1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include <algorithm> 62 using namespace llvm; 63 64 #define DEBUG_TYPE "isel" 65 66 /// LimitFloatPrecision - Generate low-precision inline sequences for 67 /// some float libcalls (6, 8 or 12 bits). 68 static unsigned LimitFloatPrecision; 69 70 static cl::opt<unsigned, true> 71 LimitFPPrecision("limit-float-precision", 72 cl::desc("Generate low-precision inline sequences " 73 "for some float libcalls"), 74 cl::location(LimitFloatPrecision), 75 cl::init(0)); 76 77 // Limit the width of DAG chains. This is important in general to prevent 78 // prevent DAG-based analysis from blowing up. For example, alias analysis and 79 // load clustering may not complete in reasonable time. It is difficult to 80 // recognize and avoid this situation within each individual analysis, and 81 // future analyses are likely to have the same behavior. Limiting DAG width is 82 // the safe approach, and will be especially important with global DAGs. 83 // 84 // MaxParallelChains default is arbitrarily high to avoid affecting 85 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 86 // sequence over this should have been converted to llvm.memcpy by the 87 // frontend. It easy to induce this behavior with .ll code such as: 88 // %buffer = alloca [4096 x i8] 89 // %data = load [4096 x i8]* %argPtr 90 // store [4096 x i8] %data, [4096 x i8]* %buffer 91 static const unsigned MaxParallelChains = 64; 92 93 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 94 const SDValue *Parts, unsigned NumParts, 95 MVT PartVT, EVT ValueVT, const Value *V); 96 97 /// getCopyFromParts - Create a value that contains the specified legal parts 98 /// combined into the value they represent. If the parts combine to a type 99 /// larger then ValueVT then AssertOp can be used to specify whether the extra 100 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 101 /// (ISD::AssertSext). 102 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, 104 unsigned NumParts, MVT PartVT, EVT ValueVT, 105 const Value *V, 106 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 107 if (ValueVT.isVector()) 108 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 109 PartVT, ValueVT, V); 110 111 assert(NumParts > 0 && "No parts to assemble!"); 112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 113 SDValue Val = Parts[0]; 114 115 if (NumParts > 1) { 116 // Assemble the value from multiple parts. 117 if (ValueVT.isInteger()) { 118 unsigned PartBits = PartVT.getSizeInBits(); 119 unsigned ValueBits = ValueVT.getSizeInBits(); 120 121 // Assemble the power of 2 part. 122 unsigned RoundParts = NumParts & (NumParts - 1) ? 123 1 << Log2_32(NumParts) : NumParts; 124 unsigned RoundBits = PartBits * RoundParts; 125 EVT RoundVT = RoundBits == ValueBits ? 126 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 127 SDValue Lo, Hi; 128 129 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 130 131 if (RoundParts > 2) { 132 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 133 PartVT, HalfVT, V); 134 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 135 RoundParts / 2, PartVT, HalfVT, V); 136 } else { 137 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 138 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 139 } 140 141 if (TLI.isBigEndian()) 142 std::swap(Lo, Hi); 143 144 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 145 146 if (RoundParts < NumParts) { 147 // Assemble the trailing non-power-of-2 part. 148 unsigned OddParts = NumParts - RoundParts; 149 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 150 Hi = getCopyFromParts(DAG, DL, 151 Parts + RoundParts, OddParts, PartVT, OddVT, V); 152 153 // Combine the round and odd parts. 154 Lo = Val; 155 if (TLI.isBigEndian()) 156 std::swap(Lo, Hi); 157 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 158 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 159 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 160 DAG.getConstant(Lo.getValueType().getSizeInBits(), 161 TLI.getPointerTy())); 162 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 163 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 164 } 165 } else if (PartVT.isFloatingPoint()) { 166 // FP split into multiple FP parts (for ppcf128) 167 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 168 "Unexpected split"); 169 SDValue Lo, Hi; 170 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 171 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 172 if (TLI.isBigEndian()) 173 std::swap(Lo, Hi); 174 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 175 } else { 176 // FP split into integer parts (soft fp) 177 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 178 !PartVT.isVector() && "Unexpected split"); 179 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 180 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 181 } 182 } 183 184 // There is now one part, held in Val. Correct it to match ValueVT. 185 EVT PartEVT = Val.getValueType(); 186 187 if (PartEVT == ValueVT) 188 return Val; 189 190 if (PartEVT.isInteger() && ValueVT.isInteger()) { 191 if (ValueVT.bitsLT(PartEVT)) { 192 // For a truncate, see if we have any information to 193 // indicate whether the truncated bits will always be 194 // zero or sign-extension. 195 if (AssertOp != ISD::DELETED_NODE) 196 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 197 DAG.getValueType(ValueVT)); 198 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 199 } 200 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 201 } 202 203 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 204 // FP_ROUND's are always exact here. 205 if (ValueVT.bitsLT(Val.getValueType())) 206 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 207 DAG.getTargetConstant(1, TLI.getPointerTy())); 208 209 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 213 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 214 215 llvm_unreachable("Unknown mismatch!"); 216 } 217 218 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 219 const Twine &ErrMsg) { 220 const Instruction *I = dyn_cast_or_null<Instruction>(V); 221 if (!V) 222 return Ctx.emitError(ErrMsg); 223 224 const char *AsmError = ", possible invalid constraint for vector type"; 225 if (const CallInst *CI = dyn_cast<CallInst>(I)) 226 if (isa<InlineAsm>(CI->getCalledValue())) 227 return Ctx.emitError(I, ErrMsg + AsmError); 228 229 return Ctx.emitError(I, ErrMsg); 230 } 231 232 /// getCopyFromPartsVector - Create a value that contains the specified legal 233 /// parts combined into the value they represent. If the parts combine to a 234 /// type larger then ValueVT then AssertOp can be used to specify whether the 235 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 236 /// ValueVT (ISD::AssertSext). 237 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 238 const SDValue *Parts, unsigned NumParts, 239 MVT PartVT, EVT ValueVT, const Value *V) { 240 assert(ValueVT.isVector() && "Not a vector value"); 241 assert(NumParts > 0 && "No parts to assemble!"); 242 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 243 SDValue Val = Parts[0]; 244 245 // Handle a multi-element vector. 246 if (NumParts > 1) { 247 EVT IntermediateVT; 248 MVT RegisterVT; 249 unsigned NumIntermediates; 250 unsigned NumRegs = 251 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 252 NumIntermediates, RegisterVT); 253 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 254 NumParts = NumRegs; // Silence a compiler warning. 255 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 256 assert(RegisterVT == Parts[0].getSimpleValueType() && 257 "Part type doesn't match part!"); 258 259 // Assemble the parts into intermediate operands. 260 SmallVector<SDValue, 8> Ops(NumIntermediates); 261 if (NumIntermediates == NumParts) { 262 // If the register was not expanded, truncate or copy the value, 263 // as appropriate. 264 for (unsigned i = 0; i != NumParts; ++i) 265 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 266 PartVT, IntermediateVT, V); 267 } else if (NumParts > 0) { 268 // If the intermediate type was expanded, build the intermediate 269 // operands from the parts. 270 assert(NumParts % NumIntermediates == 0 && 271 "Must expand into a divisible number of parts!"); 272 unsigned Factor = NumParts / NumIntermediates; 273 for (unsigned i = 0; i != NumIntermediates; ++i) 274 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 275 PartVT, IntermediateVT, V); 276 } 277 278 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 279 // intermediate operands. 280 Val = DAG.getNode(IntermediateVT.isVector() ? 281 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 282 ValueVT, &Ops[0], NumIntermediates); 283 } 284 285 // There is now one part, held in Val. Correct it to match ValueVT. 286 EVT PartEVT = Val.getValueType(); 287 288 if (PartEVT == ValueVT) 289 return Val; 290 291 if (PartEVT.isVector()) { 292 // If the element type of the source/dest vectors are the same, but the 293 // parts vector has more elements than the value vector, then we have a 294 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 295 // elements we want. 296 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 297 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 298 "Cannot narrow, it would be a lossy transformation"); 299 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 300 DAG.getConstant(0, TLI.getVectorIdxTy())); 301 } 302 303 // Vector/Vector bitcast. 304 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 308 "Cannot handle this kind of promotion"); 309 // Promoted vector extract 310 bool Smaller = ValueVT.bitsLE(PartEVT); 311 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 312 DL, ValueVT, Val); 313 314 } 315 316 // Trivial bitcast if the types are the same size and the destination 317 // vector type is legal. 318 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 319 TLI.isTypeLegal(ValueVT)) 320 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 321 322 // Handle cases such as i8 -> <1 x i1> 323 if (ValueVT.getVectorNumElements() != 1) { 324 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 325 "non-trivial scalar-to-vector conversion"); 326 return DAG.getUNDEF(ValueVT); 327 } 328 329 if (ValueVT.getVectorNumElements() == 1 && 330 ValueVT.getVectorElementType() != PartEVT) { 331 bool Smaller = ValueVT.bitsLE(PartEVT); 332 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 333 DL, ValueVT.getScalarType(), Val); 334 } 335 336 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 337 } 338 339 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 340 SDValue Val, SDValue *Parts, unsigned NumParts, 341 MVT PartVT, const Value *V); 342 343 /// getCopyToParts - Create a series of nodes that contain the specified value 344 /// split into legal parts. If the parts contain more bits than Val, then, for 345 /// integers, ExtendKind can be used to specify how to generate the extra bits. 346 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V, 349 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 350 EVT ValueVT = Val.getValueType(); 351 352 // Handle the vector case separately. 353 if (ValueVT.isVector()) 354 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 355 356 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 357 unsigned PartBits = PartVT.getSizeInBits(); 358 unsigned OrigNumParts = NumParts; 359 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 360 361 if (NumParts == 0) 362 return; 363 364 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 365 EVT PartEVT = PartVT; 366 if (PartEVT == ValueVT) { 367 assert(NumParts == 1 && "No-op copy with multiple parts!"); 368 Parts[0] = Val; 369 return; 370 } 371 372 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 373 // If the parts cover more bits than the value has, promote the value. 374 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 375 assert(NumParts == 1 && "Do not know what to promote to!"); 376 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 377 } else { 378 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 379 ValueVT.isInteger() && 380 "Unknown mismatch!"); 381 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 382 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 383 if (PartVT == MVT::x86mmx) 384 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 385 } 386 } else if (PartBits == ValueVT.getSizeInBits()) { 387 // Different types of the same size. 388 assert(NumParts == 1 && PartEVT != ValueVT); 389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 390 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 391 // If the parts cover less bits than value has, truncate the value. 392 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 393 ValueVT.isInteger() && 394 "Unknown mismatch!"); 395 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 396 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 397 if (PartVT == MVT::x86mmx) 398 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 399 } 400 401 // The value may have changed - recompute ValueVT. 402 ValueVT = Val.getValueType(); 403 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 404 "Failed to tile the value with PartVT!"); 405 406 if (NumParts == 1) { 407 if (PartEVT != ValueVT) 408 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 409 "scalar-to-vector conversion failed"); 410 411 Parts[0] = Val; 412 return; 413 } 414 415 // Expand the value into multiple parts. 416 if (NumParts & (NumParts - 1)) { 417 // The number of parts is not a power of 2. Split off and copy the tail. 418 assert(PartVT.isInteger() && ValueVT.isInteger() && 419 "Do not know what to expand to!"); 420 unsigned RoundParts = 1 << Log2_32(NumParts); 421 unsigned RoundBits = RoundParts * PartBits; 422 unsigned OddParts = NumParts - RoundParts; 423 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 424 DAG.getIntPtrConstant(RoundBits)); 425 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 426 427 if (TLI.isBigEndian()) 428 // The odd parts were reversed by getCopyToParts - unreverse them. 429 std::reverse(Parts + RoundParts, Parts + NumParts); 430 431 NumParts = RoundParts; 432 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 433 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 434 } 435 436 // The number of parts is a power of 2. Repeatedly bisect the value using 437 // EXTRACT_ELEMENT. 438 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 439 EVT::getIntegerVT(*DAG.getContext(), 440 ValueVT.getSizeInBits()), 441 Val); 442 443 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 444 for (unsigned i = 0; i < NumParts; i += StepSize) { 445 unsigned ThisBits = StepSize * PartBits / 2; 446 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 447 SDValue &Part0 = Parts[i]; 448 SDValue &Part1 = Parts[i+StepSize/2]; 449 450 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 451 ThisVT, Part0, DAG.getIntPtrConstant(1)); 452 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 453 ThisVT, Part0, DAG.getIntPtrConstant(0)); 454 455 if (ThisBits == PartBits && ThisVT != PartVT) { 456 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 457 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 458 } 459 } 460 } 461 462 if (TLI.isBigEndian()) 463 std::reverse(Parts, Parts + OrigNumParts); 464 } 465 466 467 /// getCopyToPartsVector - Create a series of nodes that contain the specified 468 /// value split into legal parts. 469 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 470 SDValue Val, SDValue *Parts, unsigned NumParts, 471 MVT PartVT, const Value *V) { 472 EVT ValueVT = Val.getValueType(); 473 assert(ValueVT.isVector() && "Not a vector"); 474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 475 476 if (NumParts == 1) { 477 EVT PartEVT = PartVT; 478 if (PartEVT == ValueVT) { 479 // Nothing to do. 480 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 481 // Bitconvert vector->vector case. 482 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 483 } else if (PartVT.isVector() && 484 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 485 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 486 EVT ElementVT = PartVT.getVectorElementType(); 487 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 488 // undef elements. 489 SmallVector<SDValue, 16> Ops; 490 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 491 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 492 ElementVT, Val, DAG.getConstant(i, 493 TLI.getVectorIdxTy()))); 494 495 for (unsigned i = ValueVT.getVectorNumElements(), 496 e = PartVT.getVectorNumElements(); i != e; ++i) 497 Ops.push_back(DAG.getUNDEF(ElementVT)); 498 499 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 500 501 // FIXME: Use CONCAT for 2x -> 4x. 502 503 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 504 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 505 } else if (PartVT.isVector() && 506 PartEVT.getVectorElementType().bitsGE( 507 ValueVT.getVectorElementType()) && 508 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 509 510 // Promoted vector extract 511 bool Smaller = PartEVT.bitsLE(ValueVT); 512 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 513 DL, PartVT, Val); 514 } else{ 515 // Vector -> scalar conversion. 516 assert(ValueVT.getVectorNumElements() == 1 && 517 "Only trivial vector-to-scalar conversions should get here!"); 518 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 519 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 520 521 bool Smaller = ValueVT.bitsLE(PartVT); 522 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 523 DL, PartVT, Val); 524 } 525 526 Parts[0] = Val; 527 return; 528 } 529 530 // Handle a multi-element vector. 531 EVT IntermediateVT; 532 MVT RegisterVT; 533 unsigned NumIntermediates; 534 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 535 IntermediateVT, 536 NumIntermediates, RegisterVT); 537 unsigned NumElements = ValueVT.getVectorNumElements(); 538 539 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 540 NumParts = NumRegs; // Silence a compiler warning. 541 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 542 543 // Split the vector into intermediate operands. 544 SmallVector<SDValue, 8> Ops(NumIntermediates); 545 for (unsigned i = 0; i != NumIntermediates; ++i) { 546 if (IntermediateVT.isVector()) 547 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 548 IntermediateVT, Val, 549 DAG.getConstant(i * (NumElements / NumIntermediates), 550 TLI.getVectorIdxTy())); 551 else 552 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i, TLI.getVectorIdxTy())); 555 } 556 557 // Split the intermediate operands into legal parts. 558 if (NumParts == NumIntermediates) { 559 // If the register was not expanded, promote or copy the value, 560 // as appropriate. 561 for (unsigned i = 0; i != NumParts; ++i) 562 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 563 } else if (NumParts > 0) { 564 // If the intermediate type was expanded, split each the value into 565 // legal parts. 566 assert(NumParts % NumIntermediates == 0 && 567 "Must expand into a divisible number of parts!"); 568 unsigned Factor = NumParts / NumIntermediates; 569 for (unsigned i = 0; i != NumIntermediates; ++i) 570 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 571 } 572 } 573 574 namespace { 575 /// RegsForValue - This struct represents the registers (physical or virtual) 576 /// that a particular set of values is assigned, and the type information 577 /// about the value. The most common situation is to represent one value at a 578 /// time, but struct or array values are handled element-wise as multiple 579 /// values. The splitting of aggregates is performed recursively, so that we 580 /// never have aggregate-typed registers. The values at this point do not 581 /// necessarily have legal types, so each value may require one or more 582 /// registers of some legal type. 583 /// 584 struct RegsForValue { 585 /// ValueVTs - The value types of the values, which may not be legal, and 586 /// may need be promoted or synthesized from one or more registers. 587 /// 588 SmallVector<EVT, 4> ValueVTs; 589 590 /// RegVTs - The value types of the registers. This is the same size as 591 /// ValueVTs and it records, for each value, what the type of the assigned 592 /// register or registers are. (Individual values are never synthesized 593 /// from more than one type of register.) 594 /// 595 /// With virtual registers, the contents of RegVTs is redundant with TLI's 596 /// getRegisterType member function, however when with physical registers 597 /// it is necessary to have a separate record of the types. 598 /// 599 SmallVector<MVT, 4> RegVTs; 600 601 /// Regs - This list holds the registers assigned to the values. 602 /// Each legal or promoted value requires one register, and each 603 /// expanded value requires multiple registers. 604 /// 605 SmallVector<unsigned, 4> Regs; 606 607 RegsForValue() {} 608 609 RegsForValue(const SmallVector<unsigned, 4> ®s, 610 MVT regvt, EVT valuevt) 611 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 612 613 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 614 unsigned Reg, Type *Ty) { 615 ComputeValueVTs(tli, Ty, ValueVTs); 616 617 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 618 EVT ValueVT = ValueVTs[Value]; 619 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 620 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 621 for (unsigned i = 0; i != NumRegs; ++i) 622 Regs.push_back(Reg + i); 623 RegVTs.push_back(RegisterVT); 624 Reg += NumRegs; 625 } 626 } 627 628 /// append - Add the specified values to this one. 629 void append(const RegsForValue &RHS) { 630 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 631 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 632 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 633 } 634 635 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 636 /// this value and returns the result as a ValueVTs value. This uses 637 /// Chain/Flag as the input and updates them for the output Chain/Flag. 638 /// If the Flag pointer is NULL, no flag is used. 639 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 640 SDLoc dl, 641 SDValue &Chain, SDValue *Flag, 642 const Value *V = nullptr) const; 643 644 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 645 /// specified value into the registers specified by this object. This uses 646 /// Chain/Flag as the input and updates them for the output Chain/Flag. 647 /// If the Flag pointer is NULL, no flag is used. 648 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 649 SDValue &Chain, SDValue *Flag, const Value *V) const; 650 651 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 652 /// operand list. This adds the code marker, matching input operand index 653 /// (if applicable), and includes the number of values added into it. 654 void AddInlineAsmOperands(unsigned Kind, 655 bool HasMatching, unsigned MatchingIdx, 656 SelectionDAG &DAG, 657 std::vector<SDValue> &Ops) const; 658 }; 659 } 660 661 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 662 /// this value and returns the result as a ValueVT value. This uses 663 /// Chain/Flag as the input and updates them for the output Chain/Flag. 664 /// If the Flag pointer is NULL, no flag is used. 665 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 666 FunctionLoweringInfo &FuncInfo, 667 SDLoc dl, 668 SDValue &Chain, SDValue *Flag, 669 const Value *V) const { 670 // A Value with type {} or [0 x %t] needs no registers. 671 if (ValueVTs.empty()) 672 return SDValue(); 673 674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 675 676 // Assemble the legal parts into the final values. 677 SmallVector<SDValue, 4> Values(ValueVTs.size()); 678 SmallVector<SDValue, 8> Parts; 679 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 680 // Copy the legal parts from the registers. 681 EVT ValueVT = ValueVTs[Value]; 682 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 683 MVT RegisterVT = RegVTs[Value]; 684 685 Parts.resize(NumRegs); 686 for (unsigned i = 0; i != NumRegs; ++i) { 687 SDValue P; 688 if (!Flag) { 689 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 690 } else { 691 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 692 *Flag = P.getValue(2); 693 } 694 695 Chain = P.getValue(1); 696 Parts[i] = P; 697 698 // If the source register was virtual and if we know something about it, 699 // add an assert node. 700 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 701 !RegisterVT.isInteger() || RegisterVT.isVector()) 702 continue; 703 704 const FunctionLoweringInfo::LiveOutInfo *LOI = 705 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 706 if (!LOI) 707 continue; 708 709 unsigned RegSize = RegisterVT.getSizeInBits(); 710 unsigned NumSignBits = LOI->NumSignBits; 711 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 712 713 if (NumZeroBits == RegSize) { 714 // The current value is a zero. 715 // Explicitly express that as it would be easier for 716 // optimizations to kick in. 717 Parts[i] = DAG.getConstant(0, RegisterVT); 718 continue; 719 } 720 721 // FIXME: We capture more information than the dag can represent. For 722 // now, just use the tightest assertzext/assertsext possible. 723 bool isSExt = true; 724 EVT FromVT(MVT::Other); 725 if (NumSignBits == RegSize) 726 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 727 else if (NumZeroBits >= RegSize-1) 728 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 729 else if (NumSignBits > RegSize-8) 730 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 731 else if (NumZeroBits >= RegSize-8) 732 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 733 else if (NumSignBits > RegSize-16) 734 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 735 else if (NumZeroBits >= RegSize-16) 736 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 737 else if (NumSignBits > RegSize-32) 738 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 739 else if (NumZeroBits >= RegSize-32) 740 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 741 else 742 continue; 743 744 // Add an assertion node. 745 assert(FromVT != MVT::Other); 746 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 747 RegisterVT, P, DAG.getValueType(FromVT)); 748 } 749 750 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 751 NumRegs, RegisterVT, ValueVT, V); 752 Part += NumRegs; 753 Parts.clear(); 754 } 755 756 return DAG.getNode(ISD::MERGE_VALUES, dl, 757 DAG.getVTList(ValueVTs), 758 &Values[0], ValueVTs.size()); 759 } 760 761 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 762 /// specified value into the registers specified by this object. This uses 763 /// Chain/Flag as the input and updates them for the output Chain/Flag. 764 /// If the Flag pointer is NULL, no flag is used. 765 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 766 SDValue &Chain, SDValue *Flag, 767 const Value *V) const { 768 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 769 770 // Get the list of the values's legal parts. 771 unsigned NumRegs = Regs.size(); 772 SmallVector<SDValue, 8> Parts(NumRegs); 773 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 774 EVT ValueVT = ValueVTs[Value]; 775 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 776 MVT RegisterVT = RegVTs[Value]; 777 ISD::NodeType ExtendKind = 778 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 779 780 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 781 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 782 Part += NumParts; 783 } 784 785 // Copy the parts into the registers. 786 SmallVector<SDValue, 8> Chains(NumRegs); 787 for (unsigned i = 0; i != NumRegs; ++i) { 788 SDValue Part; 789 if (!Flag) { 790 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 791 } else { 792 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 793 *Flag = Part.getValue(1); 794 } 795 796 Chains[i] = Part.getValue(0); 797 } 798 799 if (NumRegs == 1 || Flag) 800 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 801 // flagged to it. That is the CopyToReg nodes and the user are considered 802 // a single scheduling unit. If we create a TokenFactor and return it as 803 // chain, then the TokenFactor is both a predecessor (operand) of the 804 // user as well as a successor (the TF operands are flagged to the user). 805 // c1, f1 = CopyToReg 806 // c2, f2 = CopyToReg 807 // c3 = TokenFactor c1, c2 808 // ... 809 // = op c3, ..., f2 810 Chain = Chains[NumRegs-1]; 811 else 812 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 813 } 814 815 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 816 /// operand list. This adds the code marker and includes the number of 817 /// values added into it. 818 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 819 unsigned MatchingIdx, 820 SelectionDAG &DAG, 821 std::vector<SDValue> &Ops) const { 822 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 823 824 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 825 if (HasMatching) 826 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 827 else if (!Regs.empty() && 828 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 829 // Put the register class of the virtual registers in the flag word. That 830 // way, later passes can recompute register class constraints for inline 831 // assembly as well as normal instructions. 832 // Don't do this for tied operands that can use the regclass information 833 // from the def. 834 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 835 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 836 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 837 } 838 839 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 840 Ops.push_back(Res); 841 842 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 843 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 844 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 845 MVT RegisterVT = RegVTs[Value]; 846 for (unsigned i = 0; i != NumRegs; ++i) { 847 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 848 unsigned TheReg = Regs[Reg++]; 849 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 850 851 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 852 // If we clobbered the stack pointer, MFI should know about it. 853 assert(DAG.getMachineFunction().getFrameInfo()-> 854 hasInlineAsmWithSPAdjust()); 855 } 856 } 857 } 858 } 859 860 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 861 const TargetLibraryInfo *li) { 862 AA = &aa; 863 GFI = gfi; 864 LibInfo = li; 865 DL = DAG.getTarget().getDataLayout(); 866 Context = DAG.getContext(); 867 LPadToCallSiteMap.clear(); 868 } 869 870 /// clear - Clear out the current SelectionDAG and the associated 871 /// state and prepare this SelectionDAGBuilder object to be used 872 /// for a new block. This doesn't clear out information about 873 /// additional blocks that are needed to complete switch lowering 874 /// or PHI node updating; that information is cleared out as it is 875 /// consumed. 876 void SelectionDAGBuilder::clear() { 877 NodeMap.clear(); 878 UnusedArgNodeMap.clear(); 879 PendingLoads.clear(); 880 PendingExports.clear(); 881 CurInst = nullptr; 882 HasTailCall = false; 883 SDNodeOrder = LowestSDNodeOrder; 884 } 885 886 /// clearDanglingDebugInfo - Clear the dangling debug information 887 /// map. This function is separated from the clear so that debug 888 /// information that is dangling in a basic block can be properly 889 /// resolved in a different basic block. This allows the 890 /// SelectionDAG to resolve dangling debug information attached 891 /// to PHI nodes. 892 void SelectionDAGBuilder::clearDanglingDebugInfo() { 893 DanglingDebugInfoMap.clear(); 894 } 895 896 /// getRoot - Return the current virtual root of the Selection DAG, 897 /// flushing any PendingLoad items. This must be done before emitting 898 /// a store or any other node that may need to be ordered after any 899 /// prior load instructions. 900 /// 901 SDValue SelectionDAGBuilder::getRoot() { 902 if (PendingLoads.empty()) 903 return DAG.getRoot(); 904 905 if (PendingLoads.size() == 1) { 906 SDValue Root = PendingLoads[0]; 907 DAG.setRoot(Root); 908 PendingLoads.clear(); 909 return Root; 910 } 911 912 // Otherwise, we have to make a token factor node. 913 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 914 &PendingLoads[0], PendingLoads.size()); 915 PendingLoads.clear(); 916 DAG.setRoot(Root); 917 return Root; 918 } 919 920 /// getControlRoot - Similar to getRoot, but instead of flushing all the 921 /// PendingLoad items, flush all the PendingExports items. It is necessary 922 /// to do this before emitting a terminator instruction. 923 /// 924 SDValue SelectionDAGBuilder::getControlRoot() { 925 SDValue Root = DAG.getRoot(); 926 927 if (PendingExports.empty()) 928 return Root; 929 930 // Turn all of the CopyToReg chains into one factored node. 931 if (Root.getOpcode() != ISD::EntryToken) { 932 unsigned i = 0, e = PendingExports.size(); 933 for (; i != e; ++i) { 934 assert(PendingExports[i].getNode()->getNumOperands() > 1); 935 if (PendingExports[i].getNode()->getOperand(0) == Root) 936 break; // Don't add the root if we already indirectly depend on it. 937 } 938 939 if (i == e) 940 PendingExports.push_back(Root); 941 } 942 943 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 944 &PendingExports[0], 945 PendingExports.size()); 946 PendingExports.clear(); 947 DAG.setRoot(Root); 948 return Root; 949 } 950 951 void SelectionDAGBuilder::visit(const Instruction &I) { 952 // Set up outgoing PHI node register values before emitting the terminator. 953 if (isa<TerminatorInst>(&I)) 954 HandlePHINodesInSuccessorBlocks(I.getParent()); 955 956 ++SDNodeOrder; 957 958 CurInst = &I; 959 960 visit(I.getOpcode(), I); 961 962 if (!isa<TerminatorInst>(&I) && !HasTailCall) 963 CopyToExportRegsIfNeeded(&I); 964 965 CurInst = nullptr; 966 } 967 968 void SelectionDAGBuilder::visitPHI(const PHINode &) { 969 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 970 } 971 972 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 973 // Note: this doesn't use InstVisitor, because it has to work with 974 // ConstantExpr's in addition to instructions. 975 switch (Opcode) { 976 default: llvm_unreachable("Unknown instruction type encountered!"); 977 // Build the switch statement using the Instruction.def file. 978 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 979 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 980 #include "llvm/IR/Instruction.def" 981 } 982 } 983 984 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 985 // generate the debug data structures now that we've seen its definition. 986 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 987 SDValue Val) { 988 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 989 if (DDI.getDI()) { 990 const DbgValueInst *DI = DDI.getDI(); 991 DebugLoc dl = DDI.getdl(); 992 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 993 MDNode *Variable = DI->getVariable(); 994 uint64_t Offset = DI->getOffset(); 995 // A dbg.value for an alloca is always indirect. 