1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isInteger()) { 202 if (ValueVT.bitsLT(PartEVT)) { 203 // For a truncate, see if we have any information to 204 // indicate whether the truncated bits will always be 205 // zero or sign-extension. 206 if (AssertOp != ISD::DELETED_NODE) 207 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 208 DAG.getValueType(ValueVT)); 209 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 210 } 211 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 212 } 213 214 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 215 // FP_ROUND's are always exact here. 216 if (ValueVT.bitsLT(Val.getValueType())) 217 return DAG.getNode( 218 ISD::FP_ROUND, DL, ValueVT, Val, 219 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 220 221 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 222 } 223 224 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 225 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 226 227 llvm_unreachable("Unknown mismatch!"); 228 } 229 230 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 231 const Twine &ErrMsg) { 232 const Instruction *I = dyn_cast_or_null<Instruction>(V); 233 if (!V) 234 return Ctx.emitError(ErrMsg); 235 236 const char *AsmError = ", possible invalid constraint for vector type"; 237 if (const CallInst *CI = dyn_cast<CallInst>(I)) 238 if (isa<InlineAsm>(CI->getCalledValue())) 239 return Ctx.emitError(I, ErrMsg + AsmError); 240 241 return Ctx.emitError(I, ErrMsg); 242 } 243 244 /// getCopyFromPartsVector - Create a value that contains the specified legal 245 /// parts combined into the value they represent. If the parts combine to a 246 /// type larger then ValueVT then AssertOp can be used to specify whether the 247 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 248 /// ValueVT (ISD::AssertSext). 249 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 250 const SDValue *Parts, unsigned NumParts, 251 MVT PartVT, EVT ValueVT, const Value *V) { 252 assert(ValueVT.isVector() && "Not a vector value"); 253 assert(NumParts > 0 && "No parts to assemble!"); 254 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 255 SDValue Val = Parts[0]; 256 257 // Handle a multi-element vector. 258 if (NumParts > 1) { 259 EVT IntermediateVT; 260 MVT RegisterVT; 261 unsigned NumIntermediates; 262 unsigned NumRegs = 263 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 264 NumIntermediates, RegisterVT); 265 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 266 NumParts = NumRegs; // Silence a compiler warning. 267 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 268 assert(RegisterVT.getSizeInBits() == 269 Parts[0].getSimpleValueType().getSizeInBits() && 270 "Part type sizes don't match!"); 271 272 // Assemble the parts into intermediate operands. 273 SmallVector<SDValue, 8> Ops(NumIntermediates); 274 if (NumIntermediates == NumParts) { 275 // If the register was not expanded, truncate or copy the value, 276 // as appropriate. 277 for (unsigned i = 0; i != NumParts; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 279 PartVT, IntermediateVT, V); 280 } else if (NumParts > 0) { 281 // If the intermediate type was expanded, build the intermediate 282 // operands from the parts. 283 assert(NumParts % NumIntermediates == 0 && 284 "Must expand into a divisible number of parts!"); 285 unsigned Factor = NumParts / NumIntermediates; 286 for (unsigned i = 0; i != NumIntermediates; ++i) 287 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 288 PartVT, IntermediateVT, V); 289 } 290 291 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 292 // intermediate operands. 293 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 294 : ISD::BUILD_VECTOR, 295 DL, ValueVT, Ops); 296 } 297 298 // There is now one part, held in Val. Correct it to match ValueVT. 299 EVT PartEVT = Val.getValueType(); 300 301 if (PartEVT == ValueVT) 302 return Val; 303 304 if (PartEVT.isVector()) { 305 // If the element type of the source/dest vectors are the same, but the 306 // parts vector has more elements than the value vector, then we have a 307 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 308 // elements we want. 309 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 310 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 311 "Cannot narrow, it would be a lossy transformation"); 312 return DAG.getNode( 313 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 314 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 315 } 316 317 // Vector/Vector bitcast. 318 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 319 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 320 321 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 322 "Cannot handle this kind of promotion"); 323 // Promoted vector extract 324 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 325 326 } 327 328 // Trivial bitcast if the types are the same size and the destination 329 // vector type is legal. 330 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 331 TLI.isTypeLegal(ValueVT)) 332 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 333 334 // Handle cases such as i8 -> <1 x i1> 335 if (ValueVT.getVectorNumElements() != 1) { 336 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 337 "non-trivial scalar-to-vector conversion"); 338 return DAG.getUNDEF(ValueVT); 339 } 340 341 if (ValueVT.getVectorNumElements() == 1 && 342 ValueVT.getVectorElementType() != PartEVT) 343 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 344 345 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 346 } 347 348 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 349 SDValue Val, SDValue *Parts, unsigned NumParts, 350 MVT PartVT, const Value *V); 351 352 /// getCopyToParts - Create a series of nodes that contain the specified value 353 /// split into legal parts. If the parts contain more bits than Val, then, for 354 /// integers, ExtendKind can be used to specify how to generate the extra bits. 355 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 356 SDValue Val, SDValue *Parts, unsigned NumParts, 357 MVT PartVT, const Value *V, 358 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 359 EVT ValueVT = Val.getValueType(); 360 361 // Handle the vector case separately. 362 if (ValueVT.isVector()) 363 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 364 365 unsigned PartBits = PartVT.getSizeInBits(); 366 unsigned OrigNumParts = NumParts; 367 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 368 "Copying to an illegal type!"); 369 370 if (NumParts == 0) 371 return; 372 373 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 374 EVT PartEVT = PartVT; 375 if (PartEVT == ValueVT) { 376 assert(NumParts == 1 && "No-op copy with multiple parts!"); 377 Parts[0] = Val; 378 return; 379 } 380 381 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 382 // If the parts cover more bits than the value has, promote the value. 383 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 384 assert(NumParts == 1 && "Do not know what to promote to!"); 385 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 386 } else { 387 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 388 ValueVT.isInteger() && 389 "Unknown mismatch!"); 390 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 391 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 392 if (PartVT == MVT::x86mmx) 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } 395 } else if (PartBits == ValueVT.getSizeInBits()) { 396 // Different types of the same size. 397 assert(NumParts == 1 && PartEVT != ValueVT); 398 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 399 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 400 // If the parts cover less bits than value has, truncate the value. 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 410 // The value may have changed - recompute ValueVT. 411 ValueVT = Val.getValueType(); 412 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 413 "Failed to tile the value with PartVT!"); 414 415 if (NumParts == 1) { 416 if (PartEVT != ValueVT) 417 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 418 "scalar-to-vector conversion failed"); 419 420 Parts[0] = Val; 421 return; 422 } 423 424 // Expand the value into multiple parts. 425 if (NumParts & (NumParts - 1)) { 426 // The number of parts is not a power of 2. Split off and copy the tail. 427 assert(PartVT.isInteger() && ValueVT.isInteger() && 428 "Do not know what to expand to!"); 429 unsigned RoundParts = 1 << Log2_32(NumParts); 430 unsigned RoundBits = RoundParts * PartBits; 431 unsigned OddParts = NumParts - RoundParts; 432 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 433 DAG.getIntPtrConstant(RoundBits, DL)); 434 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 435 436 if (DAG.getDataLayout().isBigEndian()) 437 // The odd parts were reversed by getCopyToParts - unreverse them. 438 std::reverse(Parts + RoundParts, Parts + NumParts); 439 440 NumParts = RoundParts; 441 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 442 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 443 } 444 445 // The number of parts is a power of 2. Repeatedly bisect the value using 446 // EXTRACT_ELEMENT. 447 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 448 EVT::getIntegerVT(*DAG.getContext(), 449 ValueVT.getSizeInBits()), 450 Val); 451 452 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 453 for (unsigned i = 0; i < NumParts; i += StepSize) { 454 unsigned ThisBits = StepSize * PartBits / 2; 455 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 456 SDValue &Part0 = Parts[i]; 457 SDValue &Part1 = Parts[i+StepSize/2]; 458 459 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 460 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 461 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 462 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 463 464 if (ThisBits == PartBits && ThisVT != PartVT) { 465 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 466 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 467 } 468 } 469 } 470 471 if (DAG.getDataLayout().isBigEndian()) 472 std::reverse(Parts, Parts + OrigNumParts); 473 } 474 475 476 /// getCopyToPartsVector - Create a series of nodes that contain the specified 477 /// value split into legal parts. 478 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 479 SDValue Val, SDValue *Parts, unsigned NumParts, 480 MVT PartVT, const Value *V) { 481 EVT ValueVT = Val.getValueType(); 482 assert(ValueVT.isVector() && "Not a vector"); 483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 484 485 if (NumParts == 1) { 486 EVT PartEVT = PartVT; 487 if (PartEVT == ValueVT) { 488 // Nothing to do. 489 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 490 // Bitconvert vector->vector case. 491 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 492 } else if (PartVT.isVector() && 493 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 494 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 495 EVT ElementVT = PartVT.getVectorElementType(); 496 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 497 // undef elements. 498 SmallVector<SDValue, 16> Ops; 499 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 500 Ops.push_back(DAG.getNode( 501 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 502 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 503 504 for (unsigned i = ValueVT.getVectorNumElements(), 505 e = PartVT.getVectorNumElements(); i != e; ++i) 506 Ops.push_back(DAG.getUNDEF(ElementVT)); 507 508 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 509 510 // FIXME: Use CONCAT for 2x -> 4x. 511 512 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 513 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 514 } else if (PartVT.isVector() && 515 PartEVT.getVectorElementType().bitsGE( 516 ValueVT.getVectorElementType()) && 517 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 518 519 // Promoted vector extract 520 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 521 } else{ 522 // Vector -> scalar conversion. 523 assert(ValueVT.getVectorNumElements() == 1 && 524 "Only trivial vector-to-scalar conversions should get here!"); 525 Val = DAG.getNode( 526 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 527 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 528 529 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 530 } 531 532 Parts[0] = Val; 533 return; 534 } 535 536 // Handle a multi-element vector. 537 EVT IntermediateVT; 538 MVT RegisterVT; 539 unsigned NumIntermediates; 540 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 541 IntermediateVT, 542 NumIntermediates, RegisterVT); 543 unsigned NumElements = ValueVT.getVectorNumElements(); 544 545 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 546 NumParts = NumRegs; // Silence a compiler warning. 547 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 548 549 // Split the vector into intermediate operands. 550 SmallVector<SDValue, 8> Ops(NumIntermediates); 551 for (unsigned i = 0; i != NumIntermediates; ++i) { 552 if (IntermediateVT.isVector()) 553 Ops[i] = 554 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 555 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 556 TLI.getVectorIdxTy(DAG.getDataLayout()))); 557 else 558 Ops[i] = DAG.getNode( 559 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 560 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 561 } 562 563 // Split the intermediate operands into legal parts. 564 if (NumParts == NumIntermediates) { 565 // If the register was not expanded, promote or copy the value, 566 // as appropriate. 567 for (unsigned i = 0; i != NumParts; ++i) 568 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 569 } else if (NumParts > 0) { 570 // If the intermediate type was expanded, split each the value into 571 // legal parts. 572 assert(NumIntermediates != 0 && "division by zero"); 573 assert(NumParts % NumIntermediates == 0 && 574 "Must expand into a divisible number of parts!"); 575 unsigned Factor = NumParts / NumIntermediates; 576 for (unsigned i = 0; i != NumIntermediates; ++i) 577 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 578 } 579 } 580 581 RegsForValue::RegsForValue() {} 582 583 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 584 EVT valuevt) 585 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 586 587 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 588 const DataLayout &DL, unsigned Reg, Type *Ty) { 589 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 590 591 for (EVT ValueVT : ValueVTs) { 592 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 593 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 602 /// this value and returns the result as a ValueVT value. This uses 603 /// Chain/Flag as the input and updates them for the output Chain/Flag. 604 /// If the Flag pointer is NULL, no flag is used. 605 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 606 FunctionLoweringInfo &FuncInfo, 607 SDLoc dl, 608 SDValue &Chain, SDValue *Flag, 609 const Value *V) const { 610 // A Value with type {} or [0 x %t] needs no registers. 611 if (ValueVTs.empty()) 612 return SDValue(); 613 614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 615 616 // Assemble the legal parts into the final values. 617 SmallVector<SDValue, 4> Values(ValueVTs.size()); 618 SmallVector<SDValue, 8> Parts; 619 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 620 // Copy the legal parts from the registers. 621 EVT ValueVT = ValueVTs[Value]; 622 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 623 MVT RegisterVT = RegVTs[Value]; 624 625 Parts.resize(NumRegs); 626 for (unsigned i = 0; i != NumRegs; ++i) { 627 SDValue P; 628 if (!Flag) { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 630 } else { 631 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 632 *Flag = P.getValue(2); 633 } 634 635 Chain = P.getValue(1); 636 Parts[i] = P; 637 638 // If the source register was virtual and if we know something about it, 639 // add an assert node. 640 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 641 !RegisterVT.isInteger() || RegisterVT.isVector()) 642 continue; 643 644 const FunctionLoweringInfo::LiveOutInfo *LOI = 645 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 646 if (!LOI) 647 continue; 648 649 unsigned RegSize = RegisterVT.getSizeInBits(); 650 unsigned NumSignBits = LOI->NumSignBits; 651 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 652 653 if (NumZeroBits == RegSize) { 654 // The current value is a zero. 655 // Explicitly express that as it would be easier for 656 // optimizations to kick in. 657 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 658 continue; 659 } 660 661 // FIXME: We capture more information than the dag can represent. For 662 // now, just use the tightest assertzext/assertsext possible. 663 bool isSExt = true; 664 EVT FromVT(MVT::Other); 665 if (NumSignBits == RegSize) 666 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 667 else if (NumZeroBits >= RegSize-1) 668 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 669 else if (NumSignBits > RegSize-8) 670 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 671 else if (NumZeroBits >= RegSize-8) 672 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 673 else if (NumSignBits > RegSize-16) 674 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 675 else if (NumZeroBits >= RegSize-16) 676 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 677 else if (NumSignBits > RegSize-32) 678 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 679 else if (NumZeroBits >= RegSize-32) 680 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 681 else 682 continue; 683 684 // Add an assertion node. 685 assert(FromVT != MVT::Other); 686 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 687 RegisterVT, P, DAG.getValueType(FromVT)); 688 } 689 690 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 691 NumRegs, RegisterVT, ValueVT, V); 692 Part += NumRegs; 693 Parts.clear(); 694 } 695 696 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 697 } 698 699 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 700 /// specified value into the registers specified by this object. This uses 701 /// Chain/Flag as the input and updates them for the output Chain/Flag. 702 /// If the Flag pointer is NULL, no flag is used. 703 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 704 SDValue &Chain, SDValue *Flag, const Value *V, 705 ISD::NodeType PreferredExtendType) const { 706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 707 ISD::NodeType ExtendKind = PreferredExtendType; 708 709 // Get the list of the values's legal parts. 710 unsigned NumRegs = Regs.size(); 711 SmallVector<SDValue, 8> Parts(NumRegs); 712 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 713 EVT ValueVT = ValueVTs[Value]; 714 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 715 MVT RegisterVT = RegVTs[Value]; 716 717 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 718 ExtendKind = ISD::ZERO_EXTEND; 719 720 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 721 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 722 Part += NumParts; 723 } 724 725 // Copy the parts into the registers. 726 SmallVector<SDValue, 8> Chains(NumRegs); 727 for (unsigned i = 0; i != NumRegs; ++i) { 728 SDValue Part; 729 if (!Flag) { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 731 } else { 732 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 733 *Flag = Part.getValue(1); 734 } 735 736 Chains[i] = Part.getValue(0); 737 } 738 739 if (NumRegs == 1 || Flag) 740 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 741 // flagged to it. That is the CopyToReg nodes and the user are considered 742 // a single scheduling unit. If we create a TokenFactor and return it as 743 // chain, then the TokenFactor is both a predecessor (operand) of the 744 // user as well as a successor (the TF operands are flagged to the user). 745 // c1, f1 = CopyToReg 746 // c2, f2 = CopyToReg 747 // c3 = TokenFactor c1, c2 748 // ... 749 // = op c3, ..., f2 750 Chain = Chains[NumRegs-1]; 751 else 752 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 753 } 754 755 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 756 /// operand list. This adds the code marker and includes the number of 757 /// values added into it. 758 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 759 unsigned MatchingIdx, SDLoc dl, 760 SelectionDAG &DAG, 761 std::vector<SDValue> &Ops) const { 762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 763 764 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 765 if (HasMatching) 766 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 767 else if (!Regs.empty() && 768 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 769 // Put the register class of the virtual registers in the flag word. That 770 // way, later passes can recompute register class constraints for inline 771 // assembly as well as normal instructions. 772 // Don't do this for tied operands that can use the regclass information 773 // from the def. 774 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 775 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 776 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 777 } 778 779 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 780 Ops.push_back(Res); 781 782 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 783 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 784 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 785 MVT RegisterVT = RegVTs[Value]; 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 788 unsigned TheReg = Regs[Reg++]; 789 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 790 791 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 792 // If we clobbered the stack pointer, MFI should know about it. 793 assert(DAG.getMachineFunction().getFrameInfo()-> 794 hasOpaqueSPAdjustment()); 795 } 796 } 797 } 798 } 799 800 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 801 const TargetLibraryInfo *li) { 802 AA = &aa; 803 GFI = gfi; 804 LibInfo = li; 805 DL = &DAG.getDataLayout(); 806 Context = DAG.getContext(); 807 LPadToCallSiteMap.clear(); 808 } 809 810 /// clear - Clear out the current SelectionDAG and the associated 811 /// state and prepare this SelectionDAGBuilder object to be used 812 /// for a new block. This doesn't clear out information about 813 /// additional blocks that are needed to complete switch lowering 814 /// or PHI node updating; that information is cleared out as it is 815 /// consumed. 816 void SelectionDAGBuilder::clear() { 817 NodeMap.clear(); 818 UnusedArgNodeMap.clear(); 819 PendingLoads.clear(); 820 PendingExports.clear(); 821 CurInst = nullptr; 822 HasTailCall = false; 823 SDNodeOrder = LowestSDNodeOrder; 824 StatepointLowering.clear(); 825 } 826 827 /// clearDanglingDebugInfo - Clear the dangling debug information 828 /// map. This function is separated from the clear so that debug 829 /// information that is dangling in a basic block can be properly 830 /// resolved in a different basic block. This allows the 831 /// SelectionDAG to resolve dangling debug information attached 832 /// to PHI nodes. 833 void SelectionDAGBuilder::clearDanglingDebugInfo() { 834 DanglingDebugInfoMap.clear(); 835 } 836 837 /// getRoot - Return the current virtual root of the Selection DAG, 838 /// flushing any PendingLoad items. This must be done before emitting 839 /// a store or any other node that may need to be ordered after any 840 /// prior load instructions. 841 /// 842 SDValue SelectionDAGBuilder::getRoot() { 843 if (PendingLoads.empty()) 844 return DAG.getRoot(); 845 846 if (PendingLoads.size() == 1) { 847 SDValue Root = PendingLoads[0]; 848 DAG.setRoot(Root); 849 PendingLoads.clear(); 850 return Root; 851 } 852 853 // Otherwise, we have to make a token factor node. 854 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 855 PendingLoads); 856 PendingLoads.clear(); 857 DAG.setRoot(Root); 858 return Root; 859 } 860 861 /// getControlRoot - Similar to getRoot, but instead of flushing all the 862 /// PendingLoad items, flush all the PendingExports items. It is necessary 863 /// to do this before emitting a terminator instruction. 864 /// 865 SDValue SelectionDAGBuilder::getControlRoot() { 866 SDValue Root = DAG.getRoot(); 867 868 if (PendingExports.empty()) 869 return Root; 870 871 // Turn all of the CopyToReg chains into one factored node. 872 if (Root.getOpcode() != ISD::EntryToken) { 873 unsigned i = 0, e = PendingExports.size(); 874 for (; i != e; ++i) { 875 assert(PendingExports[i].getNode()->getNumOperands() > 1); 876 if (PendingExports[i].getNode()->getOperand(0) == Root) 877 break; // Don't add the root if we already indirectly depend on it. 878 } 879 880 if (i == e) 881 PendingExports.push_back(Root); 882 } 883 884 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 885 PendingExports); 886 PendingExports.clear(); 887 DAG.setRoot(Root); 888 return Root; 889 } 890 891 void SelectionDAGBuilder::visit(const Instruction &I) { 892 // Set up outgoing PHI node register values before emitting the terminator. 893 if (isa<TerminatorInst>(&I)) 894 HandlePHINodesInSuccessorBlocks(I.getParent()); 895 896 ++SDNodeOrder; 897 898 CurInst = &I; 899 900 visit(I.getOpcode(), I); 901 902 if (!isa<TerminatorInst>(&I) && !HasTailCall && 903 !isStatepoint(&I)) // statepoints handle their exports internally 904 CopyToExportRegsIfNeeded(&I); 905 906 CurInst = nullptr; 907 } 908 909 void SelectionDAGBuilder::visitPHI(const PHINode &) { 910 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 911 } 912 913 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 914 // Note: this doesn't use InstVisitor, because it has to work with 915 // ConstantExpr's in addition to instructions. 916 switch (Opcode) { 917 default: llvm_unreachable("Unknown instruction type encountered!"); 918 // Build the switch statement using the Instruction.def file. 919 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 920 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 921 #include "llvm/IR/Instruction.def" 922 } 923 } 924 925 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 926 // generate the debug data structures now that we've seen its definition. 927 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 928 SDValue Val) { 929 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 930 if (DDI.getDI()) { 931 const DbgValueInst *DI = DDI.getDI(); 932 DebugLoc dl = DDI.getdl(); 933 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 934 DILocalVariable *Variable = DI->getVariable(); 935 DIExpression *Expr = DI->getExpression(); 936 assert(Variable->isValidLocationForIntrinsic(dl) && 937 "Expected inlined-at fields to agree"); 938 uint64_t Offset = DI->getOffset(); 939 // A dbg.value for an alloca is always indirect. 940 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 941 SDDbgValue *SDV; 942 if (Val.getNode()) { 943 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 944 Val)) { 945 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 946 IsIndirect, Offset, dl, DbgSDNodeOrder); 947 DAG.AddDbgValue(SDV, Val.getNode(), false); 948 } 949 } else 950 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 951 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 952 } 953 } 954 955 /// getCopyFromRegs - If there was virtual register allocated for the value V 956 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 957 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 958 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 959 SDValue Result; 960 961 if (It != FuncInfo.ValueMap.end()) { 962 unsigned InReg = It->second; 963 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 964 DAG.getDataLayout(), InReg, Ty); 965 SDValue Chain = DAG.getEntryNode(); 966 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 967 resolveDanglingDebugInfo(V, Result); 968 } 969 970 return Result; 971 } 972 973 /// getValue - Return an SDValue for the given Value. 974 SDValue SelectionDAGBuilder::getValue(const Value *V) { 975 // If we already have an SDValue for this value, use it. It's important 976 // to do this first, so that we don't create a CopyFromReg if we already 977 // have a regular SDValue. 978 SDValue &N = NodeMap[V]; 979 if (N.getNode()) return N; 980 981 // If there's a virtual register allocated and initialized for this 982 // value, use it. 983 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 984 if (copyFromReg.getNode()) { 985 return copyFromReg; 986 } 987 988 // Otherwise create a new SDValue and remember it. 989 SDValue Val = getValueImpl(V); 990 NodeMap[V] = Val; 991 resolveDanglingDebugInfo(V, Val); 992 return Val; 993 } 994 995 // Return true if SDValue exists for the given Value 996 bool SelectionDAGBuilder::findValue(const Value *V) const { 997 return (NodeMap.find(V) != NodeMap.end()) || 998 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 999 } 1000 1001 /// getNonRegisterValue - Return an SDValue for the given Value, but 1002 /// don't look in FuncInfo.ValueMap for a virtual register. 1003 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1004 // If we already have an SDValue for this value, use it. 1005 SDValue &N = NodeMap[V]; 1006 if (N.getNode()) { 1007 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1008 // Remove the debug location from the node as the node is about to be used 1009 // in a location which may differ from the original debug location. This 1010 // is relevant to Constant and ConstantFP nodes because they can appear 1011 // as constant expressions inside PHI nodes. 1012 N->setDebugLoc(DebugLoc()); 1013 } 1014 return N; 1015 } 1016 1017 // Otherwise create a new SDValue and remember it. 1018 SDValue Val = getValueImpl(V); 1019 NodeMap[V] = Val; 1020 resolveDanglingDebugInfo(V, Val); 1021 return Val; 1022 } 1023 1024 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1025 /// Create an SDValue for the given value. 1026 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1027 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1028 1029 if (const Constant *C = dyn_cast<Constant>(V)) { 1030 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1031 1032 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1033 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1034 1035 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1036 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1037 1038 if (isa<ConstantPointerNull>(C)) { 1039 unsigned AS = V->getType()->getPointerAddressSpace(); 1040 return DAG.getConstant(0, getCurSDLoc(), 1041 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1042 } 1043 1044 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1045 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1046 1047 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1048 return DAG.getUNDEF(VT); 1049 1050 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1051 visit(CE->getOpcode(), *CE); 1052 SDValue N1 = NodeMap[V]; 1053 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1054 return N1; 1055 } 1056 1057 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1058 SmallVector<SDValue, 4> Constants; 1059 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1060 OI != OE; ++OI) { 1061 SDNode *Val = getValue(*OI).getNode(); 1062 // If the operand is an empty aggregate, there are no values. 1063 if (!Val) continue; 1064 // Add each leaf value from the operand to the Constants list 1065 // to form a flattened list of all the values. 1066 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1067 Constants.push_back(SDValue(Val, i)); 1068 } 1069 1070 return DAG.getMergeValues(Constants, getCurSDLoc()); 1071 } 1072 1073 if (const ConstantDataSequential *CDS = 1074 dyn_cast<ConstantDataSequential>(C)) { 1075 SmallVector<SDValue, 4> Ops; 1076 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1077 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1078 // Add each leaf value from the operand to the Constants list 1079 // to form a flattened list of all the values. 1080 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1081 Ops.push_back(SDValue(Val, i)); 1082 } 1083 1084 if (isa<ArrayType>(CDS->getType())) 1085 return DAG.getMergeValues(Ops, getCurSDLoc()); 1086 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1087 VT, Ops); 1088 } 1089 1090 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1091 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1092 "Unknown struct or array constant!"); 1093 1094 SmallVector<EVT, 4> ValueVTs; 1095 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1096 unsigned NumElts = ValueVTs.size(); 1097 if (NumElts == 0) 1098 return SDValue(); // empty struct 1099 SmallVector<SDValue, 4> Constants(NumElts); 1100 for (unsigned i = 0; i != NumElts; ++i) { 1101 EVT EltVT = ValueVTs[i]; 1102 if (isa<UndefValue>(C)) 1103 Constants[i] = DAG.getUNDEF(EltVT); 1104 else if (EltVT.isFloatingPoint()) 1105 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1106 else 1107 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1108 } 1109 1110 return DAG.getMergeValues(Constants, getCurSDLoc()); 1111 } 1112 1113 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1114 return DAG.getBlockAddress(BA, VT); 1115 1116 VectorType *VecTy = cast<VectorType>(V->getType()); 1117 unsigned NumElements = VecTy->getNumElements(); 1118 1119 // Now that we know the number and type of the elements, get that number of 1120 // elements into the Ops array based on what kind of constant it is. 1121 SmallVector<SDValue, 16> Ops; 1122 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1123 for (unsigned i = 0; i != NumElements; ++i) 1124 Ops.push_back(getValue(CV->getOperand(i))); 1125 } else { 1126 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1127 EVT EltVT = 1128 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1129 1130 SDValue Op; 1131 if (EltVT.isFloatingPoint()) 1132 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1133 else 1134 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1135 Ops.assign(NumElements, Op); 1136 } 1137 1138 // Create a BUILD_VECTOR node. 1139 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1140 } 1141 1142 // If this is a static alloca, generate it as the frameindex instead of 1143 // computation. 1144 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1145 DenseMap<const AllocaInst*, int>::iterator SI = 1146 FuncInfo.StaticAllocaMap.find(AI); 1147 if (SI != FuncInfo.StaticAllocaMap.end()) 1148 return DAG.getFrameIndex(SI->second, 1149 TLI.getPointerTy(DAG.getDataLayout())); 1150 } 1151 1152 // If this is an instruction which fast-isel has deferred, select it now. 1153 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1154 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1155 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1156 Inst->getType()); 1157 SDValue Chain = DAG.getEntryNode(); 1158 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1159 } 1160 1161 llvm_unreachable("Can't get register for value!"); 1162 } 1163 1164 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1165 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1166 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1167 bool IsSEH = isAsynchronousEHPersonality(Pers); 1168 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1169 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1170 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1171 if (IsMSVCCXX || IsCoreCLR) 1172 CatchPadMBB->setIsEHFuncletEntry(); 1173 1174 MachineBasicBlock *NormalDestMBB = FuncInfo.MBBMap[I.getNormalDest()]; 1175 1176 // Update machine-CFG edge. 1177 FuncInfo.MBB->addSuccessor(NormalDestMBB); 1178 1179 // CatchPads in SEH are not funclets, they are merely markers which indicate 1180 // where to insert register restoration code. 1181 if (IsSEH) { 1182 DAG.setRoot(DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1183 getControlRoot(), DAG.getBasicBlock(NormalDestMBB), 1184 DAG.getBasicBlock(&FuncInfo.MF->front()))); 1185 return; 1186 } 1187 1188 // If this is not a fall-through branch or optimizations are switched off, 1189 // emit the branch. 1190 if (NormalDestMBB != NextBlock(CatchPadMBB) || 1191 TM.getOptLevel() == CodeGenOpt::None) 1192 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1193 getControlRoot(), 1194 DAG.getBasicBlock(NormalDestMBB))); 1195 } 1196 1197 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1198 // Update machine-CFG edge. 1199 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1200 FuncInfo.MBB->addSuccessor(TargetMBB); 1201 1202 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1203 bool IsSEH = isAsynchronousEHPersonality(Pers); 1204 if (IsSEH) { 1205 // If this is not a fall-through branch or optimizations are switched off, 1206 // emit the branch. 1207 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1208 TM.getOptLevel() == CodeGenOpt::None) 1209 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1210 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1211 return; 1212 } 1213 1214 // Figure out the funclet membership for the catchret's successor. 1215 // This will be used by the FuncletLayout pass to determine how to order the 1216 // BB's. 1217 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1218 WinEHFuncInfo &EHInfo = 1219 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 1220 const BasicBlock *SuccessorColor = EHInfo.CatchRetSuccessorColorMap[&I]; 1221 assert(SuccessorColor && "No parent funclet for catchret!"); 1222 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1223 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1224 1225 // Create the terminator node. 1226 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1227 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1228 DAG.getBasicBlock(SuccessorColorMBB)); 1229 DAG.setRoot(Ret); 1230 } 1231 1232 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1233 llvm_unreachable("should never codegen catchendpads"); 1234 } 1235 1236 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1237 // Don't emit any special code for the cleanuppad instruction. It just marks 1238 // the start of a funclet. 