 if (!NumValValues) { 3368 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3369 return; 3370 } 3371 3372 SmallVector<SDValue, 4> Values(NumValValues); 3373 3374 SDValue Agg = getValue(Op0); 3375 // Copy out the selected value(s). 3376 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3377 Values[i - LinearIndex] = 3378 OutOfUndef ? 3379 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3380 SDValue(Agg.getNode(), Agg.getResNo() + i); 3381 3382 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3383 DAG.getVTList(ValValueVTs), Values)); 3384 } 3385 3386 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3387 Value *Op0 = I.getOperand(0); 3388 // Note that the pointer operand may be a vector of pointers. Take the scalar 3389 // element which holds a pointer. 3390 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3391 SDValue N = getValue(Op0); 3392 SDLoc dl = getCurSDLoc(); 3393 3394 // Normalize Vector GEP - all scalar operands should be converted to the 3395 // splat vector. 3396 unsigned VectorWidth = I.getType()->isVectorTy() ? 3397 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3398 3399 if (VectorWidth && !N.getValueType().isVector()) { 3400 LLVMContext &Context = *DAG.getContext(); 3401 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3402 N = DAG.getSplatBuildVector(VT, dl, N); 3403 } 3404 3405 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3406 GTI != E; ++GTI) { 3407 const Value *Idx = GTI.getOperand(); 3408 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3409 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3410 if (Field) { 3411 // N = N + Offset 3412 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3413 3414 // In an inbounds GEP with an offset that is nonnegative even when 3415 // interpreted as signed, assume there is no unsigned overflow. 3416 SDNodeFlags Flags; 3417 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3418 Flags.setNoUnsignedWrap(true); 3419 3420 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3421 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3422 } 3423 } else { 3424 MVT PtrTy = 3425 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3426 unsigned PtrSize = PtrTy.getSizeInBits(); 3427 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3428 3429 // If this is a scalar constant or a splat vector of constants, 3430 // handle it quickly. 3431 const auto *CI = dyn_cast<ConstantInt>(Idx); 3432 if (!CI && isa<ConstantDataVector>(Idx) && 3433 cast<ConstantDataVector>(Idx)->getSplatValue()) 3434 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3435 3436 if (CI) { 3437 if (CI->isZero()) 3438 continue; 3439 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3440 LLVMContext &Context = *DAG.getContext(); 3441 SDValue OffsVal = VectorWidth ? 3442 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3443 DAG.getConstant(Offs, dl, PtrTy); 3444 3445 // In an inbouds GEP with an offset that is nonnegative even when 3446 // interpreted as signed, assume there is no unsigned overflow. 3447 SDNodeFlags Flags; 3448 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3449 Flags.setNoUnsignedWrap(true); 3450 3451 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3452 continue; 3453 } 3454 3455 // N = N + Idx * ElementSize; 3456 SDValue IdxN = getValue(Idx); 3457 3458 if (!IdxN.getValueType().isVector() && VectorWidth) { 3459 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3460 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3461 } 3462 3463 // If the index is smaller or larger than intptr_t, truncate or extend 3464 // it. 3465 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3466 3467 // If this is a multiply by a power of two, turn it into a shl 3468 // immediately. This is a very common case. 3469 if (ElementSize != 1) { 3470 if (ElementSize.isPowerOf2()) { 3471 unsigned Amt = ElementSize.logBase2(); 3472 IdxN = DAG.getNode(ISD::SHL, dl, 3473 N.getValueType(), IdxN, 3474 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3475 } else { 3476 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3477 IdxN = DAG.getNode(ISD::MUL, dl, 3478 N.getValueType(), IdxN, Scale); 3479 } 3480 } 3481 3482 N = DAG.getNode(ISD::ADD, dl, 3483 N.getValueType(), N, IdxN); 3484 } 3485 } 3486 3487 setValue(&I, N); 3488 } 3489 3490 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3491 // If this is a fixed sized alloca in the entry block of the function, 3492 // allocate it statically on the stack. 3493 if (FuncInfo.StaticAllocaMap.count(&I)) 3494 return; // getValue will auto-populate this. 3495 3496 SDLoc dl = getCurSDLoc(); 3497 Type *Ty = I.getAllocatedType(); 3498 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3499 auto &DL = DAG.getDataLayout(); 3500 uint64_t TySize = DL.getTypeAllocSize(Ty); 3501 unsigned Align = 3502 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3503 3504 SDValue AllocSize = getValue(I.getArraySize()); 3505 3506 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3507 if (AllocSize.getValueType() != IntPtr) 3508 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3509 3510 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3511 AllocSize, 3512 DAG.getConstant(TySize, dl, IntPtr)); 3513 3514 // Handle alignment. If the requested alignment is less than or equal to 3515 // the stack alignment, ignore it. If the size is greater than or equal to 3516 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3517 unsigned StackAlign = 3518 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3519 if (Align <= StackAlign) 3520 Align = 0; 3521 3522 // Round the size of the allocation up to the stack alignment size 3523 // by add SA-1 to the size. This doesn't overflow because we're computing 3524 // an address inside an alloca. 3525 SDNodeFlags Flags; 3526 Flags.setNoUnsignedWrap(true); 3527 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3528 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3529 3530 // Mask out the low bits for alignment purposes. 3531 AllocSize = 3532 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3533 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3534 3535 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3536 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3537 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3538 setValue(&I, DSA); 3539 DAG.setRoot(DSA.getValue(1)); 3540 3541 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3542 } 3543 3544 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3545 if (I.isAtomic()) 3546 return visitAtomicLoad(I); 3547 3548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3549 const Value *SV = I.getOperand(0); 3550 if (TLI.supportSwiftError()) { 3551 // Swifterror values can come from either a function parameter with 3552 // swifterror attribute or an alloca with swifterror attribute. 3553 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3554 if (Arg->hasSwiftErrorAttr()) 3555 return visitLoadFromSwiftError(I); 3556 } 3557 3558 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3559 if (Alloca->isSwiftError()) 3560 return visitLoadFromSwiftError(I); 3561 } 3562 } 3563 3564 SDValue Ptr = getValue(SV); 3565 3566 Type *Ty = I.getType(); 3567 3568 bool isVolatile = I.isVolatile(); 3569 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3570 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3571 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3572 unsigned Alignment = I.getAlignment(); 3573 3574 AAMDNodes AAInfo; 3575 I.getAAMetadata(AAInfo); 3576 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3577 3578 SmallVector<EVT, 4> ValueVTs; 3579 SmallVector<uint64_t, 4> Offsets; 3580 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3581 unsigned NumValues = ValueVTs.size(); 3582 if (NumValues == 0) 3583 return; 3584 3585 SDValue Root; 3586 bool ConstantMemory = false; 3587 if (isVolatile || NumValues > MaxParallelChains) 3588 // Serialize volatile loads with other side effects. 3589 Root = getRoot(); 3590 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3591 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3592 // Do not serialize (non-volatile) loads of constant memory with anything. 3593 Root = DAG.getEntryNode(); 3594 ConstantMemory = true; 3595 } else { 3596 // Do not serialize non-volatile loads against each other. 3597 Root = DAG.getRoot(); 3598 } 3599 3600 SDLoc dl = getCurSDLoc(); 3601 3602 if (isVolatile) 3603 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3604 3605 // An aggregate load cannot wrap around the address space, so offsets to its 3606 // parts don't wrap either. 3607 SDNodeFlags Flags; 3608 Flags.setNoUnsignedWrap(true); 3609 3610 SmallVector<SDValue, 4> Values(NumValues); 3611 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3612 EVT PtrVT = Ptr.getValueType(); 3613 unsigned ChainI = 0; 3614 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3615 // Serializing loads here may result in excessive register pressure, and 3616 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3617 // could recover a bit by hoisting nodes upward in the chain by recognizing 3618 // they are side-effect free or do not alias. The optimizer should really 3619 // avoid this case by converting large object/array copies to llvm.memcpy 3620 // (MaxParallelChains should always remain as failsafe). 3621 if (ChainI == MaxParallelChains) { 3622 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3623 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3624 makeArrayRef(Chains.data(), ChainI)); 3625 Root = Chain; 3626 ChainI = 0; 3627 } 3628 SDValue A = DAG.getNode(ISD::ADD, dl, 3629 PtrVT, Ptr, 3630 DAG.getConstant(Offsets[i], dl, PtrVT), 3631 Flags); 3632 auto MMOFlags = MachineMemOperand::MONone; 3633 if (isVolatile) 3634 MMOFlags |= MachineMemOperand::MOVolatile; 3635 if (isNonTemporal) 3636 MMOFlags |= MachineMemOperand::MONonTemporal; 3637 if (isInvariant) 3638 MMOFlags |= MachineMemOperand::MOInvariant; 3639 if (isDereferenceable) 3640 MMOFlags |= MachineMemOperand::MODereferenceable; 3641 MMOFlags |= TLI.getMMOFlags(I); 3642 3643 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3644 MachinePointerInfo(SV, Offsets[i]), Alignment, 3645 MMOFlags, AAInfo, Ranges); 3646 3647 Values[i] = L; 3648 Chains[ChainI] = L.getValue(1); 3649 } 3650 3651 if (!ConstantMemory) { 3652 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3653 makeArrayRef(Chains.data(), ChainI)); 3654 if (isVolatile) 3655 DAG.setRoot(Chain); 3656 else 3657 PendingLoads.push_back(Chain); 3658 } 3659 3660 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3661 DAG.getVTList(ValueVTs), Values)); 3662 } 3663 3664 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3665 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3666 "call visitStoreToSwiftError when backend supports swifterror"); 3667 3668 SmallVector<EVT, 4> ValueVTs; 3669 SmallVector<uint64_t, 4> Offsets; 3670 const Value *SrcV = I.getOperand(0); 3671 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3672 SrcV->getType(), ValueVTs, &Offsets); 3673 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3674 "expect a single EVT for swifterror"); 3675 3676 SDValue Src = getValue(SrcV); 3677 // Create a virtual register, then update the virtual register. 3678 unsigned VReg; bool CreatedVReg; 3679 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3680 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3681 // Chain can be getRoot or getControlRoot. 3682 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3683 SDValue(Src.getNode(), Src.getResNo())); 3684 DAG.setRoot(CopyNode); 3685 if (CreatedVReg) 3686 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3687 } 3688 3689 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3690 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3691 "call visitLoadFromSwiftError when backend supports swifterror"); 3692 3693 assert(!I.isVolatile() && 3694 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3695 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3696 "Support volatile, non temporal, invariant for load_from_swift_error"); 3697 3698 const Value *SV = I.getOperand(0); 3699 Type *Ty = I.getType(); 3700 AAMDNodes AAInfo; 3701 I.getAAMetadata(AAInfo); 3702 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3703 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3704 "load_from_swift_error should not be constant memory"); 3705 3706 SmallVector<EVT, 4> ValueVTs; 3707 SmallVector<uint64_t, 4> Offsets; 3708 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3709 ValueVTs, &Offsets); 3710 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3711 "expect a single EVT for swifterror"); 3712 3713 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3714 SDValue L = DAG.getCopyFromReg( 3715 getRoot(), getCurSDLoc(), 3716 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3717 ValueVTs[0]); 3718 3719 setValue(&I, L); 3720 } 3721 3722 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3723 if (I.isAtomic()) 3724 return visitAtomicStore(I); 3725 3726 const Value *SrcV = I.getOperand(0); 3727 const Value *PtrV = I.getOperand(1); 3728 3729 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3730 if (TLI.supportSwiftError()) { 3731 // Swifterror values can come from either a function parameter with 3732 // swifterror attribute or an alloca with swifterror attribute. 3733 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3734 if (Arg->hasSwiftErrorAttr()) 3735 return visitStoreToSwiftError(I); 3736 } 3737 3738 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3739 if (Alloca->isSwiftError()) 3740 return visitStoreToSwiftError(I); 3741 } 3742 } 3743 3744 SmallVector<EVT, 4> ValueVTs; 3745 SmallVector<uint64_t, 4> Offsets; 3746 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3747 SrcV->getType(), ValueVTs, &Offsets); 3748 unsigned NumValues = ValueVTs.size(); 3749 if (NumValues == 0) 3750 return; 3751 3752 // Get the lowered operands. Note that we do this after 3753 // checking if NumResults is zero, because with zero results 3754 // the operands won't have values in the map. 3755 SDValue Src = getValue(SrcV); 3756 SDValue Ptr = getValue(PtrV); 3757 3758 SDValue Root = getRoot(); 3759 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3760 SDLoc dl = getCurSDLoc(); 3761 EVT PtrVT = Ptr.getValueType(); 3762 unsigned Alignment = I.getAlignment(); 3763 AAMDNodes AAInfo; 3764 I.getAAMetadata(AAInfo); 3765 3766 auto MMOFlags = MachineMemOperand::MONone; 3767 if (I.isVolatile()) 3768 MMOFlags |= MachineMemOperand::MOVolatile; 3769 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3770 MMOFlags |= MachineMemOperand::MONonTemporal; 3771 MMOFlags |= TLI.getMMOFlags(I); 3772 3773 // An aggregate load cannot wrap around the address space, so offsets to its 3774 // parts don't wrap either. 3775 SDNodeFlags Flags; 3776 Flags.setNoUnsignedWrap(true); 3777 3778 unsigned ChainI = 0; 3779 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3780 // See visitLoad comments. 3781 if (ChainI == MaxParallelChains) { 3782 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3783 makeArrayRef(Chains.data(), ChainI)); 3784 Root = Chain; 3785 ChainI = 0; 3786 } 3787 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3788 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3789 SDValue St = DAG.getStore( 3790 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3791 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3792 Chains[ChainI] = St; 3793 } 3794 3795 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3796 makeArrayRef(Chains.data(), ChainI)); 3797 DAG.setRoot(StoreNode); 3798 } 3799 3800 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3801 bool IsCompressing) { 3802 SDLoc sdl = getCurSDLoc(); 3803 3804 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3805 unsigned& Alignment) { 3806 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3807 Src0 = I.getArgOperand(0); 3808 Ptr = I.getArgOperand(1); 3809 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3810 Mask = I.getArgOperand(3); 3811 }; 3812 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3813 unsigned& Alignment) { 3814 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3815 Src0 = I.getArgOperand(0); 3816 Ptr = I.getArgOperand(1); 3817 Mask = I.getArgOperand(2); 3818 Alignment = 0; 3819 }; 3820 3821 Value *PtrOperand, *MaskOperand, *Src0Operand; 3822 unsigned Alignment; 3823 if (IsCompressing) 3824 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3825 else 3826 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3827 3828 SDValue Ptr = getValue(PtrOperand); 3829 SDValue Src0 = getValue(Src0Operand); 3830 SDValue Mask = getValue(MaskOperand); 3831 3832 EVT VT = Src0.getValueType(); 3833 if (!Alignment) 3834 Alignment = DAG.getEVTAlignment(VT); 3835 3836 AAMDNodes AAInfo; 3837 I.getAAMetadata(AAInfo); 3838 3839 MachineMemOperand *MMO = 3840 DAG.getMachineFunction(). 3841 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3842 MachineMemOperand::MOStore, VT.getStoreSize(), 3843 Alignment, AAInfo); 3844 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3845 MMO, false /* Truncating */, 3846 IsCompressing); 3847 DAG.setRoot(StoreNode); 3848 setValue(&I, StoreNode); 3849 } 3850 3851 // Get a uniform base for the Gather/Scatter intrinsic. 3852 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3853 // We try to represent it as a base pointer + vector of indices. 3854 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3855 // The first operand of the GEP may be a single pointer or a vector of pointers 3856 // Example: 3857 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3858 // or 3859 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3860 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3861 // 3862 // When the first GEP operand is a single pointer - it is the uniform base we 3863 // are looking for. If first operand of the GEP is a splat vector - we 3864 // extract the splat value and use it as a uniform base. 3865 // In all other cases the function returns 'false'. 3866 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3867 SelectionDAGBuilder* SDB) { 3868 SelectionDAG& DAG = SDB->DAG; 3869 LLVMContext &Context = *DAG.getContext(); 3870 3871 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3872 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3873 if (!GEP) 3874 return false; 3875 3876 const Value *GEPPtr = GEP->getPointerOperand(); 3877 if (!GEPPtr->getType()->isVectorTy()) 3878 Ptr = GEPPtr; 3879 else if (!(Ptr = getSplatValue(GEPPtr))) 3880 return false; 3881 3882 unsigned FinalIndex = GEP->getNumOperands() - 1; 3883 Value *IndexVal = GEP->getOperand(FinalIndex); 3884 3885 // Ensure all the other indices are 0. 3886 for (unsigned i = 1; i < FinalIndex; ++i) { 3887 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3888 if (!C || !C->isZero()) 3889 return false; 3890 } 3891 3892 // The operands of the GEP may be defined in another basic block. 3893 // In this case we'll not find nodes for the operands. 3894 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3895 return false; 3896 3897 Base = SDB->getValue(Ptr); 3898 Index = SDB->getValue(IndexVal); 3899 3900 if (!Index.getValueType().isVector()) { 3901 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3902 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3903 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3904 } 3905 return true; 3906 } 3907 3908 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3909 SDLoc sdl = getCurSDLoc(); 3910 3911 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3912 const Value *Ptr = I.getArgOperand(1); 3913 SDValue Src0 = getValue(I.getArgOperand(0)); 3914 SDValue Mask = getValue(I.getArgOperand(3)); 3915 EVT VT = Src0.getValueType(); 3916 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3917 if (!Alignment) 3918 Alignment = DAG.getEVTAlignment(VT); 3919 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3920 3921 AAMDNodes AAInfo; 3922 I.getAAMetadata(AAInfo); 3923 3924 SDValue Base; 3925 SDValue Index; 3926 const Value *BasePtr = Ptr; 3927 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3928 3929 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3930 MachineMemOperand *MMO = DAG.getMachineFunction(). 3931 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3932 MachineMemOperand::MOStore, VT.getStoreSize(), 3933 Alignment, AAInfo); 3934 if (!UniformBase) { 3935 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3936 Index = getValue(Ptr); 3937 } 3938 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3939 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3940 Ops, MMO); 3941 DAG.setRoot(Scatter); 3942 setValue(&I, Scatter); 3943 } 3944 3945 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3946 SDLoc sdl = getCurSDLoc(); 3947 3948 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3949 unsigned& Alignment) { 3950 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3951 Ptr = I.getArgOperand(0); 3952 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3953 Mask = I.getArgOperand(2); 3954 Src0 = I.getArgOperand(3); 3955 }; 3956 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3957 unsigned& Alignment) { 3958 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3959 Ptr = I.getArgOperand(0); 3960 Alignment = 0; 3961 Mask = I.getArgOperand(1); 3962 Src0 = I.getArgOperand(2); 3963 }; 3964 3965 Value *PtrOperand, *MaskOperand, *Src0Operand; 3966 unsigned Alignment; 3967 if (IsExpanding) 3968 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3969 else 3970 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3971 3972 SDValue Ptr = getValue(PtrOperand); 3973 SDValue Src0 = getValue(Src0Operand); 3974 SDValue Mask = getValue(MaskOperand); 3975 3976 EVT VT = Src0.getValueType(); 3977 if (!Alignment) 3978 Alignment = DAG.getEVTAlignment(VT); 3979 3980 AAMDNodes AAInfo; 3981 I.getAAMetadata(AAInfo); 3982 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3983 3984 // Do not serialize masked loads of constant memory with anything. 3985 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 3986 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3987 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3988 3989 MachineMemOperand *MMO = 3990 DAG.getMachineFunction(). 3991 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3992 MachineMemOperand::MOLoad, VT.getStoreSize(), 3993 Alignment, AAInfo, Ranges); 3994 3995 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3996 ISD::NON_EXTLOAD, IsExpanding); 3997 if (AddToChain) { 3998 SDValue OutChain = Load.getValue(1); 3999 DAG.setRoot(OutChain); 4000 } 4001 setValue(&I, Load); 4002 } 4003 4004 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4005 SDLoc sdl = getCurSDLoc(); 4006 4007 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4008 const Value *Ptr = I.getArgOperand(0); 4009 SDValue Src0 = getValue(I.getArgOperand(3)); 4010 SDValue Mask = getValue(I.getArgOperand(2)); 4011 4012 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4013 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4014 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4015 if (!Alignment) 4016 Alignment = DAG.getEVTAlignment(VT); 4017 4018 AAMDNodes AAInfo; 4019 I.getAAMetadata(AAInfo); 4020 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4021 4022 SDValue Root = DAG.getRoot(); 4023 SDValue Base; 4024 SDValue Index; 4025 const Value *BasePtr = Ptr; 4026 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 4027 bool ConstantMemory = false; 4028 if (UniformBase && 4029 AA && AA->pointsToConstantMemory(MemoryLocation( 4030 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4031 AAInfo))) { 4032 // Do not serialize (non-volatile) loads of constant memory with anything. 4033 Root = DAG.getEntryNode(); 4034 ConstantMemory = true; 4035 } 4036 4037 MachineMemOperand *MMO = 4038 DAG.getMachineFunction(). 4039 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4040 MachineMemOperand::MOLoad, VT.getStoreSize(), 4041 Alignment, AAInfo, Ranges); 4042 4043 if (!UniformBase) { 4044 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4045 Index = getValue(Ptr); 4046 } 4047 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 4048 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4049 Ops, MMO); 4050 4051 SDValue OutChain = Gather.getValue(1); 4052 if (!ConstantMemory) 4053 PendingLoads.push_back(OutChain); 4054 setValue(&I, Gather); 4055 } 4056 4057 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4058 SDLoc dl = getCurSDLoc(); 4059 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4060 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4061 SyncScope::ID SSID = I.getSyncScopeID(); 4062 4063 SDValue InChain = getRoot(); 4064 4065 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4066 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4067 SDValue L = DAG.getAtomicCmpSwap( 4068 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4069 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4070 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4071 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4072 4073 SDValue OutChain = L.getValue(2); 4074 4075 setValue(&I, L); 4076 DAG.setRoot(OutChain); 4077 } 4078 4079 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4080 SDLoc dl = getCurSDLoc(); 4081 ISD::NodeType NT; 4082 switch (I.getOperation()) { 4083 default: llvm_unreachable("Unknown atomicrmw operation"); 4084 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4085 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4086 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4087 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4088 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4089 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4090 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4091 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4092 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4093 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4094 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4095 } 4096 AtomicOrdering Order = I.getOrdering(); 4097 SyncScope::ID SSID = I.getSyncScopeID(); 4098 4099 SDValue InChain = getRoot(); 4100 4101 SDValue L = 4102 DAG.getAtomic(NT, dl, 4103 getValue(I.getValOperand()).getSimpleValueType(), 4104 InChain, 4105 getValue(I.getPointerOperand()), 4106 getValue(I.getValOperand()), 4107 I.getPointerOperand(), 4108 /* Alignment=*/ 0, Order, SSID); 4109 4110 SDValue OutChain = L.getValue(1); 4111 4112 setValue(&I, L); 4113 DAG.setRoot(OutChain); 4114 } 4115 4116 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4117 SDLoc dl = getCurSDLoc(); 4118 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4119 SDValue Ops[3]; 4120 Ops[0] = getRoot(); 4121 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4122 TLI.getFenceOperandTy(DAG.getDataLayout())); 4123 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4124 TLI.getFenceOperandTy(DAG.getDataLayout())); 4125 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4126 } 4127 4128 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4129 SDLoc dl = getCurSDLoc(); 4130 AtomicOrdering Order = I.getOrdering(); 4131 SyncScope::ID SSID = I.getSyncScopeID(); 4132 4133 SDValue InChain = getRoot(); 4134 4135 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4136 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4137 4138 if (I.getAlignment() < VT.getStoreSize()) 4139 report_fatal_error("Cannot generate unaligned atomic load"); 4140 4141 MachineMemOperand *MMO = 4142 DAG.getMachineFunction(). 4143 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4144 MachineMemOperand::MOVolatile | 4145 MachineMemOperand::MOLoad, 4146 VT.getStoreSize(), 4147 I.getAlignment() ? I.getAlignment() : 4148 DAG.getEVTAlignment(VT), 4149 AAMDNodes(), nullptr, SSID, Order); 4150 4151 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4152 SDValue L = 4153 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4154 getValue(I.getPointerOperand()), MMO); 4155 4156 SDValue OutChain = L.getValue(1); 4157 4158 setValue(&I, L); 4159 DAG.setRoot(OutChain); 4160 } 4161 4162 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4163 SDLoc dl = getCurSDLoc(); 4164 4165 AtomicOrdering Order = I.getOrdering(); 4166 SyncScope::ID SSID = I.getSyncScopeID(); 4167 4168 SDValue InChain = getRoot(); 4169 4170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4171 EVT VT = 4172 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4173 4174 if (I.getAlignment() < VT.getStoreSize()) 4175 report_fatal_error("Cannot generate unaligned atomic store"); 4176 4177 SDValue OutChain = 4178 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4179 InChain, 4180 getValue(I.getPointerOperand()), 4181 getValue(I.getValueOperand()), 4182 I.getPointerOperand(), I.getAlignment(), 4183 Order, SSID); 4184 4185 DAG.setRoot(OutChain); 4186 } 4187 4188 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4189 /// node. 4190 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4191 unsigned Intrinsic) { 4192 // Ignore the callsite's attributes. A specific call site may be marked with 4193 // readnone, but the lowering code will expect the chain based on the 4194 // definition. 4195 const Function *F = I.getCalledFunction(); 4196 bool HasChain = !F->doesNotAccessMemory(); 4197 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4198 4199 // Build the operand list. 4200 SmallVector<SDValue, 8> Ops; 4201 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4202 if (OnlyLoad) { 4203 // We don't need to serialize loads against other loads. 4204 Ops.push_back(DAG.getRoot()); 4205 } else { 4206 Ops.push_back(getRoot()); 4207 } 4208 } 4209 4210 // Info is set by getTgtMemInstrinsic 4211 TargetLowering::IntrinsicInfo Info; 4212 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4213 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4214 4215 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4216 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4217 Info.opc == ISD::INTRINSIC_W_CHAIN) 4218 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4219 TLI.getPointerTy(DAG.getDataLayout()))); 4220 4221 // Add all operands of the call to the operand list. 4222 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4223 SDValue Op = getValue(I.getArgOperand(i)); 4224 Ops.push_back(Op); 4225 } 4226 4227 SmallVector<EVT, 4> ValueVTs; 4228 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4229 4230 if (HasChain) 4231 ValueVTs.push_back(MVT::Other); 4232 4233 SDVTList VTs = DAG.getVTList(ValueVTs); 4234 4235 // Create the node. 4236 SDValue Result; 4237 if (IsTgtIntrinsic) { 4238 // This is target intrinsic that touches memory 4239 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4240 VTs, Ops, Info.memVT, 4241 MachinePointerInfo(Info.ptrVal, Info.offset), 4242 Info.align, Info.vol, 4243 Info.readMem, Info.writeMem, Info.size); 4244 } else if (!HasChain) { 4245 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4246 } else if (!I.getType()->isVoidTy()) { 4247 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4248 } else { 4249 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4250 } 4251 4252 if (HasChain) { 4253 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4254 if (OnlyLoad) 4255 PendingLoads.push_back(Chain); 4256 else 4257 DAG.setRoot(Chain); 4258 } 4259 4260 if (!I.getType()->isVoidTy()) { 4261 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4262 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4263 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4264 } else 4265 Result = lowerRangeToAssertZExt(DAG, I, Result); 4266 4267 setValue(&I, Result); 4268 } 4269 } 4270 4271 /// GetSignificand - Get the significand and build it into a floating-point 4272 /// number with exponent of 1: 4273 /// 4274 /// Op = (Op & 0x007fffff) | 0x3f800000; 4275 /// 4276 /// where Op is the hexadecimal representation of floating point value. 