996 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 997 SDDbgValue *SDV; 998 if (Val.getNode()) { 999 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) { 1000 SDV = DAG.getDbgValue(Variable, Val.getNode(), 1001 Val.getResNo(), IsIndirect, 1002 Offset, dl, DbgSDNodeOrder); 1003 DAG.AddDbgValue(SDV, Val.getNode(), false); 1004 } 1005 } else 1006 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1007 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1008 } 1009 } 1010 1011 /// getValue - Return an SDValue for the given Value. 1012 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1013 // If we already have an SDValue for this value, use it. It's important 1014 // to do this first, so that we don't create a CopyFromReg if we already 1015 // have a regular SDValue. 1016 SDValue &N = NodeMap[V]; 1017 if (N.getNode()) return N; 1018 1019 // If there's a virtual register allocated and initialized for this 1020 // value, use it. 1021 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1022 if (It != FuncInfo.ValueMap.end()) { 1023 unsigned InReg = It->second; 1024 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1025 InReg, V->getType()); 1026 SDValue Chain = DAG.getEntryNode(); 1027 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1028 resolveDanglingDebugInfo(V, N); 1029 return N; 1030 } 1031 1032 // Otherwise create a new SDValue and remember it. 1033 SDValue Val = getValueImpl(V); 1034 NodeMap[V] = Val; 1035 resolveDanglingDebugInfo(V, Val); 1036 return Val; 1037 } 1038 1039 /// getNonRegisterValue - Return an SDValue for the given Value, but 1040 /// don't look in FuncInfo.ValueMap for a virtual register. 1041 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1042 // If we already have an SDValue for this value, use it. 1043 SDValue &N = NodeMap[V]; 1044 if (N.getNode()) return N; 1045 1046 // Otherwise create a new SDValue and remember it. 1047 SDValue Val = getValueImpl(V); 1048 NodeMap[V] = Val; 1049 resolveDanglingDebugInfo(V, Val); 1050 return Val; 1051 } 1052 1053 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1054 /// Create an SDValue for the given value. 1055 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1056 const TargetLowering *TLI = TM.getTargetLowering(); 1057 1058 if (const Constant *C = dyn_cast<Constant>(V)) { 1059 EVT VT = TLI->getValueType(V->getType(), true); 1060 1061 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1062 return DAG.getConstant(*CI, VT); 1063 1064 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1065 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1066 1067 if (isa<ConstantPointerNull>(C)) { 1068 unsigned AS = V->getType()->getPointerAddressSpace(); 1069 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1070 } 1071 1072 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1073 return DAG.getConstantFP(*CFP, VT); 1074 1075 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1076 return DAG.getUNDEF(VT); 1077 1078 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1079 visit(CE->getOpcode(), *CE); 1080 SDValue N1 = NodeMap[V]; 1081 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1082 return N1; 1083 } 1084 1085 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1086 SmallVector<SDValue, 4> Constants; 1087 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1088 OI != OE; ++OI) { 1089 SDNode *Val = getValue(*OI).getNode(); 1090 // If the operand is an empty aggregate, there are no values. 1091 if (!Val) continue; 1092 // Add each leaf value from the operand to the Constants list 1093 // to form a flattened list of all the values. 1094 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1095 Constants.push_back(SDValue(Val, i)); 1096 } 1097 1098 return DAG.getMergeValues(&Constants[0], Constants.size(), 1099 getCurSDLoc()); 1100 } 1101 1102 if (const ConstantDataSequential *CDS = 1103 dyn_cast<ConstantDataSequential>(C)) { 1104 SmallVector<SDValue, 4> Ops; 1105 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1106 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1107 // Add each leaf value from the operand to the Constants list 1108 // to form a flattened list of all the values. 1109 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1110 Ops.push_back(SDValue(Val, i)); 1111 } 1112 1113 if (isa<ArrayType>(CDS->getType())) 1114 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); 1115 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1116 VT, &Ops[0], Ops.size()); 1117 } 1118 1119 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1120 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1121 "Unknown struct or array constant!"); 1122 1123 SmallVector<EVT, 4> ValueVTs; 1124 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1125 unsigned NumElts = ValueVTs.size(); 1126 if (NumElts == 0) 1127 return SDValue(); // empty struct 1128 SmallVector<SDValue, 4> Constants(NumElts); 1129 for (unsigned i = 0; i != NumElts; ++i) { 1130 EVT EltVT = ValueVTs[i]; 1131 if (isa<UndefValue>(C)) 1132 Constants[i] = DAG.getUNDEF(EltVT); 1133 else if (EltVT.isFloatingPoint()) 1134 Constants[i] = DAG.getConstantFP(0, EltVT); 1135 else 1136 Constants[i] = DAG.getConstant(0, EltVT); 1137 } 1138 1139 return DAG.getMergeValues(&Constants[0], NumElts, 1140 getCurSDLoc()); 1141 } 1142 1143 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1144 return DAG.getBlockAddress(BA, VT); 1145 1146 VectorType *VecTy = cast<VectorType>(V->getType()); 1147 unsigned NumElements = VecTy->getNumElements(); 1148 1149 // Now that we know the number and type of the elements, get that number of 1150 // elements into the Ops array based on what kind of constant it is. 1151 SmallVector<SDValue, 16> Ops; 1152 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1153 for (unsigned i = 0; i != NumElements; ++i) 1154 Ops.push_back(getValue(CV->getOperand(i))); 1155 } else { 1156 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1157 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1158 1159 SDValue Op; 1160 if (EltVT.isFloatingPoint()) 1161 Op = DAG.getConstantFP(0, EltVT); 1162 else 1163 Op = DAG.getConstant(0, EltVT); 1164 Ops.assign(NumElements, Op); 1165 } 1166 1167 // Create a BUILD_VECTOR node. 1168 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1169 VT, &Ops[0], Ops.size()); 1170 } 1171 1172 // If this is a static alloca, generate it as the frameindex instead of 1173 // computation. 1174 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1175 DenseMap<const AllocaInst*, int>::iterator SI = 1176 FuncInfo.StaticAllocaMap.find(AI); 1177 if (SI != FuncInfo.StaticAllocaMap.end()) 1178 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1179 } 1180 1181 // If this is an instruction which fast-isel has deferred, select it now. 1182 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1183 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1184 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1185 SDValue Chain = DAG.getEntryNode(); 1186 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1187 } 1188 1189 llvm_unreachable("Can't get register for value!"); 1190 } 1191 1192 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1193 const TargetLowering *TLI = TM.getTargetLowering(); 1194 SDValue Chain = getControlRoot(); 1195 SmallVector<ISD::OutputArg, 8> Outs; 1196 SmallVector<SDValue, 8> OutVals; 1197 1198 if (!FuncInfo.CanLowerReturn) { 1199 unsigned DemoteReg = FuncInfo.DemoteRegister; 1200 const Function *F = I.getParent()->getParent(); 1201 1202 // Emit a store of the return value through the virtual register. 1203 // Leave Outs empty so that LowerReturn won't try to load return 1204 // registers the usual way. 1205 SmallVector<EVT, 1> PtrValueVTs; 1206 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1207 PtrValueVTs); 1208 1209 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1210 SDValue RetOp = getValue(I.getOperand(0)); 1211 1212 SmallVector<EVT, 4> ValueVTs; 1213 SmallVector<uint64_t, 4> Offsets; 1214 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1215 unsigned NumValues = ValueVTs.size(); 1216 1217 SmallVector<SDValue, 4> Chains(NumValues); 1218 for (unsigned i = 0; i != NumValues; ++i) { 1219 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1220 RetPtr.getValueType(), RetPtr, 1221 DAG.getIntPtrConstant(Offsets[i])); 1222 Chains[i] = 1223 DAG.getStore(Chain, getCurSDLoc(), 1224 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1225 // FIXME: better loc info would be nice. 1226 Add, MachinePointerInfo(), false, false, 0); 1227 } 1228 1229 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1230 MVT::Other, &Chains[0], NumValues); 1231 } else if (I.getNumOperands() != 0) { 1232 SmallVector<EVT, 4> ValueVTs; 1233 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1234 unsigned NumValues = ValueVTs.size(); 1235 if (NumValues) { 1236 SDValue RetOp = getValue(I.getOperand(0)); 1237 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1238 EVT VT = ValueVTs[j]; 1239 1240 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1241 1242 const Function *F = I.getParent()->getParent(); 1243 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1244 Attribute::SExt)) 1245 ExtendKind = ISD::SIGN_EXTEND; 1246 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1247 Attribute::ZExt)) 1248 ExtendKind = ISD::ZERO_EXTEND; 1249 1250 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1251 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1252 1253 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1254 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1255 SmallVector<SDValue, 4> Parts(NumParts); 1256 getCopyToParts(DAG, getCurSDLoc(), 1257 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1258 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1259 1260 // 'inreg' on function refers to return value 1261 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1262 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1263 Attribute::InReg)) 1264 Flags.setInReg(); 1265 1266 // Propagate extension type if any 1267 if (ExtendKind == ISD::SIGN_EXTEND) 1268 Flags.setSExt(); 1269 else if (ExtendKind == ISD::ZERO_EXTEND) 1270 Flags.setZExt(); 1271 1272 for (unsigned i = 0; i < NumParts; ++i) { 1273 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1274 VT, /*isfixed=*/true, 0, 0)); 1275 OutVals.push_back(Parts[i]); 1276 } 1277 } 1278 } 1279 } 1280 1281 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1282 CallingConv::ID CallConv = 1283 DAG.getMachineFunction().getFunction()->getCallingConv(); 1284 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1285 Outs, OutVals, getCurSDLoc(), 1286 DAG); 1287 1288 // Verify that the target's LowerReturn behaved as expected. 1289 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1290 "LowerReturn didn't return a valid chain!"); 1291 1292 // Update the DAG with the new chain value resulting from return lowering. 1293 DAG.setRoot(Chain); 1294 } 1295 1296 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1297 /// created for it, emit nodes to copy the value into the virtual 1298 /// registers. 1299 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1300 // Skip empty types 1301 if (V->getType()->isEmptyTy()) 1302 return; 1303 1304 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1305 if (VMI != FuncInfo.ValueMap.end()) { 1306 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1307 CopyValueToVirtualRegister(V, VMI->second); 1308 } 1309 } 1310 1311 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1312 /// the current basic block, add it to ValueMap now so that we'll get a 1313 /// CopyTo/FromReg. 1314 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1315 // No need to export constants. 1316 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1317 1318 // Already exported? 1319 if (FuncInfo.isExportedInst(V)) return; 1320 1321 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1322 CopyValueToVirtualRegister(V, Reg); 1323 } 1324 1325 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1326 const BasicBlock *FromBB) { 1327 // The operands of the setcc have to be in this block. We don't know 1328 // how to export them from some other block. 1329 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1330 // Can export from current BB. 1331 if (VI->getParent() == FromBB) 1332 return true; 1333 1334 // Is already exported, noop. 1335 return FuncInfo.isExportedInst(V); 1336 } 1337 1338 // If this is an argument, we can export it if the BB is the entry block or 1339 // if it is already exported. 1340 if (isa<Argument>(V)) { 1341 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1342 return true; 1343 1344 // Otherwise, can only export this if it is already exported. 1345 return FuncInfo.isExportedInst(V); 1346 } 1347 1348 // Otherwise, constants can always be exported. 1349 return true; 1350 } 1351 1352 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1353 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1354 const MachineBasicBlock *Dst) const { 1355 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1356 if (!BPI) 1357 return 0; 1358 const BasicBlock *SrcBB = Src->getBasicBlock(); 1359 const BasicBlock *DstBB = Dst->getBasicBlock(); 1360 return BPI->getEdgeWeight(SrcBB, DstBB); 1361 } 1362 1363 void SelectionDAGBuilder:: 1364 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1365 uint32_t Weight /* = 0 */) { 1366 if (!Weight) 1367 Weight = getEdgeWeight(Src, Dst); 1368 Src->addSuccessor(Dst, Weight); 1369 } 1370 1371 1372 static bool InBlock(const Value *V, const BasicBlock *BB) { 1373 if (const Instruction *I = dyn_cast<Instruction>(V)) 1374 return I->getParent() == BB; 1375 return true; 1376 } 1377 1378 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1379 /// This function emits a branch and is used at the leaves of an OR or an 1380 /// AND operator tree. 1381 /// 1382 void 1383 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1384 MachineBasicBlock *TBB, 1385 MachineBasicBlock *FBB, 1386 MachineBasicBlock *CurBB, 1387 MachineBasicBlock *SwitchBB, 1388 uint32_t TWeight, 1389 uint32_t FWeight) { 1390 const BasicBlock *BB = CurBB->getBasicBlock(); 1391 1392 // If the leaf of the tree is a comparison, merge the condition into 1393 // the caseblock. 1394 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1395 // The operands of the cmp have to be in this block. We don't know 1396 // how to export them from some other block. If this is the first block 1397 // of the sequence, no exporting is needed. 1398 if (CurBB == SwitchBB || 1399 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1400 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1401 ISD::CondCode Condition; 1402 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1403 Condition = getICmpCondCode(IC->getPredicate()); 1404 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1405 Condition = getFCmpCondCode(FC->getPredicate()); 1406 if (TM.Options.NoNaNsFPMath) 1407 Condition = getFCmpCodeWithoutNaN(Condition); 1408 } else { 1409 Condition = ISD::SETEQ; // silence warning. 1410 llvm_unreachable("Unknown compare instruction"); 1411 } 1412 1413 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1414 TBB, FBB, CurBB, TWeight, FWeight); 1415 SwitchCases.push_back(CB); 1416 return; 1417 } 1418 } 1419 1420 // Create a CaseBlock record representing this branch. 1421 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1422 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1423 SwitchCases.push_back(CB); 1424 } 1425 1426 /// Scale down both weights to fit into uint32_t. 1427 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1428 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1429 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1430 NewTrue = NewTrue / Scale; 1431 NewFalse = NewFalse / Scale; 1432 } 1433 1434 /// FindMergedConditions - If Cond is an expression like 1435 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1436 MachineBasicBlock *TBB, 1437 MachineBasicBlock *FBB, 1438 MachineBasicBlock *CurBB, 1439 MachineBasicBlock *SwitchBB, 1440 unsigned Opc, uint32_t TWeight, 1441 uint32_t FWeight) { 1442 // If this node is not part of the or/and tree, emit it as a branch. 1443 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1444 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1445 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1446 BOp->getParent() != CurBB->getBasicBlock() || 1447 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1448 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1449 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1450 TWeight, FWeight); 1451 return; 1452 } 1453 1454 // Create TmpBB after CurBB. 1455 MachineFunction::iterator BBI = CurBB; 1456 MachineFunction &MF = DAG.getMachineFunction(); 1457 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1458 CurBB->getParent()->insert(++BBI, TmpBB); 1459 1460 if (Opc == Instruction::Or) { 1461 // Codegen X | Y as: 1462 // BB1: 1463 // jmp_if_X TBB 1464 // jmp TmpBB 1465 // TmpBB: 1466 // jmp_if_Y TBB 1467 // jmp FBB 1468 // 1469 1470 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1471 // The requirement is that 1472 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1473 // = TrueProb for orignal BB. 1474 // Assuming the orignal weights are A and B, one choice is to set BB1's 1475 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1476 // assumes that 1477 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1478 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1479 // TmpBB, but the math is more complicated. 1480 1481 uint64_t NewTrueWeight = TWeight; 1482 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1483 ScaleWeights(NewTrueWeight, NewFalseWeight); 1484 // Emit the LHS condition. 1485 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1486 NewTrueWeight, NewFalseWeight); 1487 1488 NewTrueWeight = TWeight; 1489 NewFalseWeight = 2 * (uint64_t)FWeight; 1490 ScaleWeights(NewTrueWeight, NewFalseWeight); 1491 // Emit the RHS condition into TmpBB. 1492 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1493 NewTrueWeight, NewFalseWeight); 1494 } else { 1495 assert(Opc == Instruction::And && "Unknown merge op!"); 1496 // Codegen X & Y as: 1497 // BB1: 1498 // jmp_if_X TmpBB 1499 // jmp FBB 1500 // TmpBB: 1501 // jmp_if_Y TBB 1502 // jmp FBB 1503 // 1504 // This requires creation of TmpBB after CurBB. 1505 1506 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1507 // The requirement is that 1508 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1509 // = FalseProb for orignal BB. 1510 // Assuming the orignal weights are A and B, one choice is to set BB1's 1511 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1512 // assumes that 1513 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1514 1515 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1516 uint64_t NewFalseWeight = FWeight; 1517 ScaleWeights(NewTrueWeight, NewFalseWeight); 1518 // Emit the LHS condition. 1519 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1520 NewTrueWeight, NewFalseWeight); 1521 1522 NewTrueWeight = 2 * (uint64_t)TWeight; 1523 NewFalseWeight = FWeight; 1524 ScaleWeights(NewTrueWeight, NewFalseWeight); 1525 // Emit the RHS condition into TmpBB. 1526 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1527 NewTrueWeight, NewFalseWeight); 1528 } 1529 } 1530 1531 /// If the set of cases should be emitted as a series of branches, return true. 1532 /// If we should emit this as a bunch of and/or'd together conditions, return 1533 /// false. 1534 bool 1535 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1536 if (Cases.size() != 2) return true; 1537 1538 // If this is two comparisons of the same values or'd or and'd together, they 1539 // will get folded into a single comparison, so don't emit two blocks. 1540 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1541 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1542 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1543 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1544 return false; 1545 } 1546 1547 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1548 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1549 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1550 Cases[0].CC == Cases[1].CC && 1551 isa<Constant>(Cases[0].CmpRHS) && 1552 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1553 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1554 return false; 1555 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1556 return false; 1557 } 1558 1559 return true; 1560 } 1561 1562 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1563 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1564 1565 // Update machine-CFG edges. 1566 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1567 1568 // Figure out which block is immediately after the current one. 1569 MachineBasicBlock *NextBlock = nullptr; 1570 MachineFunction::iterator BBI = BrMBB; 1571 if (++BBI != FuncInfo.MF->end()) 1572 NextBlock = BBI; 1573 1574 if (I.isUnconditional()) { 1575 // Update machine-CFG edges. 1576 BrMBB->addSuccessor(Succ0MBB); 1577 1578 // If this is not a fall-through branch or optimizations are switched off, 1579 // emit the branch. 1580 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1581 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1582 MVT::Other, getControlRoot(), 1583 DAG.getBasicBlock(Succ0MBB))); 1584 1585 return; 1586 } 1587 1588 // If this condition is one of the special cases we handle, do special stuff 1589 // now. 1590 const Value *CondVal = I.getCondition(); 1591 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1592 1593 // If this is a series of conditions that are or'd or and'd together, emit 1594 // this as a sequence of branches instead of setcc's with and/or operations. 1595 // As long as jumps are not expensive, this should improve performance. 1596 // For example, instead of something like: 1597 // cmp A, B 1598 // C = seteq 1599 // cmp D, E 1600 // F = setle 1601 // or C, F 1602 // jnz foo 1603 // Emit: 1604 // cmp A, B 1605 // je foo 1606 // cmp D, E 1607 // jle foo 1608 // 1609 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1610 if (!TM.getTargetLowering()->isJumpExpensive() && 1611 BOp->hasOneUse() && 1612 (BOp->getOpcode() == Instruction::And || 1613 BOp->getOpcode() == Instruction::Or)) { 1614 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1615 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1616 getEdgeWeight(BrMBB, Succ1MBB)); 1617 // If the compares in later blocks need to use values not currently 1618 // exported from this block, export them now. This block should always 1619 // be the first entry. 1620 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1621 1622 // Allow some cases to be rejected. 1623 if (ShouldEmitAsBranches(SwitchCases)) { 1624 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1625 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1626 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1627 } 1628 1629 // Emit the branch for this block. 1630 visitSwitchCase(SwitchCases[0], BrMBB); 1631 SwitchCases.erase(SwitchCases.begin()); 1632 return; 1633 } 1634 1635 // Okay, we decided not to do this, remove any inserted MBB's and clear 1636 // SwitchCases. 1637 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1638 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1639 1640 SwitchCases.clear(); 1641 } 1642 } 1643 1644 // Create a CaseBlock record representing this branch. 1645 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1646 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1647 1648 // Use visitSwitchCase to actually insert the fast branch sequence for this 1649 // cond branch. 1650 visitSwitchCase(CB, BrMBB); 1651 } 1652 1653 /// visitSwitchCase - Emits the necessary code to represent a single node in 1654 /// the binary search tree resulting from lowering a switch instruction. 1655 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1656 MachineBasicBlock *SwitchBB) { 1657 SDValue Cond; 1658 SDValue CondLHS = getValue(CB.CmpLHS); 1659 SDLoc dl = getCurSDLoc(); 1660 1661 // Build the setcc now. 1662 if (!CB.CmpMHS) { 1663 // Fold "(X == true)" to X and "(X == false)" to !X to 1664 // handle common cases produced by branch lowering. 1665 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1666 CB.CC == ISD::SETEQ) 1667 Cond = CondLHS; 1668 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1669 CB.CC == ISD::SETEQ) { 1670 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1671 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1672 } else 1673 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1674 } else { 1675 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1676 1677 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1678 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1679 1680 SDValue CmpOp = getValue(CB.CmpMHS); 1681 EVT VT = CmpOp.getValueType(); 1682 1683 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1684 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1685 ISD::SETLE); 1686 } else { 1687 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1688 VT, CmpOp, DAG.getConstant(Low, VT)); 1689 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1690 DAG.getConstant(High-Low, VT), ISD::SETULE); 1691 } 1692 } 1693 1694 // Update successor info 1695 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1696 // TrueBB and FalseBB are always different unless the incoming IR is 1697 // degenerate. This only happens when running llc on weird IR. 1698 if (CB.TrueBB != CB.FalseBB) 1699 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1700 1701 // Set NextBlock to be the MBB immediately after the current one, if any. 1702 // This is used to avoid emitting unnecessary branches to the next block. 1703 MachineBasicBlock *NextBlock = nullptr; 1704 MachineFunction::iterator BBI = SwitchBB; 1705 if (++BBI != FuncInfo.MF->end()) 1706 NextBlock = BBI; 1707 1708 // If the lhs block is the next block, invert the condition so that we can 1709 // fall through to the lhs instead of the rhs block. 1710 if (CB.TrueBB == NextBlock) { 1711 std::swap(CB.TrueBB, CB.FalseBB); 1712 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1713 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1714 } 1715 1716 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1717 MVT::Other, getControlRoot(), Cond, 1718 DAG.getBasicBlock(CB.TrueBB)); 1719 1720 // Insert the false branch. Do this even if it's a fall through branch, 1721 // this makes it easier to do DAG optimizations which require inverting 1722 // the branch condition. 1723 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1724 DAG.getBasicBlock(CB.FalseBB)); 1725 1726 DAG.setRoot(BrCond); 1727 } 1728 1729 /// visitJumpTable - Emit JumpTable node in the current MBB 1730 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1731 // Emit the code for the jump table 1732 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1733 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1734 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1735 JT.Reg, PTy); 1736 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1737 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1738 MVT::Other, Index.getValue(1), 1739 Table, Index); 1740 DAG.setRoot(BrJumpTable); 1741 } 1742 1743 /// visitJumpTableHeader - This function emits necessary code to produce index 1744 /// in the JumpTable from switch case. 1745 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1746 JumpTableHeader &JTH, 1747 MachineBasicBlock *SwitchBB) { 1748 // Subtract the lowest switch case value from the value being switched on and 1749 // conditional branch to default mbb if the result is greater than the 1750 // difference between smallest and largest cases. 1751 SDValue SwitchOp = getValue(JTH.SValue); 1752 EVT VT = SwitchOp.getValueType(); 1753 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1754 DAG.getConstant(JTH.First, VT)); 1755 1756 // The SDNode we just created, which holds the value being switched on minus 1757 // the smallest case value, needs to be copied to a virtual register so it 1758 // can be used as an index into the jump table in a subsequent basic block. 1759 // This value may be smaller or larger than the target's pointer type, and 1760 // therefore require extension or truncating. 1761 const TargetLowering *TLI = TM.getTargetLowering(); 1762 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1763 1764 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1765 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1766 JumpTableReg, SwitchOp); 1767 JT.Reg = JumpTableReg; 1768 1769 // Emit the range check for the jump table, and branch to the default block 1770 // for the switch statement if the value being switched on exceeds the largest 1771 // case in the switch. 1772 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1773 TLI->getSetCCResultType(*DAG.getContext(), 1774 Sub.getValueType()), 1775 Sub, 1776 DAG.getConstant(JTH.Last - JTH.First,VT), 1777 ISD::SETUGT); 1778 1779 // Set NextBlock to be the MBB immediately after the current one, if any. 1780 // This is used to avoid emitting unnecessary branches to the next block. 1781 MachineBasicBlock *NextBlock = nullptr; 1782 MachineFunction::iterator BBI = SwitchBB; 1783 1784 if (++BBI != FuncInfo.MF->end()) 1785 NextBlock = BBI; 1786 1787 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1788 MVT::Other, CopyTo, CMP, 1789 DAG.getBasicBlock(JT.Default)); 1790 1791 if (JT.MBB != NextBlock) 1792 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1793 DAG.getBasicBlock(JT.MBB)); 1794 1795 DAG.setRoot(BrCond); 1796 } 1797 1798 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1799 /// tail spliced into a stack protector check success bb. 1800 /// 1801 /// For a high level explanation of how this fits into the stack protector 1802 /// generation see the comment on the declaration of class 1803 /// StackProtectorDescriptor. 1804 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1805 MachineBasicBlock *ParentBB) { 1806 1807 // First create the loads to the guard/stack slot for the comparison. 1808 const TargetLowering *TLI = TM.getTargetLowering(); 1809 EVT PtrTy = TLI->getPointerTy(); 1810 1811 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1812 int FI = MFI->getStackProtectorIndex(); 1813 1814 const Value *IRGuard = SPD.getGuard(); 1815 SDValue GuardPtr = getValue(IRGuard); 1816 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1817 1818 unsigned Align = 1819 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1820 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1821 GuardPtr, MachinePointerInfo(IRGuard, 0), 1822 true, false, false, Align); 1823 1824 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1825 StackSlotPtr, 1826 MachinePointerInfo::getFixedStack(FI), 1827 true, false, false, Align); 1828 1829 // Perform the comparison via a subtract/getsetcc. 1830 EVT VT = Guard.getValueType(); 1831 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1832 1833 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1834 TLI->getSetCCResultType(*DAG.getContext(), 1835 Sub.getValueType()), 1836 Sub, DAG.getConstant(0, VT), 1837 ISD::SETNE); 1838 1839 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1840 // branch to failure MBB. 1841 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1842 MVT::Other, StackSlot.getOperand(0), 1843 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1844 // Otherwise branch to success MBB. 1845 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1846 MVT::Other, BrCond, 1847 DAG.getBasicBlock(SPD.getSuccessMBB())); 1848 1849 DAG.setRoot(Br); 1850 } 1851 1852 /// Codegen the failure basic block for a stack protector check. 1853 /// 1854 /// A failure stack protector machine basic block consists simply of a call to 1855 /// __stack_chk_fail(). 1856 /// 1857 /// For a high level explanation of how this fits into the stack protector 1858 /// generation see the comment on the declaration of class 1859 /// StackProtectorDescriptor. 1860 void 1861 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1862 const TargetLowering *TLI = TM.getTargetLowering(); 1863 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1864 MVT::isVoid, nullptr, 0, false, 1865 getCurSDLoc(), false, false).second; 1866 DAG.setRoot(Chain); 1867 } 1868 1869 /// visitBitTestHeader - This function emits necessary code to produce value 1870 /// suitable for "bit tests" 1871 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1872 MachineBasicBlock *SwitchBB) { 1873 // Subtract the minimum value 1874 SDValue SwitchOp = getValue(B.SValue); 1875 EVT VT = SwitchOp.getValueType(); 1876 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1877 DAG.getConstant(B.First, VT)); 1878 1879 // Check range 1880 const TargetLowering *TLI = TM.getTargetLowering(); 1881 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1882 TLI->getSetCCResultType(*DAG.getContext(), 1883 Sub.getValueType()), 1884 Sub, DAG.getConstant(B.Range, VT), 1885 ISD::SETUGT); 1886 1887 // Determine the type of the test operands. 1888 bool UsePtrType = false; 1889 if (!TLI->isTypeLegal(VT)) 1890 UsePtrType = true; 1891 else { 1892 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1893 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1894 // Switch table case range are encoded into series of masks. 1895 // Just use pointer type, it's guaranteed to fit. 1896 UsePtrType = true; 1897 break; 1898 } 1899 } 1900 if (UsePtrType) { 1901 VT = TLI->getPointerTy(); 1902 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1903 } 1904 1905 B.RegVT = VT.getSimpleVT(); 1906 B.Reg = FuncInfo.CreateReg(B.RegVT); 1907 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1908 B.Reg, Sub); 1909 1910 // Set NextBlock to be the MBB immediately after the current one, if any. 1911 // This is used to avoid emitting unnecessary branches to the next block. 1912 MachineBasicBlock *NextBlock = nullptr; 1913 MachineFunction::iterator BBI = SwitchBB; 1914 if (++BBI != FuncInfo.MF->end()) 1915 NextBlock = BBI; 1916 1917 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1918 1919 addSuccessorWithWeight(SwitchBB, B.Default); 1920 addSuccessorWithWeight(SwitchBB, MBB); 1921 1922 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1923 MVT::Other, CopyTo, RangeCmp, 1924 DAG.getBasicBlock(B.Default)); 1925 1926 if (MBB != NextBlock) 1927 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1928 DAG.getBasicBlock(MBB)); 1929 1930 DAG.setRoot(BrRange); 1931 } 1932 1933 /// visitBitTestCase - this function produces one "bit test" 1934 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1935 MachineBasicBlock* NextMBB, 1936 uint32_t BranchWeightToNext, 1937 unsigned Reg, 1938 BitTestCase &B, 1939 MachineBasicBlock *SwitchBB) { 1940 MVT VT = BB.RegVT; 1941 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1942 Reg, VT); 1943 SDValue Cmp; 1944 unsigned PopCount = CountPopulation_64(B.Mask); 1945 const TargetLowering *TLI = TM.getTargetLowering(); 1946 if (PopCount == 1) { 1947 // Testing for a single bit; just compare the shift count with what it 1948 // would need to be to shift a 1 bit in that position. 