1239 FuncInfo.MBB->setIsEHFuncletEntry(); 1240 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1241 } 1242 1243 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1244 /// many places it could ultimately go. In the IR, we have a single unwind 1245 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1246 /// This function skips over imaginary basic blocks that hold catchpad, 1247 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1248 /// basic block destinations. As those destinations may not be successors of 1249 /// EHPadBB, here we also calculate the edge weight to those destinations. The 1250 /// passed-in Weight is the edge weight to EHPadBB. 1251 static void findUnwindDestinations( 1252 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, uint32_t Weight, 1253 SmallVectorImpl<std::pair<MachineBasicBlock *, uint32_t>> &UnwindDests) { 1254 EHPersonality Personality = 1255 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1256 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1257 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1258 1259 while (EHPadBB) { 1260 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1261 BasicBlock *NewEHPadBB = nullptr; 1262 if (isa<LandingPadInst>(Pad)) { 1263 // Stop on landingpads. They are not funclets. 1264 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1265 break; 1266 } else if (isa<CleanupPadInst>(Pad)) { 1267 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1268 // personalities. 1269 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1270 UnwindDests.back().first->setIsEHFuncletEntry(); 1271 break; 1272 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1273 // Add the catchpad handler to the possible destinations. 1274 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1275 // In MSVC C++, catchblocks are funclets and need prologues. 1276 if (IsMSVCCXX || IsCoreCLR) 1277 UnwindDests.back().first->setIsEHFuncletEntry(); 1278 NewEHPadBB = CPI->getUnwindDest(); 1279 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) 1280 NewEHPadBB = CEPI->getUnwindDest(); 1281 else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) 1282 NewEHPadBB = CEPI->getUnwindDest(); 1283 else 1284 continue; 1285 1286 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1287 if (BPI && NewEHPadBB) { 1288 // When BPI is available, the calculated weight cannot be zero as zero 1289 // will be turned to a default weight in MachineBlockFrequencyInfo. 1290 Weight = std::max<uint32_t>( 1291 BPI->getEdgeProbability(EHPadBB, NewEHPadBB).scale(Weight), 1); 1292 } 1293 EHPadBB = NewEHPadBB; 1294 } 1295 } 1296 1297 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1298 // Update successor info. 1299 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 1300 auto UnwindDest = I.getUnwindDest(); 1301 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1302 uint32_t UnwindDestWeight = 1303 BPI ? BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), UnwindDest) : 0; 1304 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestWeight, UnwindDests); 1305 for (auto &UnwindDest : UnwindDests) { 1306 UnwindDest.first->setIsEHPad(); 1307 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1308 } 1309 1310 // Create the terminator node. 1311 SDValue Ret = 1312 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1313 DAG.setRoot(Ret); 1314 } 1315 1316 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1317 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1318 } 1319 1320 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1321 report_fatal_error("visitTerminatePad not yet implemented!"); 1322 } 1323 1324 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1325 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1326 auto &DL = DAG.getDataLayout(); 1327 SDValue Chain = getControlRoot(); 1328 SmallVector<ISD::OutputArg, 8> Outs; 1329 SmallVector<SDValue, 8> OutVals; 1330 1331 if (!FuncInfo.CanLowerReturn) { 1332 unsigned DemoteReg = FuncInfo.DemoteRegister; 1333 const Function *F = I.getParent()->getParent(); 1334 1335 // Emit a store of the return value through the virtual register. 1336 // Leave Outs empty so that LowerReturn won't try to load return 1337 // registers the usual way. 1338 SmallVector<EVT, 1> PtrValueVTs; 1339 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1340 PtrValueVTs); 1341 1342 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1343 SDValue RetOp = getValue(I.getOperand(0)); 1344 1345 SmallVector<EVT, 4> ValueVTs; 1346 SmallVector<uint64_t, 4> Offsets; 1347 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1348 unsigned NumValues = ValueVTs.size(); 1349 1350 SmallVector<SDValue, 4> Chains(NumValues); 1351 for (unsigned i = 0; i != NumValues; ++i) { 1352 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1353 RetPtr.getValueType(), RetPtr, 1354 DAG.getIntPtrConstant(Offsets[i], 1355 getCurSDLoc())); 1356 Chains[i] = 1357 DAG.getStore(Chain, getCurSDLoc(), 1358 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1359 // FIXME: better loc info would be nice. 1360 Add, MachinePointerInfo(), false, false, 0); 1361 } 1362 1363 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1364 MVT::Other, Chains); 1365 } else if (I.getNumOperands() != 0) { 1366 SmallVector<EVT, 4> ValueVTs; 1367 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1368 unsigned NumValues = ValueVTs.size(); 1369 if (NumValues) { 1370 SDValue RetOp = getValue(I.getOperand(0)); 1371 1372 const Function *F = I.getParent()->getParent(); 1373 1374 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1375 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1376 Attribute::SExt)) 1377 ExtendKind = ISD::SIGN_EXTEND; 1378 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1379 Attribute::ZExt)) 1380 ExtendKind = ISD::ZERO_EXTEND; 1381 1382 LLVMContext &Context = F->getContext(); 1383 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1384 Attribute::InReg); 1385 1386 for (unsigned j = 0; j != NumValues; ++j) { 1387 EVT VT = ValueVTs[j]; 1388 1389 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1390 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1391 1392 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1393 MVT PartVT = TLI.getRegisterType(Context, VT); 1394 SmallVector<SDValue, 4> Parts(NumParts); 1395 getCopyToParts(DAG, getCurSDLoc(), 1396 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1397 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1398 1399 // 'inreg' on function refers to return value 1400 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1401 if (RetInReg) 1402 Flags.setInReg(); 1403 1404 // Propagate extension type if any 1405 if (ExtendKind == ISD::SIGN_EXTEND) 1406 Flags.setSExt(); 1407 else if (ExtendKind == ISD::ZERO_EXTEND) 1408 Flags.setZExt(); 1409 1410 for (unsigned i = 0; i < NumParts; ++i) { 1411 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1412 VT, /*isfixed=*/true, 0, 0)); 1413 OutVals.push_back(Parts[i]); 1414 } 1415 } 1416 } 1417 } 1418 1419 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1420 CallingConv::ID CallConv = 1421 DAG.getMachineFunction().getFunction()->getCallingConv(); 1422 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1423 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1424 1425 // Verify that the target's LowerReturn behaved as expected. 1426 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1427 "LowerReturn didn't return a valid chain!"); 1428 1429 // Update the DAG with the new chain value resulting from return lowering. 1430 DAG.setRoot(Chain); 1431 } 1432 1433 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1434 /// created for it, emit nodes to copy the value into the virtual 1435 /// registers. 1436 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1437 // Skip empty types 1438 if (V->getType()->isEmptyTy()) 1439 return; 1440 1441 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1442 if (VMI != FuncInfo.ValueMap.end()) { 1443 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1444 CopyValueToVirtualRegister(V, VMI->second); 1445 } 1446 } 1447 1448 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1449 /// the current basic block, add it to ValueMap now so that we'll get a 1450 /// CopyTo/FromReg. 1451 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1452 // No need to export constants. 1453 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1454 1455 // Already exported? 1456 if (FuncInfo.isExportedInst(V)) return; 1457 1458 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1459 CopyValueToVirtualRegister(V, Reg); 1460 } 1461 1462 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1463 const BasicBlock *FromBB) { 1464 // The operands of the setcc have to be in this block. We don't know 1465 // how to export them from some other block. 1466 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1467 // Can export from current BB. 1468 if (VI->getParent() == FromBB) 1469 return true; 1470 1471 // Is already exported, noop. 1472 return FuncInfo.isExportedInst(V); 1473 } 1474 1475 // If this is an argument, we can export it if the BB is the entry block or 1476 // if it is already exported. 1477 if (isa<Argument>(V)) { 1478 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1479 return true; 1480 1481 // Otherwise, can only export this if it is already exported. 1482 return FuncInfo.isExportedInst(V); 1483 } 1484 1485 // Otherwise, constants can always be exported. 1486 return true; 1487 } 1488 1489 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1490 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1491 const MachineBasicBlock *Dst) const { 1492 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1493 if (!BPI) 1494 return 0; 1495 const BasicBlock *SrcBB = Src->getBasicBlock(); 1496 const BasicBlock *DstBB = Dst->getBasicBlock(); 1497 return BPI->getEdgeWeight(SrcBB, DstBB); 1498 } 1499 1500 void SelectionDAGBuilder:: 1501 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1502 uint32_t Weight /* = 0 */) { 1503 if (!FuncInfo.BPI) 1504 Src->addSuccessorWithoutWeight(Dst); 1505 else { 1506 if (!Weight) 1507 Weight = getEdgeWeight(Src, Dst); 1508 Src->addSuccessor(Dst, Weight); 1509 } 1510 } 1511 1512 1513 static bool InBlock(const Value *V, const BasicBlock *BB) { 1514 if (const Instruction *I = dyn_cast<Instruction>(V)) 1515 return I->getParent() == BB; 1516 return true; 1517 } 1518 1519 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1520 /// This function emits a branch and is used at the leaves of an OR or an 1521 /// AND operator tree. 1522 /// 1523 void 1524 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1525 MachineBasicBlock *TBB, 1526 MachineBasicBlock *FBB, 1527 MachineBasicBlock *CurBB, 1528 MachineBasicBlock *SwitchBB, 1529 uint32_t TWeight, 1530 uint32_t FWeight) { 1531 const BasicBlock *BB = CurBB->getBasicBlock(); 1532 1533 // If the leaf of the tree is a comparison, merge the condition into 1534 // the caseblock. 1535 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1536 // The operands of the cmp have to be in this block. We don't know 1537 // how to export them from some other block. If this is the first block 1538 // of the sequence, no exporting is needed. 1539 if (CurBB == SwitchBB || 1540 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1541 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1542 ISD::CondCode Condition; 1543 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1544 Condition = getICmpCondCode(IC->getPredicate()); 1545 } else { 1546 const FCmpInst *FC = cast<FCmpInst>(Cond); 1547 Condition = getFCmpCondCode(FC->getPredicate()); 1548 if (TM.Options.NoNaNsFPMath) 1549 Condition = getFCmpCodeWithoutNaN(Condition); 1550 } 1551 1552 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1553 TBB, FBB, CurBB, TWeight, FWeight); 1554 SwitchCases.push_back(CB); 1555 return; 1556 } 1557 } 1558 1559 // Create a CaseBlock record representing this branch. 1560 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1561 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1562 SwitchCases.push_back(CB); 1563 } 1564 1565 /// Scale down both weights to fit into uint32_t. 1566 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1567 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1568 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1569 NewTrue = NewTrue / Scale; 1570 NewFalse = NewFalse / Scale; 1571 } 1572 1573 /// FindMergedConditions - If Cond is an expression like 1574 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1575 MachineBasicBlock *TBB, 1576 MachineBasicBlock *FBB, 1577 MachineBasicBlock *CurBB, 1578 MachineBasicBlock *SwitchBB, 1579 Instruction::BinaryOps Opc, 1580 uint32_t TWeight, 1581 uint32_t FWeight) { 1582 // If this node is not part of the or/and tree, emit it as a branch. 1583 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1584 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1585 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1586 BOp->getParent() != CurBB->getBasicBlock() || 1587 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1588 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1589 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1590 TWeight, FWeight); 1591 return; 1592 } 1593 1594 // Create TmpBB after CurBB. 1595 MachineFunction::iterator BBI(CurBB); 1596 MachineFunction &MF = DAG.getMachineFunction(); 1597 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1598 CurBB->getParent()->insert(++BBI, TmpBB); 1599 1600 if (Opc == Instruction::Or) { 1601 // Codegen X | Y as: 1602 // BB1: 1603 // jmp_if_X TBB 1604 // jmp TmpBB 1605 // TmpBB: 1606 // jmp_if_Y TBB 1607 // jmp FBB 1608 // 1609 1610 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1611 // The requirement is that 1612 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1613 // = TrueProb for original BB. 1614 // Assuming the original weights are A and B, one choice is to set BB1's 1615 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1616 // assumes that 1617 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1618 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1619 // TmpBB, but the math is more complicated. 1620 1621 uint64_t NewTrueWeight = TWeight; 1622 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1623 ScaleWeights(NewTrueWeight, NewFalseWeight); 1624 // Emit the LHS condition. 1625 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1626 NewTrueWeight, NewFalseWeight); 1627 1628 NewTrueWeight = TWeight; 1629 NewFalseWeight = 2 * (uint64_t)FWeight; 1630 ScaleWeights(NewTrueWeight, NewFalseWeight); 1631 // Emit the RHS condition into TmpBB. 1632 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1633 NewTrueWeight, NewFalseWeight); 1634 } else { 1635 assert(Opc == Instruction::And && "Unknown merge op!"); 1636 // Codegen X & Y as: 1637 // BB1: 1638 // jmp_if_X TmpBB 1639 // jmp FBB 1640 // TmpBB: 1641 // jmp_if_Y TBB 1642 // jmp FBB 1643 // 1644 // This requires creation of TmpBB after CurBB. 1645 1646 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1647 // The requirement is that 1648 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1649 // = FalseProb for original BB. 1650 // Assuming the original weights are A and B, one choice is to set BB1's 1651 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1652 // assumes that 1653 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1654 1655 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1656 uint64_t NewFalseWeight = FWeight; 1657 ScaleWeights(NewTrueWeight, NewFalseWeight); 1658 // Emit the LHS condition. 1659 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1660 NewTrueWeight, NewFalseWeight); 1661 1662 NewTrueWeight = 2 * (uint64_t)TWeight; 1663 NewFalseWeight = FWeight; 1664 ScaleWeights(NewTrueWeight, NewFalseWeight); 1665 // Emit the RHS condition into TmpBB. 1666 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1667 NewTrueWeight, NewFalseWeight); 1668 } 1669 } 1670 1671 /// If the set of cases should be emitted as a series of branches, return true. 1672 /// If we should emit this as a bunch of and/or'd together conditions, return 1673 /// false. 1674 bool 1675 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1676 if (Cases.size() != 2) return true; 1677 1678 // If this is two comparisons of the same values or'd or and'd together, they 1679 // will get folded into a single comparison, so don't emit two blocks. 1680 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1681 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1682 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1683 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1684 return false; 1685 } 1686 1687 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1688 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1689 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1690 Cases[0].CC == Cases[1].CC && 1691 isa<Constant>(Cases[0].CmpRHS) && 1692 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1693 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1694 return false; 1695 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1696 return false; 1697 } 1698 1699 return true; 1700 } 1701 1702 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1703 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1704 1705 // Update machine-CFG edges. 1706 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1707 1708 if (I.isUnconditional()) { 1709 // Update machine-CFG edges. 1710 BrMBB->addSuccessor(Succ0MBB); 1711 1712 // If this is not a fall-through branch or optimizations are switched off, 1713 // emit the branch. 1714 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1715 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1716 MVT::Other, getControlRoot(), 1717 DAG.getBasicBlock(Succ0MBB))); 1718 1719 return; 1720 } 1721 1722 // If this condition is one of the special cases we handle, do special stuff 1723 // now. 1724 const Value *CondVal = I.getCondition(); 1725 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1726 1727 // If this is a series of conditions that are or'd or and'd together, emit 1728 // this as a sequence of branches instead of setcc's with and/or operations. 1729 // As long as jumps are not expensive, this should improve performance. 1730 // For example, instead of something like: 1731 // cmp A, B 1732 // C = seteq 1733 // cmp D, E 1734 // F = setle 1735 // or C, F 1736 // jnz foo 1737 // Emit: 1738 // cmp A, B 1739 // je foo 1740 // cmp D, E 1741 // jle foo 1742 // 1743 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1744 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1745 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1746 !I.getMetadata(LLVMContext::MD_unpredictable) && 1747 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1748 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1749 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1750 getEdgeWeight(BrMBB, Succ1MBB)); 1751 // If the compares in later blocks need to use values not currently 1752 // exported from this block, export them now. This block should always 1753 // be the first entry. 1754 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1755 1756 // Allow some cases to be rejected. 1757 if (ShouldEmitAsBranches(SwitchCases)) { 1758 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1759 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1760 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1761 } 1762 1763 // Emit the branch for this block. 1764 visitSwitchCase(SwitchCases[0], BrMBB); 1765 SwitchCases.erase(SwitchCases.begin()); 1766 return; 1767 } 1768 1769 // Okay, we decided not to do this, remove any inserted MBB's and clear 1770 // SwitchCases. 1771 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1772 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1773 1774 SwitchCases.clear(); 1775 } 1776 } 1777 1778 // Create a CaseBlock record representing this branch. 1779 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1780 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1781 1782 // Use visitSwitchCase to actually insert the fast branch sequence for this 1783 // cond branch. 1784 visitSwitchCase(CB, BrMBB); 1785 } 1786 1787 /// visitSwitchCase - Emits the necessary code to represent a single node in 1788 /// the binary search tree resulting from lowering a switch instruction. 1789 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1790 MachineBasicBlock *SwitchBB) { 1791 SDValue Cond; 1792 SDValue CondLHS = getValue(CB.CmpLHS); 1793 SDLoc dl = getCurSDLoc(); 1794 1795 // Build the setcc now. 1796 if (!CB.CmpMHS) { 1797 // Fold "(X == true)" to X and "(X == false)" to !X to 1798 // handle common cases produced by branch lowering. 1799 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1800 CB.CC == ISD::SETEQ) 1801 Cond = CondLHS; 1802 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1803 CB.CC == ISD::SETEQ) { 1804 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1805 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1806 } else 1807 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1808 } else { 1809 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1810 1811 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1812 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1813 1814 SDValue CmpOp = getValue(CB.CmpMHS); 1815 EVT VT = CmpOp.getValueType(); 1816 1817 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1818 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1819 ISD::SETLE); 1820 } else { 1821 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1822 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1823 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1824 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1825 } 1826 } 1827 1828 // Update successor info 1829 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1830 // TrueBB and FalseBB are always different unless the incoming IR is 1831 // degenerate. This only happens when running llc on weird IR. 1832 if (CB.TrueBB != CB.FalseBB) 1833 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1834 1835 // If the lhs block is the next block, invert the condition so that we can 1836 // fall through to the lhs instead of the rhs block. 1837 if (CB.TrueBB == NextBlock(SwitchBB)) { 1838 std::swap(CB.TrueBB, CB.FalseBB); 1839 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1840 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1841 } 1842 1843 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1844 MVT::Other, getControlRoot(), Cond, 1845 DAG.getBasicBlock(CB.TrueBB)); 1846 1847 // Insert the false branch. Do this even if it's a fall through branch, 1848 // this makes it easier to do DAG optimizations which require inverting 1849 // the branch condition. 1850 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1851 DAG.getBasicBlock(CB.FalseBB)); 1852 1853 DAG.setRoot(BrCond); 1854 } 1855 1856 /// visitJumpTable - Emit JumpTable node in the current MBB 1857 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1858 // Emit the code for the jump table 1859 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1860 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1861 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1862 JT.Reg, PTy); 1863 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1864 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1865 MVT::Other, Index.getValue(1), 1866 Table, Index); 1867 DAG.setRoot(BrJumpTable); 1868 } 1869 1870 /// visitJumpTableHeader - This function emits necessary code to produce index 1871 /// in the JumpTable from switch case. 1872 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1873 JumpTableHeader &JTH, 1874 MachineBasicBlock *SwitchBB) { 1875 SDLoc dl = getCurSDLoc(); 1876 1877 // Subtract the lowest switch case value from the value being switched on and 1878 // conditional branch to default mbb if the result is greater than the 1879 // difference between smallest and largest cases. 1880 SDValue SwitchOp = getValue(JTH.SValue); 1881 EVT VT = SwitchOp.getValueType(); 1882 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1883 DAG.getConstant(JTH.First, dl, VT)); 1884 1885 // The SDNode we just created, which holds the value being switched on minus 1886 // the smallest case value, needs to be copied to a virtual register so it 1887 // can be used as an index into the jump table in a subsequent basic block. 1888 // This value may be smaller or larger than the target's pointer type, and 1889 // therefore require extension or truncating. 1890 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1891 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1892 1893 unsigned JumpTableReg = 1894 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1895 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1896 JumpTableReg, SwitchOp); 1897 JT.Reg = JumpTableReg; 1898 1899 // Emit the range check for the jump table, and branch to the default block 1900 // for the switch statement if the value being switched on exceeds the largest 1901 // case in the switch. 1902 SDValue CMP = DAG.getSetCC( 1903 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1904 Sub.getValueType()), 1905 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1906 1907 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1908 MVT::Other, CopyTo, CMP, 1909 DAG.getBasicBlock(JT.Default)); 1910 1911 // Avoid emitting unnecessary branches to the next block. 1912 if (JT.MBB != NextBlock(SwitchBB)) 1913 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1914 DAG.getBasicBlock(JT.MBB)); 1915 1916 DAG.setRoot(BrCond); 1917 } 1918 1919 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1920 /// tail spliced into a stack protector check success bb. 1921 /// 1922 /// For a high level explanation of how this fits into the stack protector 1923 /// generation see the comment on the declaration of class 1924 /// StackProtectorDescriptor. 1925 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1926 MachineBasicBlock *ParentBB) { 1927 1928 // First create the loads to the guard/stack slot for the comparison. 1929 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1930 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1931 1932 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1933 int FI = MFI->getStackProtectorIndex(); 1934 1935 const Value *IRGuard = SPD.getGuard(); 1936 SDValue GuardPtr = getValue(IRGuard); 1937 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1938 1939 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1940 1941 SDValue Guard; 1942 SDLoc dl = getCurSDLoc(); 1943 1944 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1945 // guard value from the virtual register holding the value. Otherwise, emit a 1946 // volatile load to retrieve the stack guard value. 1947 unsigned GuardReg = SPD.getGuardReg(); 1948 1949 if (GuardReg && TLI.useLoadStackGuardNode()) 1950 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1951 PtrTy); 1952 else 1953 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1954 GuardPtr, MachinePointerInfo(IRGuard, 0), 1955 true, false, false, Align); 1956 1957 SDValue StackSlot = DAG.getLoad( 1958 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1959 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1960 false, false, Align); 1961 1962 // Perform the comparison via a subtract/getsetcc. 1963 EVT VT = Guard.getValueType(); 1964 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1965 1966 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1967 *DAG.getContext(), 1968 Sub.getValueType()), 1969 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1970 1971 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1972 // branch to failure MBB. 1973 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1974 MVT::Other, StackSlot.getOperand(0), 1975 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1976 // Otherwise branch to success MBB. 1977 SDValue Br = DAG.getNode(ISD::BR, dl, 1978 MVT::Other, BrCond, 1979 DAG.getBasicBlock(SPD.getSuccessMBB())); 1980 1981 DAG.setRoot(Br); 1982 } 1983 1984 /// Codegen the failure basic block for a stack protector check. 1985 /// 1986 /// A failure stack protector machine basic block consists simply of a call to 1987 /// __stack_chk_fail(). 1988 /// 1989 /// For a high level explanation of how this fits into the stack protector 1990 /// generation see the comment on the declaration of class 1991 /// StackProtectorDescriptor. 1992 void 1993 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1994 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1995 SDValue Chain = 1996 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1997 None, false, getCurSDLoc(), false, false).second; 1998 DAG.setRoot(Chain); 1999 } 2000 2001 /// visitBitTestHeader - This function emits necessary code to produce value 2002 /// suitable for "bit tests" 2003 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2004 MachineBasicBlock *SwitchBB) { 2005 SDLoc dl = getCurSDLoc(); 2006 2007 // Subtract the minimum value 2008 SDValue SwitchOp = getValue(B.SValue); 2009 EVT VT = SwitchOp.getValueType(); 2010 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2011 DAG.getConstant(B.First, dl, VT)); 2012 2013 // Check range 2014 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2015 SDValue RangeCmp = DAG.getSetCC( 2016 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2017 Sub.getValueType()), 2018 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2019 2020 // Determine the type of the test operands. 2021 bool UsePtrType = false; 2022 if (!TLI.isTypeLegal(VT)) 2023 UsePtrType = true; 2024 else { 2025 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2026 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2027 // Switch table case range are encoded into series of masks. 2028 // Just use pointer type, it's guaranteed to fit. 2029 UsePtrType = true; 2030 break; 2031 } 2032 } 2033 if (UsePtrType) { 2034 VT = TLI.getPointerTy(DAG.getDataLayout()); 2035 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2036 } 2037 2038 B.RegVT = VT.getSimpleVT(); 2039 B.Reg = FuncInfo.CreateReg(B.RegVT); 2040 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2041 2042 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2043 2044 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 2045 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 2046 2047 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2048 MVT::Other, CopyTo, RangeCmp, 2049 DAG.getBasicBlock(B.Default)); 2050 2051 // Avoid emitting unnecessary branches to the next block. 2052 if (MBB != NextBlock(SwitchBB)) 2053 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2054 DAG.getBasicBlock(MBB)); 2055 2056 DAG.setRoot(BrRange); 2057 } 2058 2059 /// visitBitTestCase - this function produces one "bit test" 2060 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2061 MachineBasicBlock* NextMBB, 2062 uint32_t BranchWeightToNext, 2063 unsigned Reg, 2064 BitTestCase &B, 2065 MachineBasicBlock *SwitchBB) { 2066 SDLoc dl = getCurSDLoc(); 2067 MVT VT = BB.RegVT; 2068 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2069 SDValue Cmp; 2070 unsigned PopCount = countPopulation(B.Mask); 2071 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2072 if (PopCount == 1) { 2073 // Testing for a single bit; just compare the shift count with what it 2074 // would need to be to shift a 1 bit in that position. 2075 Cmp = DAG.getSetCC( 2076 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2077 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2078 ISD::SETEQ); 2079 } else if (PopCount == BB.Range) { 2080 // There is only one zero bit in the range, test for it directly. 2081 Cmp = DAG.getSetCC( 2082 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2083 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2084 ISD::SETNE); 2085 } else { 2086 // Make desired shift 2087 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2088 DAG.getConstant(1, dl, VT), ShiftOp); 2089 2090 // Emit bit tests and jumps 2091 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2092 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2093 Cmp = DAG.getSetCC( 2094 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2095 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2096 } 2097 2098 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2099 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2100 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2101 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2102 2103 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2104 MVT::Other, getControlRoot(), 2105 Cmp, DAG.getBasicBlock(B.TargetBB)); 2106 2107 // Avoid emitting unnecessary branches to the next block. 2108 if (NextMBB != NextBlock(SwitchBB)) 2109 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2110 DAG.getBasicBlock(NextMBB)); 2111 2112 DAG.setRoot(BrAnd); 2113 } 2114 2115 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2116 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2117 2118 // Retrieve successors. Look through artificial IR level blocks like catchpads 2119 // and catchendpads for successors. 2120 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2121 const BasicBlock *EHPadBB = I.getSuccessor(1); 2122 2123 const Value *Callee(I.getCalledValue()); 2124 const Function *Fn = dyn_cast<Function>(Callee); 2125 if (isa<InlineAsm>(Callee)) 2126 visitInlineAsm(&I); 2127 else if (Fn && Fn->isIntrinsic()) { 2128 switch (Fn->getIntrinsicID()) { 2129 default: 2130 llvm_unreachable("Cannot invoke this intrinsic"); 2131 case Intrinsic::donothing: 2132 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2133 break; 2134 case Intrinsic::experimental_patchpoint_void: 2135 case Intrinsic::experimental_patchpoint_i64: 2136 visitPatchpoint(&I, EHPadBB); 2137 break; 2138 case Intrinsic::experimental_gc_statepoint: 2139 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2140 break; 2141 } 2142 } else 2143 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2144 2145 // If the value of the invoke is used outside of its defining block, make it 2146 // available as a virtual register. 2147 // We already took care of the exported value for the statepoint instruction 2148 // during call to the LowerStatepoint. 2149 if (!isStatepoint(I)) { 2150 CopyToExportRegsIfNeeded(&I); 2151 } 2152 2153 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 2154 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2155 uint32_t EHPadBBWeight = 2156 BPI ? BPI->getEdgeWeight(InvokeMBB->getBasicBlock(), EHPadBB) : 0; 2157 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBWeight, UnwindDests); 2158 2159 // Update successor info. 2160 addSuccessorWithWeight(InvokeMBB, Return); 2161 for (auto &UnwindDest : UnwindDests) { 2162 UnwindDest.first->setIsEHPad(); 2163 addSuccessorWithWeight(InvokeMBB, UnwindDest.first, UnwindDest.second); 2164 } 2165 2166 // Drop into normal successor. 2167 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2168 MVT::Other, getControlRoot(), 2169 DAG.getBasicBlock(Return))); 2170 } 2171 2172 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2173 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2174 } 2175 2176 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2177 assert(FuncInfo.MBB->isEHPad() && 2178 "Call to landingpad not in landing pad!"); 2179 2180 MachineBasicBlock *MBB = FuncInfo.MBB; 2181 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2182 AddLandingPadInfo(LP, MMI, MBB); 2183 2184 // If there aren't registers to copy the values into (e.g., during SjLj 2185 // exceptions), then don't bother to create these DAG nodes. 2186 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2187 if (TLI.getExceptionPointerRegister() == 0 && 2188 TLI.getExceptionSelectorRegister() == 0) 2189 return; 2190 2191 SmallVector<EVT, 2> ValueVTs; 2192 SDLoc dl = getCurSDLoc(); 2193 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2194 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2195 2196 // Get the two live-in registers as SDValues. The physregs have already been 2197 // copied into virtual registers. 2198 SDValue Ops[2]; 2199 if (FuncInfo.ExceptionPointerVirtReg) { 2200 Ops[0] = DAG.getZExtOrTrunc( 2201 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2202 FuncInfo.ExceptionPointerVirtReg, 2203 TLI.getPointerTy(DAG.getDataLayout())), 2204 dl, ValueVTs[0]); 2205 } else { 2206 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2207 } 2208 Ops[1] = DAG.getZExtOrTrunc( 2209 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2210 FuncInfo.ExceptionSelectorVirtReg, 2211 TLI.getPointerTy(DAG.getDataLayout())), 2212 dl, ValueVTs[1]); 2213 2214 // Merge into one. 2215 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2216 DAG.getVTList(ValueVTs), Ops); 2217 setValue(&LP, Res); 2218 } 2219 2220 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2221 #ifndef NDEBUG 2222 for (const CaseCluster &CC : Clusters) 2223 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2224 #endif 2225 2226 std::sort(Clusters.begin(), Clusters.end(), 2227 [](const CaseCluster &a, const CaseCluster &b) { 2228 return a.Low->getValue().slt(b.Low->getValue()); 2229 }); 2230 2231 // Merge adjacent clusters with the same destination. 2232 const unsigned N = Clusters.size(); 2233 unsigned DstIndex = 0; 2234 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2235 CaseCluster &CC = Clusters[SrcIndex]; 2236 const ConstantInt *CaseVal = CC.Low; 2237 MachineBasicBlock *Succ = CC.MBB; 2238 2239 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2240 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2241 // If this case has the same successor and is a neighbour, merge it into 2242 // the previous cluster. 2243 Clusters[DstIndex - 1].High = CaseVal; 2244 Clusters[DstIndex - 1].Weight += CC.Weight; 2245 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2246 } else { 2247 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2248 sizeof(Clusters[SrcIndex])); 2249 } 2250 } 2251 Clusters.resize(DstIndex); 2252 } 2253 2254 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2255 MachineBasicBlock *Last) { 2256 // Update JTCases. 2257 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2258 if (JTCases[i].first.HeaderBB == First) 2259 JTCases[i].first.HeaderBB = Last; 2260 2261 // Update BitTestCases. 2262 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2263 if (BitTestCases[i].Parent == First) 2264 BitTestCases[i].Parent = Last; 2265 } 2266 2267 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2268 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2269 2270 // Update machine-CFG edges with unique successors. 