4277 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4278 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4279 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4280 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4281 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4282 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4283 } 4284 4285 /// GetExponent - Get the exponent: 4286 /// 4287 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4288 /// 4289 /// where Op is the hexadecimal representation of floating point value. 4290 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4291 const TargetLowering &TLI, const SDLoc &dl) { 4292 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4293 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4294 SDValue t1 = DAG.getNode( 4295 ISD::SRL, dl, MVT::i32, t0, 4296 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4297 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4298 DAG.getConstant(127, dl, MVT::i32)); 4299 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4300 } 4301 4302 /// getF32Constant - Get 32-bit floating point constant. 4303 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4304 const SDLoc &dl) { 4305 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4306 MVT::f32); 4307 } 4308 4309 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4310 SelectionDAG &DAG) { 4311 // TODO: What fast-math-flags should be set on the floating-point nodes? 4312 4313 // IntegerPartOfX = ((int32_t)(t0); 4314 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4315 4316 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4317 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4318 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4319 4320 // IntegerPartOfX <<= 23; 4321 IntegerPartOfX = DAG.getNode( 4322 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4323 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4324 DAG.getDataLayout()))); 4325 4326 SDValue TwoToFractionalPartOfX; 4327 if (LimitFloatPrecision <= 6) { 4328 // For floating-point precision of 6: 4329 // 4330 // TwoToFractionalPartOfX = 4331 // 0.997535578f + 4332 // (0.735607626f + 0.252464424f * x) * x; 4333 // 4334 // error 0.0144103317, which is 6 bits 4335 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4336 getF32Constant(DAG, 0x3e814304, dl)); 4337 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4338 getF32Constant(DAG, 0x3f3c50c8, dl)); 4339 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4340 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4341 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4342 } else if (LimitFloatPrecision <= 12) { 4343 // For floating-point precision of 12: 4344 // 4345 // TwoToFractionalPartOfX = 4346 // 0.999892986f + 4347 // (0.696457318f + 4348 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4349 // 4350 // error 0.000107046256, which is 13 to 14 bits 4351 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4352 getF32Constant(DAG, 0x3da235e3, dl)); 4353 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4354 getF32Constant(DAG, 0x3e65b8f3, dl)); 4355 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4356 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4357 getF32Constant(DAG, 0x3f324b07, dl)); 4358 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4359 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4360 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4361 } else { // LimitFloatPrecision <= 18 4362 // For floating-point precision of 18: 4363 // 4364 // TwoToFractionalPartOfX = 4365 // 0.999999982f + 4366 // (0.693148872f + 4367 // (0.240227044f + 4368 // (0.554906021e-1f + 4369 // (0.961591928e-2f + 4370 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4371 // error 2.47208000*10^(-7), which is better than 18 bits 4372 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4373 getF32Constant(DAG, 0x3924b03e, dl)); 4374 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4375 getF32Constant(DAG, 0x3ab24b87, dl)); 4376 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4377 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4378 getF32Constant(DAG, 0x3c1d8c17, dl)); 4379 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4380 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4381 getF32Constant(DAG, 0x3d634a1d, dl)); 4382 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4383 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4384 getF32Constant(DAG, 0x3e75fe14, dl)); 4385 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4386 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4387 getF32Constant(DAG, 0x3f317234, dl)); 4388 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4389 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4390 getF32Constant(DAG, 0x3f800000, dl)); 4391 } 4392 4393 // Add the exponent into the result in integer domain. 4394 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4395 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4396 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4397 } 4398 4399 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4400 /// limited-precision mode. 4401 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4402 const TargetLowering &TLI) { 4403 if (Op.getValueType() == MVT::f32 && 4404 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4405 4406 // Put the exponent in the right bit position for later addition to the 4407 // final result: 4408 // 4409 // #define LOG2OFe 1.4426950f 4410 // t0 = Op * LOG2OFe 4411 4412 // TODO: What fast-math-flags should be set here? 4413 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4414 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4415 return getLimitedPrecisionExp2(t0, dl, DAG); 4416 } 4417 4418 // No special expansion. 4419 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4420 } 4421 4422 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4423 /// limited-precision mode. 4424 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4425 const TargetLowering &TLI) { 4426 // TODO: What fast-math-flags should be set on the floating-point nodes? 4427 4428 if (Op.getValueType() == MVT::f32 && 4429 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4430 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4431 4432 // Scale the exponent by log(2) [0.69314718f]. 4433 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4434 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4435 getF32Constant(DAG, 0x3f317218, dl)); 4436 4437 // Get the significand and build it into a floating-point number with 4438 // exponent of 1. 4439 SDValue X = GetSignificand(DAG, Op1, dl); 4440 4441 SDValue LogOfMantissa; 4442 if (LimitFloatPrecision <= 6) { 4443 // For floating-point precision of 6: 4444 // 4445 // LogofMantissa = 4446 // -1.1609546f + 4447 // (1.4034025f - 0.23903021f * x) * x; 4448 // 4449 // error 0.0034276066, which is better than 8 bits 4450 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4451 getF32Constant(DAG, 0xbe74c456, dl)); 4452 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4453 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4454 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4455 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4456 getF32Constant(DAG, 0x3f949a29, dl)); 4457 } else if (LimitFloatPrecision <= 12) { 4458 // For floating-point precision of 12: 4459 // 4460 // LogOfMantissa = 4461 // -1.7417939f + 4462 // (2.8212026f + 4463 // (-1.4699568f + 4464 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4465 // 4466 // error 0.000061011436, which is 14 bits 4467 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4468 getF32Constant(DAG, 0xbd67b6d6, dl)); 4469 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4470 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4471 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4472 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4473 getF32Constant(DAG, 0x3fbc278b, dl)); 4474 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4475 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4476 getF32Constant(DAG, 0x40348e95, dl)); 4477 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4478 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4479 getF32Constant(DAG, 0x3fdef31a, dl)); 4480 } else { // LimitFloatPrecision <= 18 4481 // For floating-point precision of 18: 4482 // 4483 // LogOfMantissa = 4484 // -2.1072184f + 4485 // (4.2372794f + 4486 // (-3.7029485f + 4487 // (2.2781945f + 4488 // (-0.87823314f + 4489 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4490 // 4491 // error 0.0000023660568, which is better than 18 bits 4492 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4493 getF32Constant(DAG, 0xbc91e5ac, dl)); 4494 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4495 getF32Constant(DAG, 0x3e4350aa, dl)); 4496 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4497 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4498 getF32Constant(DAG, 0x3f60d3e3, dl)); 4499 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4500 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4501 getF32Constant(DAG, 0x4011cdf0, dl)); 4502 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4503 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4504 getF32Constant(DAG, 0x406cfd1c, dl)); 4505 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4506 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4507 getF32Constant(DAG, 0x408797cb, dl)); 4508 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4509 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4510 getF32Constant(DAG, 0x4006dcab, dl)); 4511 } 4512 4513 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4514 } 4515 4516 // No special expansion. 4517 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4518 } 4519 4520 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4521 /// limited-precision mode. 4522 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4523 const TargetLowering &TLI) { 4524 // TODO: What fast-math-flags should be set on the floating-point nodes? 4525 4526 if (Op.getValueType() == MVT::f32 && 4527 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4528 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4529 4530 // Get the exponent. 4531 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4532 4533 // Get the significand and build it into a floating-point number with 4534 // exponent of 1. 4535 SDValue X = GetSignificand(DAG, Op1, dl); 4536 4537 // Different possible minimax approximations of significand in 4538 // floating-point for various degrees of accuracy over [1,2]. 4539 SDValue Log2ofMantissa; 4540 if (LimitFloatPrecision <= 6) { 4541 // For floating-point precision of 6: 4542 // 4543 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4544 // 4545 // error 0.0049451742, which is more than 7 bits 4546 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4547 getF32Constant(DAG, 0xbeb08fe0, dl)); 4548 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4549 getF32Constant(DAG, 0x40019463, dl)); 4550 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4551 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4552 getF32Constant(DAG, 0x3fd6633d, dl)); 4553 } else if (LimitFloatPrecision <= 12) { 4554 // For floating-point precision of 12: 4555 // 4556 // Log2ofMantissa = 4557 // -2.51285454f + 4558 // (4.07009056f + 4559 // (-2.12067489f + 4560 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4561 // 4562 // error 0.0000876136000, which is better than 13 bits 4563 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4564 getF32Constant(DAG, 0xbda7262e, dl)); 4565 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4566 getF32Constant(DAG, 0x3f25280b, dl)); 4567 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4568 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4569 getF32Constant(DAG, 0x4007b923, dl)); 4570 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4571 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4572 getF32Constant(DAG, 0x40823e2f, dl)); 4573 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4574 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4575 getF32Constant(DAG, 0x4020d29c, dl)); 4576 } else { // LimitFloatPrecision <= 18 4577 // For floating-point precision of 18: 4578 // 4579 // Log2ofMantissa = 4580 // -3.0400495f + 4581 // (6.1129976f + 4582 // (-5.3420409f + 4583 // (3.2865683f + 4584 // (-1.2669343f + 4585 // (0.27515199f - 4586 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4587 // 4588 // error 0.0000018516, which is better than 18 bits 4589 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4590 getF32Constant(DAG, 0xbcd2769e, dl)); 4591 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4592 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4593 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4594 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4595 getF32Constant(DAG, 0x3fa22ae7, dl)); 4596 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4597 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4598 getF32Constant(DAG, 0x40525723, dl)); 4599 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4600 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4601 getF32Constant(DAG, 0x40aaf200, dl)); 4602 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4603 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4604 getF32Constant(DAG, 0x40c39dad, dl)); 4605 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4606 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4607 getF32Constant(DAG, 0x4042902c, dl)); 4608 } 4609 4610 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4611 } 4612 4613 // No special expansion. 4614 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4615 } 4616 4617 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4618 /// limited-precision mode. 4619 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4620 const TargetLowering &TLI) { 4621 // TODO: What fast-math-flags should be set on the floating-point nodes? 4622 4623 if (Op.getValueType() == MVT::f32 && 4624 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4625 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4626 4627 // Scale the exponent by log10(2) [0.30102999f]. 4628 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4629 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4630 getF32Constant(DAG, 0x3e9a209a, dl)); 4631 4632 // Get the significand and build it into a floating-point number with 4633 // exponent of 1. 4634 SDValue X = GetSignificand(DAG, Op1, dl); 4635 4636 SDValue Log10ofMantissa; 4637 if (LimitFloatPrecision <= 6) { 4638 // For floating-point precision of 6: 4639 // 4640 // Log10ofMantissa = 4641 // -0.50419619f + 4642 // (0.60948995f - 0.10380950f * x) * x; 4643 // 4644 // error 0.0014886165, which is 6 bits 4645 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4646 getF32Constant(DAG, 0xbdd49a13, dl)); 4647 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4648 getF32Constant(DAG, 0x3f1c0789, dl)); 4649 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4650 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4651 getF32Constant(DAG, 0x3f011300, dl)); 4652 } else if (LimitFloatPrecision <= 12) { 4653 // For floating-point precision of 12: 4654 // 4655 // Log10ofMantissa = 4656 // -0.64831180f + 4657 // (0.91751397f + 4658 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4659 // 4660 // error 0.00019228036, which is better than 12 bits 4661 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4662 getF32Constant(DAG, 0x3d431f31, dl)); 4663 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4664 getF32Constant(DAG, 0x3ea21fb2, dl)); 4665 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4666 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4667 getF32Constant(DAG, 0x3f6ae232, dl)); 4668 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4669 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4670 getF32Constant(DAG, 0x3f25f7c3, dl)); 4671 } else { // LimitFloatPrecision <= 18 4672 // For floating-point precision of 18: 4673 // 4674 // Log10ofMantissa = 4675 // -0.84299375f + 4676 // (1.5327582f + 4677 // (-1.0688956f + 4678 // (0.49102474f + 4679 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4680 // 4681 // error 0.0000037995730, which is better than 18 bits 4682 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4683 getF32Constant(DAG, 0x3c5d51ce, dl)); 4684 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4685 getF32Constant(DAG, 0x3e00685a, dl)); 4686 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4687 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4688 getF32Constant(DAG, 0x3efb6798, dl)); 4689 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4690 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4691 getF32Constant(DAG, 0x3f88d192, dl)); 4692 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4693 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4694 getF32Constant(DAG, 0x3fc4316c, dl)); 4695 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4696 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4697 getF32Constant(DAG, 0x3f57ce70, dl)); 4698 } 4699 4700 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4701 } 4702 4703 // No special expansion. 4704 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4705 } 4706 4707 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4708 /// limited-precision mode. 4709 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4710 const TargetLowering &TLI) { 4711 if (Op.getValueType() == MVT::f32 && 4712 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4713 return getLimitedPrecisionExp2(Op, dl, DAG); 4714 4715 // No special expansion. 4716 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4717 } 4718 4719 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4720 /// limited-precision mode with x == 10.0f. 4721 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4722 SelectionDAG &DAG, const TargetLowering &TLI) { 4723 bool IsExp10 = false; 4724 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4725 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4726 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4727 APFloat Ten(10.0f); 4728 IsExp10 = LHSC->isExactlyValue(Ten); 4729 } 4730 } 4731 4732 // TODO: What fast-math-flags should be set on the FMUL node? 4733 if (IsExp10) { 4734 // Put the exponent in the right bit position for later addition to the 4735 // final result: 4736 // 4737 // #define LOG2OF10 3.3219281f 4738 // t0 = Op * LOG2OF10; 4739 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4740 getF32Constant(DAG, 0x40549a78, dl)); 4741 return getLimitedPrecisionExp2(t0, dl, DAG); 4742 } 4743 4744 // No special expansion. 4745 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4746 } 4747 4748 /// ExpandPowI - Expand a llvm.powi intrinsic. 4749 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4750 SelectionDAG &DAG) { 4751 // If RHS is a constant, we can expand this out to a multiplication tree, 4752 // otherwise we end up lowering to a call to __powidf2 (for example). When 4753 // optimizing for size, we only want to do this if the expansion would produce 4754 // a small number of multiplies, otherwise we do the full expansion. 4755 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4756 // Get the exponent as a positive value. 4757 unsigned Val = RHSC->getSExtValue(); 4758 if ((int)Val < 0) Val = -Val; 4759 4760 // powi(x, 0) -> 1.0 4761 if (Val == 0) 4762 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4763 4764 const Function *F = DAG.getMachineFunction().getFunction(); 4765 if (!F->optForSize() || 4766 // If optimizing for size, don't insert too many multiplies. 4767 // This inserts up to 5 multiplies. 4768 countPopulation(Val) + Log2_32(Val) < 7) { 4769 // We use the simple binary decomposition method to generate the multiply 4770 // sequence. There are more optimal ways to do this (for example, 4771 // powi(x,15) generates one more multiply than it should), but this has 4772 // the benefit of being both really simple and much better than a libcall. 4773 SDValue Res; // Logically starts equal to 1.0 4774 SDValue CurSquare = LHS; 4775 // TODO: Intrinsics should have fast-math-flags that propagate to these 4776 // nodes. 4777 while (Val) { 4778 if (Val & 1) { 4779 if (Res.getNode()) 4780 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4781 else 4782 Res = CurSquare; // 1.0*CurSquare. 4783 } 4784 4785 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4786 CurSquare, CurSquare); 4787 Val >>= 1; 4788 } 4789 4790 // If the original was negative, invert the result, producing 1/(x*x*x). 4791 if (RHSC->getSExtValue() < 0) 4792 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4793 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4794 return Res; 4795 } 4796 } 4797 4798 // Otherwise, expand to a libcall. 4799 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4800 } 4801 4802 // getUnderlyingArgReg - Find underlying register used for a truncated or 4803 // bitcasted argument. 4804 static unsigned getUnderlyingArgReg(const SDValue &N) { 4805 switch (N.getOpcode()) { 4806 case ISD::CopyFromReg: 4807 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4808 case ISD::BITCAST: 4809 case ISD::AssertZext: 4810 case ISD::AssertSext: 4811 case ISD::TRUNCATE: 4812 return getUnderlyingArgReg(N.getOperand(0)); 4813 default: 4814 return 0; 4815 } 4816 } 4817 4818 /// If the DbgValueInst is a dbg_value of a function argument, create the 4819 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4820 /// instruction selection, they will be inserted to the entry BB. 4821 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4822 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4823 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4824 const Argument *Arg = dyn_cast<Argument>(V); 4825 if (!Arg) 4826 return false; 4827 4828 MachineFunction &MF = DAG.getMachineFunction(); 4829 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4830 4831 bool IsIndirect = false; 4832 Optional<MachineOperand> Op; 4833 // Some arguments' frame index is recorded during argument lowering. 4834 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4835 if (FI != std::numeric_limits<int>::max()) 4836 Op = MachineOperand::CreateFI(FI); 4837 4838 if (!Op && N.getNode()) { 4839 unsigned Reg = getUnderlyingArgReg(N); 4840 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4841 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4842 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4843 if (PR) 4844 Reg = PR; 4845 } 4846 if (Reg) { 4847 Op = MachineOperand::CreateReg(Reg, false); 4848 IsIndirect = IsDbgDeclare; 4849 } 4850 } 4851 4852 if (!Op) { 4853 // Check if ValueMap has reg number. 4854 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4855 if (VMI != FuncInfo.ValueMap.end()) { 4856 const auto &TLI = DAG.getTargetLoweringInfo(); 4857 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4858 V->getType(), isABIRegCopy(V)); 4859 unsigned NumRegs = 4860 std::accumulate(RFV.RegCount.begin(), RFV.RegCount.end(), 0); 4861 if (NumRegs > 1) { 4862 unsigned I = 0; 4863 unsigned Offset = 0; 4864 auto RegisterVT = RFV.RegVTs.begin(); 4865 for (auto RegCount : RFV.RegCount) { 4866 unsigned RegisterSize = (RegisterVT++)->getSizeInBits(); 4867 for (unsigned E = I + RegCount; I != E; ++I) { 4868 // The vregs are guaranteed to be allocated in sequence. 4869 Op = MachineOperand::CreateReg(VMI->second + I, false); 4870 auto FragmentExpr = DIExpression::createFragmentExpression( 4871 Expr, Offset, RegisterSize); 4872 if (!FragmentExpr) 4873 continue; 4874 FuncInfo.ArgDbgValues.push_back( 4875 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4876 Op->getReg(), Variable, *FragmentExpr)); 4877 Offset += RegisterSize; 4878 } 4879 } 4880 return true; 4881 } 4882 Op = MachineOperand::CreateReg(VMI->second, false); 4883 IsIndirect = IsDbgDeclare; 4884 } 4885 } 4886 4887 if (!Op && N.getNode()) 4888 // Check if frame index is available. 4889 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4890 if (FrameIndexSDNode *FINode = 4891 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4892 Op = MachineOperand::CreateFI(FINode->getIndex()); 4893 4894 if (!Op) 4895 return false; 4896 4897 assert(Variable->isValidLocationForIntrinsic(DL) && 4898 "Expected inlined-at fields to agree"); 4899 if (Op->isReg()) 4900 FuncInfo.ArgDbgValues.push_back( 4901 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4902 Op->getReg(), Variable, Expr)); 4903 else 4904 FuncInfo.ArgDbgValues.push_back( 4905 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4906 .add(*Op) 4907 .addImm(0) 4908 .addMetadata(Variable) 4909 .addMetadata(Expr)); 4910 4911 return true; 4912 } 4913 4914 /// Return the appropriate SDDbgValue based on N. 4915 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4916 DILocalVariable *Variable, 4917 DIExpression *Expr, 4918 const DebugLoc &dl, 4919 unsigned DbgSDNodeOrder) { 4920 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4921 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4922 // stack slot locations as such instead of as indirectly addressed 4923 // locations. 