1949 Cmp = DAG.getSetCC(getCurSDLoc(), 1950 TLI->getSetCCResultType(*DAG.getContext(), VT), 1951 ShiftOp, 1952 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1953 ISD::SETEQ); 1954 } else if (PopCount == BB.Range) { 1955 // There is only one zero bit in the range, test for it directly. 1956 Cmp = DAG.getSetCC(getCurSDLoc(), 1957 TLI->getSetCCResultType(*DAG.getContext(), VT), 1958 ShiftOp, 1959 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1960 ISD::SETNE); 1961 } else { 1962 // Make desired shift 1963 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1964 DAG.getConstant(1, VT), ShiftOp); 1965 1966 // Emit bit tests and jumps 1967 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1968 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1969 Cmp = DAG.getSetCC(getCurSDLoc(), 1970 TLI->getSetCCResultType(*DAG.getContext(), VT), 1971 AndOp, DAG.getConstant(0, VT), 1972 ISD::SETNE); 1973 } 1974 1975 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1976 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1977 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1978 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1979 1980 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1981 MVT::Other, getControlRoot(), 1982 Cmp, DAG.getBasicBlock(B.TargetBB)); 1983 1984 // Set NextBlock to be the MBB immediately after the current one, if any. 1985 // This is used to avoid emitting unnecessary branches to the next block. 1986 MachineBasicBlock *NextBlock = nullptr; 1987 MachineFunction::iterator BBI = SwitchBB; 1988 if (++BBI != FuncInfo.MF->end()) 1989 NextBlock = BBI; 1990 1991 if (NextMBB != NextBlock) 1992 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1993 DAG.getBasicBlock(NextMBB)); 1994 1995 DAG.setRoot(BrAnd); 1996 } 1997 1998 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1999 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2000 2001 // Retrieve successors. 2002 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2003 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2004 2005 const Value *Callee(I.getCalledValue()); 2006 const Function *Fn = dyn_cast<Function>(Callee); 2007 if (isa<InlineAsm>(Callee)) 2008 visitInlineAsm(&I); 2009 else if (Fn && Fn->isIntrinsic()) { 2010 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2011 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2012 } else 2013 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2014 2015 // If the value of the invoke is used outside of its defining block, make it 2016 // available as a virtual register. 2017 CopyToExportRegsIfNeeded(&I); 2018 2019 // Update successor info 2020 addSuccessorWithWeight(InvokeMBB, Return); 2021 addSuccessorWithWeight(InvokeMBB, LandingPad); 2022 2023 // Drop into normal successor. 2024 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2025 MVT::Other, getControlRoot(), 2026 DAG.getBasicBlock(Return))); 2027 } 2028 2029 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2030 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2031 } 2032 2033 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2034 assert(FuncInfo.MBB->isLandingPad() && 2035 "Call to landingpad not in landing pad!"); 2036 2037 MachineBasicBlock *MBB = FuncInfo.MBB; 2038 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2039 AddLandingPadInfo(LP, MMI, MBB); 2040 2041 // If there aren't registers to copy the values into (e.g., during SjLj 2042 // exceptions), then don't bother to create these DAG nodes. 2043 const TargetLowering *TLI = TM.getTargetLowering(); 2044 if (TLI->getExceptionPointerRegister() == 0 && 2045 TLI->getExceptionSelectorRegister() == 0) 2046 return; 2047 2048 SmallVector<EVT, 2> ValueVTs; 2049 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2050 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2051 2052 // Get the two live-in registers as SDValues. The physregs have already been 2053 // copied into virtual registers. 2054 SDValue Ops[2]; 2055 Ops[0] = DAG.getZExtOrTrunc( 2056 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2057 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2058 getCurSDLoc(), ValueVTs[0]); 2059 Ops[1] = DAG.getZExtOrTrunc( 2060 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2061 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2062 getCurSDLoc(), ValueVTs[1]); 2063 2064 // Merge into one. 2065 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2066 DAG.getVTList(ValueVTs), 2067 &Ops[0], 2); 2068 setValue(&LP, Res); 2069 } 2070 2071 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2072 /// small case ranges). 2073 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2074 CaseRecVector& WorkList, 2075 const Value* SV, 2076 MachineBasicBlock *Default, 2077 MachineBasicBlock *SwitchBB) { 2078 // Size is the number of Cases represented by this range. 2079 size_t Size = CR.Range.second - CR.Range.first; 2080 if (Size > 3) 2081 return false; 2082 2083 // Get the MachineFunction which holds the current MBB. This is used when 2084 // inserting any additional MBBs necessary to represent the switch. 2085 MachineFunction *CurMF = FuncInfo.MF; 2086 2087 // Figure out which block is immediately after the current one. 2088 MachineBasicBlock *NextBlock = nullptr; 2089 MachineFunction::iterator BBI = CR.CaseBB; 2090 2091 if (++BBI != FuncInfo.MF->end()) 2092 NextBlock = BBI; 2093 2094 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2095 // If any two of the cases has the same destination, and if one value 2096 // is the same as the other, but has one bit unset that the other has set, 2097 // use bit manipulation to do two compares at once. For example: 2098 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2099 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2100 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2101 if (Size == 2 && CR.CaseBB == SwitchBB) { 2102 Case &Small = *CR.Range.first; 2103 Case &Big = *(CR.Range.second-1); 2104 2105 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2106 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2107 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2108 2109 // Check that there is only one bit different. 2110 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2111 (SmallValue | BigValue) == BigValue) { 2112 // Isolate the common bit. 2113 APInt CommonBit = BigValue & ~SmallValue; 2114 assert((SmallValue | CommonBit) == BigValue && 2115 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2116 2117 SDValue CondLHS = getValue(SV); 2118 EVT VT = CondLHS.getValueType(); 2119 SDLoc DL = getCurSDLoc(); 2120 2121 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2122 DAG.getConstant(CommonBit, VT)); 2123 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2124 Or, DAG.getConstant(BigValue, VT), 2125 ISD::SETEQ); 2126 2127 // Update successor info. 2128 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2129 addSuccessorWithWeight(SwitchBB, Small.BB, 2130 Small.ExtraWeight + Big.ExtraWeight); 2131 addSuccessorWithWeight(SwitchBB, Default, 2132 // The default destination is the first successor in IR. 2133 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2134 2135 // Insert the true branch. 2136 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2137 getControlRoot(), Cond, 2138 DAG.getBasicBlock(Small.BB)); 2139 2140 // Insert the false branch. 2141 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2142 DAG.getBasicBlock(Default)); 2143 2144 DAG.setRoot(BrCond); 2145 return true; 2146 } 2147 } 2148 } 2149 2150 // Order cases by weight so the most likely case will be checked first. 2151 uint32_t UnhandledWeights = 0; 2152 if (BPI) { 2153 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2154 uint32_t IWeight = I->ExtraWeight; 2155 UnhandledWeights += IWeight; 2156 for (CaseItr J = CR.Range.first; J < I; ++J) { 2157 uint32_t JWeight = J->ExtraWeight; 2158 if (IWeight > JWeight) 2159 std::swap(*I, *J); 2160 } 2161 } 2162 } 2163 // Rearrange the case blocks so that the last one falls through if possible. 2164 Case &BackCase = *(CR.Range.second-1); 2165 if (Size > 1 && 2166 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2167 // The last case block won't fall through into 'NextBlock' if we emit the 2168 // branches in this order. See if rearranging a case value would help. 2169 // We start at the bottom as it's the case with the least weight. 2170 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2171 if (I->BB == NextBlock) { 2172 std::swap(*I, BackCase); 2173 break; 2174 } 2175 } 2176 2177 // Create a CaseBlock record representing a conditional branch to 2178 // the Case's target mbb if the value being switched on SV is equal 2179 // to C. 2180 MachineBasicBlock *CurBlock = CR.CaseBB; 2181 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2182 MachineBasicBlock *FallThrough; 2183 if (I != E-1) { 2184 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2185 CurMF->insert(BBI, FallThrough); 2186 2187 // Put SV in a virtual register to make it available from the new blocks. 2188 ExportFromCurrentBlock(SV); 2189 } else { 2190 // If the last case doesn't match, go to the default block. 2191 FallThrough = Default; 2192 } 2193 2194 const Value *RHS, *LHS, *MHS; 2195 ISD::CondCode CC; 2196 if (I->High == I->Low) { 2197 // This is just small small case range :) containing exactly 1 case 2198 CC = ISD::SETEQ; 2199 LHS = SV; RHS = I->High; MHS = nullptr; 2200 } else { 2201 CC = ISD::SETLE; 2202 LHS = I->Low; MHS = SV; RHS = I->High; 2203 } 2204 2205 // The false weight should be sum of all un-handled cases. 2206 UnhandledWeights -= I->ExtraWeight; 2207 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2208 /* me */ CurBlock, 2209 /* trueweight */ I->ExtraWeight, 2210 /* falseweight */ UnhandledWeights); 2211 2212 // If emitting the first comparison, just call visitSwitchCase to emit the 2213 // code into the current block. Otherwise, push the CaseBlock onto the 2214 // vector to be later processed by SDISel, and insert the node's MBB 2215 // before the next MBB. 2216 if (CurBlock == SwitchBB) 2217 visitSwitchCase(CB, SwitchBB); 2218 else 2219 SwitchCases.push_back(CB); 2220 2221 CurBlock = FallThrough; 2222 } 2223 2224 return true; 2225 } 2226 2227 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2228 return TLI.supportJumpTables() && 2229 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2230 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2231 } 2232 2233 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2234 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2235 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2236 return (LastExt - FirstExt + 1ULL); 2237 } 2238 2239 /// handleJTSwitchCase - Emit jumptable for current switch case range 2240 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2241 CaseRecVector &WorkList, 2242 const Value *SV, 2243 MachineBasicBlock *Default, 2244 MachineBasicBlock *SwitchBB) { 2245 Case& FrontCase = *CR.Range.first; 2246 Case& BackCase = *(CR.Range.second-1); 2247 2248 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2249 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2250 2251 APInt TSize(First.getBitWidth(), 0); 2252 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2253 TSize += I->size(); 2254 2255 const TargetLowering *TLI = TM.getTargetLowering(); 2256 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2257 return false; 2258 2259 APInt Range = ComputeRange(First, Last); 2260 // The density is TSize / Range. Require at least 40%. 2261 // It should not be possible for IntTSize to saturate for sane code, but make 2262 // sure we handle Range saturation correctly. 2263 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2264 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2265 if (IntTSize * 10 < IntRange * 4) 2266 return false; 2267 2268 DEBUG(dbgs() << "Lowering jump table\n" 2269 << "First entry: " << First << ". Last entry: " << Last << '\n' 2270 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2271 2272 // Get the MachineFunction which holds the current MBB. This is used when 2273 // inserting any additional MBBs necessary to represent the switch. 2274 MachineFunction *CurMF = FuncInfo.MF; 2275 2276 // Figure out which block is immediately after the current one. 2277 MachineFunction::iterator BBI = CR.CaseBB; 2278 ++BBI; 2279 2280 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2281 2282 // Create a new basic block to hold the code for loading the address 2283 // of the jump table, and jumping to it. Update successor information; 2284 // we will either branch to the default case for the switch, or the jump 2285 // table. 2286 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2287 CurMF->insert(BBI, JumpTableBB); 2288 2289 addSuccessorWithWeight(CR.CaseBB, Default); 2290 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2291 2292 // Build a vector of destination BBs, corresponding to each target 2293 // of the jump table. If the value of the jump table slot corresponds to 2294 // a case statement, push the case's BB onto the vector, otherwise, push 2295 // the default BB. 2296 std::vector<MachineBasicBlock*> DestBBs; 2297 APInt TEI = First; 2298 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2299 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2300 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2301 2302 if (Low.sle(TEI) && TEI.sle(High)) { 2303 DestBBs.push_back(I->BB); 2304 if (TEI==High) 2305 ++I; 2306 } else { 2307 DestBBs.push_back(Default); 2308 } 2309 } 2310 2311 // Calculate weight for each unique destination in CR. 2312 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2313 if (FuncInfo.BPI) 2314 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2315 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2316 DestWeights.find(I->BB); 2317 if (Itr != DestWeights.end()) 2318 Itr->second += I->ExtraWeight; 2319 else 2320 DestWeights[I->BB] = I->ExtraWeight; 2321 } 2322 2323 // Update successor info. Add one edge to each unique successor. 2324 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2325 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2326 E = DestBBs.end(); I != E; ++I) { 2327 if (!SuccsHandled[(*I)->getNumber()]) { 2328 SuccsHandled[(*I)->getNumber()] = true; 2329 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2330 DestWeights.find(*I); 2331 addSuccessorWithWeight(JumpTableBB, *I, 2332 Itr != DestWeights.end() ? Itr->second : 0); 2333 } 2334 } 2335 2336 // Create a jump table index for this jump table. 2337 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2338 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2339 ->createJumpTableIndex(DestBBs); 2340 2341 // Set the jump table information so that we can codegen it as a second 2342 // MachineBasicBlock 2343 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2344 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2345 if (CR.CaseBB == SwitchBB) 2346 visitJumpTableHeader(JT, JTH, SwitchBB); 2347 2348 JTCases.push_back(JumpTableBlock(JTH, JT)); 2349 return true; 2350 } 2351 2352 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2353 /// 2 subtrees. 2354 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2355 CaseRecVector& WorkList, 2356 const Value* SV, 2357 MachineBasicBlock* Default, 2358 MachineBasicBlock* SwitchBB) { 2359 // Get the MachineFunction which holds the current MBB. This is used when 2360 // inserting any additional MBBs necessary to represent the switch. 2361 MachineFunction *CurMF = FuncInfo.MF; 2362 2363 // Figure out which block is immediately after the current one. 2364 MachineFunction::iterator BBI = CR.CaseBB; 2365 ++BBI; 2366 2367 Case& FrontCase = *CR.Range.first; 2368 Case& BackCase = *(CR.Range.second-1); 2369 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2370 2371 // Size is the number of Cases represented by this range. 2372 unsigned Size = CR.Range.second - CR.Range.first; 2373 2374 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2375 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2376 double FMetric = 0; 2377 CaseItr Pivot = CR.Range.first + Size/2; 2378 2379 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2380 // (heuristically) allow us to emit JumpTable's later. 2381 APInt TSize(First.getBitWidth(), 0); 2382 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2383 I!=E; ++I) 2384 TSize += I->size(); 2385 2386 APInt LSize = FrontCase.size(); 2387 APInt RSize = TSize-LSize; 2388 DEBUG(dbgs() << "Selecting best pivot: \n" 2389 << "First: " << First << ", Last: " << Last <<'\n' 2390 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2391 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2392 J!=E; ++I, ++J) { 2393 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2394 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2395 APInt Range = ComputeRange(LEnd, RBegin); 2396 assert((Range - 2ULL).isNonNegative() && 2397 "Invalid case distance"); 2398 // Use volatile double here to avoid excess precision issues on some hosts, 2399 // e.g. that use 80-bit X87 registers. 2400 volatile double LDensity = 2401 (double)LSize.roundToDouble() / 2402 (LEnd - First + 1ULL).roundToDouble(); 2403 volatile double RDensity = 2404 (double)RSize.roundToDouble() / 2405 (Last - RBegin + 1ULL).roundToDouble(); 2406 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2407 // Should always split in some non-trivial place 2408 DEBUG(dbgs() <<"=>Step\n" 2409 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2410 << "LDensity: " << LDensity 2411 << ", RDensity: " << RDensity << '\n' 2412 << "Metric: " << Metric << '\n'); 2413 if (FMetric < Metric) { 2414 Pivot = J; 2415 FMetric = Metric; 2416 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2417 } 2418 2419 LSize += J->size(); 2420 RSize -= J->size(); 2421 } 2422 2423 const TargetLowering *TLI = TM.getTargetLowering(); 2424 if (areJTsAllowed(*TLI)) { 2425 // If our case is dense we *really* should handle it earlier! 2426 assert((FMetric > 0) && "Should handle dense range earlier!"); 2427 } else { 2428 Pivot = CR.Range.first + Size/2; 2429 } 2430 2431 CaseRange LHSR(CR.Range.first, Pivot); 2432 CaseRange RHSR(Pivot, CR.Range.second); 2433 const Constant *C = Pivot->Low; 2434 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2435 2436 // We know that we branch to the LHS if the Value being switched on is 2437 // less than the Pivot value, C. We use this to optimize our binary 2438 // tree a bit, by recognizing that if SV is greater than or equal to the 2439 // LHS's Case Value, and that Case Value is exactly one less than the 2440 // Pivot's Value, then we can branch directly to the LHS's Target, 2441 // rather than creating a leaf node for it. 2442 if ((LHSR.second - LHSR.first) == 1 && 2443 LHSR.first->High == CR.GE && 2444 cast<ConstantInt>(C)->getValue() == 2445 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2446 TrueBB = LHSR.first->BB; 2447 } else { 2448 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2449 CurMF->insert(BBI, TrueBB); 2450 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2451 2452 // Put SV in a virtual register to make it available from the new blocks. 2453 ExportFromCurrentBlock(SV); 2454 } 2455 2456 // Similar to the optimization above, if the Value being switched on is 2457 // known to be less than the Constant CR.LT, and the current Case Value 2458 // is CR.LT - 1, then we can branch directly to the target block for 2459 // the current Case Value, rather than emitting a RHS leaf node for it. 2460 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2461 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2462 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2463 FalseBB = RHSR.first->BB; 2464 } else { 2465 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2466 CurMF->insert(BBI, FalseBB); 2467 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2468 2469 // Put SV in a virtual register to make it available from the new blocks. 2470 ExportFromCurrentBlock(SV); 2471 } 2472 2473 // Create a CaseBlock record representing a conditional branch to 2474 // the LHS node if the value being switched on SV is less than C. 2475 // Otherwise, branch to LHS. 2476 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2477 2478 if (CR.CaseBB == SwitchBB) 2479 visitSwitchCase(CB, SwitchBB); 2480 else 2481 SwitchCases.push_back(CB); 2482 2483 return true; 2484 } 2485 2486 /// handleBitTestsSwitchCase - if current case range has few destination and 2487 /// range span less, than machine word bitwidth, encode case range into series 2488 /// of masks and emit bit tests with these masks. 2489 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2490 CaseRecVector& WorkList, 2491 const Value* SV, 2492 MachineBasicBlock* Default, 2493 MachineBasicBlock* SwitchBB) { 2494 const TargetLowering *TLI = TM.getTargetLowering(); 2495 EVT PTy = TLI->getPointerTy(); 2496 unsigned IntPtrBits = PTy.getSizeInBits(); 2497 2498 Case& FrontCase = *CR.Range.first; 2499 Case& BackCase = *(CR.Range.second-1); 2500 2501 // Get the MachineFunction which holds the current MBB. This is used when 2502 // inserting any additional MBBs necessary to represent the switch. 2503 MachineFunction *CurMF = FuncInfo.MF; 2504 2505 // If target does not have legal shift left, do not emit bit tests at all. 2506 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2507 return false; 2508 2509 size_t numCmps = 0; 2510 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2511 I!=E; ++I) { 2512 // Single case counts one, case range - two. 2513 numCmps += (I->Low == I->High ? 1 : 2); 2514 } 2515 2516 // Count unique destinations 2517 SmallSet<MachineBasicBlock*, 4> Dests; 2518 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2519 Dests.insert(I->BB); 2520 if (Dests.size() > 3) 2521 // Don't bother the code below, if there are too much unique destinations 2522 return false; 2523 } 2524 DEBUG(dbgs() << "Total number of unique destinations: " 2525 << Dests.size() << '\n' 2526 << "Total number of comparisons: " << numCmps << '\n'); 2527 2528 // Compute span of values. 2529 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2530 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2531 APInt cmpRange = maxValue - minValue; 2532 2533 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2534 << "Low bound: " << minValue << '\n' 2535 << "High bound: " << maxValue << '\n'); 2536 2537 if (cmpRange.uge(IntPtrBits) || 2538 (!(Dests.size() == 1 && numCmps >= 3) && 2539 !(Dests.size() == 2 && numCmps >= 5) && 2540 !(Dests.size() >= 3 && numCmps >= 6))) 2541 return false; 2542 2543 DEBUG(dbgs() << "Emitting bit tests\n"); 2544 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2545 2546 // Optimize the case where all the case values fit in a 2547 // word without having to subtract minValue. In this case, 2548 // we can optimize away the subtraction. 2549 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2550 cmpRange = maxValue; 2551 } else { 2552 lowBound = minValue; 2553 } 2554 2555 CaseBitsVector CasesBits; 2556 unsigned i, count = 0; 2557 2558 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2559 MachineBasicBlock* Dest = I->BB; 2560 for (i = 0; i < count; ++i) 2561 if (Dest == CasesBits[i].BB) 2562 break; 2563 2564 if (i == count) { 2565 assert((count < 3) && "Too much destinations to test!"); 2566 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2567 count++; 2568 } 2569 2570 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2571 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2572 2573 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2574 uint64_t hi = (highValue - lowBound).getZExtValue(); 2575 CasesBits[i].ExtraWeight += I->ExtraWeight; 2576 2577 for (uint64_t j = lo; j <= hi; j++) { 2578 CasesBits[i].Mask |= 1ULL << j; 2579 CasesBits[i].Bits++; 2580 } 2581 2582 } 2583 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2584 2585 BitTestInfo BTC; 2586 2587 // Figure out which block is immediately after the current one. 2588 MachineFunction::iterator BBI = CR.CaseBB; 2589 ++BBI; 2590 2591 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2592 2593 DEBUG(dbgs() << "Cases:\n"); 2594 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2595 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2596 << ", Bits: " << CasesBits[i].Bits 2597 << ", BB: " << CasesBits[i].BB << '\n'); 2598 2599 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2600 CurMF->insert(BBI, CaseBB); 2601 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2602 CaseBB, 2603 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2604 2605 // Put SV in a virtual register to make it available from the new blocks. 2606 ExportFromCurrentBlock(SV); 2607 } 2608 2609 BitTestBlock BTB(lowBound, cmpRange, SV, 2610 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2611 CR.CaseBB, Default, BTC); 2612 2613 if (CR.CaseBB == SwitchBB) 2614 visitBitTestHeader(BTB, SwitchBB); 2615 2616 BitTestCases.push_back(BTB); 2617 2618 return true; 2619 } 2620 2621 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2622 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2623 const SwitchInst& SI) { 2624 size_t numCmps = 0; 2625 2626 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2627 // Start with "simple" cases 2628 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2629 i != e; ++i) { 2630 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2631 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2632 2633 uint32_t ExtraWeight = 2634 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2635 2636 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2637 SMBB, ExtraWeight)); 2638 } 2639 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2640 2641 // Merge case into clusters 2642 if (Cases.size() >= 2) 2643 // Must recompute end() each iteration because it may be 2644 // invalidated by erase if we hold on to it 2645 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2646 J != Cases.end(); ) { 2647 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2648 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2649 MachineBasicBlock* nextBB = J->BB; 2650 MachineBasicBlock* currentBB = I->BB; 2651 2652 // If the two neighboring cases go to the same destination, merge them 2653 // into a single case. 2654 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2655 I->High = J->High; 2656 I->ExtraWeight += J->ExtraWeight; 2657 J = Cases.erase(J); 2658 } else { 2659 I = J++; 2660 } 2661 } 2662 2663 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2664 if (I->Low != I->High) 2665 // A range counts double, since it requires two compares. 2666 ++numCmps; 2667 } 2668 2669 return numCmps; 2670 } 2671 2672 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2673 MachineBasicBlock *Last) { 2674 // Update JTCases. 2675 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2676 if (JTCases[i].first.HeaderBB == First) 2677 JTCases[i].first.HeaderBB = Last; 2678 2679 // Update BitTestCases. 2680 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2681 if (BitTestCases[i].Parent == First) 2682 BitTestCases[i].Parent = Last; 2683 } 2684 2685 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2686 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2687 2688 // Figure out which block is immediately after the current one. 2689 MachineBasicBlock *NextBlock = nullptr; 2690 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2691 2692 // If there is only the default destination, branch to it if it is not the 2693 // next basic block. Otherwise, just fall through. 2694 if (!SI.getNumCases()) { 2695 // Update machine-CFG edges. 2696 2697 // If this is not a fall-through branch, emit the branch. 2698 SwitchMBB->addSuccessor(Default); 2699 if (Default != NextBlock) 2700 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2701 MVT::Other, getControlRoot(), 2702 DAG.getBasicBlock(Default))); 2703 2704 return; 2705 } 2706 2707 // If there are any non-default case statements, create a vector of Cases 2708 // representing each one, and sort the vector so that we can efficiently 2709 // create a binary search tree from them. 2710 CaseVector Cases; 2711 size_t numCmps = Clusterify(Cases, SI); 2712 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2713 << ". Total compares: " << numCmps << '\n'); 2714 (void)numCmps; 2715 2716 // Get the Value to be switched on and default basic blocks, which will be 2717 // inserted into CaseBlock records, representing basic blocks in the binary 2718 // search tree. 2719 const Value *SV = SI.getCondition(); 2720 2721 // Push the initial CaseRec onto the worklist 2722 CaseRecVector WorkList; 2723 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2724 CaseRange(Cases.begin(),Cases.end()))); 2725 2726 while (!WorkList.empty()) { 2727 // Grab a record representing a case range to process off the worklist 2728 CaseRec CR = WorkList.back(); 2729 WorkList.pop_back(); 2730 2731 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2732 continue; 2733 2734 // If the range has few cases (two or less) emit a series of specific 2735 // tests. 2736 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2737 continue; 2738 2739 // If the switch has more than N blocks, and is at least 40% dense, and the 2740 // target supports indirect branches, then emit a jump table rather than 2741 // lowering the switch to a binary tree of conditional branches. 2742 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2743 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2744 continue; 2745 2746 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2747 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2748 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2749 } 2750 } 2751 2752 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2753 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2754 2755 // Update machine-CFG edges with unique successors. 2756 SmallSet<BasicBlock*, 32> Done; 2757 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2758 BasicBlock *BB = I.getSuccessor(i); 2759 bool Inserted = Done.insert(BB); 2760 if (!Inserted) 2761 continue; 2762 2763 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2764 addSuccessorWithWeight(IndirectBrMBB, Succ); 2765 } 2766 2767 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2768 MVT::Other, getControlRoot(), 2769 getValue(I.getAddress()))); 2770 } 2771 2772 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2773 if (DAG.getTarget().Options.TrapUnreachable) 2774 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2775 } 2776 2777 void SelectionDAGBuilder::visitFSub(const User &I) { 2778 // -0.0 - X --> fneg 2779 Type *Ty = I.getType(); 2780 if (isa<Constant>(I.getOperand(0)) && 2781 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2782 SDValue Op2 = getValue(I.getOperand(1)); 2783 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2784 Op2.getValueType(), Op2)); 2785 return; 2786 } 2787 2788 visitBinary(I, ISD::FSUB); 2789 } 2790 2791 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2792 SDValue Op1 = getValue(I.getOperand(0)); 2793 SDValue Op2 = getValue(I.getOperand(1)); 2794 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), 2795 Op1.getValueType(), Op1, Op2)); 2796 } 2797 2798 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2799 SDValue Op1 = getValue(I.getOperand(0)); 2800 SDValue Op2 = getValue(I.getOperand(1)); 2801 2802 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2803 2804 // Coerce the shift amount to the right type if we can. 2805 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2806 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2807 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2808 SDLoc DL = getCurSDLoc(); 2809 2810 // If the operand is smaller than the shift count type, promote it. 2811 if (ShiftSize > Op2Size) 2812 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2813 2814 // If the operand is larger than the shift count type but the shift 2815 // count type has enough bits to represent any shift value, truncate 2816 // it now. This is a common case and it exposes the truncate to 2817 // optimization early. 2818 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2819 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2820 // Otherwise we'll need to temporarily settle for some other convenient 2821 // type. Type legalization will make adjustments once the shiftee is split. 2822 else 2823 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2824 } 2825 2826 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), 2827 Op1.getValueType(), Op1, Op2)); 2828 } 2829 2830 void SelectionDAGBuilder::visitSDiv(const User &I) { 2831 SDValue Op1 = getValue(I.getOperand(0)); 2832 SDValue Op2 = getValue(I.getOperand(1)); 2833 2834 // Turn exact SDivs into multiplications. 