2271 SmallSet<BasicBlock*, 32> Done; 2272 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2273 BasicBlock *BB = I.getSuccessor(i); 2274 bool Inserted = Done.insert(BB).second; 2275 if (!Inserted) 2276 continue; 2277 2278 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2279 addSuccessorWithWeight(IndirectBrMBB, Succ); 2280 } 2281 2282 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2283 MVT::Other, getControlRoot(), 2284 getValue(I.getAddress()))); 2285 } 2286 2287 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2288 if (DAG.getTarget().Options.TrapUnreachable) 2289 DAG.setRoot( 2290 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2291 } 2292 2293 void SelectionDAGBuilder::visitFSub(const User &I) { 2294 // -0.0 - X --> fneg 2295 Type *Ty = I.getType(); 2296 if (isa<Constant>(I.getOperand(0)) && 2297 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2298 SDValue Op2 = getValue(I.getOperand(1)); 2299 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2300 Op2.getValueType(), Op2)); 2301 return; 2302 } 2303 2304 visitBinary(I, ISD::FSUB); 2305 } 2306 2307 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2308 SDValue Op1 = getValue(I.getOperand(0)); 2309 SDValue Op2 = getValue(I.getOperand(1)); 2310 2311 bool nuw = false; 2312 bool nsw = false; 2313 bool exact = false; 2314 FastMathFlags FMF; 2315 2316 if (const OverflowingBinaryOperator *OFBinOp = 2317 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2318 nuw = OFBinOp->hasNoUnsignedWrap(); 2319 nsw = OFBinOp->hasNoSignedWrap(); 2320 } 2321 if (const PossiblyExactOperator *ExactOp = 2322 dyn_cast<const PossiblyExactOperator>(&I)) 2323 exact = ExactOp->isExact(); 2324 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2325 FMF = FPOp->getFastMathFlags(); 2326 2327 SDNodeFlags Flags; 2328 Flags.setExact(exact); 2329 Flags.setNoSignedWrap(nsw); 2330 Flags.setNoUnsignedWrap(nuw); 2331 if (EnableFMFInDAG) { 2332 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2333 Flags.setNoInfs(FMF.noInfs()); 2334 Flags.setNoNaNs(FMF.noNaNs()); 2335 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2336 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2337 } 2338 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2339 Op1, Op2, &Flags); 2340 setValue(&I, BinNodeValue); 2341 } 2342 2343 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2344 SDValue Op1 = getValue(I.getOperand(0)); 2345 SDValue Op2 = getValue(I.getOperand(1)); 2346 2347 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2348 Op2.getValueType(), DAG.getDataLayout()); 2349 2350 // Coerce the shift amount to the right type if we can. 2351 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2352 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2353 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2354 SDLoc DL = getCurSDLoc(); 2355 2356 // If the operand is smaller than the shift count type, promote it. 2357 if (ShiftSize > Op2Size) 2358 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2359 2360 // If the operand is larger than the shift count type but the shift 2361 // count type has enough bits to represent any shift value, truncate 2362 // it now. This is a common case and it exposes the truncate to 2363 // optimization early. 2364 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2365 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2366 // Otherwise we'll need to temporarily settle for some other convenient 2367 // type. Type legalization will make adjustments once the shiftee is split. 2368 else 2369 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2370 } 2371 2372 bool nuw = false; 2373 bool nsw = false; 2374 bool exact = false; 2375 2376 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2377 2378 if (const OverflowingBinaryOperator *OFBinOp = 2379 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2380 nuw = OFBinOp->hasNoUnsignedWrap(); 2381 nsw = OFBinOp->hasNoSignedWrap(); 2382 } 2383 if (const PossiblyExactOperator *ExactOp = 2384 dyn_cast<const PossiblyExactOperator>(&I)) 2385 exact = ExactOp->isExact(); 2386 } 2387 SDNodeFlags Flags; 2388 Flags.setExact(exact); 2389 Flags.setNoSignedWrap(nsw); 2390 Flags.setNoUnsignedWrap(nuw); 2391 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2392 &Flags); 2393 setValue(&I, Res); 2394 } 2395 2396 void SelectionDAGBuilder::visitSDiv(const User &I) { 2397 SDValue Op1 = getValue(I.getOperand(0)); 2398 SDValue Op2 = getValue(I.getOperand(1)); 2399 2400 SDNodeFlags Flags; 2401 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2402 cast<PossiblyExactOperator>(&I)->isExact()); 2403 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2404 Op2, &Flags)); 2405 } 2406 2407 void SelectionDAGBuilder::visitICmp(const User &I) { 2408 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2409 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2410 predicate = IC->getPredicate(); 2411 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2412 predicate = ICmpInst::Predicate(IC->getPredicate()); 2413 SDValue Op1 = getValue(I.getOperand(0)); 2414 SDValue Op2 = getValue(I.getOperand(1)); 2415 ISD::CondCode Opcode = getICmpCondCode(predicate); 2416 2417 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2418 I.getType()); 2419 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2420 } 2421 2422 void SelectionDAGBuilder::visitFCmp(const User &I) { 2423 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2424 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2425 predicate = FC->getPredicate(); 2426 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2427 predicate = FCmpInst::Predicate(FC->getPredicate()); 2428 SDValue Op1 = getValue(I.getOperand(0)); 2429 SDValue Op2 = getValue(I.getOperand(1)); 2430 ISD::CondCode Condition = getFCmpCondCode(predicate); 2431 2432 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2433 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2434 // further optimization, but currently FMF is only applicable to binary nodes. 2435 if (TM.Options.NoNaNsFPMath) 2436 Condition = getFCmpCodeWithoutNaN(Condition); 2437 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2438 I.getType()); 2439 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2440 } 2441 2442 void SelectionDAGBuilder::visitSelect(const User &I) { 2443 SmallVector<EVT, 4> ValueVTs; 2444 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2445 ValueVTs); 2446 unsigned NumValues = ValueVTs.size(); 2447 if (NumValues == 0) return; 2448 2449 SmallVector<SDValue, 4> Values(NumValues); 2450 SDValue Cond = getValue(I.getOperand(0)); 2451 SDValue LHSVal = getValue(I.getOperand(1)); 2452 SDValue RHSVal = getValue(I.getOperand(2)); 2453 auto BaseOps = {Cond}; 2454 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2455 ISD::VSELECT : ISD::SELECT; 2456 2457 // Min/max matching is only viable if all output VTs are the same. 2458 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2459 EVT VT = ValueVTs[0]; 2460 LLVMContext &Ctx = *DAG.getContext(); 2461 auto &TLI = DAG.getTargetLoweringInfo(); 2462 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2463 VT = TLI.getTypeToTransformTo(Ctx, VT); 2464 2465 Value *LHS, *RHS; 2466 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2467 ISD::NodeType Opc = ISD::DELETED_NODE; 2468 switch (SPR.Flavor) { 2469 case SPF_UMAX: Opc = ISD::UMAX; break; 2470 case SPF_UMIN: Opc = ISD::UMIN; break; 2471 case SPF_SMAX: Opc = ISD::SMAX; break; 2472 case SPF_SMIN: Opc = ISD::SMIN; break; 2473 case SPF_FMINNUM: 2474 switch (SPR.NaNBehavior) { 2475 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2476 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2477 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2478 case SPNB_RETURNS_ANY: 2479 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2480 : ISD::FMINNAN; 2481 break; 2482 } 2483 break; 2484 case SPF_FMAXNUM: 2485 switch (SPR.NaNBehavior) { 2486 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2487 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2488 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2489 case SPNB_RETURNS_ANY: 2490 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2491 : ISD::FMAXNAN; 2492 break; 2493 } 2494 break; 2495 default: break; 2496 } 2497 2498 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2499 // If the underlying comparison instruction is used by any other instruction, 2500 // the consumed instructions won't be destroyed, so it is not profitable 2501 // to convert to a min/max. 2502 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2503 OpCode = Opc; 2504 LHSVal = getValue(LHS); 2505 RHSVal = getValue(RHS); 2506 BaseOps = {}; 2507 } 2508 } 2509 2510 for (unsigned i = 0; i != NumValues; ++i) { 2511 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2512 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2513 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2514 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2515 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2516 Ops); 2517 } 2518 2519 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2520 DAG.getVTList(ValueVTs), Values)); 2521 } 2522 2523 void SelectionDAGBuilder::visitTrunc(const User &I) { 2524 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2525 SDValue N = getValue(I.getOperand(0)); 2526 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2527 I.getType()); 2528 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2529 } 2530 2531 void SelectionDAGBuilder::visitZExt(const User &I) { 2532 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2533 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2534 SDValue N = getValue(I.getOperand(0)); 2535 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2536 I.getType()); 2537 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2538 } 2539 2540 void SelectionDAGBuilder::visitSExt(const User &I) { 2541 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2542 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2543 SDValue N = getValue(I.getOperand(0)); 2544 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2545 I.getType()); 2546 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2547 } 2548 2549 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2550 // FPTrunc is never a no-op cast, no need to check 2551 SDValue N = getValue(I.getOperand(0)); 2552 SDLoc dl = getCurSDLoc(); 2553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2554 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2555 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2556 DAG.getTargetConstant( 2557 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2558 } 2559 2560 void SelectionDAGBuilder::visitFPExt(const User &I) { 2561 // FPExt is never a no-op cast, no need to check 2562 SDValue N = getValue(I.getOperand(0)); 2563 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2564 I.getType()); 2565 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2566 } 2567 2568 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2569 // FPToUI is never a no-op cast, no need to check 2570 SDValue N = getValue(I.getOperand(0)); 2571 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2572 I.getType()); 2573 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2574 } 2575 2576 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2577 // FPToSI is never a no-op cast, no need to check 2578 SDValue N = getValue(I.getOperand(0)); 2579 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2580 I.getType()); 2581 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2582 } 2583 2584 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2585 // UIToFP is never a no-op cast, no need to check 2586 SDValue N = getValue(I.getOperand(0)); 2587 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2588 I.getType()); 2589 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2590 } 2591 2592 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2593 // SIToFP is never a no-op cast, no need to check 2594 SDValue N = getValue(I.getOperand(0)); 2595 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2596 I.getType()); 2597 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2598 } 2599 2600 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2601 // What to do depends on the size of the integer and the size of the pointer. 2602 // We can either truncate, zero extend, or no-op, accordingly. 2603 SDValue N = getValue(I.getOperand(0)); 2604 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2605 I.getType()); 2606 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2607 } 2608 2609 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2610 // What to do depends on the size of the integer and the size of the pointer. 2611 // We can either truncate, zero extend, or no-op, accordingly. 2612 SDValue N = getValue(I.getOperand(0)); 2613 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2614 I.getType()); 2615 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2616 } 2617 2618 void SelectionDAGBuilder::visitBitCast(const User &I) { 2619 SDValue N = getValue(I.getOperand(0)); 2620 SDLoc dl = getCurSDLoc(); 2621 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2622 I.getType()); 2623 2624 // BitCast assures us that source and destination are the same size so this is 2625 // either a BITCAST or a no-op. 2626 if (DestVT != N.getValueType()) 2627 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2628 DestVT, N)); // convert types. 2629 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2630 // might fold any kind of constant expression to an integer constant and that 2631 // is not what we are looking for. Only regcognize a bitcast of a genuine 2632 // constant integer as an opaque constant. 2633 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2634 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2635 /*isOpaque*/true)); 2636 else 2637 setValue(&I, N); // noop cast. 2638 } 2639 2640 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2641 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2642 const Value *SV = I.getOperand(0); 2643 SDValue N = getValue(SV); 2644 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2645 2646 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2647 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2648 2649 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2650 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2651 2652 setValue(&I, N); 2653 } 2654 2655 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2657 SDValue InVec = getValue(I.getOperand(0)); 2658 SDValue InVal = getValue(I.getOperand(1)); 2659 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2660 TLI.getVectorIdxTy(DAG.getDataLayout())); 2661 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2662 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2663 InVec, InVal, InIdx)); 2664 } 2665 2666 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2667 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2668 SDValue InVec = getValue(I.getOperand(0)); 2669 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2670 TLI.getVectorIdxTy(DAG.getDataLayout())); 2671 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2672 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2673 InVec, InIdx)); 2674 } 2675 2676 // Utility for visitShuffleVector - Return true if every element in Mask, 2677 // beginning from position Pos and ending in Pos+Size, falls within the 2678 // specified sequential range [L, L+Pos). or is undef. 2679 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2680 unsigned Pos, unsigned Size, int Low) { 2681 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2682 if (Mask[i] >= 0 && Mask[i] != Low) 2683 return false; 2684 return true; 2685 } 2686 2687 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2688 SDValue Src1 = getValue(I.getOperand(0)); 2689 SDValue Src2 = getValue(I.getOperand(1)); 2690 2691 SmallVector<int, 8> Mask; 2692 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2693 unsigned MaskNumElts = Mask.size(); 2694 2695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2696 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2697 EVT SrcVT = Src1.getValueType(); 2698 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2699 2700 if (SrcNumElts == MaskNumElts) { 2701 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2702 &Mask[0])); 2703 return; 2704 } 2705 2706 // Normalize the shuffle vector since mask and vector length don't match. 2707 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2708 // Mask is longer than the source vectors and is a multiple of the source 2709 // vectors. We can use concatenate vector to make the mask and vectors 2710 // lengths match. 2711 if (SrcNumElts*2 == MaskNumElts) { 2712 // First check for Src1 in low and Src2 in high 2713 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2714 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2715 // The shuffle is concatenating two vectors together. 2716 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2717 VT, Src1, Src2)); 2718 return; 2719 } 2720 // Then check for Src2 in low and Src1 in high 2721 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2722 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2723 // The shuffle is concatenating two vectors together. 2724 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2725 VT, Src2, Src1)); 2726 return; 2727 } 2728 } 2729 2730 // Pad both vectors with undefs to make them the same length as the mask. 2731 unsigned NumConcat = MaskNumElts / SrcNumElts; 2732 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2733 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2734 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2735 2736 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2737 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2738 MOps1[0] = Src1; 2739 MOps2[0] = Src2; 2740 2741 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2742 getCurSDLoc(), VT, MOps1); 2743 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2744 getCurSDLoc(), VT, MOps2); 2745 2746 // Readjust mask for new input vector length. 2747 SmallVector<int, 8> MappedOps; 2748 for (unsigned i = 0; i != MaskNumElts; ++i) { 2749 int Idx = Mask[i]; 2750 if (Idx >= (int)SrcNumElts) 2751 Idx -= SrcNumElts - MaskNumElts; 2752 MappedOps.push_back(Idx); 2753 } 2754 2755 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2756 &MappedOps[0])); 2757 return; 2758 } 2759 2760 if (SrcNumElts > MaskNumElts) { 2761 // Analyze the access pattern of the vector to see if we can extract 2762 // two subvectors and do the shuffle. The analysis is done by calculating 2763 // the range of elements the mask access on both vectors. 2764 int MinRange[2] = { static_cast<int>(SrcNumElts), 2765 static_cast<int>(SrcNumElts)}; 2766 int MaxRange[2] = {-1, -1}; 2767 2768 for (unsigned i = 0; i != MaskNumElts; ++i) { 2769 int Idx = Mask[i]; 2770 unsigned Input = 0; 2771 if (Idx < 0) 2772 continue; 2773 2774 if (Idx >= (int)SrcNumElts) { 2775 Input = 1; 2776 Idx -= SrcNumElts; 2777 } 2778 if (Idx > MaxRange[Input]) 2779 MaxRange[Input] = Idx; 2780 if (Idx < MinRange[Input]) 2781 MinRange[Input] = Idx; 2782 } 2783 2784 // Check if the access is smaller than the vector size and can we find 2785 // a reasonable extract index. 2786 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2787 // Extract. 2788 int StartIdx[2]; // StartIdx to extract from 2789 for (unsigned Input = 0; Input < 2; ++Input) { 2790 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2791 RangeUse[Input] = 0; // Unused 2792 StartIdx[Input] = 0; 2793 continue; 2794 } 2795 2796 // Find a good start index that is a multiple of the mask length. Then 2797 // see if the rest of the elements are in range. 2798 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2799 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2800 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2801 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2802 } 2803 2804 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2805 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2806 return; 2807 } 2808 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2809 // Extract appropriate subvector and generate a vector shuffle 2810 for (unsigned Input = 0; Input < 2; ++Input) { 2811 SDValue &Src = Input == 0 ? Src1 : Src2; 2812 if (RangeUse[Input] == 0) 2813 Src = DAG.getUNDEF(VT); 2814 else { 2815 SDLoc dl = getCurSDLoc(); 2816 Src = DAG.getNode( 2817 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2818 DAG.getConstant(StartIdx[Input], dl, 2819 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2820 } 2821 } 2822 2823 // Calculate new mask. 2824 SmallVector<int, 8> MappedOps; 2825 for (unsigned i = 0; i != MaskNumElts; ++i) { 2826 int Idx = Mask[i]; 2827 if (Idx >= 0) { 2828 if (Idx < (int)SrcNumElts) 2829 Idx -= StartIdx[0]; 2830 else 2831 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2832 } 2833 MappedOps.push_back(Idx); 2834 } 2835 2836 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2837 &MappedOps[0])); 2838 return; 2839 } 2840 } 2841 2842 // We can't use either concat vectors or extract subvectors so fall back to 2843 // replacing the shuffle with extract and build vector. 2844 // to insert and build vector. 2845 EVT EltVT = VT.getVectorElementType(); 2846 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2847 SDLoc dl = getCurSDLoc(); 2848 SmallVector<SDValue,8> Ops; 2849 for (unsigned i = 0; i != MaskNumElts; ++i) { 2850 int Idx = Mask[i]; 2851 SDValue Res; 2852 2853 if (Idx < 0) { 2854 Res = DAG.getUNDEF(EltVT); 2855 } else { 2856 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2857 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2858 2859 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2860 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2861 } 2862 2863 Ops.push_back(Res); 2864 } 2865 2866 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2867 } 2868 2869 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2870 const Value *Op0 = I.getOperand(0); 2871 const Value *Op1 = I.getOperand(1); 2872 Type *AggTy = I.getType(); 2873 Type *ValTy = Op1->getType(); 2874 bool IntoUndef = isa<UndefValue>(Op0); 2875 bool FromUndef = isa<UndefValue>(Op1); 2876 2877 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2878 2879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2880 SmallVector<EVT, 4> AggValueVTs; 2881 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2882 SmallVector<EVT, 4> ValValueVTs; 2883 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2884 2885 unsigned NumAggValues = AggValueVTs.size(); 2886 unsigned NumValValues = ValValueVTs.size(); 2887 SmallVector<SDValue, 4> Values(NumAggValues); 2888 2889 // Ignore an insertvalue that produces an empty object 2890 if (!NumAggValues) { 2891 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2892 return; 2893 } 2894 2895 SDValue Agg = getValue(Op0); 2896 unsigned i = 0; 2897 // Copy the beginning value(s) from the original aggregate. 2898 for (; i != LinearIndex; ++i) 2899 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2900 SDValue(Agg.getNode(), Agg.getResNo() + i); 2901 // Copy values from the inserted value(s). 2902 if (NumValValues) { 2903 SDValue Val = getValue(Op1); 2904 for (; i != LinearIndex + NumValValues; ++i) 2905 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2906 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2907 } 2908 // Copy remaining value(s) from the original aggregate. 2909 for (; i != NumAggValues; ++i) 2910 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2911 SDValue(Agg.getNode(), Agg.getResNo() + i); 2912 2913 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2914 DAG.getVTList(AggValueVTs), Values)); 2915 } 2916 2917 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2918 const Value *Op0 = I.getOperand(0); 2919 Type *AggTy = Op0->getType(); 2920 Type *ValTy = I.getType(); 2921 bool OutOfUndef = isa<UndefValue>(Op0); 2922 2923 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2924 2925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2926 SmallVector<EVT, 4> ValValueVTs; 2927 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2928 2929 unsigned NumValValues = ValValueVTs.size(); 2930 2931 // Ignore a extractvalue that produces an empty object 2932 if (!NumValValues) { 2933 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2934 return; 2935 } 2936 2937 SmallVector<SDValue, 4> Values(NumValValues); 2938 2939 SDValue Agg = getValue(Op0); 2940 // Copy out the selected value(s). 2941 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2942 Values[i - LinearIndex] = 2943 OutOfUndef ? 2944 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2945 SDValue(Agg.getNode(), Agg.getResNo() + i); 2946 2947 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2948 DAG.getVTList(ValValueVTs), Values)); 2949 } 2950 2951 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2952 Value *Op0 = I.getOperand(0); 2953 // Note that the pointer operand may be a vector of pointers. Take the scalar 2954 // element which holds a pointer. 2955 Type *Ty = Op0->getType()->getScalarType(); 2956 unsigned AS = Ty->getPointerAddressSpace(); 2957 SDValue N = getValue(Op0); 2958 SDLoc dl = getCurSDLoc(); 2959 2960 // Normalize Vector GEP - all scalar operands should be converted to the 2961 // splat vector. 2962 unsigned VectorWidth = I.getType()->isVectorTy() ? 2963 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2964 2965 if (VectorWidth && !N.getValueType().isVector()) { 2966 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2967 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2968 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2969 } 2970 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2971 OI != E; ++OI) { 2972 const Value *Idx = *OI; 2973 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2974 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2975 if (Field) { 2976 // N = N + Offset 2977 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2978 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2979 DAG.getConstant(Offset, dl, N.getValueType())); 2980 } 2981 2982 Ty = StTy->getElementType(Field); 2983 } else { 2984 Ty = cast<SequentialType>(Ty)->getElementType(); 2985 MVT PtrTy = 2986 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2987 unsigned PtrSize = PtrTy.getSizeInBits(); 2988 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2989 2990 // If this is a scalar constant or a splat vector of constants, 2991 // handle it quickly. 2992 const auto *CI = dyn_cast<ConstantInt>(Idx); 2993 if (!CI && isa<ConstantDataVector>(Idx) && 2994 cast<ConstantDataVector>(Idx)->getSplatValue()) 2995 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2996 2997 if (CI) { 2998 if (CI->isZero()) 2999 continue; 3000 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3001 SDValue OffsVal = VectorWidth ? 3002 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3003 DAG.getConstant(Offs, dl, PtrTy); 3004 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3005 continue; 3006 } 3007 3008 // N = N + Idx * ElementSize; 3009 SDValue IdxN = getValue(Idx); 3010 3011 if (!IdxN.getValueType().isVector() && VectorWidth) { 3012 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3013 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3014 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3015 } 3016 // If the index is smaller or larger than intptr_t, truncate or extend 3017 // it. 3018 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3019 3020 // If this is a multiply by a power of two, turn it into a shl 3021 // immediately. This is a very common case. 3022 if (ElementSize != 1) { 3023 if (ElementSize.isPowerOf2()) { 3024 unsigned Amt = ElementSize.logBase2(); 3025 IdxN = DAG.getNode(ISD::SHL, dl, 3026 N.getValueType(), IdxN, 3027 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3028 } else { 3029 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3030 IdxN = DAG.getNode(ISD::MUL, dl, 3031 N.getValueType(), IdxN, Scale); 3032 } 3033 } 3034 3035 N = DAG.getNode(ISD::ADD, dl, 3036 N.getValueType(), N, IdxN); 3037 } 3038 } 3039 3040 setValue(&I, N); 3041 } 3042 3043 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3044 // If this is a fixed sized alloca in the entry block of the function, 3045 // allocate it statically on the stack. 3046 if (FuncInfo.StaticAllocaMap.count(&I)) 3047 return; // getValue will auto-populate this. 3048 3049 SDLoc dl = getCurSDLoc(); 3050 Type *Ty = I.getAllocatedType(); 3051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3052 auto &DL = DAG.getDataLayout(); 3053 uint64_t TySize = DL.getTypeAllocSize(Ty); 3054 unsigned Align = 3055 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3056 3057 SDValue AllocSize = getValue(I.getArraySize()); 3058 3059 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3060 if (AllocSize.getValueType() != IntPtr) 3061 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3062 3063 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3064 AllocSize, 3065 DAG.getConstant(TySize, dl, IntPtr)); 3066 3067 // Handle alignment. If the requested alignment is less than or equal to 3068 // the stack alignment, ignore it. If the size is greater than or equal to 3069 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3070 unsigned StackAlign = 3071 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3072 if (Align <= StackAlign) 3073 Align = 0; 3074 3075 // Round the size of the allocation up to the stack alignment size 3076 // by add SA-1 to the size. 3077 AllocSize = DAG.getNode(ISD::ADD, dl, 3078 AllocSize.getValueType(), AllocSize, 3079 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3080 3081 // Mask out the low bits for alignment purposes. 3082 AllocSize = DAG.getNode(ISD::AND, dl, 3083 AllocSize.getValueType(), AllocSize, 3084 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3085 dl)); 3086 3087 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3088 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3089 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3090 setValue(&I, DSA); 3091 DAG.setRoot(DSA.getValue(1)); 3092 3093 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3094 } 3095 3096 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3097 if (I.isAtomic()) 3098 return visitAtomicLoad(I); 3099 3100 const Value *SV = I.getOperand(0); 3101 SDValue Ptr = getValue(SV); 3102 3103 Type *Ty = I.getType(); 3104 3105 bool isVolatile = I.isVolatile(); 3106 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3107 3108 // The IR notion of invariant_load only guarantees that all *non-faulting* 3109 // invariant loads result in the same value. The MI notion of invariant load 3110 // guarantees that the load can be legally moved to any location within its 3111 // containing function. The MI notion of invariant_load is stronger than the 3112 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3113 // with a guarantee that the location being loaded from is dereferenceable 3114 // throughout the function's lifetime. 3115 3116 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3117 isDereferenceablePointer(SV, DAG.getDataLayout()); 3118 unsigned Alignment = I.getAlignment(); 3119 3120 AAMDNodes AAInfo; 3121 I.getAAMetadata(AAInfo); 3122 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3123 3124 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3125 SmallVector<EVT, 4> ValueVTs; 3126 SmallVector<uint64_t, 4> Offsets; 3127 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3128 unsigned NumValues = ValueVTs.size(); 3129 if (NumValues == 0) 3130 return; 3131 3132 SDValue Root; 3133 bool ConstantMemory = false; 3134 if (isVolatile || NumValues > MaxParallelChains) 3135 // Serialize volatile loads with other side effects. 3136 Root = getRoot(); 3137 else if (AA->pointsToConstantMemory(MemoryLocation( 3138 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3139 // Do not serialize (non-volatile) loads of constant memory with anything. 3140 Root = DAG.getEntryNode(); 3141 ConstantMemory = true; 3142 } else { 3143 // Do not serialize non-volatile loads against each other. 3144 Root = DAG.getRoot(); 3145 } 3146 3147 SDLoc dl = getCurSDLoc(); 3148 3149 if (isVolatile) 3150 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3151 3152 SmallVector<SDValue, 4> Values(NumValues); 3153 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3154 EVT PtrVT = Ptr.getValueType(); 3155 unsigned ChainI = 0; 3156 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3157 // Serializing loads here may result in excessive register pressure, and 3158 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3159 // could recover a bit by hoisting nodes upward in the chain by recognizing 3160 // they are side-effect free or do not alias. The optimizer should really 3161 // avoid this case by converting large object/array copies to llvm.memcpy 3162 // (MaxParallelChains should always remain as failsafe). 3163 if (ChainI == MaxParallelChains) { 3164 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3165 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3166 makeArrayRef(Chains.data(), ChainI)); 3167 Root = Chain; 3168 ChainI = 0; 3169 } 3170 SDValue A = DAG.getNode(ISD::ADD, dl, 3171 PtrVT, Ptr, 3172 DAG.getConstant(Offsets[i], dl, PtrVT)); 3173 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3174 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3175 isNonTemporal, isInvariant, Alignment, AAInfo, 3176 Ranges); 3177 3178 Values[i] = L; 3179 Chains[ChainI] = L.getValue(1); 3180 } 3181 3182 if (!ConstantMemory) { 3183 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3184 makeArrayRef(Chains.data(), ChainI)); 3185 if (isVolatile) 3186 DAG.setRoot(Chain); 3187 else 3188 PendingLoads.push_back(Chain); 3189 } 3190 3191 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3192 DAG.getVTList(ValueVTs), Values)); 3193 } 3194 3195 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3196 if (I.isAtomic()) 3197 return visitAtomicStore(I); 3198 3199 const Value *SrcV = I.getOperand(0); 3200 const Value *PtrV = I.getOperand(1); 3201 3202 SmallVector<EVT, 4> ValueVTs; 3203 SmallVector<uint64_t, 4> Offsets; 3204 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3205 SrcV->getType(), ValueVTs, &Offsets); 3206 unsigned NumValues = ValueVTs.size(); 3207 if (NumValues == 0) 3208 return; 3209 3210 // Get the lowered operands. Note that we do this after 3211 // checking if NumResults is zero, because with zero results 3212 // the operands won't have values in the map. 3213 SDValue Src = getValue(SrcV); 3214 SDValue Ptr = getValue(PtrV); 3215 3216 SDValue Root = getRoot(); 3217 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3218 EVT PtrVT = Ptr.getValueType(); 3219 bool isVolatile = I.isVolatile(); 3220 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3221 unsigned Alignment = I.getAlignment(); 3222 SDLoc dl = getCurSDLoc(); 3223 3224 AAMDNodes AAInfo; 3225 I.getAAMetadata(AAInfo); 3226 3227 unsigned ChainI = 0; 3228 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3229 // See visitLoad comments. 3230 if (ChainI == MaxParallelChains) { 3231 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3232 makeArrayRef(Chains.data(), ChainI)); 3233 Root = Chain; 3234 ChainI = 0; 3235 } 3236 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3237 DAG.getConstant(Offsets[i], dl, PtrVT)); 3238 SDValue St = DAG.getStore(Root, dl, 3239 SDValue(Src.getNode(), Src.getResNo() + i), 3240 Add, MachinePointerInfo(PtrV, Offsets[i]), 3241 isVolatile, isNonTemporal, Alignment, AAInfo); 3242 Chains[ChainI] = St; 3243 } 3244 3245 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3246 makeArrayRef(Chains.data(), ChainI)); 3247 DAG.setRoot(StoreNode); 3248 } 3249 3250 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3251 SDLoc sdl = getCurSDLoc(); 3252 3253 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3254 Value *PtrOperand = I.getArgOperand(1); 3255 SDValue Ptr = getValue(PtrOperand); 3256 SDValue Src0 = getValue(I.getArgOperand(0)); 3257 SDValue Mask = getValue(I.getArgOperand(3)); 3258 EVT VT = Src0.getValueType(); 3259 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3260 if (!Alignment) 3261 Alignment = DAG.getEVTAlignment(VT); 3262 3263 AAMDNodes AAInfo; 3264 I.getAAMetadata(AAInfo); 3265 3266 MachineMemOperand *MMO = 3267 DAG.getMachineFunction(). 3268 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3269 MachineMemOperand::MOStore, VT.getStoreSize(), 3270 Alignment, AAInfo); 3271 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3272 MMO, false); 3273 DAG.setRoot(StoreNode); 3274 setValue(&I, StoreNode); 3275 } 3276 3277 // Get a uniform base for the Gather/Scatter intrinsic. 3278 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3279 // We try to represent it as a base pointer + vector of indices. 3280 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3281 // The first operand of the GEP may be a single pointer or a vector of pointers 3282 // Example: 3283 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3284 // or 3285 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3286 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3287 // 3288 // When the first GEP operand is a single pointer - it is the uniform base we 3289 // are looking for. If first operand of the GEP is a splat vector - we 3290 // extract the spalt value and use it as a uniform base. 3291 // In all other cases the function returns 'false'. 3292 // 3293 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3294 SelectionDAGBuilder* SDB) { 3295 3296 SelectionDAG& DAG = SDB->DAG; 3297 LLVMContext &Context = *DAG.getContext(); 3298 3299 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3300 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3301 if (!GEP || GEP->getNumOperands() > 2) 3302 return false; 3303 3304 Value *GEPPtr = GEP->getPointerOperand(); 3305 if (!GEPPtr->getType()->isVectorTy()) 3306 Ptr = GEPPtr; 3307 else if (!(Ptr = getSplatValue(GEPPtr))) 3308 return false; 3309 3310 Value *IndexVal = GEP->getOperand(1); 3311 3312 // The operands of the GEP may be defined in another basic block. 3313 // In this case we'll not find nodes for the operands. 3314 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3315 return false; 3316 3317 Base = SDB->getValue(Ptr); 3318 Index = SDB->getValue(IndexVal); 3319 3320 // Suppress sign extension. 