4924 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4925 DbgSDNodeOrder); 4926 } 4927 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4928 DbgSDNodeOrder); 4929 } 4930 4931 // VisualStudio defines setjmp as _setjmp 4932 #if defined(_MSC_VER) && defined(setjmp) && \ 4933 !defined(setjmp_undefined_for_msvc) 4934 # pragma push_macro("setjmp") 4935 # undef setjmp 4936 # define setjmp_undefined_for_msvc 4937 #endif 4938 4939 /// Lower the call to the specified intrinsic function. If we want to emit this 4940 /// as a call to a named external function, return the name. Otherwise, lower it 4941 /// and return null. 4942 const char * 4943 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4945 SDLoc sdl = getCurSDLoc(); 4946 DebugLoc dl = getCurDebugLoc(); 4947 SDValue Res; 4948 4949 switch (Intrinsic) { 4950 default: 4951 // By default, turn this into a target intrinsic node. 4952 visitTargetIntrinsic(I, Intrinsic); 4953 return nullptr; 4954 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4955 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4956 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4957 case Intrinsic::returnaddress: 4958 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4959 TLI.getPointerTy(DAG.getDataLayout()), 4960 getValue(I.getArgOperand(0)))); 4961 return nullptr; 4962 case Intrinsic::addressofreturnaddress: 4963 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4964 TLI.getPointerTy(DAG.getDataLayout()))); 4965 return nullptr; 4966 case Intrinsic::frameaddress: 4967 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4968 TLI.getPointerTy(DAG.getDataLayout()), 4969 getValue(I.getArgOperand(0)))); 4970 return nullptr; 4971 case Intrinsic::read_register: { 4972 Value *Reg = I.getArgOperand(0); 4973 SDValue Chain = getRoot(); 4974 SDValue RegName = 4975 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4976 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4977 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4978 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4979 setValue(&I, Res); 4980 DAG.setRoot(Res.getValue(1)); 4981 return nullptr; 4982 } 4983 case Intrinsic::write_register: { 4984 Value *Reg = I.getArgOperand(0); 4985 Value *RegValue = I.getArgOperand(1); 4986 SDValue Chain = getRoot(); 4987 SDValue RegName = 4988 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4989 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4990 RegName, getValue(RegValue))); 4991 return nullptr; 4992 } 4993 case Intrinsic::setjmp: 4994 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4995 case Intrinsic::longjmp: 4996 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4997 case Intrinsic::memcpy: { 4998 SDValue Op1 = getValue(I.getArgOperand(0)); 4999 SDValue Op2 = getValue(I.getArgOperand(1)); 5000 SDValue Op3 = getValue(I.getArgOperand(2)); 5001 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 5002 if (!Align) 5003 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5004 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 5005 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5006 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5007 false, isTC, 5008 MachinePointerInfo(I.getArgOperand(0)), 5009 MachinePointerInfo(I.getArgOperand(1))); 5010 updateDAGForMaybeTailCall(MC); 5011 return nullptr; 5012 } 5013 case Intrinsic::memset: { 5014 SDValue Op1 = getValue(I.getArgOperand(0)); 5015 SDValue Op2 = getValue(I.getArgOperand(1)); 5016 SDValue Op3 = getValue(I.getArgOperand(2)); 5017 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 5018 if (!Align) 5019 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 5020 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 5021 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5022 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5023 isTC, MachinePointerInfo(I.getArgOperand(0))); 5024 updateDAGForMaybeTailCall(MS); 5025 return nullptr; 5026 } 5027 case Intrinsic::memmove: { 5028 SDValue Op1 = getValue(I.getArgOperand(0)); 5029 SDValue Op2 = getValue(I.getArgOperand(1)); 5030 SDValue Op3 = getValue(I.getArgOperand(2)); 5031 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 5032 if (!Align) 5033 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 5034 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 5035 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5036 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5037 isTC, MachinePointerInfo(I.getArgOperand(0)), 5038 MachinePointerInfo(I.getArgOperand(1))); 5039 updateDAGForMaybeTailCall(MM); 5040 return nullptr; 5041 } 5042 case Intrinsic::memcpy_element_unordered_atomic: { 5043 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5044 SDValue Dst = getValue(MI.getRawDest()); 5045 SDValue Src = getValue(MI.getRawSource()); 5046 SDValue Length = getValue(MI.getLength()); 5047 5048 // Emit a library call. 5049 TargetLowering::ArgListTy Args; 5050 TargetLowering::ArgListEntry Entry; 5051 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5052 Entry.Node = Dst; 5053 Args.push_back(Entry); 5054 5055 Entry.Node = Src; 5056 Args.push_back(Entry); 5057 5058 Entry.Ty = MI.getLength()->getType(); 5059 Entry.Node = Length; 5060 Args.push_back(Entry); 5061 5062 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5063 RTLIB::Libcall LibraryCall = 5064 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5065 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5066 report_fatal_error("Unsupported element size"); 5067 5068 TargetLowering::CallLoweringInfo CLI(DAG); 5069 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5070 TLI.getLibcallCallingConv(LibraryCall), 5071 Type::getVoidTy(*DAG.getContext()), 5072 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5073 TLI.getPointerTy(DAG.getDataLayout())), 5074 std::move(Args)); 5075 5076 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5077 DAG.setRoot(CallResult.second); 5078 return nullptr; 5079 } 5080 case Intrinsic::memmove_element_unordered_atomic: { 5081 auto &MI = cast<AtomicMemMoveInst>(I); 5082 SDValue Dst = getValue(MI.getRawDest()); 5083 SDValue Src = getValue(MI.getRawSource()); 5084 SDValue Length = getValue(MI.getLength()); 5085 5086 // Emit a library call. 5087 TargetLowering::ArgListTy Args; 5088 TargetLowering::ArgListEntry Entry; 5089 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5090 Entry.Node = Dst; 5091 Args.push_back(Entry); 5092 5093 Entry.Node = Src; 5094 Args.push_back(Entry); 5095 5096 Entry.Ty = MI.getLength()->getType(); 5097 Entry.Node = Length; 5098 Args.push_back(Entry); 5099 5100 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5101 RTLIB::Libcall LibraryCall = 5102 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5103 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5104 report_fatal_error("Unsupported element size"); 5105 5106 TargetLowering::CallLoweringInfo CLI(DAG); 5107 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5108 TLI.getLibcallCallingConv(LibraryCall), 5109 Type::getVoidTy(*DAG.getContext()), 5110 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5111 TLI.getPointerTy(DAG.getDataLayout())), 5112 std::move(Args)); 5113 5114 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5115 DAG.setRoot(CallResult.second); 5116 return nullptr; 5117 } 5118 case Intrinsic::memset_element_unordered_atomic: { 5119 auto &MI = cast<AtomicMemSetInst>(I); 5120 SDValue Dst = getValue(MI.getRawDest()); 5121 SDValue Val = getValue(MI.getValue()); 5122 SDValue Length = getValue(MI.getLength()); 5123 5124 // Emit a library call. 5125 TargetLowering::ArgListTy Args; 5126 TargetLowering::ArgListEntry Entry; 5127 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5128 Entry.Node = Dst; 5129 Args.push_back(Entry); 5130 5131 Entry.Ty = Type::getInt8Ty(*DAG.getContext()); 5132 Entry.Node = Val; 5133 Args.push_back(Entry); 5134 5135 Entry.Ty = MI.getLength()->getType(); 5136 Entry.Node = Length; 5137 Args.push_back(Entry); 5138 5139 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5140 RTLIB::Libcall LibraryCall = 5141 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5142 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5143 report_fatal_error("Unsupported element size"); 5144 5145 TargetLowering::CallLoweringInfo CLI(DAG); 5146 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5147 TLI.getLibcallCallingConv(LibraryCall), 5148 Type::getVoidTy(*DAG.getContext()), 5149 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5150 TLI.getPointerTy(DAG.getDataLayout())), 5151 std::move(Args)); 5152 5153 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5154 DAG.setRoot(CallResult.second); 5155 return nullptr; 5156 } 5157 case Intrinsic::dbg_addr: 5158 case Intrinsic::dbg_declare: { 5159 const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I); 5160 DILocalVariable *Variable = DI.getVariable(); 5161 DIExpression *Expression = DI.getExpression(); 5162 assert(Variable && "Missing variable"); 5163 5164 // Check if address has undef value. 5165 const Value *Address = DI.getVariableLocation(); 5166 if (!Address || isa<UndefValue>(Address) || 5167 (Address->use_empty() && !isa<Argument>(Address))) { 5168 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5169 return nullptr; 5170 } 5171 5172 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5173 5174 // Check if this variable can be described by a frame index, typically 5175 // either as a static alloca or a byval parameter. 5176 int FI = std::numeric_limits<int>::max(); 5177 if (const auto *AI = 5178 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5179 if (AI->isStaticAlloca()) { 5180 auto I = FuncInfo.StaticAllocaMap.find(AI); 5181 if (I != FuncInfo.StaticAllocaMap.end()) 5182 FI = I->second; 5183 } 5184 } else if (const auto *Arg = dyn_cast<Argument>( 5185 Address->stripInBoundsConstantOffsets())) { 5186 FI = FuncInfo.getArgumentFrameIndex(Arg); 5187 } 5188 5189 // llvm.dbg.addr is control dependent and always generates indirect 5190 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5191 // the MachineFunction variable table. 5192 if (FI != std::numeric_limits<int>::max()) { 5193 if (Intrinsic == Intrinsic::dbg_addr) 5194 DAG.AddDbgValue(DAG.getFrameIndexDbgValue(Variable, Expression, FI, dl, 5195 SDNodeOrder), 5196 getRoot().getNode(), isParameter); 5197 return nullptr; 5198 } 5199 5200 SDValue &N = NodeMap[Address]; 5201 if (!N.getNode() && isa<Argument>(Address)) 5202 // Check unused arguments map. 5203 N = UnusedArgNodeMap[Address]; 5204 SDDbgValue *SDV; 5205 if (N.getNode()) { 5206 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5207 Address = BCI->getOperand(0); 5208 // Parameters are handled specially. 5209 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5210 if (isParameter && FINode) { 5211 // Byval parameter. We have a frame index at this point. 5212 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5213 FINode->getIndex(), dl, SDNodeOrder); 5214 } else if (isa<Argument>(Address)) { 5215 // Address is an argument, so try to emit its dbg value using 5216 // virtual register info from the FuncInfo.ValueMap. 5217 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5218 return nullptr; 5219 } else { 5220 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5221 true, dl, SDNodeOrder); 5222 } 5223 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5224 } else { 5225 // If Address is an argument then try to emit its dbg value using 5226 // virtual register info from the FuncInfo.ValueMap. 5227 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5228 N)) { 5229 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5230 } 5231 } 5232 return nullptr; 5233 } 5234 case Intrinsic::dbg_value: { 5235 const DbgValueInst &DI = cast<DbgValueInst>(I); 5236 assert(DI.getVariable() && "Missing variable"); 5237 5238 DILocalVariable *Variable = DI.getVariable(); 5239 DIExpression *Expression = DI.getExpression(); 5240 const Value *V = DI.getValue(); 5241 if (!V) 5242 return nullptr; 5243 5244 SDDbgValue *SDV; 5245 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5246 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5247 DAG.AddDbgValue(SDV, nullptr, false); 5248 return nullptr; 5249 } 5250 5251 // Do not use getValue() in here; we don't want to generate code at 5252 // this point if it hasn't been done yet. 5253 SDValue N = NodeMap[V]; 5254 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5255 N = UnusedArgNodeMap[V]; 5256 if (N.getNode()) { 5257 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5258 return nullptr; 5259 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5260 DAG.AddDbgValue(SDV, N.getNode(), false); 5261 return nullptr; 5262 } 5263 5264 if (!V->use_empty() ) { 5265 // Do not call getValue(V) yet, as we don't want to generate code. 5266 // Remember it for later. 5267 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5268 DanglingDebugInfoMap[V] = DDI; 5269 return nullptr; 5270 } 5271 5272 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5273 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5274 return nullptr; 5275 } 5276 5277 case Intrinsic::eh_typeid_for: { 5278 // Find the type id for the given typeinfo. 5279 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5280 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5281 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5282 setValue(&I, Res); 5283 return nullptr; 5284 } 5285 5286 case Intrinsic::eh_return_i32: 5287 case Intrinsic::eh_return_i64: 5288 DAG.getMachineFunction().setCallsEHReturn(true); 5289 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5290 MVT::Other, 5291 getControlRoot(), 5292 getValue(I.getArgOperand(0)), 5293 getValue(I.getArgOperand(1)))); 5294 return nullptr; 5295 case Intrinsic::eh_unwind_init: 5296 DAG.getMachineFunction().setCallsUnwindInit(true); 5297 return nullptr; 5298 case Intrinsic::eh_dwarf_cfa: 5299 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5300 TLI.getPointerTy(DAG.getDataLayout()), 5301 getValue(I.getArgOperand(0)))); 5302 return nullptr; 5303 case Intrinsic::eh_sjlj_callsite: { 5304 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5305 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5306 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5307 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5308 5309 MMI.setCurrentCallSite(CI->getZExtValue()); 5310 return nullptr; 5311 } 5312 case Intrinsic::eh_sjlj_functioncontext: { 5313 // Get and store the index of the function context. 5314 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5315 AllocaInst *FnCtx = 5316 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5317 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5318 MFI.setFunctionContextIndex(FI); 5319 return nullptr; 5320 } 5321 case Intrinsic::eh_sjlj_setjmp: { 5322 SDValue Ops[2]; 5323 Ops[0] = getRoot(); 5324 Ops[1] = getValue(I.getArgOperand(0)); 5325 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5326 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5327 setValue(&I, Op.getValue(0)); 5328 DAG.setRoot(Op.getValue(1)); 5329 return nullptr; 5330 } 5331 case Intrinsic::eh_sjlj_longjmp: 5332 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5333 getRoot(), getValue(I.getArgOperand(0)))); 5334 return nullptr; 5335 case Intrinsic::eh_sjlj_setup_dispatch: 5336 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5337 getRoot())); 5338 return nullptr; 5339 case Intrinsic::masked_gather: 5340 visitMaskedGather(I); 5341 return nullptr; 5342 case Intrinsic::masked_load: 5343 visitMaskedLoad(I); 5344 return nullptr; 5345 case Intrinsic::masked_scatter: 5346 visitMaskedScatter(I); 5347 return nullptr; 5348 case Intrinsic::masked_store: 5349 visitMaskedStore(I); 5350 return nullptr; 5351 case Intrinsic::masked_expandload: 5352 visitMaskedLoad(I, true /* IsExpanding */); 5353 return nullptr; 5354 case Intrinsic::masked_compressstore: 5355 visitMaskedStore(I, true /* IsCompressing */); 5356 return nullptr; 5357 case Intrinsic::x86_mmx_pslli_w: 5358 case Intrinsic::x86_mmx_pslli_d: 5359 case Intrinsic::x86_mmx_pslli_q: 5360 case Intrinsic::x86_mmx_psrli_w: 5361 case Intrinsic::x86_mmx_psrli_d: 5362 case Intrinsic::x86_mmx_psrli_q: 5363 case Intrinsic::x86_mmx_psrai_w: 5364 case Intrinsic::x86_mmx_psrai_d: { 5365 SDValue ShAmt = getValue(I.getArgOperand(1)); 5366 if (isa<ConstantSDNode>(ShAmt)) { 5367 visitTargetIntrinsic(I, Intrinsic); 5368 return nullptr; 5369 } 5370 unsigned NewIntrinsic = 0; 5371 EVT ShAmtVT = MVT::v2i32; 5372 switch (Intrinsic) { 5373 case Intrinsic::x86_mmx_pslli_w: 5374 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5375 break; 5376 case Intrinsic::x86_mmx_pslli_d: 5377 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5378 break; 5379 case Intrinsic::x86_mmx_pslli_q: 5380 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5381 break; 5382 case Intrinsic::x86_mmx_psrli_w: 5383 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5384 break; 5385 case Intrinsic::x86_mmx_psrli_d: 5386 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5387 break; 5388 case Intrinsic::x86_mmx_psrli_q: 5389 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5390 break; 5391 case Intrinsic::x86_mmx_psrai_w: 5392 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5393 break; 5394 case Intrinsic::x86_mmx_psrai_d: 5395 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5396 break; 5397 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5398 } 5399 5400 // The vector shift intrinsics with scalars uses 32b shift amounts but 5401 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5402 // to be zero. 5403 // We must do this early because v2i32 is not a legal type. 5404 SDValue ShOps[2]; 5405 ShOps[0] = ShAmt; 5406 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5407 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5408 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5409 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5410 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5411 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5412 getValue(I.getArgOperand(0)), ShAmt); 5413 setValue(&I, Res); 5414 return nullptr; 5415 } 5416 case Intrinsic::powi: 5417 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5418 getValue(I.getArgOperand(1)), DAG)); 5419 return nullptr; 5420 case Intrinsic::log: 5421 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5422 return nullptr; 5423 case Intrinsic::log2: 5424 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5425 return nullptr; 5426 case Intrinsic::log10: 5427 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5428 return nullptr; 5429 case Intrinsic::exp: 5430 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5431 return nullptr; 5432 case Intrinsic::exp2: 5433 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5434 return nullptr; 5435 case Intrinsic::pow: 5436 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5437 getValue(I.getArgOperand(1)), DAG, TLI)); 5438 return nullptr; 5439 case Intrinsic::sqrt: 5440 case Intrinsic::fabs: 5441 case Intrinsic::sin: 5442 case Intrinsic::cos: 5443 case Intrinsic::floor: 5444 case Intrinsic::ceil: 5445 case Intrinsic::trunc: 5446 case Intrinsic::rint: 5447 case Intrinsic::nearbyint: 5448 case Intrinsic::round: 5449 case Intrinsic::canonicalize: { 5450 unsigned Opcode; 5451 switch (Intrinsic) { 5452 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5453 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5454 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5455 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5456 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5457 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5458 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5459 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5460 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5461 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5462 case Intrinsic::round: Opcode = ISD::FROUND; break; 5463 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5464 } 5465 5466 setValue(&I, DAG.getNode(Opcode, sdl, 5467 getValue(I.getArgOperand(0)).getValueType(), 5468 getValue(I.getArgOperand(0)))); 5469 return nullptr; 5470 } 5471 case Intrinsic::minnum: { 5472 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5473 unsigned Opc = 5474 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5475 ? ISD::FMINNAN 5476 : ISD::FMINNUM; 5477 setValue(&I, DAG.getNode(Opc, sdl, VT, 5478 getValue(I.getArgOperand(0)), 5479 getValue(I.getArgOperand(1)))); 5480 return nullptr; 5481 } 5482 case Intrinsic::maxnum: { 5483 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5484 unsigned Opc = 5485 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5486 ? ISD::FMAXNAN 5487 : ISD::FMAXNUM; 5488 setValue(&I, DAG.getNode(Opc, sdl, VT, 5489 getValue(I.getArgOperand(0)), 5490 getValue(I.getArgOperand(1)))); 5491 return nullptr; 5492 } 5493 case Intrinsic::copysign: 5494 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5495 getValue(I.getArgOperand(0)).getValueType(), 5496 getValue(I.getArgOperand(0)), 5497 getValue(I.getArgOperand(1)))); 5498 return nullptr; 5499 case Intrinsic::fma: 5500 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5501 getValue(I.getArgOperand(0)).getValueType(), 5502 getValue(I.getArgOperand(0)), 5503 getValue(I.getArgOperand(1)), 5504 getValue(I.getArgOperand(2)))); 5505 return nullptr; 5506 case Intrinsic::experimental_constrained_fadd: 5507 case Intrinsic::experimental_constrained_fsub: 5508 case Intrinsic::experimental_constrained_fmul: 5509 case Intrinsic::experimental_constrained_fdiv: 5510 case Intrinsic::experimental_constrained_frem: 5511 case Intrinsic::experimental_constrained_fma: 5512 case Intrinsic::experimental_constrained_sqrt: 5513 case Intrinsic::experimental_constrained_pow: 5514 case Intrinsic::experimental_constrained_powi: 5515 case Intrinsic::experimental_constrained_sin: 5516 case Intrinsic::experimental_constrained_cos: 5517 case Intrinsic::experimental_constrained_exp: 5518 case Intrinsic::experimental_constrained_exp2: 5519 case Intrinsic::experimental_constrained_log: 5520 case Intrinsic::experimental_constrained_log10: 5521 case Intrinsic::experimental_constrained_log2: 5522 case Intrinsic::experimental_constrained_rint: 5523 case Intrinsic::experimental_constrained_nearbyint: 5524 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5525 return nullptr; 5526 case Intrinsic::fmuladd: { 5527 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5528 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5529 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5530 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5531 getValue(I.getArgOperand(0)).getValueType(), 5532 getValue(I.getArgOperand(0)), 5533 getValue(I.getArgOperand(1)), 5534 getValue(I.getArgOperand(2)))); 5535 } else { 5536 // TODO: Intrinsic calls should have fast-math-flags. 5537 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5538 getValue(I.getArgOperand(0)).getValueType(), 5539 getValue(I.getArgOperand(0)), 5540 getValue(I.getArgOperand(1))); 5541 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5542 getValue(I.getArgOperand(0)).getValueType(), 5543 Mul, 5544 getValue(I.getArgOperand(2))); 5545 setValue(&I, Add); 5546 } 5547 return nullptr; 5548 } 5549 case Intrinsic::convert_to_fp16: 5550 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5551 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5552 getValue(I.getArgOperand(0)), 5553 DAG.getTargetConstant(0, sdl, 5554 MVT::i32)))); 5555 return nullptr; 5556 case Intrinsic::convert_from_fp16: 5557 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5558 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5559 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5560 getValue(I.getArgOperand(0))))); 5561 return nullptr; 5562 case Intrinsic::pcmarker: { 5563 SDValue Tmp = getValue(I.getArgOperand(0)); 5564 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5565 return nullptr; 5566 } 5567 case Intrinsic::readcyclecounter: { 5568 SDValue Op = getRoot(); 5569 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5570 DAG.getVTList(MVT::i64, MVT::Other), Op); 5571 setValue(&I, Res); 5572 DAG.setRoot(Res.getValue(1)); 5573 return nullptr; 5574 } 5575 case Intrinsic::bitreverse: 5576 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5577 getValue(I.getArgOperand(0)).getValueType(), 5578 getValue(I.getArgOperand(0)))); 5579 return nullptr; 5580 case Intrinsic::bswap: 5581 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5582 getValue(I.getArgOperand(0)).getValueType(), 5583 getValue(I.getArgOperand(0)))); 5584 return nullptr; 5585 case Intrinsic::cttz: { 5586 SDValue Arg = getValue(I.getArgOperand(0)); 5587 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5588 EVT Ty = Arg.getValueType(); 5589 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5590 sdl, Ty, Arg)); 5591 return nullptr; 5592 } 5593 case Intrinsic::ctlz: { 5594 SDValue Arg = getValue(I.getArgOperand(0)); 5595 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5596 EVT Ty = Arg.getValueType(); 5597 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5598 sdl, Ty, Arg)); 5599 return nullptr; 5600 } 5601 case Intrinsic::ctpop: { 5602 SDValue Arg = getValue(I.getArgOperand(0)); 5603 EVT Ty = Arg.getValueType(); 5604 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5605 return nullptr; 5606 } 5607 case Intrinsic::stacksave: { 5608 SDValue Op = getRoot(); 5609 Res = DAG.getNode( 5610 ISD::STACKSAVE, sdl, 5611 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5612 setValue(&I, Res); 5613 DAG.setRoot(Res.getValue(1)); 5614 return nullptr; 5615 } 5616 case Intrinsic::stackrestore: 5617 Res = getValue(I.getArgOperand(0)); 5618 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5619 return nullptr; 5620 case Intrinsic::get_dynamic_area_offset: { 5621 SDValue Op = getRoot(); 5622 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5623 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5624 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5625 // target. 5626 if (PtrTy != ResTy) 5627 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5628 " intrinsic!"); 5629 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5630 Op); 5631 DAG.setRoot(Op); 5632 setValue(&I, Res); 5633 return nullptr; 5634 } 5635 case Intrinsic::stackguard: { 5636 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5637 MachineFunction &MF = DAG.getMachineFunction(); 5638 const Module &M = *MF.getFunction()->getParent(); 5639 SDValue Chain = getRoot(); 5640 if (TLI.useLoadStackGuardNode()) { 5641 Res = getLoadStackGuard(DAG, sdl, Chain); 5642 } else { 5643 const Value *Global = TLI.getSDagStackGuard(M); 5644 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5645 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5646 MachinePointerInfo(Global, 0), Align, 5647 MachineMemOperand::MOVolatile); 5648 } 5649 DAG.setRoot(Chain); 5650 setValue(&I, Res); 5651 return nullptr; 5652 } 5653 case Intrinsic::stackprotector: { 5654 // Emit code into the DAG to store the stack guard onto the stack. 5655 MachineFunction &MF = DAG.getMachineFunction(); 5656 MachineFrameInfo &MFI = MF.getFrameInfo(); 5657 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5658 SDValue Src, Chain = getRoot(); 5659 5660 if (TLI.useLoadStackGuardNode()) 5661 Src = getLoadStackGuard(DAG, sdl, Chain); 5662 else 5663 Src = getValue(I.getArgOperand(0)); // The guard's value. 5664 5665 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5666 5667 int FI = FuncInfo.StaticAllocaMap[Slot]; 5668 MFI.setStackProtectorIndex(FI); 5669 5670 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5671 5672 // Store the stack protector onto the stack. 5673 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5674 DAG.getMachineFunction(), FI), 5675 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5676 setValue(&I, Res); 5677 DAG.setRoot(Res); 5678 return nullptr; 5679 } 5680 case Intrinsic::objectsize: { 5681 // If we don't know by now, we're never going to know. 5682 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5683 5684 assert(CI && "Non-constant type in __builtin_object_size?"); 5685 5686 SDValue Arg = getValue(I.getCalledValue()); 5687 EVT Ty = Arg.getValueType(); 5688 5689 if (CI->isZero()) 5690 Res = DAG.getConstant(-1ULL, sdl, Ty); 5691 else 5692 Res = DAG.getConstant(0, sdl, Ty); 5693 5694 setValue(&I, Res); 5695 return nullptr; 5696 } 5697 case Intrinsic::annotation: 5698 case Intrinsic::ptr_annotation: 5699 case Intrinsic::invariant_group_barrier: 5700 // Drop the intrinsic, but forward the value 5701 setValue(&I, getValue(I.getOperand(0))); 5702 return nullptr; 5703 case Intrinsic::assume: 5704 case Intrinsic::var_annotation: 5705 case Intrinsic::sideeffect: 5706 // Discard annotate attributes, assumptions, and artificial side-effects. 5707 return nullptr; 5708 5709 case Intrinsic::codeview_annotation: { 5710 // Emit a label associated with this metadata. 5711 MachineFunction &MF = DAG.getMachineFunction(); 5712 MCSymbol *Label = 5713 MF.getMMI().getContext().createTempSymbol("annotation", true); 5714 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5715 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5716 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5717 DAG.setRoot(Res); 5718 return nullptr; 5719 } 5720 5721 case Intrinsic::init_trampoline: { 5722 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5723 5724 SDValue Ops[6]; 5725 Ops[0] = getRoot(); 5726 Ops[1] = getValue(I.getArgOperand(0)); 5727 Ops[2] = getValue(I.getArgOperand(1)); 5728 Ops[3] = getValue(I.getArgOperand(2)); 5729 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5730 Ops[5] = DAG.getSrcValue(F); 5731 5732 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5733 5734 DAG.setRoot(Res); 5735 return nullptr; 5736 } 5737 case Intrinsic::adjust_trampoline: 5738 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5739 TLI.getPointerTy(DAG.getDataLayout()), 5740 getValue(I.getArgOperand(0)))); 5741 return nullptr; 5742 case Intrinsic::gcroot: { 5743 MachineFunction &MF = DAG.getMachineFunction(); 5744 const Function *F = MF.getFunction(); 5745 (void)F; 5746 assert(F->hasGC() && 5747 "only valid in functions with gc specified, enforced by Verifier"); 5748 assert(GFI && "implied by previous"); 5749 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5750 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5751 5752 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5753 GFI->addStackRoot(FI->getIndex(), TypeMap); 5754 return nullptr; 5755 } 5756 case Intrinsic::gcread: 5757 case Intrinsic::gcwrite: 5758 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5759 case Intrinsic::flt_rounds: 5760 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5761 return nullptr; 5762 5763 case Intrinsic::expect: 5764 // Just replace __builtin_expect(exp, c) with EXP. 5765 setValue(&I, getValue(I.getArgOperand(0))); 5766 return nullptr; 5767 5768 case Intrinsic::debugtrap: 5769 case Intrinsic::trap: { 5770 StringRef TrapFuncName = 5771 I.getAttributes() 5772 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5773 .getValueAsString(); 5774 if (TrapFuncName.empty()) { 5775 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5776 ISD::TRAP : ISD::DEBUGTRAP; 5777 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5778 return nullptr; 5779 } 5780 TargetLowering::ArgListTy Args; 5781 5782 TargetLowering::CallLoweringInfo CLI(DAG); 5783 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5784 CallingConv::C, I.getType(), 5785 DAG.getExternalSymbol(TrapFuncName.data(), 5786 TLI.getPointerTy(DAG.getDataLayout())), 5787 std::move(Args)); 5788 5789 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5790 DAG.setRoot(Result.second); 5791 return nullptr; 5792 } 5793 5794 case Intrinsic::uadd_with_overflow: 5795 case Intrinsic::sadd_with_overflow: 5796 case Intrinsic::usub_with_overflow: 5797 case Intrinsic::ssub_with_overflow: 5798 case Intrinsic::umul_with_overflow: 5799 case Intrinsic::smul_with_overflow: { 5800 ISD::NodeType Op; 5801 switch (Intrinsic) { 5802 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5803 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5804 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5805 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5806 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5807 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5808 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5809 } 5810 SDValue Op1 = getValue(I.getArgOperand(0)); 5811 SDValue Op2 = getValue(I.getArgOperand(1)); 5812 5813 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5814 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5815 return nullptr; 5816 } 5817 case Intrinsic::prefetch: { 5818 SDValue Ops[5]; 5819 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5820 Ops[0] = getRoot(); 5821 Ops[1] = getValue(I.getArgOperand(0)); 5822 Ops[2] = getValue(I.getArgOperand(1)); 5823 Ops[3] = getValue(I.getArgOperand(2)); 5824 Ops[4] = getValue(I.getArgOperand(3)); 5825 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5826 DAG.getVTList(MVT::Other), Ops, 5827 EVT::getIntegerVT(*Context, 8), 5828 MachinePointerInfo(I.getArgOperand(0)), 5829 0, /* align */ 5830 false, /* volatile */ 5831 rw==0, /* read */ 5832 rw==1)); /* write */ 5833 return nullptr; 5834 } 5835 case Intrinsic::lifetime_start: 5836 case Intrinsic::lifetime_end: { 5837 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5838 // Stack coloring is not enabled in O0, discard region information. 5839 if (TM.getOptLevel() == CodeGenOpt::None) 5840 return nullptr; 5841 5842 SmallVector<Value *, 4> Allocas; 5843 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5844 5845 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5846 E = Allocas.end(); Object != E; ++Object) { 5847 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5848 5849 // Could not find an Alloca. 5850 if (!LifetimeObject) 5851 continue; 5852 5853 // First check that the Alloca is static, otherwise it won't have a 5854 // valid frame index. 5855 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5856 if (SI == FuncInfo.StaticAllocaMap.end()) 5857 return nullptr; 5858 5859 int FI = SI->second; 5860 5861 SDValue Ops[2]; 5862 Ops[0] = getRoot(); 5863 Ops[1] = 5864 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5865 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5866 5867 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5868 DAG.setRoot(Res); 5869 } 5870 return nullptr; 5871 } 5872 case Intrinsic::invariant_start: 5873 // Discard region information. 5874 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5875 return nullptr; 5876 case Intrinsic::invariant_end: 5877 // Discard region information. 