2835 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2836 // exact bit. 2837 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2838 !isa<ConstantSDNode>(Op1) && 2839 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2840 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2841 getCurSDLoc(), DAG)); 2842 else 2843 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2844 Op1, Op2)); 2845 } 2846 2847 void SelectionDAGBuilder::visitICmp(const User &I) { 2848 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2849 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2850 predicate = IC->getPredicate(); 2851 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2852 predicate = ICmpInst::Predicate(IC->getPredicate()); 2853 SDValue Op1 = getValue(I.getOperand(0)); 2854 SDValue Op2 = getValue(I.getOperand(1)); 2855 ISD::CondCode Opcode = getICmpCondCode(predicate); 2856 2857 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2858 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2859 } 2860 2861 void SelectionDAGBuilder::visitFCmp(const User &I) { 2862 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2863 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2864 predicate = FC->getPredicate(); 2865 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2866 predicate = FCmpInst::Predicate(FC->getPredicate()); 2867 SDValue Op1 = getValue(I.getOperand(0)); 2868 SDValue Op2 = getValue(I.getOperand(1)); 2869 ISD::CondCode Condition = getFCmpCondCode(predicate); 2870 if (TM.Options.NoNaNsFPMath) 2871 Condition = getFCmpCodeWithoutNaN(Condition); 2872 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2873 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2874 } 2875 2876 void SelectionDAGBuilder::visitSelect(const User &I) { 2877 SmallVector<EVT, 4> ValueVTs; 2878 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2879 unsigned NumValues = ValueVTs.size(); 2880 if (NumValues == 0) return; 2881 2882 SmallVector<SDValue, 4> Values(NumValues); 2883 SDValue Cond = getValue(I.getOperand(0)); 2884 SDValue TrueVal = getValue(I.getOperand(1)); 2885 SDValue FalseVal = getValue(I.getOperand(2)); 2886 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2887 ISD::VSELECT : ISD::SELECT; 2888 2889 for (unsigned i = 0; i != NumValues; ++i) 2890 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2891 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2892 Cond, 2893 SDValue(TrueVal.getNode(), 2894 TrueVal.getResNo() + i), 2895 SDValue(FalseVal.getNode(), 2896 FalseVal.getResNo() + i)); 2897 2898 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2899 DAG.getVTList(ValueVTs), 2900 &Values[0], NumValues)); 2901 } 2902 2903 void SelectionDAGBuilder::visitTrunc(const User &I) { 2904 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2905 SDValue N = getValue(I.getOperand(0)); 2906 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2907 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2908 } 2909 2910 void SelectionDAGBuilder::visitZExt(const User &I) { 2911 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2912 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2913 SDValue N = getValue(I.getOperand(0)); 2914 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2915 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2916 } 2917 2918 void SelectionDAGBuilder::visitSExt(const User &I) { 2919 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2920 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2921 SDValue N = getValue(I.getOperand(0)); 2922 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2923 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2924 } 2925 2926 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2927 // FPTrunc is never a no-op cast, no need to check 2928 SDValue N = getValue(I.getOperand(0)); 2929 const TargetLowering *TLI = TM.getTargetLowering(); 2930 EVT DestVT = TLI->getValueType(I.getType()); 2931 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2932 DestVT, N, 2933 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2934 } 2935 2936 void SelectionDAGBuilder::visitFPExt(const User &I) { 2937 // FPExt is never a no-op cast, no need to check 2938 SDValue N = getValue(I.getOperand(0)); 2939 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2940 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2941 } 2942 2943 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2944 // FPToUI is never a no-op cast, no need to check 2945 SDValue N = getValue(I.getOperand(0)); 2946 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2947 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2948 } 2949 2950 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2951 // FPToSI is never a no-op cast, no need to check 2952 SDValue N = getValue(I.getOperand(0)); 2953 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2954 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2955 } 2956 2957 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2958 // UIToFP is never a no-op cast, no need to check 2959 SDValue N = getValue(I.getOperand(0)); 2960 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2961 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2962 } 2963 2964 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2965 // SIToFP is never a no-op cast, no need to check 2966 SDValue N = getValue(I.getOperand(0)); 2967 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2968 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2969 } 2970 2971 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2972 // What to do depends on the size of the integer and the size of the pointer. 2973 // We can either truncate, zero extend, or no-op, accordingly. 2974 SDValue N = getValue(I.getOperand(0)); 2975 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2976 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2977 } 2978 2979 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2980 // What to do depends on the size of the integer and the size of the pointer. 2981 // We can either truncate, zero extend, or no-op, accordingly. 2982 SDValue N = getValue(I.getOperand(0)); 2983 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2984 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2985 } 2986 2987 void SelectionDAGBuilder::visitBitCast(const User &I) { 2988 SDValue N = getValue(I.getOperand(0)); 2989 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2990 2991 // BitCast assures us that source and destination are the same size so this is 2992 // either a BITCAST or a no-op. 2993 if (DestVT != N.getValueType()) 2994 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2995 DestVT, N)); // convert types. 2996 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2997 // might fold any kind of constant expression to an integer constant and that 2998 // is not what we are looking for. Only regcognize a bitcast of a genuine 2999 // constant integer as an opaque constant. 3000 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3001 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3002 /*isOpaque*/true)); 3003 else 3004 setValue(&I, N); // noop cast. 3005 } 3006 3007 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3009 const Value *SV = I.getOperand(0); 3010 SDValue N = getValue(SV); 3011 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3012 3013 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3014 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3015 3016 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3017 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3018 3019 setValue(&I, N); 3020 } 3021 3022 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3023 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3024 SDValue InVec = getValue(I.getOperand(0)); 3025 SDValue InVal = getValue(I.getOperand(1)); 3026 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3027 getCurSDLoc(), TLI.getVectorIdxTy()); 3028 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3029 TM.getTargetLowering()->getValueType(I.getType()), 3030 InVec, InVal, InIdx)); 3031 } 3032 3033 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3035 SDValue InVec = getValue(I.getOperand(0)); 3036 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3037 getCurSDLoc(), TLI.getVectorIdxTy()); 3038 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3039 TM.getTargetLowering()->getValueType(I.getType()), 3040 InVec, InIdx)); 3041 } 3042 3043 // Utility for visitShuffleVector - Return true if every element in Mask, 3044 // beginning from position Pos and ending in Pos+Size, falls within the 3045 // specified sequential range [L, L+Pos). or is undef. 3046 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3047 unsigned Pos, unsigned Size, int Low) { 3048 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3049 if (Mask[i] >= 0 && Mask[i] != Low) 3050 return false; 3051 return true; 3052 } 3053 3054 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3055 SDValue Src1 = getValue(I.getOperand(0)); 3056 SDValue Src2 = getValue(I.getOperand(1)); 3057 3058 SmallVector<int, 8> Mask; 3059 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3060 unsigned MaskNumElts = Mask.size(); 3061 3062 const TargetLowering *TLI = TM.getTargetLowering(); 3063 EVT VT = TLI->getValueType(I.getType()); 3064 EVT SrcVT = Src1.getValueType(); 3065 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3066 3067 if (SrcNumElts == MaskNumElts) { 3068 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3069 &Mask[0])); 3070 return; 3071 } 3072 3073 // Normalize the shuffle vector since mask and vector length don't match. 3074 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3075 // Mask is longer than the source vectors and is a multiple of the source 3076 // vectors. We can use concatenate vector to make the mask and vectors 3077 // lengths match. 3078 if (SrcNumElts*2 == MaskNumElts) { 3079 // First check for Src1 in low and Src2 in high 3080 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3081 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3082 // The shuffle is concatenating two vectors together. 3083 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3084 VT, Src1, Src2)); 3085 return; 3086 } 3087 // Then check for Src2 in low and Src1 in high 3088 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3089 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3090 // The shuffle is concatenating two vectors together. 3091 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3092 VT, Src2, Src1)); 3093 return; 3094 } 3095 } 3096 3097 // Pad both vectors with undefs to make them the same length as the mask. 3098 unsigned NumConcat = MaskNumElts / SrcNumElts; 3099 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3100 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3101 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3102 3103 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3104 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3105 MOps1[0] = Src1; 3106 MOps2[0] = Src2; 3107 3108 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3109 getCurSDLoc(), VT, 3110 &MOps1[0], NumConcat); 3111 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3112 getCurSDLoc(), VT, 3113 &MOps2[0], NumConcat); 3114 3115 // Readjust mask for new input vector length. 3116 SmallVector<int, 8> MappedOps; 3117 for (unsigned i = 0; i != MaskNumElts; ++i) { 3118 int Idx = Mask[i]; 3119 if (Idx >= (int)SrcNumElts) 3120 Idx -= SrcNumElts - MaskNumElts; 3121 MappedOps.push_back(Idx); 3122 } 3123 3124 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3125 &MappedOps[0])); 3126 return; 3127 } 3128 3129 if (SrcNumElts > MaskNumElts) { 3130 // Analyze the access pattern of the vector to see if we can extract 3131 // two subvectors and do the shuffle. The analysis is done by calculating 3132 // the range of elements the mask access on both vectors. 3133 int MinRange[2] = { static_cast<int>(SrcNumElts), 3134 static_cast<int>(SrcNumElts)}; 3135 int MaxRange[2] = {-1, -1}; 3136 3137 for (unsigned i = 0; i != MaskNumElts; ++i) { 3138 int Idx = Mask[i]; 3139 unsigned Input = 0; 3140 if (Idx < 0) 3141 continue; 3142 3143 if (Idx >= (int)SrcNumElts) { 3144 Input = 1; 3145 Idx -= SrcNumElts; 3146 } 3147 if (Idx > MaxRange[Input]) 3148 MaxRange[Input] = Idx; 3149 if (Idx < MinRange[Input]) 3150 MinRange[Input] = Idx; 3151 } 3152 3153 // Check if the access is smaller than the vector size and can we find 3154 // a reasonable extract index. 3155 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3156 // Extract. 3157 int StartIdx[2]; // StartIdx to extract from 3158 for (unsigned Input = 0; Input < 2; ++Input) { 3159 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3160 RangeUse[Input] = 0; // Unused 3161 StartIdx[Input] = 0; 3162 continue; 3163 } 3164 3165 // Find a good start index that is a multiple of the mask length. Then 3166 // see if the rest of the elements are in range. 3167 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3168 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3169 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3170 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3171 } 3172 3173 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3174 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3175 return; 3176 } 3177 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3178 // Extract appropriate subvector and generate a vector shuffle 3179 for (unsigned Input = 0; Input < 2; ++Input) { 3180 SDValue &Src = Input == 0 ? Src1 : Src2; 3181 if (RangeUse[Input] == 0) 3182 Src = DAG.getUNDEF(VT); 3183 else 3184 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3185 Src, DAG.getConstant(StartIdx[Input], 3186 TLI->getVectorIdxTy())); 3187 } 3188 3189 // Calculate new mask. 3190 SmallVector<int, 8> MappedOps; 3191 for (unsigned i = 0; i != MaskNumElts; ++i) { 3192 int Idx = Mask[i]; 3193 if (Idx >= 0) { 3194 if (Idx < (int)SrcNumElts) 3195 Idx -= StartIdx[0]; 3196 else 3197 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3198 } 3199 MappedOps.push_back(Idx); 3200 } 3201 3202 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3203 &MappedOps[0])); 3204 return; 3205 } 3206 } 3207 3208 // We can't use either concat vectors or extract subvectors so fall back to 3209 // replacing the shuffle with extract and build vector. 3210 // to insert and build vector. 3211 EVT EltVT = VT.getVectorElementType(); 3212 EVT IdxVT = TLI->getVectorIdxTy(); 3213 SmallVector<SDValue,8> Ops; 3214 for (unsigned i = 0; i != MaskNumElts; ++i) { 3215 int Idx = Mask[i]; 3216 SDValue Res; 3217 3218 if (Idx < 0) { 3219 Res = DAG.getUNDEF(EltVT); 3220 } else { 3221 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3222 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3223 3224 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3225 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3226 } 3227 3228 Ops.push_back(Res); 3229 } 3230 3231 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 3232 VT, &Ops[0], Ops.size())); 3233 } 3234 3235 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3236 const Value *Op0 = I.getOperand(0); 3237 const Value *Op1 = I.getOperand(1); 3238 Type *AggTy = I.getType(); 3239 Type *ValTy = Op1->getType(); 3240 bool IntoUndef = isa<UndefValue>(Op0); 3241 bool FromUndef = isa<UndefValue>(Op1); 3242 3243 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3244 3245 const TargetLowering *TLI = TM.getTargetLowering(); 3246 SmallVector<EVT, 4> AggValueVTs; 3247 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3248 SmallVector<EVT, 4> ValValueVTs; 3249 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3250 3251 unsigned NumAggValues = AggValueVTs.size(); 3252 unsigned NumValValues = ValValueVTs.size(); 3253 SmallVector<SDValue, 4> Values(NumAggValues); 3254 3255 SDValue Agg = getValue(Op0); 3256 unsigned i = 0; 3257 // Copy the beginning value(s) from the original aggregate. 3258 for (; i != LinearIndex; ++i) 3259 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3260 SDValue(Agg.getNode(), Agg.getResNo() + i); 3261 // Copy values from the inserted value(s). 3262 if (NumValValues) { 3263 SDValue Val = getValue(Op1); 3264 for (; i != LinearIndex + NumValValues; ++i) 3265 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3266 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3267 } 3268 // Copy remaining value(s) from the original aggregate. 3269 for (; i != NumAggValues; ++i) 3270 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3271 SDValue(Agg.getNode(), Agg.getResNo() + i); 3272 3273 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3274 DAG.getVTList(AggValueVTs), 3275 &Values[0], NumAggValues)); 3276 } 3277 3278 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3279 const Value *Op0 = I.getOperand(0); 3280 Type *AggTy = Op0->getType(); 3281 Type *ValTy = I.getType(); 3282 bool OutOfUndef = isa<UndefValue>(Op0); 3283 3284 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3285 3286 const TargetLowering *TLI = TM.getTargetLowering(); 3287 SmallVector<EVT, 4> ValValueVTs; 3288 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3289 3290 unsigned NumValValues = ValValueVTs.size(); 3291 3292 // Ignore a extractvalue that produces an empty object 3293 if (!NumValValues) { 3294 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3295 return; 3296 } 3297 3298 SmallVector<SDValue, 4> Values(NumValValues); 3299 3300 SDValue Agg = getValue(Op0); 3301 // Copy out the selected value(s). 3302 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3303 Values[i - LinearIndex] = 3304 OutOfUndef ? 3305 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3306 SDValue(Agg.getNode(), Agg.getResNo() + i); 3307 3308 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3309 DAG.getVTList(ValValueVTs), 3310 &Values[0], NumValValues)); 3311 } 3312 3313 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3314 Value *Op0 = I.getOperand(0); 3315 // Note that the pointer operand may be a vector of pointers. Take the scalar 3316 // element which holds a pointer. 3317 Type *Ty = Op0->getType()->getScalarType(); 3318 unsigned AS = Ty->getPointerAddressSpace(); 3319 SDValue N = getValue(Op0); 3320 3321 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3322 OI != E; ++OI) { 3323 const Value *Idx = *OI; 3324 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3325 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3326 if (Field) { 3327 // N = N + Offset 3328 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3329 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3330 DAG.getConstant(Offset, N.getValueType())); 3331 } 3332 3333 Ty = StTy->getElementType(Field); 3334 } else { 3335 Ty = cast<SequentialType>(Ty)->getElementType(); 3336 3337 // If this is a constant subscript, handle it quickly. 3338 const TargetLowering *TLI = TM.getTargetLowering(); 3339 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3340 if (CI->isZero()) continue; 3341 uint64_t Offs = 3342 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3343 SDValue OffsVal; 3344 EVT PTy = TLI->getPointerTy(AS); 3345 unsigned PtrBits = PTy.getSizeInBits(); 3346 if (PtrBits < 64) 3347 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3348 DAG.getConstant(Offs, MVT::i64)); 3349 else 3350 OffsVal = DAG.getConstant(Offs, PTy); 3351 3352 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3353 OffsVal); 3354 continue; 3355 } 3356 3357 // N = N + Idx * ElementSize; 3358 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3359 DL->getTypeAllocSize(Ty)); 3360 SDValue IdxN = getValue(Idx); 3361 3362 // If the index is smaller or larger than intptr_t, truncate or extend 3363 // it. 3364 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3365 3366 // If this is a multiply by a power of two, turn it into a shl 3367 // immediately. This is a very common case. 3368 if (ElementSize != 1) { 3369 if (ElementSize.isPowerOf2()) { 3370 unsigned Amt = ElementSize.logBase2(); 3371 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3372 N.getValueType(), IdxN, 3373 DAG.getConstant(Amt, IdxN.getValueType())); 3374 } else { 3375 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3376 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3377 N.getValueType(), IdxN, Scale); 3378 } 3379 } 3380 3381 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3382 N.getValueType(), N, IdxN); 3383 } 3384 } 3385 3386 setValue(&I, N); 3387 } 3388 3389 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3390 // If this is a fixed sized alloca in the entry block of the function, 3391 // allocate it statically on the stack. 3392 if (FuncInfo.StaticAllocaMap.count(&I)) 3393 return; // getValue will auto-populate this. 3394 3395 Type *Ty = I.getAllocatedType(); 3396 const TargetLowering *TLI = TM.getTargetLowering(); 3397 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3398 unsigned Align = 3399 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3400 I.getAlignment()); 3401 3402 SDValue AllocSize = getValue(I.getArraySize()); 3403 3404 EVT IntPtr = TLI->getPointerTy(); 3405 if (AllocSize.getValueType() != IntPtr) 3406 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3407 3408 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3409 AllocSize, 3410 DAG.getConstant(TySize, IntPtr)); 3411 3412 // Handle alignment. If the requested alignment is less than or equal to 3413 // the stack alignment, ignore it. If the size is greater than or equal to 3414 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3415 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3416 if (Align <= StackAlign) 3417 Align = 0; 3418 3419 // Round the size of the allocation up to the stack alignment size 3420 // by add SA-1 to the size. 3421 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3422 AllocSize.getValueType(), AllocSize, 3423 DAG.getIntPtrConstant(StackAlign-1)); 3424 3425 // Mask out the low bits for alignment purposes. 3426 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3427 AllocSize.getValueType(), AllocSize, 3428 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3429 3430 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3431 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3432 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), 3433 VTs, Ops, 3); 3434 setValue(&I, DSA); 3435 DAG.setRoot(DSA.getValue(1)); 3436 3437 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3438 } 3439 3440 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3441 if (I.isAtomic()) 3442 return visitAtomicLoad(I); 3443 3444 const Value *SV = I.getOperand(0); 3445 SDValue Ptr = getValue(SV); 3446 3447 Type *Ty = I.getType(); 3448 3449 bool isVolatile = I.isVolatile(); 3450 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3451 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3452 unsigned Alignment = I.getAlignment(); 3453 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3454 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3455 3456 SmallVector<EVT, 4> ValueVTs; 3457 SmallVector<uint64_t, 4> Offsets; 3458 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3459 unsigned NumValues = ValueVTs.size(); 3460 if (NumValues == 0) 3461 return; 3462 3463 SDValue Root; 3464 bool ConstantMemory = false; 3465 if (isVolatile || NumValues > MaxParallelChains) 3466 // Serialize volatile loads with other side effects. 3467 Root = getRoot(); 3468 else if (AA->pointsToConstantMemory( 3469 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3470 // Do not serialize (non-volatile) loads of constant memory with anything. 3471 Root = DAG.getEntryNode(); 3472 ConstantMemory = true; 3473 } else { 3474 // Do not serialize non-volatile loads against each other. 3475 Root = DAG.getRoot(); 3476 } 3477 3478 const TargetLowering *TLI = TM.getTargetLowering(); 3479 if (isVolatile) 3480 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3481 3482 SmallVector<SDValue, 4> Values(NumValues); 3483 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3484 NumValues)); 3485 EVT PtrVT = Ptr.getValueType(); 3486 unsigned ChainI = 0; 3487 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3488 // Serializing loads here may result in excessive register pressure, and 3489 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3490 // could recover a bit by hoisting nodes upward in the chain by recognizing 3491 // they are side-effect free or do not alias. The optimizer should really 3492 // avoid this case by converting large object/array copies to llvm.memcpy 3493 // (MaxParallelChains should always remain as failsafe). 3494 if (ChainI == MaxParallelChains) { 3495 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3496 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3497 MVT::Other, &Chains[0], ChainI); 3498 Root = Chain; 3499 ChainI = 0; 3500 } 3501 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3502 PtrVT, Ptr, 3503 DAG.getConstant(Offsets[i], PtrVT)); 3504 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3505 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3506 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3507 Ranges); 3508 3509 Values[i] = L; 3510 Chains[ChainI] = L.getValue(1); 3511 } 3512 3513 if (!ConstantMemory) { 3514 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3515 MVT::Other, &Chains[0], ChainI); 3516 if (isVolatile) 3517 DAG.setRoot(Chain); 3518 else 3519 PendingLoads.push_back(Chain); 3520 } 3521 3522 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3523 DAG.getVTList(ValueVTs), 3524 &Values[0], NumValues)); 3525 } 3526 3527 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3528 if (I.isAtomic()) 3529 return visitAtomicStore(I); 3530 3531 const Value *SrcV = I.getOperand(0); 3532 const Value *PtrV = I.getOperand(1); 3533 3534 SmallVector<EVT, 4> ValueVTs; 3535 SmallVector<uint64_t, 4> Offsets; 3536 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3537 unsigned NumValues = ValueVTs.size(); 3538 if (NumValues == 0) 3539 return; 3540 3541 // Get the lowered operands. Note that we do this after 3542 // checking if NumResults is zero, because with zero results 3543 // the operands won't have values in the map. 3544 SDValue Src = getValue(SrcV); 3545 SDValue Ptr = getValue(PtrV); 3546 3547 SDValue Root = getRoot(); 3548 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3549 NumValues)); 3550 EVT PtrVT = Ptr.getValueType(); 3551 bool isVolatile = I.isVolatile(); 3552 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3553 unsigned Alignment = I.getAlignment(); 3554 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3555 3556 unsigned ChainI = 0; 3557 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3558 // See visitLoad comments. 3559 if (ChainI == MaxParallelChains) { 3560 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3561 MVT::Other, &Chains[0], ChainI); 3562 Root = Chain; 3563 ChainI = 0; 3564 } 3565 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3566 DAG.getConstant(Offsets[i], PtrVT)); 3567 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3568 SDValue(Src.getNode(), Src.getResNo() + i), 3569 Add, MachinePointerInfo(PtrV, Offsets[i]), 3570 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3571 Chains[ChainI] = St; 3572 } 3573 3574 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3575 MVT::Other, &Chains[0], ChainI); 3576 DAG.setRoot(StoreNode); 3577 } 3578 3579 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3580 SynchronizationScope Scope, 3581 bool Before, SDLoc dl, 3582 SelectionDAG &DAG, 3583 const TargetLowering &TLI) { 3584 // Fence, if necessary 3585 if (Before) { 3586 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3587 Order = Release; 3588 else if (Order == Acquire || Order == Monotonic) 3589 return Chain; 3590 } else { 3591 if (Order == AcquireRelease) 3592 Order = Acquire; 3593 else if (Order == Release || Order == Monotonic) 3594 return Chain; 3595 } 3596 SDValue Ops[3]; 3597 Ops[0] = Chain; 3598 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3599 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3600 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3601 } 3602 3603 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3604 SDLoc dl = getCurSDLoc(); 3605 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3606 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3607 SynchronizationScope Scope = I.getSynchScope(); 3608 3609 SDValue InChain = getRoot(); 3610 3611 const TargetLowering *TLI = TM.getTargetLowering(); 3612 if (TLI->getInsertFencesForAtomic()) 3613 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3614 DAG, *TLI); 3615 3616 SDValue L = 3617 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3618 getValue(I.getCompareOperand()).getSimpleValueType(), 3619 InChain, 3620 getValue(I.getPointerOperand()), 3621 getValue(I.getCompareOperand()), 3622 getValue(I.getNewValOperand()), 3623 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3624 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3625 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, 3626 Scope); 3627 3628 SDValue OutChain = L.getValue(1); 3629 3630 if (TLI->getInsertFencesForAtomic()) 3631 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3632 DAG, *TLI); 3633 3634 setValue(&I, L); 3635 DAG.setRoot(OutChain); 3636 } 3637 3638 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3639 SDLoc dl = getCurSDLoc(); 3640 ISD::NodeType NT; 3641 switch (I.getOperation()) { 3642 default: llvm_unreachable("Unknown atomicrmw operation"); 3643 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3644 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3645 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3646 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3647 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3648 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3649 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3650 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3651 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3652 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3653 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3654 } 3655 AtomicOrdering Order = I.getOrdering(); 3656 SynchronizationScope Scope = I.getSynchScope(); 3657 3658 SDValue InChain = getRoot(); 3659 3660 const TargetLowering *TLI = TM.getTargetLowering(); 3661 if (TLI->getInsertFencesForAtomic()) 3662 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3663 DAG, *TLI); 3664 3665 SDValue L = 3666 DAG.getAtomic(NT, dl, 3667 getValue(I.getValOperand()).getSimpleValueType(), 3668 InChain, 3669 getValue(I.getPointerOperand()), 3670 getValue(I.getValOperand()), 3671 I.getPointerOperand(), 0 /* Alignment */, 3672 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3673 Scope); 3674 3675 SDValue OutChain = L.getValue(1); 3676 3677 if (TLI->getInsertFencesForAtomic()) 3678 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3679 DAG, *TLI); 3680 3681 setValue(&I, L); 3682 DAG.setRoot(OutChain); 3683 } 3684 3685 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3686 SDLoc dl = getCurSDLoc(); 3687 const TargetLowering *TLI = TM.getTargetLowering(); 3688 SDValue Ops[3]; 3689 Ops[0] = getRoot(); 3690 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3691 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3692 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3693 } 3694 3695 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3696 SDLoc dl = getCurSDLoc(); 3697 AtomicOrdering Order = I.getOrdering(); 3698 SynchronizationScope Scope = I.getSynchScope(); 3699 3700 SDValue InChain = getRoot(); 3701 3702 const TargetLowering *TLI = TM.getTargetLowering(); 3703 EVT VT = TLI->getValueType(I.getType()); 3704 3705 if (I.getAlignment() < VT.getSizeInBits() / 8) 3706 report_fatal_error("Cannot generate unaligned atomic load"); 3707 3708 MachineMemOperand *MMO = 3709 DAG.getMachineFunction(). 3710 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3711 MachineMemOperand::MOVolatile | 3712 MachineMemOperand::MOLoad, 3713 VT.getStoreSize(), 3714 I.getAlignment() ? I.getAlignment() : 3715 DAG.getEVTAlignment(VT)); 3716 3717 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3718 SDValue L = 3719 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3720 getValue(I.getPointerOperand()), MMO, 3721 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3722 Scope); 3723 3724 SDValue OutChain = L.getValue(1); 3725 3726 if (TLI->getInsertFencesForAtomic()) 3727 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3728 DAG, *TLI); 3729 3730 setValue(&I, L); 3731 DAG.setRoot(OutChain); 3732 } 3733 3734 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3735 SDLoc dl = getCurSDLoc(); 3736 3737 AtomicOrdering Order = I.getOrdering(); 3738 SynchronizationScope Scope = I.getSynchScope(); 3739 3740 SDValue InChain = getRoot(); 3741 3742 const TargetLowering *TLI = TM.getTargetLowering(); 3743 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3744 3745 if (I.getAlignment() < VT.getSizeInBits() / 8) 3746 report_fatal_error("Cannot generate unaligned atomic store"); 3747 3748 if (TLI->getInsertFencesForAtomic()) 3749 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3750 DAG, *TLI); 3751 3752 SDValue OutChain = 3753 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3754 InChain, 3755 getValue(I.getPointerOperand()), 3756 getValue(I.getValueOperand()), 3757 I.getPointerOperand(), I.getAlignment(), 3758 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3759 Scope); 3760 3761 if (TLI->getInsertFencesForAtomic()) 3762 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3763 DAG, *TLI); 3764 3765 DAG.setRoot(OutChain); 3766 } 3767 3768 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3769 /// node. 3770 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3771 unsigned Intrinsic) { 3772 bool HasChain = !I.doesNotAccessMemory(); 3773 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3774 3775 // Build the operand list. 3776 SmallVector<SDValue, 8> Ops; 3777 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3778 if (OnlyLoad) { 3779 // We don't need to serialize loads against other loads. 3780 Ops.push_back(DAG.getRoot()); 3781 } else { 3782 Ops.push_back(getRoot()); 3783 } 3784 } 3785 3786 // Info is set by getTgtMemInstrinsic 3787 TargetLowering::IntrinsicInfo Info; 3788 const TargetLowering *TLI = TM.getTargetLowering(); 3789 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3790 3791 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3792 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3793 Info.opc == ISD::INTRINSIC_W_CHAIN) 3794 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3795 3796 // Add all operands of the call to the operand list. 3797 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3798 SDValue Op = getValue(I.getArgOperand(i)); 3799 Ops.push_back(Op); 3800 } 3801 3802 SmallVector<EVT, 4> ValueVTs; 3803 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3804 3805 if (HasChain) 3806 ValueVTs.push_back(MVT::Other); 3807 3808 SDVTList VTs = DAG.getVTList(ValueVTs); 3809 3810 // Create the node. 3811 SDValue Result; 3812 if (IsTgtIntrinsic) { 3813 // This is target intrinsic that touches memory 3814 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3815 VTs, &Ops[0], Ops.size(), 3816 Info.memVT, 3817 MachinePointerInfo(Info.ptrVal, Info.offset), 3818 Info.align, Info.vol, 3819 Info.readMem, Info.writeMem); 3820 } else if (!HasChain) { 3821 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), 3822 VTs, &Ops[0], Ops.size()); 3823 } else if (!I.getType()->isVoidTy()) { 3824 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), 3825 VTs, &Ops[0], Ops.size()); 3826 } else { 3827 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), 3828 VTs, &Ops[0], Ops.size()); 3829 } 3830 3831 if (HasChain) { 3832 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3833 if (OnlyLoad) 3834 PendingLoads.push_back(Chain); 3835 else 3836 DAG.setRoot(Chain); 3837 } 3838 3839 if (!I.getType()->isVoidTy()) { 3840 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3841 EVT VT = TLI->getValueType(PTy); 3842 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3843 } 3844 3845 setValue(&I, Result); 3846 } 3847 } 3848 3849 /// GetSignificand - Get the significand and build it into a floating-point 3850 /// number with exponent of 1: 3851 /// 3852 /// Op = (Op & 0x007fffff) | 0x3f800000; 3853 /// 3854 /// where Op is the hexadecimal representation of floating point value. 3855 static SDValue 3856 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3857 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3858 DAG.getConstant(0x007fffff, MVT::i32)); 3859 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3860 DAG.getConstant(0x3f800000, MVT::i32)); 3861 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3862 } 3863 3864 /// GetExponent - Get the exponent: 3865 /// 3866 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3867 /// 3868 /// where Op is the hexadecimal representation of floating point value. 3869 static SDValue 3870 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3871 SDLoc dl) { 3872 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3873 DAG.getConstant(0x7f800000, MVT::i32)); 3874 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3875 DAG.getConstant(23, TLI.getPointerTy())); 3876 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3877 DAG.getConstant(127, MVT::i32)); 3878 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3879 } 3880 3881 /// getF32Constant - Get 32-bit floating point constant. 