3321 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3322 if (SDB->findValue(Sext->getOperand(0))) { 3323 IndexVal = Sext->getOperand(0); 3324 Index = SDB->getValue(IndexVal); 3325 } 3326 } 3327 if (!Index.getValueType().isVector()) { 3328 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3329 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3330 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3331 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3332 } 3333 return true; 3334 } 3335 3336 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3337 SDLoc sdl = getCurSDLoc(); 3338 3339 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3340 Value *Ptr = I.getArgOperand(1); 3341 SDValue Src0 = getValue(I.getArgOperand(0)); 3342 SDValue Mask = getValue(I.getArgOperand(3)); 3343 EVT VT = Src0.getValueType(); 3344 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3345 if (!Alignment) 3346 Alignment = DAG.getEVTAlignment(VT); 3347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3348 3349 AAMDNodes AAInfo; 3350 I.getAAMetadata(AAInfo); 3351 3352 SDValue Base; 3353 SDValue Index; 3354 Value *BasePtr = Ptr; 3355 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3356 3357 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3358 MachineMemOperand *MMO = DAG.getMachineFunction(). 3359 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3360 MachineMemOperand::MOStore, VT.getStoreSize(), 3361 Alignment, AAInfo); 3362 if (!UniformBase) { 3363 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3364 Index = getValue(Ptr); 3365 } 3366 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3367 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3368 Ops, MMO); 3369 DAG.setRoot(Scatter); 3370 setValue(&I, Scatter); 3371 } 3372 3373 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3374 SDLoc sdl = getCurSDLoc(); 3375 3376 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3377 Value *PtrOperand = I.getArgOperand(0); 3378 SDValue Ptr = getValue(PtrOperand); 3379 SDValue Src0 = getValue(I.getArgOperand(3)); 3380 SDValue Mask = getValue(I.getArgOperand(2)); 3381 3382 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3383 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3384 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3385 if (!Alignment) 3386 Alignment = DAG.getEVTAlignment(VT); 3387 3388 AAMDNodes AAInfo; 3389 I.getAAMetadata(AAInfo); 3390 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3391 3392 SDValue InChain = DAG.getRoot(); 3393 if (AA->pointsToConstantMemory(MemoryLocation( 3394 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3395 AAInfo))) { 3396 // Do not serialize (non-volatile) loads of constant memory with anything. 3397 InChain = DAG.getEntryNode(); 3398 } 3399 3400 MachineMemOperand *MMO = 3401 DAG.getMachineFunction(). 3402 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3403 MachineMemOperand::MOLoad, VT.getStoreSize(), 3404 Alignment, AAInfo, Ranges); 3405 3406 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3407 ISD::NON_EXTLOAD); 3408 SDValue OutChain = Load.getValue(1); 3409 DAG.setRoot(OutChain); 3410 setValue(&I, Load); 3411 } 3412 3413 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3414 SDLoc sdl = getCurSDLoc(); 3415 3416 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3417 Value *Ptr = I.getArgOperand(0); 3418 SDValue Src0 = getValue(I.getArgOperand(3)); 3419 SDValue Mask = getValue(I.getArgOperand(2)); 3420 3421 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3422 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3423 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3424 if (!Alignment) 3425 Alignment = DAG.getEVTAlignment(VT); 3426 3427 AAMDNodes AAInfo; 3428 I.getAAMetadata(AAInfo); 3429 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3430 3431 SDValue Root = DAG.getRoot(); 3432 SDValue Base; 3433 SDValue Index; 3434 Value *BasePtr = Ptr; 3435 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3436 bool ConstantMemory = false; 3437 if (UniformBase && 3438 AA->pointsToConstantMemory(MemoryLocation( 3439 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3440 AAInfo))) { 3441 // Do not serialize (non-volatile) loads of constant memory with anything. 3442 Root = DAG.getEntryNode(); 3443 ConstantMemory = true; 3444 } 3445 3446 MachineMemOperand *MMO = 3447 DAG.getMachineFunction(). 3448 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3449 MachineMemOperand::MOLoad, VT.getStoreSize(), 3450 Alignment, AAInfo, Ranges); 3451 3452 if (!UniformBase) { 3453 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3454 Index = getValue(Ptr); 3455 } 3456 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3457 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3458 Ops, MMO); 3459 3460 SDValue OutChain = Gather.getValue(1); 3461 if (!ConstantMemory) 3462 PendingLoads.push_back(OutChain); 3463 setValue(&I, Gather); 3464 } 3465 3466 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3467 SDLoc dl = getCurSDLoc(); 3468 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3469 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3470 SynchronizationScope Scope = I.getSynchScope(); 3471 3472 SDValue InChain = getRoot(); 3473 3474 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3475 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3476 SDValue L = DAG.getAtomicCmpSwap( 3477 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3478 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3479 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3480 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3481 3482 SDValue OutChain = L.getValue(2); 3483 3484 setValue(&I, L); 3485 DAG.setRoot(OutChain); 3486 } 3487 3488 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3489 SDLoc dl = getCurSDLoc(); 3490 ISD::NodeType NT; 3491 switch (I.getOperation()) { 3492 default: llvm_unreachable("Unknown atomicrmw operation"); 3493 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3494 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3495 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3496 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3497 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3498 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3499 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3500 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3501 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3502 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3503 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3504 } 3505 AtomicOrdering Order = I.getOrdering(); 3506 SynchronizationScope Scope = I.getSynchScope(); 3507 3508 SDValue InChain = getRoot(); 3509 3510 SDValue L = 3511 DAG.getAtomic(NT, dl, 3512 getValue(I.getValOperand()).getSimpleValueType(), 3513 InChain, 3514 getValue(I.getPointerOperand()), 3515 getValue(I.getValOperand()), 3516 I.getPointerOperand(), 3517 /* Alignment=*/ 0, Order, Scope); 3518 3519 SDValue OutChain = L.getValue(1); 3520 3521 setValue(&I, L); 3522 DAG.setRoot(OutChain); 3523 } 3524 3525 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3526 SDLoc dl = getCurSDLoc(); 3527 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3528 SDValue Ops[3]; 3529 Ops[0] = getRoot(); 3530 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3531 TLI.getPointerTy(DAG.getDataLayout())); 3532 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3533 TLI.getPointerTy(DAG.getDataLayout())); 3534 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3535 } 3536 3537 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3538 SDLoc dl = getCurSDLoc(); 3539 AtomicOrdering Order = I.getOrdering(); 3540 SynchronizationScope Scope = I.getSynchScope(); 3541 3542 SDValue InChain = getRoot(); 3543 3544 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3545 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3546 3547 if (I.getAlignment() < VT.getSizeInBits() / 8) 3548 report_fatal_error("Cannot generate unaligned atomic load"); 3549 3550 MachineMemOperand *MMO = 3551 DAG.getMachineFunction(). 3552 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3553 MachineMemOperand::MOVolatile | 3554 MachineMemOperand::MOLoad, 3555 VT.getStoreSize(), 3556 I.getAlignment() ? I.getAlignment() : 3557 DAG.getEVTAlignment(VT)); 3558 3559 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3560 SDValue L = 3561 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3562 getValue(I.getPointerOperand()), MMO, 3563 Order, Scope); 3564 3565 SDValue OutChain = L.getValue(1); 3566 3567 setValue(&I, L); 3568 DAG.setRoot(OutChain); 3569 } 3570 3571 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3572 SDLoc dl = getCurSDLoc(); 3573 3574 AtomicOrdering Order = I.getOrdering(); 3575 SynchronizationScope Scope = I.getSynchScope(); 3576 3577 SDValue InChain = getRoot(); 3578 3579 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3580 EVT VT = 3581 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3582 3583 if (I.getAlignment() < VT.getSizeInBits() / 8) 3584 report_fatal_error("Cannot generate unaligned atomic store"); 3585 3586 SDValue OutChain = 3587 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3588 InChain, 3589 getValue(I.getPointerOperand()), 3590 getValue(I.getValueOperand()), 3591 I.getPointerOperand(), I.getAlignment(), 3592 Order, Scope); 3593 3594 DAG.setRoot(OutChain); 3595 } 3596 3597 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3598 /// node. 3599 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3600 unsigned Intrinsic) { 3601 bool HasChain = !I.doesNotAccessMemory(); 3602 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3603 3604 // Build the operand list. 3605 SmallVector<SDValue, 8> Ops; 3606 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3607 if (OnlyLoad) { 3608 // We don't need to serialize loads against other loads. 3609 Ops.push_back(DAG.getRoot()); 3610 } else { 3611 Ops.push_back(getRoot()); 3612 } 3613 } 3614 3615 // Info is set by getTgtMemInstrinsic 3616 TargetLowering::IntrinsicInfo Info; 3617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3618 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3619 3620 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3621 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3622 Info.opc == ISD::INTRINSIC_W_CHAIN) 3623 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3624 TLI.getPointerTy(DAG.getDataLayout()))); 3625 3626 // Add all operands of the call to the operand list. 3627 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3628 SDValue Op = getValue(I.getArgOperand(i)); 3629 Ops.push_back(Op); 3630 } 3631 3632 SmallVector<EVT, 4> ValueVTs; 3633 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3634 3635 if (HasChain) 3636 ValueVTs.push_back(MVT::Other); 3637 3638 SDVTList VTs = DAG.getVTList(ValueVTs); 3639 3640 // Create the node. 3641 SDValue Result; 3642 if (IsTgtIntrinsic) { 3643 // This is target intrinsic that touches memory 3644 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3645 VTs, Ops, Info.memVT, 3646 MachinePointerInfo(Info.ptrVal, Info.offset), 3647 Info.align, Info.vol, 3648 Info.readMem, Info.writeMem, Info.size); 3649 } else if (!HasChain) { 3650 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3651 } else if (!I.getType()->isVoidTy()) { 3652 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3653 } else { 3654 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3655 } 3656 3657 if (HasChain) { 3658 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3659 if (OnlyLoad) 3660 PendingLoads.push_back(Chain); 3661 else 3662 DAG.setRoot(Chain); 3663 } 3664 3665 if (!I.getType()->isVoidTy()) { 3666 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3667 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3668 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3669 } 3670 3671 setValue(&I, Result); 3672 } 3673 } 3674 3675 /// GetSignificand - Get the significand and build it into a floating-point 3676 /// number with exponent of 1: 3677 /// 3678 /// Op = (Op & 0x007fffff) | 0x3f800000; 3679 /// 3680 /// where Op is the hexadecimal representation of floating point value. 3681 static SDValue 3682 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3683 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3684 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3685 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3686 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3687 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3688 } 3689 3690 /// GetExponent - Get the exponent: 3691 /// 3692 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3693 /// 3694 /// where Op is the hexadecimal representation of floating point value. 3695 static SDValue 3696 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3697 SDLoc dl) { 3698 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3699 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3700 SDValue t1 = DAG.getNode( 3701 ISD::SRL, dl, MVT::i32, t0, 3702 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3703 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3704 DAG.getConstant(127, dl, MVT::i32)); 3705 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3706 } 3707 3708 /// getF32Constant - Get 32-bit floating point constant. 3709 static SDValue 3710 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3711 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3712 MVT::f32); 3713 } 3714 3715 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3716 SelectionDAG &DAG) { 3717 // TODO: What fast-math-flags should be set on the floating-point nodes? 3718 3719 // IntegerPartOfX = ((int32_t)(t0); 3720 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3721 3722 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3723 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3724 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3725 3726 // IntegerPartOfX <<= 23; 3727 IntegerPartOfX = DAG.getNode( 3728 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3729 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3730 DAG.getDataLayout()))); 3731 3732 SDValue TwoToFractionalPartOfX; 3733 if (LimitFloatPrecision <= 6) { 3734 // For floating-point precision of 6: 3735 // 3736 // TwoToFractionalPartOfX = 3737 // 0.997535578f + 3738 // (0.735607626f + 0.252464424f * x) * x; 3739 // 3740 // error 0.0144103317, which is 6 bits 3741 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3742 getF32Constant(DAG, 0x3e814304, dl)); 3743 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3744 getF32Constant(DAG, 0x3f3c50c8, dl)); 3745 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3746 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3747 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3748 } else if (LimitFloatPrecision <= 12) { 3749 // For floating-point precision of 12: 3750 // 3751 // TwoToFractionalPartOfX = 3752 // 0.999892986f + 3753 // (0.696457318f + 3754 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3755 // 3756 // error 0.000107046256, which is 13 to 14 bits 3757 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3758 getF32Constant(DAG, 0x3da235e3, dl)); 3759 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3760 getF32Constant(DAG, 0x3e65b8f3, dl)); 3761 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3762 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3763 getF32Constant(DAG, 0x3f324b07, dl)); 3764 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3765 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3766 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3767 } else { // LimitFloatPrecision <= 18 3768 // For floating-point precision of 18: 3769 // 3770 // TwoToFractionalPartOfX = 3771 // 0.999999982f + 3772 // (0.693148872f + 3773 // (0.240227044f + 3774 // (0.554906021e-1f + 3775 // (0.961591928e-2f + 3776 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3777 // error 2.47208000*10^(-7), which is better than 18 bits 3778 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3779 getF32Constant(DAG, 0x3924b03e, dl)); 3780 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3781 getF32Constant(DAG, 0x3ab24b87, dl)); 3782 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3783 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3784 getF32Constant(DAG, 0x3c1d8c17, dl)); 3785 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3786 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3787 getF32Constant(DAG, 0x3d634a1d, dl)); 3788 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3789 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3790 getF32Constant(DAG, 0x3e75fe14, dl)); 3791 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3792 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3793 getF32Constant(DAG, 0x3f317234, dl)); 3794 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3795 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3796 getF32Constant(DAG, 0x3f800000, dl)); 3797 } 3798 3799 // Add the exponent into the result in integer domain. 3800 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3801 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3802 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3803 } 3804 3805 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3806 /// limited-precision mode. 3807 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3808 const TargetLowering &TLI) { 3809 if (Op.getValueType() == MVT::f32 && 3810 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3811 3812 // Put the exponent in the right bit position for later addition to the 3813 // final result: 3814 // 3815 // #define LOG2OFe 1.4426950f 3816 // t0 = Op * LOG2OFe 3817 3818 // TODO: What fast-math-flags should be set here? 3819 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3820 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3821 return getLimitedPrecisionExp2(t0, dl, DAG); 3822 } 3823 3824 // No special expansion. 3825 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3826 } 3827 3828 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3829 /// limited-precision mode. 3830 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3831 const TargetLowering &TLI) { 3832 3833 // TODO: What fast-math-flags should be set on the floating-point nodes? 3834 3835 if (Op.getValueType() == MVT::f32 && 3836 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3837 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3838 3839 // Scale the exponent by log(2) [0.69314718f]. 3840 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3841 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3842 getF32Constant(DAG, 0x3f317218, dl)); 3843 3844 // Get the significand and build it into a floating-point number with 3845 // exponent of 1. 3846 SDValue X = GetSignificand(DAG, Op1, dl); 3847 3848 SDValue LogOfMantissa; 3849 if (LimitFloatPrecision <= 6) { 3850 // For floating-point precision of 6: 3851 // 3852 // LogofMantissa = 3853 // -1.1609546f + 3854 // (1.4034025f - 0.23903021f * x) * x; 3855 // 3856 // error 0.0034276066, which is better than 8 bits 3857 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3858 getF32Constant(DAG, 0xbe74c456, dl)); 3859 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3860 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3861 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3862 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3863 getF32Constant(DAG, 0x3f949a29, dl)); 3864 } else if (LimitFloatPrecision <= 12) { 3865 // For floating-point precision of 12: 3866 // 3867 // LogOfMantissa = 3868 // -1.7417939f + 3869 // (2.8212026f + 3870 // (-1.4699568f + 3871 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3872 // 3873 // error 0.000061011436, which is 14 bits 3874 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3875 getF32Constant(DAG, 0xbd67b6d6, dl)); 3876 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3877 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3878 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3879 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3880 getF32Constant(DAG, 0x3fbc278b, dl)); 3881 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3882 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3883 getF32Constant(DAG, 0x40348e95, dl)); 3884 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3885 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3886 getF32Constant(DAG, 0x3fdef31a, dl)); 3887 } else { // LimitFloatPrecision <= 18 3888 // For floating-point precision of 18: 3889 // 3890 // LogOfMantissa = 3891 // -2.1072184f + 3892 // (4.2372794f + 3893 // (-3.7029485f + 3894 // (2.2781945f + 3895 // (-0.87823314f + 3896 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3897 // 3898 // error 0.0000023660568, which is better than 18 bits 3899 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3900 getF32Constant(DAG, 0xbc91e5ac, dl)); 3901 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3902 getF32Constant(DAG, 0x3e4350aa, dl)); 3903 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3904 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3905 getF32Constant(DAG, 0x3f60d3e3, dl)); 3906 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3907 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3908 getF32Constant(DAG, 0x4011cdf0, dl)); 3909 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3910 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3911 getF32Constant(DAG, 0x406cfd1c, dl)); 3912 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3913 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3914 getF32Constant(DAG, 0x408797cb, dl)); 3915 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3916 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3917 getF32Constant(DAG, 0x4006dcab, dl)); 3918 } 3919 3920 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3921 } 3922 3923 // No special expansion. 3924 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3925 } 3926 3927 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3928 /// limited-precision mode. 3929 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3930 const TargetLowering &TLI) { 3931 3932 // TODO: What fast-math-flags should be set on the floating-point nodes? 3933 3934 if (Op.getValueType() == MVT::f32 && 3935 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3936 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3937 3938 // Get the exponent. 3939 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3940 3941 // Get the significand and build it into a floating-point number with 3942 // exponent of 1. 3943 SDValue X = GetSignificand(DAG, Op1, dl); 3944 3945 // Different possible minimax approximations of significand in 3946 // floating-point for various degrees of accuracy over [1,2]. 3947 SDValue Log2ofMantissa; 3948 if (LimitFloatPrecision <= 6) { 3949 // For floating-point precision of 6: 3950 // 3951 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3952 // 3953 // error 0.0049451742, which is more than 7 bits 3954 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3955 getF32Constant(DAG, 0xbeb08fe0, dl)); 3956 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3957 getF32Constant(DAG, 0x40019463, dl)); 3958 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3959 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3960 getF32Constant(DAG, 0x3fd6633d, dl)); 3961 } else if (LimitFloatPrecision <= 12) { 3962 // For floating-point precision of 12: 3963 // 3964 // Log2ofMantissa = 3965 // -2.51285454f + 3966 // (4.07009056f + 3967 // (-2.12067489f + 3968 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3969 // 3970 // error 0.0000876136000, which is better than 13 bits 3971 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3972 getF32Constant(DAG, 0xbda7262e, dl)); 3973 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3974 getF32Constant(DAG, 0x3f25280b, dl)); 3975 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3976 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3977 getF32Constant(DAG, 0x4007b923, dl)); 3978 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3979 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3980 getF32Constant(DAG, 0x40823e2f, dl)); 3981 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3982 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3983 getF32Constant(DAG, 0x4020d29c, dl)); 3984 } else { // LimitFloatPrecision <= 18 3985 // For floating-point precision of 18: 3986 // 3987 // Log2ofMantissa = 3988 // -3.0400495f + 3989 // (6.1129976f + 3990 // (-5.3420409f + 3991 // (3.2865683f + 3992 // (-1.2669343f + 3993 // (0.27515199f - 3994 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3995 // 3996 // error 0.0000018516, which is better than 18 bits 3997 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3998 getF32Constant(DAG, 0xbcd2769e, dl)); 3999 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4000 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4001 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4002 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4003 getF32Constant(DAG, 0x3fa22ae7, dl)); 4004 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4005 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4006 getF32Constant(DAG, 0x40525723, dl)); 4007 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4008 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4009 getF32Constant(DAG, 0x40aaf200, dl)); 4010 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4011 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4012 getF32Constant(DAG, 0x40c39dad, dl)); 4013 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4014 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4015 getF32Constant(DAG, 0x4042902c, dl)); 4016 } 4017 4018 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4019 } 4020 4021 // No special expansion. 4022 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4023 } 4024 4025 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4026 /// limited-precision mode. 4027 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4028 const TargetLowering &TLI) { 4029 4030 // TODO: What fast-math-flags should be set on the floating-point nodes? 4031 4032 if (Op.getValueType() == MVT::f32 && 4033 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4034 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4035 4036 // Scale the exponent by log10(2) [0.30102999f]. 4037 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4038 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4039 getF32Constant(DAG, 0x3e9a209a, dl)); 4040 4041 // Get the significand and build it into a floating-point number with 4042 // exponent of 1. 4043 SDValue X = GetSignificand(DAG, Op1, dl); 4044 4045 SDValue Log10ofMantissa; 4046 if (LimitFloatPrecision <= 6) { 4047 // For floating-point precision of 6: 4048 // 4049 // Log10ofMantissa = 4050 // -0.50419619f + 4051 // (0.60948995f - 0.10380950f * x) * x; 4052 // 4053 // error 0.0014886165, which is 6 bits 4054 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4055 getF32Constant(DAG, 0xbdd49a13, dl)); 4056 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4057 getF32Constant(DAG, 0x3f1c0789, dl)); 4058 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4059 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4060 getF32Constant(DAG, 0x3f011300, dl)); 4061 } else if (LimitFloatPrecision <= 12) { 4062 // For floating-point precision of 12: 4063 // 4064 // Log10ofMantissa = 4065 // -0.64831180f + 4066 // (0.91751397f + 4067 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4068 // 4069 // error 0.00019228036, which is better than 12 bits 4070 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4071 getF32Constant(DAG, 0x3d431f31, dl)); 4072 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4073 getF32Constant(DAG, 0x3ea21fb2, dl)); 4074 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4075 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4076 getF32Constant(DAG, 0x3f6ae232, dl)); 4077 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4078 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4079 getF32Constant(DAG, 0x3f25f7c3, dl)); 4080 } else { // LimitFloatPrecision <= 18 4081 // For floating-point precision of 18: 4082 // 4083 // Log10ofMantissa = 4084 // -0.84299375f + 4085 // (1.5327582f + 4086 // (-1.0688956f + 4087 // (0.49102474f + 4088 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4089 // 4090 // error 0.0000037995730, which is better than 18 bits 4091 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4092 getF32Constant(DAG, 0x3c5d51ce, dl)); 4093 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4094 getF32Constant(DAG, 0x3e00685a, dl)); 4095 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4096 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4097 getF32Constant(DAG, 0x3efb6798, dl)); 4098 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4099 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4100 getF32Constant(DAG, 0x3f88d192, dl)); 4101 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4102 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4103 getF32Constant(DAG, 0x3fc4316c, dl)); 4104 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4105 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4106 getF32Constant(DAG, 0x3f57ce70, dl)); 4107 } 4108 4109 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4110 } 4111 4112 // No special expansion. 4113 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4114 } 4115 4116 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4117 /// limited-precision mode. 4118 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4119 const TargetLowering &TLI) { 4120 if (Op.getValueType() == MVT::f32 && 4121 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4122 return getLimitedPrecisionExp2(Op, dl, DAG); 4123 4124 // No special expansion. 4125 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4126 } 4127 4128 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4129 /// limited-precision mode with x == 10.0f. 4130 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4131 SelectionDAG &DAG, const TargetLowering &TLI) { 4132 bool IsExp10 = false; 4133 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4134 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4135 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4136 APFloat Ten(10.0f); 4137 IsExp10 = LHSC->isExactlyValue(Ten); 4138 } 4139 } 4140 4141 // TODO: What fast-math-flags should be set on the FMUL node? 4142 if (IsExp10) { 4143 // Put the exponent in the right bit position for later addition to the 4144 // final result: 4145 // 4146 // #define LOG2OF10 3.3219281f 4147 // t0 = Op * LOG2OF10; 4148 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4149 getF32Constant(DAG, 0x40549a78, dl)); 4150 return getLimitedPrecisionExp2(t0, dl, DAG); 4151 } 4152 4153 // No special expansion. 4154 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4155 } 4156 4157 4158 /// ExpandPowI - Expand a llvm.powi intrinsic. 4159 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4160 SelectionDAG &DAG) { 4161 // If RHS is a constant, we can expand this out to a multiplication tree, 4162 // otherwise we end up lowering to a call to __powidf2 (for example). When 4163 // optimizing for size, we only want to do this if the expansion would produce 4164 // a small number of multiplies, otherwise we do the full expansion. 4165 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4166 // Get the exponent as a positive value. 4167 unsigned Val = RHSC->getSExtValue(); 4168 if ((int)Val < 0) Val = -Val; 4169 4170 // powi(x, 0) -> 1.0 4171 if (Val == 0) 4172 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4173 4174 const Function *F = DAG.getMachineFunction().getFunction(); 4175 if (!F->optForSize() || 4176 // If optimizing for size, don't insert too many multiplies. 4177 // This inserts up to 5 multiplies. 4178 countPopulation(Val) + Log2_32(Val) < 7) { 4179 // We use the simple binary decomposition method to generate the multiply 4180 // sequence. There are more optimal ways to do this (for example, 4181 // powi(x,15) generates one more multiply than it should), but this has 4182 // the benefit of being both really simple and much better than a libcall. 4183 SDValue Res; // Logically starts equal to 1.0 4184 SDValue CurSquare = LHS; 4185 // TODO: Intrinsics should have fast-math-flags that propagate to these 4186 // nodes. 4187 while (Val) { 4188 if (Val & 1) { 4189 if (Res.getNode()) 4190 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4191 else 4192 Res = CurSquare; // 1.0*CurSquare. 4193 } 4194 4195 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4196 CurSquare, CurSquare); 4197 Val >>= 1; 4198 } 4199 4200 // If the original was negative, invert the result, producing 1/(x*x*x). 4201 if (RHSC->getSExtValue() < 0) 4202 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4203 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4204 return Res; 4205 } 4206 } 4207 4208 // Otherwise, expand to a libcall. 4209 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4210 } 4211 4212 // getUnderlyingArgReg - Find underlying register used for a truncated or 4213 // bitcasted argument. 4214 static unsigned getUnderlyingArgReg(const SDValue &N) { 4215 switch (N.getOpcode()) { 4216 case ISD::CopyFromReg: 4217 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4218 case ISD::BITCAST: 4219 case ISD::AssertZext: 4220 case ISD::AssertSext: 4221 case ISD::TRUNCATE: 4222 return getUnderlyingArgReg(N.getOperand(0)); 4223 default: 4224 return 0; 4225 } 4226 } 4227 4228 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4229 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4230 /// At the end of instruction selection, they will be inserted to the entry BB. 4231 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4232 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4233 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4234 const Argument *Arg = dyn_cast<Argument>(V); 4235 if (!Arg) 4236 return false; 4237 4238 MachineFunction &MF = DAG.getMachineFunction(); 4239 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4240 4241 // Ignore inlined function arguments here. 4242 // 4243 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4244 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4245 return false; 4246 4247 Optional<MachineOperand> Op; 4248 // Some arguments' frame index is recorded during argument lowering. 4249 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4250 Op = MachineOperand::CreateFI(FI); 4251 4252 if (!Op && N.getNode()) { 4253 unsigned Reg = getUnderlyingArgReg(N); 4254 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4255 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4256 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4257 if (PR) 4258 Reg = PR; 4259 } 4260 if (Reg) 4261 Op = MachineOperand::CreateReg(Reg, false); 4262 } 4263 4264 if (!Op) { 4265 // Check if ValueMap has reg number. 4266 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4267 if (VMI != FuncInfo.ValueMap.end()) 4268 Op = MachineOperand::CreateReg(VMI->second, false); 4269 } 4270 4271 if (!Op && N.getNode()) 4272 // Check if frame index is available. 4273 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4274 if (FrameIndexSDNode *FINode = 4275 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4276 Op = MachineOperand::CreateFI(FINode->getIndex()); 4277 4278 if (!Op) 4279 return false; 4280 4281 assert(Variable->isValidLocationForIntrinsic(DL) && 4282 "Expected inlined-at fields to agree"); 4283 if (Op->isReg()) 4284 FuncInfo.ArgDbgValues.push_back( 4285 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4286 Op->getReg(), Offset, Variable, Expr)); 4287 else 4288 FuncInfo.ArgDbgValues.push_back( 4289 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4290 .addOperand(*Op) 4291 .addImm(Offset) 4292 .addMetadata(Variable) 4293 .addMetadata(Expr)); 4294 4295 return true; 4296 } 4297 4298 // VisualStudio defines setjmp as _setjmp 4299 #if defined(_MSC_VER) && defined(setjmp) && \ 4300 !defined(setjmp_undefined_for_msvc) 4301 # pragma push_macro("setjmp") 4302 # undef setjmp 4303 # define setjmp_undefined_for_msvc 4304 #endif 4305 4306 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4307 /// we want to emit this as a call to a named external function, return the name 4308 /// otherwise lower it and return null. 4309 const char * 4310 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4312 SDLoc sdl = getCurSDLoc(); 4313 DebugLoc dl = getCurDebugLoc(); 4314 SDValue Res; 4315 4316 switch (Intrinsic) { 4317 default: 4318 // By default, turn this into a target intrinsic node. 4319 visitTargetIntrinsic(I, Intrinsic); 4320 return nullptr; 4321 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4322 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4323 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4324 case Intrinsic::returnaddress: 4325 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4326 TLI.getPointerTy(DAG.getDataLayout()), 4327 getValue(I.getArgOperand(0)))); 4328 return nullptr; 4329 case Intrinsic::frameaddress: 4330 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4331 TLI.getPointerTy(DAG.getDataLayout()), 4332 getValue(I.getArgOperand(0)))); 4333 return nullptr; 4334 case Intrinsic::read_register: { 4335 Value *Reg = I.getArgOperand(0); 4336 SDValue Chain = getRoot(); 4337 SDValue RegName = 4338 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4339 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4340 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4341 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4342 setValue(&I, Res); 4343 DAG.setRoot(Res.getValue(1)); 4344 return nullptr; 4345 } 4346 case Intrinsic::write_register: { 4347 Value *Reg = I.getArgOperand(0); 4348 Value *RegValue = I.getArgOperand(1); 4349 SDValue Chain = getRoot(); 4350 SDValue RegName = 4351 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4352 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4353 RegName, getValue(RegValue))); 4354 return nullptr; 4355 } 4356 case Intrinsic::setjmp: 4357 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4358 case Intrinsic::longjmp: 4359 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4360 case Intrinsic::memcpy: { 4361 // FIXME: this definition of "user defined address space" is x86-specific 4362 // Assert for address < 256 since we support only user defined address 4363 // spaces. 