5878 return nullptr; 5879 case Intrinsic::clear_cache: 5880 return TLI.getClearCacheBuiltinName(); 5881 case Intrinsic::donothing: 5882 // ignore 5883 return nullptr; 5884 case Intrinsic::experimental_stackmap: 5885 visitStackmap(I); 5886 return nullptr; 5887 case Intrinsic::experimental_patchpoint_void: 5888 case Intrinsic::experimental_patchpoint_i64: 5889 visitPatchpoint(&I); 5890 return nullptr; 5891 case Intrinsic::experimental_gc_statepoint: 5892 LowerStatepoint(ImmutableStatepoint(&I)); 5893 return nullptr; 5894 case Intrinsic::experimental_gc_result: 5895 visitGCResult(cast<GCResultInst>(I)); 5896 return nullptr; 5897 case Intrinsic::experimental_gc_relocate: 5898 visitGCRelocate(cast<GCRelocateInst>(I)); 5899 return nullptr; 5900 case Intrinsic::instrprof_increment: 5901 llvm_unreachable("instrprof failed to lower an increment"); 5902 case Intrinsic::instrprof_value_profile: 5903 llvm_unreachable("instrprof failed to lower a value profiling call"); 5904 case Intrinsic::localescape: { 5905 MachineFunction &MF = DAG.getMachineFunction(); 5906 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5907 5908 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5909 // is the same on all targets. 5910 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5911 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5912 if (isa<ConstantPointerNull>(Arg)) 5913 continue; // Skip null pointers. They represent a hole in index space. 5914 AllocaInst *Slot = cast<AllocaInst>(Arg); 5915 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5916 "can only escape static allocas"); 5917 int FI = FuncInfo.StaticAllocaMap[Slot]; 5918 MCSymbol *FrameAllocSym = 5919 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5920 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 5921 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5922 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5923 .addSym(FrameAllocSym) 5924 .addFrameIndex(FI); 5925 } 5926 5927 return nullptr; 5928 } 5929 5930 case Intrinsic::localrecover: { 5931 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5932 MachineFunction &MF = DAG.getMachineFunction(); 5933 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5934 5935 // Get the symbol that defines the frame offset. 5936 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5937 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5938 unsigned IdxVal = 5939 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 5940 MCSymbol *FrameAllocSym = 5941 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5942 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 5943 5944 // Create a MCSymbol for the label to avoid any target lowering 5945 // that would make this PC relative. 5946 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5947 SDValue OffsetVal = 5948 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5949 5950 // Add the offset to the FP. 5951 Value *FP = I.getArgOperand(1); 5952 SDValue FPVal = getValue(FP); 5953 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5954 setValue(&I, Add); 5955 5956 return nullptr; 5957 } 5958 5959 case Intrinsic::eh_exceptionpointer: 5960 case Intrinsic::eh_exceptioncode: { 5961 // Get the exception pointer vreg, copy from it, and resize it to fit. 5962 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5963 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5964 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5965 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5966 SDValue N = 5967 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5968 if (Intrinsic == Intrinsic::eh_exceptioncode) 5969 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5970 setValue(&I, N); 5971 return nullptr; 5972 } 5973 case Intrinsic::xray_customevent: { 5974 // Here we want to make sure that the intrinsic behaves as if it has a 5975 // specific calling convention, and only for x86_64. 5976 // FIXME: Support other platforms later. 5977 const auto &Triple = DAG.getTarget().getTargetTriple(); 5978 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 5979 return nullptr; 5980 5981 SDLoc DL = getCurSDLoc(); 5982 SmallVector<SDValue, 8> Ops; 5983 5984 // We want to say that we always want the arguments in registers. 5985 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 5986 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 5987 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 5988 SDValue Chain = getRoot(); 5989 Ops.push_back(LogEntryVal); 5990 Ops.push_back(StrSizeVal); 5991 Ops.push_back(Chain); 5992 5993 // We need to enforce the calling convention for the callsite, so that 5994 // argument ordering is enforced correctly, and that register allocation can 5995 // see that some registers may be assumed clobbered and have to preserve 5996 // them across calls to the intrinsic. 5997 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 5998 DL, NodeTys, Ops); 5999 SDValue patchableNode = SDValue(MN, 0); 6000 DAG.setRoot(patchableNode); 6001 setValue(&I, patchableNode); 6002 return nullptr; 6003 } 6004 case Intrinsic::experimental_deoptimize: 6005 LowerDeoptimizeCall(&I); 6006 return nullptr; 6007 6008 case Intrinsic::experimental_vector_reduce_fadd: 6009 case Intrinsic::experimental_vector_reduce_fmul: 6010 case Intrinsic::experimental_vector_reduce_add: 6011 case Intrinsic::experimental_vector_reduce_mul: 6012 case Intrinsic::experimental_vector_reduce_and: 6013 case Intrinsic::experimental_vector_reduce_or: 6014 case Intrinsic::experimental_vector_reduce_xor: 6015 case Intrinsic::experimental_vector_reduce_smax: 6016 case Intrinsic::experimental_vector_reduce_smin: 6017 case Intrinsic::experimental_vector_reduce_umax: 6018 case Intrinsic::experimental_vector_reduce_umin: 6019 case Intrinsic::experimental_vector_reduce_fmax: 6020 case Intrinsic::experimental_vector_reduce_fmin: 6021 visitVectorReduce(I, Intrinsic); 6022 return nullptr; 6023 } 6024 } 6025 6026 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6027 const ConstrainedFPIntrinsic &FPI) { 6028 SDLoc sdl = getCurSDLoc(); 6029 unsigned Opcode; 6030 switch (FPI.getIntrinsicID()) { 6031 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6032 case Intrinsic::experimental_constrained_fadd: 6033 Opcode = ISD::STRICT_FADD; 6034 break; 6035 case Intrinsic::experimental_constrained_fsub: 6036 Opcode = ISD::STRICT_FSUB; 6037 break; 6038 case Intrinsic::experimental_constrained_fmul: 6039 Opcode = ISD::STRICT_FMUL; 6040 break; 6041 case Intrinsic::experimental_constrained_fdiv: 6042 Opcode = ISD::STRICT_FDIV; 6043 break; 6044 case Intrinsic::experimental_constrained_frem: 6045 Opcode = ISD::STRICT_FREM; 6046 break; 6047 case Intrinsic::experimental_constrained_fma: 6048 Opcode = ISD::STRICT_FMA; 6049 break; 6050 case Intrinsic::experimental_constrained_sqrt: 6051 Opcode = ISD::STRICT_FSQRT; 6052 break; 6053 case Intrinsic::experimental_constrained_pow: 6054 Opcode = ISD::STRICT_FPOW; 6055 break; 6056 case Intrinsic::experimental_constrained_powi: 6057 Opcode = ISD::STRICT_FPOWI; 6058 break; 6059 case Intrinsic::experimental_constrained_sin: 6060 Opcode = ISD::STRICT_FSIN; 6061 break; 6062 case Intrinsic::experimental_constrained_cos: 6063 Opcode = ISD::STRICT_FCOS; 6064 break; 6065 case Intrinsic::experimental_constrained_exp: 6066 Opcode = ISD::STRICT_FEXP; 6067 break; 6068 case Intrinsic::experimental_constrained_exp2: 6069 Opcode = ISD::STRICT_FEXP2; 6070 break; 6071 case Intrinsic::experimental_constrained_log: 6072 Opcode = ISD::STRICT_FLOG; 6073 break; 6074 case Intrinsic::experimental_constrained_log10: 6075 Opcode = ISD::STRICT_FLOG10; 6076 break; 6077 case Intrinsic::experimental_constrained_log2: 6078 Opcode = ISD::STRICT_FLOG2; 6079 break; 6080 case Intrinsic::experimental_constrained_rint: 6081 Opcode = ISD::STRICT_FRINT; 6082 break; 6083 case Intrinsic::experimental_constrained_nearbyint: 6084 Opcode = ISD::STRICT_FNEARBYINT; 6085 break; 6086 } 6087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6088 SDValue Chain = getRoot(); 6089 SmallVector<EVT, 4> ValueVTs; 6090 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6091 ValueVTs.push_back(MVT::Other); // Out chain 6092 6093 SDVTList VTs = DAG.getVTList(ValueVTs); 6094 SDValue Result; 6095 if (FPI.isUnaryOp()) 6096 Result = DAG.getNode(Opcode, sdl, VTs, 6097 { Chain, getValue(FPI.getArgOperand(0)) }); 6098 else if (FPI.isTernaryOp()) 6099 Result = DAG.getNode(Opcode, sdl, VTs, 6100 { Chain, getValue(FPI.getArgOperand(0)), 6101 getValue(FPI.getArgOperand(1)), 6102 getValue(FPI.getArgOperand(2)) }); 6103 else 6104 Result = DAG.getNode(Opcode, sdl, VTs, 6105 { Chain, getValue(FPI.getArgOperand(0)), 6106 getValue(FPI.getArgOperand(1)) }); 6107 6108 assert(Result.getNode()->getNumValues() == 2); 6109 SDValue OutChain = Result.getValue(1); 6110 DAG.setRoot(OutChain); 6111 SDValue FPResult = Result.getValue(0); 6112 setValue(&FPI, FPResult); 6113 } 6114 6115 std::pair<SDValue, SDValue> 6116 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6117 const BasicBlock *EHPadBB) { 6118 MachineFunction &MF = DAG.getMachineFunction(); 6119 MachineModuleInfo &MMI = MF.getMMI(); 6120 MCSymbol *BeginLabel = nullptr; 6121 6122 if (EHPadBB) { 6123 // Insert a label before the invoke call to mark the try range. This can be 6124 // used to detect deletion of the invoke via the MachineModuleInfo. 6125 BeginLabel = MMI.getContext().createTempSymbol(); 6126 6127 // For SjLj, keep track of which landing pads go with which invokes 6128 // so as to maintain the ordering of pads in the LSDA. 6129 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6130 if (CallSiteIndex) { 6131 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6132 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6133 6134 // Now that the call site is handled, stop tracking it. 6135 MMI.setCurrentCallSite(0); 6136 } 6137 6138 // Both PendingLoads and PendingExports must be flushed here; 6139 // this call might not return. 6140 (void)getRoot(); 6141 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6142 6143 CLI.setChain(getRoot()); 6144 } 6145 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6146 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6147 6148 assert((CLI.IsTailCall || Result.second.getNode()) && 6149 "Non-null chain expected with non-tail call!"); 6150 assert((Result.second.getNode() || !Result.first.getNode()) && 6151 "Null value expected with tail call!"); 6152 6153 if (!Result.second.getNode()) { 6154 // As a special case, a null chain means that a tail call has been emitted 6155 // and the DAG root is already updated. 6156 HasTailCall = true; 6157 6158 // Since there's no actual continuation from this block, nothing can be 6159 // relying on us setting vregs for them. 6160 PendingExports.clear(); 6161 } else { 6162 DAG.setRoot(Result.second); 6163 } 6164 6165 if (EHPadBB) { 6166 // Insert a label at the end of the invoke call to mark the try range. This 6167 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6168 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6169 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6170 6171 // Inform MachineModuleInfo of range. 6172 if (MF.hasEHFunclets()) { 6173 assert(CLI.CS); 6174 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6175 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6176 BeginLabel, EndLabel); 6177 } else { 6178 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6179 } 6180 } 6181 6182 return Result; 6183 } 6184 6185 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6186 bool isTailCall, 6187 const BasicBlock *EHPadBB) { 6188 auto &DL = DAG.getDataLayout(); 6189 FunctionType *FTy = CS.getFunctionType(); 6190 Type *RetTy = CS.getType(); 6191 6192 TargetLowering::ArgListTy Args; 6193 Args.reserve(CS.arg_size()); 6194 6195 const Value *SwiftErrorVal = nullptr; 6196 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6197 6198 // We can't tail call inside a function with a swifterror argument. Lowering 6199 // does not support this yet. It would have to move into the swifterror 6200 // register before the call. 6201 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6202 if (TLI.supportSwiftError() && 6203 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6204 isTailCall = false; 6205 6206 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6207 i != e; ++i) { 6208 TargetLowering::ArgListEntry Entry; 6209 const Value *V = *i; 6210 6211 // Skip empty types 6212 if (V->getType()->isEmptyTy()) 6213 continue; 6214 6215 SDValue ArgNode = getValue(V); 6216 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6217 6218 Entry.setAttributes(&CS, i - CS.arg_begin()); 6219 6220 // Use swifterror virtual register as input to the call. 6221 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6222 SwiftErrorVal = V; 6223 // We find the virtual register for the actual swifterror argument. 6224 // Instead of using the Value, we use the virtual register instead. 6225 Entry.Node = DAG.getRegister(FuncInfo 6226 .getOrCreateSwiftErrorVRegUseAt( 6227 CS.getInstruction(), FuncInfo.MBB, V) 6228 .first, 6229 EVT(TLI.getPointerTy(DL))); 6230 } 6231 6232 Args.push_back(Entry); 6233 6234 // If we have an explicit sret argument that is an Instruction, (i.e., it 6235 // might point to function-local memory), we can't meaningfully tail-call. 6236 if (Entry.IsSRet && isa<Instruction>(V)) 6237 isTailCall = false; 6238 } 6239 6240 // Check if target-independent constraints permit a tail call here. 6241 // Target-dependent constraints are checked within TLI->LowerCallTo. 6242 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6243 isTailCall = false; 6244 6245 // Disable tail calls if there is an swifterror argument. Targets have not 6246 // been updated to support tail calls. 6247 if (TLI.supportSwiftError() && SwiftErrorVal) 6248 isTailCall = false; 6249 6250 TargetLowering::CallLoweringInfo CLI(DAG); 6251 CLI.setDebugLoc(getCurSDLoc()) 6252 .setChain(getRoot()) 6253 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6254 .setTailCall(isTailCall) 6255 .setConvergent(CS.isConvergent()); 6256 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6257 6258 if (Result.first.getNode()) { 6259 const Instruction *Inst = CS.getInstruction(); 6260 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6261 setValue(Inst, Result.first); 6262 } 6263 6264 // The last element of CLI.InVals has the SDValue for swifterror return. 6265 // Here we copy it to a virtual register and update SwiftErrorMap for 6266 // book-keeping. 6267 if (SwiftErrorVal && TLI.supportSwiftError()) { 6268 // Get the last element of InVals. 6269 SDValue Src = CLI.InVals.back(); 6270 unsigned VReg; bool CreatedVReg; 6271 std::tie(VReg, CreatedVReg) = 6272 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6273 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6274 // We update the virtual register for the actual swifterror argument. 6275 if (CreatedVReg) 6276 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6277 DAG.setRoot(CopyNode); 6278 } 6279 } 6280 6281 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6282 SelectionDAGBuilder &Builder) { 6283 // Check to see if this load can be trivially constant folded, e.g. if the 6284 // input is from a string literal. 6285 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6286 // Cast pointer to the type we really want to load. 6287 Type *LoadTy = 6288 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6289 if (LoadVT.isVector()) 6290 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6291 6292 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6293 PointerType::getUnqual(LoadTy)); 6294 6295 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6296 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6297 return Builder.getValue(LoadCst); 6298 } 6299 6300 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6301 // still constant memory, the input chain can be the entry node. 6302 SDValue Root; 6303 bool ConstantMemory = false; 6304 6305 // Do not serialize (non-volatile) loads of constant memory with anything. 6306 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6307 Root = Builder.DAG.getEntryNode(); 6308 ConstantMemory = true; 6309 } else { 6310 // Do not serialize non-volatile loads against each other. 6311 Root = Builder.DAG.getRoot(); 6312 } 6313 6314 SDValue Ptr = Builder.getValue(PtrVal); 6315 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6316 Ptr, MachinePointerInfo(PtrVal), 6317 /* Alignment = */ 1); 6318 6319 if (!ConstantMemory) 6320 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6321 return LoadVal; 6322 } 6323 6324 /// Record the value for an instruction that produces an integer result, 6325 /// converting the type where necessary. 6326 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6327 SDValue Value, 6328 bool IsSigned) { 6329 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6330 I.getType(), true); 6331 if (IsSigned) 6332 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6333 else 6334 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6335 setValue(&I, Value); 6336 } 6337 6338 /// See if we can lower a memcmp call into an optimized form. If so, return 6339 /// true and lower it. Otherwise return false, and it will be lowered like a 6340 /// normal call. 6341 /// The caller already checked that \p I calls the appropriate LibFunc with a 6342 /// correct prototype. 6343 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6344 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6345 const Value *Size = I.getArgOperand(2); 6346 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6347 if (CSize && CSize->getZExtValue() == 0) { 6348 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6349 I.getType(), true); 6350 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6351 return true; 6352 } 6353 6354 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6355 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6356 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6357 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6358 if (Res.first.getNode()) { 6359 processIntegerCallValue(I, Res.first, true); 6360 PendingLoads.push_back(Res.second); 6361 return true; 6362 } 6363 6364 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6365 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6366 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6367 return false; 6368 6369 // If the target has a fast compare for the given size, it will return a 6370 // preferred load type for that size. Require that the load VT is legal and 6371 // that the target supports unaligned loads of that type. Otherwise, return 6372 // INVALID. 6373 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6375 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6376 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6377 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6378 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6379 // TODO: Check alignment of src and dest ptrs. 6380 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6381 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6382 if (!TLI.isTypeLegal(LVT) || 6383 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6384 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6385 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6386 } 6387 6388 return LVT; 6389 }; 6390 6391 // This turns into unaligned loads. We only do this if the target natively 6392 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6393 // we'll only produce a small number of byte loads. 6394 MVT LoadVT; 6395 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6396 switch (NumBitsToCompare) { 6397 default: 6398 return false; 6399 case 16: 6400 LoadVT = MVT::i16; 6401 break; 6402 case 32: 6403 LoadVT = MVT::i32; 6404 break; 6405 case 64: 6406 case 128: 6407 case 256: 6408 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6409 break; 6410 } 6411 6412 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6413 return false; 6414 6415 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6416 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6417 6418 // Bitcast to a wide integer type if the loads are vectors. 6419 if (LoadVT.isVector()) { 6420 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6421 LoadL = DAG.getBitcast(CmpVT, LoadL); 6422 LoadR = DAG.getBitcast(CmpVT, LoadR); 6423 } 6424 6425 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6426 processIntegerCallValue(I, Cmp, false); 6427 return true; 6428 } 6429 6430 /// See if we can lower a memchr call into an optimized form. If so, return 6431 /// true and lower it. Otherwise return false, and it will be lowered like a 6432 /// normal call. 6433 /// The caller already checked that \p I calls the appropriate LibFunc with a 6434 /// correct prototype. 6435 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6436 const Value *Src = I.getArgOperand(0); 6437 const Value *Char = I.getArgOperand(1); 6438 const Value *Length = I.getArgOperand(2); 6439 6440 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6441 std::pair<SDValue, SDValue> Res = 6442 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6443 getValue(Src), getValue(Char), getValue(Length), 6444 MachinePointerInfo(Src)); 6445 if (Res.first.getNode()) { 6446 setValue(&I, Res.first); 6447 PendingLoads.push_back(Res.second); 6448 return true; 6449 } 6450 6451 return false; 6452 } 6453 6454 /// See if we can lower a mempcpy call into an optimized form. If so, return 6455 /// true and lower it. Otherwise return false, and it will be lowered like a 6456 /// normal call. 6457 /// The caller already checked that \p I calls the appropriate LibFunc with a 6458 /// correct prototype. 6459 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6460 SDValue Dst = getValue(I.getArgOperand(0)); 6461 SDValue Src = getValue(I.getArgOperand(1)); 6462 SDValue Size = getValue(I.getArgOperand(2)); 6463 6464 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6465 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6466 unsigned Align = std::min(DstAlign, SrcAlign); 6467 if (Align == 0) // Alignment of one or both could not be inferred. 6468 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6469 6470 bool isVol = false; 6471 SDLoc sdl = getCurSDLoc(); 6472 6473 // In the mempcpy context we need to pass in a false value for isTailCall 6474 // because the return pointer needs to be adjusted by the size of 6475 // the copied memory. 6476 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6477 false, /*isTailCall=*/false, 6478 MachinePointerInfo(I.getArgOperand(0)), 6479 MachinePointerInfo(I.getArgOperand(1))); 6480 assert(MC.getNode() != nullptr && 6481 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6482 DAG.setRoot(MC); 6483 6484 // Check if Size needs to be truncated or extended. 6485 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6486 6487 // Adjust return pointer to point just past the last dst byte. 6488 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6489 Dst, Size); 6490 setValue(&I, DstPlusSize); 6491 return true; 6492 } 6493 6494 /// See if we can lower a strcpy call into an optimized form. If so, return 6495 /// true and lower it, otherwise return false and it will be lowered like a 6496 /// normal call. 6497 /// The caller already checked that \p I calls the appropriate LibFunc with a 6498 /// correct prototype. 6499 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6500 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6501 6502 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6503 std::pair<SDValue, SDValue> Res = 6504 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6505 getValue(Arg0), getValue(Arg1), 6506 MachinePointerInfo(Arg0), 6507 MachinePointerInfo(Arg1), isStpcpy); 6508 if (Res.first.getNode()) { 6509 setValue(&I, Res.first); 6510 DAG.setRoot(Res.second); 6511 return true; 6512 } 6513 6514 return false; 6515 } 6516 6517 /// See if we can lower a strcmp call into an optimized form. If so, return 6518 /// true and lower it, otherwise return false and it will be lowered like a 6519 /// normal call. 6520 /// The caller already checked that \p I calls the appropriate LibFunc with a 6521 /// correct prototype. 6522 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6523 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6524 6525 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6526 std::pair<SDValue, SDValue> Res = 6527 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6528 getValue(Arg0), getValue(Arg1), 6529 MachinePointerInfo(Arg0), 6530 MachinePointerInfo(Arg1)); 6531 if (Res.first.getNode()) { 6532 processIntegerCallValue(I, Res.first, true); 6533 PendingLoads.push_back(Res.second); 6534 return true; 6535 } 6536 6537 return false; 6538 } 6539 6540 /// See if we can lower a strlen call into an optimized form. If so, return 6541 /// true and lower it, otherwise return false and it will be lowered like a 6542 /// normal call. 6543 /// The caller already checked that \p I calls the appropriate LibFunc with a 6544 /// correct prototype. 6545 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6546 const Value *Arg0 = I.getArgOperand(0); 6547 6548 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6549 std::pair<SDValue, SDValue> Res = 6550 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6551 getValue(Arg0), MachinePointerInfo(Arg0)); 6552 if (Res.first.getNode()) { 6553 processIntegerCallValue(I, Res.first, false); 6554 PendingLoads.push_back(Res.second); 6555 return true; 6556 } 6557 6558 return false; 6559 } 6560 6561 /// See if we can lower a strnlen call into an optimized form. If so, return 6562 /// true and lower it, otherwise return false and it will be lowered like a 6563 /// normal call. 6564 /// The caller already checked that \p I calls the appropriate LibFunc with a 6565 /// correct prototype. 6566 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6567 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6568 6569 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6570 std::pair<SDValue, SDValue> Res = 6571 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6572 getValue(Arg0), getValue(Arg1), 6573 MachinePointerInfo(Arg0)); 6574 if (Res.first.getNode()) { 6575 processIntegerCallValue(I, Res.first, false); 6576 PendingLoads.push_back(Res.second); 6577 return true; 6578 } 6579 6580 return false; 6581 } 6582 6583 /// See if we can lower a unary floating-point operation into an SDNode with 6584 /// the specified Opcode. If so, return true and lower it, otherwise return 6585 /// false and it will be lowered like a normal call. 6586 /// The caller already checked that \p I calls the appropriate LibFunc with a 6587 /// correct prototype. 6588 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6589 unsigned Opcode) { 6590 // We already checked this call's prototype; verify it doesn't modify errno. 6591 if (!I.onlyReadsMemory()) 6592 return false; 6593 6594 SDValue Tmp = getValue(I.getArgOperand(0)); 6595 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6596 return true; 6597 } 6598 6599 /// See if we can lower a binary floating-point operation into an SDNode with 6600 /// the specified Opcode. If so, return true and lower it. Otherwise return 6601 /// false, and it will be lowered like a normal call. 6602 /// The caller already checked that \p I calls the appropriate LibFunc with a 6603 /// correct prototype. 6604 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6605 unsigned Opcode) { 6606 // We already checked this call's prototype; verify it doesn't modify errno. 6607 if (!I.onlyReadsMemory()) 6608 return false; 6609 6610 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6611 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6612 EVT VT = Tmp0.getValueType(); 6613 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6614 return true; 6615 } 6616 6617 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6618 // Handle inline assembly differently. 6619 if (isa<InlineAsm>(I.getCalledValue())) { 6620 visitInlineAsm(&I); 6621 return; 6622 } 6623 6624 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6625 computeUsesVAFloatArgument(I, MMI); 6626 6627 const char *RenameFn = nullptr; 6628 if (Function *F = I.getCalledFunction()) { 6629 if (F->isDeclaration()) { 6630 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6631 if (unsigned IID = II->getIntrinsicID(F)) { 6632 RenameFn = visitIntrinsicCall(I, IID); 6633 if (!RenameFn) 6634 return; 6635 } 6636 } 6637 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6638 RenameFn = visitIntrinsicCall(I, IID); 6639 if (!RenameFn) 6640 return; 6641 } 6642 } 6643 6644 // Check for well-known libc/libm calls. If the function is internal, it 6645 // can't be a library call. Don't do the check if marked as nobuiltin for 6646 // some reason or the call site requires strict floating point semantics. 6647 LibFunc Func; 6648 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6649 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6650 LibInfo->hasOptimizedCodeGen(Func)) { 6651 switch (Func) { 6652 default: break; 6653 case LibFunc_copysign: 6654 case LibFunc_copysignf: 6655 case LibFunc_copysignl: 6656 // We already checked this call's prototype; verify it doesn't modify 6657 // errno. 6658 if (I.onlyReadsMemory()) { 6659 SDValue LHS = getValue(I.getArgOperand(0)); 6660 SDValue RHS = getValue(I.getArgOperand(1)); 6661 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6662 LHS.getValueType(), LHS, RHS)); 6663 return; 6664 } 6665 break; 6666 case LibFunc_fabs: 6667 case LibFunc_fabsf: 6668 case LibFunc_fabsl: 6669 if (visitUnaryFloatCall(I, ISD::FABS)) 6670 return; 6671 break; 6672 case LibFunc_fmin: 6673 case LibFunc_fminf: 6674 case LibFunc_fminl: 6675 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6676 return; 6677 break; 6678 case LibFunc_fmax: 6679 case LibFunc_fmaxf: 6680 case LibFunc_fmaxl: 6681 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6682 return; 6683 break; 6684 case LibFunc_sin: 6685 case LibFunc_sinf: 6686 case LibFunc_sinl: 6687 if (visitUnaryFloatCall(I, ISD::FSIN)) 6688 return; 6689 break; 6690 case LibFunc_cos: 6691 case LibFunc_cosf: 6692 case LibFunc_cosl: 6693 if (visitUnaryFloatCall(I, ISD::FCOS)) 6694 return; 6695 break; 6696 case LibFunc_sqrt: 6697 case LibFunc_sqrtf: 6698 case LibFunc_sqrtl: 6699 case LibFunc_sqrt_finite: 6700 case LibFunc_sqrtf_finite: 6701 case LibFunc_sqrtl_finite: 6702 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6703 return; 6704 break; 6705 case LibFunc_floor: 6706 case LibFunc_floorf: 6707 case LibFunc_floorl: 6708 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6709 return; 6710 break; 6711 case LibFunc_nearbyint: 6712 case LibFunc_nearbyintf: 6713 case LibFunc_nearbyintl: 6714 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6715 return; 6716 break; 6717 case LibFunc_ceil: 6718 case LibFunc_ceilf: 6719 case LibFunc_ceill: 6720 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6721 return; 6722 break; 6723 case LibFunc_rint: 6724 case LibFunc_rintf: 6725 case LibFunc_rintl: 6726 if (visitUnaryFloatCall(I, ISD::FRINT)) 6727 return; 6728 break; 6729 case LibFunc_round: 6730 case LibFunc_roundf: 6731 case LibFunc_roundl: 6732 if (visitUnaryFloatCall(I, ISD::FROUND)) 6733 return; 6734 break; 6735 case LibFunc_trunc: 6736 case LibFunc_truncf: 6737 case LibFunc_truncl: 6738 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6739 return; 6740 break; 6741 case LibFunc_log2: 6742 case LibFunc_log2f: 6743 case LibFunc_log2l: 6744 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6745 return; 6746 break; 6747 case LibFunc_exp2: 6748 case LibFunc_exp2f: 6749 case LibFunc_exp2l: 6750 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6751 return; 6752 break; 6753 case LibFunc_memcmp: 6754 if (visitMemCmpCall(I)) 6755 return; 6756 break; 6757 case LibFunc_mempcpy: 6758 if (visitMemPCpyCall(I)) 6759 return; 6760 break; 6761 case LibFunc_memchr: 6762 if (visitMemChrCall(I)) 6763 return; 6764 break; 6765 case LibFunc_strcpy: 6766 if (visitStrCpyCall(I, false)) 6767 return; 6768 break; 6769 case LibFunc_stpcpy: 6770 if (visitStrCpyCall(I, true)) 6771 return; 6772 break; 6773 case LibFunc_strcmp: 6774 if (visitStrCmpCall(I)) 6775 return; 6776 break; 6777 case LibFunc_strlen: 6778 if (visitStrLenCall(I)) 6779 return; 6780 break; 6781 case LibFunc_strnlen: 6782 if (visitStrNLenCall(I)) 6783 return; 6784 break; 6785 } 6786 } 6787 } 6788 6789 SDValue Callee; 6790 if (!RenameFn) 6791 Callee = getValue(I.getCalledValue()); 6792 else 6793 Callee = DAG.getExternalSymbol( 6794 RenameFn, 6795 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6796 6797 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6798 // have to do anything here to lower funclet bundles. 