3882 static SDValue 3883 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3884 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3885 MVT::f32); 3886 } 3887 3888 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3889 /// limited-precision mode. 3890 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3891 const TargetLowering &TLI) { 3892 if (Op.getValueType() == MVT::f32 && 3893 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3894 3895 // Put the exponent in the right bit position for later addition to the 3896 // final result: 3897 // 3898 // #define LOG2OFe 1.4426950f 3899 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3900 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3901 getF32Constant(DAG, 0x3fb8aa3b)); 3902 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3903 3904 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3905 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3906 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3907 3908 // IntegerPartOfX <<= 23; 3909 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3910 DAG.getConstant(23, TLI.getPointerTy())); 3911 3912 SDValue TwoToFracPartOfX; 3913 if (LimitFloatPrecision <= 6) { 3914 // For floating-point precision of 6: 3915 // 3916 // TwoToFractionalPartOfX = 3917 // 0.997535578f + 3918 // (0.735607626f + 0.252464424f * x) * x; 3919 // 3920 // error 0.0144103317, which is 6 bits 3921 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3922 getF32Constant(DAG, 0x3e814304)); 3923 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3924 getF32Constant(DAG, 0x3f3c50c8)); 3925 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3926 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3927 getF32Constant(DAG, 0x3f7f5e7e)); 3928 } else if (LimitFloatPrecision <= 12) { 3929 // For floating-point precision of 12: 3930 // 3931 // TwoToFractionalPartOfX = 3932 // 0.999892986f + 3933 // (0.696457318f + 3934 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3935 // 3936 // 0.000107046256 error, which is 13 to 14 bits 3937 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3938 getF32Constant(DAG, 0x3da235e3)); 3939 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3940 getF32Constant(DAG, 0x3e65b8f3)); 3941 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3942 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3943 getF32Constant(DAG, 0x3f324b07)); 3944 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3945 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3946 getF32Constant(DAG, 0x3f7ff8fd)); 3947 } else { // LimitFloatPrecision <= 18 3948 // For floating-point precision of 18: 3949 // 3950 // TwoToFractionalPartOfX = 3951 // 0.999999982f + 3952 // (0.693148872f + 3953 // (0.240227044f + 3954 // (0.554906021e-1f + 3955 // (0.961591928e-2f + 3956 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3957 // 3958 // error 2.47208000*10^(-7), which is better than 18 bits 3959 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3960 getF32Constant(DAG, 0x3924b03e)); 3961 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3962 getF32Constant(DAG, 0x3ab24b87)); 3963 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3964 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3965 getF32Constant(DAG, 0x3c1d8c17)); 3966 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3967 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3968 getF32Constant(DAG, 0x3d634a1d)); 3969 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3970 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3971 getF32Constant(DAG, 0x3e75fe14)); 3972 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3973 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3974 getF32Constant(DAG, 0x3f317234)); 3975 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3976 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3977 getF32Constant(DAG, 0x3f800000)); 3978 } 3979 3980 // Add the exponent into the result in integer domain. 3981 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3982 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3983 DAG.getNode(ISD::ADD, dl, MVT::i32, 3984 t13, IntegerPartOfX)); 3985 } 3986 3987 // No special expansion. 3988 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3989 } 3990 3991 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3992 /// limited-precision mode. 3993 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3994 const TargetLowering &TLI) { 3995 if (Op.getValueType() == MVT::f32 && 3996 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3997 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3998 3999 // Scale the exponent by log(2) [0.69314718f]. 4000 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4001 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4002 getF32Constant(DAG, 0x3f317218)); 4003 4004 // Get the significand and build it into a floating-point number with 4005 // exponent of 1. 4006 SDValue X = GetSignificand(DAG, Op1, dl); 4007 4008 SDValue LogOfMantissa; 4009 if (LimitFloatPrecision <= 6) { 4010 // For floating-point precision of 6: 4011 // 4012 // LogofMantissa = 4013 // -1.1609546f + 4014 // (1.4034025f - 0.23903021f * x) * x; 4015 // 4016 // error 0.0034276066, which is better than 8 bits 4017 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4018 getF32Constant(DAG, 0xbe74c456)); 4019 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4020 getF32Constant(DAG, 0x3fb3a2b1)); 4021 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4022 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4023 getF32Constant(DAG, 0x3f949a29)); 4024 } else if (LimitFloatPrecision <= 12) { 4025 // For floating-point precision of 12: 4026 // 4027 // LogOfMantissa = 4028 // -1.7417939f + 4029 // (2.8212026f + 4030 // (-1.4699568f + 4031 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4032 // 4033 // error 0.000061011436, which is 14 bits 4034 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4035 getF32Constant(DAG, 0xbd67b6d6)); 4036 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4037 getF32Constant(DAG, 0x3ee4f4b8)); 4038 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4039 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4040 getF32Constant(DAG, 0x3fbc278b)); 4041 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4042 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4043 getF32Constant(DAG, 0x40348e95)); 4044 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4045 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4046 getF32Constant(DAG, 0x3fdef31a)); 4047 } else { // LimitFloatPrecision <= 18 4048 // For floating-point precision of 18: 4049 // 4050 // LogOfMantissa = 4051 // -2.1072184f + 4052 // (4.2372794f + 4053 // (-3.7029485f + 4054 // (2.2781945f + 4055 // (-0.87823314f + 4056 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4057 // 4058 // error 0.0000023660568, which is better than 18 bits 4059 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4060 getF32Constant(DAG, 0xbc91e5ac)); 4061 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4062 getF32Constant(DAG, 0x3e4350aa)); 4063 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4064 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4065 getF32Constant(DAG, 0x3f60d3e3)); 4066 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4067 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4068 getF32Constant(DAG, 0x4011cdf0)); 4069 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4070 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4071 getF32Constant(DAG, 0x406cfd1c)); 4072 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4073 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4074 getF32Constant(DAG, 0x408797cb)); 4075 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4076 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4077 getF32Constant(DAG, 0x4006dcab)); 4078 } 4079 4080 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4081 } 4082 4083 // No special expansion. 4084 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4085 } 4086 4087 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4088 /// limited-precision mode. 4089 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4090 const TargetLowering &TLI) { 4091 if (Op.getValueType() == MVT::f32 && 4092 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4093 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4094 4095 // Get the exponent. 4096 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4097 4098 // Get the significand and build it into a floating-point number with 4099 // exponent of 1. 4100 SDValue X = GetSignificand(DAG, Op1, dl); 4101 4102 // Different possible minimax approximations of significand in 4103 // floating-point for various degrees of accuracy over [1,2]. 4104 SDValue Log2ofMantissa; 4105 if (LimitFloatPrecision <= 6) { 4106 // For floating-point precision of 6: 4107 // 4108 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4109 // 4110 // error 0.0049451742, which is more than 7 bits 4111 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4112 getF32Constant(DAG, 0xbeb08fe0)); 4113 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4114 getF32Constant(DAG, 0x40019463)); 4115 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4116 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4117 getF32Constant(DAG, 0x3fd6633d)); 4118 } else if (LimitFloatPrecision <= 12) { 4119 // For floating-point precision of 12: 4120 // 4121 // Log2ofMantissa = 4122 // -2.51285454f + 4123 // (4.07009056f + 4124 // (-2.12067489f + 4125 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4126 // 4127 // error 0.0000876136000, which is better than 13 bits 4128 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4129 getF32Constant(DAG, 0xbda7262e)); 4130 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4131 getF32Constant(DAG, 0x3f25280b)); 4132 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4133 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4134 getF32Constant(DAG, 0x4007b923)); 4135 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4136 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4137 getF32Constant(DAG, 0x40823e2f)); 4138 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4139 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4140 getF32Constant(DAG, 0x4020d29c)); 4141 } else { // LimitFloatPrecision <= 18 4142 // For floating-point precision of 18: 4143 // 4144 // Log2ofMantissa = 4145 // -3.0400495f + 4146 // (6.1129976f + 4147 // (-5.3420409f + 4148 // (3.2865683f + 4149 // (-1.2669343f + 4150 // (0.27515199f - 4151 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4152 // 4153 // error 0.0000018516, which is better than 18 bits 4154 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4155 getF32Constant(DAG, 0xbcd2769e)); 4156 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4157 getF32Constant(DAG, 0x3e8ce0b9)); 4158 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4159 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4160 getF32Constant(DAG, 0x3fa22ae7)); 4161 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4162 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4163 getF32Constant(DAG, 0x40525723)); 4164 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4165 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4166 getF32Constant(DAG, 0x40aaf200)); 4167 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4168 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4169 getF32Constant(DAG, 0x40c39dad)); 4170 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4171 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4172 getF32Constant(DAG, 0x4042902c)); 4173 } 4174 4175 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4176 } 4177 4178 // No special expansion. 4179 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4180 } 4181 4182 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4183 /// limited-precision mode. 4184 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4185 const TargetLowering &TLI) { 4186 if (Op.getValueType() == MVT::f32 && 4187 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4188 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4189 4190 // Scale the exponent by log10(2) [0.30102999f]. 4191 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4192 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4193 getF32Constant(DAG, 0x3e9a209a)); 4194 4195 // Get the significand and build it into a floating-point number with 4196 // exponent of 1. 4197 SDValue X = GetSignificand(DAG, Op1, dl); 4198 4199 SDValue Log10ofMantissa; 4200 if (LimitFloatPrecision <= 6) { 4201 // For floating-point precision of 6: 4202 // 4203 // Log10ofMantissa = 4204 // -0.50419619f + 4205 // (0.60948995f - 0.10380950f * x) * x; 4206 // 4207 // error 0.0014886165, which is 6 bits 4208 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4209 getF32Constant(DAG, 0xbdd49a13)); 4210 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4211 getF32Constant(DAG, 0x3f1c0789)); 4212 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4213 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4214 getF32Constant(DAG, 0x3f011300)); 4215 } else if (LimitFloatPrecision <= 12) { 4216 // For floating-point precision of 12: 4217 // 4218 // Log10ofMantissa = 4219 // -0.64831180f + 4220 // (0.91751397f + 4221 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4222 // 4223 // error 0.00019228036, which is better than 12 bits 4224 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4225 getF32Constant(DAG, 0x3d431f31)); 4226 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4227 getF32Constant(DAG, 0x3ea21fb2)); 4228 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4229 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4230 getF32Constant(DAG, 0x3f6ae232)); 4231 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4232 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4233 getF32Constant(DAG, 0x3f25f7c3)); 4234 } else { // LimitFloatPrecision <= 18 4235 // For floating-point precision of 18: 4236 // 4237 // Log10ofMantissa = 4238 // -0.84299375f + 4239 // (1.5327582f + 4240 // (-1.0688956f + 4241 // (0.49102474f + 4242 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4243 // 4244 // error 0.0000037995730, which is better than 18 bits 4245 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4246 getF32Constant(DAG, 0x3c5d51ce)); 4247 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4248 getF32Constant(DAG, 0x3e00685a)); 4249 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4250 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4251 getF32Constant(DAG, 0x3efb6798)); 4252 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4253 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4254 getF32Constant(DAG, 0x3f88d192)); 4255 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4256 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4257 getF32Constant(DAG, 0x3fc4316c)); 4258 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4259 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4260 getF32Constant(DAG, 0x3f57ce70)); 4261 } 4262 4263 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4264 } 4265 4266 // No special expansion. 4267 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4268 } 4269 4270 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4271 /// limited-precision mode. 4272 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4273 const TargetLowering &TLI) { 4274 if (Op.getValueType() == MVT::f32 && 4275 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4276 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4277 4278 // FractionalPartOfX = x - (float)IntegerPartOfX; 4279 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4280 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4281 4282 // IntegerPartOfX <<= 23; 4283 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4284 DAG.getConstant(23, TLI.getPointerTy())); 4285 4286 SDValue TwoToFractionalPartOfX; 4287 if (LimitFloatPrecision <= 6) { 4288 // For floating-point precision of 6: 4289 // 4290 // TwoToFractionalPartOfX = 4291 // 0.997535578f + 4292 // (0.735607626f + 0.252464424f * x) * x; 4293 // 4294 // error 0.0144103317, which is 6 bits 4295 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4296 getF32Constant(DAG, 0x3e814304)); 4297 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4298 getF32Constant(DAG, 0x3f3c50c8)); 4299 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4300 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4301 getF32Constant(DAG, 0x3f7f5e7e)); 4302 } else if (LimitFloatPrecision <= 12) { 4303 // For floating-point precision of 12: 4304 // 4305 // TwoToFractionalPartOfX = 4306 // 0.999892986f + 4307 // (0.696457318f + 4308 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4309 // 4310 // error 0.000107046256, which is 13 to 14 bits 4311 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4312 getF32Constant(DAG, 0x3da235e3)); 4313 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4314 getF32Constant(DAG, 0x3e65b8f3)); 4315 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4316 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4317 getF32Constant(DAG, 0x3f324b07)); 4318 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4319 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4320 getF32Constant(DAG, 0x3f7ff8fd)); 4321 } else { // LimitFloatPrecision <= 18 4322 // For floating-point precision of 18: 4323 // 4324 // TwoToFractionalPartOfX = 4325 // 0.999999982f + 4326 // (0.693148872f + 4327 // (0.240227044f + 4328 // (0.554906021e-1f + 4329 // (0.961591928e-2f + 4330 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4331 // error 2.47208000*10^(-7), which is better than 18 bits 4332 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4333 getF32Constant(DAG, 0x3924b03e)); 4334 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4335 getF32Constant(DAG, 0x3ab24b87)); 4336 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4337 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4338 getF32Constant(DAG, 0x3c1d8c17)); 4339 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4340 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4341 getF32Constant(DAG, 0x3d634a1d)); 4342 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4343 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4344 getF32Constant(DAG, 0x3e75fe14)); 4345 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4346 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4347 getF32Constant(DAG, 0x3f317234)); 4348 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4349 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4350 getF32Constant(DAG, 0x3f800000)); 4351 } 4352 4353 // Add the exponent into the result in integer domain. 4354 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4355 TwoToFractionalPartOfX); 4356 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4357 DAG.getNode(ISD::ADD, dl, MVT::i32, 4358 t13, IntegerPartOfX)); 4359 } 4360 4361 // No special expansion. 4362 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4363 } 4364 4365 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4366 /// limited-precision mode with x == 10.0f. 4367 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4368 SelectionDAG &DAG, const TargetLowering &TLI) { 4369 bool IsExp10 = false; 4370 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4371 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4372 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4373 APFloat Ten(10.0f); 4374 IsExp10 = LHSC->isExactlyValue(Ten); 4375 } 4376 } 4377 4378 if (IsExp10) { 4379 // Put the exponent in the right bit position for later addition to the 4380 // final result: 4381 // 4382 // #define LOG2OF10 3.3219281f 4383 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4384 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4385 getF32Constant(DAG, 0x40549a78)); 4386 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4387 4388 // FractionalPartOfX = x - (float)IntegerPartOfX; 4389 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4390 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4391 4392 // IntegerPartOfX <<= 23; 4393 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4394 DAG.getConstant(23, TLI.getPointerTy())); 4395 4396 SDValue TwoToFractionalPartOfX; 4397 if (LimitFloatPrecision <= 6) { 4398 // For floating-point precision of 6: 4399 // 4400 // twoToFractionalPartOfX = 4401 // 0.997535578f + 4402 // (0.735607626f + 0.252464424f * x) * x; 4403 // 4404 // error 0.0144103317, which is 6 bits 4405 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4406 getF32Constant(DAG, 0x3e814304)); 4407 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4408 getF32Constant(DAG, 0x3f3c50c8)); 4409 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4410 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4411 getF32Constant(DAG, 0x3f7f5e7e)); 4412 } else if (LimitFloatPrecision <= 12) { 4413 // For floating-point precision of 12: 4414 // 4415 // TwoToFractionalPartOfX = 4416 // 0.999892986f + 4417 // (0.696457318f + 4418 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4419 // 4420 // error 0.000107046256, which is 13 to 14 bits 4421 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4422 getF32Constant(DAG, 0x3da235e3)); 4423 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4424 getF32Constant(DAG, 0x3e65b8f3)); 4425 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4426 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4427 getF32Constant(DAG, 0x3f324b07)); 4428 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4429 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4430 getF32Constant(DAG, 0x3f7ff8fd)); 4431 } else { // LimitFloatPrecision <= 18 4432 // For floating-point precision of 18: 4433 // 4434 // TwoToFractionalPartOfX = 4435 // 0.999999982f + 4436 // (0.693148872f + 4437 // (0.240227044f + 4438 // (0.554906021e-1f + 4439 // (0.961591928e-2f + 4440 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4441 // error 2.47208000*10^(-7), which is better than 18 bits 4442 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4443 getF32Constant(DAG, 0x3924b03e)); 4444 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4445 getF32Constant(DAG, 0x3ab24b87)); 4446 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4447 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4448 getF32Constant(DAG, 0x3c1d8c17)); 4449 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4450 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4451 getF32Constant(DAG, 0x3d634a1d)); 4452 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4453 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4454 getF32Constant(DAG, 0x3e75fe14)); 4455 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4456 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4457 getF32Constant(DAG, 0x3f317234)); 4458 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4459 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4460 getF32Constant(DAG, 0x3f800000)); 4461 } 4462 4463 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4464 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4465 DAG.getNode(ISD::ADD, dl, MVT::i32, 4466 t13, IntegerPartOfX)); 4467 } 4468 4469 // No special expansion. 4470 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4471 } 4472 4473 4474 /// ExpandPowI - Expand a llvm.powi intrinsic. 4475 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4476 SelectionDAG &DAG) { 4477 // If RHS is a constant, we can expand this out to a multiplication tree, 4478 // otherwise we end up lowering to a call to __powidf2 (for example). When 4479 // optimizing for size, we only want to do this if the expansion would produce 4480 // a small number of multiplies, otherwise we do the full expansion. 4481 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4482 // Get the exponent as a positive value. 4483 unsigned Val = RHSC->getSExtValue(); 4484 if ((int)Val < 0) Val = -Val; 4485 4486 // powi(x, 0) -> 1.0 4487 if (Val == 0) 4488 return DAG.getConstantFP(1.0, LHS.getValueType()); 4489 4490 const Function *F = DAG.getMachineFunction().getFunction(); 4491 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4492 Attribute::OptimizeForSize) || 4493 // If optimizing for size, don't insert too many multiplies. This 4494 // inserts up to 5 multiplies. 4495 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4496 // We use the simple binary decomposition method to generate the multiply 4497 // sequence. There are more optimal ways to do this (for example, 4498 // powi(x,15) generates one more multiply than it should), but this has 4499 // the benefit of being both really simple and much better than a libcall. 4500 SDValue Res; // Logically starts equal to 1.0 4501 SDValue CurSquare = LHS; 4502 while (Val) { 4503 if (Val & 1) { 4504 if (Res.getNode()) 4505 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4506 else 4507 Res = CurSquare; // 1.0*CurSquare. 4508 } 4509 4510 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4511 CurSquare, CurSquare); 4512 Val >>= 1; 4513 } 4514 4515 // If the original was negative, invert the result, producing 1/(x*x*x). 4516 if (RHSC->getSExtValue() < 0) 4517 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4518 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4519 return Res; 4520 } 4521 } 4522 4523 // Otherwise, expand to a libcall. 4524 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4525 } 4526 4527 // getTruncatedArgReg - Find underlying register used for an truncated 4528 // argument. 4529 static unsigned getTruncatedArgReg(const SDValue &N) { 4530 if (N.getOpcode() != ISD::TRUNCATE) 4531 return 0; 4532 4533 const SDValue &Ext = N.getOperand(0); 4534 if (Ext.getOpcode() == ISD::AssertZext || 4535 Ext.getOpcode() == ISD::AssertSext) { 4536 const SDValue &CFR = Ext.getOperand(0); 4537 if (CFR.getOpcode() == ISD::CopyFromReg) 4538 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4539 if (CFR.getOpcode() == ISD::TRUNCATE) 4540 return getTruncatedArgReg(CFR); 4541 } 4542 return 0; 4543 } 4544 4545 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4546 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4547 /// At the end of instruction selection, they will be inserted to the entry BB. 4548 bool 4549 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4550 int64_t Offset, bool IsIndirect, 4551 const SDValue &N) { 4552 const Argument *Arg = dyn_cast<Argument>(V); 4553 if (!Arg) 4554 return false; 4555 4556 MachineFunction &MF = DAG.getMachineFunction(); 4557 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4558 4559 // Ignore inlined function arguments here. 4560 DIVariable DV(Variable); 4561 if (DV.isInlinedFnArgument(MF.getFunction())) 4562 return false; 4563 4564 Optional<MachineOperand> Op; 4565 // Some arguments' frame index is recorded during argument lowering. 4566 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4567 Op = MachineOperand::CreateFI(FI); 4568 4569 if (!Op && N.getNode()) { 4570 unsigned Reg; 4571 if (N.getOpcode() == ISD::CopyFromReg) 4572 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4573 else 4574 Reg = getTruncatedArgReg(N); 4575 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4576 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4577 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4578 if (PR) 4579 Reg = PR; 4580 } 4581 if (Reg) 4582 Op = MachineOperand::CreateReg(Reg, false); 4583 } 4584 4585 if (!Op) { 4586 // Check if ValueMap has reg number. 4587 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4588 if (VMI != FuncInfo.ValueMap.end()) 4589 Op = MachineOperand::CreateReg(VMI->second, false); 4590 } 4591 4592 if (!Op && N.getNode()) 4593 // Check if frame index is available. 4594 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4595 if (FrameIndexSDNode *FINode = 4596 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4597 Op = MachineOperand::CreateFI(FINode->getIndex()); 4598 4599 if (!Op) 4600 return false; 4601 4602 if (Op->isReg()) 4603 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4604 TII->get(TargetOpcode::DBG_VALUE), 4605 IsIndirect, 4606 Op->getReg(), Offset, Variable)); 4607 else 4608 FuncInfo.ArgDbgValues.push_back( 4609 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4610 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4611 4612 return true; 4613 } 4614 4615 // VisualStudio defines setjmp as _setjmp 4616 #if defined(_MSC_VER) && defined(setjmp) && \ 4617 !defined(setjmp_undefined_for_msvc) 4618 # pragma push_macro("setjmp") 4619 # undef setjmp 4620 # define setjmp_undefined_for_msvc 4621 #endif 4622 4623 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4624 /// we want to emit this as a call to a named external function, return the name 4625 /// otherwise lower it and return null. 4626 const char * 4627 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4628 const TargetLowering *TLI = TM.getTargetLowering(); 4629 SDLoc sdl = getCurSDLoc(); 4630 DebugLoc dl = getCurDebugLoc(); 4631 SDValue Res; 4632 4633 switch (Intrinsic) { 4634 default: 4635 // By default, turn this into a target intrinsic node. 4636 visitTargetIntrinsic(I, Intrinsic); 4637 return nullptr; 4638 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4639 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4640 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4641 case Intrinsic::returnaddress: 4642 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4643 getValue(I.getArgOperand(0)))); 4644 return nullptr; 4645 case Intrinsic::frameaddress: 4646 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4647 getValue(I.getArgOperand(0)))); 4648 return nullptr; 4649 case Intrinsic::setjmp: 4650 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4651 case Intrinsic::longjmp: 4652 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4653 case Intrinsic::memcpy: { 4654 // Assert for address < 256 since we support only user defined address 4655 // spaces. 4656 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4657 < 256 && 4658 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4659 < 256 && 4660 "Unknown address space"); 4661 SDValue Op1 = getValue(I.getArgOperand(0)); 4662 SDValue Op2 = getValue(I.getArgOperand(1)); 4663 SDValue Op3 = getValue(I.getArgOperand(2)); 4664 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4665 if (!Align) 4666 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4667 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4668 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4669 MachinePointerInfo(I.getArgOperand(0)), 4670 MachinePointerInfo(I.getArgOperand(1)))); 4671 return nullptr; 4672 } 4673 case Intrinsic::memset: { 4674 // Assert for address < 256 since we support only user defined address 4675 // spaces. 4676 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4677 < 256 && 4678 "Unknown address space"); 4679 SDValue Op1 = getValue(I.getArgOperand(0)); 4680 SDValue Op2 = getValue(I.getArgOperand(1)); 4681 SDValue Op3 = getValue(I.getArgOperand(2)); 4682 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4683 if (!Align) 4684 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4685 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4686 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4687 MachinePointerInfo(I.getArgOperand(0)))); 4688 return nullptr; 4689 } 4690 case Intrinsic::memmove: { 4691 // Assert for address < 256 since we support only user defined address 4692 // spaces. 4693 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4694 < 256 && 4695 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4696 < 256 && 4697 "Unknown address space"); 4698 SDValue Op1 = getValue(I.getArgOperand(0)); 4699 SDValue Op2 = getValue(I.getArgOperand(1)); 4700 SDValue Op3 = getValue(I.getArgOperand(2)); 4701 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4702 if (!Align) 4703 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4704 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4705 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4706 MachinePointerInfo(I.getArgOperand(0)), 4707 MachinePointerInfo(I.getArgOperand(1)))); 4708 return nullptr; 4709 } 4710 case Intrinsic::dbg_declare: { 4711 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4712 MDNode *Variable = DI.getVariable(); 4713 const Value *Address = DI.getAddress(); 4714 DIVariable DIVar(Variable); 4715 assert((!DIVar || DIVar.isVariable()) && 4716 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4717 if (!Address || !DIVar) { 4718 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4719 return nullptr; 4720 } 4721 4722 // Check if address has undef value. 4723 if (isa<UndefValue>(Address) || 4724 (Address->use_empty() && !isa<Argument>(Address))) { 4725 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4726 return nullptr; 4727 } 4728 4729 SDValue &N = NodeMap[Address]; 4730 if (!N.getNode() && isa<Argument>(Address)) 4731 // Check unused arguments map. 4732 N = UnusedArgNodeMap[Address]; 4733 SDDbgValue *SDV; 4734 if (N.getNode()) { 4735 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4736 Address = BCI->getOperand(0); 4737 // Parameters are handled specially. 4738 bool isParameter = 4739 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4740 isa<Argument>(Address)); 4741 4742 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4743 4744 if (isParameter && !AI) { 4745 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4746 if (FINode) 4747 // Byval parameter. We have a frame index at this point. 4748 SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(), 4749 0, dl, SDNodeOrder); 4750 else { 4751 // Address is an argument, so try to emit its dbg value using 4752 // virtual register info from the FuncInfo.ValueMap. 4753 EmitFuncArgumentDbgValue(Address, Variable, 0, false, N); 4754 return nullptr; 4755 } 4756 } else if (AI) 4757 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4758 true, 0, dl, SDNodeOrder); 4759 else { 4760 // Can't do anything with other non-AI cases yet. 4761 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4762 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4763 DEBUG(Address->dump()); 4764 return nullptr; 4765 } 4766 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4767 } else { 4768 // If Address is an argument then try to emit its dbg value using 4769 // virtual register info from the FuncInfo.ValueMap. 4770 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) { 4771 // If variable is pinned by a alloca in dominating bb then 4772 // use StaticAllocaMap. 