4364 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4365 < 256 && 4366 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4367 < 256 && 4368 "Unknown address space"); 4369 SDValue Op1 = getValue(I.getArgOperand(0)); 4370 SDValue Op2 = getValue(I.getArgOperand(1)); 4371 SDValue Op3 = getValue(I.getArgOperand(2)); 4372 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4373 if (!Align) 4374 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4375 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4376 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4377 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4378 false, isTC, 4379 MachinePointerInfo(I.getArgOperand(0)), 4380 MachinePointerInfo(I.getArgOperand(1))); 4381 updateDAGForMaybeTailCall(MC); 4382 return nullptr; 4383 } 4384 case Intrinsic::memset: { 4385 // FIXME: this definition of "user defined address space" is x86-specific 4386 // Assert for address < 256 since we support only user defined address 4387 // spaces. 4388 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4389 < 256 && 4390 "Unknown address space"); 4391 SDValue Op1 = getValue(I.getArgOperand(0)); 4392 SDValue Op2 = getValue(I.getArgOperand(1)); 4393 SDValue Op3 = getValue(I.getArgOperand(2)); 4394 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4395 if (!Align) 4396 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4397 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4398 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4399 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4400 isTC, MachinePointerInfo(I.getArgOperand(0))); 4401 updateDAGForMaybeTailCall(MS); 4402 return nullptr; 4403 } 4404 case Intrinsic::memmove: { 4405 // FIXME: this definition of "user defined address space" is x86-specific 4406 // Assert for address < 256 since we support only user defined address 4407 // spaces. 4408 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4409 < 256 && 4410 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4411 < 256 && 4412 "Unknown address space"); 4413 SDValue Op1 = getValue(I.getArgOperand(0)); 4414 SDValue Op2 = getValue(I.getArgOperand(1)); 4415 SDValue Op3 = getValue(I.getArgOperand(2)); 4416 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4417 if (!Align) 4418 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4419 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4420 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4421 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4422 isTC, MachinePointerInfo(I.getArgOperand(0)), 4423 MachinePointerInfo(I.getArgOperand(1))); 4424 updateDAGForMaybeTailCall(MM); 4425 return nullptr; 4426 } 4427 case Intrinsic::dbg_declare: { 4428 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4429 DILocalVariable *Variable = DI.getVariable(); 4430 DIExpression *Expression = DI.getExpression(); 4431 const Value *Address = DI.getAddress(); 4432 assert(Variable && "Missing variable"); 4433 if (!Address) { 4434 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4435 return nullptr; 4436 } 4437 4438 // Check if address has undef value. 4439 if (isa<UndefValue>(Address) || 4440 (Address->use_empty() && !isa<Argument>(Address))) { 4441 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4442 return nullptr; 4443 } 4444 4445 SDValue &N = NodeMap[Address]; 4446 if (!N.getNode() && isa<Argument>(Address)) 4447 // Check unused arguments map. 4448 N = UnusedArgNodeMap[Address]; 4449 SDDbgValue *SDV; 4450 if (N.getNode()) { 4451 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4452 Address = BCI->getOperand(0); 4453 // Parameters are handled specially. 4454 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4455 4456 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4457 4458 if (isParameter && !AI) { 4459 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4460 if (FINode) 4461 // Byval parameter. We have a frame index at this point. 4462 SDV = DAG.getFrameIndexDbgValue( 4463 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4464 else { 4465 // Address is an argument, so try to emit its dbg value using 4466 // virtual register info from the FuncInfo.ValueMap. 4467 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4468 N); 4469 return nullptr; 4470 } 4471 } else { 4472 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4473 true, 0, dl, SDNodeOrder); 4474 } 4475 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4476 } else { 4477 // If Address is an argument then try to emit its dbg value using 4478 // virtual register info from the FuncInfo.ValueMap. 4479 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4480 N)) { 4481 // If variable is pinned by a alloca in dominating bb then 4482 // use StaticAllocaMap. 4483 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4484 if (AI->getParent() != DI.getParent()) { 4485 DenseMap<const AllocaInst*, int>::iterator SI = 4486 FuncInfo.StaticAllocaMap.find(AI); 4487 if (SI != FuncInfo.StaticAllocaMap.end()) { 4488 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4489 0, dl, SDNodeOrder); 4490 DAG.AddDbgValue(SDV, nullptr, false); 4491 return nullptr; 4492 } 4493 } 4494 } 4495 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4496 } 4497 } 4498 return nullptr; 4499 } 4500 case Intrinsic::dbg_value: { 4501 const DbgValueInst &DI = cast<DbgValueInst>(I); 4502 assert(DI.getVariable() && "Missing variable"); 4503 4504 DILocalVariable *Variable = DI.getVariable(); 4505 DIExpression *Expression = DI.getExpression(); 4506 uint64_t Offset = DI.getOffset(); 4507 const Value *V = DI.getValue(); 4508 if (!V) 4509 return nullptr; 4510 4511 SDDbgValue *SDV; 4512 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4513 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4514 SDNodeOrder); 4515 DAG.AddDbgValue(SDV, nullptr, false); 4516 } else { 4517 // Do not use getValue() in here; we don't want to generate code at 4518 // this point if it hasn't been done yet. 4519 SDValue N = NodeMap[V]; 4520 if (!N.getNode() && isa<Argument>(V)) 4521 // Check unused arguments map. 4522 N = UnusedArgNodeMap[V]; 4523 if (N.getNode()) { 4524 // A dbg.value for an alloca is always indirect. 4525 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4526 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4527 IsIndirect, N)) { 4528 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4529 IsIndirect, Offset, dl, SDNodeOrder); 4530 DAG.AddDbgValue(SDV, N.getNode(), false); 4531 } 4532 } else if (!V->use_empty() ) { 4533 // Do not call getValue(V) yet, as we don't want to generate code. 4534 // Remember it for later. 4535 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4536 DanglingDebugInfoMap[V] = DDI; 4537 } else { 4538 // We may expand this to cover more cases. One case where we have no 4539 // data available is an unreferenced parameter. 4540 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4541 } 4542 } 4543 4544 // Build a debug info table entry. 4545 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4546 V = BCI->getOperand(0); 4547 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4548 // Don't handle byval struct arguments or VLAs, for example. 4549 if (!AI) { 4550 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4551 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4552 return nullptr; 4553 } 4554 DenseMap<const AllocaInst*, int>::iterator SI = 4555 FuncInfo.StaticAllocaMap.find(AI); 4556 if (SI == FuncInfo.StaticAllocaMap.end()) 4557 return nullptr; // VLAs. 4558 return nullptr; 4559 } 4560 4561 case Intrinsic::eh_typeid_for: { 4562 // Find the type id for the given typeinfo. 4563 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4564 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4565 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4566 setValue(&I, Res); 4567 return nullptr; 4568 } 4569 4570 case Intrinsic::eh_return_i32: 4571 case Intrinsic::eh_return_i64: 4572 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4573 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4574 MVT::Other, 4575 getControlRoot(), 4576 getValue(I.getArgOperand(0)), 4577 getValue(I.getArgOperand(1)))); 4578 return nullptr; 4579 case Intrinsic::eh_unwind_init: 4580 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4581 return nullptr; 4582 case Intrinsic::eh_dwarf_cfa: { 4583 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4584 TLI.getPointerTy(DAG.getDataLayout())); 4585 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4586 CfaArg.getValueType(), 4587 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4588 CfaArg.getValueType()), 4589 CfaArg); 4590 SDValue FA = DAG.getNode( 4591 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4592 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4593 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4594 FA, Offset)); 4595 return nullptr; 4596 } 4597 case Intrinsic::eh_sjlj_callsite: { 4598 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4599 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4600 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4601 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4602 4603 MMI.setCurrentCallSite(CI->getZExtValue()); 4604 return nullptr; 4605 } 4606 case Intrinsic::eh_sjlj_functioncontext: { 4607 // Get and store the index of the function context. 4608 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4609 AllocaInst *FnCtx = 4610 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4611 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4612 MFI->setFunctionContextIndex(FI); 4613 return nullptr; 4614 } 4615 case Intrinsic::eh_sjlj_setjmp: { 4616 SDValue Ops[2]; 4617 Ops[0] = getRoot(); 4618 Ops[1] = getValue(I.getArgOperand(0)); 4619 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4620 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4621 setValue(&I, Op.getValue(0)); 4622 DAG.setRoot(Op.getValue(1)); 4623 return nullptr; 4624 } 4625 case Intrinsic::eh_sjlj_longjmp: { 4626 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4627 getRoot(), getValue(I.getArgOperand(0)))); 4628 return nullptr; 4629 } 4630 case Intrinsic::eh_sjlj_setup_dispatch: { 4631 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4632 getRoot())); 4633 return nullptr; 4634 } 4635 4636 case Intrinsic::masked_gather: 4637 visitMaskedGather(I); 4638 return nullptr; 4639 case Intrinsic::masked_load: 4640 visitMaskedLoad(I); 4641 return nullptr; 4642 case Intrinsic::masked_scatter: 4643 visitMaskedScatter(I); 4644 return nullptr; 4645 case Intrinsic::masked_store: 4646 visitMaskedStore(I); 4647 return nullptr; 4648 case Intrinsic::x86_mmx_pslli_w: 4649 case Intrinsic::x86_mmx_pslli_d: 4650 case Intrinsic::x86_mmx_pslli_q: 4651 case Intrinsic::x86_mmx_psrli_w: 4652 case Intrinsic::x86_mmx_psrli_d: 4653 case Intrinsic::x86_mmx_psrli_q: 4654 case Intrinsic::x86_mmx_psrai_w: 4655 case Intrinsic::x86_mmx_psrai_d: { 4656 SDValue ShAmt = getValue(I.getArgOperand(1)); 4657 if (isa<ConstantSDNode>(ShAmt)) { 4658 visitTargetIntrinsic(I, Intrinsic); 4659 return nullptr; 4660 } 4661 unsigned NewIntrinsic = 0; 4662 EVT ShAmtVT = MVT::v2i32; 4663 switch (Intrinsic) { 4664 case Intrinsic::x86_mmx_pslli_w: 4665 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4666 break; 4667 case Intrinsic::x86_mmx_pslli_d: 4668 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4669 break; 4670 case Intrinsic::x86_mmx_pslli_q: 4671 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4672 break; 4673 case Intrinsic::x86_mmx_psrli_w: 4674 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4675 break; 4676 case Intrinsic::x86_mmx_psrli_d: 4677 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4678 break; 4679 case Intrinsic::x86_mmx_psrli_q: 4680 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4681 break; 4682 case Intrinsic::x86_mmx_psrai_w: 4683 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4684 break; 4685 case Intrinsic::x86_mmx_psrai_d: 4686 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4687 break; 4688 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4689 } 4690 4691 // The vector shift intrinsics with scalars uses 32b shift amounts but 4692 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4693 // to be zero. 4694 // We must do this early because v2i32 is not a legal type. 4695 SDValue ShOps[2]; 4696 ShOps[0] = ShAmt; 4697 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4698 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4699 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4700 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4701 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4702 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4703 getValue(I.getArgOperand(0)), ShAmt); 4704 setValue(&I, Res); 4705 return nullptr; 4706 } 4707 case Intrinsic::convertff: 4708 case Intrinsic::convertfsi: 4709 case Intrinsic::convertfui: 4710 case Intrinsic::convertsif: 4711 case Intrinsic::convertuif: 4712 case Intrinsic::convertss: 4713 case Intrinsic::convertsu: 4714 case Intrinsic::convertus: 4715 case Intrinsic::convertuu: { 4716 ISD::CvtCode Code = ISD::CVT_INVALID; 4717 switch (Intrinsic) { 4718 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4719 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4720 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4721 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4722 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4723 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4724 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4725 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4726 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4727 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4728 } 4729 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4730 const Value *Op1 = I.getArgOperand(0); 4731 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4732 DAG.getValueType(DestVT), 4733 DAG.getValueType(getValue(Op1).getValueType()), 4734 getValue(I.getArgOperand(1)), 4735 getValue(I.getArgOperand(2)), 4736 Code); 4737 setValue(&I, Res); 4738 return nullptr; 4739 } 4740 case Intrinsic::powi: 4741 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4742 getValue(I.getArgOperand(1)), DAG)); 4743 return nullptr; 4744 case Intrinsic::log: 4745 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4746 return nullptr; 4747 case Intrinsic::log2: 4748 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4749 return nullptr; 4750 case Intrinsic::log10: 4751 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4752 return nullptr; 4753 case Intrinsic::exp: 4754 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4755 return nullptr; 4756 case Intrinsic::exp2: 4757 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4758 return nullptr; 4759 case Intrinsic::pow: 4760 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4761 getValue(I.getArgOperand(1)), DAG, TLI)); 4762 return nullptr; 4763 case Intrinsic::sqrt: 4764 case Intrinsic::fabs: 4765 case Intrinsic::sin: 4766 case Intrinsic::cos: 4767 case Intrinsic::floor: 4768 case Intrinsic::ceil: 4769 case Intrinsic::trunc: 4770 case Intrinsic::rint: 4771 case Intrinsic::nearbyint: 4772 case Intrinsic::round: { 4773 unsigned Opcode; 4774 switch (Intrinsic) { 4775 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4776 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4777 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4778 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4779 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4780 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4781 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4782 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4783 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4784 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4785 case Intrinsic::round: Opcode = ISD::FROUND; break; 4786 } 4787 4788 setValue(&I, DAG.getNode(Opcode, sdl, 4789 getValue(I.getArgOperand(0)).getValueType(), 4790 getValue(I.getArgOperand(0)))); 4791 return nullptr; 4792 } 4793 case Intrinsic::minnum: 4794 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4795 getValue(I.getArgOperand(0)).getValueType(), 4796 getValue(I.getArgOperand(0)), 4797 getValue(I.getArgOperand(1)))); 4798 return nullptr; 4799 case Intrinsic::maxnum: 4800 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4801 getValue(I.getArgOperand(0)).getValueType(), 4802 getValue(I.getArgOperand(0)), 4803 getValue(I.getArgOperand(1)))); 4804 return nullptr; 4805 case Intrinsic::copysign: 4806 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4807 getValue(I.getArgOperand(0)).getValueType(), 4808 getValue(I.getArgOperand(0)), 4809 getValue(I.getArgOperand(1)))); 4810 return nullptr; 4811 case Intrinsic::fma: 4812 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4813 getValue(I.getArgOperand(0)).getValueType(), 4814 getValue(I.getArgOperand(0)), 4815 getValue(I.getArgOperand(1)), 4816 getValue(I.getArgOperand(2)))); 4817 return nullptr; 4818 case Intrinsic::fmuladd: { 4819 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4820 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4821 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4822 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4823 getValue(I.getArgOperand(0)).getValueType(), 4824 getValue(I.getArgOperand(0)), 4825 getValue(I.getArgOperand(1)), 4826 getValue(I.getArgOperand(2)))); 4827 } else { 4828 // TODO: Intrinsic calls should have fast-math-flags. 4829 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4830 getValue(I.getArgOperand(0)).getValueType(), 4831 getValue(I.getArgOperand(0)), 4832 getValue(I.getArgOperand(1))); 4833 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4834 getValue(I.getArgOperand(0)).getValueType(), 4835 Mul, 4836 getValue(I.getArgOperand(2))); 4837 setValue(&I, Add); 4838 } 4839 return nullptr; 4840 } 4841 case Intrinsic::convert_to_fp16: 4842 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4843 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4844 getValue(I.getArgOperand(0)), 4845 DAG.getTargetConstant(0, sdl, 4846 MVT::i32)))); 4847 return nullptr; 4848 case Intrinsic::convert_from_fp16: 4849 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4850 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4851 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4852 getValue(I.getArgOperand(0))))); 4853 return nullptr; 4854 case Intrinsic::pcmarker: { 4855 SDValue Tmp = getValue(I.getArgOperand(0)); 4856 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4857 return nullptr; 4858 } 4859 case Intrinsic::readcyclecounter: { 4860 SDValue Op = getRoot(); 4861 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4862 DAG.getVTList(MVT::i64, MVT::Other), Op); 4863 setValue(&I, Res); 4864 DAG.setRoot(Res.getValue(1)); 4865 return nullptr; 4866 } 4867 case Intrinsic::bswap: 4868 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4869 getValue(I.getArgOperand(0)).getValueType(), 4870 getValue(I.getArgOperand(0)))); 4871 return nullptr; 4872 case Intrinsic::uabsdiff: 4873 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4874 getValue(I.getArgOperand(0)).getValueType(), 4875 getValue(I.getArgOperand(0)), 4876 getValue(I.getArgOperand(1)))); 4877 return nullptr; 4878 case Intrinsic::sabsdiff: 4879 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4880 getValue(I.getArgOperand(0)).getValueType(), 4881 getValue(I.getArgOperand(0)), 4882 getValue(I.getArgOperand(1)))); 4883 return nullptr; 4884 case Intrinsic::cttz: { 4885 SDValue Arg = getValue(I.getArgOperand(0)); 4886 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4887 EVT Ty = Arg.getValueType(); 4888 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4889 sdl, Ty, Arg)); 4890 return nullptr; 4891 } 4892 case Intrinsic::ctlz: { 4893 SDValue Arg = getValue(I.getArgOperand(0)); 4894 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4895 EVT Ty = Arg.getValueType(); 4896 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4897 sdl, Ty, Arg)); 4898 return nullptr; 4899 } 4900 case Intrinsic::ctpop: { 4901 SDValue Arg = getValue(I.getArgOperand(0)); 4902 EVT Ty = Arg.getValueType(); 4903 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4904 return nullptr; 4905 } 4906 case Intrinsic::stacksave: { 4907 SDValue Op = getRoot(); 4908 Res = DAG.getNode( 4909 ISD::STACKSAVE, sdl, 4910 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4911 setValue(&I, Res); 4912 DAG.setRoot(Res.getValue(1)); 4913 return nullptr; 4914 } 4915 case Intrinsic::stackrestore: { 4916 Res = getValue(I.getArgOperand(0)); 4917 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4918 return nullptr; 4919 } 4920 case Intrinsic::stackprotector: { 4921 // Emit code into the DAG to store the stack guard onto the stack. 4922 MachineFunction &MF = DAG.getMachineFunction(); 4923 MachineFrameInfo *MFI = MF.getFrameInfo(); 4924 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4925 SDValue Src, Chain = getRoot(); 4926 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4927 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4928 4929 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4930 // global variable __stack_chk_guard. 4931 if (!GV) 4932 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4933 if (BC->getOpcode() == Instruction::BitCast) 4934 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4935 4936 if (GV && TLI.useLoadStackGuardNode()) { 4937 // Emit a LOAD_STACK_GUARD node. 4938 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4939 sdl, PtrTy, Chain); 4940 MachinePointerInfo MPInfo(GV); 4941 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4942 unsigned Flags = MachineMemOperand::MOLoad | 4943 MachineMemOperand::MOInvariant; 4944 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4945 PtrTy.getSizeInBits() / 8, 4946 DAG.getEVTAlignment(PtrTy)); 4947 Node->setMemRefs(MemRefs, MemRefs + 1); 4948 4949 // Copy the guard value to a virtual register so that it can be 4950 // retrieved in the epilogue. 4951 Src = SDValue(Node, 0); 4952 const TargetRegisterClass *RC = 4953 TLI.getRegClassFor(Src.getSimpleValueType()); 4954 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4955 4956 SPDescriptor.setGuardReg(Reg); 4957 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4958 } else { 4959 Src = getValue(I.getArgOperand(0)); // The guard's value. 4960 } 4961 4962 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4963 4964 int FI = FuncInfo.StaticAllocaMap[Slot]; 4965 MFI->setStackProtectorIndex(FI); 4966 4967 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4968 4969 // Store the stack protector onto the stack. 4970 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4971 DAG.getMachineFunction(), FI), 4972 true, false, 0); 4973 setValue(&I, Res); 4974 DAG.setRoot(Res); 4975 return nullptr; 4976 } 4977 case Intrinsic::objectsize: { 4978 // If we don't know by now, we're never going to know. 4979 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4980 4981 assert(CI && "Non-constant type in __builtin_object_size?"); 4982 4983 SDValue Arg = getValue(I.getCalledValue()); 4984 EVT Ty = Arg.getValueType(); 4985 4986 if (CI->isZero()) 4987 Res = DAG.getConstant(-1ULL, sdl, Ty); 4988 else 4989 Res = DAG.getConstant(0, sdl, Ty); 4990 4991 setValue(&I, Res); 4992 return nullptr; 4993 } 4994 case Intrinsic::annotation: 4995 case Intrinsic::ptr_annotation: 4996 // Drop the intrinsic, but forward the value 4997 setValue(&I, getValue(I.getOperand(0))); 4998 return nullptr; 4999 case Intrinsic::assume: 5000 case Intrinsic::var_annotation: 5001 // Discard annotate attributes and assumptions 5002 return nullptr; 5003 5004 case Intrinsic::init_trampoline: { 5005 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5006 5007 SDValue Ops[6]; 5008 Ops[0] = getRoot(); 5009 Ops[1] = getValue(I.getArgOperand(0)); 5010 Ops[2] = getValue(I.getArgOperand(1)); 5011 Ops[3] = getValue(I.getArgOperand(2)); 5012 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5013 Ops[5] = DAG.getSrcValue(F); 5014 5015 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5016 5017 DAG.setRoot(Res); 5018 return nullptr; 5019 } 5020 case Intrinsic::adjust_trampoline: { 5021 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5022 TLI.getPointerTy(DAG.getDataLayout()), 5023 getValue(I.getArgOperand(0)))); 5024 return nullptr; 5025 } 5026 case Intrinsic::gcroot: 5027 if (GFI) { 5028 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5029 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5030 5031 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5032 GFI->addStackRoot(FI->getIndex(), TypeMap); 5033 } 5034 return nullptr; 5035 case Intrinsic::gcread: 5036 case Intrinsic::gcwrite: 5037 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5038 case Intrinsic::flt_rounds: 5039 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5040 return nullptr; 5041 5042 case Intrinsic::expect: { 5043 // Just replace __builtin_expect(exp, c) with EXP. 5044 setValue(&I, getValue(I.getArgOperand(0))); 5045 return nullptr; 5046 } 5047 5048 case Intrinsic::debugtrap: 5049 case Intrinsic::trap: { 5050 StringRef TrapFuncName = 5051 I.getAttributes() 5052 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5053 .getValueAsString(); 5054 if (TrapFuncName.empty()) { 5055 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5056 ISD::TRAP : ISD::DEBUGTRAP; 5057 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5058 return nullptr; 5059 } 5060 TargetLowering::ArgListTy Args; 5061 5062 TargetLowering::CallLoweringInfo CLI(DAG); 5063 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5064 CallingConv::C, I.getType(), 5065 DAG.getExternalSymbol(TrapFuncName.data(), 5066 TLI.getPointerTy(DAG.getDataLayout())), 5067 std::move(Args), 0); 5068 5069 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5070 DAG.setRoot(Result.second); 5071 return nullptr; 5072 } 5073 5074 case Intrinsic::uadd_with_overflow: 5075 case Intrinsic::sadd_with_overflow: 5076 case Intrinsic::usub_with_overflow: 5077 case Intrinsic::ssub_with_overflow: 5078 case Intrinsic::umul_with_overflow: 5079 case Intrinsic::smul_with_overflow: { 5080 ISD::NodeType Op; 5081 switch (Intrinsic) { 5082 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5083 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5084 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5085 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5086 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5087 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5088 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5089 } 5090 SDValue Op1 = getValue(I.getArgOperand(0)); 5091 SDValue Op2 = getValue(I.getArgOperand(1)); 5092 5093 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5094 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5095 return nullptr; 5096 } 5097 case Intrinsic::prefetch: { 5098 SDValue Ops[5]; 5099 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5100 Ops[0] = getRoot(); 5101 Ops[1] = getValue(I.getArgOperand(0)); 5102 Ops[2] = getValue(I.getArgOperand(1)); 5103 Ops[3] = getValue(I.getArgOperand(2)); 5104 Ops[4] = getValue(I.getArgOperand(3)); 5105 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5106 DAG.getVTList(MVT::Other), Ops, 5107 EVT::getIntegerVT(*Context, 8), 5108 MachinePointerInfo(I.getArgOperand(0)), 5109 0, /* align */ 5110 false, /* volatile */ 5111 rw==0, /* read */ 5112 rw==1)); /* write */ 5113 return nullptr; 5114 } 5115 case Intrinsic::lifetime_start: 5116 case Intrinsic::lifetime_end: { 5117 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5118 // Stack coloring is not enabled in O0, discard region information. 5119 if (TM.getOptLevel() == CodeGenOpt::None) 5120 return nullptr; 5121 5122 SmallVector<Value *, 4> Allocas; 5123 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5124 5125 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5126 E = Allocas.end(); Object != E; ++Object) { 5127 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5128 5129 // Could not find an Alloca. 5130 if (!LifetimeObject) 5131 continue; 5132 5133 // First check that the Alloca is static, otherwise it won't have a 5134 // valid frame index. 5135 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5136 if (SI == FuncInfo.StaticAllocaMap.end()) 5137 return nullptr; 5138 5139 int FI = SI->second; 5140 5141 SDValue Ops[2]; 5142 Ops[0] = getRoot(); 5143 Ops[1] = 5144 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5145 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5146 5147 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5148 DAG.setRoot(Res); 5149 } 5150 return nullptr; 5151 } 5152 case Intrinsic::invariant_start: 5153 // Discard region information. 5154 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5155 return nullptr; 5156 case Intrinsic::invariant_end: 5157 // Discard region information. 5158 return nullptr; 5159 case Intrinsic::stackprotectorcheck: { 5160 // Do not actually emit anything for this basic block. Instead we initialize 5161 // the stack protector descriptor and export the guard variable so we can 5162 // access it in FinishBasicBlock. 5163 const BasicBlock *BB = I.getParent(); 5164 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5165 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5166 5167 // Flush our exports since we are going to process a terminator. 5168 (void)getControlRoot(); 5169 return nullptr; 5170 } 5171 case Intrinsic::clear_cache: 5172 return TLI.getClearCacheBuiltinName(); 5173 case Intrinsic::donothing: 5174 // ignore 5175 return nullptr; 5176 case Intrinsic::experimental_stackmap: { 5177 visitStackmap(I); 5178 return nullptr; 5179 } 5180 case Intrinsic::experimental_patchpoint_void: 5181 case Intrinsic::experimental_patchpoint_i64: { 5182 visitPatchpoint(&I); 5183 return nullptr; 5184 } 5185 case Intrinsic::experimental_gc_statepoint: { 5186 visitStatepoint(I); 5187 return nullptr; 5188 } 5189 case Intrinsic::experimental_gc_result_int: 5190 case Intrinsic::experimental_gc_result_float: 5191 case Intrinsic::experimental_gc_result_ptr: 5192 case Intrinsic::experimental_gc_result: { 5193 visitGCResult(I); 5194 return nullptr; 5195 } 5196 case Intrinsic::experimental_gc_relocate: { 5197 visitGCRelocate(I); 5198 return nullptr; 5199 } 5200 case Intrinsic::instrprof_increment: 5201 llvm_unreachable("instrprof failed to lower an increment"); 5202 5203 case Intrinsic::localescape: { 5204 MachineFunction &MF = DAG.getMachineFunction(); 5205 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5206 5207 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5208 // is the same on all targets. 5209 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5210 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5211 if (isa<ConstantPointerNull>(Arg)) 5212 continue; // Skip null pointers. They represent a hole in index space. 5213 AllocaInst *Slot = cast<AllocaInst>(Arg); 5214 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5215 "can only escape static allocas"); 5216 int FI = FuncInfo.StaticAllocaMap[Slot]; 5217 MCSymbol *FrameAllocSym = 5218 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5219 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5220 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5221 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5222 .addSym(FrameAllocSym) 5223 .addFrameIndex(FI); 5224 } 5225 5226 return nullptr; 5227 } 5228 5229 case Intrinsic::localrecover: { 5230 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5231 MachineFunction &MF = DAG.getMachineFunction(); 5232 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5233 5234 // Get the symbol that defines the frame offset. 5235 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5236 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5237 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5238 MCSymbol *FrameAllocSym = 5239 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5240 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5241 5242 // Create a MCSymbol for the label to avoid any target lowering 5243 // that would make this PC relative. 5244 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5245 SDValue OffsetVal = 5246 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5247 5248 // Add the offset to the FP. 5249 Value *FP = I.getArgOperand(1); 5250 SDValue FPVal = getValue(FP); 5251 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5252 setValue(&I, Add); 5253 5254 return nullptr; 5255 } 5256 5257 case Intrinsic::eh_exceptionpointer: 5258 case Intrinsic::eh_exceptioncode: { 5259 // Get the exception pointer vreg, copy from it, and resize it to fit. 5260 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5261 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5262 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5263 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5264 SDValue N = 5265 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5266 if (Intrinsic == Intrinsic::eh_exceptioncode) 5267 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5268 setValue(&I, N); 5269 return nullptr; 5270 } 5271 } 5272 } 5273 5274 std::pair<SDValue, SDValue> 5275 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5276 const BasicBlock *EHPadBB) { 5277 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5278 MCSymbol *BeginLabel = nullptr; 5279 5280 if (EHPadBB) { 5281 // Insert a label before the invoke call to mark the try range. This can be 5282 // used to detect deletion of the invoke via the MachineModuleInfo. 5283 BeginLabel = MMI.getContext().createTempSymbol(); 5284 5285 // For SjLj, keep track of which landing pads go with which invokes 5286 // so as to maintain the ordering of pads in the LSDA. 5287 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5288 if (CallSiteIndex) { 5289 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5290 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5291 5292 // Now that the call site is handled, stop tracking it. 5293 MMI.setCurrentCallSite(0); 5294 } 5295 5296 // Both PendingLoads and PendingExports must be flushed here; 5297 // this call might not return. 5298 (void)getRoot(); 5299 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5300 5301 CLI.setChain(getRoot()); 5302 } 5303 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5304 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5305 5306 assert((CLI.IsTailCall || Result.second.getNode()) && 5307 "Non-null chain expected with non-tail call!"); 5308 assert((Result.second.getNode() || !Result.first.getNode()) && 5309 "Null value expected with tail call!"); 5310 5311 if (!Result.second.getNode()) { 5312 // As a special case, a null chain means that a tail call has been emitted 5313 // and the DAG root is already updated. 5314 HasTailCall = true; 5315 5316 // Since there's no actual continuation from this block, nothing can be 5317 // relying on us setting vregs for them. 5318 PendingExports.clear(); 5319 } else { 5320 DAG.setRoot(Result.second); 5321 } 5322 5323 if (EHPadBB) { 5324 // Insert a label at the end of the invoke call to mark the try range. This 5325 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5326 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5327 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5328 5329 // Inform MachineModuleInfo of range. 5330 if (MMI.hasEHFunclets()) { 5331 WinEHFuncInfo &EHInfo = 5332 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 5333 EHInfo.addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5334 } else { 5335 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5336 } 5337 } 5338 5339 return Result; 5340 } 5341 5342 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5343 bool isTailCall, 5344 const BasicBlock *EHPadBB) { 5345 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5346 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5347 Type *RetTy = FTy->getReturnType(); 5348 5349 TargetLowering::ArgListTy Args; 5350 TargetLowering::ArgListEntry Entry; 5351 Args.reserve(CS.arg_size()); 5352 5353 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5354 i != e; ++i) { 5355 const Value *V = *i; 5356 5357 // Skip empty types 5358 if (V->getType()->isEmptyTy()) 5359 continue; 5360 5361 SDValue ArgNode = getValue(V); 5362 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5363 5364 // Skip the first return-type Attribute to get to params. 5365 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5366 Args.push_back(Entry); 5367 5368 // If we have an explicit sret argument that is an Instruction, (i.e., it 5369 // might point to function-local memory), we can't meaningfully tail-call. 5370 if (Entry.isSRet && isa<Instruction>(V)) 5371 isTailCall = false; 5372 } 5373 5374 // Check if target-independent constraints permit a tail call here. 5375 // Target-dependent constraints are checked within TLI->LowerCallTo. 5376 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5377 isTailCall = false; 5378 5379 TargetLowering::CallLoweringInfo CLI(DAG); 5380 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5381 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5382 .setTailCall(isTailCall); 5383 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5384 5385 if (Result.first.getNode()) 5386 setValue(CS.getInstruction(), Result.first); 5387 } 5388 5389 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5390 /// value is equal or not-equal to zero. 5391 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5392 for (const User *U : V->users()) { 5393 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5394 if (IC->isEquality()) 5395 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5396 if (C->isNullValue()) 5397 continue; 5398 // Unknown instruction. 5399 return false; 5400 } 5401 return true; 5402 } 5403 5404 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5405 Type *LoadTy, 5406 SelectionDAGBuilder &Builder) { 5407 5408 // Check to see if this load can be trivially constant folded, e.g. if the 5409 // input is from a string literal. 