6799 assert(!I.hasOperandBundlesOtherThan( 6800 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6801 "Cannot lower calls with arbitrary operand bundles!"); 6802 6803 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6804 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6805 else 6806 // Check if we can potentially perform a tail call. More detailed checking 6807 // is be done within LowerCallTo, after more information about the call is 6808 // known. 6809 LowerCallTo(&I, Callee, I.isTailCall()); 6810 } 6811 6812 namespace { 6813 6814 /// AsmOperandInfo - This contains information for each constraint that we are 6815 /// lowering. 6816 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6817 public: 6818 /// CallOperand - If this is the result output operand or a clobber 6819 /// this is null, otherwise it is the incoming operand to the CallInst. 6820 /// This gets modified as the asm is processed. 6821 SDValue CallOperand; 6822 6823 /// AssignedRegs - If this is a register or register class operand, this 6824 /// contains the set of register corresponding to the operand. 6825 RegsForValue AssignedRegs; 6826 6827 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6828 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 6829 } 6830 6831 /// Whether or not this operand accesses memory 6832 bool hasMemory(const TargetLowering &TLI) const { 6833 // Indirect operand accesses access memory. 6834 if (isIndirect) 6835 return true; 6836 6837 for (const auto &Code : Codes) 6838 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6839 return true; 6840 6841 return false; 6842 } 6843 6844 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6845 /// corresponds to. If there is no Value* for this operand, it returns 6846 /// MVT::Other. 6847 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6848 const DataLayout &DL) const { 6849 if (!CallOperandVal) return MVT::Other; 6850 6851 if (isa<BasicBlock>(CallOperandVal)) 6852 return TLI.getPointerTy(DL); 6853 6854 llvm::Type *OpTy = CallOperandVal->getType(); 6855 6856 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6857 // If this is an indirect operand, the operand is a pointer to the 6858 // accessed type. 6859 if (isIndirect) { 6860 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6861 if (!PtrTy) 6862 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6863 OpTy = PtrTy->getElementType(); 6864 } 6865 6866 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6867 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6868 if (STy->getNumElements() == 1) 6869 OpTy = STy->getElementType(0); 6870 6871 // If OpTy is not a single value, it may be a struct/union that we 6872 // can tile with integers. 6873 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6874 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6875 switch (BitSize) { 6876 default: break; 6877 case 1: 6878 case 8: 6879 case 16: 6880 case 32: 6881 case 64: 6882 case 128: 6883 OpTy = IntegerType::get(Context, BitSize); 6884 break; 6885 } 6886 } 6887 6888 return TLI.getValueType(DL, OpTy, true); 6889 } 6890 }; 6891 6892 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 6893 6894 } // end anonymous namespace 6895 6896 /// Make sure that the output operand \p OpInfo and its corresponding input 6897 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6898 /// out). 6899 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6900 SDISelAsmOperandInfo &MatchingOpInfo, 6901 SelectionDAG &DAG) { 6902 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6903 return; 6904 6905 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6906 const auto &TLI = DAG.getTargetLoweringInfo(); 6907 6908 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6909 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6910 OpInfo.ConstraintVT); 6911 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6912 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6913 MatchingOpInfo.ConstraintVT); 6914 if ((OpInfo.ConstraintVT.isInteger() != 6915 MatchingOpInfo.ConstraintVT.isInteger()) || 6916 (MatchRC.second != InputRC.second)) { 6917 // FIXME: error out in a more elegant fashion 6918 report_fatal_error("Unsupported asm: input constraint" 6919 " with a matching output constraint of" 6920 " incompatible type!"); 6921 } 6922 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6923 } 6924 6925 /// Get a direct memory input to behave well as an indirect operand. 6926 /// This may introduce stores, hence the need for a \p Chain. 6927 /// \return The (possibly updated) chain. 6928 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6929 SDISelAsmOperandInfo &OpInfo, 6930 SelectionDAG &DAG) { 6931 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6932 6933 // If we don't have an indirect input, put it in the constpool if we can, 6934 // otherwise spill it to a stack slot. 6935 // TODO: This isn't quite right. We need to handle these according to 6936 // the addressing mode that the constraint wants. Also, this may take 6937 // an additional register for the computation and we don't want that 6938 // either. 6939 6940 // If the operand is a float, integer, or vector constant, spill to a 6941 // constant pool entry to get its address. 6942 const Value *OpVal = OpInfo.CallOperandVal; 6943 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6944 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6945 OpInfo.CallOperand = DAG.getConstantPool( 6946 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6947 return Chain; 6948 } 6949 6950 // Otherwise, create a stack slot and emit a store to it before the asm. 6951 Type *Ty = OpVal->getType(); 6952 auto &DL = DAG.getDataLayout(); 6953 uint64_t TySize = DL.getTypeAllocSize(Ty); 6954 unsigned Align = DL.getPrefTypeAlignment(Ty); 6955 MachineFunction &MF = DAG.getMachineFunction(); 6956 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6957 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 6958 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6959 MachinePointerInfo::getFixedStack(MF, SSFI)); 6960 OpInfo.CallOperand = StackSlot; 6961 6962 return Chain; 6963 } 6964 6965 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6966 /// specified operand. We prefer to assign virtual registers, to allow the 6967 /// register allocator to handle the assignment process. However, if the asm 6968 /// uses features that we can't model on machineinstrs, we have SDISel do the 6969 /// allocation. This produces generally horrible, but correct, code. 6970 /// 6971 /// OpInfo describes the operand. 6972 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6973 const SDLoc &DL, 6974 SDISelAsmOperandInfo &OpInfo) { 6975 LLVMContext &Context = *DAG.getContext(); 6976 6977 MachineFunction &MF = DAG.getMachineFunction(); 6978 SmallVector<unsigned, 4> Regs; 6979 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6980 6981 // If this is a constraint for a single physreg, or a constraint for a 6982 // register class, find it. 6983 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6984 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 6985 OpInfo.ConstraintVT); 6986 6987 unsigned NumRegs = 1; 6988 if (OpInfo.ConstraintVT != MVT::Other) { 6989 // If this is a FP input in an integer register (or visa versa) insert a bit 6990 // cast of the input value. More generally, handle any case where the input 6991 // value disagrees with the register class we plan to stick this in. 6992 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 6993 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 6994 // Try to convert to the first EVT that the reg class contains. If the 6995 // types are identical size, use a bitcast to convert (e.g. two differing 6996 // vector types). 6997 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 6998 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6999 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7000 RegVT, OpInfo.CallOperand); 7001 OpInfo.ConstraintVT = RegVT; 7002 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7003 // If the input is a FP value and we want it in FP registers, do a 7004 // bitcast to the corresponding integer type. This turns an f64 value 7005 // into i64, which can be passed with two i32 values on a 32-bit 7006 // machine. 7007 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7008 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7009 RegVT, OpInfo.CallOperand); 7010 OpInfo.ConstraintVT = RegVT; 7011 } 7012 } 7013 7014 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7015 } 7016 7017 MVT RegVT; 7018 EVT ValueVT = OpInfo.ConstraintVT; 7019 7020 // If this is a constraint for a specific physical register, like {r17}, 7021 // assign it now. 7022 if (unsigned AssignedReg = PhysReg.first) { 7023 const TargetRegisterClass *RC = PhysReg.second; 7024 if (OpInfo.ConstraintVT == MVT::Other) 7025 ValueVT = *TRI.legalclasstypes_begin(*RC); 7026 7027 // Get the actual register value type. This is important, because the user 7028 // may have asked for (e.g.) the AX register in i32 type. We need to 7029 // remember that AX is actually i16 to get the right extension. 7030 RegVT = *TRI.legalclasstypes_begin(*RC); 7031 7032 // This is a explicit reference to a physical register. 7033 Regs.push_back(AssignedReg); 7034 7035 // If this is an expanded reference, add the rest of the regs to Regs. 7036 if (NumRegs != 1) { 7037 TargetRegisterClass::iterator I = RC->begin(); 7038 for (; *I != AssignedReg; ++I) 7039 assert(I != RC->end() && "Didn't find reg!"); 7040 7041 // Already added the first reg. 7042 --NumRegs; ++I; 7043 for (; NumRegs; --NumRegs, ++I) { 7044 assert(I != RC->end() && "Ran out of registers to allocate!"); 7045 Regs.push_back(*I); 7046 } 7047 } 7048 7049 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7050 return; 7051 } 7052 7053 // Otherwise, if this was a reference to an LLVM register class, create vregs 7054 // for this reference. 7055 if (const TargetRegisterClass *RC = PhysReg.second) { 7056 RegVT = *TRI.legalclasstypes_begin(*RC); 7057 if (OpInfo.ConstraintVT == MVT::Other) 7058 ValueVT = RegVT; 7059 7060 // Create the appropriate number of virtual registers. 7061 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7062 for (; NumRegs; --NumRegs) 7063 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7064 7065 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7066 return; 7067 } 7068 7069 // Otherwise, we couldn't allocate enough registers for this. 7070 } 7071 7072 static unsigned 7073 findMatchingInlineAsmOperand(unsigned OperandNo, 7074 const std::vector<SDValue> &AsmNodeOperands) { 7075 // Scan until we find the definition we already emitted of this operand. 7076 unsigned CurOp = InlineAsm::Op_FirstOperand; 7077 for (; OperandNo; --OperandNo) { 7078 // Advance to the next operand. 7079 unsigned OpFlag = 7080 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7081 assert((InlineAsm::isRegDefKind(OpFlag) || 7082 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7083 InlineAsm::isMemKind(OpFlag)) && 7084 "Skipped past definitions?"); 7085 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7086 } 7087 return CurOp; 7088 } 7089 7090 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7091 /// \return true if it has succeeded, false otherwise 7092 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7093 MVT RegVT, SelectionDAG &DAG) { 7094 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7095 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7096 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7097 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7098 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7099 else 7100 return false; 7101 } 7102 return true; 7103 } 7104 7105 namespace { 7106 7107 class ExtraFlags { 7108 unsigned Flags = 0; 7109 7110 public: 7111 explicit ExtraFlags(ImmutableCallSite CS) { 7112 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7113 if (IA->hasSideEffects()) 7114 Flags |= InlineAsm::Extra_HasSideEffects; 7115 if (IA->isAlignStack()) 7116 Flags |= InlineAsm::Extra_IsAlignStack; 7117 if (CS.isConvergent()) 7118 Flags |= InlineAsm::Extra_IsConvergent; 7119 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7120 } 7121 7122 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7123 // Ideally, we would only check against memory constraints. However, the 7124 // meaning of an Other constraint can be target-specific and we can't easily 7125 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7126 // for Other constraints as well. 7127 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7128 OpInfo.ConstraintType == TargetLowering::C_Other) { 7129 if (OpInfo.Type == InlineAsm::isInput) 7130 Flags |= InlineAsm::Extra_MayLoad; 7131 else if (OpInfo.Type == InlineAsm::isOutput) 7132 Flags |= InlineAsm::Extra_MayStore; 7133 else if (OpInfo.Type == InlineAsm::isClobber) 7134 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7135 } 7136 } 7137 7138 unsigned get() const { return Flags; } 7139 }; 7140 7141 } // end anonymous namespace 7142 7143 /// visitInlineAsm - Handle a call to an InlineAsm object. 7144 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7145 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7146 7147 /// ConstraintOperands - Information about all of the constraints. 7148 SDISelAsmOperandInfoVector ConstraintOperands; 7149 7150 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7151 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7152 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7153 7154 bool hasMemory = false; 7155 7156 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7157 ExtraFlags ExtraInfo(CS); 7158 7159 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7160 unsigned ResNo = 0; // ResNo - The result number of the next output. 7161 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7162 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7163 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7164 7165 MVT OpVT = MVT::Other; 7166 7167 // Compute the value type for each operand. 7168 if (OpInfo.Type == InlineAsm::isInput || 7169 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7170 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7171 7172 // Process the call argument. BasicBlocks are labels, currently appearing 7173 // only in asm's. 7174 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7175 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7176 } else { 7177 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7178 } 7179 7180 OpVT = 7181 OpInfo 7182 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7183 .getSimpleVT(); 7184 } 7185 7186 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7187 // The return value of the call is this value. As such, there is no 7188 // corresponding argument. 7189 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7190 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7191 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7192 STy->getElementType(ResNo)); 7193 } else { 7194 assert(ResNo == 0 && "Asm only has one result!"); 7195 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7196 } 7197 ++ResNo; 7198 } 7199 7200 OpInfo.ConstraintVT = OpVT; 7201 7202 if (!hasMemory) 7203 hasMemory = OpInfo.hasMemory(TLI); 7204 7205 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7206 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7207 auto TargetConstraint = TargetConstraints[i]; 7208 7209 // Compute the constraint code and ConstraintType to use. 7210 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7211 7212 ExtraInfo.update(TargetConstraint); 7213 } 7214 7215 SDValue Chain, Flag; 7216 7217 // We won't need to flush pending loads if this asm doesn't touch 7218 // memory and is nonvolatile. 7219 if (hasMemory || IA->hasSideEffects()) 7220 Chain = getRoot(); 7221 else 7222 Chain = DAG.getRoot(); 7223 7224 // Second pass over the constraints: compute which constraint option to use 7225 // and assign registers to constraints that want a specific physreg. 7226 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7227 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7228 7229 // If this is an output operand with a matching input operand, look up the 7230 // matching input. If their types mismatch, e.g. one is an integer, the 7231 // other is floating point, or their sizes are different, flag it as an 7232 // error. 7233 if (OpInfo.hasMatchingInput()) { 7234 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7235 patchMatchingInput(OpInfo, Input, DAG); 7236 } 7237 7238 // Compute the constraint code and ConstraintType to use. 7239 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7240 7241 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7242 OpInfo.Type == InlineAsm::isClobber) 7243 continue; 7244 7245 // If this is a memory input, and if the operand is not indirect, do what we 7246 // need to to provide an address for the memory input. 7247 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7248 !OpInfo.isIndirect) { 7249 assert((OpInfo.isMultipleAlternative || 7250 (OpInfo.Type == InlineAsm::isInput)) && 7251 "Can only indirectify direct input operands!"); 7252 7253 // Memory operands really want the address of the value. 7254 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7255 7256 // There is no longer a Value* corresponding to this operand. 7257 OpInfo.CallOperandVal = nullptr; 7258 7259 // It is now an indirect operand. 7260 OpInfo.isIndirect = true; 7261 } 7262 7263 // If this constraint is for a specific register, allocate it before 7264 // anything else. 7265 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7266 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7267 } 7268 7269 // Third pass - Loop over all of the operands, assigning virtual or physregs 7270 // to register class operands. 7271 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7272 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7273 7274 // C_Register operands have already been allocated, Other/Memory don't need 7275 // to be. 7276 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7277 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7278 } 7279 7280 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7281 std::vector<SDValue> AsmNodeOperands; 7282 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7283 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7284 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7285 7286 // If we have a !srcloc metadata node associated with it, we want to attach 7287 // this to the ultimately generated inline asm machineinstr. To do this, we 7288 // pass in the third operand as this (potentially null) inline asm MDNode. 7289 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7290 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7291 7292 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7293 // bits as operand 3. 7294 AsmNodeOperands.push_back(DAG.getTargetConstant( 7295 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7296 7297 // Loop over all of the inputs, copying the operand values into the 7298 // appropriate registers and processing the output regs. 7299 RegsForValue RetValRegs; 7300 7301 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7302 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7303 7304 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7305 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7306 7307 switch (OpInfo.Type) { 7308 case InlineAsm::isOutput: 7309 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7310 OpInfo.ConstraintType != TargetLowering::C_Register) { 7311 // Memory output, or 'other' output (e.g. 'X' constraint). 7312 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7313 7314 unsigned ConstraintID = 7315 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7316 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7317 "Failed to convert memory constraint code to constraint id."); 7318 7319 // Add information to the INLINEASM node to know about this output. 7320 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7321 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7322 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7323 MVT::i32)); 7324 AsmNodeOperands.push_back(OpInfo.CallOperand); 7325 break; 7326 } 7327 7328 // Otherwise, this is a register or register class output. 7329 7330 // Copy the output from the appropriate register. Find a register that 7331 // we can use. 7332 if (OpInfo.AssignedRegs.Regs.empty()) { 7333 emitInlineAsmError( 7334 CS, "couldn't allocate output register for constraint '" + 7335 Twine(OpInfo.ConstraintCode) + "'"); 7336 return; 7337 } 7338 7339 // If this is an indirect operand, store through the pointer after the 7340 // asm. 7341 if (OpInfo.isIndirect) { 7342 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7343 OpInfo.CallOperandVal)); 7344 } else { 7345 // This is the result value of the call. 7346 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7347 // Concatenate this output onto the outputs list. 7348 RetValRegs.append(OpInfo.AssignedRegs); 7349 } 7350 7351 // Add information to the INLINEASM node to know that this register is 7352 // set. 7353 OpInfo.AssignedRegs 7354 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7355 ? InlineAsm::Kind_RegDefEarlyClobber 7356 : InlineAsm::Kind_RegDef, 7357 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7358 break; 7359 7360 case InlineAsm::isInput: { 7361 SDValue InOperandVal = OpInfo.CallOperand; 7362 7363 if (OpInfo.isMatchingInputConstraint()) { 7364 // If this is required to match an output register we have already set, 7365 // just use its register. 7366 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7367 AsmNodeOperands); 7368 unsigned OpFlag = 7369 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7370 if (InlineAsm::isRegDefKind(OpFlag) || 7371 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7372 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7373 if (OpInfo.isIndirect) { 7374 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7375 emitInlineAsmError(CS, "inline asm not supported yet:" 7376 " don't know how to handle tied " 7377 "indirect register inputs"); 7378 return; 7379 } 7380 7381 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7382 SmallVector<unsigned, 4> Regs; 7383 7384 if (!createVirtualRegs(Regs, 7385 InlineAsm::getNumOperandRegisters(OpFlag), 7386 RegVT, DAG)) { 7387 emitInlineAsmError(CS, "inline asm error: This value type register " 7388 "class is not natively supported!"); 7389 return; 7390 } 7391 7392 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7393 7394 SDLoc dl = getCurSDLoc(); 7395 // Use the produced MatchedRegs object to 7396 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7397 CS.getInstruction()); 7398 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7399 true, OpInfo.getMatchedOperand(), dl, 7400 DAG, AsmNodeOperands); 7401 break; 7402 } 7403 7404 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7405 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7406 "Unexpected number of operands"); 7407 // Add information to the INLINEASM node to know about this input. 7408 // See InlineAsm.h isUseOperandTiedToDef. 7409 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7410 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7411 OpInfo.getMatchedOperand()); 7412 AsmNodeOperands.push_back(DAG.getTargetConstant( 7413 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7414 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7415 break; 7416 } 7417 7418 // Treat indirect 'X' constraint as memory. 7419 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7420 OpInfo.isIndirect) 7421 OpInfo.ConstraintType = TargetLowering::C_Memory; 7422 7423 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7424 std::vector<SDValue> Ops; 7425 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7426 Ops, DAG); 7427 if (Ops.empty()) { 7428 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7429 Twine(OpInfo.ConstraintCode) + "'"); 7430 return; 7431 } 7432 7433 // Add information to the INLINEASM node to know about this input. 7434 unsigned ResOpType = 7435 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7436 AsmNodeOperands.push_back(DAG.getTargetConstant( 7437 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7438 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7439 break; 7440 } 7441 7442 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7443 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7444 assert(InOperandVal.getValueType() == 7445 TLI.getPointerTy(DAG.getDataLayout()) && 7446 "Memory operands expect pointer values"); 7447 7448 unsigned ConstraintID = 7449 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7450 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7451 "Failed to convert memory constraint code to constraint id."); 7452 7453 // Add information to the INLINEASM node to know about this input. 7454 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7455 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7456 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7457 getCurSDLoc(), 7458 MVT::i32)); 7459 AsmNodeOperands.push_back(InOperandVal); 7460 break; 7461 } 7462 7463 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7464 OpInfo.ConstraintType == TargetLowering::C_Register) && 7465 "Unknown constraint type!"); 7466 7467 // TODO: Support this. 7468 if (OpInfo.isIndirect) { 7469 emitInlineAsmError( 7470 CS, "Don't know how to handle indirect register inputs yet " 7471 "for constraint '" + 7472 Twine(OpInfo.ConstraintCode) + "'"); 7473 return; 7474 } 7475 7476 // Copy the input into the appropriate registers. 7477 if (OpInfo.AssignedRegs.Regs.empty()) { 7478 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7479 Twine(OpInfo.ConstraintCode) + "'"); 7480 return; 7481 } 7482 7483 SDLoc dl = getCurSDLoc(); 7484 7485 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7486 Chain, &Flag, CS.getInstruction()); 7487 7488 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7489 dl, DAG, AsmNodeOperands); 7490 break; 7491 } 7492 case InlineAsm::isClobber: 7493 // Add the clobbered value to the operand list, so that the register 7494 // allocator is aware that the physreg got clobbered. 7495 if (!OpInfo.AssignedRegs.Regs.empty()) 7496 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7497 false, 0, getCurSDLoc(), DAG, 7498 AsmNodeOperands); 7499 break; 7500 } 7501 } 7502 7503 // Finish up input operands. Set the input chain and add the flag last. 7504 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7505 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7506 7507 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7508 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7509 Flag = Chain.getValue(1); 7510 7511 // If this asm returns a register value, copy the result from that register 7512 // and set it as the value of the call. 7513 if (!RetValRegs.Regs.empty()) { 7514 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7515 Chain, &Flag, CS.getInstruction()); 7516 7517 // FIXME: Why don't we do this for inline asms with MRVs? 7518 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7519 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7520 7521 // If any of the results of the inline asm is a vector, it may have the 7522 // wrong width/num elts. This can happen for register classes that can 7523 // contain multiple different value types. The preg or vreg allocated may 7524 // not have the same VT as was expected. Convert it to the right type 7525 // with bit_convert. 7526 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7527 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7528 ResultType, Val); 7529 7530 } else if (ResultType != Val.getValueType() && 7531 ResultType.isInteger() && Val.getValueType().isInteger()) { 7532 // If a result value was tied to an input value, the computed result may 7533 // have a wider width than the expected result. Extract the relevant 7534 // portion. 7535 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7536 } 7537 7538 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7539 } 7540 7541 setValue(CS.getInstruction(), Val); 7542 // Don't need to use this as a chain in this case. 7543 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7544 return; 7545 } 7546 7547 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7548 7549 // Process indirect outputs, first output all of the flagged copies out of 7550 // physregs. 7551 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7552 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7553 const Value *Ptr = IndirectStoresToEmit[i].second; 7554 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7555 Chain, &Flag, IA); 7556 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7557 } 7558 7559 // Emit the non-flagged stores from the physregs. 