4773 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4774 if (AI->getParent() != DI.getParent()) { 4775 DenseMap<const AllocaInst*, int>::iterator SI = 4776 FuncInfo.StaticAllocaMap.find(AI); 4777 if (SI != FuncInfo.StaticAllocaMap.end()) { 4778 SDV = DAG.getFrameIndexDbgValue(Variable, SI->second, 4779 0, dl, SDNodeOrder); 4780 DAG.AddDbgValue(SDV, nullptr, false); 4781 return nullptr; 4782 } 4783 } 4784 } 4785 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4786 } 4787 } 4788 return nullptr; 4789 } 4790 case Intrinsic::dbg_value: { 4791 const DbgValueInst &DI = cast<DbgValueInst>(I); 4792 DIVariable DIVar(DI.getVariable()); 4793 assert((!DIVar || DIVar.isVariable()) && 4794 "Variable in DbgValueInst should be either null or a DIVariable."); 4795 if (!DIVar) 4796 return nullptr; 4797 4798 MDNode *Variable = DI.getVariable(); 4799 uint64_t Offset = DI.getOffset(); 4800 const Value *V = DI.getValue(); 4801 if (!V) 4802 return nullptr; 4803 4804 SDDbgValue *SDV; 4805 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4806 SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4807 DAG.AddDbgValue(SDV, nullptr, false); 4808 } else { 4809 // Do not use getValue() in here; we don't want to generate code at 4810 // this point if it hasn't been done yet. 4811 SDValue N = NodeMap[V]; 4812 if (!N.getNode() && isa<Argument>(V)) 4813 // Check unused arguments map. 4814 N = UnusedArgNodeMap[V]; 4815 if (N.getNode()) { 4816 // A dbg.value for an alloca is always indirect. 4817 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4818 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) { 4819 SDV = DAG.getDbgValue(Variable, N.getNode(), 4820 N.getResNo(), IsIndirect, 4821 Offset, dl, SDNodeOrder); 4822 DAG.AddDbgValue(SDV, N.getNode(), false); 4823 } 4824 } else if (!V->use_empty() ) { 4825 // Do not call getValue(V) yet, as we don't want to generate code. 4826 // Remember it for later. 4827 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4828 DanglingDebugInfoMap[V] = DDI; 4829 } else { 4830 // We may expand this to cover more cases. One case where we have no 4831 // data available is an unreferenced parameter. 4832 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4833 } 4834 } 4835 4836 // Build a debug info table entry. 4837 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4838 V = BCI->getOperand(0); 4839 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4840 // Don't handle byval struct arguments or VLAs, for example. 4841 if (!AI) { 4842 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4843 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4844 return nullptr; 4845 } 4846 DenseMap<const AllocaInst*, int>::iterator SI = 4847 FuncInfo.StaticAllocaMap.find(AI); 4848 if (SI == FuncInfo.StaticAllocaMap.end()) 4849 return nullptr; // VLAs. 4850 return nullptr; 4851 } 4852 4853 case Intrinsic::eh_typeid_for: { 4854 // Find the type id for the given typeinfo. 4855 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4856 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4857 Res = DAG.getConstant(TypeID, MVT::i32); 4858 setValue(&I, Res); 4859 return nullptr; 4860 } 4861 4862 case Intrinsic::eh_return_i32: 4863 case Intrinsic::eh_return_i64: 4864 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4865 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4866 MVT::Other, 4867 getControlRoot(), 4868 getValue(I.getArgOperand(0)), 4869 getValue(I.getArgOperand(1)))); 4870 return nullptr; 4871 case Intrinsic::eh_unwind_init: 4872 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4873 return nullptr; 4874 case Intrinsic::eh_dwarf_cfa: { 4875 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4876 TLI->getPointerTy()); 4877 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4878 CfaArg.getValueType(), 4879 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4880 CfaArg.getValueType()), 4881 CfaArg); 4882 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4883 TLI->getPointerTy(), 4884 DAG.getConstant(0, TLI->getPointerTy())); 4885 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4886 FA, Offset)); 4887 return nullptr; 4888 } 4889 case Intrinsic::eh_sjlj_callsite: { 4890 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4891 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4892 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4893 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4894 4895 MMI.setCurrentCallSite(CI->getZExtValue()); 4896 return nullptr; 4897 } 4898 case Intrinsic::eh_sjlj_functioncontext: { 4899 // Get and store the index of the function context. 4900 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4901 AllocaInst *FnCtx = 4902 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4903 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4904 MFI->setFunctionContextIndex(FI); 4905 return nullptr; 4906 } 4907 case Intrinsic::eh_sjlj_setjmp: { 4908 SDValue Ops[2]; 4909 Ops[0] = getRoot(); 4910 Ops[1] = getValue(I.getArgOperand(0)); 4911 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4912 DAG.getVTList(MVT::i32, MVT::Other), 4913 Ops, 2); 4914 setValue(&I, Op.getValue(0)); 4915 DAG.setRoot(Op.getValue(1)); 4916 return nullptr; 4917 } 4918 case Intrinsic::eh_sjlj_longjmp: { 4919 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4920 getRoot(), getValue(I.getArgOperand(0)))); 4921 return nullptr; 4922 } 4923 4924 case Intrinsic::x86_mmx_pslli_w: 4925 case Intrinsic::x86_mmx_pslli_d: 4926 case Intrinsic::x86_mmx_pslli_q: 4927 case Intrinsic::x86_mmx_psrli_w: 4928 case Intrinsic::x86_mmx_psrli_d: 4929 case Intrinsic::x86_mmx_psrli_q: 4930 case Intrinsic::x86_mmx_psrai_w: 4931 case Intrinsic::x86_mmx_psrai_d: { 4932 SDValue ShAmt = getValue(I.getArgOperand(1)); 4933 if (isa<ConstantSDNode>(ShAmt)) { 4934 visitTargetIntrinsic(I, Intrinsic); 4935 return nullptr; 4936 } 4937 unsigned NewIntrinsic = 0; 4938 EVT ShAmtVT = MVT::v2i32; 4939 switch (Intrinsic) { 4940 case Intrinsic::x86_mmx_pslli_w: 4941 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4942 break; 4943 case Intrinsic::x86_mmx_pslli_d: 4944 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4945 break; 4946 case Intrinsic::x86_mmx_pslli_q: 4947 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4948 break; 4949 case Intrinsic::x86_mmx_psrli_w: 4950 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4951 break; 4952 case Intrinsic::x86_mmx_psrli_d: 4953 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4954 break; 4955 case Intrinsic::x86_mmx_psrli_q: 4956 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4957 break; 4958 case Intrinsic::x86_mmx_psrai_w: 4959 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4960 break; 4961 case Intrinsic::x86_mmx_psrai_d: 4962 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4963 break; 4964 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4965 } 4966 4967 // The vector shift intrinsics with scalars uses 32b shift amounts but 4968 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4969 // to be zero. 4970 // We must do this early because v2i32 is not a legal type. 4971 SDValue ShOps[2]; 4972 ShOps[0] = ShAmt; 4973 ShOps[1] = DAG.getConstant(0, MVT::i32); 4974 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2); 4975 EVT DestVT = TLI->getValueType(I.getType()); 4976 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4977 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4978 DAG.getConstant(NewIntrinsic, MVT::i32), 4979 getValue(I.getArgOperand(0)), ShAmt); 4980 setValue(&I, Res); 4981 return nullptr; 4982 } 4983 case Intrinsic::x86_avx_vinsertf128_pd_256: 4984 case Intrinsic::x86_avx_vinsertf128_ps_256: 4985 case Intrinsic::x86_avx_vinsertf128_si_256: 4986 case Intrinsic::x86_avx2_vinserti128: { 4987 EVT DestVT = TLI->getValueType(I.getType()); 4988 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 4989 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4990 ElVT.getVectorNumElements(); 4991 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4992 getValue(I.getArgOperand(0)), 4993 getValue(I.getArgOperand(1)), 4994 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4995 setValue(&I, Res); 4996 return nullptr; 4997 } 4998 case Intrinsic::x86_avx_vextractf128_pd_256: 4999 case Intrinsic::x86_avx_vextractf128_ps_256: 5000 case Intrinsic::x86_avx_vextractf128_si_256: 5001 case Intrinsic::x86_avx2_vextracti128: { 5002 EVT DestVT = TLI->getValueType(I.getType()); 5003 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5004 DestVT.getVectorNumElements(); 5005 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5006 getValue(I.getArgOperand(0)), 5007 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5008 setValue(&I, Res); 5009 return nullptr; 5010 } 5011 case Intrinsic::convertff: 5012 case Intrinsic::convertfsi: 5013 case Intrinsic::convertfui: 5014 case Intrinsic::convertsif: 5015 case Intrinsic::convertuif: 5016 case Intrinsic::convertss: 5017 case Intrinsic::convertsu: 5018 case Intrinsic::convertus: 5019 case Intrinsic::convertuu: { 5020 ISD::CvtCode Code = ISD::CVT_INVALID; 5021 switch (Intrinsic) { 5022 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5023 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5024 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5025 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5026 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5027 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5028 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5029 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5030 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5031 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5032 } 5033 EVT DestVT = TLI->getValueType(I.getType()); 5034 const Value *Op1 = I.getArgOperand(0); 5035 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5036 DAG.getValueType(DestVT), 5037 DAG.getValueType(getValue(Op1).getValueType()), 5038 getValue(I.getArgOperand(1)), 5039 getValue(I.getArgOperand(2)), 5040 Code); 5041 setValue(&I, Res); 5042 return nullptr; 5043 } 5044 case Intrinsic::powi: 5045 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5046 getValue(I.getArgOperand(1)), DAG)); 5047 return nullptr; 5048 case Intrinsic::log: 5049 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5050 return nullptr; 5051 case Intrinsic::log2: 5052 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5053 return nullptr; 5054 case Intrinsic::log10: 5055 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5056 return nullptr; 5057 case Intrinsic::exp: 5058 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5059 return nullptr; 5060 case Intrinsic::exp2: 5061 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5062 return nullptr; 5063 case Intrinsic::pow: 5064 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5065 getValue(I.getArgOperand(1)), DAG, *TLI)); 5066 return nullptr; 5067 case Intrinsic::sqrt: 5068 case Intrinsic::fabs: 5069 case Intrinsic::sin: 5070 case Intrinsic::cos: 5071 case Intrinsic::floor: 5072 case Intrinsic::ceil: 5073 case Intrinsic::trunc: 5074 case Intrinsic::rint: 5075 case Intrinsic::nearbyint: 5076 case Intrinsic::round: { 5077 unsigned Opcode; 5078 switch (Intrinsic) { 5079 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5080 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5081 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5082 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5083 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5084 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5085 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5086 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5087 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5088 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5089 case Intrinsic::round: Opcode = ISD::FROUND; break; 5090 } 5091 5092 setValue(&I, DAG.getNode(Opcode, sdl, 5093 getValue(I.getArgOperand(0)).getValueType(), 5094 getValue(I.getArgOperand(0)))); 5095 return nullptr; 5096 } 5097 case Intrinsic::copysign: 5098 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5099 getValue(I.getArgOperand(0)).getValueType(), 5100 getValue(I.getArgOperand(0)), 5101 getValue(I.getArgOperand(1)))); 5102 return nullptr; 5103 case Intrinsic::fma: 5104 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5105 getValue(I.getArgOperand(0)).getValueType(), 5106 getValue(I.getArgOperand(0)), 5107 getValue(I.getArgOperand(1)), 5108 getValue(I.getArgOperand(2)))); 5109 return nullptr; 5110 case Intrinsic::fmuladd: { 5111 EVT VT = TLI->getValueType(I.getType()); 5112 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5113 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5114 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5115 getValue(I.getArgOperand(0)).getValueType(), 5116 getValue(I.getArgOperand(0)), 5117 getValue(I.getArgOperand(1)), 5118 getValue(I.getArgOperand(2)))); 5119 } else { 5120 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5121 getValue(I.getArgOperand(0)).getValueType(), 5122 getValue(I.getArgOperand(0)), 5123 getValue(I.getArgOperand(1))); 5124 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5125 getValue(I.getArgOperand(0)).getValueType(), 5126 Mul, 5127 getValue(I.getArgOperand(2))); 5128 setValue(&I, Add); 5129 } 5130 return nullptr; 5131 } 5132 case Intrinsic::convert_to_fp16: 5133 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, 5134 MVT::i16, getValue(I.getArgOperand(0)))); 5135 return nullptr; 5136 case Intrinsic::convert_from_fp16: 5137 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, 5138 MVT::f32, getValue(I.getArgOperand(0)))); 5139 return nullptr; 5140 case Intrinsic::pcmarker: { 5141 SDValue Tmp = getValue(I.getArgOperand(0)); 5142 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5143 return nullptr; 5144 } 5145 case Intrinsic::readcyclecounter: { 5146 SDValue Op = getRoot(); 5147 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5148 DAG.getVTList(MVT::i64, MVT::Other), 5149 &Op, 1); 5150 setValue(&I, Res); 5151 DAG.setRoot(Res.getValue(1)); 5152 return nullptr; 5153 } 5154 case Intrinsic::bswap: 5155 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5156 getValue(I.getArgOperand(0)).getValueType(), 5157 getValue(I.getArgOperand(0)))); 5158 return nullptr; 5159 case Intrinsic::cttz: { 5160 SDValue Arg = getValue(I.getArgOperand(0)); 5161 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5162 EVT Ty = Arg.getValueType(); 5163 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5164 sdl, Ty, Arg)); 5165 return nullptr; 5166 } 5167 case Intrinsic::ctlz: { 5168 SDValue Arg = getValue(I.getArgOperand(0)); 5169 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5170 EVT Ty = Arg.getValueType(); 5171 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5172 sdl, Ty, Arg)); 5173 return nullptr; 5174 } 5175 case Intrinsic::ctpop: { 5176 SDValue Arg = getValue(I.getArgOperand(0)); 5177 EVT Ty = Arg.getValueType(); 5178 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5179 return nullptr; 5180 } 5181 case Intrinsic::stacksave: { 5182 SDValue Op = getRoot(); 5183 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5184 DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1); 5185 setValue(&I, Res); 5186 DAG.setRoot(Res.getValue(1)); 5187 return nullptr; 5188 } 5189 case Intrinsic::stackrestore: { 5190 Res = getValue(I.getArgOperand(0)); 5191 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5192 return nullptr; 5193 } 5194 case Intrinsic::stackprotector: { 5195 // Emit code into the DAG to store the stack guard onto the stack. 5196 MachineFunction &MF = DAG.getMachineFunction(); 5197 MachineFrameInfo *MFI = MF.getFrameInfo(); 5198 EVT PtrTy = TLI->getPointerTy(); 5199 5200 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5201 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5202 5203 int FI = FuncInfo.StaticAllocaMap[Slot]; 5204 MFI->setStackProtectorIndex(FI); 5205 5206 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5207 5208 // Store the stack protector onto the stack. 5209 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5210 MachinePointerInfo::getFixedStack(FI), 5211 true, false, 0); 5212 setValue(&I, Res); 5213 DAG.setRoot(Res); 5214 return nullptr; 5215 } 5216 case Intrinsic::objectsize: { 5217 // If we don't know by now, we're never going to know. 5218 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5219 5220 assert(CI && "Non-constant type in __builtin_object_size?"); 5221 5222 SDValue Arg = getValue(I.getCalledValue()); 5223 EVT Ty = Arg.getValueType(); 5224 5225 if (CI->isZero()) 5226 Res = DAG.getConstant(-1ULL, Ty); 5227 else 5228 Res = DAG.getConstant(0, Ty); 5229 5230 setValue(&I, Res); 5231 return nullptr; 5232 } 5233 case Intrinsic::annotation: 5234 case Intrinsic::ptr_annotation: 5235 // Drop the intrinsic, but forward the value 5236 setValue(&I, getValue(I.getOperand(0))); 5237 return nullptr; 5238 case Intrinsic::var_annotation: 5239 // Discard annotate attributes 5240 return nullptr; 5241 5242 case Intrinsic::init_trampoline: { 5243 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5244 5245 SDValue Ops[6]; 5246 Ops[0] = getRoot(); 5247 Ops[1] = getValue(I.getArgOperand(0)); 5248 Ops[2] = getValue(I.getArgOperand(1)); 5249 Ops[3] = getValue(I.getArgOperand(2)); 5250 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5251 Ops[5] = DAG.getSrcValue(F); 5252 5253 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6); 5254 5255 DAG.setRoot(Res); 5256 return nullptr; 5257 } 5258 case Intrinsic::adjust_trampoline: { 5259 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5260 TLI->getPointerTy(), 5261 getValue(I.getArgOperand(0)))); 5262 return nullptr; 5263 } 5264 case Intrinsic::gcroot: 5265 if (GFI) { 5266 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5267 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5268 5269 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5270 GFI->addStackRoot(FI->getIndex(), TypeMap); 5271 } 5272 return nullptr; 5273 case Intrinsic::gcread: 5274 case Intrinsic::gcwrite: 5275 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5276 case Intrinsic::flt_rounds: 5277 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5278 return nullptr; 5279 5280 case Intrinsic::expect: { 5281 // Just replace __builtin_expect(exp, c) with EXP. 5282 setValue(&I, getValue(I.getArgOperand(0))); 5283 return nullptr; 5284 } 5285 5286 case Intrinsic::debugtrap: 5287 case Intrinsic::trap: { 5288 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5289 if (TrapFuncName.empty()) { 5290 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5291 ISD::TRAP : ISD::DEBUGTRAP; 5292 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5293 return nullptr; 5294 } 5295 TargetLowering::ArgListTy Args; 5296 TargetLowering:: 5297 CallLoweringInfo CLI(getRoot(), I.getType(), 5298 false, false, false, false, 0, CallingConv::C, 5299 /*isTailCall=*/false, 5300 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5301 DAG.getExternalSymbol(TrapFuncName.data(), 5302 TLI->getPointerTy()), 5303 Args, DAG, sdl); 5304 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5305 DAG.setRoot(Result.second); 5306 return nullptr; 5307 } 5308 5309 case Intrinsic::uadd_with_overflow: 5310 case Intrinsic::sadd_with_overflow: 5311 case Intrinsic::usub_with_overflow: 5312 case Intrinsic::ssub_with_overflow: 5313 case Intrinsic::umul_with_overflow: 5314 case Intrinsic::smul_with_overflow: { 5315 ISD::NodeType Op; 5316 switch (Intrinsic) { 5317 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5318 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5319 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5320 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5321 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5322 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5323 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5324 } 5325 SDValue Op1 = getValue(I.getArgOperand(0)); 5326 SDValue Op2 = getValue(I.getArgOperand(1)); 5327 5328 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5329 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5330 return nullptr; 5331 } 5332 case Intrinsic::prefetch: { 5333 SDValue Ops[5]; 5334 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5335 Ops[0] = getRoot(); 5336 Ops[1] = getValue(I.getArgOperand(0)); 5337 Ops[2] = getValue(I.getArgOperand(1)); 5338 Ops[3] = getValue(I.getArgOperand(2)); 5339 Ops[4] = getValue(I.getArgOperand(3)); 5340 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5341 DAG.getVTList(MVT::Other), 5342 &Ops[0], 5, 5343 EVT::getIntegerVT(*Context, 8), 5344 MachinePointerInfo(I.getArgOperand(0)), 5345 0, /* align */ 5346 false, /* volatile */ 5347 rw==0, /* read */ 5348 rw==1)); /* write */ 5349 return nullptr; 5350 } 5351 case Intrinsic::lifetime_start: 5352 case Intrinsic::lifetime_end: { 5353 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5354 // Stack coloring is not enabled in O0, discard region information. 5355 if (TM.getOptLevel() == CodeGenOpt::None) 5356 return nullptr; 5357 5358 SmallVector<Value *, 4> Allocas; 5359 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5360 5361 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5362 E = Allocas.end(); Object != E; ++Object) { 5363 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5364 5365 // Could not find an Alloca. 5366 if (!LifetimeObject) 5367 continue; 5368 5369 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5370 5371 SDValue Ops[2]; 5372 Ops[0] = getRoot(); 5373 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5374 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5375 5376 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2); 5377 DAG.setRoot(Res); 5378 } 5379 return nullptr; 5380 } 5381 case Intrinsic::invariant_start: 5382 // Discard region information. 5383 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5384 return nullptr; 5385 case Intrinsic::invariant_end: 5386 // Discard region information. 5387 return nullptr; 5388 case Intrinsic::stackprotectorcheck: { 5389 // Do not actually emit anything for this basic block. Instead we initialize 5390 // the stack protector descriptor and export the guard variable so we can 5391 // access it in FinishBasicBlock. 5392 const BasicBlock *BB = I.getParent(); 5393 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5394 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5395 5396 // Flush our exports since we are going to process a terminator. 5397 (void)getControlRoot(); 5398 return nullptr; 5399 } 5400 case Intrinsic::clear_cache: 5401 return TLI->getClearCacheBuiltinName(); 5402 case Intrinsic::donothing: 5403 // ignore 5404 return nullptr; 5405 case Intrinsic::experimental_stackmap: { 5406 visitStackmap(I); 5407 return nullptr; 5408 } 5409 case Intrinsic::experimental_patchpoint_void: 5410 case Intrinsic::experimental_patchpoint_i64: { 5411 visitPatchpoint(I); 5412 return nullptr; 5413 } 5414 } 5415 } 5416 5417 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5418 bool isTailCall, 5419 MachineBasicBlock *LandingPad) { 5420 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5421 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5422 Type *RetTy = FTy->getReturnType(); 5423 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5424 MCSymbol *BeginLabel = nullptr; 5425 5426 TargetLowering::ArgListTy Args; 5427 TargetLowering::ArgListEntry Entry; 5428 Args.reserve(CS.arg_size()); 5429 5430 // Check whether the function can return without sret-demotion. 5431 SmallVector<ISD::OutputArg, 4> Outs; 5432 const TargetLowering *TLI = TM.getTargetLowering(); 5433 GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); 5434 5435 bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), 5436 DAG.getMachineFunction(), 5437 FTy->isVarArg(), Outs, 5438 FTy->getContext()); 5439 5440 SDValue DemoteStackSlot; 5441 int DemoteStackIdx = -100; 5442 5443 if (!CanLowerReturn) { 5444 assert(!CS.hasInAllocaArgument() && 5445 "sret demotion is incompatible with inalloca"); 5446 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( 5447 FTy->getReturnType()); 5448 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( 5449 FTy->getReturnType()); 5450 MachineFunction &MF = DAG.getMachineFunction(); 5451 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5452 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5453 5454 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); 5455 Entry.Node = DemoteStackSlot; 5456 Entry.Ty = StackSlotPtrType; 5457 Entry.isSExt = false; 5458 Entry.isZExt = false; 5459 Entry.isInReg = false; 5460 Entry.isSRet = true; 5461 Entry.isNest = false; 5462 Entry.isByVal = false; 5463 Entry.isReturned = false; 5464 Entry.Alignment = Align; 5465 Args.push_back(Entry); 5466 RetTy = Type::getVoidTy(FTy->getContext()); 5467 } 5468 5469 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5470 i != e; ++i) { 5471 const Value *V = *i; 5472 5473 // Skip empty types 5474 if (V->getType()->isEmptyTy()) 5475 continue; 5476 5477 SDValue ArgNode = getValue(V); 5478 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5479 5480 // Skip the first return-type Attribute to get to params. 5481 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5482 Args.push_back(Entry); 5483 } 5484 5485 if (LandingPad) { 5486 // Insert a label before the invoke call to mark the try range. This can be 5487 // used to detect deletion of the invoke via the MachineModuleInfo. 5488 BeginLabel = MMI.getContext().CreateTempSymbol(); 5489 5490 // For SjLj, keep track of which landing pads go with which invokes 5491 // so as to maintain the ordering of pads in the LSDA. 5492 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5493 if (CallSiteIndex) { 5494 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5495 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5496 5497 // Now that the call site is handled, stop tracking it. 5498 MMI.setCurrentCallSite(0); 5499 } 5500 5501 // Both PendingLoads and PendingExports must be flushed here; 5502 // this call might not return. 5503 (void)getRoot(); 5504 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5505 } 5506 5507 // Check if target-independent constraints permit a tail call here. 5508 // Target-dependent constraints are checked within TLI->LowerCallTo. 5509 if (isTailCall && !isInTailCallPosition(CS, *TLI)) 5510 isTailCall = false; 5511 5512 TargetLowering:: 5513 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5514 getCurSDLoc(), CS); 5515 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5516 assert((isTailCall || Result.second.getNode()) && 5517 "Non-null chain expected with non-tail call!"); 5518 assert((Result.second.getNode() || !Result.first.getNode()) && 5519 "Null value expected with tail call!"); 5520 if (Result.first.getNode()) { 5521 setValue(CS.getInstruction(), Result.first); 5522 } else if (!CanLowerReturn && Result.second.getNode()) { 5523 // The instruction result is the result of loading from the 5524 // hidden sret parameter. 5525 SmallVector<EVT, 1> PVTs; 5526 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5527 5528 ComputeValueVTs(*TLI, PtrRetTy, PVTs); 5529 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5530 EVT PtrVT = PVTs[0]; 5531 5532 SmallVector<EVT, 4> RetTys; 5533 SmallVector<uint64_t, 4> Offsets; 5534 RetTy = FTy->getReturnType(); 5535 ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); 5536 5537 unsigned NumValues = RetTys.size(); 5538 SmallVector<SDValue, 4> Values(NumValues); 5539 SmallVector<SDValue, 4> Chains(NumValues); 5540 5541 for (unsigned i = 0; i < NumValues; ++i) { 5542 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, 5543 DemoteStackSlot, 5544 DAG.getConstant(Offsets[i], PtrVT)); 5545 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, 5546 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5547 false, false, false, 1); 5548 Values[i] = L; 5549 Chains[i] = L.getValue(1); 5550 } 5551 5552 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 5553 MVT::Other, &Chains[0], NumValues); 5554 PendingLoads.push_back(Chain); 5555 5556 setValue(CS.getInstruction(), 5557 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 5558 DAG.getVTList(RetTys), 5559 &Values[0], Values.size())); 5560 } 5561 5562 if (!Result.second.getNode()) { 5563 // As a special case, a null chain means that a tail call has been emitted 5564 // and the DAG root is already updated. 5565 HasTailCall = true; 5566 5567 // Since there's no actual continuation from this block, nothing can be 5568 // relying on us setting vregs for them. 5569 PendingExports.clear(); 5570 } else { 5571 DAG.setRoot(Result.second); 5572 } 5573 5574 if (LandingPad) { 5575 // Insert a label at the end of the invoke call to mark the try range. This 5576 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5577 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5578 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5579 5580 // Inform MachineModuleInfo of range. 5581 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5582 } 5583 } 5584 5585 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5586 /// value is equal or not-equal to zero. 5587 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5588 for (const User *U : V->users()) { 5589 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5590 if (IC->isEquality()) 5591 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5592 if (C->isNullValue()) 5593 continue; 5594 // Unknown instruction. 5595 return false; 5596 } 5597 return true; 5598 } 5599 5600 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5601 Type *LoadTy, 5602 SelectionDAGBuilder &Builder) { 5603 5604 // Check to see if this load can be trivially constant folded, e.g. if the 5605 // input is from a string literal. 5606 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5607 // Cast pointer to the type we really want to load. 5608 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5609 PointerType::getUnqual(LoadTy)); 5610 5611 if (const Constant *LoadCst = 5612 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5613 Builder.DL)) 5614 return Builder.getValue(LoadCst); 5615 } 5616 5617 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5618 // still constant memory, the input chain can be the entry node. 5619 SDValue Root; 5620 bool ConstantMemory = false; 5621 5622 // Do not serialize (non-volatile) loads of constant memory with anything. 5623 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5624 Root = Builder.DAG.getEntryNode(); 5625 ConstantMemory = true; 5626 } else { 5627 // Do not serialize non-volatile loads against each other. 5628 Root = Builder.DAG.getRoot(); 5629 } 5630 5631 SDValue Ptr = Builder.getValue(PtrVal); 5632 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5633 Ptr, MachinePointerInfo(PtrVal), 5634 false /*volatile*/, 5635 false /*nontemporal*/, 5636 false /*isinvariant*/, 1 /* align=1 */); 5637 5638 if (!ConstantMemory) 5639 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5640 return LoadVal; 5641 } 5642 5643 /// processIntegerCallValue - Record the value for an instruction that 5644 /// produces an integer result, converting the type where necessary. 5645 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5646 SDValue Value, 5647 bool IsSigned) { 5648 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); 5649 if (IsSigned) 5650 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5651 else 5652 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5653 setValue(&I, Value); 5654 } 5655 5656 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5657 /// If so, return true and lower it, otherwise return false and it will be 5658 /// lowered like a normal call. 5659 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5660 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5661 if (I.getNumArgOperands() != 3) 5662 return false; 5663 5664 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5665 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5666 !I.getArgOperand(2)->getType()->isIntegerTy() || 5667 !I.getType()->isIntegerTy()) 5668 return false; 5669 5670 const Value *Size = I.getArgOperand(2); 5671 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5672 if (CSize && CSize->getZExtValue() == 0) { 5673 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); 5674 setValue(&I, DAG.getConstant(0, CallVT)); 5675 return true; 5676 } 5677 5678 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5679 std::pair<SDValue, SDValue> Res = 5680 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5681 getValue(LHS), getValue(RHS), getValue(Size), 5682 MachinePointerInfo(LHS), 5683 MachinePointerInfo(RHS)); 5684 if (Res.first.getNode()) { 5685 processIntegerCallValue(I, Res.first, true); 5686 PendingLoads.push_back(Res.second); 5687 return true; 5688 } 5689 5690 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5691 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5692 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5693 bool ActuallyDoIt = true; 5694 MVT LoadVT; 5695 Type *LoadTy; 5696 switch (CSize->getZExtValue()) { 5697 default: 5698 LoadVT = MVT::Other; 5699 LoadTy = nullptr; 5700 ActuallyDoIt = false; 5701 break; 5702 case 2: 5703 LoadVT = MVT::i16; 5704 LoadTy = Type::getInt16Ty(CSize->getContext()); 5705 break; 5706 case 4: 5707 LoadVT = MVT::i32; 5708 LoadTy = Type::getInt32Ty(CSize->getContext()); 5709 break; 5710 case 8: 5711 LoadVT = MVT::i64; 5712 LoadTy = Type::getInt64Ty(CSize->getContext()); 5713 break; 5714 /* 5715 case 16: 5716 LoadVT = MVT::v4i32; 5717 LoadTy = Type::getInt32Ty(CSize->getContext()); 5718 LoadTy = VectorType::get(LoadTy, 4); 5719 break; 5720 */ 5721 } 5722 5723 // This turns into unaligned loads. We only do this if the target natively 5724 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5725 // we'll only produce a small number of byte loads. 5726 5727 // Require that we can find a legal MVT, and only do this if the target 5728 // supports unaligned loads of that type. Expanding into byte loads would 5729 // bloat the code. 5730 const TargetLowering *TLI = TM.getTargetLowering(); 5731 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5732 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5733 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5734 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5735 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5736 if (!TLI->isTypeLegal(LoadVT) || 5737 !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) || 5738 !