5410 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5411 // Cast pointer to the type we really want to load. 5412 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5413 PointerType::getUnqual(LoadTy)); 5414 5415 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5416 const_cast<Constant *>(LoadInput), *Builder.DL)) 5417 return Builder.getValue(LoadCst); 5418 } 5419 5420 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5421 // still constant memory, the input chain can be the entry node. 5422 SDValue Root; 5423 bool ConstantMemory = false; 5424 5425 // Do not serialize (non-volatile) loads of constant memory with anything. 5426 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5427 Root = Builder.DAG.getEntryNode(); 5428 ConstantMemory = true; 5429 } else { 5430 // Do not serialize non-volatile loads against each other. 5431 Root = Builder.DAG.getRoot(); 5432 } 5433 5434 SDValue Ptr = Builder.getValue(PtrVal); 5435 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5436 Ptr, MachinePointerInfo(PtrVal), 5437 false /*volatile*/, 5438 false /*nontemporal*/, 5439 false /*isinvariant*/, 1 /* align=1 */); 5440 5441 if (!ConstantMemory) 5442 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5443 return LoadVal; 5444 } 5445 5446 /// processIntegerCallValue - Record the value for an instruction that 5447 /// produces an integer result, converting the type where necessary. 5448 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5449 SDValue Value, 5450 bool IsSigned) { 5451 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5452 I.getType(), true); 5453 if (IsSigned) 5454 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5455 else 5456 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5457 setValue(&I, Value); 5458 } 5459 5460 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5461 /// If so, return true and lower it, otherwise return false and it will be 5462 /// lowered like a normal call. 5463 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5464 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5465 if (I.getNumArgOperands() != 3) 5466 return false; 5467 5468 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5469 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5470 !I.getArgOperand(2)->getType()->isIntegerTy() || 5471 !I.getType()->isIntegerTy()) 5472 return false; 5473 5474 const Value *Size = I.getArgOperand(2); 5475 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5476 if (CSize && CSize->getZExtValue() == 0) { 5477 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5478 I.getType(), true); 5479 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5480 return true; 5481 } 5482 5483 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5484 std::pair<SDValue, SDValue> Res = 5485 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5486 getValue(LHS), getValue(RHS), getValue(Size), 5487 MachinePointerInfo(LHS), 5488 MachinePointerInfo(RHS)); 5489 if (Res.first.getNode()) { 5490 processIntegerCallValue(I, Res.first, true); 5491 PendingLoads.push_back(Res.second); 5492 return true; 5493 } 5494 5495 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5496 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5497 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5498 bool ActuallyDoIt = true; 5499 MVT LoadVT; 5500 Type *LoadTy; 5501 switch (CSize->getZExtValue()) { 5502 default: 5503 LoadVT = MVT::Other; 5504 LoadTy = nullptr; 5505 ActuallyDoIt = false; 5506 break; 5507 case 2: 5508 LoadVT = MVT::i16; 5509 LoadTy = Type::getInt16Ty(CSize->getContext()); 5510 break; 5511 case 4: 5512 LoadVT = MVT::i32; 5513 LoadTy = Type::getInt32Ty(CSize->getContext()); 5514 break; 5515 case 8: 5516 LoadVT = MVT::i64; 5517 LoadTy = Type::getInt64Ty(CSize->getContext()); 5518 break; 5519 /* 5520 case 16: 5521 LoadVT = MVT::v4i32; 5522 LoadTy = Type::getInt32Ty(CSize->getContext()); 5523 LoadTy = VectorType::get(LoadTy, 4); 5524 break; 5525 */ 5526 } 5527 5528 // This turns into unaligned loads. We only do this if the target natively 5529 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5530 // we'll only produce a small number of byte loads. 5531 5532 // Require that we can find a legal MVT, and only do this if the target 5533 // supports unaligned loads of that type. Expanding into byte loads would 5534 // bloat the code. 5535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5536 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5537 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5538 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5539 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5540 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5541 // TODO: Check alignment of src and dest ptrs. 5542 if (!TLI.isTypeLegal(LoadVT) || 5543 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5544 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5545 ActuallyDoIt = false; 5546 } 5547 5548 if (ActuallyDoIt) { 5549 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5550 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5551 5552 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5553 ISD::SETNE); 5554 processIntegerCallValue(I, Res, false); 5555 return true; 5556 } 5557 } 5558 5559 5560 return false; 5561 } 5562 5563 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5564 /// form. If so, return true and lower it, otherwise return false and it 5565 /// will be lowered like a normal call. 5566 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5567 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5568 if (I.getNumArgOperands() != 3) 5569 return false; 5570 5571 const Value *Src = I.getArgOperand(0); 5572 const Value *Char = I.getArgOperand(1); 5573 const Value *Length = I.getArgOperand(2); 5574 if (!Src->getType()->isPointerTy() || 5575 !Char->getType()->isIntegerTy() || 5576 !Length->getType()->isIntegerTy() || 5577 !I.getType()->isPointerTy()) 5578 return false; 5579 5580 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5581 std::pair<SDValue, SDValue> Res = 5582 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5583 getValue(Src), getValue(Char), getValue(Length), 5584 MachinePointerInfo(Src)); 5585 if (Res.first.getNode()) { 5586 setValue(&I, Res.first); 5587 PendingLoads.push_back(Res.second); 5588 return true; 5589 } 5590 5591 return false; 5592 } 5593 5594 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5595 /// optimized form. If so, return true and lower it, otherwise return false 5596 /// and it will be lowered like a normal call. 5597 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5598 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5599 if (I.getNumArgOperands() != 2) 5600 return false; 5601 5602 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5603 if (!Arg0->getType()->isPointerTy() || 5604 !Arg1->getType()->isPointerTy() || 5605 !I.getType()->isPointerTy()) 5606 return false; 5607 5608 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5609 std::pair<SDValue, SDValue> Res = 5610 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5611 getValue(Arg0), getValue(Arg1), 5612 MachinePointerInfo(Arg0), 5613 MachinePointerInfo(Arg1), isStpcpy); 5614 if (Res.first.getNode()) { 5615 setValue(&I, Res.first); 5616 DAG.setRoot(Res.second); 5617 return true; 5618 } 5619 5620 return false; 5621 } 5622 5623 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5624 /// If so, return true and lower it, otherwise return false and it will be 5625 /// lowered like a normal call. 5626 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5627 // Verify that the prototype makes sense. int strcmp(void*,void*) 5628 if (I.getNumArgOperands() != 2) 5629 return false; 5630 5631 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5632 if (!Arg0->getType()->isPointerTy() || 5633 !Arg1->getType()->isPointerTy() || 5634 !I.getType()->isIntegerTy()) 5635 return false; 5636 5637 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5638 std::pair<SDValue, SDValue> Res = 5639 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5640 getValue(Arg0), getValue(Arg1), 5641 MachinePointerInfo(Arg0), 5642 MachinePointerInfo(Arg1)); 5643 if (Res.first.getNode()) { 5644 processIntegerCallValue(I, Res.first, true); 5645 PendingLoads.push_back(Res.second); 5646 return true; 5647 } 5648 5649 return false; 5650 } 5651 5652 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5653 /// form. If so, return true and lower it, otherwise return false and it 5654 /// will be lowered like a normal call. 5655 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5656 // Verify that the prototype makes sense. size_t strlen(char *) 5657 if (I.getNumArgOperands() != 1) 5658 return false; 5659 5660 const Value *Arg0 = I.getArgOperand(0); 5661 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5662 return false; 5663 5664 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5665 std::pair<SDValue, SDValue> Res = 5666 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5667 getValue(Arg0), MachinePointerInfo(Arg0)); 5668 if (Res.first.getNode()) { 5669 processIntegerCallValue(I, Res.first, false); 5670 PendingLoads.push_back(Res.second); 5671 return true; 5672 } 5673 5674 return false; 5675 } 5676 5677 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5678 /// form. If so, return true and lower it, otherwise return false and it 5679 /// will be lowered like a normal call. 5680 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5681 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5682 if (I.getNumArgOperands() != 2) 5683 return false; 5684 5685 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5686 if (!Arg0->getType()->isPointerTy() || 5687 !Arg1->getType()->isIntegerTy() || 5688 !I.getType()->isIntegerTy()) 5689 return false; 5690 5691 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5692 std::pair<SDValue, SDValue> Res = 5693 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5694 getValue(Arg0), getValue(Arg1), 5695 MachinePointerInfo(Arg0)); 5696 if (Res.first.getNode()) { 5697 processIntegerCallValue(I, Res.first, false); 5698 PendingLoads.push_back(Res.second); 5699 return true; 5700 } 5701 5702 return false; 5703 } 5704 5705 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5706 /// operation (as expected), translate it to an SDNode with the specified opcode 5707 /// and return true. 5708 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5709 unsigned Opcode) { 5710 // Sanity check that it really is a unary floating-point call. 5711 if (I.getNumArgOperands() != 1 || 5712 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5713 I.getType() != I.getArgOperand(0)->getType() || 5714 !I.onlyReadsMemory()) 5715 return false; 5716 5717 SDValue Tmp = getValue(I.getArgOperand(0)); 5718 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5719 return true; 5720 } 5721 5722 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5723 /// operation (as expected), translate it to an SDNode with the specified opcode 5724 /// and return true. 5725 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5726 unsigned Opcode) { 5727 // Sanity check that it really is a binary floating-point call. 5728 if (I.getNumArgOperands() != 2 || 5729 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5730 I.getType() != I.getArgOperand(0)->getType() || 5731 I.getType() != I.getArgOperand(1)->getType() || 5732 !I.onlyReadsMemory()) 5733 return false; 5734 5735 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5736 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5737 EVT VT = Tmp0.getValueType(); 5738 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5739 return true; 5740 } 5741 5742 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5743 // Handle inline assembly differently. 5744 if (isa<InlineAsm>(I.getCalledValue())) { 5745 visitInlineAsm(&I); 5746 return; 5747 } 5748 5749 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5750 ComputeUsesVAFloatArgument(I, &MMI); 5751 5752 const char *RenameFn = nullptr; 5753 if (Function *F = I.getCalledFunction()) { 5754 if (F->isDeclaration()) { 5755 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5756 if (unsigned IID = II->getIntrinsicID(F)) { 5757 RenameFn = visitIntrinsicCall(I, IID); 5758 if (!RenameFn) 5759 return; 5760 } 5761 } 5762 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5763 RenameFn = visitIntrinsicCall(I, IID); 5764 if (!RenameFn) 5765 return; 5766 } 5767 } 5768 5769 // Check for well-known libc/libm calls. If the function is internal, it 5770 // can't be a library call. 5771 LibFunc::Func Func; 5772 if (!F->hasLocalLinkage() && F->hasName() && 5773 LibInfo->getLibFunc(F->getName(), Func) && 5774 LibInfo->hasOptimizedCodeGen(Func)) { 5775 switch (Func) { 5776 default: break; 5777 case LibFunc::copysign: 5778 case LibFunc::copysignf: 5779 case LibFunc::copysignl: 5780 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5781 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5782 I.getType() == I.getArgOperand(0)->getType() && 5783 I.getType() == I.getArgOperand(1)->getType() && 5784 I.onlyReadsMemory()) { 5785 SDValue LHS = getValue(I.getArgOperand(0)); 5786 SDValue RHS = getValue(I.getArgOperand(1)); 5787 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5788 LHS.getValueType(), LHS, RHS)); 5789 return; 5790 } 5791 break; 5792 case LibFunc::fabs: 5793 case LibFunc::fabsf: 5794 case LibFunc::fabsl: 5795 if (visitUnaryFloatCall(I, ISD::FABS)) 5796 return; 5797 break; 5798 case LibFunc::fmin: 5799 case LibFunc::fminf: 5800 case LibFunc::fminl: 5801 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5802 return; 5803 break; 5804 case LibFunc::fmax: 5805 case LibFunc::fmaxf: 5806 case LibFunc::fmaxl: 5807 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5808 return; 5809 break; 5810 case LibFunc::sin: 5811 case LibFunc::sinf: 5812 case LibFunc::sinl: 5813 if (visitUnaryFloatCall(I, ISD::FSIN)) 5814 return; 5815 break; 5816 case LibFunc::cos: 5817 case LibFunc::cosf: 5818 case LibFunc::cosl: 5819 if (visitUnaryFloatCall(I, ISD::FCOS)) 5820 return; 5821 break; 5822 case LibFunc::sqrt: 5823 case LibFunc::sqrtf: 5824 case LibFunc::sqrtl: 5825 case LibFunc::sqrt_finite: 5826 case LibFunc::sqrtf_finite: 5827 case LibFunc::sqrtl_finite: 5828 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5829 return; 5830 break; 5831 case LibFunc::floor: 5832 case LibFunc::floorf: 5833 case LibFunc::floorl: 5834 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5835 return; 5836 break; 5837 case LibFunc::nearbyint: 5838 case LibFunc::nearbyintf: 5839 case LibFunc::nearbyintl: 5840 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5841 return; 5842 break; 5843 case LibFunc::ceil: 5844 case LibFunc::ceilf: 5845 case LibFunc::ceill: 5846 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5847 return; 5848 break; 5849 case LibFunc::rint: 5850 case LibFunc::rintf: 5851 case LibFunc::rintl: 5852 if (visitUnaryFloatCall(I, ISD::FRINT)) 5853 return; 5854 break; 5855 case LibFunc::round: 5856 case LibFunc::roundf: 5857 case LibFunc::roundl: 5858 if (visitUnaryFloatCall(I, ISD::FROUND)) 5859 return; 5860 break; 5861 case LibFunc::trunc: 5862 case LibFunc::truncf: 5863 case LibFunc::truncl: 5864 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5865 return; 5866 break; 5867 case LibFunc::log2: 5868 case LibFunc::log2f: 5869 case LibFunc::log2l: 5870 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5871 return; 5872 break; 5873 case LibFunc::exp2: 5874 case LibFunc::exp2f: 5875 case LibFunc::exp2l: 5876 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5877 return; 5878 break; 5879 case LibFunc::memcmp: 5880 if (visitMemCmpCall(I)) 5881 return; 5882 break; 5883 case LibFunc::memchr: 5884 if (visitMemChrCall(I)) 5885 return; 5886 break; 5887 case LibFunc::strcpy: 5888 if (visitStrCpyCall(I, false)) 5889 return; 5890 break; 5891 case LibFunc::stpcpy: 5892 if (visitStrCpyCall(I, true)) 5893 return; 5894 break; 5895 case LibFunc::strcmp: 5896 if (visitStrCmpCall(I)) 5897 return; 5898 break; 5899 case LibFunc::strlen: 5900 if (visitStrLenCall(I)) 5901 return; 5902 break; 5903 case LibFunc::strnlen: 5904 if (visitStrNLenCall(I)) 5905 return; 5906 break; 5907 } 5908 } 5909 } 5910 5911 SDValue Callee; 5912 if (!RenameFn) 5913 Callee = getValue(I.getCalledValue()); 5914 else 5915 Callee = DAG.getExternalSymbol( 5916 RenameFn, 5917 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5918 5919 // Check if we can potentially perform a tail call. More detailed checking is 5920 // be done within LowerCallTo, after more information about the call is known. 5921 LowerCallTo(&I, Callee, I.isTailCall()); 5922 } 5923 5924 namespace { 5925 5926 /// AsmOperandInfo - This contains information for each constraint that we are 5927 /// lowering. 5928 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5929 public: 5930 /// CallOperand - If this is the result output operand or a clobber 5931 /// this is null, otherwise it is the incoming operand to the CallInst. 5932 /// This gets modified as the asm is processed. 5933 SDValue CallOperand; 5934 5935 /// AssignedRegs - If this is a register or register class operand, this 5936 /// contains the set of register corresponding to the operand. 5937 RegsForValue AssignedRegs; 5938 5939 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5940 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5941 } 5942 5943 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5944 /// corresponds to. If there is no Value* for this operand, it returns 5945 /// MVT::Other. 5946 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5947 const DataLayout &DL) const { 5948 if (!CallOperandVal) return MVT::Other; 5949 5950 if (isa<BasicBlock>(CallOperandVal)) 5951 return TLI.getPointerTy(DL); 5952 5953 llvm::Type *OpTy = CallOperandVal->getType(); 5954 5955 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5956 // If this is an indirect operand, the operand is a pointer to the 5957 // accessed type. 5958 if (isIndirect) { 5959 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5960 if (!PtrTy) 5961 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5962 OpTy = PtrTy->getElementType(); 5963 } 5964 5965 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5966 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5967 if (STy->getNumElements() == 1) 5968 OpTy = STy->getElementType(0); 5969 5970 // If OpTy is not a single value, it may be a struct/union that we 5971 // can tile with integers. 5972 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5973 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5974 switch (BitSize) { 5975 default: break; 5976 case 1: 5977 case 8: 5978 case 16: 5979 case 32: 5980 case 64: 5981 case 128: 5982 OpTy = IntegerType::get(Context, BitSize); 5983 break; 5984 } 5985 } 5986 5987 return TLI.getValueType(DL, OpTy, true); 5988 } 5989 }; 5990 5991 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5992 5993 } // end anonymous namespace 5994 5995 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5996 /// specified operand. We prefer to assign virtual registers, to allow the 5997 /// register allocator to handle the assignment process. However, if the asm 5998 /// uses features that we can't model on machineinstrs, we have SDISel do the 5999 /// allocation. This produces generally horrible, but correct, code. 6000 /// 6001 /// OpInfo describes the operand. 6002 /// 6003 static void GetRegistersForValue(SelectionDAG &DAG, 6004 const TargetLowering &TLI, 6005 SDLoc DL, 6006 SDISelAsmOperandInfo &OpInfo) { 6007 LLVMContext &Context = *DAG.getContext(); 6008 6009 MachineFunction &MF = DAG.getMachineFunction(); 6010 SmallVector<unsigned, 4> Regs; 6011 6012 // If this is a constraint for a single physreg, or a constraint for a 6013 // register class, find it. 6014 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6015 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6016 OpInfo.ConstraintCode, 6017 OpInfo.ConstraintVT); 6018 6019 unsigned NumRegs = 1; 6020 if (OpInfo.ConstraintVT != MVT::Other) { 6021 // If this is a FP input in an integer register (or visa versa) insert a bit 6022 // cast of the input value. More generally, handle any case where the input 6023 // value disagrees with the register class we plan to stick this in. 6024 if (OpInfo.Type == InlineAsm::isInput && 6025 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6026 // Try to convert to the first EVT that the reg class contains. If the 6027 // types are identical size, use a bitcast to convert (e.g. two differing 6028 // vector types). 6029 MVT RegVT = *PhysReg.second->vt_begin(); 6030 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6031 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6032 RegVT, OpInfo.CallOperand); 6033 OpInfo.ConstraintVT = RegVT; 6034 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6035 // If the input is a FP value and we want it in FP registers, do a 6036 // bitcast to the corresponding integer type. This turns an f64 value 6037 // into i64, which can be passed with two i32 values on a 32-bit 6038 // machine. 6039 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6040 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6041 RegVT, OpInfo.CallOperand); 6042 OpInfo.ConstraintVT = RegVT; 6043 } 6044 } 6045 6046 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6047 } 6048 6049 MVT RegVT; 6050 EVT ValueVT = OpInfo.ConstraintVT; 6051 6052 // If this is a constraint for a specific physical register, like {r17}, 6053 // assign it now. 6054 if (unsigned AssignedReg = PhysReg.first) { 6055 const TargetRegisterClass *RC = PhysReg.second; 6056 if (OpInfo.ConstraintVT == MVT::Other) 6057 ValueVT = *RC->vt_begin(); 6058 6059 // Get the actual register value type. This is important, because the user 6060 // may have asked for (e.g.) the AX register in i32 type. We need to 6061 // remember that AX is actually i16 to get the right extension. 6062 RegVT = *RC->vt_begin(); 6063 6064 // This is a explicit reference to a physical register. 6065 Regs.push_back(AssignedReg); 6066 6067 // If this is an expanded reference, add the rest of the regs to Regs. 6068 if (NumRegs != 1) { 6069 TargetRegisterClass::iterator I = RC->begin(); 6070 for (; *I != AssignedReg; ++I) 6071 assert(I != RC->end() && "Didn't find reg!"); 6072 6073 // Already added the first reg. 6074 --NumRegs; ++I; 6075 for (; NumRegs; --NumRegs, ++I) { 6076 assert(I != RC->end() && "Ran out of registers to allocate!"); 6077 Regs.push_back(*I); 6078 } 6079 } 6080 6081 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6082 return; 6083 } 6084 6085 // Otherwise, if this was a reference to an LLVM register class, create vregs 6086 // for this reference. 6087 if (const TargetRegisterClass *RC = PhysReg.second) { 6088 RegVT = *RC->vt_begin(); 6089 if (OpInfo.ConstraintVT == MVT::Other) 6090 ValueVT = RegVT; 6091 6092 // Create the appropriate number of virtual registers. 6093 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6094 for (; NumRegs; --NumRegs) 6095 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6096 6097 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6098 return; 6099 } 6100 6101 // Otherwise, we couldn't allocate enough registers for this. 6102 } 6103 6104 /// visitInlineAsm - Handle a call to an InlineAsm object. 6105 /// 6106 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6107 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6108 6109 /// ConstraintOperands - Information about all of the constraints. 6110 SDISelAsmOperandInfoVector ConstraintOperands; 6111 6112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6113 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6114 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6115 6116 bool hasMemory = false; 6117 6118 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6119 unsigned ResNo = 0; // ResNo - The result number of the next output. 6120 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6121 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6122 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6123 6124 MVT OpVT = MVT::Other; 6125 6126 // Compute the value type for each operand. 6127 switch (OpInfo.Type) { 6128 case InlineAsm::isOutput: 6129 // Indirect outputs just consume an argument. 6130 if (OpInfo.isIndirect) { 6131 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6132 break; 6133 } 6134 6135 // The return value of the call is this value. As such, there is no 6136 // corresponding argument. 6137 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6138 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6139 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6140 STy->getElementType(ResNo)); 6141 } else { 6142 assert(ResNo == 0 && "Asm only has one result!"); 6143 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6144 } 6145 ++ResNo; 6146 break; 6147 case InlineAsm::isInput: 6148 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6149 break; 6150 case InlineAsm::isClobber: 6151 // Nothing to do. 6152 break; 6153 } 6154 6155 // If this is an input or an indirect output, process the call argument. 6156 // BasicBlocks are labels, currently appearing only in asm's. 6157 if (OpInfo.CallOperandVal) { 6158 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6159 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6160 } else { 6161 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6162 } 6163 6164 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6165 DAG.getDataLayout()).getSimpleVT(); 6166 } 6167 6168 OpInfo.ConstraintVT = OpVT; 6169 6170 // Indirect operand accesses access memory. 6171 if (OpInfo.isIndirect) 6172 hasMemory = true; 6173 else { 6174 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6175 TargetLowering::ConstraintType 6176 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6177 if (CType == TargetLowering::C_Memory) { 6178 hasMemory = true; 6179 break; 6180 } 6181 } 6182 } 6183 } 6184 6185 SDValue Chain, Flag; 6186 6187 // We won't need to flush pending loads if this asm doesn't touch 6188 // memory and is nonvolatile. 6189 if (hasMemory || IA->hasSideEffects()) 6190 Chain = getRoot(); 6191 else 6192 Chain = DAG.getRoot(); 6193 6194 // Second pass over the constraints: compute which constraint option to use 6195 // and assign registers to constraints that want a specific physreg. 6196 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6197 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6198 6199 // If this is an output operand with a matching input operand, look up the 6200 // matching input. If their types mismatch, e.g. one is an integer, the 6201 // other is floating point, or their sizes are different, flag it as an 6202 // error. 6203 if (OpInfo.hasMatchingInput()) { 6204 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6205 6206 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6207 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6208 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6209 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6210 OpInfo.ConstraintVT); 6211 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6212 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6213 Input.ConstraintVT); 6214 if ((OpInfo.ConstraintVT.isInteger() != 6215 Input.ConstraintVT.isInteger()) || 6216 (MatchRC.second != InputRC.second)) { 6217 report_fatal_error("Unsupported asm: input constraint" 6218 " with a matching output constraint of" 6219 " incompatible type!"); 6220 } 6221 Input.ConstraintVT = OpInfo.ConstraintVT; 6222 } 6223 } 6224 6225 // Compute the constraint code and ConstraintType to use. 6226 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6227 6228 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6229 OpInfo.Type == InlineAsm::isClobber) 6230 continue; 6231 6232 // If this is a memory input, and if the operand is not indirect, do what we 6233 // need to to provide an address for the memory input. 6234 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6235 !OpInfo.isIndirect) { 6236 assert((OpInfo.isMultipleAlternative || 6237 (OpInfo.Type == InlineAsm::isInput)) && 6238 "Can only indirectify direct input operands!"); 6239 6240 // Memory operands really want the address of the value. If we don't have 6241 // an indirect input, put it in the constpool if we can, otherwise spill 6242 // it to a stack slot. 6243 // TODO: This isn't quite right. We need to handle these according to 6244 // the addressing mode that the constraint wants. Also, this may take 6245 // an additional register for the computation and we don't want that 6246 // either. 6247 6248 // If the operand is a float, integer, or vector constant, spill to a 6249 // constant pool entry to get its address. 6250 const Value *OpVal = OpInfo.CallOperandVal; 6251 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6252 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6253 OpInfo.CallOperand = DAG.getConstantPool( 6254 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6255 } else { 6256 // Otherwise, create a stack slot and emit a store to it before the 6257 // asm. 6258 Type *Ty = OpVal->getType(); 6259 auto &DL = DAG.getDataLayout(); 6260 uint64_t TySize = DL.getTypeAllocSize(Ty); 6261 unsigned Align = DL.getPrefTypeAlignment(Ty); 6262 MachineFunction &MF = DAG.getMachineFunction(); 6263 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6264 SDValue StackSlot = 6265 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6266 Chain = DAG.getStore( 6267 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6268 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6269 false, false, 0); 6270 OpInfo.CallOperand = StackSlot; 6271 } 6272 6273 // There is no longer a Value* corresponding to this operand. 6274 OpInfo.CallOperandVal = nullptr; 6275 6276 // It is now an indirect operand. 6277 OpInfo.isIndirect = true; 6278 } 6279 6280 // If this constraint is for a specific register, allocate it before 6281 // anything else. 6282 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6283 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6284 } 6285 6286 // Second pass - Loop over all of the operands, assigning virtual or physregs 6287 // to register class operands. 6288 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6289 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6290 6291 // C_Register operands have already been allocated, Other/Memory don't need 6292 // to be. 6293 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6294 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6295 } 6296 6297 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6298 std::vector<SDValue> AsmNodeOperands; 6299 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6300 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6301 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6302 6303 // If we have a !srcloc metadata node associated with it, we want to attach 6304 // this to the ultimately generated inline asm machineinstr. To do this, we 6305 // pass in the third operand as this (potentially null) inline asm MDNode. 6306 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6307 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6308 6309 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6310 // bits as operand 3. 6311 unsigned ExtraInfo = 0; 6312 if (IA->hasSideEffects()) 6313 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6314 if (IA->isAlignStack()) 6315 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6316 // Set the asm dialect. 6317 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6318 6319 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6320 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6321 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6322 6323 // Compute the constraint code and ConstraintType to use. 6324 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6325 6326 // Ideally, we would only check against memory constraints. However, the 6327 // meaning of an other constraint can be target-specific and we can't easily 6328 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6329 // for other constriants as well. 6330 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6331 OpInfo.ConstraintType == TargetLowering::C_Other) { 6332 if (OpInfo.Type == InlineAsm::isInput) 6333 ExtraInfo |= InlineAsm::Extra_MayLoad; 6334 else if (OpInfo.Type == InlineAsm::isOutput) 6335 ExtraInfo |= InlineAsm::Extra_MayStore; 6336 else if (OpInfo.Type == InlineAsm::isClobber) 6337 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6338 } 6339 } 6340 6341 AsmNodeOperands.push_back(DAG.getTargetConstant( 6342 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6343 6344 // Loop over all of the inputs, copying the operand values into the 6345 // appropriate registers and processing the output regs. 6346 RegsForValue RetValRegs; 6347 6348 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6349 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6350 6351 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6352 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6353 6354 switch (OpInfo.Type) { 6355 case InlineAsm::isOutput: { 6356 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6357 OpInfo.ConstraintType != TargetLowering::C_Register) { 6358 // Memory output, or 'other' output (e.g. 'X' constraint). 6359 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6360 6361 unsigned ConstraintID = 6362 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6363 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6364 "Failed to convert memory constraint code to constraint id."); 6365 6366 // Add information to the INLINEASM node to know about this output. 6367 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6368 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6369 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6370 MVT::i32)); 6371 AsmNodeOperands.push_back(OpInfo.CallOperand); 6372 break; 6373 } 6374 6375 // Otherwise, this is a register or register class output. 6376 6377 // Copy the output from the appropriate register. Find a register that 6378 // we can use. 6379 if (OpInfo.AssignedRegs.Regs.empty()) { 6380 LLVMContext &Ctx = *DAG.getContext(); 6381 Ctx.emitError(CS.getInstruction(), 6382 "couldn't allocate output register for constraint '" + 6383 Twine(OpInfo.ConstraintCode) + "'"); 6384 return; 6385 } 6386 6387 // If this is an indirect operand, store through the pointer after the 6388 // asm. 6389 if (OpInfo.isIndirect) { 6390 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6391 OpInfo.CallOperandVal)); 6392 } else { 6393 // This is the result value of the call. 6394 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6395 // Concatenate this output onto the outputs list. 6396 RetValRegs.append(OpInfo.AssignedRegs); 6397 } 6398 6399 // Add information to the INLINEASM node to know that this register is 6400 // set. 6401 OpInfo.AssignedRegs 6402 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6403 ? InlineAsm::Kind_RegDefEarlyClobber 6404 : InlineAsm::Kind_RegDef, 6405 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6406 break; 6407 } 6408 case InlineAsm::isInput: { 6409 SDValue InOperandVal = OpInfo.CallOperand; 6410 6411 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6412 // If this is required to match an output register we have already set, 6413 // just use its register. 6414 unsigned OperandNo = OpInfo.getMatchedOperand(); 6415 6416 // Scan until we find the definition we already emitted of this operand. 6417 // When we find it, create a RegsForValue operand. 6418 unsigned CurOp = InlineAsm::Op_FirstOperand; 6419 for (; OperandNo; --OperandNo) { 6420 // Advance to the next operand. 6421 unsigned OpFlag = 6422 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6423 assert((InlineAsm::isRegDefKind(OpFlag) || 6424 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6425 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6426 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6427 } 6428 6429 unsigned OpFlag = 6430 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6431 if (InlineAsm::isRegDefKind(OpFlag) || 6432 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6433 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6434 if (OpInfo.isIndirect) { 6435 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6436 LLVMContext &Ctx = *DAG.getContext(); 6437 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6438 " don't know how to handle tied " 6439 "indirect register inputs"); 6440 return; 6441 } 6442 6443 RegsForValue MatchedRegs; 6444 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6445 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6446 MatchedRegs.RegVTs.push_back(RegVT); 6447 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6448 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6449 i != e; ++i) { 6450 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6451 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6452 else { 6453 LLVMContext &Ctx = *DAG.getContext(); 6454 Ctx.emitError(CS.getInstruction(), 6455 "inline asm error: This value" 6456 " type register class is not natively supported!"); 6457 return; 6458 } 6459 } 6460 SDLoc dl = getCurSDLoc(); 6461 // Use the produced MatchedRegs object to 6462 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6463 Chain, &Flag, CS.getInstruction()); 6464 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6465 true, OpInfo.getMatchedOperand(), dl, 6466 DAG, AsmNodeOperands); 6467 break; 6468 } 6469 6470 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6471 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6472 "Unexpected number of operands"); 6473 // Add information to the INLINEASM node to know about this input. 6474 // See InlineAsm.h isUseOperandTiedToDef. 6475 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6476 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6477 OpInfo.getMatchedOperand()); 6478 AsmNodeOperands.push_back(DAG.getTargetConstant( 6479 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6480 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6481 break; 6482 } 6483 6484 // Treat indirect 'X' constraint as memory. 6485 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6486 OpInfo.isIndirect) 6487 OpInfo.ConstraintType = TargetLowering::C_Memory; 6488 6489 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6490 std::vector<SDValue> Ops; 6491 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6492 Ops, DAG); 6493 if (Ops.empty()) { 6494 LLVMContext &Ctx = *DAG.getContext(); 6495 Ctx.emitError(CS.getInstruction(), 6496 "invalid operand for inline asm constraint '" + 6497 Twine(OpInfo.ConstraintCode) + "'"); 6498 return; 6499 } 6500 6501 // Add information to the INLINEASM node to know about this input. 