7560 SmallVector<SDValue, 8> OutChains; 7561 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7562 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7563 getValue(StoresToEmit[i].second), 7564 MachinePointerInfo(StoresToEmit[i].second)); 7565 OutChains.push_back(Val); 7566 } 7567 7568 if (!OutChains.empty()) 7569 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7570 7571 DAG.setRoot(Chain); 7572 } 7573 7574 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7575 const Twine &Message) { 7576 LLVMContext &Ctx = *DAG.getContext(); 7577 Ctx.emitError(CS.getInstruction(), Message); 7578 7579 // Make sure we leave the DAG in a valid state 7580 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7581 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7582 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7583 } 7584 7585 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7586 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7587 MVT::Other, getRoot(), 7588 getValue(I.getArgOperand(0)), 7589 DAG.getSrcValue(I.getArgOperand(0)))); 7590 } 7591 7592 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7593 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7594 const DataLayout &DL = DAG.getDataLayout(); 7595 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7596 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7597 DAG.getSrcValue(I.getOperand(0)), 7598 DL.getABITypeAlignment(I.getType())); 7599 setValue(&I, V); 7600 DAG.setRoot(V.getValue(1)); 7601 } 7602 7603 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7604 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7605 MVT::Other, getRoot(), 7606 getValue(I.getArgOperand(0)), 7607 DAG.getSrcValue(I.getArgOperand(0)))); 7608 } 7609 7610 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7611 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7612 MVT::Other, getRoot(), 7613 getValue(I.getArgOperand(0)), 7614 getValue(I.getArgOperand(1)), 7615 DAG.getSrcValue(I.getArgOperand(0)), 7616 DAG.getSrcValue(I.getArgOperand(1)))); 7617 } 7618 7619 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7620 const Instruction &I, 7621 SDValue Op) { 7622 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7623 if (!Range) 7624 return Op; 7625 7626 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7627 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7628 return Op; 7629 7630 APInt Lo = CR.getUnsignedMin(); 7631 if (!Lo.isMinValue()) 7632 return Op; 7633 7634 APInt Hi = CR.getUnsignedMax(); 7635 unsigned Bits = Hi.getActiveBits(); 7636 7637 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7638 7639 SDLoc SL = getCurSDLoc(); 7640 7641 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7642 DAG.getValueType(SmallVT)); 7643 unsigned NumVals = Op.getNode()->getNumValues(); 7644 if (NumVals == 1) 7645 return ZExt; 7646 7647 SmallVector<SDValue, 4> Ops; 7648 7649 Ops.push_back(ZExt); 7650 for (unsigned I = 1; I != NumVals; ++I) 7651 Ops.push_back(Op.getValue(I)); 7652 7653 return DAG.getMergeValues(Ops, SL); 7654 } 7655 7656 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7657 /// the call being lowered. 7658 /// 7659 /// This is a helper for lowering intrinsics that follow a target calling 7660 /// convention or require stack pointer adjustment. Only a subset of the 7661 /// intrinsic's operands need to participate in the calling convention. 7662 void SelectionDAGBuilder::populateCallLoweringInfo( 7663 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7664 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7665 bool IsPatchPoint) { 7666 TargetLowering::ArgListTy Args; 7667 Args.reserve(NumArgs); 7668 7669 // Populate the argument list. 7670 // Attributes for args start at offset 1, after the return attribute. 7671 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7672 ArgI != ArgE; ++ArgI) { 7673 const Value *V = CS->getOperand(ArgI); 7674 7675 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7676 7677 TargetLowering::ArgListEntry Entry; 7678 Entry.Node = getValue(V); 7679 Entry.Ty = V->getType(); 7680 Entry.setAttributes(&CS, ArgIdx); 7681 Args.push_back(Entry); 7682 } 7683 7684 CLI.setDebugLoc(getCurSDLoc()) 7685 .setChain(getRoot()) 7686 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7687 .setDiscardResult(CS->use_empty()) 7688 .setIsPatchPoint(IsPatchPoint); 7689 } 7690 7691 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7692 /// or patchpoint target node's operand list. 7693 /// 7694 /// Constants are converted to TargetConstants purely as an optimization to 7695 /// avoid constant materialization and register allocation. 7696 /// 7697 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7698 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7699 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7700 /// address materialization and register allocation, but may also be required 7701 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7702 /// alloca in the entry block, then the runtime may assume that the alloca's 7703 /// StackMap location can be read immediately after compilation and that the 7704 /// location is valid at any point during execution (this is similar to the 7705 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7706 /// only available in a register, then the runtime would need to trap when 7707 /// execution reaches the StackMap in order to read the alloca's location. 7708 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7709 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7710 SelectionDAGBuilder &Builder) { 7711 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7712 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7713 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7714 Ops.push_back( 7715 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7716 Ops.push_back( 7717 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7718 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7719 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7720 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7721 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7722 } else 7723 Ops.push_back(OpVal); 7724 } 7725 } 7726 7727 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7728 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7729 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7730 // [live variables...]) 7731 7732 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7733 7734 SDValue Chain, InFlag, Callee, NullPtr; 7735 SmallVector<SDValue, 32> Ops; 7736 7737 SDLoc DL = getCurSDLoc(); 7738 Callee = getValue(CI.getCalledValue()); 7739 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7740 7741 // The stackmap intrinsic only records the live variables (the arguemnts 7742 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7743 // intrinsic, this won't be lowered to a function call. This means we don't 7744 // have to worry about calling conventions and target specific lowering code. 7745 // Instead we perform the call lowering right here. 7746 // 7747 // chain, flag = CALLSEQ_START(chain, 0, 0) 7748 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7749 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7750 // 7751 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7752 InFlag = Chain.getValue(1); 7753 7754 // Add the <id> and <numBytes> constants. 7755 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7756 Ops.push_back(DAG.getTargetConstant( 7757 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7758 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7759 Ops.push_back(DAG.getTargetConstant( 7760 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7761 MVT::i32)); 7762 7763 // Push live variables for the stack map. 7764 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7765 7766 // We are not pushing any register mask info here on the operands list, 7767 // because the stackmap doesn't clobber anything. 7768 7769 // Push the chain and the glue flag. 7770 Ops.push_back(Chain); 7771 Ops.push_back(InFlag); 7772 7773 // Create the STACKMAP node. 7774 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7775 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7776 Chain = SDValue(SM, 0); 7777 InFlag = Chain.getValue(1); 7778 7779 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7780 7781 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7782 7783 // Set the root to the target-lowered call chain. 7784 DAG.setRoot(Chain); 7785 7786 // Inform the Frame Information that we have a stackmap in this function. 7787 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7788 } 7789 7790 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7791 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7792 const BasicBlock *EHPadBB) { 7793 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7794 // i32 <numBytes>, 7795 // i8* <target>, 7796 // i32 <numArgs>, 7797 // [Args...], 7798 // [live variables...]) 7799 7800 CallingConv::ID CC = CS.getCallingConv(); 7801 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7802 bool HasDef = !CS->getType()->isVoidTy(); 7803 SDLoc dl = getCurSDLoc(); 7804 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7805 7806 // Handle immediate and symbolic callees. 7807 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7808 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7809 /*isTarget=*/true); 7810 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7811 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7812 SDLoc(SymbolicCallee), 7813 SymbolicCallee->getValueType(0)); 7814 7815 // Get the real number of arguments participating in the call <numArgs> 7816 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7817 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7818 7819 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7820 // Intrinsics include all meta-operands up to but not including CC. 7821 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7822 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7823 "Not enough arguments provided to the patchpoint intrinsic"); 7824 7825 // For AnyRegCC the arguments are lowered later on manually. 7826 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7827 Type *ReturnTy = 7828 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7829 7830 TargetLowering::CallLoweringInfo CLI(DAG); 7831 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7832 true); 7833 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7834 7835 SDNode *CallEnd = Result.second.getNode(); 7836 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7837 CallEnd = CallEnd->getOperand(0).getNode(); 7838 7839 /// Get a call instruction from the call sequence chain. 7840 /// Tail calls are not allowed. 7841 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7842 "Expected a callseq node."); 7843 SDNode *Call = CallEnd->getOperand(0).getNode(); 7844 bool HasGlue = Call->getGluedNode(); 7845 7846 // Replace the target specific call node with the patchable intrinsic. 7847 SmallVector<SDValue, 8> Ops; 7848 7849 // Add the <id> and <numBytes> constants. 7850 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7851 Ops.push_back(DAG.getTargetConstant( 7852 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7853 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7854 Ops.push_back(DAG.getTargetConstant( 7855 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7856 MVT::i32)); 7857 7858 // Add the callee. 7859 Ops.push_back(Callee); 7860 7861 // Adjust <numArgs> to account for any arguments that have been passed on the 7862 // stack instead. 7863 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7864 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7865 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7866 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7867 7868 // Add the calling convention 7869 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7870 7871 // Add the arguments we omitted previously. The register allocator should 7872 // place these in any free register. 7873 if (IsAnyRegCC) 7874 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7875 Ops.push_back(getValue(CS.getArgument(i))); 7876 7877 // Push the arguments from the call instruction up to the register mask. 7878 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7879 Ops.append(Call->op_begin() + 2, e); 7880 7881 // Push live variables for the stack map. 7882 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7883 7884 // Push the register mask info. 7885 if (HasGlue) 7886 Ops.push_back(*(Call->op_end()-2)); 7887 else 7888 Ops.push_back(*(Call->op_end()-1)); 7889 7890 // Push the chain (this is originally the first operand of the call, but 7891 // becomes now the last or second to last operand). 7892 Ops.push_back(*(Call->op_begin())); 7893 7894 // Push the glue flag (last operand). 7895 if (HasGlue) 7896 Ops.push_back(*(Call->op_end()-1)); 7897 7898 SDVTList NodeTys; 7899 if (IsAnyRegCC && HasDef) { 7900 // Create the return types based on the intrinsic definition 7901 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7902 SmallVector<EVT, 3> ValueVTs; 7903 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7904 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7905 7906 // There is always a chain and a glue type at the end 7907 ValueVTs.push_back(MVT::Other); 7908 ValueVTs.push_back(MVT::Glue); 7909 NodeTys = DAG.getVTList(ValueVTs); 7910 } else 7911 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7912 7913 // Replace the target specific call node with a PATCHPOINT node. 7914 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7915 dl, NodeTys, Ops); 7916 7917 // Update the NodeMap. 7918 if (HasDef) { 7919 if (IsAnyRegCC) 7920 setValue(CS.getInstruction(), SDValue(MN, 0)); 7921 else 7922 setValue(CS.getInstruction(), Result.first); 7923 } 7924 7925 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7926 // call sequence. Furthermore the location of the chain and glue can change 7927 // when the AnyReg calling convention is used and the intrinsic returns a 7928 // value. 7929 if (IsAnyRegCC && HasDef) { 7930 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7931 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7932 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7933 } else 7934 DAG.ReplaceAllUsesWith(Call, MN); 7935 DAG.DeleteNode(Call); 7936 7937 // Inform the Frame Information that we have a patchpoint in this function. 7938 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7939 } 7940 7941 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 7942 unsigned Intrinsic) { 7943 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7944 SDValue Op1 = getValue(I.getArgOperand(0)); 7945 SDValue Op2; 7946 if (I.getNumArgOperands() > 1) 7947 Op2 = getValue(I.getArgOperand(1)); 7948 SDLoc dl = getCurSDLoc(); 7949 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7950 SDValue Res; 7951 FastMathFlags FMF; 7952 if (isa<FPMathOperator>(I)) 7953 FMF = I.getFastMathFlags(); 7954 SDNodeFlags SDFlags; 7955 SDFlags.setNoNaNs(FMF.noNaNs()); 7956 7957 switch (Intrinsic) { 7958 case Intrinsic::experimental_vector_reduce_fadd: 7959 if (FMF.isFast()) 7960 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 7961 else 7962 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 7963 break; 7964 case Intrinsic::experimental_vector_reduce_fmul: 7965 if (FMF.isFast()) 7966 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 7967 else 7968 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 7969 break; 7970 case Intrinsic::experimental_vector_reduce_add: 7971 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 7972 break; 7973 case Intrinsic::experimental_vector_reduce_mul: 7974 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 7975 break; 7976 case Intrinsic::experimental_vector_reduce_and: 7977 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 7978 break; 7979 case Intrinsic::experimental_vector_reduce_or: 7980 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 7981 break; 7982 case Intrinsic::experimental_vector_reduce_xor: 7983 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 7984 break; 7985 case Intrinsic::experimental_vector_reduce_smax: 7986 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 7987 break; 7988 case Intrinsic::experimental_vector_reduce_smin: 7989 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 7990 break; 7991 case Intrinsic::experimental_vector_reduce_umax: 7992 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 7993 break; 7994 case Intrinsic::experimental_vector_reduce_umin: 7995 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 7996 break; 7997 case Intrinsic::experimental_vector_reduce_fmax: 7998 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 7999 break; 8000 case Intrinsic::experimental_vector_reduce_fmin: 8001 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 8002 break; 8003 default: 8004 llvm_unreachable("Unhandled vector reduce intrinsic"); 8005 } 8006 setValue(&I, Res); 8007 } 8008 8009 /// Returns an AttributeList representing the attributes applied to the return 8010 /// value of the given call. 8011 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8012 SmallVector<Attribute::AttrKind, 2> Attrs; 8013 if (CLI.RetSExt) 8014 Attrs.push_back(Attribute::SExt); 8015 if (CLI.RetZExt) 8016 Attrs.push_back(Attribute::ZExt); 8017 if (CLI.IsInReg) 8018 Attrs.push_back(Attribute::InReg); 8019 8020 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8021 Attrs); 8022 } 8023 8024 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8025 /// implementation, which just calls LowerCall. 8026 /// FIXME: When all targets are 8027 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8028 std::pair<SDValue, SDValue> 8029 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8030 // Handle the incoming return values from the call. 8031 CLI.Ins.clear(); 8032 Type *OrigRetTy = CLI.RetTy; 8033 SmallVector<EVT, 4> RetTys; 8034 SmallVector<uint64_t, 4> Offsets; 8035 auto &DL = CLI.DAG.getDataLayout(); 8036 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8037 8038 if (CLI.IsPostTypeLegalization) { 8039 // If we are lowering a libcall after legalization, split the return type. 8040 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8041 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8042 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8043 EVT RetVT = OldRetTys[i]; 8044 uint64_t Offset = OldOffsets[i]; 8045 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8046 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8047 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8048 RetTys.append(NumRegs, RegisterVT); 8049 for (unsigned j = 0; j != NumRegs; ++j) 8050 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8051 } 8052 } 8053 8054 SmallVector<ISD::OutputArg, 4> Outs; 8055 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8056 8057 bool CanLowerReturn = 8058 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8059 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8060 8061 SDValue DemoteStackSlot; 8062 int DemoteStackIdx = -100; 8063 if (!CanLowerReturn) { 8064 // FIXME: equivalent assert? 8065 // assert(!CS.hasInAllocaArgument() && 8066 // "sret demotion is incompatible with inalloca"); 8067 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8068 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8069 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8070 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8071 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 8072 8073 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8074 ArgListEntry Entry; 8075 Entry.Node = DemoteStackSlot; 8076 Entry.Ty = StackSlotPtrType; 8077 Entry.IsSExt = false; 8078 Entry.IsZExt = false; 8079 Entry.IsInReg = false; 8080 Entry.IsSRet = true; 8081 Entry.IsNest = false; 8082 Entry.IsByVal = false; 8083 Entry.IsReturned = false; 8084 Entry.IsSwiftSelf = false; 8085 Entry.IsSwiftError = false; 8086 Entry.Alignment = Align; 8087 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8088 CLI.NumFixedArgs += 1; 8089 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8090 8091 // sret demotion isn't compatible with tail-calls, since the sret argument 8092 // points into the callers stack frame. 8093 CLI.IsTailCall = false; 8094 } else { 8095 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8096 EVT VT = RetTys[I]; 8097 MVT RegisterVT = 8098 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8099 unsigned NumRegs = 8100 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8101 for (unsigned i = 0; i != NumRegs; ++i) { 8102 ISD::InputArg MyFlags; 8103 MyFlags.VT = RegisterVT; 8104 MyFlags.ArgVT = VT; 8105 MyFlags.Used = CLI.IsReturnValueUsed; 8106 if (CLI.RetSExt) 8107 MyFlags.Flags.setSExt(); 8108 if (CLI.RetZExt) 8109 MyFlags.Flags.setZExt(); 8110 if (CLI.IsInReg) 8111 MyFlags.Flags.setInReg(); 8112 CLI.Ins.push_back(MyFlags); 8113 } 8114 } 8115 } 8116 8117 // We push in swifterror return as the last element of CLI.Ins. 8118 ArgListTy &Args = CLI.getArgs(); 8119 if (supportSwiftError()) { 8120 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8121 if (Args[i].IsSwiftError) { 8122 ISD::InputArg MyFlags; 8123 MyFlags.VT = getPointerTy(DL); 8124 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8125 MyFlags.Flags.setSwiftError(); 8126 CLI.Ins.push_back(MyFlags); 8127 } 8128 } 8129 } 8130 8131 // Handle all of the outgoing arguments. 8132 CLI.Outs.clear(); 8133 CLI.OutVals.clear(); 8134 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8135 SmallVector<EVT, 4> ValueVTs; 8136 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8137 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8138 Type *FinalType = Args[i].Ty; 8139 if (Args[i].IsByVal) 8140 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8141 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8142 FinalType, CLI.CallConv, CLI.IsVarArg); 8143 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8144 ++Value) { 8145 EVT VT = ValueVTs[Value]; 8146 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8147 SDValue Op = SDValue(Args[i].Node.getNode(), 8148 Args[i].Node.getResNo() + Value); 8149 ISD::ArgFlagsTy Flags; 8150 8151 // Certain targets (such as MIPS), may have a different ABI alignment 8152 // for a type depending on the context. Give the target a chance to 8153 // specify the alignment it wants. 8154 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8155 8156 if (Args[i].IsZExt) 8157 Flags.setZExt(); 8158 if (Args[i].IsSExt) 8159 Flags.setSExt(); 8160 if (Args[i].IsInReg) { 8161 // If we are using vectorcall calling convention, a structure that is 8162 // passed InReg - is surely an HVA 8163 if (CLI.CallConv == CallingConv::X86_VectorCall && 8164 isa<StructType>(FinalType)) { 8165 // The first value of a structure is marked 8166 if (0 == Value) 8167 Flags.setHvaStart(); 8168 Flags.setHva(); 8169 } 8170 // Set InReg Flag 8171 Flags.setInReg(); 8172 } 8173 if (Args[i].IsSRet) 8174 Flags.setSRet(); 8175 if (Args[i].IsSwiftSelf) 8176 Flags.setSwiftSelf(); 8177 if (Args[i].IsSwiftError) 8178 Flags.setSwiftError(); 8179 if (Args[i].IsByVal) 8180 Flags.setByVal(); 8181 if (Args[i].IsInAlloca) { 8182 Flags.setInAlloca(); 8183 // Set the byval flag for CCAssignFn callbacks that don't know about 8184 // inalloca. This way we can know how many bytes we should've allocated 8185 // and how many bytes a callee cleanup function will pop. If we port 8186 // inalloca to more targets, we'll have to add custom inalloca handling 8187 // in the various CC lowering callbacks. 8188 Flags.setByVal(); 8189 } 8190 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8191 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8192 Type *ElementTy = Ty->getElementType(); 8193 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8194 // For ByVal, alignment should come from FE. BE will guess if this 8195 // info is not there but there are cases it cannot get right. 8196 unsigned FrameAlign; 8197 if (Args[i].Alignment) 8198 FrameAlign = Args[i].Alignment; 8199 else 8200 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8201 Flags.setByValAlign(FrameAlign); 8202 } 8203 if (Args[i].IsNest) 8204 Flags.setNest(); 8205 if (NeedsRegBlock) 8206 Flags.setInConsecutiveRegs(); 8207 Flags.setOrigAlign(OriginalAlignment); 8208 8209 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8210 unsigned NumParts = 8211 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8212 SmallVector<SDValue, 4> Parts(NumParts); 8213 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8214 8215 if (Args[i].IsSExt) 8216 ExtendKind = ISD::SIGN_EXTEND; 8217 else if (Args[i].IsZExt) 8218 ExtendKind = ISD::ZERO_EXTEND; 8219 8220 // Conservatively only handle 'returned' on non-vectors for now 8221 if (Args[i].IsReturned && !Op.getValueType().isVector()) { 8222 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8223 "unexpected use of 'returned'"); 8224 // Before passing 'returned' to the target lowering code, ensure that 8225 // either the register MVT and the actual EVT are the same size or that 8226 // the return value and argument are extended in the same way; in these 8227 // cases it's safe to pass the argument register value unchanged as the 8228 // return register value (although it's at the target's option whether 8229 // to do so) 8230 // TODO: allow code generation to take advantage of partially preserved 8231 // registers rather than clobbering the entire register when the 8232 // parameter extension method is not compatible with the return 8233 // extension method 8234 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8235 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8236 CLI.RetZExt == Args[i].IsZExt)) 8237 Flags.setReturned(); 8238 } 8239 8240 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8241 CLI.CS.getInstruction(), ExtendKind, true); 8242 8243 for (unsigned j = 0; j != NumParts; ++j) { 8244 // if it isn't first piece, alignment must be 1 8245 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8246 i < CLI.NumFixedArgs, 8247 i, j*Parts[j].getValueType().getStoreSize()); 8248 if (NumParts > 1 && j == 0) 8249 MyFlags.Flags.setSplit(); 8250 else if (j != 0) { 8251 MyFlags.Flags.setOrigAlign(1); 8252 if (j == NumParts - 1) 8253 MyFlags.Flags.setSplitEnd(); 8254 } 8255 8256 CLI.Outs.push_back(MyFlags); 8257 CLI.OutVals.push_back(Parts[j]); 8258 } 8259 8260 if (NeedsRegBlock && Value == NumValues - 1) 8261 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8262 } 8263 } 8264 8265 SmallVector<SDValue, 4> InVals; 8266 CLI.Chain = LowerCall(CLI, InVals); 8267 8268 // Update CLI.InVals to use outside of this function. 8269 CLI.InVals = InVals; 8270 8271 // Verify that the target's LowerCall behaved as expected. 8272 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8273 "LowerCall didn't return a valid chain!"); 8274 assert((!CLI.IsTailCall || InVals.empty()) && 8275 "LowerCall emitted a return value for a tail call!"); 8276 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8277 "LowerCall didn't emit the correct number of values!"); 8278 8279 // For a tail call, the return value is merely live-out and there aren't 8280 // any nodes in the DAG representing it. Return a special value to 8281 // indicate that a tail call has been emitted and no more Instructions 8282 // should be processed in the current block. 8283 if (CLI.IsTailCall) { 8284 CLI.DAG.setRoot(CLI.Chain); 8285 return std::make_pair(SDValue(), SDValue()); 8286 } 8287 8288 #ifndef NDEBUG 8289 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8290 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8291 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8292 "LowerCall emitted a value with the wrong type!"); 8293 } 8294 #endif 8295 8296 SmallVector<SDValue, 4> ReturnValues; 8297 if (!CanLowerReturn) { 8298 // The instruction result is the result of loading from the 8299 // hidden sret parameter. 8300 SmallVector<EVT, 1> PVTs; 8301 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8302 8303 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8304 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8305 EVT PtrVT = PVTs[0]; 8306 8307 unsigned NumValues = RetTys.size(); 8308 ReturnValues.resize(NumValues); 8309 SmallVector<SDValue, 4> Chains(NumValues); 8310 8311 // An aggregate return value cannot wrap around the address space, so 8312 // offsets to its parts don't wrap either. 8313 SDNodeFlags Flags; 8314 Flags.setNoUnsignedWrap(true); 8315 8316 for (unsigned i = 0; i < NumValues; ++i) { 8317 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8318 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8319 PtrVT), Flags); 8320 SDValue L = CLI.DAG.getLoad( 8321 RetTys[i], CLI.DL, CLI.Chain, Add, 8322 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8323 DemoteStackIdx, Offsets[i]), 8324 /* Alignment = */ 1); 8325 ReturnValues[i] = L; 8326 Chains[i] = L.getValue(1); 8327 } 8328 8329 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8330 } else { 8331 // Collect the legal value parts into potentially illegal values 8332 // that correspond to the original function's return values. 8333 Optional<ISD::NodeType> AssertOp; 8334 if (CLI.RetSExt) 8335 AssertOp = ISD::AssertSext; 8336 else if (CLI.RetZExt) 8337 AssertOp = ISD::AssertZext; 8338 unsigned CurReg = 0; 8339 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8340 EVT VT = RetTys[I]; 8341 MVT RegisterVT = 8342 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8343 unsigned NumRegs = 8344 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8345 8346 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8347 NumRegs, RegisterVT, VT, nullptr, 8348 AssertOp, true)); 8349 CurReg += NumRegs; 8350 } 8351 8352 // For a function returning void, there is no return value. We can't create 8353 // such a node, so we just return a null return value in that case. In 8354 // that case, nothing will actually look at the value. 8355 if (ReturnValues.empty()) 8356 return std::make_pair(SDValue(), CLI.Chain); 8357 } 8358 8359 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8360 CLI.DAG.getVTList(RetTys), ReturnValues); 8361 return std::make_pair(Res, CLI.Chain); 8362 } 8363 8364 void TargetLowering::LowerOperationWrapper(SDNode *N, 8365 SmallVectorImpl<SDValue> &Results, 8366 SelectionDAG &DAG) const { 8367 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8368 Results.push_back(Res); 8369 } 8370 8371 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8372 llvm_unreachable("LowerOperation not implemented for this target!"); 8373 } 8374 8375 void 8376 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8377 SDValue Op = getNonRegisterValue(V); 8378 assert((Op.getOpcode() != ISD::CopyFromReg || 8379 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8380 "Copy from a reg to the same reg!"); 8381 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8382 8383 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8384 // If this is an InlineAsm we have to match the registers required, not the 8385 // notional registers required by the type. 8386 8387 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8388 V->getType(), isABIRegCopy(V)); 8389 SDValue Chain = DAG.getEntryNode(); 8390 8391 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8392 FuncInfo.PreferredExtendType.end()) 8393 ? ISD::ANY_EXTEND 8394 : FuncInfo.PreferredExtendType[V]; 8395 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8396 PendingExports.push_back(Chain); 8397 } 8398 8399 #include "llvm/CodeGen/SelectionDAGISel.h" 8400 8401 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8402 /// entry block, return true. This includes arguments used by switches, since 8403 /// the switch may expand into multiple basic blocks. 