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS)) 5739 ActuallyDoIt = false; 5740 } 5741 5742 if (ActuallyDoIt) { 5743 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5744 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5745 5746 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5747 ISD::SETNE); 5748 processIntegerCallValue(I, Res, false); 5749 return true; 5750 } 5751 } 5752 5753 5754 return false; 5755 } 5756 5757 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5758 /// form. If so, return true and lower it, otherwise return false and it 5759 /// will be lowered like a normal call. 5760 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5761 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5762 if (I.getNumArgOperands() != 3) 5763 return false; 5764 5765 const Value *Src = I.getArgOperand(0); 5766 const Value *Char = I.getArgOperand(1); 5767 const Value *Length = I.getArgOperand(2); 5768 if (!Src->getType()->isPointerTy() || 5769 !Char->getType()->isIntegerTy() || 5770 !Length->getType()->isIntegerTy() || 5771 !I.getType()->isPointerTy()) 5772 return false; 5773 5774 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5775 std::pair<SDValue, SDValue> Res = 5776 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5777 getValue(Src), getValue(Char), getValue(Length), 5778 MachinePointerInfo(Src)); 5779 if (Res.first.getNode()) { 5780 setValue(&I, Res.first); 5781 PendingLoads.push_back(Res.second); 5782 return true; 5783 } 5784 5785 return false; 5786 } 5787 5788 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5789 /// optimized form. If so, return true and lower it, otherwise return false 5790 /// and it will be lowered like a normal call. 5791 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5792 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5793 if (I.getNumArgOperands() != 2) 5794 return false; 5795 5796 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5797 if (!Arg0->getType()->isPointerTy() || 5798 !Arg1->getType()->isPointerTy() || 5799 !I.getType()->isPointerTy()) 5800 return false; 5801 5802 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5803 std::pair<SDValue, SDValue> Res = 5804 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5805 getValue(Arg0), getValue(Arg1), 5806 MachinePointerInfo(Arg0), 5807 MachinePointerInfo(Arg1), isStpcpy); 5808 if (Res.first.getNode()) { 5809 setValue(&I, Res.first); 5810 DAG.setRoot(Res.second); 5811 return true; 5812 } 5813 5814 return false; 5815 } 5816 5817 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5818 /// If so, return true and lower it, otherwise return false and it will be 5819 /// lowered like a normal call. 5820 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5821 // Verify that the prototype makes sense. int strcmp(void*,void*) 5822 if (I.getNumArgOperands() != 2) 5823 return false; 5824 5825 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5826 if (!Arg0->getType()->isPointerTy() || 5827 !Arg1->getType()->isPointerTy() || 5828 !I.getType()->isIntegerTy()) 5829 return false; 5830 5831 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5832 std::pair<SDValue, SDValue> Res = 5833 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5834 getValue(Arg0), getValue(Arg1), 5835 MachinePointerInfo(Arg0), 5836 MachinePointerInfo(Arg1)); 5837 if (Res.first.getNode()) { 5838 processIntegerCallValue(I, Res.first, true); 5839 PendingLoads.push_back(Res.second); 5840 return true; 5841 } 5842 5843 return false; 5844 } 5845 5846 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5847 /// form. If so, return true and lower it, otherwise return false and it 5848 /// will be lowered like a normal call. 5849 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5850 // Verify that the prototype makes sense. size_t strlen(char *) 5851 if (I.getNumArgOperands() != 1) 5852 return false; 5853 5854 const Value *Arg0 = I.getArgOperand(0); 5855 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5856 return false; 5857 5858 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5859 std::pair<SDValue, SDValue> Res = 5860 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5861 getValue(Arg0), MachinePointerInfo(Arg0)); 5862 if (Res.first.getNode()) { 5863 processIntegerCallValue(I, Res.first, false); 5864 PendingLoads.push_back(Res.second); 5865 return true; 5866 } 5867 5868 return false; 5869 } 5870 5871 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5872 /// form. If so, return true and lower it, otherwise return false and it 5873 /// will be lowered like a normal call. 5874 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5875 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5876 if (I.getNumArgOperands() != 2) 5877 return false; 5878 5879 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5880 if (!Arg0->getType()->isPointerTy() || 5881 !Arg1->getType()->isIntegerTy() || 5882 !I.getType()->isIntegerTy()) 5883 return false; 5884 5885 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5886 std::pair<SDValue, SDValue> Res = 5887 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5888 getValue(Arg0), getValue(Arg1), 5889 MachinePointerInfo(Arg0)); 5890 if (Res.first.getNode()) { 5891 processIntegerCallValue(I, Res.first, false); 5892 PendingLoads.push_back(Res.second); 5893 return true; 5894 } 5895 5896 return false; 5897 } 5898 5899 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5900 /// operation (as expected), translate it to an SDNode with the specified opcode 5901 /// and return true. 5902 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5903 unsigned Opcode) { 5904 // Sanity check that it really is a unary floating-point call. 5905 if (I.getNumArgOperands() != 1 || 5906 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5907 I.getType() != I.getArgOperand(0)->getType() || 5908 !I.onlyReadsMemory()) 5909 return false; 5910 5911 SDValue Tmp = getValue(I.getArgOperand(0)); 5912 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5913 return true; 5914 } 5915 5916 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5917 // Handle inline assembly differently. 5918 if (isa<InlineAsm>(I.getCalledValue())) { 5919 visitInlineAsm(&I); 5920 return; 5921 } 5922 5923 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5924 ComputeUsesVAFloatArgument(I, &MMI); 5925 5926 const char *RenameFn = nullptr; 5927 if (Function *F = I.getCalledFunction()) { 5928 if (F->isDeclaration()) { 5929 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5930 if (unsigned IID = II->getIntrinsicID(F)) { 5931 RenameFn = visitIntrinsicCall(I, IID); 5932 if (!RenameFn) 5933 return; 5934 } 5935 } 5936 if (unsigned IID = F->getIntrinsicID()) { 5937 RenameFn = visitIntrinsicCall(I, IID); 5938 if (!RenameFn) 5939 return; 5940 } 5941 } 5942 5943 // Check for well-known libc/libm calls. If the function is internal, it 5944 // can't be a library call. 5945 LibFunc::Func Func; 5946 if (!F->hasLocalLinkage() && F->hasName() && 5947 LibInfo->getLibFunc(F->getName(), Func) && 5948 LibInfo->hasOptimizedCodeGen(Func)) { 5949 switch (Func) { 5950 default: break; 5951 case LibFunc::copysign: 5952 case LibFunc::copysignf: 5953 case LibFunc::copysignl: 5954 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5955 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5956 I.getType() == I.getArgOperand(0)->getType() && 5957 I.getType() == I.getArgOperand(1)->getType() && 5958 I.onlyReadsMemory()) { 5959 SDValue LHS = getValue(I.getArgOperand(0)); 5960 SDValue RHS = getValue(I.getArgOperand(1)); 5961 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5962 LHS.getValueType(), LHS, RHS)); 5963 return; 5964 } 5965 break; 5966 case LibFunc::fabs: 5967 case LibFunc::fabsf: 5968 case LibFunc::fabsl: 5969 if (visitUnaryFloatCall(I, ISD::FABS)) 5970 return; 5971 break; 5972 case LibFunc::sin: 5973 case LibFunc::sinf: 5974 case LibFunc::sinl: 5975 if (visitUnaryFloatCall(I, ISD::FSIN)) 5976 return; 5977 break; 5978 case LibFunc::cos: 5979 case LibFunc::cosf: 5980 case LibFunc::cosl: 5981 if (visitUnaryFloatCall(I, ISD::FCOS)) 5982 return; 5983 break; 5984 case LibFunc::sqrt: 5985 case LibFunc::sqrtf: 5986 case LibFunc::sqrtl: 5987 case LibFunc::sqrt_finite: 5988 case LibFunc::sqrtf_finite: 5989 case LibFunc::sqrtl_finite: 5990 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5991 return; 5992 break; 5993 case LibFunc::floor: 5994 case LibFunc::floorf: 5995 case LibFunc::floorl: 5996 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5997 return; 5998 break; 5999 case LibFunc::nearbyint: 6000 case LibFunc::nearbyintf: 6001 case LibFunc::nearbyintl: 6002 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6003 return; 6004 break; 6005 case LibFunc::ceil: 6006 case LibFunc::ceilf: 6007 case LibFunc::ceill: 6008 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6009 return; 6010 break; 6011 case LibFunc::rint: 6012 case LibFunc::rintf: 6013 case LibFunc::rintl: 6014 if (visitUnaryFloatCall(I, ISD::FRINT)) 6015 return; 6016 break; 6017 case LibFunc::round: 6018 case LibFunc::roundf: 6019 case LibFunc::roundl: 6020 if (visitUnaryFloatCall(I, ISD::FROUND)) 6021 return; 6022 break; 6023 case LibFunc::trunc: 6024 case LibFunc::truncf: 6025 case LibFunc::truncl: 6026 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6027 return; 6028 break; 6029 case LibFunc::log2: 6030 case LibFunc::log2f: 6031 case LibFunc::log2l: 6032 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6033 return; 6034 break; 6035 case LibFunc::exp2: 6036 case LibFunc::exp2f: 6037 case LibFunc::exp2l: 6038 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6039 return; 6040 break; 6041 case LibFunc::memcmp: 6042 if (visitMemCmpCall(I)) 6043 return; 6044 break; 6045 case LibFunc::memchr: 6046 if (visitMemChrCall(I)) 6047 return; 6048 break; 6049 case LibFunc::strcpy: 6050 if (visitStrCpyCall(I, false)) 6051 return; 6052 break; 6053 case LibFunc::stpcpy: 6054 if (visitStrCpyCall(I, true)) 6055 return; 6056 break; 6057 case LibFunc::strcmp: 6058 if (visitStrCmpCall(I)) 6059 return; 6060 break; 6061 case LibFunc::strlen: 6062 if (visitStrLenCall(I)) 6063 return; 6064 break; 6065 case LibFunc::strnlen: 6066 if (visitStrNLenCall(I)) 6067 return; 6068 break; 6069 } 6070 } 6071 } 6072 6073 SDValue Callee; 6074 if (!RenameFn) 6075 Callee = getValue(I.getCalledValue()); 6076 else 6077 Callee = DAG.getExternalSymbol(RenameFn, 6078 TM.getTargetLowering()->getPointerTy()); 6079 6080 // Check if we can potentially perform a tail call. More detailed checking is 6081 // be done within LowerCallTo, after more information about the call is known. 6082 LowerCallTo(&I, Callee, I.isTailCall()); 6083 } 6084 6085 namespace { 6086 6087 /// AsmOperandInfo - This contains information for each constraint that we are 6088 /// lowering. 6089 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6090 public: 6091 /// CallOperand - If this is the result output operand or a clobber 6092 /// this is null, otherwise it is the incoming operand to the CallInst. 6093 /// This gets modified as the asm is processed. 6094 SDValue CallOperand; 6095 6096 /// AssignedRegs - If this is a register or register class operand, this 6097 /// contains the set of register corresponding to the operand. 6098 RegsForValue AssignedRegs; 6099 6100 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6101 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6102 } 6103 6104 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6105 /// corresponds to. If there is no Value* for this operand, it returns 6106 /// MVT::Other. 6107 EVT getCallOperandValEVT(LLVMContext &Context, 6108 const TargetLowering &TLI, 6109 const DataLayout *DL) const { 6110 if (!CallOperandVal) return MVT::Other; 6111 6112 if (isa<BasicBlock>(CallOperandVal)) 6113 return TLI.getPointerTy(); 6114 6115 llvm::Type *OpTy = CallOperandVal->getType(); 6116 6117 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6118 // If this is an indirect operand, the operand is a pointer to the 6119 // accessed type. 6120 if (isIndirect) { 6121 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6122 if (!PtrTy) 6123 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6124 OpTy = PtrTy->getElementType(); 6125 } 6126 6127 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6128 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6129 if (STy->getNumElements() == 1) 6130 OpTy = STy->getElementType(0); 6131 6132 // If OpTy is not a single value, it may be a struct/union that we 6133 // can tile with integers. 6134 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6135 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6136 switch (BitSize) { 6137 default: break; 6138 case 1: 6139 case 8: 6140 case 16: 6141 case 32: 6142 case 64: 6143 case 128: 6144 OpTy = IntegerType::get(Context, BitSize); 6145 break; 6146 } 6147 } 6148 6149 return TLI.getValueType(OpTy, true); 6150 } 6151 }; 6152 6153 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6154 6155 } // end anonymous namespace 6156 6157 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6158 /// specified operand. We prefer to assign virtual registers, to allow the 6159 /// register allocator to handle the assignment process. However, if the asm 6160 /// uses features that we can't model on machineinstrs, we have SDISel do the 6161 /// allocation. This produces generally horrible, but correct, code. 6162 /// 6163 /// OpInfo describes the operand. 6164 /// 6165 static void GetRegistersForValue(SelectionDAG &DAG, 6166 const TargetLowering &TLI, 6167 SDLoc DL, 6168 SDISelAsmOperandInfo &OpInfo) { 6169 LLVMContext &Context = *DAG.getContext(); 6170 6171 MachineFunction &MF = DAG.getMachineFunction(); 6172 SmallVector<unsigned, 4> Regs; 6173 6174 // If this is a constraint for a single physreg, or a constraint for a 6175 // register class, find it. 6176 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6177 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6178 OpInfo.ConstraintVT); 6179 6180 unsigned NumRegs = 1; 6181 if (OpInfo.ConstraintVT != MVT::Other) { 6182 // If this is a FP input in an integer register (or visa versa) insert a bit 6183 // cast of the input value. More generally, handle any case where the input 6184 // value disagrees with the register class we plan to stick this in. 6185 if (OpInfo.Type == InlineAsm::isInput && 6186 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6187 // Try to convert to the first EVT that the reg class contains. If the 6188 // types are identical size, use a bitcast to convert (e.g. two differing 6189 // vector types). 6190 MVT RegVT = *PhysReg.second->vt_begin(); 6191 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6192 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6193 RegVT, OpInfo.CallOperand); 6194 OpInfo.ConstraintVT = RegVT; 6195 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6196 // If the input is a FP value and we want it in FP registers, do a 6197 // bitcast to the corresponding integer type. This turns an f64 value 6198 // into i64, which can be passed with two i32 values on a 32-bit 6199 // machine. 6200 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6201 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6202 RegVT, OpInfo.CallOperand); 6203 OpInfo.ConstraintVT = RegVT; 6204 } 6205 } 6206 6207 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6208 } 6209 6210 MVT RegVT; 6211 EVT ValueVT = OpInfo.ConstraintVT; 6212 6213 // If this is a constraint for a specific physical register, like {r17}, 6214 // assign it now. 6215 if (unsigned AssignedReg = PhysReg.first) { 6216 const TargetRegisterClass *RC = PhysReg.second; 6217 if (OpInfo.ConstraintVT == MVT::Other) 6218 ValueVT = *RC->vt_begin(); 6219 6220 // Get the actual register value type. This is important, because the user 6221 // may have asked for (e.g.) the AX register in i32 type. We need to 6222 // remember that AX is actually i16 to get the right extension. 6223 RegVT = *RC->vt_begin(); 6224 6225 // This is a explicit reference to a physical register. 6226 Regs.push_back(AssignedReg); 6227 6228 // If this is an expanded reference, add the rest of the regs to Regs. 6229 if (NumRegs != 1) { 6230 TargetRegisterClass::iterator I = RC->begin(); 6231 for (; *I != AssignedReg; ++I) 6232 assert(I != RC->end() && "Didn't find reg!"); 6233 6234 // Already added the first reg. 6235 --NumRegs; ++I; 6236 for (; NumRegs; --NumRegs, ++I) { 6237 assert(I != RC->end() && "Ran out of registers to allocate!"); 6238 Regs.push_back(*I); 6239 } 6240 } 6241 6242 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6243 return; 6244 } 6245 6246 // Otherwise, if this was a reference to an LLVM register class, create vregs 6247 // for this reference. 6248 if (const TargetRegisterClass *RC = PhysReg.second) { 6249 RegVT = *RC->vt_begin(); 6250 if (OpInfo.ConstraintVT == MVT::Other) 6251 ValueVT = RegVT; 6252 6253 // Create the appropriate number of virtual registers. 6254 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6255 for (; NumRegs; --NumRegs) 6256 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6257 6258 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6259 return; 6260 } 6261 6262 // Otherwise, we couldn't allocate enough registers for this. 6263 } 6264 6265 /// visitInlineAsm - Handle a call to an InlineAsm object. 6266 /// 6267 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6268 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6269 6270 /// ConstraintOperands - Information about all of the constraints. 6271 SDISelAsmOperandInfoVector ConstraintOperands; 6272 6273 const TargetLowering *TLI = TM.getTargetLowering(); 6274 TargetLowering::AsmOperandInfoVector 6275 TargetConstraints = TLI->ParseConstraints(CS); 6276 6277 bool hasMemory = false; 6278 6279 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6280 unsigned ResNo = 0; // ResNo - The result number of the next output. 6281 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6282 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6283 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6284 6285 MVT OpVT = MVT::Other; 6286 6287 // Compute the value type for each operand. 6288 switch (OpInfo.Type) { 6289 case InlineAsm::isOutput: 6290 // Indirect outputs just consume an argument. 6291 if (OpInfo.isIndirect) { 6292 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6293 break; 6294 } 6295 6296 // The return value of the call is this value. As such, there is no 6297 // corresponding argument. 6298 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6299 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6300 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6301 } else { 6302 assert(ResNo == 0 && "Asm only has one result!"); 6303 OpVT = TLI->getSimpleValueType(CS.getType()); 6304 } 6305 ++ResNo; 6306 break; 6307 case InlineAsm::isInput: 6308 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6309 break; 6310 case InlineAsm::isClobber: 6311 // Nothing to do. 6312 break; 6313 } 6314 6315 // If this is an input or an indirect output, process the call argument. 6316 // BasicBlocks are labels, currently appearing only in asm's. 6317 if (OpInfo.CallOperandVal) { 6318 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6319 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6320 } else { 6321 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6322 } 6323 6324 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6325 getSimpleVT(); 6326 } 6327 6328 OpInfo.ConstraintVT = OpVT; 6329 6330 // Indirect operand accesses access memory. 6331 if (OpInfo.isIndirect) 6332 hasMemory = true; 6333 else { 6334 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6335 TargetLowering::ConstraintType 6336 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6337 if (CType == TargetLowering::C_Memory) { 6338 hasMemory = true; 6339 break; 6340 } 6341 } 6342 } 6343 } 6344 6345 SDValue Chain, Flag; 6346 6347 // We won't need to flush pending loads if this asm doesn't touch 6348 // memory and is nonvolatile. 6349 if (hasMemory || IA->hasSideEffects()) 6350 Chain = getRoot(); 6351 else 6352 Chain = DAG.getRoot(); 6353 6354 // Second pass over the constraints: compute which constraint option to use 6355 // and assign registers to constraints that want a specific physreg. 6356 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6357 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6358 6359 // If this is an output operand with a matching input operand, look up the 6360 // matching input. If their types mismatch, e.g. one is an integer, the 6361 // other is floating point, or their sizes are different, flag it as an 6362 // error. 6363 if (OpInfo.hasMatchingInput()) { 6364 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6365 6366 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6367 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6368 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6369 OpInfo.ConstraintVT); 6370 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6371 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6372 Input.ConstraintVT); 6373 if ((OpInfo.ConstraintVT.isInteger() != 6374 Input.ConstraintVT.isInteger()) || 6375 (MatchRC.second != InputRC.second)) { 6376 report_fatal_error("Unsupported asm: input constraint" 6377 " with a matching output constraint of" 6378 " incompatible type!"); 6379 } 6380 Input.ConstraintVT = OpInfo.ConstraintVT; 6381 } 6382 } 6383 6384 // Compute the constraint code and ConstraintType to use. 6385 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6386 6387 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6388 OpInfo.Type == InlineAsm::isClobber) 6389 continue; 6390 6391 // If this is a memory input, and if the operand is not indirect, do what we 6392 // need to to provide an address for the memory input. 6393 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6394 !OpInfo.isIndirect) { 6395 assert((OpInfo.isMultipleAlternative || 6396 (OpInfo.Type == InlineAsm::isInput)) && 6397 "Can only indirectify direct input operands!"); 6398 6399 // Memory operands really want the address of the value. If we don't have 6400 // an indirect input, put it in the constpool if we can, otherwise spill 6401 // it to a stack slot. 6402 // TODO: This isn't quite right. We need to handle these according to 6403 // the addressing mode that the constraint wants. Also, this may take 6404 // an additional register for the computation and we don't want that 6405 // either. 6406 6407 // If the operand is a float, integer, or vector constant, spill to a 6408 // constant pool entry to get its address. 6409 const Value *OpVal = OpInfo.CallOperandVal; 6410 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6411 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6412 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6413 TLI->getPointerTy()); 6414 } else { 6415 // Otherwise, create a stack slot and emit a store to it before the 6416 // asm. 6417 Type *Ty = OpVal->getType(); 6418 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6419 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6420 MachineFunction &MF = DAG.getMachineFunction(); 6421 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6422 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6423 Chain = DAG.getStore(Chain, getCurSDLoc(), 6424 OpInfo.CallOperand, StackSlot, 6425 MachinePointerInfo::getFixedStack(SSFI), 6426 false, false, 0); 6427 OpInfo.CallOperand = StackSlot; 6428 } 6429 6430 // There is no longer a Value* corresponding to this operand. 6431 OpInfo.CallOperandVal = nullptr; 6432 6433 // It is now an indirect operand. 6434 OpInfo.isIndirect = true; 6435 } 6436 6437 // If this constraint is for a specific register, allocate it before 6438 // anything else. 6439 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6440 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6441 } 6442 6443 // Second pass - Loop over all of the operands, assigning virtual or physregs 6444 // to register class operands. 6445 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6446 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6447 6448 // C_Register operands have already been allocated, Other/Memory don't need 6449 // to be. 6450 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6451 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6452 } 6453 6454 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6455 std::vector<SDValue> AsmNodeOperands; 6456 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6457 AsmNodeOperands.push_back( 6458 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6459 TLI->getPointerTy())); 6460 6461 // If we have a !srcloc metadata node associated with it, we want to attach 6462 // this to the ultimately generated inline asm machineinstr. To do this, we 6463 // pass in the third operand as this (potentially null) inline asm MDNode. 6464 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6465 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6466 6467 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6468 // bits as operand 3. 6469 unsigned ExtraInfo = 0; 6470 if (IA->hasSideEffects()) 6471 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6472 if (IA->isAlignStack()) 6473 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6474 // Set the asm dialect. 6475 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6476 6477 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6478 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6479 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6480 6481 // Compute the constraint code and ConstraintType to use. 6482 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6483 6484 // Ideally, we would only check against memory constraints. However, the 6485 // meaning of an other constraint can be target-specific and we can't easily 6486 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6487 // for other constriants as well. 6488 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6489 OpInfo.ConstraintType == TargetLowering::C_Other) { 6490 if (OpInfo.Type == InlineAsm::isInput) 6491 ExtraInfo |= InlineAsm::Extra_MayLoad; 6492 else if (OpInfo.Type == InlineAsm::isOutput) 6493 ExtraInfo |= InlineAsm::Extra_MayStore; 6494 else if (OpInfo.Type == InlineAsm::isClobber) 6495 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6496 } 6497 } 6498 6499 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6500 TLI->getPointerTy())); 6501 6502 // Loop over all of the inputs, copying the operand values into the 6503 // appropriate registers and processing the output regs. 6504 RegsForValue RetValRegs; 6505 6506 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6507 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6508 6509 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6510 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6511 6512 switch (OpInfo.Type) { 6513 case InlineAsm::isOutput: { 6514 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6515 OpInfo.ConstraintType != TargetLowering::C_Register) { 6516 // Memory output, or 'other' output (e.g. 'X' constraint). 6517 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6518 6519 // Add information to the INLINEASM node to know about this output. 6520 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6521 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6522 TLI->getPointerTy())); 6523 AsmNodeOperands.push_back(OpInfo.CallOperand); 6524 break; 6525 } 6526 6527 // Otherwise, this is a register or register class output. 6528 6529 // Copy the output from the appropriate register. Find a register that 6530 // we can use. 6531 if (OpInfo.AssignedRegs.Regs.empty()) { 6532 LLVMContext &Ctx = *DAG.getContext(); 6533 Ctx.emitError(CS.getInstruction(), 6534 "couldn't allocate output register for constraint '" + 6535 Twine(OpInfo.ConstraintCode) + "'"); 6536 return; 6537 } 6538 6539 // If this is an indirect operand, store through the pointer after the 6540 // asm. 6541 if (OpInfo.isIndirect) { 6542 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6543 OpInfo.CallOperandVal)); 6544 } else { 6545 // This is the result value of the call. 6546 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6547 // Concatenate this output onto the outputs list. 6548 RetValRegs.append(OpInfo.AssignedRegs); 6549 } 6550 6551 // Add information to the INLINEASM node to know that this register is 6552 // set. 6553 OpInfo.AssignedRegs 6554 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6555 ? InlineAsm::Kind_RegDefEarlyClobber 6556 : InlineAsm::Kind_RegDef, 6557 false, 0, DAG, AsmNodeOperands); 6558 break; 6559 } 6560 case InlineAsm::isInput: { 6561 SDValue InOperandVal = OpInfo.CallOperand; 6562 6563 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6564 // If this is required to match an output register we have already set, 6565 // just use its register. 6566 unsigned OperandNo = OpInfo.getMatchedOperand(); 6567 6568 // Scan until we find the definition we already emitted of this operand. 6569 // When we find it, create a RegsForValue operand. 6570 unsigned CurOp = InlineAsm::Op_FirstOperand; 6571 for (; OperandNo; --OperandNo) { 6572 // Advance to the next operand. 6573 unsigned OpFlag = 6574 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6575 assert((InlineAsm::isRegDefKind(OpFlag) || 6576 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6577 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6578 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6579 } 6580 6581 unsigned OpFlag = 6582 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6583 if (InlineAsm::isRegDefKind(OpFlag) || 6584 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6585 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6586 if (OpInfo.isIndirect) { 6587 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6588 LLVMContext &Ctx = *DAG.getContext(); 6589 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6590 " don't know how to handle tied " 6591 "indirect register inputs"); 6592 return; 6593 } 6594 6595 RegsForValue MatchedRegs; 6596 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6597 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6598 MatchedRegs.RegVTs.push_back(RegVT); 6599 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6600 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6601 i != e; ++i) { 6602 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6603 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6604 else { 6605 LLVMContext &Ctx = *DAG.getContext(); 6606 Ctx.emitError(CS.getInstruction(), 6607 "inline asm error: This value" 6608 " type register class is not natively supported!"); 6609 return; 6610 } 6611 } 6612 // Use the produced MatchedRegs object to 6613 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6614 Chain, &Flag, CS.getInstruction()); 6615 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6616 true, OpInfo.getMatchedOperand(), 6617 DAG, AsmNodeOperands); 6618 break; 6619 } 6620 6621 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6622 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6623 "Unexpected number of operands"); 6624 // Add information to the INLINEASM node to know about this input. 6625 // See InlineAsm.h isUseOperandTiedToDef. 6626 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6627 OpInfo.getMatchedOperand()); 6628 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6629 TLI->getPointerTy())); 6630 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6631 break; 6632 } 6633 6634 // Treat indirect 'X' constraint as memory. 6635 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6636 OpInfo.isIndirect) 6637 OpInfo.ConstraintType = TargetLowering::C_Memory; 6638 6639 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6640 std::vector<SDValue> Ops; 6641 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6642 Ops, DAG); 6643 if (Ops.empty()) { 6644 LLVMContext &Ctx = *DAG.getContext(); 6645 Ctx.emitError(CS.getInstruction(), 6646 "invalid operand for inline asm constraint '" + 6647 Twine(OpInfo.ConstraintCode) + "'"); 6648 return; 6649 } 6650 6651 // Add information to the INLINEASM node to know about this input. 6652 unsigned ResOpType = 6653 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6654 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6655 TLI->getPointerTy())); 6656 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6657 break; 6658 } 6659 6660 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6661 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6662 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6663 "Memory operands expect pointer values"); 6664 6665 // Add information to the INLINEASM node to know about this input. 6666 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6667 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6668 TLI->getPointerTy())); 6669 AsmNodeOperands.push_back(InOperandVal); 6670 break; 6671 } 6672 6673 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6674 OpInfo.ConstraintType == TargetLowering::C_Register) && 6675 "Unknown constraint type!"); 6676 6677 // TODO: Support this. 6678 if (OpInfo.isIndirect) { 6679 LLVMContext &Ctx = *DAG.getContext(); 6680 Ctx.emitError(CS.getInstruction(), 6681 "Don't know how to handle indirect register inputs yet " 6682 "for constraint '" + 6683 Twine(OpInfo.ConstraintCode) + "'"); 6684 return; 6685 } 6686 6687 // Copy the input into the appropriate registers. 6688 if (OpInfo.AssignedRegs.Regs.empty()) { 6689 LLVMContext &Ctx = *DAG.getContext(); 6690 Ctx.emitError(CS.getInstruction(), 6691 "couldn't allocate input reg for constraint '" + 6692 Twine(OpInfo.ConstraintCode) + "'"); 6693 return; 6694 } 6695 6696 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6697 Chain, &Flag, CS.getInstruction()); 6698 6699 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6700 DAG, AsmNodeOperands); 6701 break; 6702 } 6703 case InlineAsm::isClobber: { 6704 // Add the clobbered value to the operand list, so that the register 6705 // allocator is aware that the physreg got clobbered. 6706 if (!OpInfo.AssignedRegs.Regs.empty()) 6707 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6708 false, 0, DAG, 6709 AsmNodeOperands); 6710 break; 6711 } 6712 } 6713 } 6714 6715 // Finish up input operands. Set the input chain and add the flag last. 6716 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6717 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6718 6719 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6720 DAG.getVTList(MVT::Other, MVT::Glue), 6721 &AsmNodeOperands[0], AsmNodeOperands.size()); 6722 Flag = Chain.getValue(1); 6723 6724 // If this asm returns a register value, copy the result from that register 6725 // and set it as the value of the call. 6726 if (!RetValRegs.Regs.empty()) { 6727 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6728 Chain, &Flag, CS.getInstruction()); 6729 6730 // FIXME: Why don't we do this for inline asms with MRVs? 6731 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6732 EVT ResultType = TLI->getValueType(CS.getType()); 6733 6734 // If any of the results of the inline asm is a vector, it may have the 6735 // wrong width/num elts. This can happen for register classes that can 6736 // contain multiple different value types. The preg or vreg allocated may 6737 // not have the same VT as was expected. Convert it to the right type 6738 // with bit_convert. 6739 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6740 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6741 ResultType, Val); 6742 6743 } else if (ResultType != Val.getValueType() && 6744 ResultType.isInteger() && Val.getValueType().isInteger()) { 6745 // If a result value was tied to an input value, the computed result may 6746 // have a wider width than the expected result. Extract the relevant 6747 // portion. 