6502 unsigned ResOpType = 6503 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6504 AsmNodeOperands.push_back(DAG.getTargetConstant( 6505 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6506 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6507 break; 6508 } 6509 6510 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6511 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6512 assert(InOperandVal.getValueType() == 6513 TLI.getPointerTy(DAG.getDataLayout()) && 6514 "Memory operands expect pointer values"); 6515 6516 unsigned ConstraintID = 6517 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6518 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6519 "Failed to convert memory constraint code to constraint id."); 6520 6521 // Add information to the INLINEASM node to know about this input. 6522 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6523 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6524 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6525 getCurSDLoc(), 6526 MVT::i32)); 6527 AsmNodeOperands.push_back(InOperandVal); 6528 break; 6529 } 6530 6531 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6532 OpInfo.ConstraintType == TargetLowering::C_Register) && 6533 "Unknown constraint type!"); 6534 6535 // TODO: Support this. 6536 if (OpInfo.isIndirect) { 6537 LLVMContext &Ctx = *DAG.getContext(); 6538 Ctx.emitError(CS.getInstruction(), 6539 "Don't know how to handle indirect register inputs yet " 6540 "for constraint '" + 6541 Twine(OpInfo.ConstraintCode) + "'"); 6542 return; 6543 } 6544 6545 // Copy the input into the appropriate registers. 6546 if (OpInfo.AssignedRegs.Regs.empty()) { 6547 LLVMContext &Ctx = *DAG.getContext(); 6548 Ctx.emitError(CS.getInstruction(), 6549 "couldn't allocate input reg for constraint '" + 6550 Twine(OpInfo.ConstraintCode) + "'"); 6551 return; 6552 } 6553 6554 SDLoc dl = getCurSDLoc(); 6555 6556 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6557 Chain, &Flag, CS.getInstruction()); 6558 6559 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6560 dl, DAG, AsmNodeOperands); 6561 break; 6562 } 6563 case InlineAsm::isClobber: { 6564 // Add the clobbered value to the operand list, so that the register 6565 // allocator is aware that the physreg got clobbered. 6566 if (!OpInfo.AssignedRegs.Regs.empty()) 6567 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6568 false, 0, getCurSDLoc(), DAG, 6569 AsmNodeOperands); 6570 break; 6571 } 6572 } 6573 } 6574 6575 // Finish up input operands. Set the input chain and add the flag last. 6576 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6577 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6578 6579 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6580 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6581 Flag = Chain.getValue(1); 6582 6583 // If this asm returns a register value, copy the result from that register 6584 // and set it as the value of the call. 6585 if (!RetValRegs.Regs.empty()) { 6586 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6587 Chain, &Flag, CS.getInstruction()); 6588 6589 // FIXME: Why don't we do this for inline asms with MRVs? 6590 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6591 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6592 6593 // If any of the results of the inline asm is a vector, it may have the 6594 // wrong width/num elts. This can happen for register classes that can 6595 // contain multiple different value types. The preg or vreg allocated may 6596 // not have the same VT as was expected. Convert it to the right type 6597 // with bit_convert. 6598 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6599 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6600 ResultType, Val); 6601 6602 } else if (ResultType != Val.getValueType() && 6603 ResultType.isInteger() && Val.getValueType().isInteger()) { 6604 // If a result value was tied to an input value, the computed result may 6605 // have a wider width than the expected result. Extract the relevant 6606 // portion. 6607 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6608 } 6609 6610 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6611 } 6612 6613 setValue(CS.getInstruction(), Val); 6614 // Don't need to use this as a chain in this case. 6615 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6616 return; 6617 } 6618 6619 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6620 6621 // Process indirect outputs, first output all of the flagged copies out of 6622 // physregs. 6623 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6624 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6625 const Value *Ptr = IndirectStoresToEmit[i].second; 6626 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6627 Chain, &Flag, IA); 6628 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6629 } 6630 6631 // Emit the non-flagged stores from the physregs. 6632 SmallVector<SDValue, 8> OutChains; 6633 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6634 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6635 StoresToEmit[i].first, 6636 getValue(StoresToEmit[i].second), 6637 MachinePointerInfo(StoresToEmit[i].second), 6638 false, false, 0); 6639 OutChains.push_back(Val); 6640 } 6641 6642 if (!OutChains.empty()) 6643 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6644 6645 DAG.setRoot(Chain); 6646 } 6647 6648 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6649 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6650 MVT::Other, getRoot(), 6651 getValue(I.getArgOperand(0)), 6652 DAG.getSrcValue(I.getArgOperand(0)))); 6653 } 6654 6655 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6657 const DataLayout &DL = DAG.getDataLayout(); 6658 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6659 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6660 DAG.getSrcValue(I.getOperand(0)), 6661 DL.getABITypeAlignment(I.getType())); 6662 setValue(&I, V); 6663 DAG.setRoot(V.getValue(1)); 6664 } 6665 6666 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6667 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6668 MVT::Other, getRoot(), 6669 getValue(I.getArgOperand(0)), 6670 DAG.getSrcValue(I.getArgOperand(0)))); 6671 } 6672 6673 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6674 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6675 MVT::Other, getRoot(), 6676 getValue(I.getArgOperand(0)), 6677 getValue(I.getArgOperand(1)), 6678 DAG.getSrcValue(I.getArgOperand(0)), 6679 DAG.getSrcValue(I.getArgOperand(1)))); 6680 } 6681 6682 /// \brief Lower an argument list according to the target calling convention. 6683 /// 6684 /// \return A tuple of <return-value, token-chain> 6685 /// 6686 /// This is a helper for lowering intrinsics that follow a target calling 6687 /// convention or require stack pointer adjustment. Only a subset of the 6688 /// intrinsic's operands need to participate in the calling convention. 6689 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6690 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6691 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6692 TargetLowering::ArgListTy Args; 6693 Args.reserve(NumArgs); 6694 6695 // Populate the argument list. 6696 // Attributes for args start at offset 1, after the return attribute. 6697 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6698 ArgI != ArgE; ++ArgI) { 6699 const Value *V = CS->getOperand(ArgI); 6700 6701 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6702 6703 TargetLowering::ArgListEntry Entry; 6704 Entry.Node = getValue(V); 6705 Entry.Ty = V->getType(); 6706 Entry.setAttributes(&CS, AttrI); 6707 Args.push_back(Entry); 6708 } 6709 6710 TargetLowering::CallLoweringInfo CLI(DAG); 6711 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6712 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6713 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6714 6715 return lowerInvokable(CLI, EHPadBB); 6716 } 6717 6718 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6719 /// or patchpoint target node's operand list. 6720 /// 6721 /// Constants are converted to TargetConstants purely as an optimization to 6722 /// avoid constant materialization and register allocation. 6723 /// 6724 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6725 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6726 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6727 /// address materialization and register allocation, but may also be required 6728 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6729 /// alloca in the entry block, then the runtime may assume that the alloca's 6730 /// StackMap location can be read immediately after compilation and that the 6731 /// location is valid at any point during execution (this is similar to the 6732 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6733 /// only available in a register, then the runtime would need to trap when 6734 /// execution reaches the StackMap in order to read the alloca's location. 6735 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6736 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6737 SelectionDAGBuilder &Builder) { 6738 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6739 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6740 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6741 Ops.push_back( 6742 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6743 Ops.push_back( 6744 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6745 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6746 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6747 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6748 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6749 } else 6750 Ops.push_back(OpVal); 6751 } 6752 } 6753 6754 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6755 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6756 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6757 // [live variables...]) 6758 6759 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6760 6761 SDValue Chain, InFlag, Callee, NullPtr; 6762 SmallVector<SDValue, 32> Ops; 6763 6764 SDLoc DL = getCurSDLoc(); 6765 Callee = getValue(CI.getCalledValue()); 6766 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6767 6768 // The stackmap intrinsic only records the live variables (the arguemnts 6769 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6770 // intrinsic, this won't be lowered to a function call. This means we don't 6771 // have to worry about calling conventions and target specific lowering code. 6772 // Instead we perform the call lowering right here. 6773 // 6774 // chain, flag = CALLSEQ_START(chain, 0) 6775 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6776 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6777 // 6778 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6779 InFlag = Chain.getValue(1); 6780 6781 // Add the <id> and <numBytes> constants. 6782 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6783 Ops.push_back(DAG.getTargetConstant( 6784 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6785 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6786 Ops.push_back(DAG.getTargetConstant( 6787 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6788 MVT::i32)); 6789 6790 // Push live variables for the stack map. 6791 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6792 6793 // We are not pushing any register mask info here on the operands list, 6794 // because the stackmap doesn't clobber anything. 6795 6796 // Push the chain and the glue flag. 6797 Ops.push_back(Chain); 6798 Ops.push_back(InFlag); 6799 6800 // Create the STACKMAP node. 6801 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6802 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6803 Chain = SDValue(SM, 0); 6804 InFlag = Chain.getValue(1); 6805 6806 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6807 6808 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6809 6810 // Set the root to the target-lowered call chain. 6811 DAG.setRoot(Chain); 6812 6813 // Inform the Frame Information that we have a stackmap in this function. 6814 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6815 } 6816 6817 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6818 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6819 const BasicBlock *EHPadBB) { 6820 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6821 // i32 <numBytes>, 6822 // i8* <target>, 6823 // i32 <numArgs>, 6824 // [Args...], 6825 // [live variables...]) 6826 6827 CallingConv::ID CC = CS.getCallingConv(); 6828 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6829 bool HasDef = !CS->getType()->isVoidTy(); 6830 SDLoc dl = getCurSDLoc(); 6831 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6832 6833 // Handle immediate and symbolic callees. 6834 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6835 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6836 /*isTarget=*/true); 6837 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6838 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6839 SDLoc(SymbolicCallee), 6840 SymbolicCallee->getValueType(0)); 6841 6842 // Get the real number of arguments participating in the call <numArgs> 6843 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6844 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6845 6846 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6847 // Intrinsics include all meta-operands up to but not including CC. 6848 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6849 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6850 "Not enough arguments provided to the patchpoint intrinsic"); 6851 6852 // For AnyRegCC the arguments are lowered later on manually. 6853 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6854 Type *ReturnTy = 6855 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6856 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6857 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6858 6859 SDNode *CallEnd = Result.second.getNode(); 6860 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6861 CallEnd = CallEnd->getOperand(0).getNode(); 6862 6863 /// Get a call instruction from the call sequence chain. 6864 /// Tail calls are not allowed. 6865 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6866 "Expected a callseq node."); 6867 SDNode *Call = CallEnd->getOperand(0).getNode(); 6868 bool HasGlue = Call->getGluedNode(); 6869 6870 // Replace the target specific call node with the patchable intrinsic. 6871 SmallVector<SDValue, 8> Ops; 6872 6873 // Add the <id> and <numBytes> constants. 6874 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6875 Ops.push_back(DAG.getTargetConstant( 6876 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6877 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6878 Ops.push_back(DAG.getTargetConstant( 6879 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6880 MVT::i32)); 6881 6882 // Add the callee. 6883 Ops.push_back(Callee); 6884 6885 // Adjust <numArgs> to account for any arguments that have been passed on the 6886 // stack instead. 6887 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6888 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6889 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6890 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6891 6892 // Add the calling convention 6893 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6894 6895 // Add the arguments we omitted previously. The register allocator should 6896 // place these in any free register. 6897 if (IsAnyRegCC) 6898 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6899 Ops.push_back(getValue(CS.getArgument(i))); 6900 6901 // Push the arguments from the call instruction up to the register mask. 6902 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6903 Ops.append(Call->op_begin() + 2, e); 6904 6905 // Push live variables for the stack map. 6906 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6907 6908 // Push the register mask info. 6909 if (HasGlue) 6910 Ops.push_back(*(Call->op_end()-2)); 6911 else 6912 Ops.push_back(*(Call->op_end()-1)); 6913 6914 // Push the chain (this is originally the first operand of the call, but 6915 // becomes now the last or second to last operand). 6916 Ops.push_back(*(Call->op_begin())); 6917 6918 // Push the glue flag (last operand). 6919 if (HasGlue) 6920 Ops.push_back(*(Call->op_end()-1)); 6921 6922 SDVTList NodeTys; 6923 if (IsAnyRegCC && HasDef) { 6924 // Create the return types based on the intrinsic definition 6925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6926 SmallVector<EVT, 3> ValueVTs; 6927 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6928 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6929 6930 // There is always a chain and a glue type at the end 6931 ValueVTs.push_back(MVT::Other); 6932 ValueVTs.push_back(MVT::Glue); 6933 NodeTys = DAG.getVTList(ValueVTs); 6934 } else 6935 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6936 6937 // Replace the target specific call node with a PATCHPOINT node. 6938 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6939 dl, NodeTys, Ops); 6940 6941 // Update the NodeMap. 6942 if (HasDef) { 6943 if (IsAnyRegCC) 6944 setValue(CS.getInstruction(), SDValue(MN, 0)); 6945 else 6946 setValue(CS.getInstruction(), Result.first); 6947 } 6948 6949 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6950 // call sequence. Furthermore the location of the chain and glue can change 6951 // when the AnyReg calling convention is used and the intrinsic returns a 6952 // value. 6953 if (IsAnyRegCC && HasDef) { 6954 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6955 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6956 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6957 } else 6958 DAG.ReplaceAllUsesWith(Call, MN); 6959 DAG.DeleteNode(Call); 6960 6961 // Inform the Frame Information that we have a patchpoint in this function. 6962 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6963 } 6964 6965 /// Returns an AttributeSet representing the attributes applied to the return 6966 /// value of the given call. 6967 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6968 SmallVector<Attribute::AttrKind, 2> Attrs; 6969 if (CLI.RetSExt) 6970 Attrs.push_back(Attribute::SExt); 6971 if (CLI.RetZExt) 6972 Attrs.push_back(Attribute::ZExt); 6973 if (CLI.IsInReg) 6974 Attrs.push_back(Attribute::InReg); 6975 6976 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6977 Attrs); 6978 } 6979 6980 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6981 /// implementation, which just calls LowerCall. 6982 /// FIXME: When all targets are 6983 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6984 std::pair<SDValue, SDValue> 6985 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6986 // Handle the incoming return values from the call. 6987 CLI.Ins.clear(); 6988 Type *OrigRetTy = CLI.RetTy; 6989 SmallVector<EVT, 4> RetTys; 6990 SmallVector<uint64_t, 4> Offsets; 6991 auto &DL = CLI.DAG.getDataLayout(); 6992 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6993 6994 SmallVector<ISD::OutputArg, 4> Outs; 6995 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6996 6997 bool CanLowerReturn = 6998 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6999 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7000 7001 SDValue DemoteStackSlot; 7002 int DemoteStackIdx = -100; 7003 if (!CanLowerReturn) { 7004 // FIXME: equivalent assert? 7005 // assert(!CS.hasInAllocaArgument() && 7006 // "sret demotion is incompatible with inalloca"); 7007 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7008 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7009 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7010 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7011 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7012 7013 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7014 ArgListEntry Entry; 7015 Entry.Node = DemoteStackSlot; 7016 Entry.Ty = StackSlotPtrType; 7017 Entry.isSExt = false; 7018 Entry.isZExt = false; 7019 Entry.isInReg = false; 7020 Entry.isSRet = true; 7021 Entry.isNest = false; 7022 Entry.isByVal = false; 7023 Entry.isReturned = false; 7024 Entry.Alignment = Align; 7025 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7026 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7027 7028 // sret demotion isn't compatible with tail-calls, since the sret argument 7029 // points into the callers stack frame. 7030 CLI.IsTailCall = false; 7031 } else { 7032 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7033 EVT VT = RetTys[I]; 7034 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7035 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7036 for (unsigned i = 0; i != NumRegs; ++i) { 7037 ISD::InputArg MyFlags; 7038 MyFlags.VT = RegisterVT; 7039 MyFlags.ArgVT = VT; 7040 MyFlags.Used = CLI.IsReturnValueUsed; 7041 if (CLI.RetSExt) 7042 MyFlags.Flags.setSExt(); 7043 if (CLI.RetZExt) 7044 MyFlags.Flags.setZExt(); 7045 if (CLI.IsInReg) 7046 MyFlags.Flags.setInReg(); 7047 CLI.Ins.push_back(MyFlags); 7048 } 7049 } 7050 } 7051 7052 // Handle all of the outgoing arguments. 7053 CLI.Outs.clear(); 7054 CLI.OutVals.clear(); 7055 ArgListTy &Args = CLI.getArgs(); 7056 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7057 SmallVector<EVT, 4> ValueVTs; 7058 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7059 Type *FinalType = Args[i].Ty; 7060 if (Args[i].isByVal) 7061 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7062 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7063 FinalType, CLI.CallConv, CLI.IsVarArg); 7064 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7065 ++Value) { 7066 EVT VT = ValueVTs[Value]; 7067 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7068 SDValue Op = SDValue(Args[i].Node.getNode(), 7069 Args[i].Node.getResNo() + Value); 7070 ISD::ArgFlagsTy Flags; 7071 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7072 7073 if (Args[i].isZExt) 7074 Flags.setZExt(); 7075 if (Args[i].isSExt) 7076 Flags.setSExt(); 7077 if (Args[i].isInReg) 7078 Flags.setInReg(); 7079 if (Args[i].isSRet) 7080 Flags.setSRet(); 7081 if (Args[i].isByVal) 7082 Flags.setByVal(); 7083 if (Args[i].isInAlloca) { 7084 Flags.setInAlloca(); 7085 // Set the byval flag for CCAssignFn callbacks that don't know about 7086 // inalloca. This way we can know how many bytes we should've allocated 7087 // and how many bytes a callee cleanup function will pop. If we port 7088 // inalloca to more targets, we'll have to add custom inalloca handling 7089 // in the various CC lowering callbacks. 7090 Flags.setByVal(); 7091 } 7092 if (Args[i].isByVal || Args[i].isInAlloca) { 7093 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7094 Type *ElementTy = Ty->getElementType(); 7095 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7096 // For ByVal, alignment should come from FE. BE will guess if this 7097 // info is not there but there are cases it cannot get right. 7098 unsigned FrameAlign; 7099 if (Args[i].Alignment) 7100 FrameAlign = Args[i].Alignment; 7101 else 7102 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7103 Flags.setByValAlign(FrameAlign); 7104 } 7105 if (Args[i].isNest) 7106 Flags.setNest(); 7107 if (NeedsRegBlock) 7108 Flags.setInConsecutiveRegs(); 7109 Flags.setOrigAlign(OriginalAlignment); 7110 7111 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7112 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7113 SmallVector<SDValue, 4> Parts(NumParts); 7114 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7115 7116 if (Args[i].isSExt) 7117 ExtendKind = ISD::SIGN_EXTEND; 7118 else if (Args[i].isZExt) 7119 ExtendKind = ISD::ZERO_EXTEND; 7120 7121 // Conservatively only handle 'returned' on non-vectors for now 7122 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7123 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7124 "unexpected use of 'returned'"); 7125 // Before passing 'returned' to the target lowering code, ensure that 7126 // either the register MVT and the actual EVT are the same size or that 7127 // the return value and argument are extended in the same way; in these 7128 // cases it's safe to pass the argument register value unchanged as the 7129 // return register value (although it's at the target's option whether 7130 // to do so) 7131 // TODO: allow code generation to take advantage of partially preserved 7132 // registers rather than clobbering the entire register when the 7133 // parameter extension method is not compatible with the return 7134 // extension method 7135 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7136 (ExtendKind != ISD::ANY_EXTEND && 7137 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7138 Flags.setReturned(); 7139 } 7140 7141 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7142 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7143 7144 for (unsigned j = 0; j != NumParts; ++j) { 7145 // if it isn't first piece, alignment must be 1 7146 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7147 i < CLI.NumFixedArgs, 7148 i, j*Parts[j].getValueType().getStoreSize()); 7149 if (NumParts > 1 && j == 0) 7150 MyFlags.Flags.setSplit(); 7151 else if (j != 0) 7152 MyFlags.Flags.setOrigAlign(1); 7153 7154 CLI.Outs.push_back(MyFlags); 7155 CLI.OutVals.push_back(Parts[j]); 7156 } 7157 7158 if (NeedsRegBlock && Value == NumValues - 1) 7159 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7160 } 7161 } 7162 7163 SmallVector<SDValue, 4> InVals; 7164 CLI.Chain = LowerCall(CLI, InVals); 7165 7166 // Verify that the target's LowerCall behaved as expected. 7167 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7168 "LowerCall didn't return a valid chain!"); 7169 assert((!CLI.IsTailCall || InVals.empty()) && 7170 "LowerCall emitted a return value for a tail call!"); 7171 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7172 "LowerCall didn't emit the correct number of values!"); 7173 7174 // For a tail call, the return value is merely live-out and there aren't 7175 // any nodes in the DAG representing it. Return a special value to 7176 // indicate that a tail call has been emitted and no more Instructions 7177 // should be processed in the current block. 7178 if (CLI.IsTailCall) { 7179 CLI.DAG.setRoot(CLI.Chain); 7180 return std::make_pair(SDValue(), SDValue()); 7181 } 7182 7183 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7184 assert(InVals[i].getNode() && 7185 "LowerCall emitted a null value!"); 7186 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7187 "LowerCall emitted a value with the wrong type!"); 7188 }); 7189 7190 SmallVector<SDValue, 4> ReturnValues; 7191 if (!CanLowerReturn) { 7192 // The instruction result is the result of loading from the 7193 // hidden sret parameter. 7194 SmallVector<EVT, 1> PVTs; 7195 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7196 7197 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7198 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7199 EVT PtrVT = PVTs[0]; 7200 7201 unsigned NumValues = RetTys.size(); 7202 ReturnValues.resize(NumValues); 7203 SmallVector<SDValue, 4> Chains(NumValues); 7204 7205 for (unsigned i = 0; i < NumValues; ++i) { 7206 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7207 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7208 PtrVT)); 7209 SDValue L = CLI.DAG.getLoad( 7210 RetTys[i], CLI.DL, CLI.Chain, Add, 7211 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7212 DemoteStackIdx, Offsets[i]), 7213 false, false, false, 1); 7214 ReturnValues[i] = L; 7215 Chains[i] = L.getValue(1); 7216 } 7217 7218 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7219 } else { 7220 // Collect the legal value parts into potentially illegal values 7221 // that correspond to the original function's return values. 7222 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7223 if (CLI.RetSExt) 7224 AssertOp = ISD::AssertSext; 7225 else if (CLI.RetZExt) 7226 AssertOp = ISD::AssertZext; 7227 unsigned CurReg = 0; 7228 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7229 EVT VT = RetTys[I]; 7230 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7231 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7232 7233 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7234 NumRegs, RegisterVT, VT, nullptr, 7235 AssertOp)); 7236 CurReg += NumRegs; 7237 } 7238 7239 // For a function returning void, there is no return value. We can't create 7240 // such a node, so we just return a null return value in that case. In 7241 // that case, nothing will actually look at the value. 7242 if (ReturnValues.empty()) 7243 return std::make_pair(SDValue(), CLI.Chain); 7244 } 7245 7246 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7247 CLI.DAG.getVTList(RetTys), ReturnValues); 7248 return std::make_pair(Res, CLI.Chain); 7249 } 7250 7251 void TargetLowering::LowerOperationWrapper(SDNode *N, 7252 SmallVectorImpl<SDValue> &Results, 7253 SelectionDAG &DAG) const { 7254 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7255 if (Res.getNode()) 7256 Results.push_back(Res); 7257 } 7258 7259 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7260 llvm_unreachable("LowerOperation not implemented for this target!"); 7261 } 7262 7263 void 7264 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7265 SDValue Op = getNonRegisterValue(V); 7266 assert((Op.getOpcode() != ISD::CopyFromReg || 7267 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7268 "Copy from a reg to the same reg!"); 7269 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7270 7271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7272 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7273 V->getType()); 7274 SDValue Chain = DAG.getEntryNode(); 7275 7276 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7277 FuncInfo.PreferredExtendType.end()) 7278 ? ISD::ANY_EXTEND 7279 : FuncInfo.PreferredExtendType[V]; 7280 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7281 PendingExports.push_back(Chain); 7282 } 7283 7284 #include "llvm/CodeGen/SelectionDAGISel.h" 7285 7286 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7287 /// entry block, return true. This includes arguments used by switches, since 7288 /// the switch may expand into multiple basic blocks. 7289 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7290 // With FastISel active, we may be splitting blocks, so force creation 7291 // of virtual registers for all non-dead arguments. 7292 if (FastISel) 7293 return A->use_empty(); 7294 7295 const BasicBlock &Entry = A->getParent()->front(); 7296 for (const User *U : A->users()) 7297 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7298 return false; // Use not in entry block. 7299 7300 return true; 7301 } 7302 7303 void SelectionDAGISel::LowerArguments(const Function &F) { 7304 SelectionDAG &DAG = SDB->DAG; 7305 SDLoc dl = SDB->getCurSDLoc(); 7306 const DataLayout &DL = DAG.getDataLayout(); 7307 SmallVector<ISD::InputArg, 16> Ins; 7308 7309 if (!FuncInfo->CanLowerReturn) { 7310 // Put in an sret pointer parameter before all the other parameters. 7311 SmallVector<EVT, 1> ValueVTs; 7312 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7313 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7314 7315 // NOTE: Assuming that a pointer will never break down to more than one VT 7316 // or one register. 7317 ISD::ArgFlagsTy Flags; 7318 Flags.setSRet(); 7319 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7320 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7321 ISD::InputArg::NoArgIndex, 0); 7322 Ins.push_back(RetArg); 7323 } 7324 7325 // Set up the incoming argument description vector. 7326 unsigned Idx = 1; 7327 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7328 I != E; ++I, ++Idx) { 7329 SmallVector<EVT, 4> ValueVTs; 7330 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7331 bool isArgValueUsed = !I->use_empty(); 7332 unsigned PartBase = 0; 7333 Type *FinalType = I->getType(); 7334 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7335 FinalType = cast<PointerType>(FinalType)->getElementType(); 7336 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7337 FinalType, F.getCallingConv(), F.isVarArg()); 7338 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7339 Value != NumValues; ++Value) { 7340 EVT VT = ValueVTs[Value]; 7341 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7342 ISD::ArgFlagsTy Flags; 7343 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7344 7345 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7346 Flags.setZExt(); 7347 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7348 Flags.setSExt(); 7349 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7350 Flags.setInReg(); 7351 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7352 Flags.setSRet(); 7353 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7354 Flags.setByVal(); 7355 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7356 Flags.setInAlloca(); 7357 // Set the byval flag for CCAssignFn callbacks that don't know about 7358 // inalloca. This way we can know how many bytes we should've allocated 7359 // and how many bytes a callee cleanup function will pop. If we port 7360 // inalloca to more targets, we'll have to add custom inalloca handling 7361 // in the various CC lowering callbacks. 7362 Flags.setByVal(); 7363 } 7364 if (Flags.isByVal() || Flags.isInAlloca()) { 7365 PointerType *Ty = cast<PointerType>(I->getType()); 7366 Type *ElementTy = Ty->getElementType(); 7367 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7368 // For ByVal, alignment should be passed from FE. BE will guess if 7369 // this info is not there but there are cases it cannot get right. 7370 unsigned FrameAlign; 7371 if (F.getParamAlignment(Idx)) 7372 FrameAlign = F.getParamAlignment(Idx); 7373 else 7374 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7375 Flags.setByValAlign(FrameAlign); 7376 } 7377 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7378 Flags.setNest(); 7379 if (NeedsRegBlock) 7380 Flags.setInConsecutiveRegs(); 7381 Flags.setOrigAlign(OriginalAlignment); 7382 7383 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7384 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7385 for (unsigned i = 0; i != NumRegs; ++i) { 7386 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7387 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7388 if (NumRegs > 1 && i == 0) 7389 MyFlags.Flags.setSplit(); 7390 // if it isn't first piece, alignment must be 1 7391 else if (i > 0) 7392 MyFlags.Flags.setOrigAlign(1); 7393 Ins.push_back(MyFlags); 7394 } 7395 if (NeedsRegBlock && Value == NumValues - 1) 7396 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7397 PartBase += VT.getStoreSize(); 7398 } 7399 } 7400 7401 // Call the target to set up the argument values. 7402 SmallVector<SDValue, 8> InVals; 7403 SDValue NewRoot = TLI->LowerFormalArguments( 7404 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7405 7406 // Verify that the target's LowerFormalArguments behaved as expected. 7407 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7408 "LowerFormalArguments didn't return a valid chain!"); 7409 assert(InVals.size() == Ins.size() && 7410 "LowerFormalArguments didn't emit the correct number of values!"); 7411 DEBUG({ 7412 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7413 assert(InVals[i].getNode() && 7414 "LowerFormalArguments emitted a null value!"); 7415 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7416 "LowerFormalArguments emitted a value with the wrong type!"); 7417 } 7418 }); 7419 7420 // Update the DAG with the new chain value resulting from argument lowering. 7421 DAG.setRoot(NewRoot); 7422 7423 // Set up the argument values. 7424 unsigned i = 0; 7425 Idx = 1; 7426 if (!FuncInfo->CanLowerReturn) { 7427 // Create a virtual register for the sret pointer, and put in a copy 7428 // from the sret argument into it. 7429 SmallVector<EVT, 1> ValueVTs; 7430 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7431 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7432 MVT VT = ValueVTs[0].getSimpleVT(); 7433 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7434 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7435 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7436 RegVT, VT, nullptr, AssertOp); 7437 7438 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7439 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7440 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7441 FuncInfo->DemoteRegister = SRetReg; 7442 NewRoot = 7443 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7444 DAG.setRoot(NewRoot); 7445 7446 // i indexes lowered arguments. Bump it past the hidden sret argument. 7447 // Idx indexes LLVM arguments. Don't touch it. 7448 ++i; 7449 } 7450 7451 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7452 ++I, ++Idx) { 7453 SmallVector<SDValue, 4> ArgValues; 7454 SmallVector<EVT, 4> ValueVTs; 7455 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7456 unsigned NumValues = ValueVTs.size(); 7457 7458 // If this argument is unused then remember its value. It is used to generate 7459 // debugging information. 7460 if (I->use_empty() && NumValues) { 7461 SDB->setUnusedArgValue(&*I, InVals[i]); 7462 7463 // Also remember any frame index for use in FastISel. 7464 if (FrameIndexSDNode *FI = 7465 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7466 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7467 } 7468 7469 for (unsigned Val = 0; Val != NumValues; ++Val) { 7470 EVT VT = ValueVTs[Val]; 7471 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7472 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7473 7474 if (!I->use_empty()) { 7475 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7476 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7477 AssertOp = ISD::AssertSext; 7478 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7479 AssertOp = ISD::AssertZext; 7480 7481 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7482 NumParts, PartVT, VT, 7483 nullptr, AssertOp)); 7484 } 7485 7486 i += NumParts; 7487 } 7488 7489 // We don't need to do anything else for unused arguments. 