8404 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8405 // With FastISel active, we may be splitting blocks, so force creation 8406 // of virtual registers for all non-dead arguments. 8407 if (FastISel) 8408 return A->use_empty(); 8409 8410 const BasicBlock &Entry = A->getParent()->front(); 8411 for (const User *U : A->users()) 8412 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8413 return false; // Use not in entry block. 8414 8415 return true; 8416 } 8417 8418 using ArgCopyElisionMapTy = 8419 DenseMap<const Argument *, 8420 std::pair<const AllocaInst *, const StoreInst *>>; 8421 8422 /// Scan the entry block of the function in FuncInfo for arguments that look 8423 /// like copies into a local alloca. Record any copied arguments in 8424 /// ArgCopyElisionCandidates. 8425 static void 8426 findArgumentCopyElisionCandidates(const DataLayout &DL, 8427 FunctionLoweringInfo *FuncInfo, 8428 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8429 // Record the state of every static alloca used in the entry block. Argument 8430 // allocas are all used in the entry block, so we need approximately as many 8431 // entries as we have arguments. 8432 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8433 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8434 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8435 StaticAllocas.reserve(NumArgs * 2); 8436 8437 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8438 if (!V) 8439 return nullptr; 8440 V = V->stripPointerCasts(); 8441 const auto *AI = dyn_cast<AllocaInst>(V); 8442 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8443 return nullptr; 8444 auto Iter = StaticAllocas.insert({AI, Unknown}); 8445 return &Iter.first->second; 8446 }; 8447 8448 // Look for stores of arguments to static allocas. Look through bitcasts and 8449 // GEPs to handle type coercions, as long as the alloca is fully initialized 8450 // by the store. Any non-store use of an alloca escapes it and any subsequent 8451 // unanalyzed store might write it. 8452 // FIXME: Handle structs initialized with multiple stores. 8453 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8454 // Look for stores, and handle non-store uses conservatively. 8455 const auto *SI = dyn_cast<StoreInst>(&I); 8456 if (!SI) { 8457 // We will look through cast uses, so ignore them completely. 8458 if (I.isCast()) 8459 continue; 8460 // Ignore debug info intrinsics, they don't escape or store to allocas. 8461 if (isa<DbgInfoIntrinsic>(I)) 8462 continue; 8463 // This is an unknown instruction. Assume it escapes or writes to all 8464 // static alloca operands. 8465 for (const Use &U : I.operands()) { 8466 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8467 *Info = StaticAllocaInfo::Clobbered; 8468 } 8469 continue; 8470 } 8471 8472 // If the stored value is a static alloca, mark it as escaped. 8473 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8474 *Info = StaticAllocaInfo::Clobbered; 8475 8476 // Check if the destination is a static alloca. 8477 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8478 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8479 if (!Info) 8480 continue; 8481 const AllocaInst *AI = cast<AllocaInst>(Dst); 8482 8483 // Skip allocas that have been initialized or clobbered. 8484 if (*Info != StaticAllocaInfo::Unknown) 8485 continue; 8486 8487 // Check if the stored value is an argument, and that this store fully 8488 // initializes the alloca. Don't elide copies from the same argument twice. 8489 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8490 const auto *Arg = dyn_cast<Argument>(Val); 8491 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8492 Arg->getType()->isEmptyTy() || 8493 DL.getTypeStoreSize(Arg->getType()) != 8494 DL.getTypeAllocSize(AI->getAllocatedType()) || 8495 ArgCopyElisionCandidates.count(Arg)) { 8496 *Info = StaticAllocaInfo::Clobbered; 8497 continue; 8498 } 8499 8500 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8501 8502 // Mark this alloca and store for argument copy elision. 8503 *Info = StaticAllocaInfo::Elidable; 8504 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8505 8506 // Stop scanning if we've seen all arguments. This will happen early in -O0 8507 // builds, which is useful, because -O0 builds have large entry blocks and 8508 // many allocas. 8509 if (ArgCopyElisionCandidates.size() == NumArgs) 8510 break; 8511 } 8512 } 8513 8514 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8515 /// ArgVal is a load from a suitable fixed stack object. 8516 static void tryToElideArgumentCopy( 8517 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8518 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8519 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8520 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8521 SDValue ArgVal, bool &ArgHasUses) { 8522 // Check if this is a load from a fixed stack object. 8523 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8524 if (!LNode) 8525 return; 8526 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8527 if (!FINode) 8528 return; 8529 8530 // Check that the fixed stack object is the right size and alignment. 8531 // Look at the alignment that the user wrote on the alloca instead of looking 8532 // at the stack object. 8533 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8534 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8535 const AllocaInst *AI = ArgCopyIter->second.first; 8536 int FixedIndex = FINode->getIndex(); 8537 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8538 int OldIndex = AllocaIndex; 8539 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8540 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8541 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8542 "object size\n"); 8543 return; 8544 } 8545 unsigned RequiredAlignment = AI->getAlignment(); 8546 if (!RequiredAlignment) { 8547 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8548 AI->getAllocatedType()); 8549 } 8550 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8551 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8552 "greater than stack argument alignment (" 8553 << RequiredAlignment << " vs " 8554 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8555 return; 8556 } 8557 8558 // Perform the elision. Delete the old stack object and replace its only use 8559 // in the variable info map. Mark the stack object as mutable. 8560 DEBUG({ 8561 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8562 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8563 << '\n'; 8564 }); 8565 MFI.RemoveStackObject(OldIndex); 8566 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8567 AllocaIndex = FixedIndex; 8568 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8569 Chains.push_back(ArgVal.getValue(1)); 8570 8571 // Avoid emitting code for the store implementing the copy. 8572 const StoreInst *SI = ArgCopyIter->second.second; 8573 ElidedArgCopyInstrs.insert(SI); 8574 8575 // Check for uses of the argument again so that we can avoid exporting ArgVal 8576 // if it is't used by anything other than the store. 8577 for (const Value *U : Arg.users()) { 8578 if (U != SI) { 8579 ArgHasUses = true; 8580 break; 8581 } 8582 } 8583 } 8584 8585 void SelectionDAGISel::LowerArguments(const Function &F) { 8586 SelectionDAG &DAG = SDB->DAG; 8587 SDLoc dl = SDB->getCurSDLoc(); 8588 const DataLayout &DL = DAG.getDataLayout(); 8589 SmallVector<ISD::InputArg, 16> Ins; 8590 8591 if (!FuncInfo->CanLowerReturn) { 8592 // Put in an sret pointer parameter before all the other parameters. 8593 SmallVector<EVT, 1> ValueVTs; 8594 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8595 F.getReturnType()->getPointerTo( 8596 DAG.getDataLayout().getAllocaAddrSpace()), 8597 ValueVTs); 8598 8599 // NOTE: Assuming that a pointer will never break down to more than one VT 8600 // or one register. 8601 ISD::ArgFlagsTy Flags; 8602 Flags.setSRet(); 8603 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8604 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8605 ISD::InputArg::NoArgIndex, 0); 8606 Ins.push_back(RetArg); 8607 } 8608 8609 // Look for stores of arguments to static allocas. Mark such arguments with a 8610 // flag to ask the target to give us the memory location of that argument if 8611 // available. 8612 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8613 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8614 8615 // Set up the incoming argument description vector. 8616 for (const Argument &Arg : F.args()) { 8617 unsigned ArgNo = Arg.getArgNo(); 8618 SmallVector<EVT, 4> ValueVTs; 8619 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8620 bool isArgValueUsed = !Arg.use_empty(); 8621 unsigned PartBase = 0; 8622 Type *FinalType = Arg.getType(); 8623 if (Arg.hasAttribute(Attribute::ByVal)) 8624 FinalType = cast<PointerType>(FinalType)->getElementType(); 8625 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8626 FinalType, F.getCallingConv(), F.isVarArg()); 8627 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8628 Value != NumValues; ++Value) { 8629 EVT VT = ValueVTs[Value]; 8630 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8631 ISD::ArgFlagsTy Flags; 8632 8633 // Certain targets (such as MIPS), may have a different ABI alignment 8634 // for a type depending on the context. Give the target a chance to 8635 // specify the alignment it wants. 8636 unsigned OriginalAlignment = 8637 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8638 8639 if (Arg.hasAttribute(Attribute::ZExt)) 8640 Flags.setZExt(); 8641 if (Arg.hasAttribute(Attribute::SExt)) 8642 Flags.setSExt(); 8643 if (Arg.hasAttribute(Attribute::InReg)) { 8644 // If we are using vectorcall calling convention, a structure that is 8645 // passed InReg - is surely an HVA 8646 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8647 isa<StructType>(Arg.getType())) { 8648 // The first value of a structure is marked 8649 if (0 == Value) 8650 Flags.setHvaStart(); 8651 Flags.setHva(); 8652 } 8653 // Set InReg Flag 8654 Flags.setInReg(); 8655 } 8656 if (Arg.hasAttribute(Attribute::StructRet)) 8657 Flags.setSRet(); 8658 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8659 Flags.setSwiftSelf(); 8660 if (Arg.hasAttribute(Attribute::SwiftError)) 8661 Flags.setSwiftError(); 8662 if (Arg.hasAttribute(Attribute::ByVal)) 8663 Flags.setByVal(); 8664 if (Arg.hasAttribute(Attribute::InAlloca)) { 8665 Flags.setInAlloca(); 8666 // Set the byval flag for CCAssignFn callbacks that don't know about 8667 // inalloca. This way we can know how many bytes we should've allocated 8668 // and how many bytes a callee cleanup function will pop. If we port 8669 // inalloca to more targets, we'll have to add custom inalloca handling 8670 // in the various CC lowering callbacks. 8671 Flags.setByVal(); 8672 } 8673 if (F.getCallingConv() == CallingConv::X86_INTR) { 8674 // IA Interrupt passes frame (1st parameter) by value in the stack. 8675 if (ArgNo == 0) 8676 Flags.setByVal(); 8677 } 8678 if (Flags.isByVal() || Flags.isInAlloca()) { 8679 PointerType *Ty = cast<PointerType>(Arg.getType()); 8680 Type *ElementTy = Ty->getElementType(); 8681 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8682 // For ByVal, alignment should be passed from FE. BE will guess if 8683 // this info is not there but there are cases it cannot get right. 8684 unsigned FrameAlign; 8685 if (Arg.getParamAlignment()) 8686 FrameAlign = Arg.getParamAlignment(); 8687 else 8688 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8689 Flags.setByValAlign(FrameAlign); 8690 } 8691 if (Arg.hasAttribute(Attribute::Nest)) 8692 Flags.setNest(); 8693 if (NeedsRegBlock) 8694 Flags.setInConsecutiveRegs(); 8695 Flags.setOrigAlign(OriginalAlignment); 8696 if (ArgCopyElisionCandidates.count(&Arg)) 8697 Flags.setCopyElisionCandidate(); 8698 8699 MVT RegisterVT = 8700 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8701 unsigned NumRegs = 8702 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8703 for (unsigned i = 0; i != NumRegs; ++i) { 8704 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8705 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8706 if (NumRegs > 1 && i == 0) 8707 MyFlags.Flags.setSplit(); 8708 // if it isn't first piece, alignment must be 1 8709 else if (i > 0) { 8710 MyFlags.Flags.setOrigAlign(1); 8711 if (i == NumRegs - 1) 8712 MyFlags.Flags.setSplitEnd(); 8713 } 8714 Ins.push_back(MyFlags); 8715 } 8716 if (NeedsRegBlock && Value == NumValues - 1) 8717 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8718 PartBase += VT.getStoreSize(); 8719 } 8720 } 8721 8722 // Call the target to set up the argument values. 8723 SmallVector<SDValue, 8> InVals; 8724 SDValue NewRoot = TLI->LowerFormalArguments( 8725 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8726 8727 // Verify that the target's LowerFormalArguments behaved as expected. 8728 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8729 "LowerFormalArguments didn't return a valid chain!"); 8730 assert(InVals.size() == Ins.size() && 8731 "LowerFormalArguments didn't emit the correct number of values!"); 8732 DEBUG({ 8733 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8734 assert(InVals[i].getNode() && 8735 "LowerFormalArguments emitted a null value!"); 8736 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8737 "LowerFormalArguments emitted a value with the wrong type!"); 8738 } 8739 }); 8740 8741 // Update the DAG with the new chain value resulting from argument lowering. 8742 DAG.setRoot(NewRoot); 8743 8744 // Set up the argument values. 8745 unsigned i = 0; 8746 if (!FuncInfo->CanLowerReturn) { 8747 // Create a virtual register for the sret pointer, and put in a copy 8748 // from the sret argument into it. 8749 SmallVector<EVT, 1> ValueVTs; 8750 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8751 F.getReturnType()->getPointerTo( 8752 DAG.getDataLayout().getAllocaAddrSpace()), 8753 ValueVTs); 8754 MVT VT = ValueVTs[0].getSimpleVT(); 8755 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8756 Optional<ISD::NodeType> AssertOp = None; 8757 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8758 RegVT, VT, nullptr, AssertOp); 8759 8760 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8761 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8762 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8763 FuncInfo->DemoteRegister = SRetReg; 8764 NewRoot = 8765 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8766 DAG.setRoot(NewRoot); 8767 8768 // i indexes lowered arguments. Bump it past the hidden sret argument. 8769 ++i; 8770 } 8771 8772 SmallVector<SDValue, 4> Chains; 8773 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8774 for (const Argument &Arg : F.args()) { 8775 SmallVector<SDValue, 4> ArgValues; 8776 SmallVector<EVT, 4> ValueVTs; 8777 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8778 unsigned NumValues = ValueVTs.size(); 8779 if (NumValues == 0) 8780 continue; 8781 8782 bool ArgHasUses = !Arg.use_empty(); 8783 8784 // Elide the copying store if the target loaded this argument from a 8785 // suitable fixed stack object. 8786 if (Ins[i].Flags.isCopyElisionCandidate()) { 8787 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8788 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8789 InVals[i], ArgHasUses); 8790 } 8791 8792 // If this argument is unused then remember its value. It is used to generate 8793 // debugging information. 8794 bool isSwiftErrorArg = 8795 TLI->supportSwiftError() && 8796 Arg.hasAttribute(Attribute::SwiftError); 8797 if (!ArgHasUses && !isSwiftErrorArg) { 8798 SDB->setUnusedArgValue(&Arg, InVals[i]); 8799 8800 // Also remember any frame index for use in FastISel. 8801 if (FrameIndexSDNode *FI = 8802 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8803 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8804 } 8805 8806 for (unsigned Val = 0; Val != NumValues; ++Val) { 8807 EVT VT = ValueVTs[Val]; 8808 MVT PartVT = 8809 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8810 unsigned NumParts = 8811 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8812 8813 // Even an apparant 'unused' swifterror argument needs to be returned. So 8814 // we do generate a copy for it that can be used on return from the 8815 // function. 8816 if (ArgHasUses || isSwiftErrorArg) { 8817 Optional<ISD::NodeType> AssertOp; 8818 if (Arg.hasAttribute(Attribute::SExt)) 8819 AssertOp = ISD::AssertSext; 8820 else if (Arg.hasAttribute(Attribute::ZExt)) 8821 AssertOp = ISD::AssertZext; 8822 8823 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8824 PartVT, VT, nullptr, AssertOp, 8825 true)); 8826 } 8827 8828 i += NumParts; 8829 } 8830 8831 // We don't need to do anything else for unused arguments. 8832 if (ArgValues.empty()) 8833 continue; 8834 8835 // Note down frame index. 8836 if (FrameIndexSDNode *FI = 8837 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8838 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8839 8840 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8841 SDB->getCurSDLoc()); 8842 8843 SDB->setValue(&Arg, Res); 8844 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8845 // We want to associate the argument with the frame index, among 8846 // involved operands, that correspond to the lowest address. The 8847 // getCopyFromParts function, called earlier, is swapping the order of 8848 // the operands to BUILD_PAIR depending on endianness. The result of 8849 // that swapping is that the least significant bits of the argument will 8850 // be in the first operand of the BUILD_PAIR node, and the most 8851 // significant bits will be in the second operand. 8852 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 8853 if (LoadSDNode *LNode = 8854 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 8855 if (FrameIndexSDNode *FI = 8856 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8857 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8858 } 8859 8860 // Update the SwiftErrorVRegDefMap. 8861 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8862 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8863 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8864 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8865 FuncInfo->SwiftErrorArg, Reg); 8866 } 8867 8868 // If this argument is live outside of the entry block, insert a copy from 8869 // wherever we got it to the vreg that other BB's will reference it as. 8870 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8871 // If we can, though, try to skip creating an unnecessary vreg. 8872 // FIXME: This isn't very clean... it would be nice to make this more 8873 // general. It's also subtly incompatible with the hacks FastISel 8874 // uses with vregs. 8875 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8876 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8877 FuncInfo->ValueMap[&Arg] = Reg; 8878 continue; 8879 } 8880 } 8881 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 8882 FuncInfo->InitializeRegForValue(&Arg); 8883 SDB->CopyToExportRegsIfNeeded(&Arg); 8884 } 8885 } 8886 8887 if (!Chains.empty()) { 8888 Chains.push_back(NewRoot); 8889 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 8890 } 8891 8892 DAG.setRoot(NewRoot); 8893 8894 assert(i == InVals.size() && "Argument register count mismatch!"); 8895 8896 // If any argument copy elisions occurred and we have debug info, update the 8897 // stale frame indices used in the dbg.declare variable info table. 8898 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 8899 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 8900 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 8901 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 8902 if (I != ArgCopyElisionFrameIndexMap.end()) 8903 VI.Slot = I->second; 8904 } 8905 } 8906 8907 // Finally, if the target has anything special to do, allow it to do so. 8908 EmitFunctionEntryCode(); 8909 } 8910 8911 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8912 /// ensure constants are generated when needed. Remember the virtual registers 8913 /// that need to be added to the Machine PHI nodes as input. We cannot just 8914 /// directly add them, because expansion might result in multiple MBB's for one 8915 /// BB. As such, the start of the BB might correspond to a different MBB than 8916 /// the end. 8917 void 8918 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8919 const TerminatorInst *TI = LLVMBB->getTerminator(); 8920 8921 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8922 8923 // Check PHI nodes in successors that expect a value to be available from this 8924 // block. 8925 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8926 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8927 if (!isa<PHINode>(SuccBB->begin())) continue; 8928 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8929 8930 // If this terminator has multiple identical successors (common for 8931 // switches), only handle each succ once. 8932 if (!SuccsHandled.insert(SuccMBB).second) 8933 continue; 8934 8935 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8936 8937 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8938 // nodes and Machine PHI nodes, but the incoming operands have not been 8939 // emitted yet. 8940 for (BasicBlock::const_iterator I = SuccBB->begin(); 8941 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8942 // Ignore dead phi's. 8943 if (PN->use_empty()) continue; 8944 8945 // Skip empty types 8946 if (PN->getType()->isEmptyTy()) 8947 continue; 8948 8949 unsigned Reg; 8950 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8951 8952 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8953 unsigned &RegOut = ConstantsOut[C]; 8954 if (RegOut == 0) { 8955 RegOut = FuncInfo.CreateRegs(C->getType()); 8956 CopyValueToVirtualRegister(C, RegOut); 8957 } 8958 Reg = RegOut; 8959 } else { 8960 DenseMap<const Value *, unsigned>::iterator I = 8961 FuncInfo.ValueMap.find(PHIOp); 8962 if (I != FuncInfo.ValueMap.end()) 8963 Reg = I->second; 8964 else { 8965 assert(isa<AllocaInst>(PHIOp) && 8966 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8967 "Didn't codegen value into a register!??"); 8968 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8969 CopyValueToVirtualRegister(PHIOp, Reg); 8970 } 8971 } 8972 8973 // Remember that this register needs to added to the machine PHI node as 8974 // the input for this MBB. 8975 SmallVector<EVT, 4> ValueVTs; 8976 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8977 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8978 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8979 EVT VT = ValueVTs[vti]; 8980 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8981 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8982 FuncInfo.PHINodesToUpdate.push_back( 8983 std::make_pair(&*MBBI++, Reg + i)); 8984 Reg += NumRegisters; 8985 } 8986 } 8987 } 8988 8989 ConstantsOut.clear(); 8990 } 8991 8992 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8993 /// is 0. 8994 MachineBasicBlock * 8995 SelectionDAGBuilder::StackProtectorDescriptor:: 8996 AddSuccessorMBB(const BasicBlock *BB, 8997 MachineBasicBlock *ParentMBB, 8998 bool IsLikely, 8999 MachineBasicBlock *SuccMBB) { 9000 // If SuccBB has not been created yet, create it. 9001 if (!SuccMBB) { 9002 MachineFunction *MF = ParentMBB->getParent(); 9003 MachineFunction::iterator BBI(ParentMBB); 9004 SuccMBB = MF->CreateMachineBasicBlock(BB); 9005 MF->insert(++BBI, SuccMBB); 9006 } 9007 // Add it as a successor of ParentMBB. 9008 ParentMBB->addSuccessor( 9009 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9010 return SuccMBB; 9011 } 9012 9013 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9014 MachineFunction::iterator I(MBB); 9015 if (++I == FuncInfo.MF->end()) 9016 return nullptr; 9017 return &*I; 9018 } 9019 9020 /// During lowering new call nodes can be created (such as memset, etc.). 9021 /// Those will become new roots of the current DAG, but complications arise 9022 /// when they are tail calls. In such cases, the call lowering will update 9023 /// the root, but the builder still needs to know that a tail call has been 9024 /// lowered in order to avoid generating an additional return. 9025 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9026 // If the node is null, we do have a tail call. 9027 if (MaybeTC.getNode() != nullptr) 9028 DAG.setRoot(MaybeTC); 9029 else 9030 HasTailCall = true; 9031 } 9032 9033 uint64_t 9034 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9035 unsigned First, unsigned Last) const { 9036 assert(Last >= First); 9037 const APInt &LowCase = Clusters[First].Low->getValue(); 9038 const APInt &HighCase = Clusters[Last].High->getValue(); 9039 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9040 9041 // FIXME: A range of consecutive cases has 100% density, but only requires one 9042 // comparison to lower. We should discriminate against such consecutive ranges 9043 // in jump tables. 9044 9045 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9046 } 9047 9048 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9049 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9050 unsigned Last) const { 9051 assert(Last >= First); 9052 assert(TotalCases[Last] >= TotalCases[First]); 9053 uint64_t NumCases = 9054 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9055 return NumCases; 9056 } 9057 9058 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9059 unsigned First, unsigned Last, 9060 const SwitchInst *SI, 9061 MachineBasicBlock *DefaultMBB, 9062 CaseCluster &JTCluster) { 9063 assert(First <= Last); 9064 9065 auto Prob = BranchProbability::getZero(); 9066 unsigned NumCmps = 0; 9067 std::vector<MachineBasicBlock*> Table; 9068 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9069 9070 // Initialize probabilities in JTProbs. 9071 for (unsigned I = First; I <= Last; ++I) 9072 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9073 9074 for (unsigned I = First; I <= Last; ++I) { 9075 assert(Clusters[I].Kind == CC_Range); 9076 Prob += Clusters[I].Prob; 9077 const APInt &Low = Clusters[I].Low->getValue(); 9078 const APInt &High = Clusters[I].High->getValue(); 9079 NumCmps += (Low == High) ? 1 : 2; 9080 if (I != First) { 9081 // Fill the gap between this and the previous cluster. 9082 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9083 assert(PreviousHigh.slt(Low)); 9084 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9085 for (uint64_t J = 0; J < Gap; J++) 9086 Table.push_back(DefaultMBB); 9087 } 9088 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9089 for (uint64_t J = 0; J < ClusterSize; ++J) 9090 Table.push_back(Clusters[I].MBB); 9091 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9092 } 9093 9094 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9095 unsigned NumDests = JTProbs.size(); 9096 if (TLI.isSuitableForBitTests( 9097 NumDests, NumCmps, Clusters[First].Low->getValue(), 9098 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9099 // Clusters[First..Last] should be lowered as bit tests instead. 9100 return false; 9101 } 9102 9103 // Create the MBB that will load from and jump through the table. 9104 // Note: We create it here, but it's not inserted into the function yet. 9105 MachineFunction *CurMF = FuncInfo.MF; 9106 MachineBasicBlock *JumpTableMBB = 9107 CurMF->CreateMachineBasicBlock(SI->getParent()); 9108 9109 // Add successors. Note: use table order for determinism. 9110 SmallPtrSet<MachineBasicBlock *, 8> Done; 9111 for (MachineBasicBlock *Succ : Table) { 9112 if (Done.count(Succ)) 9113 continue; 9114 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9115 Done.insert(Succ); 9116 } 9117 JumpTableMBB->normalizeSuccProbs(); 9118 9119 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9120 ->createJumpTableIndex(Table); 9121 9122 // Set up the jump table info. 9123 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9124 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9125 Clusters[Last].High->getValue(), SI->getCondition(), 9126 nullptr, false); 9127 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9128 9129 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9130 JTCases.size() - 1, Prob); 9131 return true; 9132 } 9133 9134 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9135 const SwitchInst *SI, 9136 MachineBasicBlock *DefaultMBB) { 9137 #ifndef NDEBUG 9138 // Clusters must be non-empty, sorted, and only contain Range clusters. 9139 assert(!Clusters.empty()); 9140 for (CaseCluster &C : Clusters) 9141 assert(C.Kind == CC_Range); 9142 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9143 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9144 #endif 9145 9146 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9147 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9148 return; 9149 9150 const int64_t N = Clusters.size(); 9151 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9152 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9153 9154 if (N < 2 || N < MinJumpTableEntries) 9155 return; 9156 9157 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9158 SmallVector<unsigned, 8> TotalCases(N); 9159 for (unsigned i = 0; i < N; ++i) { 9160 const APInt &Hi = Clusters[i].High->getValue(); 9161 const APInt &Lo = Clusters[i].Low->getValue(); 9162 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9163 if (i != 0) 9164 TotalCases[i] += TotalCases[i - 1]; 9165 } 9166 9167 // Cheap case: the whole range may be suitable for jump table. 9168 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9169 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9170 assert(NumCases < UINT64_MAX / 100); 9171 assert(Range >= NumCases); 9172 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9173 CaseCluster JTCluster; 9174 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9175 Clusters[0] = JTCluster; 9176 Clusters.resize(1); 9177 return; 9178 } 9179 } 9180 9181 // The algorithm below is not suitable for -O0. 