6748 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6749 } 6750 6751 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6752 } 6753 6754 setValue(CS.getInstruction(), Val); 6755 // Don't need to use this as a chain in this case. 6756 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6757 return; 6758 } 6759 6760 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6761 6762 // Process indirect outputs, first output all of the flagged copies out of 6763 // physregs. 6764 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6765 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6766 const Value *Ptr = IndirectStoresToEmit[i].second; 6767 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6768 Chain, &Flag, IA); 6769 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6770 } 6771 6772 // Emit the non-flagged stores from the physregs. 6773 SmallVector<SDValue, 8> OutChains; 6774 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6775 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6776 StoresToEmit[i].first, 6777 getValue(StoresToEmit[i].second), 6778 MachinePointerInfo(StoresToEmit[i].second), 6779 false, false, 0); 6780 OutChains.push_back(Val); 6781 } 6782 6783 if (!OutChains.empty()) 6784 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 6785 &OutChains[0], OutChains.size()); 6786 6787 DAG.setRoot(Chain); 6788 } 6789 6790 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6791 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6792 MVT::Other, getRoot(), 6793 getValue(I.getArgOperand(0)), 6794 DAG.getSrcValue(I.getArgOperand(0)))); 6795 } 6796 6797 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6798 const TargetLowering *TLI = TM.getTargetLowering(); 6799 const DataLayout &DL = *TLI->getDataLayout(); 6800 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6801 getRoot(), getValue(I.getOperand(0)), 6802 DAG.getSrcValue(I.getOperand(0)), 6803 DL.getABITypeAlignment(I.getType())); 6804 setValue(&I, V); 6805 DAG.setRoot(V.getValue(1)); 6806 } 6807 6808 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6809 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6810 MVT::Other, getRoot(), 6811 getValue(I.getArgOperand(0)), 6812 DAG.getSrcValue(I.getArgOperand(0)))); 6813 } 6814 6815 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6816 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6817 MVT::Other, getRoot(), 6818 getValue(I.getArgOperand(0)), 6819 getValue(I.getArgOperand(1)), 6820 DAG.getSrcValue(I.getArgOperand(0)), 6821 DAG.getSrcValue(I.getArgOperand(1)))); 6822 } 6823 6824 /// \brief Lower an argument list according to the target calling convention. 6825 /// 6826 /// \return A tuple of <return-value, token-chain> 6827 /// 6828 /// This is a helper for lowering intrinsics that follow a target calling 6829 /// convention or require stack pointer adjustment. Only a subset of the 6830 /// intrinsic's operands need to participate in the calling convention. 6831 std::pair<SDValue, SDValue> 6832 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6833 unsigned NumArgs, SDValue Callee, 6834 bool useVoidTy) { 6835 TargetLowering::ArgListTy Args; 6836 Args.reserve(NumArgs); 6837 6838 // Populate the argument list. 6839 // Attributes for args start at offset 1, after the return attribute. 6840 ImmutableCallSite CS(&CI); 6841 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6842 ArgI != ArgE; ++ArgI) { 6843 const Value *V = CI.getOperand(ArgI); 6844 6845 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6846 6847 TargetLowering::ArgListEntry Entry; 6848 Entry.Node = getValue(V); 6849 Entry.Ty = V->getType(); 6850 Entry.setAttributes(&CS, AttrI); 6851 Args.push_back(Entry); 6852 } 6853 6854 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6855 TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false, 6856 /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs, 6857 CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false, 6858 /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc()); 6859 6860 const TargetLowering *TLI = TM.getTargetLowering(); 6861 return TLI->LowerCallTo(CLI); 6862 } 6863 6864 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6865 /// or patchpoint target node's operand list. 6866 /// 6867 /// Constants are converted to TargetConstants purely as an optimization to 6868 /// avoid constant materialization and register allocation. 6869 /// 6870 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6871 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6872 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6873 /// address materialization and register allocation, but may also be required 6874 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6875 /// alloca in the entry block, then the runtime may assume that the alloca's 6876 /// StackMap location can be read immediately after compilation and that the 6877 /// location is valid at any point during execution (this is similar to the 6878 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6879 /// only available in a register, then the runtime would need to trap when 6880 /// execution reaches the StackMap in order to read the alloca's location. 6881 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6882 SmallVectorImpl<SDValue> &Ops, 6883 SelectionDAGBuilder &Builder) { 6884 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6885 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6886 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6887 Ops.push_back( 6888 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6889 Ops.push_back( 6890 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6891 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6892 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6893 Ops.push_back( 6894 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6895 } else 6896 Ops.push_back(OpVal); 6897 } 6898 } 6899 6900 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6901 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6902 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6903 // [live variables...]) 6904 6905 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6906 6907 SDValue Chain, InFlag, Callee, NullPtr; 6908 SmallVector<SDValue, 32> Ops; 6909 6910 SDLoc DL = getCurSDLoc(); 6911 Callee = getValue(CI.getCalledValue()); 6912 NullPtr = DAG.getIntPtrConstant(0, true); 6913 6914 // The stackmap intrinsic only records the live variables (the arguemnts 6915 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6916 // intrinsic, this won't be lowered to a function call. This means we don't 6917 // have to worry about calling conventions and target specific lowering code. 6918 // Instead we perform the call lowering right here. 6919 // 6920 // chain, flag = CALLSEQ_START(chain, 0) 6921 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6922 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6923 // 6924 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6925 InFlag = Chain.getValue(1); 6926 6927 // Add the <id> and <numBytes> constants. 6928 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6929 Ops.push_back(DAG.getTargetConstant( 6930 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6931 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6932 Ops.push_back(DAG.getTargetConstant( 6933 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6934 6935 // Push live variables for the stack map. 6936 addStackMapLiveVars(CI, 2, Ops, *this); 6937 6938 // We are not pushing any register mask info here on the operands list, 6939 // because the stackmap doesn't clobber anything. 6940 6941 // Push the chain and the glue flag. 6942 Ops.push_back(Chain); 6943 Ops.push_back(InFlag); 6944 6945 // Create the STACKMAP node. 6946 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6947 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6948 Chain = SDValue(SM, 0); 6949 InFlag = Chain.getValue(1); 6950 6951 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6952 6953 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6954 6955 // Set the root to the target-lowered call chain. 6956 DAG.setRoot(Chain); 6957 6958 // Inform the Frame Information that we have a stackmap in this function. 6959 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6960 } 6961 6962 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6963 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6964 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6965 // i32 <numBytes>, 6966 // i8* <target>, 6967 // i32 <numArgs>, 6968 // [Args...], 6969 // [live variables...]) 6970 6971 CallingConv::ID CC = CI.getCallingConv(); 6972 bool isAnyRegCC = CC == CallingConv::AnyReg; 6973 bool hasDef = !CI.getType()->isVoidTy(); 6974 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6975 6976 // Get the real number of arguments participating in the call <numArgs> 6977 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6978 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6979 6980 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6981 // Intrinsics include all meta-operands up to but not including CC. 6982 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6983 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6984 "Not enough arguments provided to the patchpoint intrinsic"); 6985 6986 // For AnyRegCC the arguments are lowered later on manually. 6987 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6988 std::pair<SDValue, SDValue> Result = 6989 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6990 6991 // Set the root to the target-lowered call chain. 6992 SDValue Chain = Result.second; 6993 DAG.setRoot(Chain); 6994 6995 SDNode *CallEnd = Chain.getNode(); 6996 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6997 CallEnd = CallEnd->getOperand(0).getNode(); 6998 6999 /// Get a call instruction from the call sequence chain. 7000 /// Tail calls are not allowed. 7001 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7002 "Expected a callseq node."); 7003 SDNode *Call = CallEnd->getOperand(0).getNode(); 7004 bool hasGlue = Call->getGluedNode(); 7005 7006 // Replace the target specific call node with the patchable intrinsic. 7007 SmallVector<SDValue, 8> Ops; 7008 7009 // Add the <id> and <numBytes> constants. 7010 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7011 Ops.push_back(DAG.getTargetConstant( 7012 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7013 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7014 Ops.push_back(DAG.getTargetConstant( 7015 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7016 7017 // Assume that the Callee is a constant address. 7018 // FIXME: handle function symbols in the future. 7019 Ops.push_back( 7020 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7021 /*isTarget=*/true)); 7022 7023 // Adjust <numArgs> to account for any arguments that have been passed on the 7024 // stack instead. 7025 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7026 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7027 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7028 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7029 7030 // Add the calling convention 7031 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7032 7033 // Add the arguments we omitted previously. The register allocator should 7034 // place these in any free register. 7035 if (isAnyRegCC) 7036 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7037 Ops.push_back(getValue(CI.getArgOperand(i))); 7038 7039 // Push the arguments from the call instruction up to the register mask. 7040 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7041 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7042 Ops.push_back(*i); 7043 7044 // Push live variables for the stack map. 7045 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7046 7047 // Push the register mask info. 7048 if (hasGlue) 7049 Ops.push_back(*(Call->op_end()-2)); 7050 else 7051 Ops.push_back(*(Call->op_end()-1)); 7052 7053 // Push the chain (this is originally the first operand of the call, but 7054 // becomes now the last or second to last operand). 7055 Ops.push_back(*(Call->op_begin())); 7056 7057 // Push the glue flag (last operand). 7058 if (hasGlue) 7059 Ops.push_back(*(Call->op_end()-1)); 7060 7061 SDVTList NodeTys; 7062 if (isAnyRegCC && hasDef) { 7063 // Create the return types based on the intrinsic definition 7064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7065 SmallVector<EVT, 3> ValueVTs; 7066 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7067 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7068 7069 // There is always a chain and a glue type at the end 7070 ValueVTs.push_back(MVT::Other); 7071 ValueVTs.push_back(MVT::Glue); 7072 NodeTys = DAG.getVTList(ValueVTs); 7073 } else 7074 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7075 7076 // Replace the target specific call node with a PATCHPOINT node. 7077 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7078 getCurSDLoc(), NodeTys, Ops); 7079 7080 // Update the NodeMap. 7081 if (hasDef) { 7082 if (isAnyRegCC) 7083 setValue(&CI, SDValue(MN, 0)); 7084 else 7085 setValue(&CI, Result.first); 7086 } 7087 7088 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7089 // call sequence. Furthermore the location of the chain and glue can change 7090 // when the AnyReg calling convention is used and the intrinsic returns a 7091 // value. 7092 if (isAnyRegCC && hasDef) { 7093 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7094 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7095 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7096 } else 7097 DAG.ReplaceAllUsesWith(Call, MN); 7098 DAG.DeleteNode(Call); 7099 7100 // Inform the Frame Information that we have a patchpoint in this function. 7101 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7102 } 7103 7104 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7105 /// implementation, which just calls LowerCall. 7106 /// FIXME: When all targets are 7107 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7108 std::pair<SDValue, SDValue> 7109 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7110 // Handle the incoming return values from the call. 7111 CLI.Ins.clear(); 7112 SmallVector<EVT, 4> RetTys; 7113 ComputeValueVTs(*this, CLI.RetTy, RetTys); 7114 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7115 EVT VT = RetTys[I]; 7116 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7117 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7118 for (unsigned i = 0; i != NumRegs; ++i) { 7119 ISD::InputArg MyFlags; 7120 MyFlags.VT = RegisterVT; 7121 MyFlags.ArgVT = VT; 7122 MyFlags.Used = CLI.IsReturnValueUsed; 7123 if (CLI.RetSExt) 7124 MyFlags.Flags.setSExt(); 7125 if (CLI.RetZExt) 7126 MyFlags.Flags.setZExt(); 7127 if (CLI.IsInReg) 7128 MyFlags.Flags.setInReg(); 7129 CLI.Ins.push_back(MyFlags); 7130 } 7131 } 7132 7133 // Handle all of the outgoing arguments. 7134 CLI.Outs.clear(); 7135 CLI.OutVals.clear(); 7136 ArgListTy &Args = CLI.Args; 7137 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7138 SmallVector<EVT, 4> ValueVTs; 7139 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7140 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7141 Value != NumValues; ++Value) { 7142 EVT VT = ValueVTs[Value]; 7143 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7144 SDValue Op = SDValue(Args[i].Node.getNode(), 7145 Args[i].Node.getResNo() + Value); 7146 ISD::ArgFlagsTy Flags; 7147 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7148 7149 if (Args[i].isZExt) 7150 Flags.setZExt(); 7151 if (Args[i].isSExt) 7152 Flags.setSExt(); 7153 if (Args[i].isInReg) 7154 Flags.setInReg(); 7155 if (Args[i].isSRet) 7156 Flags.setSRet(); 7157 if (Args[i].isByVal) 7158 Flags.setByVal(); 7159 if (Args[i].isInAlloca) { 7160 Flags.setInAlloca(); 7161 // Set the byval flag for CCAssignFn callbacks that don't know about 7162 // inalloca. This way we can know how many bytes we should've allocated 7163 // and how many bytes a callee cleanup function will pop. If we port 7164 // inalloca to more targets, we'll have to add custom inalloca handling 7165 // in the various CC lowering callbacks. 7166 Flags.setByVal(); 7167 } 7168 if (Args[i].isByVal || Args[i].isInAlloca) { 7169 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7170 Type *ElementTy = Ty->getElementType(); 7171 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7172 // For ByVal, alignment should come from FE. BE will guess if this 7173 // info is not there but there are cases it cannot get right. 7174 unsigned FrameAlign; 7175 if (Args[i].Alignment) 7176 FrameAlign = Args[i].Alignment; 7177 else 7178 FrameAlign = getByValTypeAlignment(ElementTy); 7179 Flags.setByValAlign(FrameAlign); 7180 } 7181 if (Args[i].isNest) 7182 Flags.setNest(); 7183 Flags.setOrigAlign(OriginalAlignment); 7184 7185 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7186 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7187 SmallVector<SDValue, 4> Parts(NumParts); 7188 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7189 7190 if (Args[i].isSExt) 7191 ExtendKind = ISD::SIGN_EXTEND; 7192 else if (Args[i].isZExt) 7193 ExtendKind = ISD::ZERO_EXTEND; 7194 7195 // Conservatively only handle 'returned' on non-vectors for now 7196 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7197 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7198 "unexpected use of 'returned'"); 7199 // Before passing 'returned' to the target lowering code, ensure that 7200 // either the register MVT and the actual EVT are the same size or that 7201 // the return value and argument are extended in the same way; in these 7202 // cases it's safe to pass the argument register value unchanged as the 7203 // return register value (although it's at the target's option whether 7204 // to do so) 7205 // TODO: allow code generation to take advantage of partially preserved 7206 // registers rather than clobbering the entire register when the 7207 // parameter extension method is not compatible with the return 7208 // extension method 7209 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7210 (ExtendKind != ISD::ANY_EXTEND && 7211 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7212 Flags.setReturned(); 7213 } 7214 7215 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7216 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7217 7218 for (unsigned j = 0; j != NumParts; ++j) { 7219 // if it isn't first piece, alignment must be 1 7220 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7221 i < CLI.NumFixedArgs, 7222 i, j*Parts[j].getValueType().getStoreSize()); 7223 if (NumParts > 1 && j == 0) 7224 MyFlags.Flags.setSplit(); 7225 else if (j != 0) 7226 MyFlags.Flags.setOrigAlign(1); 7227 7228 CLI.Outs.push_back(MyFlags); 7229 CLI.OutVals.push_back(Parts[j]); 7230 } 7231 } 7232 } 7233 7234 SmallVector<SDValue, 4> InVals; 7235 CLI.Chain = LowerCall(CLI, InVals); 7236 7237 // Verify that the target's LowerCall behaved as expected. 7238 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7239 "LowerCall didn't return a valid chain!"); 7240 assert((!CLI.IsTailCall || InVals.empty()) && 7241 "LowerCall emitted a return value for a tail call!"); 7242 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7243 "LowerCall didn't emit the correct number of values!"); 7244 7245 // For a tail call, the return value is merely live-out and there aren't 7246 // any nodes in the DAG representing it. Return a special value to 7247 // indicate that a tail call has been emitted and no more Instructions 7248 // should be processed in the current block. 7249 if (CLI.IsTailCall) { 7250 CLI.DAG.setRoot(CLI.Chain); 7251 return std::make_pair(SDValue(), SDValue()); 7252 } 7253 7254 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7255 assert(InVals[i].getNode() && 7256 "LowerCall emitted a null value!"); 7257 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7258 "LowerCall emitted a value with the wrong type!"); 7259 }); 7260 7261 // Collect the legal value parts into potentially illegal values 7262 // that correspond to the original function's return values. 7263 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7264 if (CLI.RetSExt) 7265 AssertOp = ISD::AssertSext; 7266 else if (CLI.RetZExt) 7267 AssertOp = ISD::AssertZext; 7268 SmallVector<SDValue, 4> ReturnValues; 7269 unsigned CurReg = 0; 7270 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7271 EVT VT = RetTys[I]; 7272 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7273 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7274 7275 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7276 NumRegs, RegisterVT, VT, nullptr, 7277 AssertOp)); 7278 CurReg += NumRegs; 7279 } 7280 7281 // For a function returning void, there is no return value. We can't create 7282 // such a node, so we just return a null return value in that case. In 7283 // that case, nothing will actually look at the value. 7284 if (ReturnValues.empty()) 7285 return std::make_pair(SDValue(), CLI.Chain); 7286 7287 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7288 CLI.DAG.getVTList(RetTys), 7289 &ReturnValues[0], ReturnValues.size()); 7290 return std::make_pair(Res, CLI.Chain); 7291 } 7292 7293 void TargetLowering::LowerOperationWrapper(SDNode *N, 7294 SmallVectorImpl<SDValue> &Results, 7295 SelectionDAG &DAG) const { 7296 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7297 if (Res.getNode()) 7298 Results.push_back(Res); 7299 } 7300 7301 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7302 llvm_unreachable("LowerOperation not implemented for this target!"); 7303 } 7304 7305 void 7306 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7307 SDValue Op = getNonRegisterValue(V); 7308 assert((Op.getOpcode() != ISD::CopyFromReg || 7309 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7310 "Copy from a reg to the same reg!"); 7311 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7312 7313 const TargetLowering *TLI = TM.getTargetLowering(); 7314 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7315 SDValue Chain = DAG.getEntryNode(); 7316 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V); 7317 PendingExports.push_back(Chain); 7318 } 7319 7320 #include "llvm/CodeGen/SelectionDAGISel.h" 7321 7322 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7323 /// entry block, return true. This includes arguments used by switches, since 7324 /// the switch may expand into multiple basic blocks. 7325 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7326 // With FastISel active, we may be splitting blocks, so force creation 7327 // of virtual registers for all non-dead arguments. 7328 if (FastISel) 7329 return A->use_empty(); 7330 7331 const BasicBlock *Entry = A->getParent()->begin(); 7332 for (const User *U : A->users()) 7333 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7334 return false; // Use not in entry block. 7335 7336 return true; 7337 } 7338 7339 void SelectionDAGISel::LowerArguments(const Function &F) { 7340 SelectionDAG &DAG = SDB->DAG; 7341 SDLoc dl = SDB->getCurSDLoc(); 7342 const TargetLowering *TLI = getTargetLowering(); 7343 const DataLayout *DL = TLI->getDataLayout(); 7344 SmallVector<ISD::InputArg, 16> Ins; 7345 7346 if (!FuncInfo->CanLowerReturn) { 7347 // Put in an sret pointer parameter before all the other parameters. 7348 SmallVector<EVT, 1> ValueVTs; 7349 ComputeValueVTs(*getTargetLowering(), 7350 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7351 7352 // NOTE: Assuming that a pointer will never break down to more than one VT 7353 // or one register. 7354 ISD::ArgFlagsTy Flags; 7355 Flags.setSRet(); 7356 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7357 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7358 Ins.push_back(RetArg); 7359 } 7360 7361 // Set up the incoming argument description vector. 7362 unsigned Idx = 1; 7363 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7364 I != E; ++I, ++Idx) { 7365 SmallVector<EVT, 4> ValueVTs; 7366 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7367 bool isArgValueUsed = !I->use_empty(); 7368 unsigned PartBase = 0; 7369 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7370 Value != NumValues; ++Value) { 7371 EVT VT = ValueVTs[Value]; 7372 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7373 ISD::ArgFlagsTy Flags; 7374 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7375 7376 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7377 Flags.setZExt(); 7378 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7379 Flags.setSExt(); 7380 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7381 Flags.setInReg(); 7382 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7383 Flags.setSRet(); 7384 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7385 Flags.setByVal(); 7386 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7387 Flags.setInAlloca(); 7388 // Set the byval flag for CCAssignFn callbacks that don't know about 7389 // inalloca. This way we can know how many bytes we should've allocated 7390 // and how many bytes a callee cleanup function will pop. If we port 7391 // inalloca to more targets, we'll have to add custom inalloca handling 7392 // in the various CC lowering callbacks. 7393 Flags.setByVal(); 7394 } 7395 if (Flags.isByVal() || Flags.isInAlloca()) { 7396 PointerType *Ty = cast<PointerType>(I->getType()); 7397 Type *ElementTy = Ty->getElementType(); 7398 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7399 // For ByVal, alignment should be passed from FE. BE will guess if 7400 // this info is not there but there are cases it cannot get right. 7401 unsigned FrameAlign; 7402 if (F.getParamAlignment(Idx)) 7403 FrameAlign = F.getParamAlignment(Idx); 7404 else 7405 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7406 Flags.setByValAlign(FrameAlign); 7407 } 7408 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7409 Flags.setNest(); 7410 Flags.setOrigAlign(OriginalAlignment); 7411 7412 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7413 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7414 for (unsigned i = 0; i != NumRegs; ++i) { 7415 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7416 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7417 if (NumRegs > 1 && i == 0) 7418 MyFlags.Flags.setSplit(); 7419 // if it isn't first piece, alignment must be 1 7420 else if (i > 0) 7421 MyFlags.Flags.setOrigAlign(1); 7422 Ins.push_back(MyFlags); 7423 } 7424 PartBase += VT.getStoreSize(); 7425 } 7426 } 7427 7428 // Call the target to set up the argument values. 7429 SmallVector<SDValue, 8> InVals; 7430 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7431 F.isVarArg(), Ins, 7432 dl, DAG, InVals); 7433 7434 // Verify that the target's LowerFormalArguments behaved as expected. 7435 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7436 "LowerFormalArguments didn't return a valid chain!"); 7437 assert(InVals.size() == Ins.size() && 7438 "LowerFormalArguments didn't emit the correct number of values!"); 7439 DEBUG({ 7440 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7441 assert(InVals[i].getNode() && 7442 "LowerFormalArguments emitted a null value!"); 7443 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7444 "LowerFormalArguments emitted a value with the wrong type!"); 7445 } 7446 }); 7447 7448 // Update the DAG with the new chain value resulting from argument lowering. 7449 DAG.setRoot(NewRoot); 7450 7451 // Set up the argument values. 7452 unsigned i = 0; 7453 Idx = 1; 7454 if (!FuncInfo->CanLowerReturn) { 7455 // Create a virtual register for the sret pointer, and put in a copy 7456 // from the sret argument into it. 7457 SmallVector<EVT, 1> ValueVTs; 7458 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7459 MVT VT = ValueVTs[0].getSimpleVT(); 7460 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7461 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7462 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7463 RegVT, VT, nullptr, AssertOp); 7464 7465 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7466 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7467 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7468 FuncInfo->DemoteRegister = SRetReg; 7469 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7470 SRetReg, ArgValue); 7471 DAG.setRoot(NewRoot); 7472 7473 // i indexes lowered arguments. Bump it past the hidden sret argument. 7474 // Idx indexes LLVM arguments. Don't touch it. 7475 ++i; 7476 } 7477 7478 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7479 ++I, ++Idx) { 7480 SmallVector<SDValue, 4> ArgValues; 7481 SmallVector<EVT, 4> ValueVTs; 7482 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7483 unsigned NumValues = ValueVTs.size(); 7484 7485 // If this argument is unused then remember its value. It is used to generate 7486 // debugging information. 7487 if (I->use_empty() && NumValues) { 7488 SDB->setUnusedArgValue(I, InVals[i]); 7489 7490 // Also remember any frame index for use in FastISel. 7491 if (FrameIndexSDNode *FI = 7492 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7493 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7494 } 7495 7496 for (unsigned Val = 0; Val != NumValues; ++Val) { 7497 EVT VT = ValueVTs[Val]; 7498 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7499 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7500 7501 if (!I->use_empty()) { 7502 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7503 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7504 AssertOp = ISD::AssertSext; 7505 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7506 AssertOp = ISD::AssertZext; 7507 7508 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7509 NumParts, PartVT, VT, 7510 nullptr, AssertOp)); 7511 } 7512 7513 i += NumParts; 7514 } 7515 7516 // We don't need to do anything else for unused arguments. 7517 if (ArgValues.empty()) 7518 continue; 7519 7520 // Note down frame index. 7521 if (FrameIndexSDNode *FI = 7522 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7523 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7524 7525 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 7526 SDB->getCurSDLoc()); 7527 7528 SDB->setValue(I, Res); 7529 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7530 if (LoadSDNode *LNode = 7531 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7532 if (FrameIndexSDNode *FI = 7533 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7534 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7535 } 7536 7537 // If this argument is live outside of the entry block, insert a copy from 7538 // wherever we got it to the vreg that other BB's will reference it as. 7539 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7540 // If we can, though, try to skip creating an unnecessary vreg. 7541 // FIXME: This isn't very clean... it would be nice to make this more 7542 // general. It's also subtly incompatible with the hacks FastISel 7543 // uses with vregs. 7544 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7545 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7546 FuncInfo->ValueMap[I] = Reg; 7547 continue; 7548 } 7549 } 7550 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7551 FuncInfo->InitializeRegForValue(I); 7552 SDB->CopyToExportRegsIfNeeded(I); 7553 } 7554 } 7555 7556 assert(i == InVals.size() && "Argument register count mismatch!"); 7557 7558 // Finally, if the target has anything special to do, allow it to do so. 7559 // FIXME: this should insert code into the DAG! 7560 EmitFunctionEntryCode(); 7561 } 7562 7563 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7564 /// ensure constants are generated when needed. Remember the virtual registers 7565 /// that need to be added to the Machine PHI nodes as input. We cannot just 7566 /// directly add them, because expansion might result in multiple MBB's for one 7567 /// BB. As such, the start of the BB might correspond to a different MBB than 7568 /// the end. 7569 /// 7570 void 7571 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7572 const TerminatorInst *TI = LLVMBB->getTerminator(); 7573 7574 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7575 7576 // Check successor nodes' PHI nodes that expect a constant to be available 7577 // from this block. 7578 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7579 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7580 if (!isa<PHINode>(SuccBB->begin())) continue; 7581 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7582 7583 // If this terminator has multiple identical successors (common for 7584 // switches), only handle each succ once. 7585 if (!SuccsHandled.insert(SuccMBB)) continue; 7586 7587 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7588 7589 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7590 // nodes and Machine PHI nodes, but the incoming operands have not been 7591 // emitted yet. 7592 for (BasicBlock::const_iterator I = SuccBB->begin(); 7593 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7594 // Ignore dead phi's. 7595 if (PN->use_empty()) continue; 7596 7597 // Skip empty types 7598 if (PN->getType()->isEmptyTy()) 7599 continue; 7600 7601 unsigned Reg; 7602 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7603 7604 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7605 unsigned &RegOut = ConstantsOut[C]; 7606 if (RegOut == 0) { 7607 RegOut = FuncInfo.CreateRegs(C->getType()); 7608 CopyValueToVirtualRegister(C, RegOut); 7609 } 7610 Reg = RegOut; 7611 } else { 7612 DenseMap<const Value *, unsigned>::iterator I = 7613 FuncInfo.ValueMap.find(PHIOp); 7614 if (I != FuncInfo.ValueMap.end()) 7615 Reg = I->second; 7616 else { 7617 assert(isa<AllocaInst>(PHIOp) && 7618 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7619 "Didn't codegen value into a register!??"); 7620 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7621 CopyValueToVirtualRegister(PHIOp, Reg); 7622 } 7623 } 7624 7625 // Remember that this register needs to added to the machine PHI node as 7626 // the input for this MBB. 7627 SmallVector<EVT, 4> ValueVTs; 7628 const TargetLowering *TLI = TM.getTargetLowering(); 7629 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7630 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7631 EVT VT = ValueVTs[vti]; 7632 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7633 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7634 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7635 Reg += NumRegisters; 7636 } 7637 } 7638 } 7639 7640 ConstantsOut.clear(); 7641 } 7642 7643 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7644 /// is 0. 7645 MachineBasicBlock * 7646 SelectionDAGBuilder::StackProtectorDescriptor:: 7647 AddSuccessorMBB(const BasicBlock *BB, 7648 MachineBasicBlock *ParentMBB, 7649 MachineBasicBlock *SuccMBB) { 7650 // If SuccBB has not been created yet, create it. 7651 if (!SuccMBB) { 7652 MachineFunction *MF = ParentMBB->getParent(); 7653 MachineFunction::iterator BBI = ParentMBB; 7654 SuccMBB = MF->CreateMachineBasicBlock(BB); 7655 MF->insert(++BBI, SuccMBB); 7656 } 7657 // Add it as a successor of ParentMBB. 7658 ParentMBB->addSuccessor(SuccMBB); 7659 return SuccMBB; 7660 } 7661