7490 if (ArgValues.empty()) 7491 continue; 7492 7493 // Note down frame index. 7494 if (FrameIndexSDNode *FI = 7495 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7496 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7497 7498 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7499 SDB->getCurSDLoc()); 7500 7501 SDB->setValue(&*I, Res); 7502 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7503 if (LoadSDNode *LNode = 7504 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7505 if (FrameIndexSDNode *FI = 7506 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7507 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7508 } 7509 7510 // If this argument is live outside of the entry block, insert a copy from 7511 // wherever we got it to the vreg that other BB's will reference it as. 7512 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7513 // If we can, though, try to skip creating an unnecessary vreg. 7514 // FIXME: This isn't very clean... it would be nice to make this more 7515 // general. It's also subtly incompatible with the hacks FastISel 7516 // uses with vregs. 7517 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7518 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7519 FuncInfo->ValueMap[&*I] = Reg; 7520 continue; 7521 } 7522 } 7523 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7524 FuncInfo->InitializeRegForValue(&*I); 7525 SDB->CopyToExportRegsIfNeeded(&*I); 7526 } 7527 } 7528 7529 assert(i == InVals.size() && "Argument register count mismatch!"); 7530 7531 // Finally, if the target has anything special to do, allow it to do so. 7532 EmitFunctionEntryCode(); 7533 } 7534 7535 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7536 /// ensure constants are generated when needed. Remember the virtual registers 7537 /// that need to be added to the Machine PHI nodes as input. We cannot just 7538 /// directly add them, because expansion might result in multiple MBB's for one 7539 /// BB. As such, the start of the BB might correspond to a different MBB than 7540 /// the end. 7541 /// 7542 void 7543 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7544 const TerminatorInst *TI = LLVMBB->getTerminator(); 7545 7546 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7547 7548 // Check PHI nodes in successors that expect a value to be available from this 7549 // block. 7550 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7551 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7552 if (!isa<PHINode>(SuccBB->begin())) continue; 7553 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7554 7555 // If this terminator has multiple identical successors (common for 7556 // switches), only handle each succ once. 7557 if (!SuccsHandled.insert(SuccMBB).second) 7558 continue; 7559 7560 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7561 7562 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7563 // nodes and Machine PHI nodes, but the incoming operands have not been 7564 // emitted yet. 7565 for (BasicBlock::const_iterator I = SuccBB->begin(); 7566 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7567 // Ignore dead phi's. 7568 if (PN->use_empty()) continue; 7569 7570 // Skip empty types 7571 if (PN->getType()->isEmptyTy()) 7572 continue; 7573 7574 unsigned Reg; 7575 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7576 7577 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7578 unsigned &RegOut = ConstantsOut[C]; 7579 if (RegOut == 0) { 7580 RegOut = FuncInfo.CreateRegs(C->getType()); 7581 CopyValueToVirtualRegister(C, RegOut); 7582 } 7583 Reg = RegOut; 7584 } else { 7585 DenseMap<const Value *, unsigned>::iterator I = 7586 FuncInfo.ValueMap.find(PHIOp); 7587 if (I != FuncInfo.ValueMap.end()) 7588 Reg = I->second; 7589 else { 7590 assert(isa<AllocaInst>(PHIOp) && 7591 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7592 "Didn't codegen value into a register!??"); 7593 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7594 CopyValueToVirtualRegister(PHIOp, Reg); 7595 } 7596 } 7597 7598 // Remember that this register needs to added to the machine PHI node as 7599 // the input for this MBB. 7600 SmallVector<EVT, 4> ValueVTs; 7601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7602 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7603 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7604 EVT VT = ValueVTs[vti]; 7605 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7606 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7607 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7608 Reg += NumRegisters; 7609 } 7610 } 7611 } 7612 7613 ConstantsOut.clear(); 7614 } 7615 7616 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7617 /// is 0. 7618 MachineBasicBlock * 7619 SelectionDAGBuilder::StackProtectorDescriptor:: 7620 AddSuccessorMBB(const BasicBlock *BB, 7621 MachineBasicBlock *ParentMBB, 7622 bool IsLikely, 7623 MachineBasicBlock *SuccMBB) { 7624 // If SuccBB has not been created yet, create it. 7625 if (!SuccMBB) { 7626 MachineFunction *MF = ParentMBB->getParent(); 7627 MachineFunction::iterator BBI(ParentMBB); 7628 SuccMBB = MF->CreateMachineBasicBlock(BB); 7629 MF->insert(++BBI, SuccMBB); 7630 } 7631 // Add it as a successor of ParentMBB. 7632 ParentMBB->addSuccessor( 7633 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7634 return SuccMBB; 7635 } 7636 7637 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7638 MachineFunction::iterator I(MBB); 7639 if (++I == FuncInfo.MF->end()) 7640 return nullptr; 7641 return &*I; 7642 } 7643 7644 /// During lowering new call nodes can be created (such as memset, etc.). 7645 /// Those will become new roots of the current DAG, but complications arise 7646 /// when they are tail calls. In such cases, the call lowering will update 7647 /// the root, but the builder still needs to know that a tail call has been 7648 /// lowered in order to avoid generating an additional return. 7649 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7650 // If the node is null, we do have a tail call. 7651 if (MaybeTC.getNode() != nullptr) 7652 DAG.setRoot(MaybeTC); 7653 else 7654 HasTailCall = true; 7655 } 7656 7657 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7658 unsigned *TotalCases, unsigned First, 7659 unsigned Last) { 7660 assert(Last >= First); 7661 assert(TotalCases[Last] >= TotalCases[First]); 7662 7663 APInt LowCase = Clusters[First].Low->getValue(); 7664 APInt HighCase = Clusters[Last].High->getValue(); 7665 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7666 7667 // FIXME: A range of consecutive cases has 100% density, but only requires one 7668 // comparison to lower. We should discriminate against such consecutive ranges 7669 // in jump tables. 7670 7671 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7672 uint64_t Range = Diff + 1; 7673 7674 uint64_t NumCases = 7675 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7676 7677 assert(NumCases < UINT64_MAX / 100); 7678 assert(Range >= NumCases); 7679 7680 return NumCases * 100 >= Range * MinJumpTableDensity; 7681 } 7682 7683 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7684 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7685 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7686 } 7687 7688 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7689 unsigned First, unsigned Last, 7690 const SwitchInst *SI, 7691 MachineBasicBlock *DefaultMBB, 7692 CaseCluster &JTCluster) { 7693 assert(First <= Last); 7694 7695 uint32_t Weight = 0; 7696 unsigned NumCmps = 0; 7697 std::vector<MachineBasicBlock*> Table; 7698 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7699 for (unsigned I = First; I <= Last; ++I) { 7700 assert(Clusters[I].Kind == CC_Range); 7701 Weight += Clusters[I].Weight; 7702 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7703 APInt Low = Clusters[I].Low->getValue(); 7704 APInt High = Clusters[I].High->getValue(); 7705 NumCmps += (Low == High) ? 1 : 2; 7706 if (I != First) { 7707 // Fill the gap between this and the previous cluster. 7708 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7709 assert(PreviousHigh.slt(Low)); 7710 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7711 for (uint64_t J = 0; J < Gap; J++) 7712 Table.push_back(DefaultMBB); 7713 } 7714 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7715 for (uint64_t J = 0; J < ClusterSize; ++J) 7716 Table.push_back(Clusters[I].MBB); 7717 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7718 } 7719 7720 unsigned NumDests = JTWeights.size(); 7721 if (isSuitableForBitTests(NumDests, NumCmps, 7722 Clusters[First].Low->getValue(), 7723 Clusters[Last].High->getValue())) { 7724 // Clusters[First..Last] should be lowered as bit tests instead. 7725 return false; 7726 } 7727 7728 // Create the MBB that will load from and jump through the table. 7729 // Note: We create it here, but it's not inserted into the function yet. 7730 MachineFunction *CurMF = FuncInfo.MF; 7731 MachineBasicBlock *JumpTableMBB = 7732 CurMF->CreateMachineBasicBlock(SI->getParent()); 7733 7734 // Add successors. Note: use table order for determinism. 7735 SmallPtrSet<MachineBasicBlock *, 8> Done; 7736 for (MachineBasicBlock *Succ : Table) { 7737 if (Done.count(Succ)) 7738 continue; 7739 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7740 Done.insert(Succ); 7741 } 7742 7743 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7744 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7745 ->createJumpTableIndex(Table); 7746 7747 // Set up the jump table info. 7748 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7749 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7750 Clusters[Last].High->getValue(), SI->getCondition(), 7751 nullptr, false); 7752 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7753 7754 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7755 JTCases.size() - 1, Weight); 7756 return true; 7757 } 7758 7759 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7760 const SwitchInst *SI, 7761 MachineBasicBlock *DefaultMBB) { 7762 #ifndef NDEBUG 7763 // Clusters must be non-empty, sorted, and only contain Range clusters. 7764 assert(!Clusters.empty()); 7765 for (CaseCluster &C : Clusters) 7766 assert(C.Kind == CC_Range); 7767 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7768 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7769 #endif 7770 7771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7772 if (!areJTsAllowed(TLI)) 7773 return; 7774 7775 const int64_t N = Clusters.size(); 7776 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7777 7778 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7779 SmallVector<unsigned, 8> TotalCases(N); 7780 7781 for (unsigned i = 0; i < N; ++i) { 7782 APInt Hi = Clusters[i].High->getValue(); 7783 APInt Lo = Clusters[i].Low->getValue(); 7784 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7785 if (i != 0) 7786 TotalCases[i] += TotalCases[i - 1]; 7787 } 7788 7789 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7790 // Cheap case: the whole range might be suitable for jump table. 7791 CaseCluster JTCluster; 7792 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7793 Clusters[0] = JTCluster; 7794 Clusters.resize(1); 7795 return; 7796 } 7797 } 7798 7799 // The algorithm below is not suitable for -O0. 7800 if (TM.getOptLevel() == CodeGenOpt::None) 7801 return; 7802 7803 // Split Clusters into minimum number of dense partitions. The algorithm uses 7804 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7805 // for the Case Statement'" (1994), but builds the MinPartitions array in 7806 // reverse order to make it easier to reconstruct the partitions in ascending 7807 // order. In the choice between two optimal partitionings, it picks the one 7808 // which yields more jump tables. 7809 7810 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7811 SmallVector<unsigned, 8> MinPartitions(N); 7812 // LastElement[i] is the last element of the partition starting at i. 7813 SmallVector<unsigned, 8> LastElement(N); 7814 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7815 SmallVector<unsigned, 8> NumTables(N); 7816 7817 // Base case: There is only one way to partition Clusters[N-1]. 7818 MinPartitions[N - 1] = 1; 7819 LastElement[N - 1] = N - 1; 7820 assert(MinJumpTableSize > 1); 7821 NumTables[N - 1] = 0; 7822 7823 // Note: loop indexes are signed to avoid underflow. 7824 for (int64_t i = N - 2; i >= 0; i--) { 7825 // Find optimal partitioning of Clusters[i..N-1]. 7826 // Baseline: Put Clusters[i] into a partition on its own. 7827 MinPartitions[i] = MinPartitions[i + 1] + 1; 7828 LastElement[i] = i; 7829 NumTables[i] = NumTables[i + 1]; 7830 7831 // Search for a solution that results in fewer partitions. 7832 for (int64_t j = N - 1; j > i; j--) { 7833 // Try building a partition from Clusters[i..j]. 7834 if (isDense(Clusters, &TotalCases[0], i, j)) { 7835 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7836 bool IsTable = j - i + 1 >= MinJumpTableSize; 7837 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7838 7839 // If this j leads to fewer partitions, or same number of partitions 7840 // with more lookup tables, it is a better partitioning. 7841 if (NumPartitions < MinPartitions[i] || 7842 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7843 MinPartitions[i] = NumPartitions; 7844 LastElement[i] = j; 7845 NumTables[i] = Tables; 7846 } 7847 } 7848 } 7849 } 7850 7851 // Iterate over the partitions, replacing some with jump tables in-place. 7852 unsigned DstIndex = 0; 7853 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7854 Last = LastElement[First]; 7855 assert(Last >= First); 7856 assert(DstIndex <= First); 7857 unsigned NumClusters = Last - First + 1; 7858 7859 CaseCluster JTCluster; 7860 if (NumClusters >= MinJumpTableSize && 7861 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7862 Clusters[DstIndex++] = JTCluster; 7863 } else { 7864 for (unsigned I = First; I <= Last; ++I) 7865 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7866 } 7867 } 7868 Clusters.resize(DstIndex); 7869 } 7870 7871 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7872 // FIXME: Using the pointer type doesn't seem ideal. 7873 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7874 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7875 return Range <= BW; 7876 } 7877 7878 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7879 unsigned NumCmps, 7880 const APInt &Low, 7881 const APInt &High) { 7882 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7883 // range of cases both require only one branch to lower. Just looking at the 7884 // number of clusters and destinations should be enough to decide whether to 7885 // build bit tests. 7886 7887 // To lower a range with bit tests, the range must fit the bitwidth of a 7888 // machine word. 7889 if (!rangeFitsInWord(Low, High)) 7890 return false; 7891 7892 // Decide whether it's profitable to lower this range with bit tests. Each 7893 // destination requires a bit test and branch, and there is an overall range 7894 // check branch. For a small number of clusters, separate comparisons might be 7895 // cheaper, and for many destinations, splitting the range might be better. 7896 return (NumDests == 1 && NumCmps >= 3) || 7897 (NumDests == 2 && NumCmps >= 5) || 7898 (NumDests == 3 && NumCmps >= 6); 7899 } 7900 7901 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7902 unsigned First, unsigned Last, 7903 const SwitchInst *SI, 7904 CaseCluster &BTCluster) { 7905 assert(First <= Last); 7906 if (First == Last) 7907 return false; 7908 7909 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7910 unsigned NumCmps = 0; 7911 for (int64_t I = First; I <= Last; ++I) { 7912 assert(Clusters[I].Kind == CC_Range); 7913 Dests.set(Clusters[I].MBB->getNumber()); 7914 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7915 } 7916 unsigned NumDests = Dests.count(); 7917 7918 APInt Low = Clusters[First].Low->getValue(); 7919 APInt High = Clusters[Last].High->getValue(); 7920 assert(Low.slt(High)); 7921 7922 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7923 return false; 7924 7925 APInt LowBound; 7926 APInt CmpRange; 7927 7928 const int BitWidth = DAG.getTargetLoweringInfo() 7929 .getPointerTy(DAG.getDataLayout()) 7930 .getSizeInBits(); 7931 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7932 7933 // Check if the clusters cover a contiguous range such that no value in the 7934 // range will jump to the default statement. 7935 bool ContiguousRange = true; 7936 for (int64_t I = First + 1; I <= Last; ++I) { 7937 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7938 ContiguousRange = false; 7939 break; 7940 } 7941 } 7942 7943 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7944 // Optimize the case where all the case values fit in a word without having 7945 // to subtract minValue. In this case, we can optimize away the subtraction. 7946 LowBound = APInt::getNullValue(Low.getBitWidth()); 7947 CmpRange = High; 7948 ContiguousRange = false; 7949 } else { 7950 LowBound = Low; 7951 CmpRange = High - Low; 7952 } 7953 7954 CaseBitsVector CBV; 7955 uint32_t TotalWeight = 0; 7956 for (unsigned i = First; i <= Last; ++i) { 7957 // Find the CaseBits for this destination. 7958 unsigned j; 7959 for (j = 0; j < CBV.size(); ++j) 7960 if (CBV[j].BB == Clusters[i].MBB) 7961 break; 7962 if (j == CBV.size()) 7963 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7964 CaseBits *CB = &CBV[j]; 7965 7966 // Update Mask, Bits and ExtraWeight. 7967 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7968 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7969 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7970 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7971 CB->Bits += Hi - Lo + 1; 7972 CB->ExtraWeight += Clusters[i].Weight; 7973 TotalWeight += Clusters[i].Weight; 7974 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7975 } 7976 7977 BitTestInfo BTI; 7978 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7979 // Sort by weight first, number of bits second. 7980 if (a.ExtraWeight != b.ExtraWeight) 7981 return a.ExtraWeight > b.ExtraWeight; 7982 return a.Bits > b.Bits; 7983 }); 7984 7985 for (auto &CB : CBV) { 7986 MachineBasicBlock *BitTestBB = 7987 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7988 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7989 } 7990 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7991 SI->getCondition(), -1U, MVT::Other, false, 7992 ContiguousRange, nullptr, nullptr, std::move(BTI), 7993 TotalWeight); 7994 7995 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7996 BitTestCases.size() - 1, TotalWeight); 7997 return true; 7998 } 7999 8000 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8001 const SwitchInst *SI) { 8002 // Partition Clusters into as few subsets as possible, where each subset has a 8003 // range that fits in a machine word and has <= 3 unique destinations. 8004 8005 #ifndef NDEBUG 8006 // Clusters must be sorted and contain Range or JumpTable clusters. 8007 assert(!Clusters.empty()); 8008 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8009 for (const CaseCluster &C : Clusters) 8010 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8011 for (unsigned i = 1; i < Clusters.size(); ++i) 8012 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8013 #endif 8014 8015 // The algorithm below is not suitable for -O0. 8016 if (TM.getOptLevel() == CodeGenOpt::None) 8017 return; 8018 8019 // If target does not have legal shift left, do not emit bit tests at all. 8020 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8021 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8022 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8023 return; 8024 8025 int BitWidth = PTy.getSizeInBits(); 8026 const int64_t N = Clusters.size(); 8027 8028 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8029 SmallVector<unsigned, 8> MinPartitions(N); 8030 // LastElement[i] is the last element of the partition starting at i. 8031 SmallVector<unsigned, 8> LastElement(N); 8032 8033 // FIXME: This might not be the best algorithm for finding bit test clusters. 8034 8035 // Base case: There is only one way to partition Clusters[N-1]. 8036 MinPartitions[N - 1] = 1; 8037 LastElement[N - 1] = N - 1; 8038 8039 // Note: loop indexes are signed to avoid underflow. 8040 for (int64_t i = N - 2; i >= 0; --i) { 8041 // Find optimal partitioning of Clusters[i..N-1]. 8042 // Baseline: Put Clusters[i] into a partition on its own. 8043 MinPartitions[i] = MinPartitions[i + 1] + 1; 8044 LastElement[i] = i; 8045 8046 // Search for a solution that results in fewer partitions. 8047 // Note: the search is limited by BitWidth, reducing time complexity. 8048 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8049 // Try building a partition from Clusters[i..j]. 8050 8051 // Check the range. 8052 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8053 Clusters[j].High->getValue())) 8054 continue; 8055 8056 // Check nbr of destinations and cluster types. 8057 // FIXME: This works, but doesn't seem very efficient. 8058 bool RangesOnly = true; 8059 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8060 for (int64_t k = i; k <= j; k++) { 8061 if (Clusters[k].Kind != CC_Range) { 8062 RangesOnly = false; 8063 break; 8064 } 8065 Dests.set(Clusters[k].MBB->getNumber()); 8066 } 8067 if (!RangesOnly || Dests.count() > 3) 8068 break; 8069 8070 // Check if it's a better partition. 8071 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8072 if (NumPartitions < MinPartitions[i]) { 8073 // Found a better partition. 8074 MinPartitions[i] = NumPartitions; 8075 LastElement[i] = j; 8076 } 8077 } 8078 } 8079 8080 // Iterate over the partitions, replacing with bit-test clusters in-place. 8081 unsigned DstIndex = 0; 8082 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8083 Last = LastElement[First]; 8084 assert(First <= Last); 8085 assert(DstIndex <= First); 8086 8087 CaseCluster BitTestCluster; 8088 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8089 Clusters[DstIndex++] = BitTestCluster; 8090 } else { 8091 size_t NumClusters = Last - First + 1; 8092 std::memmove(&Clusters[DstIndex], &Clusters[First], 8093 sizeof(Clusters[0]) * NumClusters); 8094 DstIndex += NumClusters; 8095 } 8096 } 8097 Clusters.resize(DstIndex); 8098 } 8099 8100 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8101 MachineBasicBlock *SwitchMBB, 8102 MachineBasicBlock *DefaultMBB) { 8103 MachineFunction *CurMF = FuncInfo.MF; 8104 MachineBasicBlock *NextMBB = nullptr; 8105 MachineFunction::iterator BBI(W.MBB); 8106 if (++BBI != FuncInfo.MF->end()) 8107 NextMBB = &*BBI; 8108 8109 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8110 8111 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8112 8113 if (Size == 2 && W.MBB == SwitchMBB) { 8114 // If any two of the cases has the same destination, and if one value 8115 // is the same as the other, but has one bit unset that the other has set, 8116 // use bit manipulation to do two compares at once. For example: 8117 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8118 // TODO: This could be extended to merge any 2 cases in switches with 3 8119 // cases. 8120 // TODO: Handle cases where W.CaseBB != SwitchBB. 8121 CaseCluster &Small = *W.FirstCluster; 8122 CaseCluster &Big = *W.LastCluster; 8123 8124 if (Small.Low == Small.High && Big.Low == Big.High && 8125 Small.MBB == Big.MBB) { 8126 const APInt &SmallValue = Small.Low->getValue(); 8127 const APInt &BigValue = Big.Low->getValue(); 8128 8129 // Check that there is only one bit different. 8130 APInt CommonBit = BigValue ^ SmallValue; 8131 if (CommonBit.isPowerOf2()) { 8132 SDValue CondLHS = getValue(Cond); 8133 EVT VT = CondLHS.getValueType(); 8134 SDLoc DL = getCurSDLoc(); 8135 8136 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8137 DAG.getConstant(CommonBit, DL, VT)); 8138 SDValue Cond = DAG.getSetCC( 8139 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8140 ISD::SETEQ); 8141 8142 // Update successor info. 8143 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8144 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8145 addSuccessorWithWeight( 8146 SwitchMBB, DefaultMBB, 8147 // The default destination is the first successor in IR. 8148 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8149 : 0); 8150 8151 // Insert the true branch. 8152 SDValue BrCond = 8153 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8154 DAG.getBasicBlock(Small.MBB)); 8155 // Insert the false branch. 8156 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8157 DAG.getBasicBlock(DefaultMBB)); 8158 8159 DAG.setRoot(BrCond); 8160 return; 8161 } 8162 } 8163 } 8164 8165 if (TM.getOptLevel() != CodeGenOpt::None) { 8166 // Order cases by weight so the most likely case will be checked first. 8167 std::sort(W.FirstCluster, W.LastCluster + 1, 8168 [](const CaseCluster &a, const CaseCluster &b) { 8169 return a.Weight > b.Weight; 8170 }); 8171 8172 // Rearrange the case blocks so that the last one falls through if possible 8173 // without without changing the order of weights. 8174 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8175 --I; 8176 if (I->Weight > W.LastCluster->Weight) 8177 break; 8178 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8179 std::swap(*I, *W.LastCluster); 8180 break; 8181 } 8182 } 8183 } 8184 8185 // Compute total weight. 8186 uint32_t DefaultWeight = W.DefaultWeight; 8187 uint32_t UnhandledWeights = DefaultWeight; 8188 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8189 UnhandledWeights += I->Weight; 8190 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8191 } 8192 8193 MachineBasicBlock *CurMBB = W.MBB; 8194 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8195 MachineBasicBlock *Fallthrough; 8196 if (I == W.LastCluster) { 8197 // For the last cluster, fall through to the default destination. 8198 Fallthrough = DefaultMBB; 8199 } else { 8200 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8201 CurMF->insert(BBI, Fallthrough); 8202 // Put Cond in a virtual register to make it available from the new blocks. 8203 ExportFromCurrentBlock(Cond); 8204 } 8205 UnhandledWeights -= I->Weight; 8206 8207 switch (I->Kind) { 8208 case CC_JumpTable: { 8209 // FIXME: Optimize away range check based on pivot comparisons. 8210 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8211 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8212 8213 // The jump block hasn't been inserted yet; insert it here. 8214 MachineBasicBlock *JumpMBB = JT->MBB; 8215 CurMF->insert(BBI, JumpMBB); 8216 8217 uint32_t JumpWeight = I->Weight; 8218 uint32_t FallthroughWeight = UnhandledWeights; 8219 8220 // If the default statement is a target of the jump table, we evenly 8221 // distribute the default weight to successors of CurMBB. Also update 8222 // the weight on the edge from JumpMBB to Fallthrough. 8223 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8224 SE = JumpMBB->succ_end(); 8225 SI != SE; ++SI) { 8226 if (*SI == DefaultMBB) { 8227 JumpWeight += DefaultWeight / 2; 8228 FallthroughWeight -= DefaultWeight / 2; 8229 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8230 break; 8231 } 8232 } 8233 8234 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8235 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8236 8237 // The jump table header will be inserted in our current block, do the 8238 // range check, and fall through to our fallthrough block. 8239 JTH->HeaderBB = CurMBB; 8240 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8241 8242 // If we're in the right place, emit the jump table header right now. 8243 if (CurMBB == SwitchMBB) { 8244 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8245 JTH->Emitted = true; 8246 } 8247 break; 8248 } 8249 case CC_BitTests: { 8250 // FIXME: Optimize away range check based on pivot comparisons. 8251 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8252 8253 // The bit test blocks haven't been inserted yet; insert them here. 8254 for (BitTestCase &BTC : BTB->Cases) 8255 CurMF->insert(BBI, BTC.ThisBB); 8256 8257 // Fill in fields of the BitTestBlock. 8258 BTB->Parent = CurMBB; 8259 BTB->Default = Fallthrough; 8260 8261 BTB->DefaultWeight = UnhandledWeights; 8262 // If the cases in bit test don't form a contiguous range, we evenly 8263 // distribute the weight on the edge to Fallthrough to two successors 8264 // of CurMBB. 8265 if (!BTB->ContiguousRange) { 8266 BTB->Weight += DefaultWeight / 2; 8267 BTB->DefaultWeight -= DefaultWeight / 2; 8268 } 8269 8270 // If we're in the right place, emit the bit test header right now. 8271 if (CurMBB == SwitchMBB) { 8272 visitBitTestHeader(*BTB, SwitchMBB); 8273 BTB->Emitted = true; 8274 } 8275 break; 8276 } 8277 case CC_Range: { 8278 const Value *RHS, *LHS, *MHS; 8279 ISD::CondCode CC; 8280 if (I->Low == I->High) { 8281 // Check Cond == I->Low. 8282 CC = ISD::SETEQ; 8283 LHS = Cond; 8284 RHS=I->Low; 8285 MHS = nullptr; 8286 } else { 8287 // Check I->Low <= Cond <= I->High. 8288 CC = ISD::SETLE; 8289 LHS = I->Low; 8290 MHS = Cond; 8291 RHS = I->High; 8292 } 8293 8294 // The false weight is the sum of all unhandled cases. 8295 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8296 UnhandledWeights); 8297 8298 if (CurMBB == SwitchMBB) 8299 visitSwitchCase(CB, SwitchMBB); 8300 else 8301 SwitchCases.push_back(CB); 8302 8303 break; 8304 } 8305 } 8306 CurMBB = Fallthrough; 8307 } 8308 } 8309 8310 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8311 CaseClusterIt First, 8312 CaseClusterIt Last) { 8313 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8314 if (X.Weight != CC.Weight) 8315 return X.Weight > CC.Weight; 8316 8317 // Ties are broken by comparing the case value. 8318 return X.Low->getValue().slt(CC.Low->getValue()); 8319 }); 8320 } 8321 8322 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8323 const SwitchWorkListItem &W, 8324 Value *Cond, 8325 MachineBasicBlock *SwitchMBB) { 8326 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8327 "Clusters not sorted?"); 8328 8329 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8330 8331 // Balance the tree based on branch weights to create a near-optimal (in terms 8332 // of search time given key frequency) binary search tree. See e.g. Kurt 8333 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8334 CaseClusterIt LastLeft = W.FirstCluster; 8335 CaseClusterIt FirstRight = W.LastCluster; 8336 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8337 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8338 8339 // Move LastLeft and FirstRight towards each other from opposite directions to 8340 // find a partitioning of the clusters which balances the weight on both 8341 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8342 // taken to ensure 0-weight nodes are distributed evenly. 8343 unsigned I = 0; 8344 while (LastLeft + 1 < FirstRight) { 8345 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8346 LeftWeight += (++LastLeft)->Weight; 8347 else 8348 RightWeight += (--FirstRight)->Weight; 8349 I++; 8350 } 8351 8352 for (;;) { 8353 // Our binary search tree differs from a typical BST in that ours can have up 8354 // to three values in each leaf. The pivot selection above doesn't take that 8355 // into account, which means the tree might require more nodes and be less 8356 // efficient. We compensate for this here. 8357 8358 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8359 unsigned NumRight = W.LastCluster - FirstRight + 1; 8360 8361 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8362 // If one side has less than 3 clusters, and the other has more than 3, 8363 // consider taking a cluster from the other side. 8364 8365 if (NumLeft < NumRight) { 8366 // Consider moving the first cluster on the right to the left side. 8367 CaseCluster &CC = *FirstRight; 8368 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8369 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8370 if (LeftSideRank <= RightSideRank) { 8371 // Moving the cluster to the left does not demote it. 8372 ++LastLeft; 8373 ++FirstRight; 8374 continue; 8375 } 8376 } else { 8377 assert(NumRight < NumLeft); 8378 // Consider moving the last element on the left to the right side. 8379 CaseCluster &CC = *LastLeft; 8380 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8381 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8382 if (RightSideRank <= LeftSideRank) { 8383 // Moving the cluster to the right does not demot it. 8384 --LastLeft; 8385 --FirstRight; 8386 continue; 8387 } 8388 } 8389 } 8390 break; 8391 } 8392 8393 assert(LastLeft + 1 == FirstRight); 8394 assert(LastLeft >= W.FirstCluster); 8395 assert(FirstRight <= W.LastCluster); 8396 8397 // Use the first element on the right as pivot since we will make less-than 8398 // comparisons against it. 8399 CaseClusterIt PivotCluster = FirstRight; 8400 assert(PivotCluster > W.FirstCluster); 8401 assert(PivotCluster <= W.LastCluster); 8402 8403 CaseClusterIt FirstLeft = W.FirstCluster; 8404 CaseClusterIt LastRight = W.LastCluster; 8405 8406 const ConstantInt *Pivot = PivotCluster->Low; 8407 8408 // New blocks will be inserted immediately after the current one. 8409 MachineFunction::iterator BBI(W.MBB); 8410 ++BBI; 8411 8412 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8413 // we can branch to its destination directly if it's squeezed exactly in 8414 // between the known lower bound and Pivot - 1. 8415 MachineBasicBlock *LeftMBB; 8416 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8417 FirstLeft->Low == W.GE && 8418 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8419 LeftMBB = FirstLeft->MBB; 8420 } else { 8421 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8422 FuncInfo.MF->insert(BBI, LeftMBB); 8423 WorkList.push_back( 8424 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8425 // Put Cond in a virtual register to make it available from the new blocks. 8426 ExportFromCurrentBlock(Cond); 8427 } 8428 8429 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8430 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8431 // directly if RHS.High equals the current upper bound. 8432 MachineBasicBlock *RightMBB; 8433 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8434 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8435 RightMBB = FirstRight->MBB; 8436 } else { 8437 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8438 FuncInfo.MF->insert(BBI, RightMBB); 8439 WorkList.push_back( 8440 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8441 // Put Cond in a virtual register to make it available from the new blocks. 8442 ExportFromCurrentBlock(Cond); 8443 } 8444 8445 // Create the CaseBlock record that will be used to lower the branch. 8446 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8447 LeftWeight, RightWeight); 8448 8449 if (W.MBB == SwitchMBB) 8450 visitSwitchCase(CB, SwitchMBB); 8451 else 8452 SwitchCases.push_back(CB); 8453 } 8454 8455 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8456 // Extract cases from the switch. 8457 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8458 CaseClusterVector Clusters; 8459 Clusters.reserve(SI.getNumCases()); 8460 for (auto I : SI.cases()) { 8461 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8462 const ConstantInt *CaseVal = I.getCaseValue(); 8463 uint32_t Weight = 8464 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8465 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8466 } 8467 8468 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8469 8470 // Cluster adjacent cases with the same destination. We do this at all 8471 // optimization levels because it's cheap to do and will make codegen faster 8472 // if there are many clusters. 8473 sortAndRangeify(Clusters); 8474 8475 if (TM.getOptLevel() != CodeGenOpt::None) { 8476 // Replace an unreachable default with the most popular destination. 8477 // FIXME: Exploit unreachable default more aggressively. 8478 bool UnreachableDefault = 8479 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8480 if (UnreachableDefault && !Clusters.empty()) { 8481 DenseMap<const BasicBlock *, unsigned> Popularity; 8482 unsigned MaxPop = 0; 8483 const BasicBlock *MaxBB = nullptr; 8484 for (auto I : SI.cases()) { 8485 const BasicBlock *BB = I.getCaseSuccessor(); 8486 if (++Popularity[BB] > MaxPop) { 8487 MaxPop = Popularity[BB]; 8488 MaxBB = BB; 8489 } 8490 } 8491 // Set new default. 8492 assert(MaxPop > 0 && MaxBB); 8493 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8494 8495 // Remove cases that were pointing to the destination that is now the 8496 // default. 8497 CaseClusterVector New; 8498 New.reserve(Clusters.size()); 8499 for (CaseCluster &CC : Clusters) { 8500 if (CC.MBB != DefaultMBB) 8501 New.push_back(CC); 8502 } 8503 Clusters = std::move(New); 8504 } 8505 } 8506 8507 // If there is only the default destination, jump there directly. 8508 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8509 if (Clusters.empty()) { 8510 SwitchMBB->addSuccessor(DefaultMBB); 8511 if (DefaultMBB != NextBlock(SwitchMBB)) { 8512 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8513 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8514 } 8515 return; 8516 } 8517 8518 findJumpTables(Clusters, &SI, DefaultMBB); 8519 findBitTestClusters(Clusters, &SI); 8520 8521 DEBUG({ 8522 dbgs() << "Case clusters: "; 8523 for (const CaseCluster &C : Clusters) { 8524 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8525 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8526 8527 C.Low->getValue().print(dbgs(), true); 8528 if (C.Low != C.High) { 8529 dbgs() << '-'; 8530 C.High->getValue().print(dbgs(), true); 8531 } 8532 dbgs() << ' '; 8533 } 8534 dbgs() << '\n'; 8535 }); 8536 8537 assert(!Clusters.empty()); 8538 SwitchWorkList WorkList; 8539 CaseClusterIt First = Clusters.begin(); 8540 CaseClusterIt Last = Clusters.end() - 1; 8541 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8542 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8543 8544 while (!WorkList.empty()) { 8545 SwitchWorkListItem W = WorkList.back(); 8546 WorkList.pop_back(); 8547 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8548 8549 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8550 // For optimized builds, lower large range as a balanced binary tree. 8551 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8552 continue; 8553 } 8554 8555 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8556 } 8557 } 8558