9182 if (TM.getOptLevel() == CodeGenOpt::None) 9183 return; 9184 9185 // Split Clusters into minimum number of dense partitions. The algorithm uses 9186 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9187 // for the Case Statement'" (1994), but builds the MinPartitions array in 9188 // reverse order to make it easier to reconstruct the partitions in ascending 9189 // order. In the choice between two optimal partitionings, it picks the one 9190 // which yields more jump tables. 9191 9192 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9193 SmallVector<unsigned, 8> MinPartitions(N); 9194 // LastElement[i] is the last element of the partition starting at i. 9195 SmallVector<unsigned, 8> LastElement(N); 9196 // PartitionsScore[i] is used to break ties when choosing between two 9197 // partitionings resulting in the same number of partitions. 9198 SmallVector<unsigned, 8> PartitionsScore(N); 9199 // For PartitionsScore, a small number of comparisons is considered as good as 9200 // a jump table and a single comparison is considered better than a jump 9201 // table. 9202 enum PartitionScores : unsigned { 9203 NoTable = 0, 9204 Table = 1, 9205 FewCases = 1, 9206 SingleCase = 2 9207 }; 9208 9209 // Base case: There is only one way to partition Clusters[N-1]. 9210 MinPartitions[N - 1] = 1; 9211 LastElement[N - 1] = N - 1; 9212 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9213 9214 // Note: loop indexes are signed to avoid underflow. 9215 for (int64_t i = N - 2; i >= 0; i--) { 9216 // Find optimal partitioning of Clusters[i..N-1]. 9217 // Baseline: Put Clusters[i] into a partition on its own. 9218 MinPartitions[i] = MinPartitions[i + 1] + 1; 9219 LastElement[i] = i; 9220 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9221 9222 // Search for a solution that results in fewer partitions. 9223 for (int64_t j = N - 1; j > i; j--) { 9224 // Try building a partition from Clusters[i..j]. 9225 uint64_t Range = getJumpTableRange(Clusters, i, j); 9226 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9227 assert(NumCases < UINT64_MAX / 100); 9228 assert(Range >= NumCases); 9229 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9230 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9231 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9232 int64_t NumEntries = j - i + 1; 9233 9234 if (NumEntries == 1) 9235 Score += PartitionScores::SingleCase; 9236 else if (NumEntries <= SmallNumberOfEntries) 9237 Score += PartitionScores::FewCases; 9238 else if (NumEntries >= MinJumpTableEntries) 9239 Score += PartitionScores::Table; 9240 9241 // If this leads to fewer partitions, or to the same number of 9242 // partitions with better score, it is a better partitioning. 9243 if (NumPartitions < MinPartitions[i] || 9244 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9245 MinPartitions[i] = NumPartitions; 9246 LastElement[i] = j; 9247 PartitionsScore[i] = Score; 9248 } 9249 } 9250 } 9251 } 9252 9253 // Iterate over the partitions, replacing some with jump tables in-place. 9254 unsigned DstIndex = 0; 9255 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9256 Last = LastElement[First]; 9257 assert(Last >= First); 9258 assert(DstIndex <= First); 9259 unsigned NumClusters = Last - First + 1; 9260 9261 CaseCluster JTCluster; 9262 if (NumClusters >= MinJumpTableEntries && 9263 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9264 Clusters[DstIndex++] = JTCluster; 9265 } else { 9266 for (unsigned I = First; I <= Last; ++I) 9267 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9268 } 9269 } 9270 Clusters.resize(DstIndex); 9271 } 9272 9273 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9274 unsigned First, unsigned Last, 9275 const SwitchInst *SI, 9276 CaseCluster &BTCluster) { 9277 assert(First <= Last); 9278 if (First == Last) 9279 return false; 9280 9281 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9282 unsigned NumCmps = 0; 9283 for (int64_t I = First; I <= Last; ++I) { 9284 assert(Clusters[I].Kind == CC_Range); 9285 Dests.set(Clusters[I].MBB->getNumber()); 9286 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9287 } 9288 unsigned NumDests = Dests.count(); 9289 9290 APInt Low = Clusters[First].Low->getValue(); 9291 APInt High = Clusters[Last].High->getValue(); 9292 assert(Low.slt(High)); 9293 9294 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9295 const DataLayout &DL = DAG.getDataLayout(); 9296 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9297 return false; 9298 9299 APInt LowBound; 9300 APInt CmpRange; 9301 9302 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9303 assert(TLI.rangeFitsInWord(Low, High, DL) && 9304 "Case range must fit in bit mask!"); 9305 9306 // Check if the clusters cover a contiguous range such that no value in the 9307 // range will jump to the default statement. 9308 bool ContiguousRange = true; 9309 for (int64_t I = First + 1; I <= Last; ++I) { 9310 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9311 ContiguousRange = false; 9312 break; 9313 } 9314 } 9315 9316 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9317 // Optimize the case where all the case values fit in a word without having 9318 // to subtract minValue. In this case, we can optimize away the subtraction. 9319 LowBound = APInt::getNullValue(Low.getBitWidth()); 9320 CmpRange = High; 9321 ContiguousRange = false; 9322 } else { 9323 LowBound = Low; 9324 CmpRange = High - Low; 9325 } 9326 9327 CaseBitsVector CBV; 9328 auto TotalProb = BranchProbability::getZero(); 9329 for (unsigned i = First; i <= Last; ++i) { 9330 // Find the CaseBits for this destination. 9331 unsigned j; 9332 for (j = 0; j < CBV.size(); ++j) 9333 if (CBV[j].BB == Clusters[i].MBB) 9334 break; 9335 if (j == CBV.size()) 9336 CBV.push_back( 9337 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9338 CaseBits *CB = &CBV[j]; 9339 9340 // Update Mask, Bits and ExtraProb. 9341 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9342 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9343 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9344 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9345 CB->Bits += Hi - Lo + 1; 9346 CB->ExtraProb += Clusters[i].Prob; 9347 TotalProb += Clusters[i].Prob; 9348 } 9349 9350 BitTestInfo BTI; 9351 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9352 // Sort by probability first, number of bits second, bit mask third. 9353 if (a.ExtraProb != b.ExtraProb) 9354 return a.ExtraProb > b.ExtraProb; 9355 if (a.Bits != b.Bits) 9356 return a.Bits > b.Bits; 9357 return a.Mask < b.Mask; 9358 }); 9359 9360 for (auto &CB : CBV) { 9361 MachineBasicBlock *BitTestBB = 9362 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9363 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9364 } 9365 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9366 SI->getCondition(), -1U, MVT::Other, false, 9367 ContiguousRange, nullptr, nullptr, std::move(BTI), 9368 TotalProb); 9369 9370 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9371 BitTestCases.size() - 1, TotalProb); 9372 return true; 9373 } 9374 9375 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9376 const SwitchInst *SI) { 9377 // Partition Clusters into as few subsets as possible, where each subset has a 9378 // range that fits in a machine word and has <= 3 unique destinations. 9379 9380 #ifndef NDEBUG 9381 // Clusters must be sorted and contain Range or JumpTable clusters. 9382 assert(!Clusters.empty()); 9383 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9384 for (const CaseCluster &C : Clusters) 9385 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9386 for (unsigned i = 1; i < Clusters.size(); ++i) 9387 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9388 #endif 9389 9390 // The algorithm below is not suitable for -O0. 9391 if (TM.getOptLevel() == CodeGenOpt::None) 9392 return; 9393 9394 // If target does not have legal shift left, do not emit bit tests at all. 9395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9396 const DataLayout &DL = DAG.getDataLayout(); 9397 9398 EVT PTy = TLI.getPointerTy(DL); 9399 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9400 return; 9401 9402 int BitWidth = PTy.getSizeInBits(); 9403 const int64_t N = Clusters.size(); 9404 9405 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9406 SmallVector<unsigned, 8> MinPartitions(N); 9407 // LastElement[i] is the last element of the partition starting at i. 9408 SmallVector<unsigned, 8> LastElement(N); 9409 9410 // FIXME: This might not be the best algorithm for finding bit test clusters. 9411 9412 // Base case: There is only one way to partition Clusters[N-1]. 9413 MinPartitions[N - 1] = 1; 9414 LastElement[N - 1] = N - 1; 9415 9416 // Note: loop indexes are signed to avoid underflow. 9417 for (int64_t i = N - 2; i >= 0; --i) { 9418 // Find optimal partitioning of Clusters[i..N-1]. 9419 // Baseline: Put Clusters[i] into a partition on its own. 9420 MinPartitions[i] = MinPartitions[i + 1] + 1; 9421 LastElement[i] = i; 9422 9423 // Search for a solution that results in fewer partitions. 9424 // Note: the search is limited by BitWidth, reducing time complexity. 9425 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9426 // Try building a partition from Clusters[i..j]. 9427 9428 // Check the range. 9429 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9430 Clusters[j].High->getValue(), DL)) 9431 continue; 9432 9433 // Check nbr of destinations and cluster types. 9434 // FIXME: This works, but doesn't seem very efficient. 9435 bool RangesOnly = true; 9436 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9437 for (int64_t k = i; k <= j; k++) { 9438 if (Clusters[k].Kind != CC_Range) { 9439 RangesOnly = false; 9440 break; 9441 } 9442 Dests.set(Clusters[k].MBB->getNumber()); 9443 } 9444 if (!RangesOnly || Dests.count() > 3) 9445 break; 9446 9447 // Check if it's a better partition. 9448 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9449 if (NumPartitions < MinPartitions[i]) { 9450 // Found a better partition. 9451 MinPartitions[i] = NumPartitions; 9452 LastElement[i] = j; 9453 } 9454 } 9455 } 9456 9457 // Iterate over the partitions, replacing with bit-test clusters in-place. 9458 unsigned DstIndex = 0; 9459 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9460 Last = LastElement[First]; 9461 assert(First <= Last); 9462 assert(DstIndex <= First); 9463 9464 CaseCluster BitTestCluster; 9465 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9466 Clusters[DstIndex++] = BitTestCluster; 9467 } else { 9468 size_t NumClusters = Last - First + 1; 9469 std::memmove(&Clusters[DstIndex], &Clusters[First], 9470 sizeof(Clusters[0]) * NumClusters); 9471 DstIndex += NumClusters; 9472 } 9473 } 9474 Clusters.resize(DstIndex); 9475 } 9476 9477 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9478 MachineBasicBlock *SwitchMBB, 9479 MachineBasicBlock *DefaultMBB) { 9480 MachineFunction *CurMF = FuncInfo.MF; 9481 MachineBasicBlock *NextMBB = nullptr; 9482 MachineFunction::iterator BBI(W.MBB); 9483 if (++BBI != FuncInfo.MF->end()) 9484 NextMBB = &*BBI; 9485 9486 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9487 9488 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9489 9490 if (Size == 2 && W.MBB == SwitchMBB) { 9491 // If any two of the cases has the same destination, and if one value 9492 // is the same as the other, but has one bit unset that the other has set, 9493 // use bit manipulation to do two compares at once. For example: 9494 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9495 // TODO: This could be extended to merge any 2 cases in switches with 3 9496 // cases. 9497 // TODO: Handle cases where W.CaseBB != SwitchBB. 9498 CaseCluster &Small = *W.FirstCluster; 9499 CaseCluster &Big = *W.LastCluster; 9500 9501 if (Small.Low == Small.High && Big.Low == Big.High && 9502 Small.MBB == Big.MBB) { 9503 const APInt &SmallValue = Small.Low->getValue(); 9504 const APInt &BigValue = Big.Low->getValue(); 9505 9506 // Check that there is only one bit different. 9507 APInt CommonBit = BigValue ^ SmallValue; 9508 if (CommonBit.isPowerOf2()) { 9509 SDValue CondLHS = getValue(Cond); 9510 EVT VT = CondLHS.getValueType(); 9511 SDLoc DL = getCurSDLoc(); 9512 9513 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9514 DAG.getConstant(CommonBit, DL, VT)); 9515 SDValue Cond = DAG.getSetCC( 9516 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9517 ISD::SETEQ); 9518 9519 // Update successor info. 9520 // Both Small and Big will jump to Small.BB, so we sum up the 9521 // probabilities. 9522 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9523 if (BPI) 9524 addSuccessorWithProb( 9525 SwitchMBB, DefaultMBB, 9526 // The default destination is the first successor in IR. 9527 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9528 else 9529 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9530 9531 // Insert the true branch. 9532 SDValue BrCond = 9533 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9534 DAG.getBasicBlock(Small.MBB)); 9535 // Insert the false branch. 9536 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9537 DAG.getBasicBlock(DefaultMBB)); 9538 9539 DAG.setRoot(BrCond); 9540 return; 9541 } 9542 } 9543 } 9544 9545 if (TM.getOptLevel() != CodeGenOpt::None) { 9546 // Here, we order cases by probability so the most likely case will be 9547 // checked first. However, two clusters can have the same probability in 9548 // which case their relative ordering is non-deterministic. So we use Low 9549 // as a tie-breaker as clusters are guaranteed to never overlap. 9550 std::sort(W.FirstCluster, W.LastCluster + 1, 9551 [](const CaseCluster &a, const CaseCluster &b) { 9552 return a.Prob != b.Prob ? 9553 a.Prob > b.Prob : 9554 a.Low->getValue().slt(b.Low->getValue()); 9555 }); 9556 9557 // Rearrange the case blocks so that the last one falls through if possible 9558 // without without changing the order of probabilities. 9559 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9560 --I; 9561 if (I->Prob > W.LastCluster->Prob) 9562 break; 9563 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9564 std::swap(*I, *W.LastCluster); 9565 break; 9566 } 9567 } 9568 } 9569 9570 // Compute total probability. 9571 BranchProbability DefaultProb = W.DefaultProb; 9572 BranchProbability UnhandledProbs = DefaultProb; 9573 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9574 UnhandledProbs += I->Prob; 9575 9576 MachineBasicBlock *CurMBB = W.MBB; 9577 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9578 MachineBasicBlock *Fallthrough; 9579 if (I == W.LastCluster) { 9580 // For the last cluster, fall through to the default destination. 9581 Fallthrough = DefaultMBB; 9582 } else { 9583 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9584 CurMF->insert(BBI, Fallthrough); 9585 // Put Cond in a virtual register to make it available from the new blocks. 9586 ExportFromCurrentBlock(Cond); 9587 } 9588 UnhandledProbs -= I->Prob; 9589 9590 switch (I->Kind) { 9591 case CC_JumpTable: { 9592 // FIXME: Optimize away range check based on pivot comparisons. 9593 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9594 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9595 9596 // The jump block hasn't been inserted yet; insert it here. 9597 MachineBasicBlock *JumpMBB = JT->MBB; 9598 CurMF->insert(BBI, JumpMBB); 9599 9600 auto JumpProb = I->Prob; 9601 auto FallthroughProb = UnhandledProbs; 9602 9603 // If the default statement is a target of the jump table, we evenly 9604 // distribute the default probability to successors of CurMBB. Also 9605 // update the probability on the edge from JumpMBB to Fallthrough. 9606 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9607 SE = JumpMBB->succ_end(); 9608 SI != SE; ++SI) { 9609 if (*SI == DefaultMBB) { 9610 JumpProb += DefaultProb / 2; 9611 FallthroughProb -= DefaultProb / 2; 9612 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9613 JumpMBB->normalizeSuccProbs(); 9614 break; 9615 } 9616 } 9617 9618 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9619 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9620 CurMBB->normalizeSuccProbs(); 9621 9622 // The jump table header will be inserted in our current block, do the 9623 // range check, and fall through to our fallthrough block. 9624 JTH->HeaderBB = CurMBB; 9625 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9626 9627 // If we're in the right place, emit the jump table header right now. 9628 if (CurMBB == SwitchMBB) { 9629 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9630 JTH->Emitted = true; 9631 } 9632 break; 9633 } 9634 case CC_BitTests: { 9635 // FIXME: Optimize away range check based on pivot comparisons. 9636 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9637 9638 // The bit test blocks haven't been inserted yet; insert them here. 9639 for (BitTestCase &BTC : BTB->Cases) 9640 CurMF->insert(BBI, BTC.ThisBB); 9641 9642 // Fill in fields of the BitTestBlock. 9643 BTB->Parent = CurMBB; 9644 BTB->Default = Fallthrough; 9645 9646 BTB->DefaultProb = UnhandledProbs; 9647 // If the cases in bit test don't form a contiguous range, we evenly 9648 // distribute the probability on the edge to Fallthrough to two 9649 // successors of CurMBB. 9650 if (!BTB->ContiguousRange) { 9651 BTB->Prob += DefaultProb / 2; 9652 BTB->DefaultProb -= DefaultProb / 2; 9653 } 9654 9655 // If we're in the right place, emit the bit test header right now. 9656 if (CurMBB == SwitchMBB) { 9657 visitBitTestHeader(*BTB, SwitchMBB); 9658 BTB->Emitted = true; 9659 } 9660 break; 9661 } 9662 case CC_Range: { 9663 const Value *RHS, *LHS, *MHS; 9664 ISD::CondCode CC; 9665 if (I->Low == I->High) { 9666 // Check Cond == I->Low. 9667 CC = ISD::SETEQ; 9668 LHS = Cond; 9669 RHS=I->Low; 9670 MHS = nullptr; 9671 } else { 9672 // Check I->Low <= Cond <= I->High. 9673 CC = ISD::SETLE; 9674 LHS = I->Low; 9675 MHS = Cond; 9676 RHS = I->High; 9677 } 9678 9679 // The false probability is the sum of all unhandled cases. 9680 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 9681 getCurSDLoc(), I->Prob, UnhandledProbs); 9682 9683 if (CurMBB == SwitchMBB) 9684 visitSwitchCase(CB, SwitchMBB); 9685 else 9686 SwitchCases.push_back(CB); 9687 9688 break; 9689 } 9690 } 9691 CurMBB = Fallthrough; 9692 } 9693 } 9694 9695 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9696 CaseClusterIt First, 9697 CaseClusterIt Last) { 9698 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9699 if (X.Prob != CC.Prob) 9700 return X.Prob > CC.Prob; 9701 9702 // Ties are broken by comparing the case value. 9703 return X.Low->getValue().slt(CC.Low->getValue()); 9704 }); 9705 } 9706 9707 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9708 const SwitchWorkListItem &W, 9709 Value *Cond, 9710 MachineBasicBlock *SwitchMBB) { 9711 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9712 "Clusters not sorted?"); 9713 9714 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9715 9716 // Balance the tree based on branch probabilities to create a near-optimal (in 9717 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9718 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9719 CaseClusterIt LastLeft = W.FirstCluster; 9720 CaseClusterIt FirstRight = W.LastCluster; 9721 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9722 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9723 9724 // Move LastLeft and FirstRight towards each other from opposite directions to 9725 // find a partitioning of the clusters which balances the probability on both 9726 // sides. If LeftProb and RightProb are equal, alternate which side is 9727 // taken to ensure 0-probability nodes are distributed evenly. 9728 unsigned I = 0; 9729 while (LastLeft + 1 < FirstRight) { 9730 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9731 LeftProb += (++LastLeft)->Prob; 9732 else 9733 RightProb += (--FirstRight)->Prob; 9734 I++; 9735 } 9736 9737 while (true) { 9738 // Our binary search tree differs from a typical BST in that ours can have up 9739 // to three values in each leaf. The pivot selection above doesn't take that 9740 // into account, which means the tree might require more nodes and be less 9741 // efficient. We compensate for this here. 9742 9743 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9744 unsigned NumRight = W.LastCluster - FirstRight + 1; 9745 9746 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9747 // If one side has less than 3 clusters, and the other has more than 3, 9748 // consider taking a cluster from the other side. 9749 9750 if (NumLeft < NumRight) { 9751 // Consider moving the first cluster on the right to the left side. 9752 CaseCluster &CC = *FirstRight; 9753 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9754 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9755 if (LeftSideRank <= RightSideRank) { 9756 // Moving the cluster to the left does not demote it. 9757 ++LastLeft; 9758 ++FirstRight; 9759 continue; 9760 } 9761 } else { 9762 assert(NumRight < NumLeft); 9763 // Consider moving the last element on the left to the right side. 9764 CaseCluster &CC = *LastLeft; 9765 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9766 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9767 if (RightSideRank <= LeftSideRank) { 9768 // Moving the cluster to the right does not demot it. 9769 --LastLeft; 9770 --FirstRight; 9771 continue; 9772 } 9773 } 9774 } 9775 break; 9776 } 9777 9778 assert(LastLeft + 1 == FirstRight); 9779 assert(LastLeft >= W.FirstCluster); 9780 assert(FirstRight <= W.LastCluster); 9781 9782 // Use the first element on the right as pivot since we will make less-than 9783 // comparisons against it. 9784 CaseClusterIt PivotCluster = FirstRight; 9785 assert(PivotCluster > W.FirstCluster); 9786 assert(PivotCluster <= W.LastCluster); 9787 9788 CaseClusterIt FirstLeft = W.FirstCluster; 9789 CaseClusterIt LastRight = W.LastCluster; 9790 9791 const ConstantInt *Pivot = PivotCluster->Low; 9792 9793 // New blocks will be inserted immediately after the current one. 9794 MachineFunction::iterator BBI(W.MBB); 9795 ++BBI; 9796 9797 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9798 // we can branch to its destination directly if it's squeezed exactly in 9799 // between the known lower bound and Pivot - 1. 9800 MachineBasicBlock *LeftMBB; 9801 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9802 FirstLeft->Low == W.GE && 9803 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9804 LeftMBB = FirstLeft->MBB; 9805 } else { 9806 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9807 FuncInfo.MF->insert(BBI, LeftMBB); 9808 WorkList.push_back( 9809 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9810 // Put Cond in a virtual register to make it available from the new blocks. 9811 ExportFromCurrentBlock(Cond); 9812 } 9813 9814 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9815 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9816 // directly if RHS.High equals the current upper bound. 9817 MachineBasicBlock *RightMBB; 9818 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9819 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9820 RightMBB = FirstRight->MBB; 9821 } else { 9822 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9823 FuncInfo.MF->insert(BBI, RightMBB); 9824 WorkList.push_back( 9825 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9826 // Put Cond in a virtual register to make it available from the new blocks. 9827 ExportFromCurrentBlock(Cond); 9828 } 9829 9830 // Create the CaseBlock record that will be used to lower the branch. 9831 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9832 getCurSDLoc(), LeftProb, RightProb); 9833 9834 if (W.MBB == SwitchMBB) 9835 visitSwitchCase(CB, SwitchMBB); 9836 else 9837 SwitchCases.push_back(CB); 9838 } 9839 9840 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 9841 // from the swith statement. 9842 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 9843 BranchProbability PeeledCaseProb) { 9844 if (PeeledCaseProb == BranchProbability::getOne()) 9845 return BranchProbability::getZero(); 9846 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 9847 9848 uint32_t Numerator = CaseProb.getNumerator(); 9849 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 9850 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 9851 } 9852 9853 // Try to peel the top probability case if it exceeds the threshold. 9854 // Return current MachineBasicBlock for the switch statement if the peeling 9855 // does not occur. 9856 // If the peeling is performed, return the newly created MachineBasicBlock 9857 // for the peeled switch statement. Also update Clusters to remove the peeled 9858 // case. PeeledCaseProb is the BranchProbability for the peeled case. 9859 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 9860 const SwitchInst &SI, CaseClusterVector &Clusters, 9861 BranchProbability &PeeledCaseProb) { 9862 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9863 // Don't perform if there is only one cluster or optimizing for size. 9864 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 9865 TM.getOptLevel() == CodeGenOpt::None || 9866 SwitchMBB->getParent()->getFunction()->optForMinSize()) 9867 return SwitchMBB; 9868 9869 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 9870 unsigned PeeledCaseIndex = 0; 9871 bool SwitchPeeled = false; 9872 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 9873 CaseCluster &CC = Clusters[Index]; 9874 if (CC.Prob < TopCaseProb) 9875 continue; 9876 TopCaseProb = CC.Prob; 9877 PeeledCaseIndex = Index; 9878 SwitchPeeled = true; 9879 } 9880 if (!SwitchPeeled) 9881 return SwitchMBB; 9882 9883 DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " << TopCaseProb 9884 << "\n"); 9885 9886 // Record the MBB for the peeled switch statement. 9887 MachineFunction::iterator BBI(SwitchMBB); 9888 ++BBI; 9889 MachineBasicBlock *PeeledSwitchMBB = 9890 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 9891 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 9892 9893 ExportFromCurrentBlock(SI.getCondition()); 9894 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 9895 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 9896 nullptr, nullptr, TopCaseProb.getCompl()}; 9897 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 9898 9899 Clusters.erase(PeeledCaseIt); 9900 for (CaseCluster &CC : Clusters) { 9901 DEBUG(dbgs() << "Scale the probablity for one cluster, before scaling: " 9902 << CC.Prob << "\n"); 9903 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 9904 DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 9905 } 9906 PeeledCaseProb = TopCaseProb; 9907 return PeeledSwitchMBB; 9908 } 9909 9910 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9911 // Extract cases from the switch. 9912 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9913 CaseClusterVector Clusters; 9914 Clusters.reserve(SI.getNumCases()); 9915 for (auto I : SI.cases()) { 9916 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9917 const ConstantInt *CaseVal = I.getCaseValue(); 9918 BranchProbability Prob = 9919 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9920 : BranchProbability(1, SI.getNumCases() + 1); 9921 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9922 } 9923 9924 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9925 9926 // Cluster adjacent cases with the same destination. We do this at all 9927 // optimization levels because it's cheap to do and will make codegen faster 9928 // if there are many clusters. 9929 sortAndRangeify(Clusters); 9930 9931 if (TM.getOptLevel() != CodeGenOpt::None) { 9932 // Replace an unreachable default with the most popular destination. 9933 // FIXME: Exploit unreachable default more aggressively. 9934 bool UnreachableDefault = 9935 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9936 if (UnreachableDefault && !Clusters.empty()) { 9937 DenseMap<const BasicBlock *, unsigned> Popularity; 9938 unsigned MaxPop = 0; 9939 const BasicBlock *MaxBB = nullptr; 9940 for (auto I : SI.cases()) { 9941 const BasicBlock *BB = I.getCaseSuccessor(); 9942 if (++Popularity[BB] > MaxPop) { 9943 MaxPop = Popularity[BB]; 9944 MaxBB = BB; 9945 } 9946 } 9947 // Set new default. 9948 assert(MaxPop > 0 && MaxBB); 9949 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9950 9951 // Remove cases that were pointing to the destination that is now the 9952 // default. 9953 CaseClusterVector New; 9954 New.reserve(Clusters.size()); 9955 for (CaseCluster &CC : Clusters) { 9956 if (CC.MBB != DefaultMBB) 9957 New.push_back(CC); 9958 } 9959 Clusters = std::move(New); 9960 } 9961 } 9962 9963 // The branch probablity of the peeled case. 9964 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 9965 MachineBasicBlock *PeeledSwitchMBB = 9966 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 9967 9968 // If there is only the default destination, jump there directly. 9969 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9970 if (Clusters.empty()) { 9971 assert(PeeledSwitchMBB == SwitchMBB); 9972 SwitchMBB->addSuccessor(DefaultMBB); 9973 if (DefaultMBB != NextBlock(SwitchMBB)) { 9974 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9975 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9976 } 9977 return; 9978 } 9979 9980 findJumpTables(Clusters, &SI, DefaultMBB); 9981 findBitTestClusters(Clusters, &SI); 9982 9983 DEBUG({ 9984 dbgs() << "Case clusters: "; 9985 for (const CaseCluster &C : Clusters) { 9986 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9987 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9988 9989 C.Low->getValue().print(dbgs(), true); 9990 if (C.Low != C.High) { 9991 dbgs() << '-'; 9992 C.High->getValue().print(dbgs(), true); 9993 } 9994 dbgs() << ' '; 9995 } 9996 dbgs() << '\n'; 9997 }); 9998 9999 assert(!Clusters.empty()); 10000 SwitchWorkList WorkList; 10001 CaseClusterIt First = Clusters.begin(); 10002 CaseClusterIt Last = Clusters.end() - 1; 10003 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10004 // Scale the branchprobability for DefaultMBB if the peel occurs and 10005 // DefaultMBB is not replaced. 10006 if (PeeledCaseProb != BranchProbability::getZero() && 10007 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10008 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10009 WorkList.push_back( 10010 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10011 10012 while (!WorkList.empty()) { 10013 SwitchWorkListItem W = WorkList.back(); 10014 WorkList.pop_back(); 10015 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10016 10017 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10018 !DefaultMBB->getParent()->getFunction()->optForMinSize()) { 10019 // For optimized builds, lower large range as a balanced binary tree. 10020 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10021 continue; 10022 } 10023 10024 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10025 } 10026 } 10027